WO2022244345A1 - Dispositif de conversion d'énergie - Google Patents

Dispositif de conversion d'énergie Download PDF

Info

Publication number
WO2022244345A1
WO2022244345A1 PCT/JP2022/005242 JP2022005242W WO2022244345A1 WO 2022244345 A1 WO2022244345 A1 WO 2022244345A1 JP 2022005242 W JP2022005242 W JP 2022005242W WO 2022244345 A1 WO2022244345 A1 WO 2022244345A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
axis current
phase
command value
current detection
Prior art date
Application number
PCT/JP2022/005242
Other languages
English (en)
Japanese (ja)
Inventor
義隆 安部
昌司 滝口
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2022244345A1 publication Critical patent/WO2022244345A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/62Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/66Controlling or determining the temperature of the rotor

Definitions

  • the present invention relates to magnet temperature estimation of a synchronous motor driven by a power conversion device, and to technology for estimating magnet temperature without providing a temperature sensor.
  • Non-Patent Document 1 and Patent Document 1 disclose a technique for estimating the magnet temperature by estimating the magnet flux linkage number in an IPMSM (internal structure permanent magnet synchronous motor) with an observer.
  • Non-Patent Document 2 discloses stator temperature estimation using a voltage disturbance observer in SPMSM (Surface Structure Permanent Magnet Synchronous Motor).
  • inertia is estimated using a torque estimation value that is the output of a disturbance observer.
  • Non-Patent Document 1 and Patent Document 1 require the application of harmonic superimposed current, a new current command must be generated. Since the method of Non-Patent Document 2 has a large number of system hierarchies, there are problems such as a large number of adjustment parameters and difficulty in increasing the bandwidth.
  • Hirokazu Sato, Nobuyuki Matsui "Inertia Estimation Method Using Load Torque Observer", The Institute of Electrical Engineers of Japan Transaction D (Industrial Application Division), Vol. 112, No. 2 (1992), pp. 181-182.
  • the present invention has been devised in view of the conventional problems described above, and one aspect thereof is a d-axis current command value, a q-axis current command value, a d-axis current detection value and a q-axis current detection value.
  • a current controller that outputs an axis voltage command value and a q-axis voltage command value; a phase converter, an inverter that outputs a voltage to the motor based on the three-phase voltage command value, a motor rotation position sensor that detects the phase of the motor, a torque sensor that detects the torque response value of the motor, and the a three-phase to two-phase converter that converts a three-phase current detection value output from an inverter into the d-axis current detection value and the q-axis current detection value; an angular velocity output unit that outputs an angular velocity based on the phase; a temperature estimator that calculates an estimated temperature value of the motor based on the detected axis current value, the detected q-axis current value, the torque response value, and the angular velocity, wherein the temperature estimator calculates the d-axis current a disturbance observer that outputs a disturbance estimated value based on the detected value, the q-axis current detected value, and the angular
  • a current controller that outputs a d-axis voltage command value and a q-axis voltage command value based on a d-axis current command value, a q-axis current command value, a d-axis current detection value, and a q-axis current detection value.
  • a two-to-three-phase converter that converts the d-axis voltage command value and the q-axis voltage command value into two-to-three phases and outputs a three-phase voltage command value; an inverter that outputs a voltage; a motor rotation position sensor that detects the phase of the motor; a torque sensor that detects the torque response value of the motor; and a three-phase to two-phase converter that converts to the q-axis current detection value, an angular velocity output unit that outputs an angular velocity based on the phase, the d-axis current command value, the q-axis current command value, and the torque response value and a temperature estimator that calculates an estimated temperature value of the motor based on the angular velocity, wherein the temperature estimator detects a disturbance based on the d-axis current command value, the q-axis current command value, and the angular velocity a disturbance observer that outputs an estimated value; a torque constant fluctuation calculator that calculates a torque constant
  • the disturbance observer is characterized by calculating the disturbance estimated value by the following equation (1).
  • the torque constant fluctuation calculator calculates the torque constant fluctuation estimated value by formula (2)
  • the temperature calculator calculates the temperature estimated value by formula (3). Characterized by
  • the present invention it is possible to estimate the magnet temperature by using an estimation technique based on a disturbance observer in the power converter.
  • the block diagram which shows the whole structure of the power converter device in embodiment. 4 is a block diagram showing a temperature estimator in an embodiment; FIG. The block diagram which shows the disturbance observer in embodiment. The figure which shows the simulation result of constant speed.
  • FIG. 1 An embodiment of the power converter according to the present invention will be described in detail below with reference to FIGS. 1 to 4.
  • FIG. 1 is a diagrammatic representation of the power converter according to the present invention.
  • FIG. 1 shows the overall configuration of a power converter according to an embodiment.
  • the controller 1 includes a current controller 2 , a two-to-three phase converter 3 , a temperature estimator 4 , a three-to-two phase converter 5 and an angular velocity output section 6 .
  • the current controller 2 Based on the d-axis current command value i d * , the q-axis current command value i q * , the d-axis current detection value i d , the q-axis current detection value i q and the angular velocity ⁇ , the current controller 2 outputs the d-axis voltage command Outputs the value v d * and the q-axis voltage command value v q * .
  • the two-to-three-phase converter 3 performs two-to-three phase conversion on the d-axis voltage command value v d * and the q-axis voltage command value v q * based on the phase ⁇ , and outputs a three-phase voltage command value of the uvw phase. .
  • the inverter 7 outputs a voltage to the motor 8 based on the uvw-phase three-phase voltage command value.
  • a load 9 is connected to the motor 8 .
  • a rotational position sensor 10 is provided on the motor 8 to detect the phase ⁇ .
  • a current detector 11 is provided on the output side of the inverter 7 and detects a three-phase current detection value i uvw of the uvw phase.
  • a torque sensor 12 is provided between the motor 8 and the load 9 to detect a torque response value ⁇ l .
  • a three-phase to two-phase converter 5 converts the uvw-phase three-phase current detection value i uvw to three-phase to two-phase conversion based on the phase ⁇ , and outputs a d -axis current detection value id and a q-axis current detection value i q . .
  • the angular velocity output unit 6 outputs an angular velocity ⁇ based on the phase ⁇ .
  • the temperature estimator 4 receives the d-axis current detection value i d , the q-axis current detection value i q , the angular velocity ⁇ , and the torque response value ⁇ 1 , and estimates the temperature estimation value T ⁇ emp of the motor 8 .
  • the controller 1 outputs the uvw-phase three-phase voltage command value to the inverter 7, and feeds back the uvw-phase three-phase current detection value iuvw , the phase ⁇ of the motor 8, and the torque response value ⁇ l .
  • the temperature estimator 4 is located inside the controller 1 , and as shown in FIG. Output the estimate T ⁇ emp . Further, as shown in FIG. 1(b), assuming that the dq-axis current control is almost realized, the d-axis current detection value i d and the q-axis current detection value i q are changed to the d -axis current command values id * and A q-axis current command value i q * may be substituted.
  • the temperature estimator 4 will be described below using FIG. 1(a) as an example, but in the case of FIG . * and the q-axis current command value i q * .
  • the configuration of the temperature estimator 4 is shown in FIG.
  • the temperature estimator 4 includes a disturbance observer (DOB) 13 , a torque constant variation calculator 14 and a temperature calculator 15 .
  • DOE disturbance observer
  • a disturbance observer (DOB) 13 estimates a disturbance estimated value ⁇ dis based on the d -axis current detection value id, the q -axis current detection value iq, and the angular velocity ⁇ .
  • the torque constant variation calculator 14 converts the estimated disturbance value ⁇ dis into an estimated torque constant variation value ⁇ K ⁇ t based on the q -axis current detection value iq and the torque response value ⁇ l .
  • the temperature calculator 15 converts the estimated torque constant variation value ⁇ K ⁇ t into an estimated temperature value T ⁇ emp .
  • a multiplier 16 multiplies the d -axis current detection value id and the q -axis current detection value iq.
  • Multiplier 17 multiplies the output (i d i q ) of multiplier 16 by p(L q ⁇ L d ).
  • a multiplier 18 multiplies the q-axis current detection value i q by K tn .
  • a multiplier 19 multiplies the angular velocity ⁇ by J ns +D.
  • the subtractor 20 converts the output of the multiplier 18 (i q K tn ) to the output of the multiplier 17 (i d i q ⁇ p(L q ⁇ L d )) and the output of the multiplier 19 ( ⁇ (J ns +D) ) is subtracted.
  • a low-pass filter LPF(s) 21 outputs the output of the subtractor 20 as an estimated disturbance value ⁇ dis .
  • the disturbance observer 13 which is the first stage in FIG. 2, outputs the estimated disturbance value ⁇ dis as shown in FIG. 3 and equation (1).
  • s is the Laplace operator
  • g dis is the cut-off frequency of the disturbance observer 13
  • K tn is the torque constant nominal value
  • p is the number of pole pairs
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • J n is the nominal inertia
  • D is the viscosity coefficient
  • is the angular velocity.
  • the torque constant fluctuation calculator 14 which is the second stage in FIG. 2, calculates the torque constant fluctuation estimated value ⁇ K ⁇ t as shown in equation (2).
  • the temperature calculator 15 which is the final stage in FIG. 2, calculates an estimated temperature value (magnet temperature) T ⁇ emp as in equation (3).
  • is the temperature coefficient of magnetic flux [%/°C].
  • Equation (2) is obtained by transforming the equation.
  • the temperature calculation is based on the following temperature coefficient equation (6).
  • ⁇ K t indicates the torque constant fluctuation value.
  • the temperature was changed by a ramp signal with a gradient of 10° C./s, an initial temperature of 60° C. after a start time of 1 s.
  • Vector control is implemented for motor control.
  • a PI controller was applied for the dq-axis currents.
  • the d-axis current command value i d * was set to zero.
  • the q-axis current command value i q * was determined by speed PI control, and the speed command was set to 10 rad/s.
  • FIG. 4 shows the constant speed simulation results.
  • FIG. 4(a) represents time-series data of speed.
  • a solid line represents a speed command value, and a dotted line represents a speed response value. It can be seen that the speed response value converges to the speed command value.
  • FIG. 4(b) shows the disturbance response
  • the solid line indicates the actual disturbance
  • the dotted line indicates the estimated disturbance value.
  • FIG. 4(c) shows the time-series response of temperature, where the solid line indicates the magnet temperature response value and the dotted line indicates the estimated temperature value (T ⁇ emp in equation (3)). It can be confirmed that the temperature estimation value substantially follows the ramp-shaped magnet temperature response value, and the temperature estimator 4 of the present embodiment is operating properly.
  • the magnet temperature can be estimated in real time through real-time estimation of torque constant fluctuation.
  • the magnet temperature is estimated in real time by measuring the d-axis current detection value I d , the q-axis current detection value i q , the phase ⁇ (angular velocity ⁇ ), and the torque response value ⁇ l . be able to.
  • the d-axis current detection value I d and the q-axis current detection value i q may be replaced with the d-axis current command value I d * and the q-axis current command value i q * .
  • the configuration of this embodiment uses a mechanical disturbance observer, it does not require an electric circuit model. Therefore, it is not affected by electrical system modeling errors (electrical system parameter errors, inverter dead time, voltage errors due to semiconductor voltage drops, etc.).
  • the signal inside the inverter is not used as much as possible, and a configuration that does not use the signal inside the inverter is also possible, which makes mounting easier.
  • the temperature can be estimated without changing the current command such as superimposing harmonics.
  • computation including dynamics such as differential integration is only for the voltage disturbance observer, and other computations are algebraic computations that do not include dynamics. Since the adjustment parameter related to dynamics is only the cutoff frequency of the disturbance observer, gain adjustment is easy.
  • Non-Patent Document 3 the inertia is estimated using the output of the disturbance observer, but in this embodiment, the output of the disturbance observer is used to estimate the torque constant fluctuation, and the magnet temperature is estimated through it. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

Sur la base d'une valeur d'instruction de courant d'axe d id *, d'une valeur d'instruction de courant d'axe q iq *, d'une valeur de détection de courant d'axe d Id et d'une valeur de détection de courant d'axe q iq, un dispositif de commande de courant 2 délivre une valeur d'instruction de tension d'axe d vd * et une valeur d'instruction de tension d'axe q vq *. Un convertisseur biphasé/triphasé 3 réalise une conversion biphasée/triphasée sur la valeur d'instruction de tension d'axe d vd * et la valeur d'instruction de tension d'axe q vq * et délivre une valeur d'instruction de tension triphasée. Un capteur de position de rotation 10 détecte la phase θ d'un moteur 8. Un capteur de couple 12 détecte une valeur de réponse de couple τI. Un convertisseur triphasé/biphasé 5 convertit une valeur de détection de courant triphasé iuvw qui est la sortie d'un onduleur 7 en la valeur de détection de courant d'axe d Id et en la valeur de détection de courant d'axe q iq. Sur la base de la phase θ, une unité de sortie de vitesse angulaire 6 délivre une vitesse angulaire ω. Sur la base de la vitesse angulaire ω, de la valeur de détection de courant d'axe d Id (la valeur d'instruction de courant d'axe d id *), de la valeur de détection de courant d'axe q iq (la valeur d'instruction de courant d'axe q iq *), et de la valeur de réponse de couple τI, un estimateur de température 4 calcule une valeur d'estimation de température T ^ pour le moteur 8. La présente invention concerne ainsi un dispositif de conversion d'énergie qui utilise une technique d'estimation basée sur un observateur de perturbation pour estimer une température d'aimant.
PCT/JP2022/005242 2021-05-20 2022-02-10 Dispositif de conversion d'énergie WO2022244345A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085174A JP7063406B1 (ja) 2021-05-20 2021-05-20 電力変換装置
JP2021-085174 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244345A1 true WO2022244345A1 (fr) 2022-11-24

Family

ID=81534466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005242 WO2022244345A1 (fr) 2021-05-20 2022-02-10 Dispositif de conversion d'énergie

Country Status (2)

Country Link
JP (1) JP7063406B1 (fr)
WO (1) WO2022244345A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654572A (ja) * 1992-07-31 1994-02-25 Omron Corp 電動機の熱保護装置
JP2010130853A (ja) * 2008-11-28 2010-06-10 Yaskawa Electric Corp 電動機制御装置と電動機巻線抵抗値変化検出方法
JP2010200544A (ja) * 2009-02-26 2010-09-09 Yaskawa Electric Corp 交流電動機制御装置および制御方法
JP2019170004A (ja) * 2018-03-22 2019-10-03 本田技研工業株式会社 回転電機ユニット、車両及び回転電機ユニットの制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654572A (ja) * 1992-07-31 1994-02-25 Omron Corp 電動機の熱保護装置
JP2010130853A (ja) * 2008-11-28 2010-06-10 Yaskawa Electric Corp 電動機制御装置と電動機巻線抵抗値変化検出方法
JP2010200544A (ja) * 2009-02-26 2010-09-09 Yaskawa Electric Corp 交流電動機制御装置および制御方法
JP2019170004A (ja) * 2018-03-22 2019-10-03 本田技研工業株式会社 回転電機ユニット、車両及び回転電機ユニットの制御方法

Also Published As

Publication number Publication date
JP2022178401A (ja) 2022-12-02
JP7063406B1 (ja) 2022-05-09

Similar Documents

Publication Publication Date Title
JP5396876B2 (ja) 交流電動機の制御装置
JP3582505B2 (ja) モーター制御装置
US9543875B2 (en) Motor control device, and method and device for estimating magnetic flux of electric motor
JP4221307B2 (ja) 同期電動機の制御装置,電気機器およびモジュール
US20170264227A1 (en) Inverter control device and motor drive system
US20160156297A1 (en) Motor drive system, motor control apparatus and motor control method
JP6456995B2 (ja) 永久磁石同期電動機のセンサレス制御システム
JPH07108119B2 (ja) 誘導電動機制御装置
CN106059424A (zh) 一种基于改进卡尔曼观测器的无速度传感器控制方法
WO2015025356A1 (fr) Système de pilotage de moteur et dispositif de commande de moteur
JP2003219698A (ja) 同期機の制御装置
CN110212832A (zh) 用于异步电机的磁链观测方法、系统及介质
JP3945904B2 (ja) 同期電動機の位置および速度センサレス制御装置
KR101742554B1 (ko) 저분해능 센서의 위치 검출 신호 선형화 장치 및 방법과, 이를 적용한 모터 제어 장치 및 방법
JP2013150498A (ja) 同期電動機の制御装置及び制御方法
JP5499594B2 (ja) 永久磁石形同期電動機の制御装置
WO2022244345A1 (fr) Dispositif de conversion d'énergie
JP4305698B2 (ja) 同期電動機の位置および速度推定装置
JP5534991B2 (ja) 同期電動機の制御装置
JP5106295B2 (ja) 同期電動機のロータ位置推定装置
JP5744151B2 (ja) 電動機の駆動装置および電動機の駆動方法
JP6108114B2 (ja) 永久磁石形同期電動機の制御装置
KR100637383B1 (ko) 자속 관측기를 이용한 유도 전동기의 속도 추정 장치 및이를 이용한 제어시스템
KR20020014948A (ko) 유도전동기의 벡터제어장치
KR20040084083A (ko) 유도전동기의 회전자 시정수 추정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804267

Country of ref document: EP

Kind code of ref document: A1