WO2022239376A1 - 研磨条件決定用相関関係式の作成方法 - Google Patents

研磨条件決定用相関関係式の作成方法 Download PDF

Info

Publication number
WO2022239376A1
WO2022239376A1 PCT/JP2022/008115 JP2022008115W WO2022239376A1 WO 2022239376 A1 WO2022239376 A1 WO 2022239376A1 JP 2022008115 W JP2022008115 W JP 2022008115W WO 2022239376 A1 WO2022239376 A1 WO 2022239376A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
semiconductor wafer
plane
conditions
creating
Prior art date
Application number
PCT/JP2022/008115
Other languages
English (en)
French (fr)
Inventor
裕生 中野
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020237036413A priority Critical patent/KR20230161481A/ko
Priority to CN202280034586.6A priority patent/CN117296134A/zh
Priority to DE112022002509.3T priority patent/DE112022002509T5/de
Publication of WO2022239376A1 publication Critical patent/WO2022239376A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/14Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation taking regard of the temperature during grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing

Definitions

  • the present invention relates to a method of creating a correlation equation for determining polishing conditions, a method of determining polishing conditions, and a method of manufacturing a semiconductor wafer.
  • the manufacturing process of semiconductor wafers includes a polishing process (see, for example, Japanese Patent Application Laid-Open No. 2018-186118 (the full description of which is specifically incorporated herein as disclosure)).
  • the semiconductor wafer is polished under predetermined polishing conditions.
  • the polishing conditions to be determined usually include a plurality of items. In the past, many trials and errors had to be repeated to determine these items.
  • an object of one aspect of the present invention is to provide a new means that makes it possible to determine polishing conditions for semiconductor wafers without much trial and error.
  • One aspect of the present invention is Polishing a semiconductor wafer under a plurality of polishing conditions including a plurality of polishing parameters, and acquiring by actual measurement information on the in-plane polishing amount distribution of the semiconductor wafer in polishing under the plurality of polishing conditions;
  • a semiconductor wafer is polished under polishing conditions including a plurality of polishing parameters, and in-plane temperature distribution information during polishing of the semiconductor wafer in polishing under the plurality of polishing conditions is acquired by actual measurement, or the plurality of polishing parameters is included.
  • the above correlation formula 3 is a correlation formula used for determining polishing conditions in actual polishing of a semiconductor wafer.
  • a method for creating a correlation equation for determining polishing conditions hereinafter also referred to as a "method for creating a relational expression"
  • the correlational expression (correlational expression 3) used for determining the polishing conditions in the actual polishing of the semiconductor wafer can be created by performing the various steps described above. . That is, the above correlation equation 3 can be determined without much trial and error. Furthermore, the following conjecture does not limit the present invention, but the correlation formula 3 determined in this way is based on the information obtained by the actual measurement and / or the information created by the heat transfer analysis as described above, The inventor of the present invention speculates that the correlation formula determined in consideration of the degree of influence of various polishing parameters can be expected to contribute to the determination of polishing conditions under which a semiconductor wafer can be polished with high precision.
  • the temperature distribution parameter can be the difference (Tmax ⁇ Tmin) between the maximum in-plane temperature Tmax and the minimum in-plane temperature Tmin.
  • the in-plane polishing amount distribution parameter can be the difference (Qmax-Qmin) between the maximum in-plane polishing amount Qmax and the minimum in-plane polishing amount Qmin.
  • the polishing parameters can be selected from the group consisting of polishing time ⁇ , polishing slurry flow rate f, polishing pressure P, and surface plate/polishing head rotation speed ⁇ .
  • One aspect of the present invention is creating a correlation equation for determining polishing conditions by the method of creating a relational expression; setting a target value or target range for the in-plane polishing amount distribution of the semiconductor wafer to be polished; and determining polishing conditions that are expected to achieve the set target value or target range by the above correlation formula;
  • a method for determining polishing conditions including Regarding.
  • One aspect of the present invention is Determining polishing conditions by the method for determining polishing conditions; and Polishing a semiconductor wafer under the determined polishing conditions; A method of manufacturing a semiconductor wafer, comprising Regarding.
  • the semiconductor wafer can be a silicon wafer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor wafer polishing apparatus (single-sided polishing apparatus);
  • FIG. FIG. 2 is a schematic cross-sectional view of a polishing head 10 of the polishing apparatus shown in FIG. 1;
  • the correlation formula 3 finally created by the above relational formula creation method is a correlation formula used to determine the polishing conditions in the actual polishing of the semiconductor wafer.
  • actual polishing means polishing performed in the process of manufacturing semiconductor wafers to be shipped as products.
  • semiconductor wafers manufactured through such actual polishing are not limited to semiconductor wafers that are actually shipped as products and distributed in the market. It may also be a semiconductor wafer to be processed. Polishing methods for polishing the surface of a semiconductor wafer include single-sided polishing for polishing one side of the wafer and double-sided polishing for polishing both sides of the wafer.
  • the polishing head and the surface plate are rotated while pressing the surface to be polished of the wafer held by the polishing head against the polishing pad attached to the surface plate, thereby polishing the surface to be polished of the wafer. and the polishing pad are brought into sliding contact with each other.
  • a polishing agent between the surface to be polished and the polishing pad, which are in sliding contact with each other one surface of the wafer (the surface to be polished) can be polished.
  • the correlation formula created by the above relational formula creation method can be used to determine the polishing conditions for single-side polishing as the actual polishing of the semiconductor wafer.
  • FIG. 1 is a schematic cross-sectional view showing an example of a semiconductor wafer polishing apparatus (single-sided polishing apparatus).
  • the semiconductor wafer polishing apparatus 30 shown in FIG. 1 rotates the polishing head 10 and the surface plate 22 by rotating mechanisms (not shown), and polishes the surface of the semiconductor wafer (also simply referred to as "wafer") W to be polished. and the polishing pad 21 stuck on the surface plate 22 are brought into sliding contact.
  • a polishing agent 41 discharged from the polishing agent supply mechanism 40 is supplied between the surface to be polished of the wafer W and the polishing pad 21, and the surface to be polished of the wafer W is polished.
  • the polishing agent a polishing slurry commonly used in CMP (chemical mechanical polishing) can be used.
  • FIG. 2 is a schematic cross-sectional view of the polishing head 10 of the polishing apparatus shown in FIG.
  • a rubber chuck method is used as a method of pressing the wafer held by the polishing head against the polishing pad.
  • the polishing head 10 shown in FIG. 2 is a rubber chuck type polishing head.
  • air or the like is introduced into the space behind the membrane to inflate the membrane so that the wafer can be pressed via the back pad positioned below the membrane.
  • the polishing head 10 has a head body 11 and a rigid ring 12 connected thereto.
  • a lower surface of the rigid ring 12 is covered with a membrane 14 .
  • a back pad 15 is attached to the lower surface of the membrane 14 .
  • a space 17 is formed behind the membrane 14 by closing the opening of the rigid ring 12 with the intermediate plate 16 and the membrane 14 .
  • a gas such as air is introduced into the space 17 from the gas introduction path 18 to inflate the membrane 14 , thereby pressing the wafer W held at the opening of the retainer ring 13 via the back pad 15 . can.
  • the pressed wafer W is pressed against the polishing pad 21 bonded on the surface plate 22 .
  • the surface to be polished w1 of the wafer W and the polishing pad 21 are brought into sliding contact by rotating the polishing head 10 and the platen 22 by rotating mechanisms (not shown).
  • the polishing target surface w1 of the wafer W can be polished.
  • An object to be polished with polishing conditions determined using the correlation formula determined by the above relational formula determination method is a semiconductor wafer, for example, a silicon wafer (preferably a single crystal silicon wafer).
  • a silicon wafer can be produced by the following method. A silicon single crystal ingot is pulled up by the Czochralski method, and the produced ingot is cut to obtain a block. The resulting block is sliced into wafers. A silicon wafer can be produced by subjecting this wafer to various processes. Examples of the processing include chamfering, flattening (lapping, grinding, polishing), and the like. Polishing in which polishing conditions are determined using the correlation formula determined by the above-described relational formula determination method includes, for example, finish polishing, which is the final step of wafer processing described above.
  • the semiconductor wafer is polished under a plurality of polishing conditions including a plurality of polishing parameters, and the in-plane polishing amount distribution information of the semiconductor wafer in the polishing under the plurality of polishing conditions is obtained by actual measurement. That is, the wafer is actually polished, and the amount of polishing at each in-plane portion of the polished wafer surface is actually measured.
  • Wafers to be polished under various polishing conditions can be, for example, wafers cut from the same ingot and processed to have the same wafer diameter and the same thickness. However, it is not limited to this.
  • the polishing parameters can be various numerical values that make up the polishing conditions.
  • Examples of the plurality of polishing parameters include polishing time ⁇ , polishing slurry flow rate f, polishing pressure P, and surface plate/polishing head rotation speed ⁇ .
  • Units for various polishing parameters are not particularly limited, and may be units that are commonly used for these parameters. Assuming that the rotating speed of the surface plate is ⁇ 1 and the rotating speed of the polishing head is ⁇ 2, in a normal semiconductor wafer polishing apparatus, ⁇ 1 and ⁇ 2 can be set independently, and can be set to the same value or different values. can do.
  • silicon wafers were polished under various polishing conditions shown in Table 1 using the semiconductor wafer polishing apparatus shown in FIG.
  • the wafers polished under various polishing conditions are wafers cut from the same silicon single crystal ingot and processed to have the same wafer diameter (300 mm in diameter) and the same thickness (775 ⁇ m in thickness).
  • the wafer thickness was measured at multiple points in the plane of the polished surface of each wafer.
  • the wafer thickness can be measured by any known non-contact or contact thickness measurement method. By subtracting the thickness at each point after polishing from the thickness of the wafer before polishing, the polishing amount was calculated for the plurality of points.
  • a design value at the time of wafer manufacturing may be used, or a measured value at an arbitrary point or an arithmetic average of measured values at arbitrary plural points on the wafer before polishing may be used.
  • the maximum value of the polishing amount calculated for each wafer polished under each polishing condition be the maximum in-plane polishing amount Qmax
  • the minimum value be the minimum in-plane polishing amount Qmin
  • the difference between them Qmax-Qmin
  • Table 1 shows ⁇ Q obtained as ⁇ Q obtained in this way is an example of in-plane polishing amount distribution information.
  • the units of various polishing parameters are arbitrary units.
  • the polishing pressure P is the surface pressure applied to the surface of the wafer to be polished, and is a calculated value obtained by pressure calculation (finite element method) using ABAQUS manufactured by Dassault Systèmes. Note that ⁇ T in Table 1 will be described later.
  • ⁇ Acquisition or creation of in-plane temperature distribution information during polishing> a semiconductor wafer is polished under polishing conditions including a plurality of polishing parameters, and in-plane temperature distribution information during polishing of the semiconductor wafer in polishing under these plurality of polishing conditions is obtained by actual measurement, or 2.
  • a semiconductor wafer is polished under polishing conditions including a plurality of polishing parameters, and in-plane temperature distribution information during polishing of the semiconductor wafer in polishing under these polishing conditions is acquired by actual measurement. That is, the wafer is actually polished, and information about the temperature of each in-plane portion of the wafer surface during polishing is acquired by actual measurement.
  • the temperature actually measured here can be the temperature of the position near the surface of the wafer being polished or the temperature itself of the surface of the wafer being polished. Normally, it is not easy to measure the surface temperature itself of the wafer surface being polished in sliding contact with the polishing pad. Therefore, the temperature actually measured here is preferably the temperature at a position near the surface to be polished of the wafer being polished.
  • the semiconductor wafer polishing apparatus shown in FIG. can be employed as in-plane temperature distribution information during wafer polishing.
  • thermocouple wire with a wireless device is inserted at multiple points between the membrane and the back pad before polishing is started.
  • temperature can be measured.
  • the temperatures at the above multiple locations are continuously measured.
  • ⁇ T thus obtained is an example of in-plane temperature distribution information during polishing.
  • the above example is an example in which in-plane temperature distribution information during polishing is acquired during polishing for acquiring in-plane polishing amount distribution information.
  • the above relational expression determination method is not limited to this example.
  • polishing may be performed separately from the polishing for obtaining the in-plane polishing amount distribution information, and the temperature may be measured during the polishing for obtaining the in-plane temperature distribution information during polishing.
  • the plurality of polishing conditions for performing polishing for obtaining the in-plane polishing amount distribution information may be the same as the plurality of polishing conditions for obtaining the in-plane temperature distribution information during polishing. More than one or all of them may be different polishing conditions.
  • the in-plane temperature distribution information during polishing of a semiconductor wafer in polishing under polishing conditions including a plurality of polishing parameters can be created by heat transfer analysis.
  • a heat transfer analysis model a model that solves a heat conduction equation using general-purpose finite element method (FEM) analysis software Abaqus can be adopted.
  • FEM finite element method
  • the dynamic friction coefficient ⁇ used for frictional heat generation (heat flux boundary condition that expresses frictional heat flux) and slurry heat removal (heat flux boundary condition that expresses heat flux for slurry cooling and uses the Newton cooling law)
  • the heat transfer coefficient h was taken as an experimental parameter.
  • These are functions of the distance r from the wafer center and the polishing parameters (polishing time ⁇ , polishing pressure P, platen/polishing head rotation speed ⁇ , slurry flow rate f).
  • the units of values of the polishing parameters are arbitrary units. The functions thus determined by the above model are shown below.
  • the in-plane temperature distribution information during polishing of a semiconductor wafer in polishing under polishing conditions including a plurality of polishing parameters can also be created by heat transfer analysis without the need for actual measurement.
  • ⁇ T which is the difference (Tmax ⁇ Tmin) between the maximum in-plane temperature Tmax and the minimum in-plane temperature Tmin, can be calculated from the prediction result.
  • ⁇ T thus obtained is an example of in-plane temperature distribution information during polishing.
  • ⁇ T shown in Table 1 is a value obtained by calculating ⁇ T when polishing a silicon wafer under various polishing conditions shown in Table 1 using the semiconductor wafer polishing apparatus shown in FIG. 1 to obtain ⁇ Q using the above heat transfer analysis model. .
  • the above example is an example in which a heat transfer analysis model is applied to the polishing conditions for acquiring the in-plane polishing amount distribution information.
  • the above relational expression determination method is not limited to this example.
  • the plurality of polishing conditions for performing polishing for acquiring in-plane polishing amount distribution information may be the same as the plurality of polishing conditions for creating in-plane temperature distribution information during polishing by heat transfer analysis, or , one or more or all of which may be different polishing conditions.
  • Correlation formula 1 is a correlation formula between the in-plane temperature distribution parameter of the semiconductor wafer and a plurality of polishing parameters, and can be created based on the in-plane temperature distribution information during polishing obtained or created above.
  • ⁇ T is the difference between the maximum in-plane temperature Tmax and the minimum in-plane temperature Tmin, and can be obtained as described above.
  • Equation 1 is the polishing time
  • f the polishing slurry flow rate
  • P the polishing pressure
  • the rotation speed of the surface plate/polishing head
  • X 1 , X 2 , X 3 , X 4 and X 5 are constants determined by correlation analysis. , which is a positive or negative value.
  • Correlation formula 2 is a correlation formula between the in-plane polishing amount distribution parameter of the semiconductor wafer and a plurality of polishing parameters, and can be created based on the in-plane polishing amount distribution information obtained above.
  • ⁇ Q is the difference between the maximum in-plane polishing amount Qmax and the minimum in-plane polishing amount Qmin, and can be obtained as described above.
  • Correlation formula 3 is a correlation formula used for determining polishing conditions in actual polishing of a semiconductor wafer, and can be created based on correlation formulas 1 and 2.
  • the correlation formula 1 is the above formula 1
  • the correlation formula 2 is the above formula 2
  • X 1 to X 5 , Y 1 to Y 5 , ⁇ , f, P, and ⁇ have the same meanings as above.
  • Correlation Equation 3 can be Equation 3 above.
  • Equation 3 can be derived from Equations (1) and (2) above as Equation (3) below.
  • Formula (3): ⁇ Q ( ⁇ 0.59+0.16 ⁇ +0.49P+0.53 ⁇ 0.006f) ⁇ (146.46 ⁇ 74.82 ⁇ 86.82P ⁇ 19.62 ⁇ 9.76f)
  • One aspect of the present invention is creating a correlation equation for determining polishing conditions by the method of creating a relational expression; setting a target value or target range for the in-plane polishing amount distribution of the semiconductor wafer to be polished; and determining polishing conditions that are expected to achieve the set target value or target range by the above correlation formula; A method for determining polishing conditions, including Regarding.
  • the creation of the correlation formula for determining the polishing conditions in the method for determining the polishing conditions is as described above.
  • the above-described correlation formula 3 is the correlation formula for determining polishing conditions.
  • Correlation formula 3 can be a correlation formula including ⁇ Q, and a specific example thereof is formula 3 described above.
  • the target value or target range of ⁇ Q can be set as the target value or target range of the in-plane polishing amount distribution of the semiconductor wafer to be polished.
  • Such a target value or target range can be arbitrarily set in consideration of the flatness desired for the product wafer.
  • the polishing conditions (specifically, various polishing specific values of parameters) can be determined as polishing conditions that are expected to achieve a set target value or target range.
  • Values that are slightly different from the above values, where A is the target value or a value within the target range, can be, for example, a value of "A x 0.90 to 1.10", and "A x 0.95 to It can also be a value of 1.05".
  • one or more of the following items can be considered as constraints when determining the polishing conditions.
  • Constraint A In order to prevent an increase in slurry cost, the slurry flow rate f is set to a predetermined value or less. For example, in the embodiment shown in Table 1, it is 1.00 or less. Also, in order to supply sufficient abrasive grains for polishing, the slurry flow rate f is set to a predetermined value or more. For example, in the embodiment shown in Table 1, it is 0.50 or more.
  • Constraint B The polishing time ⁇ is set to a predetermined value or less in order to prevent an increase in throughput. For example, in the embodiment shown in Table 1, it is 1.00 or less.
  • Constraint C In order to prevent damage to the members of the polishing head, the polishing pressure P is set to a predetermined value or less. For example, in the embodiment shown in Table 1, it is 2.00 or less.
  • Constraint D In order to prevent condensation of slurry components, deterioration of the polishing pad, and thermal cracking of the platen, the maximum temperature of the surface to be polished of the wafer being polished or in the vicinity thereof (hereinafter simply referred to as described as "maximum value of temperature”) is set to a predetermined value T or less.
  • the details of the temperature at or near the surface to be polished of the wafer during polishing are as described above.
  • Formula (4): Tmax 17.04+0.76 ⁇ +7.31P+7.88 ⁇ 0.52f
  • Constraint E In order to prevent the wafer from falling off during polishing, the surface plate/polishing head rotation speed ⁇ is set to a predetermined value or less. For example, in the embodiment shown in Table 1, it is 1.50 or less.
  • polishing conditions can be determined, for example, as follows. (i) After setting the target value of ⁇ Q, the slurry flow rate f is determined within a range that satisfies the constraint condition A. (ii) Next, the surface plate/polishing head rotation speed ⁇ is determined within a range that satisfies the constraint condition E.
  • the polishing time ⁇ is determined within a range that satisfies the constraint B.
  • the polishing pressure P is determined within a range that satisfies the constraint condition C as the target value or a value close to the target value set by ⁇ Q.
  • the polishing pressure P is suitable as the last determined value because it is relatively easy to control.
  • the polishing conditions for the semiconductor wafer can be determined according to the correlation formula 3 without much trial and error, as described above.
  • One aspect of the present invention is Determining polishing conditions by the method for determining polishing conditions; and Polishing a semiconductor wafer under the determined polishing conditions; A method of manufacturing a semiconductor wafer, comprising Regarding.
  • polishing under the determined polishing conditions can be performed, for example, in a single-sided polishing apparatus.
  • the above-described semiconductor wafer polishing apparatus shown in FIG. 1 is an example of a single-sided polishing apparatus.
  • the polishing head 10 and the platen 22 are each rotated by a rotating mechanism (not shown), the polishing target surface of the wafer W and the platen 22 are bonded together. It is brought into sliding contact with the pad 21 .
  • a polishing agent 41 discharged from the polishing agent supply mechanism 40 is supplied between the surface to be polished of the wafer W and the polishing pad 21, and the surface to be polished of the wafer W is polished.
  • polishing slurry that is normally used for CMP (Chemical Mechanical Polishing) can be used.
  • CMP Chemical Mechanical Polishing
  • the method for manufacturing the semiconductor wafer known techniques relating to the method for manufacturing a semiconductor wafer having a polished surface can be applied, except that the polishing conditions are determined as described above.
  • the wafer to be polished can be, for example, a silicon wafer (preferably a monocrystalline silicon wafer).
  • silicon wafers can be made by the methods described above. Polishing performed under the polishing conditions determined as described above can be, for example, finish polishing, which is the final step of wafer processing.
  • One aspect of the present invention is useful in the technical field of semiconductor wafers such as silicon wafers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

複数の研磨パラメータを含む複数の研磨条件によって半導体ウェーハの研磨を行い、これら複数の研磨条件での研磨における半導体ウェーハの面内研磨量分布情報を実測によって取得すること、複数の研磨パラメータを含む研磨条件によって半導体ウェーハの研磨を行い、これら複数の研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を実測によって取得するか、または、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を伝熱解析によって作成すること、上記研磨時面内温度分布情報に基づき半導体ウェーハの面内温度分布パラメータと複数の研磨パラメータとの相関関係式1を作成すること、上記面内研磨量分布情報に基づき半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式2を作成すること、上記相関関係式1と上記相関関係式2とに基づき半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式3を作成することを含み、上記相関関係式3は半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式である研磨条件決定用相関関係式の作成方法。

Description

研磨条件決定用相関関係式の作成方法、研磨条件の決定方法および半導体ウェーハの製造方法 関連出願の相互参照
 本出願は、2021年5月10日出願の日本特願2021-079616号の優先権を主張し、その全記載は、ここに特に開示として援用される。
 本発明は、研磨条件決定用相関関係式の作成方法、研磨条件の決定方法および半導体ウェーハの製造方法に関する。
 通常、半導体ウェーハの製造工程には研磨工程が含まれる(例えば特開2018-186118号公報(その全記載は、ここに特に開示として援用される)参照)。
 半導体ウェーハの研磨工程では、予め決定した研磨条件下で半導体ウェーハが研磨される。しかし、通常、決定すべき研磨条件には複数の項目が含まれる。従来、それら項目の決定には、多くの試行錯誤を繰り返さざるを得なかった。
 かかる状況下、本発明の一態様は、多くの試行錯誤を経ることなく半導体ウェーハの研磨条件を決定することを可能にする新たな手段を提供することを目的とする。
 本発明の一態様は、
 複数の研磨パラメータを含む複数の研磨条件によって半導体ウェーハの研磨を行い、かかる複数の研磨条件での研磨における半導体ウェーハの面内研磨量分布情報を実測によって取得すること、
 複数の研磨パラメータを含む研磨条件によって半導体ウェーハの研磨を行い、かかる複数の研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を実測によって取得するか、または、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を伝熱解析によって作成すること、
 上記研磨時面内温度分布情報に基づき、半導体ウェーハの面内温度分布パラメータと複数の研磨パラメータとの相関関係式1を作成すること、
 上記面内研磨量分布情報に基づき、半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式2を作成すること、
 上記相関関係式1と上記相関関係式2とに基づき、半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式3を作成すること、
 を含み、
 上記相関関係式3は、半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式である、
 研磨条件決定用相関関係式の作成方法(以下、「関係式作成方法」とも記載する。)、
 に関する。
 上記関係式作成方法によれば、半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式(相関関係式3)を、上記の各種工程を実施することによって作成することができる。即ち、上記相関関係式3を、多くの試行錯誤を経ることなく決定することができる。更に、以下の推察は本発明を限定するものではないが、こうして決定される相関関係式3は、上記のように実測により取得された情報および/または伝熱解析により作成された情報に基づき、各種研磨パラメータの影響度合いを考慮して決定された相関関係式であるため、半導体ウェーハを精度よく研磨可能な研磨条件の決定に寄与することが期待できると本発明者は推察している。
 一形態では、上記温度分布パラメータは、面内最高温度Tmaxと面内最低温度Tminとの差(Tmax-Tmin)であることができる。
 一形態では、上記面内研磨量分布パラメータは、面内研磨量最大値Qmaxと面内研磨量最小値Qminとの差(Qmax-Qmin)であることができる。
 一形態では、上記研磨パラメータは、研磨時間τ、研磨スラリー流量f、研磨圧力Pおよび定盤・研磨ヘッド回転数ωからなる群から選択されることができる。
 一形態では、
 上記相関関係式1は、
 ΔT=X+Xτ+XP+Xω+X
 であることができる。ΔTは面内最高温度Tmaxと面内最低温度Tminとの差、τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、X、X、X、XおよびXは相関分析によって決定された定数である。
 一形態では、
 上記相関関係式2は、
 ΔQ/ΔT=Y+Yτ+YP+Yω+Y
 であることができる。ΔQは面内研磨量最大値Qmaxと面内研磨量最小値Qminとの差、τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、Y、Y、Y、YおよびYは相関分析によって決定された定数である。
 一形態では、
 上記相関関係式3は、
 ΔQ=(X+Xτ+XP+Xω+Xf)×(Y+Yτ+YP+Yω+Yf)
 であることができる。
 本発明の一態様は、
 上記関係式作成方法によって研磨条件決定用相関関係式を作成すること、
 研磨対象半導体ウェーハの面内研磨量分布の目標値または目標範囲を設定すること、および
 設定された目標値または目標範囲を達成可能と予測される研磨条件を上記相関関係式によって決定すること、
 を含む、研磨条件の決定方法、
 に関する。
 本発明の一態様は、
 上記研磨条件の決定方法によって研磨条件を決定すること、および
 決定された研磨条件によって半導体ウェーハの研磨を行うこと、
 を含む、半導体ウェーハの製造方法、
 に関する。
 一形態では、上記半導体ウェーハはシリコンウェーハであることができる。
 本発明の一態様によれば、多くの試行錯誤を経ることなく半導体ウェーハの研磨条件を決定することが可能になる。
半導体ウェーハ研磨装置(片面研磨装置)の一例を示す概略断面図である。 図1に示す研磨装置の研磨ヘッド10の概略断面図である。 伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフ(r=0mm)である。 伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフ(r=50mm)である。 伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフ(r=100mm)である。 伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフ(r=150mm)である。 伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフ(r=160mm)である。
[関係式作成方法]
 以下、上記関係式作成方法について、更に詳細に説明する。
 上記関係式作成方法によって最終的に作成される相関関係式3は、半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式である。本発明および本明細書において「実研磨」とは、製品として出荷するための半導体ウェーハを製造する工程において行われる研磨を意味するものとする。ただし、かかる実研磨を経て製造された半導体ウェーハは、実際に製品として出荷されて市場に流通する半導体ウェーハに限定されず、何らかの理由により不良品と判定されて製品として出荷されるウェーハ群から排除される半導体ウェーハである場合もある。半導体ウェーハの表面を研磨する研磨方式としては、ウェーハの片面を研磨する片面研磨と、ウェーハの両面を研磨する両面研磨とがある。片面研磨装置では、通常、研磨ヘッドに保持されたウェーハの研磨対象表面を、定盤に貼り付けられた研磨パッドに押し付けながら、研磨ヘッドと定盤とをそれぞれ回転させて、ウェーハの研磨対象表面と研磨パッドとを摺接させる。こうして摺接する研磨対象表面と研磨パッドとの間に研磨剤を供給することにより、ウェーハの一方の表面(研磨対象表面)を研磨することができる。上記関係式作成方法によって作成される相関関係式は、半導体ウェーハの実研磨として片面研磨を行うための研磨条件を決定するために使用することができる。
<半導体ウェーハ研磨装置の一例>
 図1は、半導体ウェーハ研磨装置(片面研磨装置)の一例を示す概略断面図である。図1に示す半導体ウェーハ研磨装置30は、研磨ヘッド10および定盤22を、それぞれ回転機構(図示せず)により回転させながら、半導体ウェーハ(単に「ウェーハ」とも記載する。)Wの研磨対象表面と定盤22上に貼り合わされた研磨パッド21とを摺接させる。研磨剤供給機構40から排出される研磨剤41が、ウェーハWの研磨対象表面と研磨パッド21との間に供給され、ウェーハWの研磨対象表面が研磨される。研磨剤としては、CMP(chemical Mechanical Polishing)に通常使用される研磨スラリーを用いることができる。
 図2は、図1に示す研磨装置の研磨ヘッド10の概略断面図である。片面研磨装置において、研磨ヘッドに保持されたウェーハを研磨パッドに押し付ける方式としては、ラバーチャック方式が挙げられる。図2に示す研磨ヘッド10は、ラバーチャック方式の研磨ヘッドである。ラバーチャック方式の研磨ヘッドでは、メンブレンの背面の空間に空気等を導入してメンブレンを膨らませることによって、メンブレンの下方に位置するバックパッドを介してウェーハを押圧することができる。
 図2中、研磨ヘッド10は、ヘッド本体11に、剛性リング12が接続されている。剛性リング12の下面は、メンブレン14で覆われている。更に、メンブレン14の下面にはバックパッド15が貼り合わされている。メンブレン14の背面側には、剛性リング12の開口部が中板16とメンブレン14によって閉塞されることにより、空間部17が形成されている。この空間部17に気体導入路18から空気等の気体を導入してメンブレン14を膨らませることにより、バックパッド15を介して、リテーナリング13の開口部に保持されたウェーハWを押圧することができる。押圧されたウェーハWは、定盤22上に貼り合わされた研磨パッド21に押し付けられる。研磨ヘッド10および定盤22をそれぞれ回転機構(図示せず)により回転させることによって、ウェーハWの研磨対象表面w1と研磨パッド21とを摺接させる。こうして、ウェーハWの研磨対象表面w1を研磨することができる。
<研磨対象>
 上記関係式決定方法により決定された相関関係式を使用して研磨条件が決定されて研磨される対象は、半導体ウェーハであり、例えばシリコンウェーハ(好ましくは単結晶シリコンウェーハ)であることができる。例えば、シリコンウェーハは、以下の方法により作製できる。チョクラルスキー法によりシリコン単結晶インゴットを引き上げ、作製されたインゴットをカットしてブロックを得る。得られたブロックをスライスしてウェーハとする。このウェーハに各種加工を施すことにより、シリコンウェーハを作製することができる。上記加工としては、面取り加工、平坦化加工(ラップ、研削、研磨)等を挙げることができる。上記関係式決定方法により決定された相関関係式を使用して研磨条件が決定される研磨としては、例えば、上記のウェーハ加工の最終工程である仕上げ研磨を挙げることができる。
 次に、上記関係式作成方法において行われる各種工程について説明する。
<面内研磨量分布情報の取得>
 上記関係式作成方法では、複数の研磨パラメータを含む複数の研磨条件によって半導体ウェーハの研磨を行い、これら複数の研磨条件での研磨における半導体ウェーハの面内研磨量分布情報を実測によって取得する。即ち、ウェーハの研磨を実際に行い、研磨されたウェーハ表面の面内各部における研磨量を実測する。各種研磨条件で研磨されるウェーハは、例えば、同じインゴットから切り出されたウェーハであって、かつ同じウェーハ径および同じ厚みに加工されたウェーハであることができる。ただし、これに限定されるものではない。研磨パラメータは、研磨条件を構成する各種数値であることができる。上記の複数の研磨パラメータとしては、例えば、研磨時間τ、研磨スラリー流量f、研磨圧力Pおよび定盤・研磨ヘッド回転数ωを挙げることができる。各種研磨パラメータの単位は、特に限定されず、それらパラメータについて通常採用され得る単位であることができる。定盤の回転数をω1とし、研磨ヘッドの回転数をω2とすると、通常の半導体ウェーハ研磨装置において、ω1とω2は、それぞれ独立に設定可能であって、同じ値にも異なる値にも設定することができる。本発明および本明細書において、「定盤・研磨ヘッド回転数ω」とは、ω1=ω2の場合の定盤の回転数かつ研磨ヘッドの回転数をいうものとする。
 一例として、図1に示す半導体ウェーハ研磨装置によって、表1に示す各種研磨条件によってシリコンウェーハを研磨した。各種研磨条件で研磨されたウェーハは、同じシリコン単結晶インゴットから切り出されたウェーハであって、かつ同じウェーハ径(直径300mm)および同じ厚み(厚み775μm)に加工されたウェーハである。研磨後、各ウェーハの研磨された表面の面内の複数箇所においてウェーハ厚み(研磨後厚み)を測定した。ウェーハ厚みは、非接触式または接触式の公知の厚み測定方法によって測定することができる。研磨前のウェーハ厚みから研磨後の各箇所における厚みをそれぞれ差し引いて、上記複数箇所について研磨量を算出した。研磨前のウェーハ厚みとしては、ウェーハ製造時の設計値を用いてもよく、研磨前のウェーハにおける任意の1箇所における測定値または任意の複数箇所における測定値の算術平均等を用いてもよい。各研磨条件によって研磨された各ウェーハについて算出された研磨量の中での最大値を面内研磨量最大値Qmax、最小値を面内研磨量最小値Qminとし、それらの差(Qmax-Qmin)として求められたΔQを表1に示す。こうして求められたΔQは、面内研磨量分布情報の一例である。表1中、各種研磨パラメータの単位は任意単位である。研磨圧力Pは、ウェーハの研磨対象表面に加わる面圧であり、ダッソー・システムズ社製ABAQUSを使用し、圧力計算(有限要素法)により求めた算出値である。なお、表1中のΔTについては後述する。
Figure JPOXMLDOC01-appb-T000001
<研磨時面内温度分布情報の取得または作成>
 上記関係式作成方法では、複数の研磨パラメータを含む研磨条件によって半導体ウェーハの研磨を行い、これら複数の研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を実測によって取得するか、または、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を伝熱解析によって作成する。
 一形態では、複数の研磨パラメータを含む研磨条件によって半導体ウェーハの研磨を行い、これら複数の研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を実測によって取得する。即ち、ウェーハの研磨を実際に行い、研磨時のウェーハ表面の面内各部の温度に関する情報を実測によって取得する。ここで実測する温度は、研磨されているウェーハの研磨対象表面の近傍の位置の温度または研磨されているウェーハの研磨対象表面の温度そのものであることができる。通常、研磨パッドと摺接して研磨されている最中のウェーハ表面の表面温度そのものを測定することは容易ではない。したがって、ここで実測される温度は、研磨されているウェーハの研磨対象表面の近傍の位置の温度であることが好ましい。例えば、図1に示す半導体ウェーハ研磨装置において、ウェーハ研磨中、研磨対象のウェーハの上方に位置する部材(例えばメンブレン14、バックパッド15等)の面内各部の温度を実測し、この実測結果を、ウェーハの研磨時面内温度分布情報として採用することができる。
 例えば、ΔQを求めるために図1に示す半導体ウェーハ研磨装置によって表1に示す各種研磨条件によってシリコンウェーハを研磨した際、研磨中のウェーハの研磨対象表面近傍の位置の温度の測定を行うことができる。例えば、研磨中のウェーハ表面近傍の温度を実測するために、研磨開始前、メンブレンとバックパッドとの間の複数箇所に無線機付き熱電対線を挟み込み、これら熱電対線によって研磨中の各箇所の温度を測定することができる。各研磨条件での研磨中、上記複数箇所の温度を連続的に測定し、測定結果の中の最大値を面内最高温度Tmaxとし、最小値を面内最低温度Tminとし、差(Tmax-Tmin)であるΔTを求めることができる。こうして求められるΔTは、研磨時面内温度分布情報の一例である。なお、上記の例は、面内研磨量分布情報を取得するための研磨中に研磨時面内温度分布情報の取得を行った例である。ただし、上記関係式決定方法は、かかる例に限定されない。例えば、面内研磨量分布情報を取得するための研磨とは別に研磨を行い、この研磨中に研磨時面内温度分布情報を取得するための温度の実測を行うこともできる。また、面内研磨量分布情報を取得するための研磨を行う複数の研磨条件は、研磨時面内温度分布情報を取得するための複数の研磨条件とすべて同じである場合もあり、または、1つ以上もしくはすべてが異なる研磨条件である場合もある。
 また、一形態では、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を伝熱解析によって作成することができる。
 例えば、伝熱解析モデルとして、汎用有限要素法(FEM)解析ソフトAbaqusにより熱伝導方程式を解くモデルを採用することができる。このような伝熱解析モデルを用いると、通常測定が容易ではない研磨中のウェーハ表面の温度を予測できる。
 上記モデルでは、摩擦発熱(摩擦熱流束を表現する熱流束境界条件)に用いる動摩擦係数μ、スラリー抜熱(スラリー冷却の熱流束を表現し、Newton冷却則を使用した熱流束境界条件)に用いる熱伝達率hを、実験パラメータとした。これらはウェーハ中心からの距離r、研磨パラメータ(研磨時間τ,研磨圧力P、定盤・研磨ヘッド回転数ω、スラリー流量f)の関数となる。ここでは、研磨パラメータの値の単位は、任意単位としている。こうして上記モデルにより決定された関数を以下に示す。
Figure JPOXMLDOC01-appb-M000002
 図3~図7は、伝熱解析モデルによる温度の計算値と、温度の実測値と、を対比したグラフである。詳しくは、図3~図7は、上記伝熱解析モデルから計算された各箇所における温度の予測値を、同じ研磨条件で実際に研磨を行って先に記載した方法で各箇所の温度を実測して得た実測値とを対比したグラフである。ウェーハ中心からの距離をrとすると、実測は、ウェーハ中心の直上の位置(r=0mm)、ウェーハ中心から半径方向に50mm外側の位置の直上の位置(r=50mm)、ウェーハ中心から半径方向に100mm外側の位置の直上の位置(r=100mm)、ウェーハ中心から半径方向に150mm外側の位置の直上の位置(r=150mm)、およびウェーハ中心から半径方向に160mm外側の位置の直上の位置(r=160mm)の5箇所で行った。図3~図7に示すグラフから、伝熱解析モデルによって、研磨中のウェーハの研磨対象表面の温度(詳しくはメンブレン温度、より詳しくはメンブレンとバックパッドとの間の温度)を実測値との差分0.5℃以下で予測可能であることが確認できる。したがって、上記関係式作成方法では、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を、実測を要することなく、伝熱解析によって作成することもできる。例えば、予測結果から、面内最高温度Tmaxと面内最低温度Tminとの差(Tmax-Tmin)であるΔTを算出することができる。こうして求められるΔTは、研磨時面内温度分布情報の一例である。表1に示すΔTは、ΔQを求めるために図1に示す半導体ウェーハ研磨装置によって表1に示す各種研磨条件によってシリコンウェーハを研磨する際のΔTを上記の伝熱解析モデルによって算出した値である。温度の予測は、ウェーハ中心からの距離r=0~148mmについて行い、予測値の中の最大値をTmaxとし、最小値をTminとして、ΔTを算出した。なお、上記の例は、面内研磨量分布情報を取得するための研磨条件について伝熱解析モデルを適用した例である。ただし、上記関係式決定方法は、かかる例に限定されない。面内研磨量分布情報を取得するための研磨を行う複数の研磨条件は、伝熱解析によって研磨時面内温度分布情報を作成するための複数の研磨条件とすべて同じである場合もあり、または、1つ以上もしくはすべてが異なる研磨条件である場合もある。
 表1に示す結果から、ΔTと研磨条件との間およびΔQと研磨条件との間には、高い相関があるということができる。
<相関関係式1の作成>
 相関関係式1は、半導体ウェーハの面内温度分布パラメータと複数の研磨パラメータとの相関関係式であって、上記で取得または作成された研磨時面内温度分布情報に基づいて作成することができる。例えば、相関関係式1は、「式1:ΔT=X+Xτ+XP+Xω+Xf」であることができる。ここで、ΔTは、面内最高温度Tmaxと面内最低温度Tminとの差であり、先に記載したように求めることができる。τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、X、X、X、XおよびXは相関分析によって決定された定数であり、正または負の値である。相関分析の手法は公知である。
 一例として、表1に示した実施形態では、式1は、以下の式(1)として求められる(R=0.89)。
 式(1):
 ΔT=max(T(r,t=τ,P,ω,f))-min(T(r,t=τ,P,ω,f))
   =-0.59+0.16τ+0.49P+0.53ω-0.006f
<相関関係式2の作成>
 相関関係式2は、半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式であって、上記で取得された面内研磨量分布情報に基づいて作成することができる。例えば、相関関係式2は、「式2:ΔQ/ΔT=Y+Yτ+YP+Yω+Yf」であることができる。ここで、ΔQは、面内研磨量最大値Qmaxと面内研磨量最小値Qminとの差であり、先に記載したように求めることができる。τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、Y、Y、Y、YおよびYは相関分析によって決定された定数であり、正または負の値である。一例として、表1に示した実施形態では、式2は、以下の式(2)として求められる(R=0.91)。
 式(2):
 ΔQ/ΔT=ΔQ(τ,P,ω,f)/ΔT(τ,P,ω,f)
      =146.46-74.82τ-86.82P-19.62ω-9.76f
<相関関係式3の作成>
 相関関係式3は、半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式であって、相関関係式1と相関関係式2とに基づいて作成することができる。例えば、相関関係式1が上記式1であり、相関関係式2が上記式2の場合、式1と式2から「式3:ΔQ=(X+Xτ+XP+Xω+Xf)×(Y+Yτ+YP+Yω+Yf)」を導出できる。式3中、X~X、Y~Y、τ、f、P、ωは上記と同義である。例えば、相関関係式3は、上記式3であることができる。一例として、表1に示した実施形態では、式3は、上記の式(1)および式(2)から、以下の式(3)として導出できる。
 式(3):
 ΔQ=(-0.59+0.16τ+0.49P+0.53ω-0.006f)×(146.46-74.82τ-86.82P-19.62ω-9.76f)
 相関関係式3に基づき研磨条件を決定する方法について、以下に説明する。
[研磨条件の決定方法]
 本発明の一態様は、
 上記関係式作成方法によって研磨条件決定用相関関係式を作成すること、
 研磨対象半導体ウェーハの面内研磨量分布の目標値または目標範囲を設定すること、および
 設定された目標値または目標範囲を達成可能と予測される研磨条件を上記相関関係式によって決定すること、
 を含む、研磨条件の決定方法、
 に関する。
 上記研磨条件の決定方法における研磨条件決定用相関関係式を作成については、先に記載した通りである。具体的には、先に記載した相関関係式3が、研磨条件決定用相関関係式である。
 相関関係式3は、ΔQを含む相関関係式であることができ、その具体例は先に記載した式3である。例えば、研磨対象半導体ウェーハの面内研磨量分布の目標値または目標範囲として、ΔQの目標値または目標範囲を設定することができる。かかる目標値または目標範囲は、製品ウェーハに望まれる平坦度等を考慮して任意に設定することができる。
 上記目標値または目標範囲が設定された後、目標値、目標範囲内の値、または上記の値から多少相違する値との間で、相関関係式3が成立する研磨条件(詳しくは、各種研磨パラメータの具体的な値)を、設定された目標値または目標範囲を達成可能と予測される研磨条件として決定することができる。上記の値から多少相違する値は、目標値または目標範囲内の値をAとして、例えば、「A×0.90~1.10」の値であることができ、「A×0.95~1.05」の値であることもできる。
 また、研磨条件の決定に際して、制約条件として、以下の事項の1つ以上を考慮することもできる。
 制約条件A:スラリーのコスト増加を防ぐため、スラリー流量fを所定値以下とする。例えば、表1に示す実施形態では1.00以下とする。また、研磨加工に十分な砥粒を供給するために、スラリー流量fを所定値以上とする。例えば、表1に示す実施形態では0.50以上とする。
 制約条件B:スループットの増加を防ぐために研磨時間τを所定値以下とする。例えば、表1に示す実施形態では1.00以下とする。
 制約条件C:研磨ヘッドの部材の破損を防ぐために、研磨圧力Pを所定値以下とする。例えば、表1に示す実施形態では2.00以下とする。
 制約条件D:スラリー成分の凝縮を防ぐため、研磨パッドの劣化を防ぐため、および定盤の熱割れを防ぐために、研磨中のウェーハの研磨対象表面またはその近傍の温度の最大値(以下、単に「温度の最大値」と記載する。)を所定値T以下とする。研磨中のウェーハの研磨対象表面またはその近傍の温度の詳細は、先に記載した通りである。所定値Tは、相関分析によって「式4:T=Z+Zτ+ZP+Zω+Zf」から求めることができる。τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、Z、Z、Z、ZおよびZは相関分析によって決定された定数であり、正または負の値である。例えば、表1に示す実施形態では、式4は、相関分析によって以下の式(4)として求められ(R=0.92)、所定値Tは、例えば50℃と算出できる。
 式(4):
 Tmax=17.04+0.76τ+7.31P+7.88ω-0.52f
 制約条件E:研磨中のウェーハの脱落を防ぐために、定盤・研磨ヘッド回転数ωを所定値以下とする。例えば、表1に示す実施形態では1.50以下とする。
 例えば、表1に示す実施形態において、上記制約条件A~Eの下、ΔQの目標値を50mm、100mm、150mmまたは200nmに設定し、制約条件Aのスラリー流量fを1.00に固定すると、式(3)から、式(3)が成立する研磨条件として、表2(表2-1~表2-4)に示す各種研磨条件を決定できる。
 研磨条件は、例えば、以下のように決定することができる。
 (i)ΔQの目標値を設定した後、制約条件Aを満たす範囲内でスラリー流量fを決定する。
 (ii)次いで、制約条件Eを満たす範囲内で定盤・研磨ヘッド回転数ωを決定する。
 (iii)その後、制約条件Bを満たす範囲内で研磨時間τを決定する。
 (iv)上記(i)~(iii)においてスラリー流量f、定盤・研磨ヘッド回転数ωおよび研磨時間τが決定された後、決定された各種値を式(3)に代入し、式(3)においてΔQが設定した目標値または目標値に近い値となる値として、制約条件Cを満たす範囲内で研磨圧力Pを決定する。式(3)を構成する各種変数(τ、P、ωおよびf)の中で、研磨圧力Pは、制御が比較的容易なため最後に決定される値として適している。
 表2中、制約条件の判定の欄に「OK」と記載されていることは、同表中の左隣の値が表1に示す実施形態について記載した上記制約条件を満たす範囲内であることを示す。なお、表2に示す研磨条件は例示であって、これら以外にも式(3)が成立する研磨条件は各種あり得る。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 上記研磨条件の決定方法によれば、例えば上記のように、半導体ウェーハの研磨条件を相関関係式3によって多くの試行錯誤を経ることなく決定することができる。
[半導体ウェーハの製造方法]
 本発明の一態様は、
 上記研磨条件の決定方法によって研磨条件を決定すること、および
 決定された研磨条件によって半導体ウェーハの研磨を行うこと、
 を含む、半導体ウェーハの製造方法、
 に関する。
 上記半導体ウェーハの製造方法における研磨条件の決定の詳細は、先に記載した通りである。決定された研磨条件による研磨は、例えば片面研磨装置において行うことができる。先に説明した図1に示されている半導体ウェーハの研磨装置は、片面研磨装置の一例である。例えば、図1に示す半導体ウェーハ研磨装置において、研磨ヘッド10および定盤22を、それぞれ回転機構(図示せず)により回転させながら、ウェーハWの研磨対象表面と定盤22上に貼り合わされた研磨パッド21とを摺接させる。研磨剤供給機構40から排出される研磨剤41が、ウェーハWの研磨対象表面と研磨パッド21との間に供給され、ウェーハWの研磨対象表面が研磨される。研磨剤としては、CMP(chemical Mechanical Polishing)に通常使用される研磨スラリーを用いることができる。上記半導体ウェーハの製造方法については、上記のように研磨条件が決定される点以外は、研磨面を有する半導体ウェーハの製造方法に関する公知技術を適用することができる。研磨対象のウェーハは、例えばシリコンウェーハ(好ましくは単結晶シリコンウェーハ)であることができる。例えば、シリコンウェーハは、先に記載した方法により作製できる。上記のように決定された研磨条件によって行われる研磨は、例えば、ウェーハ加工の最終工程である仕上げ研磨であることができる。
 本発明の一態様は、シリコンウェーハ等の半導体ウェーハの技術分野において有用である。

Claims (10)

  1. 複数の研磨パラメータを含む複数の研磨条件によって半導体ウェーハの研磨を行い、該複数の研磨条件での研磨における半導体ウェーハの面内研磨量分布情報を実測によって取得すること、
    複数の研磨パラメータを含む研磨条件によって半導体ウェーハの研磨を行い、該複数の研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を実測によって取得するか、または、複数の研磨パラメータを含む研磨条件での研磨における半導体ウェーハの研磨時面内温度分布情報を伝熱解析によって作成すること、
    前記研磨時面内温度分布情報に基づき、半導体ウェーハの面内温度分布パラメータと複数の研磨パラメータとの相関関係式1を作成すること、
    前記面内研磨量分布情報に基づき、半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式2を作成すること、
    前記相関関係式1と前記相関関係式2とに基づき、半導体ウェーハの面内研磨量分布パラメータと複数の研磨パラメータとの相関関係式3を作成すること、
    を含み、
    前記相関関係式3は、半導体ウェーハの実研磨における研磨条件を決定するために使用される相関関係式である、
    研磨条件決定用相関関係式の作成方法。
  2. 前記面内温度分布パラメータは、面内最高温度Tmaxと面内最低温度Tminとの差(Tmax-Tmin)である、請求項1に記載の作成方法。
  3. 前記面内研磨量分布パラメータは、面内研磨量最大値Qmaxと面内研磨量最小値Qminとの差(Qmax-Qmin)である、請求項1または2に記載の作成方法。
  4. 前記研磨パラメータは、研磨時間τ、研磨スラリー流量f、研磨圧力Pおよび定盤・研磨ヘッド回転数ωからなる群から選択される、請求項1~3のいずれか1項に記載の作成方法。
  5. 前記相関関係式1は、
    ΔT=X+Xτ+XP+Xω+X
    であり、
    ΔTは面内最高温度Tmaxと面内最低温度Tminとの差、τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、X、X、X、XおよびXは相関分析によって決定された定数である、請求項1~4のいずれか1項に記載の作成方法。
  6. 前記相関関係式2は、
    ΔQ/ΔT=Y+Yτ+YP+Yω+Y
    であり、
    ΔQは面内研磨量最大値Qmaxと面内研磨量最小値Qminとの差、τは研磨時間、fは研磨スラリー流量、Pは研磨圧力、ωは定盤・研磨ヘッド回転数であり、Y、Y、Y、YおよびYは相関分析によって決定された定数である、請求項5に記載の作成方法。
  7. 前記相関関係式3は、
    ΔQ=(X+Xτ+XP+Xω+Xf)×(Y+Yτ+YP+Yω+Yf)
    である、請求項6に記載の作成方法。
  8. 請求項1~7のいずれか1項に記載の作成方法によって研磨条件決定用相関関係式を作成すること、
    研磨対象半導体ウェーハの面内研磨量分布の目標値または目標範囲を設定すること、および
    設定された目標値または目標範囲を達成可能と予測される研磨条件を前記相関関係式によって決定すること、
    を含む、研磨条件の決定方法。
  9. 請求項8に記載の決定方法によって研磨条件を決定すること、および
    決定された研磨条件によって半導体ウェーハの研磨を行うこと、
    を含む、半導体ウェーハの製造方法。
  10. 前記半導体ウェーハはシリコンウェーハである、請求項9に記載の製造方法。
PCT/JP2022/008115 2021-05-10 2022-02-28 研磨条件決定用相関関係式の作成方法 WO2022239376A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237036413A KR20230161481A (ko) 2021-05-10 2022-02-28 연마 조건 결정용 상관 관계식의 작성 방법
CN202280034586.6A CN117296134A (zh) 2021-05-10 2022-02-28 研磨条件确定用关联关系式的制成方法
DE112022002509.3T DE112022002509T5 (de) 2021-05-10 2022-02-28 Verfahren zur Erzeugung einer Korrelationsrelationsformel zur Bestimmung der Polierbedingung, Verfahren zur Bestimmung der Polierbedingung und Verfahren zur Herstellung von Halbleiterwafern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-079616 2021-05-10
JP2021079616A JP2022173730A (ja) 2021-05-10 2021-05-10 研磨条件決定用相関関係式の作成方法、研磨条件の決定方法および半導体ウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2022239376A1 true WO2022239376A1 (ja) 2022-11-17

Family

ID=84029108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008115 WO2022239376A1 (ja) 2021-05-10 2022-02-28 研磨条件決定用相関関係式の作成方法

Country Status (6)

Country Link
JP (1) JP2022173730A (ja)
KR (1) KR20230161481A (ja)
CN (1) CN117296134A (ja)
DE (1) DE112022002509T5 (ja)
TW (1) TWI806485B (ja)
WO (1) WO2022239376A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128655A (ja) * 1996-10-31 1998-05-19 Toshiba Corp 研磨装置
JP2007181910A (ja) * 2005-12-09 2007-07-19 Ebara Corp 研磨装置及び研磨方法
JP2008177266A (ja) * 2007-01-17 2008-07-31 Fujitsu Ltd 半導体基板、および半導体装置の製造方法
US20090170320A1 (en) * 2007-12-31 2009-07-02 Jens Heinrich Cmp system and method using individually controlled temperature zones
JP2015168015A (ja) * 2014-03-05 2015-09-28 株式会社荏原製作所 研磨装置および研磨方法
JP2020109839A (ja) * 2018-12-28 2020-07-16 株式会社荏原製作所 パッド温度調整装置、パッド温度調整方法、研磨装置、および研磨システム
JP2020131353A (ja) * 2019-02-19 2020-08-31 パナソニックIpマネジメント株式会社 研磨加工システム、学習装置、学習装置の学習方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492288B (zh) * 2010-02-11 2015-07-11 聯華電子股份有限公司 控制晶圓研磨製程之方法
JP6635088B2 (ja) 2017-04-24 2020-01-22 信越半導体株式会社 シリコンウエーハの研磨方法
JP7333262B2 (ja) 2019-10-29 2023-08-24 日鉄鉱業株式会社 高濃度鉄系凝集剤とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128655A (ja) * 1996-10-31 1998-05-19 Toshiba Corp 研磨装置
JP2007181910A (ja) * 2005-12-09 2007-07-19 Ebara Corp 研磨装置及び研磨方法
JP2008177266A (ja) * 2007-01-17 2008-07-31 Fujitsu Ltd 半導体基板、および半導体装置の製造方法
US20090170320A1 (en) * 2007-12-31 2009-07-02 Jens Heinrich Cmp system and method using individually controlled temperature zones
JP2015168015A (ja) * 2014-03-05 2015-09-28 株式会社荏原製作所 研磨装置および研磨方法
JP2020109839A (ja) * 2018-12-28 2020-07-16 株式会社荏原製作所 パッド温度調整装置、パッド温度調整方法、研磨装置、および研磨システム
JP2020131353A (ja) * 2019-02-19 2020-08-31 パナソニックIpマネジメント株式会社 研磨加工システム、学習装置、学習装置の学習方法

Also Published As

Publication number Publication date
DE112022002509T5 (de) 2024-02-29
CN117296134A (zh) 2023-12-26
JP2022173730A (ja) 2022-11-22
KR20230161481A (ko) 2023-11-27
TWI806485B (zh) 2023-06-21
TW202245038A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
JP5983422B2 (ja) ガラス基板の研磨方法及び製造方法
TWI614802B (zh) 晶圓研磨方法及研磨裝置
KR100914540B1 (ko) 복수의 반도체 웨이퍼의 동시 양면 연삭 방법과 현저한평탄성을 갖는 반도체 웨이퍼
TWI545675B (zh) 基板處理系統、基板處理裝置之控制方法及程式
TWI680507B (zh) 晶圓研磨方法
JP6635003B2 (ja) 半導体ウェーハの両面研磨方法
JP2004523096A (ja) 化学機械研磨の方法
CN110770878B (zh) 用于处理半导体晶片的方法、控制系统和设备,以及半导体晶片
US11305397B2 (en) Lapping system that includes a lapping plate temperature control system, and related methods
WO2022239376A1 (ja) 研磨条件決定用相関関係式の作成方法
TWI299524B (en) System and method for multi-steage process control in film removal
TW201334049A (zh) 矽晶圓的研磨方法及研磨裝置
JP2001260001A (ja) 半導体装置の平坦化方法及びその装置
JP5367246B2 (ja) 半導体ウェーハの研磨装置及び研磨方法
TWI688682B (zh) 半導體晶圓
JP2005005317A (ja) 半導体ウェーハの研磨方法およびその研磨装置
JP2013169610A (ja) 高硬度材料の加工方法及び加工装置
JP2002166357A (ja) ウェーハ研磨加工方法
JPH0366565A (ja) 半導体ウエーハの研磨方法
JP6500792B2 (ja) エピタキシャルウェーハの品質評価方法および製造方法
JP5570065B2 (ja) 半導体ウエハの研磨方法及び半導体ウエハ研磨装置
JP2002046062A (ja) ウェーハ研磨加工用定盤の間隙制御方法
Gupta Real-time estimation of material removal rate (MRR) in copper chemical mechanical planarization (CMP) using wireless temperature sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22807083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237036413

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237036413

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18289924

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280034586.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112022002509

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22807083

Country of ref document: EP

Kind code of ref document: A1