WO2022242685A1 - 一种分体式蜗杆及其传动机构 - Google Patents

一种分体式蜗杆及其传动机构 Download PDF

Info

Publication number
WO2022242685A1
WO2022242685A1 PCT/CN2022/093580 CN2022093580W WO2022242685A1 WO 2022242685 A1 WO2022242685 A1 WO 2022242685A1 CN 2022093580 W CN2022093580 W CN 2022093580W WO 2022242685 A1 WO2022242685 A1 WO 2022242685A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling groove
roller
worm
worm wheel
rolling
Prior art date
Application number
PCT/CN2022/093580
Other languages
English (en)
French (fr)
Inventor
刘清友
邓星桥
王波
沈明川
Original Assignee
成都理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都理工大学 filed Critical 成都理工大学
Publication of WO2022242685A1 publication Critical patent/WO2022242685A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/02Toothed gearings for conveying rotary motion without gears having orbital motion
    • F16H1/04Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members
    • F16H1/12Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes
    • F16H1/16Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel
    • F16H1/163Toothed gearings for conveying rotary motion without gears having orbital motion involving only two intermeshing members with non-parallel axes comprising worm and worm-wheel with balls between the co-operating parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/22Toothed members; Worms for transmissions with crossing shafts, especially worms, worm-gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0427Guidance of lubricant on rotary parts, e.g. using baffles for collecting lubricant by centrifugal force

Definitions

  • the invention relates to the field of mechanical transmission, in particular to a split worm and its transmission mechanism.
  • the most common form of transmission or reducer device in the mechanical field is the worm gear transmission, which has been widely used in mining machines, oil production, chemical plants, infrastructure, heavy and light industries, military industry, bionic robots, aerospace and other fields.
  • the existing worm gear transmission mechanism has a relatively large single-stage transmission ratio, and has relatively high transmission performance compared with ordinary gear-shaped transmission devices, and has the advantages of self-locking and stable transmission.
  • the existing worm wheel and worm usually adopt the way of sliding friction to transmit force, so that there is a large wear between the worm wheel and the worm, which is not conducive to the life management requirements of large-scale equipment that works for a long time. Therefore, there are some studies considering using the roller structure to change sliding friction into rolling friction to reduce equipment wear.
  • the worm gear and worm produced by the manufacturing method of the present invention can be applied to petroleum equipment such as petroleum equipment, drilling rigs, fracturing equipment, high-pressure drilling pumps, etc., to solve the transmission problem of high-power high-pressure petroleum equipment. It also has great application prospects in the fields of high torque and high precision.
  • CN205244327U discloses a roller worm and worm gear transmission box, which includes a worm gear and a raceway worm that mesh with each other in the transmission box body, transmission rollers are arranged in the spiral groove on the raceway worm, and the two ends of the spiral groove of the raceway worm A roller reversing sleeve is provided, and a protective sleeve for the transmission roller is provided outside the raceway worm, which is fixed on the worm positioning cover, and the raceway worm is arranged in the worm positioning cover and the transmission box body through the bearings at both ends.
  • the utility model adopts the worm and worm gear transmission structure of the push roller type
  • the tooth grooves of the raceway worm and the worm wheel only contact the transmission rollers during the transmission process, and are basically in the form of rolling friction, which is different from the traditional worm and worm gear.
  • the transmission efficiency will be greatly improved.
  • the surface of the raceway worm and the tooth groove of the worm wheel are treated to increase the hardness, the service life can be effectively improved.
  • CN212080052U discloses a ball-worm gear and worm drive mechanism, which relates to the technical field of worm drive, and solves the problem that the frictional force between the existing worm wheel and the worm is relatively large, thereby reducing the transmission efficiency of the worm.
  • the lower end of the worm wheel main body is equipped with a worm main body, and the outside of the worm wheel main body is provided with a number of gear teeth.
  • the gear teeth include a fixed shaft and a roller, and the roller is located outside the fixed shaft, and the fixed shaft and the roller pass through The first bearing is connected, and the fixed shaft is welded to the main body of the worm wheel.
  • An engaging block is arranged outside the worm main body, and the engaging block and the worm main body are provided as an integrated structure.
  • a cage is installed inside the engaging block.
  • a fixing groove is arranged inside the cage, and balls are installed inside the fixing groove.
  • the rollers are fixedly installed on the corresponding integrally formed fitting parts, which can only realize the basic function of converting sliding friction into rolling friction.
  • the force of the rollers For the different usage conditions of the transmission mechanism, the force of the rollers, The selection of rolling groove structure and the variability of rolling groove processing methods are not involved, and it cannot be applied to the selection of transmission devices under various working conditions, and there is a problem of insufficient application flexibility.
  • there is no reference to what kind of structure is provided on the worm in this case to cooperate with the deformable rolling groove to improve the performance of the transmission device.
  • the present invention provides a split worm and its transmission mechanism, which at least includes: a worm wheel, which at least has a rotation axis and can rotate around the axis, and the worm wheel A plurality of rolling grooves are provided along the circumferential surface, and rollers and worms are installed in the rolling grooves, which are in contact with the worm wheel to drive the worm wheel to rotate around its own axis.
  • the rolling grooves restrict the rollers in the form of encircling the split parts as follows That is, the hemispherical part of the roller facing the worm wheel protrudes outside the rolling groove, so that the round rolling line that the roller rolls in the rolling groove is compatible with the first rolling groove edge and the second rolling groove edge of the rolling groove that surrounds the roller
  • the intersecting position of the worm gear is outside the line of force that the worm tooth of the worm exerts force on the roller.
  • the plane of the roller and the edge of the first roll groove and the edge of the second roll groove are not perpendicular to the line of force where the worm screw exerts a pressing force on the roller.
  • the two-half packaging structure realizes the rapid construction of the rolling limit structure of the roller.
  • the combination of two parts avoids the difficulty of machining by boring and other methods and the possible damage to the limit line.
  • the more difficult processing method not only brings wear or unevenness to the inside of the rolling groove, but also may cause the debris inside the rolling groove to be unable to be removed, resulting in wear of the roller during operation, or the debris generated by processing is passed through the guide.
  • the oil hole enters the oil tank to cause greater cleaning difficulty.
  • the two half-encapsulation structures adopted by the present invention allow each half-encapsulation structure to be processed separately.
  • the design of the two halves of the package provides more choices for users and manufacturers.
  • the first half of the rolling groove ring can be made of different materials according to the specific use of the transmission equipment or to form different numbers of rolling grooves. Differentiated design, for example, when the side of the first half of the rolling groove needs to bear a heavy force, the first half of the rolling groove ring can be made of a material with higher hardness to provide better physical support. When the load tolerance is not considered , the first half of the rolling groove ring can be made of metal or other materials with acceptable hardness to reduce the cost.
  • the number of rolling grooves on the first half of the rolling groove ring can be differentiated so that the user can choose a variety of rolling grooves
  • the first half of the rolling groove ring cooperates with the second half of the rolling groove to form different numbers of rolling grooves to accommodate different numbers of rollers. Since the number of rollers is positively correlated with the bearing capacity of the transmission mechanism, the user can use it according to the specific use of the transmission mechanism.
  • the type of the first half of the rolling groove ring can be freely selected according to the load-bearing capacity requirements at the time to obtain an economical transmission configuration.
  • the two-half package structure adopted by the present invention has advantages in terms of replacement and inspection of rollers.
  • the edge of the first rolling groove cooperates with the edge of the second rolling groove to form a limiting area for the rollers, wherein the edge of the first rolling groove and/or the edge of the second rolling groove is completed according to the The shape dimension is smaller than the maximum cut dimension of the roller.
  • the rolling groove edge on the load-bearing side of the roller can be set slightly higher than the rolling groove edge on the opposite side.
  • the slightly higher rolling groove edge brings more covering load-bearing capacity on the roller surface of the side.
  • the surface of the roller bearing the heavy load on this part can get more groove support, and at the same time, the other side can be set with a lower groove edge and a high and low groove edge because the roller is less stressed.
  • the first half of the rolling groove ring can be configured with a variety of differentiated heights for users to choose according to actual usage conditions.
  • the length of the limit line formed by connecting the edge of the first rolling groove with the edge of the second rolling groove at the same radial height is less than the maximum diameter of the roller, so that when the roller rolls with the worm wheel, the opening part of the rolling groove faces the roller.
  • the way of setting the edge of the first rolling groove and the edge of the second rolling groove on the same plane ensures the smoothness of the movement of the rollers, which also reduces the production cost and production difficulty of related components to a certain extent, and increases the worm on the one hand.
  • the contact area to the rollers which helps to improve the contact performance between transmission parts when heavy loads are not required or the loads are not high.
  • the rolling groove is set as a first half rolling groove and a second half rolling groove complementary to each other, and several second half rolling grooves are connected in a circular arrangement to form a first half rolling groove ring, wherein the two halves encapsulate
  • the form is formed as follows:
  • the worm wheel is divided into a first half worm wheel and a second half worm wheel coaxial with each other, and the diameter of the second half worm wheel is larger than that of the first half worm wheel, so that high and low steps are formed on the contact surface between the two, wherein the second half worm wheel is provided with On the upper face of the step, the diameter of the first half-roll groove is larger than the diameter of the first half-worm wheel such that the first half-roll groove ring can pass through the first half-worm wheel and connect to the second half-roll groove.
  • the bottom of the first half rolling groove and the second half rolling groove are respectively provided with half openings, and the half openings together constitute an oil guide hole for introducing hydraulic oil, and the axis of the oil guide hole points to the center of the shape of the roller so that the oil guide hole
  • the hydraulic oil exported from the hole can contact the surface of the roller part and cover all the surface of the roller with the help of the free rolling of the roller.
  • the oil guide hole is connected with an oil guide channel
  • the oil guide channel is formed by the cooperation of the half roll grooves distributed on the first half roll groove and the second half roll groove, wherein, it is connected to the interior of all the roll grooves distributed along the worm wheel ring
  • the oil guide channels all point to the direction of the worm wheel surface with the circular center of the worm wheel as the center, and the several oil guide channels are arranged in a circular divergent manner.
  • the present invention adopts the form of two halves of encapsulation, so that the processing of the oil guide hole and the oil guide channel part arranged at the bottom of the two half rolling grooves becomes easy to realize.
  • the structural design of the two-half package makes it easier to process the profiled oil guide channel.
  • the inner diameter of the part of the oil guide channel close to the oil guide hole can be narrowed.
  • the part of the worm wheel where the second half of the rolling groove is located can be set as a straight half channel to ensure its dimensional accuracy, and the side of the first half rolling groove ring can be unilaterally narrowed at the position close to the oil guide hole. Can play a better effect of increasing oil pressure.
  • the designs of the above-mentioned special-shaped oil guide passages are all difficult to realize by processing the bottom of the rolling groove formed integrally.
  • annular cavity is provided in the worm wheel, and the other ends of all oil guide passages except the oil guide hole are connected to the annular cavity, so that the hydraulic oil stored in the annular cavity can be driven by gravity and/or centrifugal force to flow to roller surface.
  • the worm is annularly provided with an engaging portion along its circumference, and the worm is split into a first worm and a second worm along an axial path, and the first worm is inserted into the second worm through an axially extending connecting shaft provided thereon.
  • the connecting grooves on the worm are arranged in accordance with the size of the connecting shaft to form a complete worm.
  • the first half rolling groove ring provided by the present invention, which can be designed for the different force conditions of the meshing-in and meshing-out positions on the worm wheel or different moving directions of the rollers when rotating in the same direction.
  • Differentiated designs for example, viewed along the axial direction of the first half of the rolling groove ring, the material of the rolling groove rings on the left and right sides can be different, but the material of the rolling groove ring on the left is more suitable for one of the engaged or engaged states , the material of the rolling groove ring on the right is more suitable for the other meshing state.
  • the split body provided by the present invention is the worm so that the material of the two parts where the worm is in contact with the biting-in position and the biting-out position can also be designed according to the difference in the material of the corresponding first half rolling groove ring, so that the worm wheel and the rolling groove are in the same position.
  • the two parts with different meshing states have better coordination, which improves the load-bearing performance or transmission effect of the overall transmission mechanism.
  • the curved radian of the meshing portion matches the arc of the worm wheel where the roller in contact with it is arranged.
  • a gap fit is formed between the roller and the rolling groove, so that the roller can rotate freely between the rolling grooves.
  • the oil guide holes and oil guide channels are distributed circularly and divergently so that only one annular cavity in the worm gear can store all the hydraulic oil required by the rollers, and the pointing design allows the hydraulic oil to use gravity or The centrifugal force of the rotation flows automatically to the rollers without additional driving force.
  • the transmission mechanism involved in the present invention is particularly suitable for enhancing the transmission effect of high-power and high-pressure petroleum equipment due to its two-half encapsulated roller structure and the corresponding two-half worm structure, and its application in this field has great potential.
  • the present invention also provides a transmission mechanism, at least including: a worm wheel, which at least has a rotation axis and can rotate around the axis, the worm wheel is provided with a plurality of rolling grooves along the circumferential surface, and in the rolling grooves Installed with rollers, worm, which can be split into a first worm and a second worm,
  • the rolling groove restricts the roller in the form of a split part as follows, that is, the hemispherical portion of the roller facing the worm wheel protrudes outside the rolling groove, and the roller and the The planes where the first edge of the rolling groove and the edge of the second rolling groove are located are not perpendicular to the line of force where the worm applies a pressing force to the roller.
  • the worm wheel is divided into a first half worm wheel and a second half worm wheel coaxial with each other, and the diameter of the second half worm wheel is larger than that of the first half worm wheel, so that a high and low step is formed on the contact surface between the two, wherein The second half rolling groove is arranged on the high surface of the step.
  • the diameter of the first half-roll groove is larger than the diameter of the first half-worm wheel such that the first half-roll groove ring can pass through the first half-worm wheel and connect to the second half-roll groove.
  • the intersecting position of the circular rolling line of the roller rolling in the rolling groove and the first rolling groove edge and the second rolling groove edge of the rolling groove surrounding the roller is at the position of the worm Outside the line of force that applies force to the rollers.
  • the rolling grooves are set as a first half rolling groove and a second half rolling groove complementary to each other, and several second half rolling grooves are connected in a circular arrangement to form a first half rolling groove ring.
  • the length of the limiting line formed by connecting the edge of the first rolling groove and the edge of the second rolling groove at the same radial height is less than the maximum diameter of the roller, so that the roller moves along with the When the worm wheel rolls, the opening portion of the rolling groove provides a supporting force to the roller to counteract the tendency of the roller to leave the rolling groove caused by gravity and/or centrifugal force.
  • the first rolling groove edge cooperates with the second rolling groove edge to form a limiting area for the rollers, wherein the first rolling groove edge and/or the second rolling groove edge
  • the dimensions of the edge as completed around the surface of the roller are smaller than the largest cross-sectional dimension of the roller.
  • the present invention also provides a split worm, the worm is split into a first worm and a second worm along an axial path, and the first worm is connected to the second worm through an axially extending connecting shaft provided thereon.
  • the connecting groove arranged on the worm according to the manner of matching the size of the connecting shaft forms a complete worm.
  • the hemispherical portion of the roller installed in the rolling groove of the worm wheel facing the worm protrudes outside the rolling groove, and the line of force where the worm applies a pressing force to the roller is the same as that of the roller
  • the planes where the first rolling groove edge and the second rolling groove edge are located are not orthogonal to each other.
  • the intersecting position of the circular rolling line of the roller rolling in the rolling groove and the first rolling groove edge and the second rolling groove edge of the rolling groove surrounding the roller is in the direction of the worm Outside the line of force exerted by the rollers.
  • the present invention also provides a worm wheel for transmission in cooperation with a split worm, which has at least an axis of rotation and can rotate around the axis, the worm wheel is provided with a plurality of rolling grooves along the circumferential surface, Rollers are installed inside, and the rolling grooves are set as first half rolling grooves and second half rolling grooves that are complementary to each other, and several second half rolling grooves are connected in a circular arrangement to form the first half rolling grooves ring,
  • the intersecting position of the circular rolling line that the roller rolls in the rolling groove and the first rolling groove edge and the second rolling groove edge of the rolling groove surrounding the roller is in the direction from the worm to the Outside the line of force exerted by the rollers.
  • the plane of the roller and the edge of the first rolling groove and the edge of the second rolling groove are not perpendicular to the line of force where the worm applies a pressing force to the roller.
  • the length of the limiting line formed by connecting the edge of the first rolling groove and the edge of the second rolling groove at the same radial height is less than the maximum diameter of the roller, so that the roller moves along with the When the worm wheel rolls, the opening portion of the rolling groove provides a supporting force to the roller to counteract the tendency of the roller to leave the rolling groove caused by gravity and/or centrifugal force.
  • the worm wheel is divided into a first half worm wheel and a second half worm wheel coaxial with each other, and the diameter of the second half worm wheel is larger than that of the first half worm wheel, so that a high and low step is formed on the contact surface between the two, wherein
  • the second half rolling groove is arranged on the high surface of the step, and the diameter of the first half rolling groove ring is larger than the diameter of the first half worm wheel, so that the first half rolling groove ring can pass through the first half rolling groove ring.
  • half of the worm gear and connects to the second half of the roll groove.
  • the curved arc of the meshing portion matches the arc of the worm wheel where the roller in contact with it is arranged.
  • Fig. 1 is an exploded structural diagram of an embodiment of the present invention
  • Fig. 2 is an enlarged view of a rolling groove part of an embodiment of the present invention
  • Fig. 3 is a front view viewed along the X-axis direction in Fig. 1 of an embodiment of the present invention
  • Fig. 4 is a sectional view of an embodiment of the present invention viewed along the direction A in Fig. 3;
  • Fig. 5 is a top view viewed along the Z-axis direction in Fig. 1 of an embodiment of the present invention
  • Fig. 6 is a schematic diagram of the force on the roller in one rotation direction of the screw according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the force on the roller in another rotation direction of the screw according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the coordinate system established by the present invention to calculate the worm meshing tooth surface equation
  • Fig. 9 is a schematic diagram of the coordinate system established in the case of calculating the worm meshing tooth surface equation with spherical rollers according to the present invention.
  • Fig. 10 is a cross-sectional structure and force analysis diagram of the worm roller and worm wheel part viewed along the counterclockwise worm axis in an embodiment of the present invention
  • 100 worm wheel; 110, first half worm wheel; 120, second half worm wheel; 130, rolling groove; 130a, first rolling groove edge; 130b, second rolling groove edge; 130c, maximum force point; ⁇ , First included angle; ⁇ , second included angle; L, limit line; F5, force line; 131, first half rolling groove; 132, second half rolling groove; 133, first half rolling groove ring; 140, Oil guide hole; 150, oil guide channel; 160, annular cavity; 200, roller; 300, worm; 310, meshing part; 320, first worm; 330, second worm; F1, first tangential force; F2, the first radial force; F3, the second tangential force; F4, the second radial force.
  • the present invention provides a split worm and its transmission mechanism, as shown in FIGS. 1 , 3 , 4 and 5 , which at least includes a worm 300 , a worm wheel 100 and a roller 200 .
  • Several rollers 200 are arranged at intervals along the circular path on the circumferential surface of the worm wheel 100 . At least a part of the rollers 200 is exposed outside the body of the worm wheel 100 , and the exposed part contacts the engagement portion 310 provided on the worm 300 .
  • the rotation axis of the worm 300 is perpendicular to and not coplanar with the rotation axis of the worm wheel 100.
  • the worm 300 rotates along its axis, and then the meshing part 310 arranged on it drives the roller 200 to rotate by sliding friction.
  • the moving direction of the helical path formed by the engaging part 310 moves, and thereby drives the worm wheel 100 to rotate clockwise or counterclockwise along the above-mentioned direction which is a tangential direction.
  • the worm gear 100 for being externally driven to rotate itself according to its central axis and to transmit force through the self-turning external components connected to it may be set in a circular or disc shape. And preferably, in order to achieve the purpose of reducing its own weight and additionally providing a reinforced main shaft in the middle, the worm gear 100 can be arranged in a circular ring configuration. When needed, the user passes through the reinforced main shaft for reinforcement to the hollow center of the ring, so that the above-mentioned reinforced main shaft can be accepted when the worm gear 100 is connected to a heavier component or used for a transmission method with a larger load The additional supporting force prevents problems such as reduced service life and/or metal fatigue damage of the worm gear 100 due to factors such as heavy load or heavy gravity.
  • the circumferential direction of the worm wheel 100 has a certain width, so that the worm wheel 100 as a whole forms a cylinder or a circular cylinder configuration in space.
  • the rolling groove 130 is used to install and wrap at least a part of the roller 200 , and since the roller 200 needs to contact the worm 300 and form a tight contact form.
  • the above-mentioned several rolling grooves 130 are set to maintain a relatively close distance between the openings formed on the circumferential outer surface of the worm wheel 100, so that when the rollers 200 are installed in the rolling grooves 130, the distance between them It is also guided to a relatively close distance.
  • This design can prevent the rollers 200 from being too far apart. When contacting the worm 300 , some worms 300 do not touch the rollers 200 and cause unexpected sliding friction.
  • the above-mentioned roller 200 used to form the intermediate transmission mechanism between the worm 300 and the worm wheel 100 has the function of changing the sliding friction between the worm wheel 100 and the worm 300 into rolling friction due to its relatively smooth shape, and the roller 200 can Set to a spherical state.
  • the above-mentioned rolling groove 130 is also configured to be concave inward according to a spherical shape in a manner of matching the shape of the roller 200 , so as to form a groove for supporting the roller 200 .
  • the rolling groove 130 is set in a configuration that half wraps the roller 200, that is, the rolling groove 130 is based on the lower hemispherical shape of the spherical roller 200 Concave inwardly to form a support configuration similar to a cup shape (as shown in FIG. 2 ), so that when the roller 200 is installed in the rolling groove 130, at least the upper half thereof is exposed outside the rolling groove 130 of.
  • rollers 200 arranged along the circumferential outer surface of the worm wheel 100 follow the movement of the worm wheel 100 to form a circular motion track centered on the worm wheel 100 circle.
  • the roller 200 can rotate freely in the rolling groove 130 , when the roller 200 is placed into the rolling groove 130 , a clearance fit is formed between it and the rolling groove 130 .
  • This kind of fit means that the opening size of the rolling groove 130 is larger than the size of the roller 200.
  • the clearance fit can refer to the rolling groove 130
  • the diameter of the cup-shaped depression is greater than the maximum diameter of the spherical roller 200 , and this fit forms a gap of a certain length between the roller 200 and the rolling groove 130 , so that the roller 200 can rotate freely in the rolling groove 130 .
  • the length of the gap is set to a smaller value, so that the roller 200 can obtain Better free turning space.
  • the diameter of the opening of the rolling groove 130 on the circumferential surface of the worm wheel 100 is set to be smaller than the maximum diameter of the roller 200, and this design will have advantages in the following two aspects.
  • the structural section diameter of the roller 200 is smaller than the opening diameter of the above-mentioned rolling groove 130.
  • the part will still be exposed outside the rolling groove 130 and can freely contact to the worm 300, and due to the setting of the clearance fit, it is still free to roll.
  • the part of the roller 200 rotates with the worm wheel 100 to the side facing the ground or when the roller 200 is affected by centrifugal force, the part of the roller 200 wrapped inside the rolling groove 130 due to its cross-sectional diameter
  • the diameter is larger than the opening diameter of the rolling groove 130 and cannot escape from the rolling groove 130 , so that the roller 200 is fixed in the rolling groove 130 as a whole.
  • the roller 200 is installed in the rolling groove 130 using a two-half package structure.
  • the structure of the above-mentioned two-half package means that the roll groove 130 is set as two detachable parts, one of which is the second half roll groove structure 132 arranged on the worm wheel 100, and the other part can be formed by a A detachable first half roll groove ring 133 is achieved.
  • the first half rolling groove ring 133 is composed of several first half rolling grooves 131 that can cooperate with the second half rolling groove 132 to form a complete rolling groove 130, and are connected in a circular arrangement, and the first half rolling groove ring 133 is combined with the structure of the second half rolling groove 132 in such a way that it is sleeved on one end of the cylindrical or circular main body of the worm wheel 100 . That is to say, regarding the size setting problem between the roller 200 and the opening of the rolling groove 130 mentioned above, if the sectional view of the worm and the spherical roller is observed at the maximum radius according to the axial direction of the worm (as shown in FIG.
  • the rolling There is contact between the roller 200 and the first half-roll groove 131 and the second half-roll groove 132. Specifically, from the perspective of the opening position of the roll groove 130, the roller 200 is on the first roll groove edge 130a and the second roll groove edge 130b respectively. The position is in contact with the two half roll grooves mentioned above.
  • the first roll groove edge 130 a and the second roll groove edge 130 b are at the same radial height, and a line is connected between the two points to form a limit line L , then if the maximum diameter of the roller 200 is called the diameter D (not shown in the figure), it can be clearly seen that when the length of the limit line L is equal to or greater than the length of the diameter D, the rolling groove 130 will not have a corresponding Due to the limited capacity of the roller 200 , the roller 200 will escape from the rolling groove 130 with the gravity or centrifugal force during the operation of the worm wheel 100 . Therefore, only when the limiting line L is smaller than the diameter D, the rolling groove 130 forms a limiting function for the roller 200 .
  • the first rolling groove edge 130a and the second rolling groove edge 130b can also be set at different heights, so that two rolling groove edges with different edge sizes can be realized, as long as the two rolling groove edges meet
  • the complementary profile size of the edge level of the roller 200 is smaller than the maximum cross-sectional size of the roller 200.
  • the limit effect on the roller can be realized.
  • the edge of the rolling groove is a circular arc
  • the complementary contour along the edge of the roller 200 is The section profile formed by cutting the roller along the plane where the edge is located, such as a circular profile, the diameter of the circular profile is designed to be smaller than the maximum diameter of the roller 200 to realize the limit of the roller 200 .
  • the worm wheel 100 is divided into two parts along the section line separating the first half-roll groove 131 and the second half-roll groove 132, such as two annular or cylindrical worm wheels 110 and 120 as shown in FIG. 4 part.
  • the above-mentioned two worm wheel parts are respectively the first half worm wheel 110 and the second half worm wheel 120 which are coaxially arranged.
  • the difference is that the diameter of the second half worm wheel 120 is larger or slightly larger than the first half worm wheel 110, so that the The contact surface of the latter forms a step with a high and low configuration, or it can also be understood as an L-shaped step.
  • the above-mentioned second half rolling groove 132 is all arranged on the high-level surface of the step, and in order to realize that the first half rolling groove ring 133 can pass through the first half worm wheel 110 and combine with the second half rolling groove 132, the first half
  • the diameter of the rolling groove ring 133 is set to be greater than or slightly larger than the diameter of the first half worm wheel 110, and preferably, the diameter of the first half rolling groove ring 133 corresponds to the height of the first half rolling groove 131 arranged thereon. It is arranged in combination with the second half rolling groove 132 arranged on the high surface of the step to form the rolling groove 130 .
  • connection between the second version of rolling groove ring 133 and the above-mentioned step is set on the high surface of the step except the part where the first plate rolling groove 131 is provided, and the connection relationship between the two can be set as a detachable screw connection, buckle Receive and so on.
  • the first half-roll 131 and the second half-roll groove 132 are divided into two half-grooves with equal wrapping areas.
  • the adjustment of the force bearing direction and the maximum friction position of the roller 200 in the rolling groove 130 can be realized, so as to achieve different rotation And flexible adjustment for different load requirements.
  • the following analysis can be made by observing the cross-sectional view (shown in FIG. 10 ) of the worm 300 , the roller 200 and the rolling groove 130 formed by viewing the axis of the worm 300 .
  • the roller 200 is in contact with the worm 300 and rotates under the drive of the worm 300.
  • the intersection position formed between the circular rolling line formed during the rotation and the first half rolling groove 131 and the second half rolling groove 132 is the second rolling groove 131 and the second half rolling groove 132.
  • a rolling groove edge 130a and a second rolling groove edge 130b, the two edges encircle and form a line length less than the maximum diameter of the roller to limit the roller 200 inside the rolling groove 130 .
  • the worm 300 rotates counterclockwise, when the worm 300 contacts the roller 200 and one of the forces acting on the roller 200 comes from its opposite
  • the extrusion force of the roller forms a certain angle with the vertical normal of the roller 200 under the rotation of the worm 300, specifically when the worm 300 rotates counterclockwise as shown in the figure, it represents the extrusion
  • the line of force F5 of the force points to the position of the inner wall of the first half of the rolling groove.
  • the line of force F5 passes through the center of the roller.
  • a first included angle ⁇ is formed between the groove edge 130 a and the force line F5
  • a second included angle ⁇ is formed between the second roll groove edge 130 b and the force line F5 .
  • the two included angle states represent that the force line F5 points to the second half-roll slot 132 side.
  • the direct application point of the extrusion force that is, the action point of the force line F5
  • the maximum force application point 130c the maximum friction between the entire roller 200 and the inner wall of the rolling groove 130 occurs during the rotation process, that is, here
  • the rollers 200 are most affected by the friction.
  • the present invention adopts the structural arrangement of defining the roller 200 on the worm wheel 100 in the form of two half packages, so that the user can adaptively adjust the position of the maximum force application point 130c of the force line F5 according to different usage conditions.
  • the first rolling groove edge 130a and the second rolling groove edge 130b are at the intersection with the rolling direction of the roller 200, and because they belong to the position at the opening of the rolling groove 130, the arc of the shape here changes Therefore, adjusting the distance of the first half rolling groove ring 133 can realize that the surrounding annular surface formed by the first rolling groove edge 130a and the second rolling groove edge 130b is in the position where the worm screw 300 exerts a squeeze on the roller 200. Therefore, by changing the force center of the force line F5 to avoid sharp edges, the wear protection of the roller 200 is realized, and the service life of the roller 200 is greatly improved.
  • the line of force F5 and the plane formed by the first rolling groove edge 130a and the second rolling groove edge 130b are not orthogonal to each other. This state makes the oil guide hole 140 It can be arranged at the bottom of the rolling groove 130, avoiding problems such as the force line F5 directly acting on the opening of the oil guide hole 140 and causing poor flow of hydraulic oil.
  • the line of force F5 can be adjusted by adjusting the distance between the first half rolling groove ring 133 and the second half worm wheel 120 At the maximum force point 130c on the inner wall of the rolling groove 130, for example, when the worm 300 moves counterclockwise, slightly increase the distance between the first half rolling groove ring 133 and the second half rolling groove 120, that is, slightly increase
  • the length of the limit line L can make the action position of the force line F5 close to the notch of the rolling groove 130, that is, the first included angle ⁇ gradually increases with the increase of the limit line L, and the second included angle ⁇ increases with the increase of the limit line. L increases and components decrease.
  • reducing the length of the limit line L can make the action position of the force line F5 close to the bottom of the rolling groove 130, that is, the first included angle ⁇ gradually decreases with the decrease of the limit line L, and the second clamp The angle ⁇ gradually increases as the limit line L decreases. It can also be seen from this that when the worm 300 rotates counterclockwise, there is a positive correlation between the first angle ⁇ and the length of the limit line L, and a negative correlation between the second angle ⁇ and the length of the limit line L. relationship. Conversely, when the worm 300 rotates clockwise, there is a negative correlation between the first angle ⁇ and the length of the limit line L, and a positive correlation between the second angle ⁇ and the length of the limit line L.
  • the adjustment of the force application position of the force line F5 can be adjusted according to the specific use of the worm gear and worm roller transmission mechanism. For example, when a heavy load is required, the maximum force application point 130c can be set to a position close to the bottom of the rolling groove 130 to achieve better When a high rotational speed is required, the maximum force point 130c can be set close to the opening of the rolling groove 130 to achieve fast rotation with less resistance. These can be achieved by adjusting the position of the first half rolling groove ring 133 accomplish.
  • the roller 200 When installing the roller 200, first place the roller 200 on the first half rolling groove 131 or the second half rolling groove 132, and then pass the first half rolling groove ring 133 through the first half worm wheel 110 axial direction
  • the half worm wheel 110 is connected to the step, whereby the first half rolling groove 131 combined with the second plate rolling groove 132 forms a complete rolling groove 130 and confines the roller 200 inside it in a half-wrapped form.
  • the above steps have realized the installation method of the two halves of the encapsulation structure of the roller 200 .
  • the detachable design of the rolling groove 130 ensures that the roller 200 can be installed normally, and also allows the user or manufacturer to disassemble and replace the severely worn roller 200 or rolling groove 130 or repair the inner surface.
  • the rolling groove 130 in order to achieve better mechanical strength of the worm wheel 100 and the rolling groove 130, can be made integrally with the worm wheel 100, and the roller 200 is pre-installed on the rolling groove 130 before the above two are formed.
  • this embodiment can obtain better mechanical strength and prevent the connection part from wearing and failing, but the roller 200 cannot be pulled out without damaging the worm wheel 100 .
  • the above-mentioned worm wheel 100 and roller 200 can be made of hard materials commonly used in the industry to obtain higher mechanical strength, such hard materials can be iron and iron-based alloys (such as steel, cast iron or other iron alloys) , Non-ferrous metals and their alloys (such as copper, aluminum or their alloys).
  • the worm wheel 100 is made of ZCuSn10P1 alloy material, its modulus of elasticity is 113GPa, and Poisson's ratio is 0.32-0.35, and the roller 200 is made of copper alloy material.
  • At least one part inside the rolling groove 130 is provided with an oil guide hole 140, and the opening of the oil guide hole 140 points to the center of the shape of the roller 200 , so that the hydraulic oil derived from the oil guide hole 140 can be filled into the gap between the roller 200 and the rolling groove 130 to form a lubricating and filling intermittent effect.
  • the bottom of the roller 200 will be close to the bottom of the rolling groove 130, so that the exposed part of the roller 200 cannot Good contact to the worm 300, so the hydraulic oil flowing out from the oil guide hole 140 has the effect of pushing the roller 200 outward from the bottom of the rolling groove 130, so that the roller 200 is closer to the worm 120 to form a better Sliding friction effect.
  • a locking structure similar to a ball valve type is formed at the opening of the rolling groove 130, so that the hydraulic oil cannot leak from the opening of the rolling groove 130.
  • a cavity filled with hydraulic oil is formed inside the rolling groove 130 . Due to the gap between the roller 200 and the rolling groove 130, the roller 200 can roll freely in the rolling groove 130, so when the worm 300 rotates to drive the roller 200 to rotate, the part of the rolling groove 130 that is not in contact with the hydraulic oil is exposed. Partly due to the rotation of the roller 200, it rotates into the rolling groove 130 and contacts the hydraulic oil present in the rolling groove 130 to form a lubricating oil film, and during the continuous rotation of the roller 200, the entire surface of the roller 200 will Will be coated with hydraulic oil film. On the other hand, since the roller 200 is in contact with the worm 300 , the hydraulic oil on the roller 200 will be coated onto the surface of the worm 300 accordingly.
  • the hydraulic oil Since the hydraulic oil has relatively viscous fluidity characteristics, it can automatically fill the gap between the roller 200 and the rolling groove 130 and between the roller 200 and the worm 300 or compensate the error, and the hydraulic oil will significantly reduce the roller Friction loss between the roller 200 and the rolling groove 130 and between the roller 200 and the worm 300 .
  • the oil guide channel 150 communicated with the oil guide hole 140 arranged inside the roll groove 130 is set to point to the circular center of the worm wheel 100, and all the roll grooves distributed annularly along the worm wheel 100
  • the oil guide passages 150 at the bottom of 130 are arranged in a circular divergent manner with the circular center of the worm gear 100 as the center, so an annular cavity 160 concentric with the worm gear 100 is arranged inside the worm gear 100, and the oil guide passages of all the oil guide passages 150 The other ends of the holes 140 communicate with the annular cavity 160 .
  • the cavity is used to store a sufficient amount of hydraulic oil, so that under the action of gravity or centrifugal force, the hydraulic oil can flow out of the cavity from the oil guide hole 140 through the oil guide channel 150 and contact the surface of the roller 200 .
  • the worm gear 100 is set in a circular cylindrical shape, and a refueling opening is set at its inner ring, and the refueling opening communicates with the above-mentioned annular cavity 160, so that the user can Hydraulic oil is added to the annular cavity 160 through the oil filling opening.
  • an anti-leakage mechanism can be provided at the corresponding joints of the annular cavity 160, the oil guide channel 150, and the rolling groove 130, and the anti-leakage mechanism can be attached to the Structures such as rubber strips or liquid-proof membranes at the seams.
  • the oil guide hole 140 and the oil guide channel 150 can also be set as a split arrangement, that is, located between the first half roll groove 131 and the second half roll groove
  • the half-opening and the half-channel of 132 constitute the oil guiding hole 140 and the oil guiding channel 150 respectively.
  • the inner diameter of the part of the oil guide channel 150 close to the oil guide hole 140 can be narrowed, and the precision requirement is higher.
  • the worm wheel part where the second half rolling groove 132 of the main body is located can be set as a straight half channel to ensure its dimensional accuracy, and the first half rolling groove ring 133 side can be close to the oil guide hole 140
  • the position is designed to be narrowed on one side, which can also have a better effect of increasing oil pressure.
  • an engaging portion 310 is annularly provided along its circumference. And for the purpose of contacting the roller 200, the engagement portion 310 cooperates with the configuration of the part of the roller 200 exposed outside the rolling groove 130 to form a groove configuration with two ends protruding and a middle depression, and the guide path of the groove surrounds the worm 300 Extending in a configuration such as a helix, the groove configuration extending along the helical path is called a spiral.
  • the distance between the protrusions at the two adjacent ends of the meshing portion 310 is the same as that of the roller 200.
  • the maximum diameters of the parts exposed outside the rolling groove 130 are in a clearance fit relationship.
  • at least a part of the contact surface is formed on the surface of the roller 200 exposed from the rolling groove 130 .
  • the above-mentioned contact surface refers to a curved surface in space formed by the arrangement of several adjacent contact lines, and the curved surface conforms to at least a part of the contour configuration surface of the spherical arc surface of the roller.
  • the contact line refers to a spatial curve composed of several adjacent contact points connected in series, viewed from the configuration of the spherical roller 200
  • the preferred contact line refers to the contact between the spherical roller 200 and the spherical shape of the worm 300.
  • the apex extends along the spherical arc surface to the curve on the circumferential surface of the roller 200 tangent to the opening of the rolling groove 130 .
  • the degree of cooperation between the meshing portion 310 on the worm 300 and the spherical configuration of the roller 200 is adjusted.
  • the ratio can reach 50-75%.
  • the proportion of the above-mentioned area it means that the contact degree between the roller 200 and the worm 300 is higher, and this high degree of contact will greatly improve the load-carrying capacity and transmission efficiency of the transmission device, reduce gap impact, and reduce the contact surface wear and tear.
  • the meshing portion 310 groove path formed on the worm 300 in cooperation with the shape of the roller 200 surrounds the worm 300 to form a helical worm track, so that when the worm 300 rotates on its own axis, the worm axis is formed in space.
  • the trajectory envelope describes not only the direction of the helical path of the meshing portion 310, but also describes the motion trajectory of the unconstrained roller 200 in the meshing portion.
  • the aforementioned unconstrained motion track of the roller 200 means that when the rotating worm 300 touches the roller 200 on the worm wheel 100, if the worm 300 is regarded as a relatively static state and the roller 200 is regarded as not being grooved 130 limits the position, then the relative movement between the roller 200 and the meshing portion 310 of the worm 300 will be transformed into the movement of the roller 200 along the spirally extending path of the meshing portion 310 to form a spiral trajectory envelope .
  • the relative motion shown by the above trajectory envelope includes external forces in multiple directions applied to the roller 200 .
  • its contact profile can be roughly described as a circle close to both ends of one of the worm tracks of the engaging portion 310 (as shown in FIGS. 6 and 7 ). shown), and the forces applied at various places on its surface can be combined into at least two directions of force, namely tangential force and radial force.
  • the worm 300 since the worm 300 has two rotation directions, clockwise and counterclockwise, its corresponding trajectory envelope also correspondingly has two directions of relative motion, thereby also producing at least two sets of tangential directions opposite to each other. Combination of force and radial force.
  • the above-mentioned tangential force is the first tangential force F1
  • the radial force is the first radial force F2
  • the above-mentioned tangential force is the second tangential force F3
  • the radial force is the second tangential force F4.
  • the first tangential force F1 and/or the second tangential force F3 applied to the roller 200 makes the roller 200 roll along the direction of the tangential force, specifically Specifically, when the worm 300 rotates clockwise, the generated first tangential force F1 drives the roller 200 to rotate along itself, and if the axial direction of the roller 200 is roughly equal to the axial direction of the worm 300, the above The roller 200 rotates counterclockwise. Similarly, when the worm 300 rotates counterclockwise, the above-mentioned second tangential force F3 generated drives the roller to rotate clockwise, that is, driven by the rolling of the worm 300, a reverse rolling is formed between the roller 200 and the worm 300 state.
  • the roller 300 can roll freely in the rolling groove 130, so that at least a large part of the friction between the worm 300 and the roller 200 is converted into the roller 200. Rolling friction, which greatly reduces the friction loss and improves the transmission effect.
  • the radial force is perpendicular to the above-mentioned tangential force, and is different from the tangential force that brings free rolling to the roller 200, mainly caused by the meshing portion 310.
  • the radial force brought by the protrusions at both ends of the track being attached to the roller 200 causes the roller 200 to generate a tendency to move in the direction of the radial force in space.
  • the helical radius of the groove path of the engaging portion 310 matches the arc setting of the worm wheel 100 where it contacts the roller 200 , Instead, a configuration with a smaller middle radius and larger radii at both ends is formed.
  • This kind of setting can make the meshing portion 310 contact with several rollers 200 arranged in a certain arc due to the influence of the worm wheel 100, the meshing portion 310 can ensure as much as possible on its surface by virtue of its curved shape matching the worm wheel 100. Contact the above-mentioned several rollers 200 as much as possible to provide force transmission to the rollers 200, and improve the transmission efficiency and bearing strength of the transmission device.
  • the meshing part is set as a structure in which the protruding positions at both ends are close to the outer surface of the roller, so that the gap between the worm and the roller is eliminated and the transmission efficiency is improved.
  • the worm 300 can be split into two parts along its axial path (shown in FIG. 3 ), that is, a first worm 320 and a second worm 330, wherein the first worm 320 is provided with a
  • the connecting shaft, the radial radius of the connecting shaft is configured to be smaller than the minimum cross-sectional radius of the engaging portion 310 on the surface of the worm 300 .
  • a connecting groove is provided on the second worm to match the size of the connecting shaft, for example, the radial radius and the axial length.
  • first half rolling groove ring 133 provides by the present invention, which can be aimed at different stress conditions of the engagement and engagement positions on the worm wheel 100 or different movements of the rollers when rotating in the same direction.
  • the material of the rolling groove rings on the left and right sides may be different, but the material of the rolling groove ring on the left is more suitable for the state of engaging in or out.
  • the roll groove ring material on the right is more suitable for the other meshing state.
  • the split body provided by the present invention is the worm 300 so that the material of the two parts where the worm is in contact with the biting-in position and the biting-out position can also be differentiated according to the difference in the material of the corresponding first half rolling groove ring 133, so that the worm wheel and the roller
  • the grooves have better compatibility between the two parts with different meshing states, which improves the load-bearing performance or transmission effect of the overall transmission mechanism.
  • the worm-related design parameter calculation process can be calculated with reference to the worm meshing tooth surface equation:
  • A is the center distance between the worm and the worm wheel
  • c 2 is the offset distance of the rollers
  • is the pitch angle of the worm wheel
  • ⁇ 1 and ⁇ 2 are the rotation angles of the worm and the worm wheel respectively
  • the dynamic coordinate system coincides with the static coordinate system
  • the coordinate of point O 0 in the S 2′ coordinate is (a 2 ,b 2 ,c 2 )
  • set the movable frame S p (e 1 ,e 2 ,n) at the contact point O p the frame setting of the spherical roller is shown in Fig. 9, the fixed coordinate system S 0 Position on top or center of roller.
  • the two tooth surfaces meshing in space, no matter point contact or line contact are always tangent at any instant, that is, there is always a common tangent plane and a common normal vector n at the contact point, and the two tooth surfaces are in the
  • the relative motion velocity ⁇ 1′2′ of the contact point must be perpendicular to the common normal vector n, that is, there is no relative motion between the two tooth surfaces in the direction of the common normal vector of the contact point. Only in this way can it be ensured that the two tooth surfaces in contact with each other will not be disengaged or jammed, so that the two tooth surfaces can keep in contact continuously, that is, the two tooth surfaces must satisfy the meshing equation at the contact point:
  • the n-axis is the common normal vector of the parent surface and the worm tooth surface, so the relative velocity vector ⁇ 1′2 at the contact point O p ′ Project along the n-axis in the active frame S p to get the meshing function of the transmission:
  • u and ⁇ are the design parameters of the worm gear rollers
  • ⁇ 2 is the rotation angle of the worm gear
  • M 1 , M 2 , and M 3 are the parameters that need to be solved for the subsequent design of the reducer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Transmission (AREA)

Abstract

一种分体式蜗杆及其传动机构,传动机构至少包括:蜗轮(100),其至少具有旋转轴线并且能够按照围绕该轴线的方式进行旋转,蜗轮(100)沿周向表面设有多个滚槽(130),在滚槽(130)内安装有滚子(200),蜗杆(300),其可拆分为第一蜗杆(320)和第二蜗杆(330),滚槽(130)是按照如下的分体部分环抱的形式限制滚子(200)的,即滚子(200)面向蜗轮(100)的半球部突出于滚槽(130)之外,滚子(200)的与滚槽(130)的第一滚槽边缘(130a)和第二滚槽边缘(130b)所在的平面是与蜗杆(300)向滚子(200)施加压迫作用力所在的力线(F5)彼此不正交的。

Description

一种分体式蜗杆及其传动机构 技术领域
本发明涉及机械传动领域,尤其涉及一种分体式蜗杆及其传动机构。
背景技术
机械领域常用的传动装置或者减速器装置较为常见的形式是蜗轮蜗杆传动装置,其现已广泛应用在矿机、采油、化工厂、基建、重轻工业、军工、仿生机器人、航天等领域当中。现有的蜗轮蜗杆传动机构具有较大的单级传动比,相较于普通的齿轮形传动装置具有较大的传动性能,并且具有自锁、传动平稳等优点。现有的蜗轮与蜗杆之间由于通常采用滑动摩擦传导受力的方式,使得蜗轮与蜗杆之间具有较大的磨损,不利于长时间工作的大型设备的寿命管理需求。因此,存在一些考虑利用滚子结构来将滑动摩擦变更为滚动摩擦来减小设备磨损的研究。通过本发明的制造方法所制成的蜗轮蜗杆可以应用于石油装备、钻机、压裂装备、高压钻井泵等石油装备中,解决大功率高压石油装备的传动问题。在大扭矩、高精度等领域也要巨大的应用前景。
CN205244327U公开了一种滚子蜗杆蜗轮传动箱,包括传动箱本体内设有相互啮合的蜗轮和滚道蜗杆,滚道蜗杆上的螺旋槽内设有传动滚子,滚道蜗杆的螺旋槽两端设有滚子换向套,滚道蜗杆外设有传动滚子的保护套,保护套固定在蜗杆定位盖上,滚道蜗杆通过两端的轴承设置在蜗杆定位盖与传动箱本体内。该实用新型由于采用了推动滚子式的蜗杆蜗轮传动结构,使滚道蜗杆、蜗轮的齿槽在传动过程中均只与传动滚子接触,并基本呈滚动摩擦形式,这样与传统的蜗杆蜗轮传动比较,将较大的提高传动效率,同时当滚道蜗杆、蜗轮的齿槽表面经提高硬度处理后,能有效的提高使用寿命。
CN212080052U公开了一种滚珠蜗轮蜗杆传动机构,涉及蜗杆传动技术领域,为解决现有的蜗轮与蜗杆之间摩擦力较大,从而降低了蜗杆的传动效率的问题。所述蜗轮主体的下端安装有蜗杆主体,所述蜗轮主体的外部设置有若干轮齿,所述轮齿包括固定轴和滚子,且滚子位于固定轴的外部,且固定轴与滚子通过第一轴承连接,且固定轴与蜗轮主体焊接连接,所述蜗杆主体的外部设置有啮合块,且啮合块与蜗杆主体设置为一体成型结构,所述啮合块的内部安装有保持架,所述保持架的内部设置有固定槽,所述固定槽的内部安装有滚珠。
现有技术中均是将滚子固定安装至相应一体式生成的契合部位上,只能实现基本的将滑动摩擦转换为滚动摩擦的功能,对于传动机构不同的使用情况中滚子的受力、滚槽结构的选择、滚槽加工方式的可变性均未涉及,无法应用至多种工况的传动装置的选择当中,存在应用灵活性不足的问题。另外也未涉及在此种情形下蜗杆方面设置何种结构以配合可变形滚槽来实现对传动装置效能的提升。对于如何提升一些大功率的高压石油装备,例如钻机、压裂设备等设备的传动效果的问题没有进一步的研究。
此外,一方面由于对本领域技术人员的理解存在差异;另一方面由于申请人做出本发明时研究了大量文献和专利,但篇幅所限并未详细罗列所有的细节与内容,然而这绝非本发明不具备这些现有技术的特征,相反本发明已经具备现有技术的所有特征,而且申请人保留在背景技术中增加相关现有技术之权利。
发明内容
为解决上述现有技术中至少一部分不足之处,本发明提供了一种分体式蜗杆及其传动机构,其至少包含:蜗轮,其至少具有旋转轴线并且能够按照围绕该轴线的方式进行旋转,蜗轮沿周向表面设有多个滚槽,在滚槽内安装有滚子,蜗杆,其接触至蜗轮以便驱动蜗轮围绕其自身轴线转动,滚槽是按照如下的分体部分环抱的形式限制滚子的,即滚子面向蜗轮的半球部突出于滚槽之外,从而滚子在滚 槽内滚动的圆滚线与用于环抱滚子的滚槽的第一滚槽边缘和第二滚槽边缘的相交位置处于蜗杆的蜗齿向滚子施力的力线之外。滚子的与第一滚槽边缘和第二滚槽边缘所在的平面是与蜗杆向滚子施加压迫作用力所在的力线彼此不正交的。
采用两半封装结构实现了快速构建滚子的滚动限位结构,其采用两个部件相结合的方式避免了采用镗孔等方式加工的难度以及对限位线部位可能的损坏,另外从加工效果来看,较难的加工方式带来的不仅是对滚槽内部的磨损或不平整,其还可能造成滚槽内部碎屑无法清除导致滚子运行中的磨损,或者加工产生的碎屑经由导油孔进入油箱造成更大的清理难度,本发明采用的两半封装结构使得可以单独对每一个半封装结构进行加工,由于其另一侧为方便刀具进入的空置位置,其在加工精度、平整度以及碎屑清理方面将得到很大的保证,极大地降低了加工成本。另外两半封装的设计为用户和制造方提供了更多选择的可能,具体为第一半滚槽环可以根据传动设备的具体使用情况选用不同材质的材料制造或者以形成不同数量滚槽的方式区别化设计,例如需要在第一半滚槽一侧承载较重力量时,第一半滚槽环可以选用硬度较高的材料以提供更好的物理支撑性,在不考虑承载耐受性时,第一半滚槽环可以选用硬度尚可的金属或者其它材料制成以实现成本的降低。另外对于设置于蜗轮主体上的第二半滚槽不方便调整其数量的情况下,可以通过对第一半滚槽环上的滚槽数量进行差异化设置,使得用户可以选择多种滚槽数量的第一半滚槽环与第二半滚槽配合形成数量不等的滚槽以容纳数量不等的滚子,由于滚子数量与传动机构承载力呈正相关关系,用户可以根据传动机构具体使用时的承载力需求自由选择第一半滚槽环的种类以获得经济实惠的传动装置配置。另外对于本发明采用的两半封装的结构对于滚子的更换检查方面具有优势。
优选地,第一滚槽边缘与第二滚槽边缘配合形成对滚子的限位区域,其中,第一滚槽边缘和/或第二滚槽边缘的边缘按照环绕滚子表面补全后的形状尺寸小于滚子的最大剖切尺寸。
此种设置使得第一滚槽边缘与第二滚槽边缘在水平面上不必处于同一高度,使得在加工方面对于高度的精度需求大幅降低,另外对于经常使用同一旋转方向进行重载需求的传动装置,可以将滚子承重受力的一边的滚槽边缘设置的稍微高于对边的滚槽边缘,稍高的滚槽边缘带来的是对该侧边滚子表面更多的包覆承载性,使得在这个部分进行重载受力的滚子表面能够得到更多的滚槽支撑,同时另一侧由于滚子受力较小因而可以设置较低的滚槽边缘,高低的滚槽边缘的设置还使得用户可以方便地通过低滚槽边缘的一侧观察滚子表面的磨损情况以及与蜗杆之间的接触情况,避免了由于位置过高的包覆性滚槽以及蜗杆的遮挡导致用户无法检查滚子磨损以及与蜗杆之间的接触性的问题,提升了整体传动装置的使用效能。另外由于采用两半封装的结构,使得第一半滚槽环可以设置多种差异化高度的配置,以供用户按照实际使用情况进行选择。
优选地,第一滚槽边缘与处于同一径向高度的第二滚槽边缘连线而成的限位线长度小于滚子的最大直径,使得滚子随蜗轮滚动时滚槽开口部分向滚子提供支撑力以抵消重力和/或离心力导致的滚子离开滚槽的趋势。
将第一滚槽边缘与第二滚槽边缘设置在同一平面的方式使得滚子运动的平稳性得到保证,一定程度上也减少了相关部件的生产成本以及生产难度,在一方面增大了蜗杆接触至滚子的面积,在不需要重载或载重程度不高的情况下此种设置有助于提升传动部件之间的接触性能。
优选地,滚槽设置为互为补足的第一半滚槽和第二半滚槽,数个第二半滚槽按照环形排布的方式连接形成第一半滚槽环,其中,两半封装形式按照如下方式形成:
按照先将滚子放置在第一半滚槽或第二半滚槽上再将第一半滚槽环连接至第一半滚槽以形成完整的滚槽的方式将最大半径大于滚槽开口半径的滚子安装在滚槽内。
优选地,蜗轮分为互相共轴的第一半蜗轮与第二半蜗轮,第二半蜗轮直径大于第一半蜗轮,使得 在两者的接触面形成高低的台阶,其中第二半滚槽设置在台阶的高位面上,第一半滚槽环直径大于第一半蜗轮直径,使得第一半滚槽环能够穿过第一半蜗轮并连接至第二半滚槽。
优选地,第一半滚槽与第二半滚槽底部分别设有半开口,半开口共同构成用于导入液压油的导油孔,导油孔轴线指向滚子的形状中心设置使得由导油孔导出的液压油能够接触至滚子部分表面并且借助滚子的自由滚动覆盖滚子的所有表面。
优选地,导油孔联通有导油通道,导油通道由分布于第一半滚槽与第二半滚槽上的半滚槽配合形成,其中,连接至所有沿蜗轮环形分布的滚槽内部的导油通道均以蜗轮圆形中心为圆心向蜗轮表面方向为路径指向,并且数个导油通道之间呈圆形发散排布。
本发明采用两半封装的形式使得设置于两个半滚槽底部的导油孔以及导油通道部分的加工变得易于实现。另外,两半封装的结构设计使得对于导油通道的异形化加工变得更加方便。例如,为使得位于导油通道顶部导油孔的位置具有较大的油压,可以将接近导油孔的部分导油通道内径做收窄设置,另外对于精度需求较高或者相对来说作为主体的第二半滚槽所在的蜗轮部分可以设置为平直加工的半通道以保证其尺寸精度,第一半滚槽环一侧则可以在接近导油孔的位置做单边收窄设计,同样可以起到较好的增加油压的效果。而上述这些异形导油通道的设计均很难在一体式生成的滚槽底部加工实现。
优选地,在蜗轮内设置有环形空腔,所有导油通道除导油孔的另一端均联通至环形空腔,使得储存在环形空腔内的液压油能够被重力和/或离心力驱动流动至滚子表面。
优选地,蜗杆沿其周向环形围绕设置有啮合部,蜗杆沿轴向路径拆分为第一蜗杆和第二蜗杆,第一蜗杆通过其上设置的轴向延伸的连接轴插接至第二蜗杆上按照配合连接轴尺寸方式设置的连接槽以形成完整的蜗杆。
此种设置方式使得用户可以方便更换两个半蜗杆的其中一个损坏的部件。尤其是,针对本发明提供的有多种选择的第一半滚槽环,其可以针对在同一方向转动时蜗轮上的啮入和啮出位置的不同受力状况或者滚子的不同运动方向做出差异化设计,例如沿第一半滚槽环的轴向观察,其左右两边的滚槽环材料可以不一致,而是左边的滚槽环材质更适宜于啮入或者啮出状态的其中一种,右边的滚槽环材质更适于其外一种啮合状态。本发明提供的分体是蜗杆使得蜗杆接触至啮入和啮出位置的两个部位的材质也可以根据对应的第一半滚槽环材质的不同做出区分化设计,使得蜗轮与滚槽在啮合状态不同的两个部位具有更好的配合性,提升了整体传动机构的承载性能或是传动效果。
优选地,沿蜗杆环绕有啮合部的直线路径上观察,啮合部弯曲弧度配合与其接触的滚子所在的蜗轮的弧度设置。
本发明至少还具有以下优点:
1、滚子与滚槽之间形成间隙配合,使得滚子可以在滚槽之间自由转动。
2、滚槽内部设置有导油孔,使得液压油可以接触至滚子表面,并且随着滚子的自转覆盖至滚子全部表面以及蜗杆表面,使得缝隙被自动填充同时减小摩擦损耗。
3、导油孔以及导油通道均呈圆形发散分布使得仅需在蜗轮之中设置一个环形空腔即可储存滚子所需的所有液压油,并且该指向设计使得液压油可以利用重力或旋转离心力自动流向滚子而无需额外驱动力。
4、本发明涉及的传动机构由于其两半封装滚子结构以及对应的两半蜗杆结构设置,使得本传动机构特别适应于增强大功率高压石油装备的传动效果,在此领域的应用具有较大的优势。
本发明还提供一种传动机构,至少包括:蜗轮,其至少具有旋转轴线并且能够按照围绕该轴线的方式进行旋转,所述蜗轮沿周向表面设有多个滚槽,在所述滚槽内安装有滚子,蜗杆,其可拆分为第 一蜗杆和第二蜗杆,
所述滚槽是按照如下的分体部分环抱的形式限制所述滚子的,即所述滚子面向所述蜗轮的半球部突出于所述滚槽之外,所述滚子的与所述滚槽的第一滚槽边缘和第二滚槽边缘所在的平面是与所述蜗杆向所述滚子施加压迫作用力所在的力线彼此不正交的。
优选地,所述蜗轮分为互相共轴的第一半蜗轮与第二半蜗轮,所述第二半蜗轮直径大于所述第一半蜗轮,使得在两者的接触面形成高低的台阶,其中第二半滚槽设置在所述台阶的高位面上。
优选地,第一半滚槽环直径大于第一半蜗轮直径,使得所述第一半滚槽环能够穿过所述第一半蜗轮并连接至所述第二半滚槽。
优选地,所述滚子在所述滚槽内滚动的圆滚线与用于环抱所述滚子的所述滚槽的第一滚槽边缘和第二滚槽边缘的相交位置处于所述蜗杆向所述滚子施力的力线之外。
优选地,所述滚槽设置为互为补足的第一半滚槽和第二半滚槽,数个所述第二半滚槽按照环形排布的方式连接形成第一半滚槽环。
优选地,所述第一滚槽边缘与处于同一径向高度的所述第二滚槽边缘连线而成的限位线长度小于所述滚子的最大直径,使得所述滚子随所述蜗轮滚动时所述滚槽开口部分向所述滚子提供支撑力以抵消重力和/或离心力导致的所述滚子离开所述滚槽的趋势。
优选地,所述第一滚槽边缘与所述第二滚槽边缘配合形成对所述滚子的限位区域,其中,所述第一滚槽边缘和/或所述第二滚槽边缘的边缘按照环绕所述滚子表面补全后的形状尺寸小于所述滚子的最大剖切尺寸。
本发明还提供一种分体式蜗杆,所述蜗杆沿轴向路径拆分为第一蜗杆和第二蜗杆,所述第一蜗杆通过其上设置的轴向延伸的连接轴连接至所述第二蜗杆上按照配合所述连接轴尺寸方式设置的连接槽以形成完整的所述蜗杆。
优选地,安装在蜗轮的滚槽内的滚子面向所述蜗轮的半球部突出于所述滚槽之外,所述蜗杆向所述滚子施加压迫作用力所在的力线与所述滚子的与所述第一滚槽边缘和第二滚槽边缘所在的平面彼此不正交。
优选地,滚子在所述滚槽内滚动的圆滚线与用于环抱所述滚子的所述滚槽的第一滚槽边缘和第二滚槽边缘的相交位置处于所述蜗杆向所述滚子施力的力线之外。
本发明还提供一种与分体式蜗杆配合传动的蜗轮,其至少具有旋转轴线并且能够按照围绕该轴线的方式进行旋转,所述蜗轮沿周向表面设有多个滚槽,在所述滚槽内安装有滚子,所述滚槽设置为互为补足的第一半滚槽和第二半滚槽,数个所述第二半滚槽按照环形排布的方式连接形成第一半滚槽环,
所述滚子面向所述蜗轮的半球部突出于所述滚槽之外,
所述滚子在所述滚槽内滚动的圆滚线与用于环抱所述滚子的所述滚槽的第一滚槽边缘和第二滚槽边缘的相交位置处于所述蜗杆向所述滚子施力的力线之外。
优选地,所述滚子的与所述第一滚槽边缘和第二滚槽边缘所在的平面是与蜗杆向所述滚子施加压迫作用力所在的力线彼此不正交的。
优选地,所述第一滚槽边缘与处于同一径向高度的所述第二滚槽边缘连线而成的限位线长度小于所述滚子的最大直径,使得所述滚子随所述蜗轮滚动时所述滚槽开口部分向所述滚子提供支撑力以抵消重力和/或离心力导致的所述滚子离开所述滚槽的趋势。
优选地,所述蜗轮分为互相共轴的第一半蜗轮与第二半蜗轮,所述第二半蜗轮直径大于所述第一半蜗轮,使得在两者的接触面形成高低的台阶,其中所述第二半滚槽设置在所述台阶的高位面上,所 述第一半滚槽环直径大于所述第一半蜗轮直径,使得所述第一半滚槽环能够穿过所述第一半蜗轮并连接至所述第二半滚槽。
优选地,沿所述蜗杆环绕有啮合部的直线路径上观察,所述啮合部弯曲弧度配合与其接触的所述滚子所在的所述蜗轮的弧度设置。
附图说明
图1是本发明一种实施例的爆炸结构图;
图2是本发明一种实施例滚槽部分放大图;
图3是本发明一种实施例的沿图1中X轴方向观察的正视图;
图4是本发明一种实施例沿图3中沿A方向观察的剖视图;
图5是本发明一种实施例的沿图1中Z轴方向观察的俯视图;
图6是本发明一种实施例的螺杆一种旋转方向时滚子的受力示意图;
图7是本发明一种实施例的螺杆另一种旋转方向时滚子的受力示意图;
图8是本发明计算蜗杆啮合齿面方程建立的坐标系示意图;
图9是本发明计算蜗杆啮合齿面方程是对与球形滚子情况下建立的坐标系示意图;
图10是本发明一种实施例沿逆时针旋转的蜗杆轴线观察的蜗杆滚子蜗轮部分的剖视结构与受力分析图;
图中:100、蜗轮;110、第一半蜗轮;120、第二半蜗轮;130、滚槽;130a、第一滚槽边缘;130b、第二滚槽边缘;130c、最大施力点;α、第一夹角;β、第二夹角;L、限位线;F5、力线;131、第一半滚槽;132、第二半滚槽;133、第一半滚槽环;140、导油孔;150、导油通道;160、环形空腔;200、滚子;300、蜗杆;310、啮合部;320、第一蜗杆;330、第二蜗杆;F1、第一切向力;F2、第一径向力;F3、第二切向力;F4、第二径向力。
具体实施方式
本发明提供一种分体式蜗杆及其传动机构,如图1、3、4、5所示,其至少包括蜗杆300、蜗轮100和滚子200。沿蜗轮100周向表面环形路径上间隔设置有数个滚子200,该滚子200至少一部分裸露在蜗轮100本体外部,并且裸露部分接触至蜗杆300上设置的啮合部310。蜗杆300自转轴线与蜗轮100自转轴线垂直且不共面,因此在外部电机驱动下蜗杆300沿其轴线自转,进而设置在其上的啮合部310以滑动摩擦的方式带动滚子200进行自转以及按照啮合部310所形成的螺旋路径运动方向进行移动,并且以此带动蜗轮100沿上述方向为切线方向进行顺时针或逆时针转动。
用于受外部驱动使得自身按照其中心轴线进行自转并且通过该自转向与其连接的外部部件进行受力传导的蜗轮100可以被设置为圆形或圆盘形状。并且优选地,为实现减轻其本身重量以及中间可以额外设置加强主轴之目的,蜗轮100可以设置为圆环构型。使得在需要的时候,用户通过向圆环中心中空部位穿过用于补强作用的加强主轴,使得当蜗轮100连接至较重的部件或者用于较大载荷的传动方式时可以接受上述加强主轴的额外支撑力,防止蜗轮100由于载荷较大或者重力较大的因素而导致的使用寿命降低和/或金属疲劳损伤等问题。
在三维空间方面观察,蜗轮100周向具有一定的宽度,使得蜗轮100在空间中整体构成圆柱体或者圆环柱体的构型。其中,沿蜗轮100周向外表面上按照一定的间距排布规则连续设置有数个具有由外表面向内表面凹陷的构型的滚槽130。该滚槽130用于安装并包裹滚子200的至少一个部分,并且由于滚子200需接触至蜗杆300并形成紧密接触的形式。故优选地,上述数个滚槽130在蜗轮100周向外表面上形成的开口之间被设置为保持一个较为接近的距离,使得当滚子200被装入滚槽130后,其相互之间也被引导为一个较为接近的距离,此种设计可以防止滚子200距离较远,在接 触蜗杆300时存在一部分蜗杆300没有接触至滚子200而导致出现预期外的滑动摩擦的情况。
上述用于形成蜗杆300与蜗轮100之间的中间传导机构的滚子200,由于其利用自身较为圆滑的外形而将蜗轮100与蜗杆300间的滑动摩擦变更为滚动摩擦的功能,滚子200可以设置为圆球形状态。并且相应地,上述滚槽130按照配合滚子200形状的方式也被设置为按照球形的形状向内凹陷,以形成承托滚子200的凹槽。优选地,为实现滚子200的至少一个部分接触至蜗杆300的目的,该滚槽130被设置为半包裹滚子200的构型,即滚槽130按照球形滚子200的下半球形状为基础向内凹陷以形成一种类似于杯子形状的承托构型(如图2所示),使得当滚子200被安装在滚槽130中,其至少上半部分是裸露在滚槽130之外的。优选地,当蜗轮100按照其自身轴线进行转动时,沿蜗轮100周向外表面排布的数个滚子200跟随蜗轮100运动形成以蜗轮100圆形中心的圆形运动轨迹。
为实现滚子200在滚槽130之中可以自由转动之目的,当滚子200被放置进滚槽130之后,其与滚槽130之间形成间隙配合。该种配合是指滚槽130的开口尺寸大于滚子200的尺寸,具体到本实施例中呈球形的滚子200和呈杯状的滚槽130上时,则该间隙配合可以指滚槽130的杯状凹陷直径大于球形滚子200的最大直径,这种配合使得滚子200与滚槽130之间形成一定长度的间隙,进而使得滚子200在滚槽130中可以自由地转动。优选地,为防止滚子200与滚槽130之间出现较大的撞击摩擦,该间隙长度被设置为一个较小的数值,使得在整体保持较高的机械配合精度的同时,滚子200获得较好的自由转动的空间。
沿蜗轮100转动的路径观察,可知若该蜗轮100以垂直与地面设置时,当某一滚子200跟随蜗轮100一起转动至朝向地面的一面时,由于重力作用,滚子200极易从滚槽130中脱出,造成本滚子200包覆蜗轮100零件缺失。另一方面,若该蜗轮100进行转动时,滚子200由于离心力的作用也极易滚槽130中脱出。故优选地,将滚槽130在蜗轮100周向表面的开口直径设置为小于滚子200的最大直径,这种设计将在以下两个方面具有优势。一方面,在某一滚子200随蜗轮100旋转至接触蜗杆300时,该滚子200结构上剖面直径小于上述滚槽130开口直径的部分仍会裸露在滚槽130之外并可以自由地接触至蜗杆300,并且由于间隙配合的设置,其仍可以自由滚动。另一方面,在某一滚子200随蜗轮100旋转至朝向地面的一侧或者当滚子200受到由离心力带来的影响时,被包裹在滚槽130内部的滚子200部分由于其剖面直径大于滚槽130开口直径而不能从滚槽130中脱出,使得滚子200整体被固定在滚槽130当中。
由于滚槽130开口直径被设置为小于滚子200的最大直径,因此在向滚槽130中安装滚子200时不能直接由滚槽130的开口处直接插入滚子200的方式进行。故本实施例中采用两半封装的结构将滚子200安装在滚槽130中。优选地,上述两半封装的结构是指滚槽130设置为可拆分的两个部分,这两个部分其中一个部分为设置在蜗轮100上的第二半滚槽结构132,另外一部分可由一个可拆卸的第一半滚槽环133实现。该第一半滚槽环133由数个可以与第二半滚槽132配合组成完整的滚槽130的第一半滚槽131按照环形排布的方式连接组成,并且该第一半滚槽环133以套设在蜗轮100的其中一端圆柱形或圆环形主体上的方式与第二半滚槽132结构进行组合。即对于以上所述的滚子200与滚槽130开口之间的尺寸设置问题,若按照蜗杆轴线方向对蜗杆与球形滚子按最大半径进行剖视的剖视图进行观察(图10所示),滚子200与第一半滚槽131和第二半滚槽132之间均有接触,具体到滚槽130开口位置来看,滚子200分别在第一滚槽边缘130a和第二滚槽边缘130b位置与上述两个半滚槽接触。在图10所展示的一种实施例的版剖视图中,将第一滚槽边缘130a与第二滚槽边缘130b处于同一径向高度,并且将两者的位点连线以形成限位线L,则若将滚子200最大直径称之为直径D(图中未示出),则可以明确看出,当限位线L长度或等于大于直径D的长度时,滚槽130将不具有对滚子200的限位能力,滚子200将随着蜗轮100运行过程中的重力或者离心力 从滚槽130中脱出。故只有在限位线L小于直径D时,滚槽130才对滚子200形成了限位功能。
在另一些实施例中,第一滚槽边缘130a与第二滚槽边缘130b也可以采用不同高度设置,这样就能够实现不同边缘尺寸的两个滚槽边缘,只要满足两个滚槽边缘沿滚子200边缘水平的补全轮廓尺寸是小于滚子200最大剖面尺寸的条件即可实现对滚子的限位作用,例如滚槽边缘为圆弧时,其沿滚子200边缘的补全轮廓就是沿该边缘所在平面去切剖滚子而形成的剖面轮廓,例如圆形轮廓,则该圆形轮廓的直径被设计为小于滚子200的最大直径以实现对滚子200的限位。
故本实施例中,蜗轮100沿第一半滚槽131和第二半滚槽132分开的剖面线为界线分为两个部分,如图4所示的110和120两个环形或圆柱形蜗轮部分。上述两个蜗轮部分分别为第一半蜗轮110和第二半蜗轮120处于同轴线设置,其不同之处在于,第二半蜗轮120的直径大于或稍大于第一半蜗轮110,使得在两者的接触面形成了高低构型的台阶,或者也可以理解为L形台阶。上述第二半滚槽132均是设置在台阶的高位面上的,并且为实现第一半滚槽环133可以穿过第一半蜗轮110而与第二半滚槽132组合,将第一半滚槽环133的直径设置为大于或稍大于第一半蜗轮110的直径,并且优选地,第一半滚槽环133的直径按照能够满足设置在其上的第一半滚槽131高度对应地与设置在台阶高位面的第二半滚槽132相结合以形成滚槽130的方式设置。优选地,第二版滚槽环133与上述台阶的连接部位设置在台阶高位面的除开设置有第一板滚槽131的部分,并且两者的连接关系可以设置为可拆卸的螺纹连接、扣接等方式。优选地,为满足对称原则以获得更好的稳定性,上述第一半滚131与第二半滚槽132被剖分为包裹面积相等分两个半槽。
优选地,通过引入可活动连接于第二半蜗轮120上的第一半滚槽环133可以实现对滚子200在滚槽130内的受力方向以及最大摩擦位置的调整,以实现对于不同转动以及不同载荷需求的灵活性调整。具体地,通过观察由蜗杆300轴线视角形成的对蜗杆300、滚子200以及滚槽130的剖面视图(图10所示)可以做出以下分析。滚子200在接触至蜗杆300并在蜗杆300的带动下进行旋转,其转动过程中形成的圆滚线与第一半滚槽131和第二半滚槽132之间形成的相交位置即为第一滚槽边缘130a和第二滚槽边缘130b,两边缘以环抱而形成的连线长度小于滚子的最大直径的方式将滚子200限位在滚槽130内部。在受力方面,若按照图中所示的视角观察,蜗杆300采取的是逆时针旋转的情况下,在蜗杆300接触至滚子200并且对滚子200产生的其中一个作用力来自于其对滚子的挤压力,该挤压力在蜗杆300的转动作用下与滚子200的垂直法线形成一定夹角,具体至图中所示的蜗杆300逆时针旋转的情况下,表征挤压力的力线F5指向第一半滚槽内壁位置,该力线F5是穿过滚子球心的,并且若将力线F5沿球心反向延长至限位线L上时,第一滚槽边缘130a与力线F5之间形成了第一夹角α,第二滚槽边缘130b与力线F5之间形成了第二夹角β。通过观察上述两个夹角可知,在蜗杆采用沿图中方向观察下的逆时针旋转的方式转动时,第一夹角α呈钝角状态,第二夹角β呈锐角状态,这种夹角状态表征了力线F5至少是指向第一半滚槽131一侧。另一方面若蜗杆采用顺时针方向转动时,第二夹角β则会呈钝角状态,第一夹角α呈锐角状态,则此刻两种夹角状态表征的是力线F5指向第二半滚槽132一侧。进一步地,挤压力的直接施力点也就是力线F5的作用点称为最大施力点130c,在这个点上出现整个滚子200在转动过程中与滚槽130内壁的最大摩擦,即在此处滚子200受到的摩擦影响最大。而对于本发明采用的在蜗轮100上以两半封装形式限定滚子200的结构设置,使得用户可以根据不同使用情况来适应性地调整力线F5的最大施力点130c的位置。
具体地,首先,第一滚槽边缘130a和第二滚槽边缘130b处于与滚子200圆滚向相交的位置上,并且由于其属于滚槽130开口处的位置,因此此处的形状弧度变化最大,以致形成较为锋利的边缘,故调整第一半滚槽环133的距离可以实现第一滚槽边缘130a与第二滚槽边缘130b所组成的包围环 形面处于蜗杆300向滚子200施加挤压力的力线之外,因此通过变更力线F5的施力中心,使其避免较为锋利的边缘处,实现了对滚子200磨损的保护,极大地提升了滚子200的使用寿命。另外对于旋转中的蜗杆,由于压力角的存在,力线F5与第一滚槽边缘130a和第二滚槽边缘130b组成的平面之间呈彼此不正交的状态,此状态使得导油孔140可以设置在滚槽130正底部,避免了力线F5直接作用与导油孔140开口处导致液压油流通不畅等问题。进一步地,由于第一半滚槽环133是通过螺纹等活动连接至第二半蜗轮120上的,因此通过调整第一半滚槽环133距离第二半蜗轮120的距离即可调节力线F5在滚槽130内壁上的最大施力点130c,例如在蜗杆300进行逆时针运动的情况下,稍微加大第一半滚槽环133与第二半滚槽120之间的距离,即稍微加大限位线L的长度,可使得力线F5作用位置靠近滚槽130槽口的位置,即第一夹角α随限位线L增大而逐渐增大,第二夹角β随限位线L增大而组件减小。另一方面,减小限位线L的长度,可使得力线F5作用位置靠近滚槽130槽底的位置,即第一夹角α随限位线L减小而逐渐减小,第二夹角β随限位线L减小而逐渐增大。由此还可以看出,当蜗杆300采用逆时针旋转时,第一夹角α与限位线L长度之间呈现正相关关系,而第二夹角β与限位线L长度之间呈负相关关系。反之,当蜗杆300采用顺时针旋转时,第一夹角α与限位线L长度之间呈负相关关系,而第二夹角β与限位线L长度之间呈正相关关系。力线F5施力位置的调整可根据蜗轮蜗杆滚子传动机构的具体使用情况来调整,例如在需要重载的时候,可将最大施力点130c设置为靠近滚槽130底部的位置以实现较好的受力支撑,在需要高转速的时候,可将最大施力点130c设置为靠近滚槽130开口位置以实现阻力较小的快速转动,这些均可以依靠调整第一半滚槽环133的位置来实现。
在安装滚子200时,先将滚子200放置在第一半滚槽131或第二半滚槽132上,然后将第一半滚槽环133沿第一半蜗轮110轴向方向穿过第一半蜗轮110连接至台阶,由此第一半滚槽131与第二板滚槽132结合形成了完整滚槽130并且以半包裹的形式将滚子200限定在其内部。其上步骤实现了滚子200的两半封装结构安装方式。将滚槽130设置为可拆分的设计在保证滚子200可以正常装入的情况下,还使得用户或制造商可以对磨损严重的滚子200或滚槽130进行拆卸更换或维修内部表面。
在另一些实施例中,为实现蜗轮100以及滚槽130部分较好的机械强度,滚槽130可以与蜗轮100一体式制成,滚子200在上述两者形成之前就预先安装在滚槽130之中,该实施例可以获得较好的机械强度,防止连接部位磨损失效,但无法在不损伤蜗轮100的情况下将滚子200拔出。
上述蜗轮100和滚子200可以由工业上常用的硬质材料制成以获得较高的机械强度,该硬质材料例如可以是铁和以铁为基础的合金(例如钢材、铸铁或其它铁合金)、有色金属及其合金(例如铜材、铝材或其合金材料)。优选地,蜗轮100采用ZCuSn10P1合金材料,其弹性模量为113GPa,泊松比为0.32~0.35,滚子200采用铜合金材料制成。
优选地,为实现对滚子200以及与滚子200接触的蜗杆300的润滑效果,在滚槽130内部至少一个部位设置有导油孔140,该导油孔140开口指向滚子200的形状中心,使得从该导油孔140中导出的液压油能够充入滚子200与滚槽130之间的间隙中形成润滑和填充间歇效果。另外一方面,由于滚子200在装入滚槽130后由于一定的间隙或者导油孔形成的近似负压的原因,滚子200底部将会贴近滚槽130底部而造成滚子200露出部分不能很好地接触至蜗杆300,因此从导油孔140中流出的液压油同时具有将滚子200从滚槽130底部向外顶出的作用,使得滚子200更加接近蜗杆120以形成更好的滑动摩擦效果。另外,由于滚子200接触至滚槽130开口部位时被限位卡住,由此在滚槽130开口部位形成类似球阀类型的锁紧结构,使得液压油不能从滚槽130的开口出漏出,进一步使得滚槽130的内部形成有液压油充满的腔室。由于滚子200与滚槽130之间的间隙配合,使得 滚子200可以在滚槽130中自由滚动,故当蜗杆300自转带动滚子200进行转动时,露出滚槽130的未接触液压油的部分由于滚子200的自转而转动至滚槽130内并与存在于滚槽130内的液压油接触以形成润滑油膜,且在滚子200持续转动的过程中,该滚子200的全部表面将会涂覆上液压油膜。另外一方面,由于滚子200接触至蜗杆300,滚子200上的液压油也将随之涂覆至蜗杆300表面。由于液压油具有较为粘稠的流动性特性,其可以使得滚子200与滚槽130之间以及滚子200与蜗杆300之间的缝隙被自动填充或补偿误差,同时液压油将显著降低滚子200与滚槽130之间以及滚子200与蜗杆300之间摩擦损耗。
优选地,为统一管理液压油存储与添加,与设置在滚槽130内部的导油孔140相通连导油通道150被设置为指向蜗轮100圆形中心,并且所有沿蜗轮100环形分布的滚槽130底部的导油通道150均以蜗轮100圆形中心为圆心呈圆形发散排布,故在蜗轮100内部设置有一个与蜗轮100同心的环形空腔160,所有导油通道150的出导油孔140的另一端均联通至该环形空腔160。该空腔用于储存足量的液压油,使得在重力或者离心力的作用下,液压油可以由空腔经由导油通道150从导油孔140中流出并接触至滚子200表面。为方便用户向环形空腔160中添加或补充液压油,将蜗轮100设置为圆环柱形,并且在其内环处设置一个加油开口,该加油开口联通至上述环形空腔160,使得用户可以由该加油开口向环形空腔160中添加液压油。优选地,对于上述一些实施例中的可剖分的蜗轮100,可在环形空腔160、导油通道150以及滚槽130相应接缝处设置防漏机构,该防漏机构可以是贴附在接缝处的橡胶条或防液薄膜等结构。
优选地,由于滚槽130被设置为拆分设计,相应地,导油孔140与导油通道150同样可以相应地设置为拆分设置,即位于第一半滚槽131与第二半滚槽132的半开口与半通道分别组成了导油孔140以及导油通道150。另外优选地,为使得位于导油通道150顶部导油孔140的位置具有较大的油压,可以将接近导油孔140的部分导油通道150内径做收窄设置,另外对于精度需求较高或者相对来说作为主体的第二半滚槽132所在的蜗轮部分可以设置为平直加工的半通道以保证其尺寸精度,第一半滚槽环133一侧则可以在接近导油孔140的位置做单边收窄设计,同样可以起到较好的增加油压的效果。
接触至滚子200的蜗杆300上为形成对滚子200的定向驱动力,沿其周向环形围绕设置有啮合部310。并且为接触滚子200之目的,啮合部310配合裸露在滚槽130外的滚子200部分的构型形成两端凸出中间凹陷的凹槽构型,并且该凹槽的导向路径环绕蜗杆300以螺旋等构型进行延伸,该沿螺旋路径延伸的凹槽构型被称之为蜗道。优选地,为缩小啮合部310与滚子200接触时的间隙同时保证滚子200或蜗杆300之间可以自由的滚动或自转,啮合部310相邻两端凸起之间的间距与滚子200裸露在滚槽130外的部分的最大直径之间呈间隙配合关系。优选地,滚子200与蜗杆300接触时,在滚子200露出滚槽130部分的表面上形成了至少一部分接触面。优选地,上述接触面是指若干临近的接触线排列构成的空间上的曲面,并且该曲面符合滚子球形弧面的至少一部分轮廓构型面。优选地,接触线是指由数个临近的接触点串联构成的空间上的曲线,以球形滚子200的构型来观察,该优选的接触线是指球形滚子200接触至蜗杆300的球形顶点沿球形弧面延伸至滚子200与滚槽130开口相切的圆周面上的曲线。优选地,调整蜗杆300上啮合部310与滚子200球形构型的配合程度,上述球形滚子200与蜗杆300接触面面积与球形滚子整体裸露在滚槽130外的面积部分之间的占比可以达到50-75%。当上述面积占比更高时,说明滚子200与蜗杆300的接触程度越高,则这种高程度的接触将较大提升传动装置的承载能力和传动效率、减少间隙冲击、减小接触面的磨损。
优选地,蜗杆300上配合滚子200形状而形成的啮合部310凹槽路径环绕蜗杆300而形成螺旋形的蜗道,使得当蜗杆300以其自身轴线自转之时,在空间上形成以蜗杆轴线为中心的螺旋形轨迹包 络线,该轨迹包络线描述的既是啮合部310螺旋路径的走向,也同时描述了无束缚的滚子200在啮合部中的运动轨迹。上述无束缚的滚子200运动轨迹是指当进行自转的蜗杆300接触至位于蜗轮100上的滚子200时,若将蜗杆300视作相对静止的状态而将滚子200视作未被滚槽130限定位置的情况下,则滚子200与蜗杆300的啮合部310之间的相对运动将会转化成滚子200沿啮合部310螺旋延伸的路蜗道运动以形成螺旋形的轨迹包络线。
并且,若将滚子200视作束缚在滚槽130中的情况下时,上述轨迹包络线的所展示的相对运动中包含了对滚子200施加的多个方向的外力。优选地,若将滚子200接触至啮合部310的部分作为一个整体来观察,其接触轮廓可大致描述为一个贴紧啮合部310其中一个蜗道两端的圆形(如图6和图7所示),并且在其表面上各个不同地方施加的力可以合并为至少两个方向施加力,即切向力和径向力。优选地,由于蜗杆300具有顺时针和逆时针两种旋转方向而导致其相应的轨迹包络线也相应地具有两个方向的相对运动,进而也产生了至少两组方向互为相反的切向力和径向力的组合。优选地,当蜗杆300采用顺时针转动的方式进行自转的情况下,上述切向力为第一切向力F1,径向力为第一径向力F2;当蜗杆300采用逆时针转动的方式进行自转的情况下,上述切向力为第二切向力F3,径向力为第二切向力F4。
由于滚子200在滚槽130中处于自由滚动状态,故施加至滚子200的第一切向力F1和/或第二切向力F3使得滚子200沿切向力作用方向进行滚动,具体地,当蜗杆300进行顺时针转动时,产生的上述第一切向力F1带动滚子200沿其自身进行转动,并且若将滚子200的轴向与蜗杆300轴向大致等同方向观察,上述滚子200进行逆时针转动。同样地,当蜗杆300进行逆时针转动时,产生的上述第二切向力F3带动滚子进行顺时针转动,即在蜗杆300的滚动带动下,滚子200与蜗杆300之间形成了逆向滚动状态。上述无论时蜗杆300顺时针还是逆时针的转动均使得滚子300在滚槽130中实现了自由滚动的功能,使得蜗杆300与滚子200之间的摩擦至少很大一部分被转化为滚子200的滚动摩擦,从而大量减小了摩擦损失,提升了传动效果。
另一方面,对滚子200受到的径向力进行分析,则可知径向力垂直与上述切向力,并且不同于给滚子200带来自由滚动的切向力,主要由啮合部310蜗道两端凸起部位贴合至滚子200所带来的径向力使得滚子200在空间上产生了向受径向力方向进行运动的趋势。再者由于数个接触至啮合部310的滚子200均产生了相似方向的径向力,在将滚子200与其所固定于的蜗轮100作为一体观察,上述整体受到了蜗杆300转动产生的朝向一定方向的径向合力,使得蜗轮100在上述径向合力的作用下沿其自身轴线进行滚动。并且在方向相反的第一径向力F2和第二径向力F4的作用下,蜗轮100可以沿顺时针和逆时针的方向转动。
在一些实施例中,沿所述蜗杆300环绕有所述啮合部310的直线路径上观察,啮合部310凹槽路径的螺旋半径配合其接触至所述滚子200所在的蜗轮100的弧度设置,而形成一种中间半径较小,两端半径较大的构型。此种设置可以使得啮合部310在接触至由于蜗轮100的影响而具有一定弧形排布的数个滚子200时,啮合部310依靠其配合蜗轮100弧度的弯曲形状而保证其表面上的尽可能多的接触上述数个滚子200以向滚子200提供受力传导,提升本传导装置的传导效率和承载强度。另外为消除蜗杆与滚子之间的缝隙,将啮合部设置为两端突出位置紧贴滚子外侧面的结构,使得蜗杆与滚子之间的间隙被消除,提升传动效率。
优选地,蜗杆300可沿其轴向路径拆分为两个部分(图3所示),即第一蜗杆320和第二蜗杆330,其中,第一蜗杆320上设置有一个沿其轴向延伸的连接轴,该连接轴径向半径配置为小于蜗杆300表面存在有啮合部310的最小剖面半径。在第二蜗杆上设置有按照配合连接轴尺寸,例如配合径向半径以及轴向长度尺寸的方式设置有连接槽。连接槽与连接轴之间可以采用螺纹、插接等方式连 接,当上述两者连接之后组成了完整的额蜗杆300结构。此种设置方式使得用户可以方便更换两个半蜗杆的其中一个损坏的部件。尤其是,针对本发明提供的有多种选择的第一半滚槽环133,其可以针对在同一方向转动时蜗轮100上的啮入和啮出位置的不同受力状况或者滚子的不同运动方向做出差异化设计,例如沿第一半滚槽环133的轴向观察,其左右两边的滚槽环材料可以不一致,而是左边的滚槽环材质更适宜于啮入或者啮出状态的其中一种,右边的滚槽环材质更适于其外一种啮合状态。本发明提供的分体是蜗杆300使得蜗杆接触至啮入和啮出位置的两个部位的材质也可以根据对应的第一半滚槽环133材质的不同做出区分化设计,使得蜗轮与滚槽在啮合状态不同的两个部位具有更好的配合性,提升了整体传动机构的承载性能或是传动效果。
优选地,蜗杆相关设计参数计过程可以参照蜗杆啮合齿面方程进行计算:
基于微分几何和齿轮啮合原理,首先建立了如图8所示的坐标系:建立蜗杆、蜗轮的静坐标系S 1(i 1,j 1,k 1)、S 2(i 2,j 2,k 2),与蜗杆、蜗轮固联的动坐标系S 1′(i 1′,j 1′,k 1′)、S 2′(i 2′,j 2′,k 2′),其中k 1=k 1'=ω 11'为蜗杆的回转轴,k 2=k 2'=ω 22'为蜗轮的回转轴,ω 12分别为蜗杆蜗轮的角速度此外,在滚子柱顶中心,建立在滚子上与蜗轮固联的坐标系S 0(i 0,j 0,k 0),滚子的回转轴线沿着蜗轮的径向方向,且与蜗轮回转轴k 2′垂直相交。
在图8中,A为蜗杆与蜗轮的中心距,c 2为滚柱偏距,α为蜗轮齿距角;φ 1、φ 2分别为蜗杆、蜗轮的转角,传动比i 12=ω 12=φ 12=1/i 21,当φ 1=φ 2=0时,动坐标系与静坐标系重合,并设O 0点在S 2′坐标中的坐标为(a 2,b 2,c 2),在接触点O p处设置活动标架S p(e 1,e 2,n),对于球形滚子的标系设置如图9所示,固定坐标系S 0的位置在滚子顶部或中央。
根据啮合原理,空间啮合的两齿面,无论是点接触,还是线接触在任一瞬时总是相切的,即在接触点总有公共的切平面和公共的法矢n,且两齿面在接触点的相对运动速度ν 1′2′必然和公法矢n相垂直,即两齿面在接触点的公法矢方向无相对运动。只有这样,才能保证相互接触的两齿面不致脱离或产生卡死现象,从而使两齿面能连续地保持接触,即两齿面在接触点处必须满足啮合方程:
Figure PCTCN2022093580-appb-000001
由母面(产形面)上所设置的接触点O p的活动标架可知,n轴即为母面与蜗杆齿面的公法矢,所以接触点O p处的相对速度矢量ν 1′2′在活动标架S p中沿n轴投影即得到该传动的啮合函数:
Figure PCTCN2022093580-appb-000002
由啮合函数得到此蜗杆传动的啮合齿面方程为:
Figure PCTCN2022093580-appb-000003
上式中,u、θ分别为蜗轮滚子的设计参数,Φ 2为蜗轮转动角,M 1,M 2,M 3为减速器后续设计需要求解的参数。
需要注意的是,上述具体实施例是示例性的,本领域技术人员可以在本发明公开内容的启发下想出各种解决方案,而这些解决方案也都属于本发明的公开范围并落入本发明的保护范围之内。本领域技术人员应该明白,本发明说明书及其附图均为说明性而并非构成对权利要求的限制。本发明的保护范围由权利要求及其等同物限定。本发明说明书包含多项发明构思,诸如“优选地”、“根据一个优选实施方式”或“可选地”均表示相应段落公开了一个独立的构思,申请人保留根据每项发明构思提出分案申请的权利。

Claims (15)

  1. 一种传动机构,至少包括:
    蜗轮(100),其至少具有旋转轴线并且能够按照围绕该轴线的方式进行旋转,所述蜗轮(100)沿周向表面设有多个滚槽(130),在所述滚槽(130)内安装有滚子(200),
    蜗杆(300),其可拆分为第一蜗杆(320)和第二蜗杆(330),其特征在于,
    所述滚槽(130)是按照如下的分体部分环抱的形式限制所述滚子(200)的,即所述滚子(200)面向所述蜗轮(100)的半球部突出于所述滚槽(130)之外,
    所述滚子(200)的与所述滚槽(130)的第一滚槽边缘(130a)和第二滚槽边缘(130b)所在的平面是与所述蜗杆(300)向所述滚子(200)施加压迫作用力所在的力线(F5)彼此不正交的。
  2. 根据权利要求1所述的传动机构,其特征在于,所述蜗轮分为互相共轴的第一半蜗轮(110)与第二半蜗轮(120),所述第二半蜗轮(120)直径大于所述第一半蜗轮(110),使得在两者的接触面形成高低的台阶,其中第二半滚槽(132)设置在所述台阶的高位面上。
  3. 根据权利要求1或2所述的传动机构,其特征在于,第一半滚槽环(133)直径大于第一半蜗轮直径,使得所述第一半滚槽环(133)能够穿过所述第一半蜗轮(110)并连接至所述第二半滚槽(132)。
  4. 根据权利要求1~3任一项所述的传动机构,其特征在于,所述滚子(200)在所述滚槽(130)内滚动的圆滚线与用于环抱所述滚子(200)的所述滚槽(130)的第一滚槽边缘(130a)和第二滚槽边缘(130b)的相交位置处于所述蜗杆(300)向所述滚子(200)施力的力线(F5)之外。
  5. 根据权利要求1~4任一项所述的传动机构,其特征在于,所述滚槽(130)设置为互为补足的第一半滚槽(131)和第二半滚槽(132),数个所述第二半滚槽(132)按照环形排布的方式连接形成第一半滚槽环(133)。
  6. 根据权利要求1~5任一项所述的传动机构,其特征在于,所述第一滚槽边缘(130a)与处于同一径向高度的所述第二滚槽边缘(130b)连线而成的限位线(L)长度小于所述滚子(200)的最大直径,使得所述滚子(200)随所述蜗轮(100)滚动时所述滚槽(130)开口部分向所述滚子(200)提供支撑力以抵消重力和/或离心力导致的所述滚子(200)离开所述滚槽(130)的趋势。
  7. 根据权利要求1~6任一项所述的传动机构,其特征在于,所述第一滚槽边缘(130a)与所述第二滚槽边缘(130b)配合形成对所述滚子(200)的限位区域,其中,所述第一滚槽边缘(130a)和/或所述第二滚槽边缘(130b)的边缘按照环绕所述滚子表面补全后的形状尺寸小于所述滚子的最大剖切尺寸。
  8. 一种分体式蜗杆,其特征在于,所述蜗杆(300)沿轴向路径拆分为第一蜗杆(320)和第二蜗杆(330),所述第一蜗杆(320)通过其上设置的轴向延伸的连接轴连接至所述第二蜗杆(330)上按照配合所述连接轴尺寸方式设置的连接槽以形成完整的所述蜗杆(300)。
  9. 根据权利要求8所述的分体式蜗杆,其特征在于,安装在蜗轮(100)的滚槽(130)内的滚子(200)面向所述蜗轮(100)的半球部突出于所述滚槽(130)之外,
    所述蜗杆(300)向所述滚子(200)施加压迫作用力所在的力线(F5)与所述滚子(200)的与所述第一滚槽边缘(130a)和第二滚槽边缘(130b)所在的平面彼此不正交。
  10. 根据权利要求8或9所述的分体式蜗杆,其特征在于,滚子(200)在所述滚槽(130)内滚动的圆滚线与用于环抱所述滚子(200)的所述滚槽(130)的第一滚槽边缘(130a)和第二滚槽边缘(130b)的相交位置处于所述蜗杆(300)向所述滚子(200)施力的力线(F5)之外。
  11. 一种与分体式蜗杆配合传动的蜗轮,其至少具有旋转轴线并且能够按照围绕该轴线的方式进 行旋转,所述蜗轮(100)沿周向表面设有多个滚槽(130),在所述滚槽(130)内安装有滚子(200),其特征在于,
    所述滚槽(130)设置为互为补足的第一半滚槽(131)和第二半滚槽(132),数个所述第二半滚槽(132)按照环形排布的方式连接形成第一半滚槽环(133),
    所述滚子(200)面向所述蜗轮(100)的半球部突出于所述滚槽(130)之外,
    所述滚子(200)在所述滚槽(130)内滚动的圆滚线与用于环抱所述滚子(200)的所述滚槽(130)的第一滚槽边缘(130a)和第二滚槽边缘(130b)的相交位置处于所述蜗杆(300)向所述滚子(200)施力的力线(F5)之外。
  12. 根据权利要求11所述的蜗轮,其特征在于,所述滚子(200)的与所述第一滚槽边缘(130a)和第二滚槽边缘(130b)所在的平面是与蜗杆(300)向所述滚子(200)施加压迫作用力所在的力线(F5)彼此不正交的。
  13. 根据权利要求11或12所述的蜗轮,其特征在于,所述第一滚槽边缘(130a)与处于同一径向高度的所述第二滚槽边缘(130b)连线而成的限位线(L)长度小于所述滚子(200)的最大直径,使得所述滚子(200)随所述蜗轮(100)滚动时所述滚槽(130)开口部分向所述滚子(200)提供支撑力以抵消重力和/或离心力导致的所述滚子(200)离开所述滚槽(130)的趋势。
  14. 根据权利要求11~13任一项所述的蜗轮,其特征在于,所述蜗轮分为互相共轴的第一半蜗轮(110)与第二半蜗轮(120),所述第二半蜗轮(120)直径大于所述第一半蜗轮(110),使得在两者的接触面形成高低的台阶,其中所述第二半滚槽(132)设置在所述台阶的高位面上,所述第一半滚槽环(133)直径大于所述第一半蜗轮直径,使得所述第一半滚槽环(133)能够穿过所述第一半蜗轮(110)并连接至所述第二半滚槽(132)。
  15. 根据权利要求11~14任一项所述的蜗轮,其特征在于,沿所述蜗杆(300)环绕有啮合部(310)的直线路径上观察,所述啮合部(310)弯曲弧度配合与其接触的所述滚子(200)所在的所述蜗轮(100)的弧度设置。
PCT/CN2022/093580 2021-05-18 2022-05-18 一种分体式蜗杆及其传动机构 WO2022242685A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110538362.6A CN113153980B (zh) 2021-05-18 2021-05-18 一种分体式蜗杆及其传动机构
CN202110538362.6 2021-05-18

Publications (1)

Publication Number Publication Date
WO2022242685A1 true WO2022242685A1 (zh) 2022-11-24

Family

ID=76876245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093580 WO2022242685A1 (zh) 2021-05-18 2022-05-18 一种分体式蜗杆及其传动机构

Country Status (2)

Country Link
CN (1) CN113153980B (zh)
WO (1) WO2022242685A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153980B (zh) * 2021-05-18 2022-04-08 成都理工大学 一种分体式蜗杆及其传动机构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2117520A1 (de) * 1971-04-10 1972-10-19 Ott Fa Gerhard Schraubgetriebe mit einem Schneckenrad
DE3432279A1 (de) * 1984-09-01 1986-03-13 Zahnradfertigung Ott GmbH u.Co KG, 7454 Bodelshausen Kontervorrichtung fuer ein schraubgetriebe
DE4010162A1 (de) * 1990-03-30 1991-10-02 Ott Gmbh & Co Kg Vorrichtung fuer ein getriebe mit schneckenrad und geteilter schnecke
CN101012864A (zh) * 2007-02-05 2007-08-08 龙岩理尚精密机械有限公司 数控机床高精度减速器
CN101290042A (zh) * 2008-04-14 2008-10-22 西华大学 无侧隙双滚子包络环面蜗杆传动机构
CN107816512A (zh) * 2017-12-06 2018-03-20 张德明 一种滚珠环面蜗杆副
CN113153980A (zh) * 2021-05-18 2021-07-23 成都理工大学 一种分体式蜗杆及其传动机构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0950832A1 (en) * 1998-04-15 1999-10-20 ALA s.r.l. Automazioni Lavorative per Aziende Transmission having non-parallel, non-coplanar axes using recirculation of balls with little clearance and friction
CN2357177Y (zh) * 1998-11-13 2000-01-05 大连理工大学 回转面包络滚动式点啮合环面蜗杆传动装置
KR20030082657A (ko) * 2002-04-17 2003-10-23 오동수 롤러(Roller)치(齒)가 달린 워엄 휠(worm wheel)로 구성된워엄기어(worm gear)
KR20030036425A (ko) * 2003-04-01 2003-05-09 주식회사 로보웰 워엄 전동장치
WO2006132239A1 (ja) * 2005-06-08 2006-12-14 Kamoseiko Kabushiki Kaisha ボール形減速装置
JP4857241B2 (ja) * 2006-10-31 2012-01-18 有限会社メーコー精機 機械装置及びその駆動体保持機構
CN101676582A (zh) * 2008-09-18 2010-03-24 周文海 钢珠滚动式蜗轮副及其减速机
WO2013141002A1 (ja) * 2012-03-23 2013-09-26 株式会社椿本チエイン ウォームギア装置
AU2015202820B1 (en) * 2015-03-09 2015-09-24 Nord-Lock Australia Pty Ltd A high torque transmission
KR101567500B1 (ko) * 2015-04-24 2015-11-11 (주)대동인덱스 감속 장치
TWI589801B (zh) * 2015-10-15 2017-07-01 Innoserv Fa Inc Wheel assembly positioning mechanism
CN205244327U (zh) * 2015-12-22 2016-05-18 海鹰企业集团有限责任公司 一种滚子蜗杆蜗轮传动箱
CN210461550U (zh) * 2019-05-08 2020-05-05 王来继 小型蜗轮蜗杆减速机
CN110131382B (zh) * 2019-06-11 2022-03-22 深圳市蓝蓝科技有限公司 无侧隙滚子包络环面蜗杆传动机构
CN210106521U (zh) * 2019-06-11 2020-02-21 深圳市蓝蓝科技有限公司 无侧隙滚子包络环面蜗杆传动机构
CN110259915B (zh) * 2019-06-14 2021-05-25 成都中良川工科技有限公司 一种可消除传动间隙的变速装置及其间隙消除方法
CN210770042U (zh) * 2019-06-17 2020-06-16 成都中良川工科技有限公司 一种由滚动体驱动的回转部件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2117520A1 (de) * 1971-04-10 1972-10-19 Ott Fa Gerhard Schraubgetriebe mit einem Schneckenrad
DE3432279A1 (de) * 1984-09-01 1986-03-13 Zahnradfertigung Ott GmbH u.Co KG, 7454 Bodelshausen Kontervorrichtung fuer ein schraubgetriebe
DE4010162A1 (de) * 1990-03-30 1991-10-02 Ott Gmbh & Co Kg Vorrichtung fuer ein getriebe mit schneckenrad und geteilter schnecke
CN101012864A (zh) * 2007-02-05 2007-08-08 龙岩理尚精密机械有限公司 数控机床高精度减速器
CN101290042A (zh) * 2008-04-14 2008-10-22 西华大学 无侧隙双滚子包络环面蜗杆传动机构
CN107816512A (zh) * 2017-12-06 2018-03-20 张德明 一种滚珠环面蜗杆副
CN113153980A (zh) * 2021-05-18 2021-07-23 成都理工大学 一种分体式蜗杆及其传动机构

Also Published As

Publication number Publication date
CN113153980A (zh) 2021-07-23
CN113153980B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
CN103994184B (zh) 封闭型摆线精密减速器
WO2022242685A1 (zh) 一种分体式蜗杆及其传动机构
CN106523599A (zh) 摆线针轮传动装置的修形方法及摆线针轮传动装置
JP5178675B2 (ja) リニアアクチュエータ
JP5005705B2 (ja) ローラー伝達およびギアリング機構
CN107327543B (zh) 一种摆线钢球行星传动机构及其机器人关节减速装置
CN113175499B (zh) 一种具有球形滚子的蜗轮及其传动机构
US10781900B2 (en) Planetary roller screw mechanism
CN203614711U (zh) 一种回转支撑装置及rv减速机
CN109139881A (zh) 针齿、减速器以及机器人
CN107956843A (zh) 一种带有自增力结构的行星式摩擦传动减速机构
CN214999142U (zh) 一种球滚子包络环面齿合蜗杆蜗轮传动装置
CN112211975A (zh) 一种自润滑滚珠丝杠副
JP2011153683A (ja) アンギュラ玉軸受
CN111868412B (zh) 行星齿轮箱以及相关的机器人关节和机器人
CN111637200A (zh) 一种斜齿轮行星传动机构
CN113153981B (zh) 一种具有无间隙蜗杆蜗轮传动装置
CN206988293U (zh) 一种全浮动轴承
CN205639307U (zh) 一种轴套
CN206145083U (zh) 一种滚珠螺母
JP5970990B2 (ja) 遊星ロ−ラ型動力伝達装置
US11215272B2 (en) Transmission unit, in particular an axle drive or transfer case, having a transmission element mounted therein via at least one double-row angular contact ball bearing
CN110374988B (zh) 一种负荷能力强的单摆线减速轴承
CN207195578U (zh) 一种行星轮减速机构
CN207333646U (zh) 一种弹性滚针结构及无间隙活齿减速机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804005

Country of ref document: EP

Kind code of ref document: A1