WO2022239197A1 - 一次電池 - Google Patents
一次電池 Download PDFInfo
- Publication number
- WO2022239197A1 WO2022239197A1 PCT/JP2021/018248 JP2021018248W WO2022239197A1 WO 2022239197 A1 WO2022239197 A1 WO 2022239197A1 JP 2021018248 W JP2021018248 W JP 2021018248W WO 2022239197 A1 WO2022239197 A1 WO 2022239197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- positive electrode
- primary battery
- battery
- active material
- Prior art date
Links
- 239000011777 magnesium Substances 0.000 claims abstract description 69
- RMMPZDDLWLALLJ-UHFFFAOYSA-N Thermophillin Chemical compound COC1=CC(=O)C(OC)=CC1=O RMMPZDDLWLALLJ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 43
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 39
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 35
- 239000003792 electrolyte Substances 0.000 claims description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 16
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 239000008151 electrolyte solution Substances 0.000 abstract description 23
- 239000007773 negative electrode material Substances 0.000 description 22
- 239000007774 positive electrode material Substances 0.000 description 21
- 239000000843 powder Substances 0.000 description 19
- 239000011230 binding agent Substances 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000007864 aqueous solution Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 239000011888 foil Substances 0.000 description 13
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 239000011889 copper foil Substances 0.000 description 11
- 230000007613 environmental effect Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- -1 Aluminum ions Chemical class 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000005001 laminate film Substances 0.000 description 8
- 229920003048 styrene butadiene rubber Polymers 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 6
- 235000019341 magnesium sulphate Nutrition 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 6
- 239000004810 polytetrafluoroethylene Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000003273 ketjen black Substances 0.000 description 5
- 229920002943 EPDM rubber Polymers 0.000 description 4
- 244000043261 Hevea brasiliensis Species 0.000 description 4
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000011149 active material Substances 0.000 description 4
- 238000002788 crimping Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 229910001425 magnesium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229920003052 natural elastomer Polymers 0.000 description 4
- 229920001194 natural rubber Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 241000282320 Panthera leo Species 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 235000019241 carbon black Nutrition 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000013065 commercial product Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 125000002467 phosphate group Chemical class [H]OP(=O)(O[H])O[*] 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- DGQOCLATAPFASR-UHFFFAOYSA-N tetrahydroxy-1,4-benzoquinone Chemical compound OC1=C(O)C(=O)C(O)=C(O)C1=O DGQOCLATAPFASR-UHFFFAOYSA-N 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/46—Alloys based on magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/663—Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
- H01M6/06—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
- H01M6/12—Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to primary batteries.
- Batteries in general use today are often composed of rare metals such as lithium, nickel, manganese, and cobalt, which poses the problem of resource depletion.
- Patent Document 1 In addition, air batteries with low environmental impact are being studied.
- Patent Document 1 The battery principle of Patent Document 1 is an air battery, and oxygen in the air is used as the positive electrode active material, so the battery must have an air intake port. Therefore, the air battery has the disadvantage that the electrolyte volatilizes from the air intake port, making it unsuitable for long-term storage. Therefore, there is a demand for a new low-environmental-load battery capable of battery reaction in a closed system.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a primary battery that has a low environmental load and can be stored for a long period of time.
- a primary battery of one embodiment of the present invention includes a positive electrode containing 2,5-dimethoxy-1,4-benzoquinone, a negative electrode containing magnesium or aluminum, and an aqueous electrolyte interposed between the positive electrode and the negative electrode. , provided.
- FIG. 1 is a basic schematic diagram of the primary battery of this embodiment.
- FIG. 2 is a schematic cross-sectional view showing the structure of a coin-type primary battery.
- FIG. 3A is a configuration diagram showing a configuration example of a bipolar stack primary battery.
- FIG. 3B is a plan view showing a configuration example of a bipolar stack primary battery.
- 4 is a graph showing a discharge curve of the primary battery of Example 1.
- FIG. 1 is a configuration diagram showing the configuration of a primary battery according to an embodiment of the present invention.
- This primary battery includes a positive electrode 101 containing 2,5-Dimethoxy-1,4-benzoquinone, a negative electrode 103 containing magnesium or aluminum, and a positive electrode 101 and a negative electrode 103. and an electrolyte 102 disposed between.
- 2,5-Dimethoxy-1,4-benzoquinone is an organic compound having methoxy groups at the 2,5-positions.
- As the electrolyte 102 it is preferable to use an aqueous electrolytic solution 102. In this embodiment described below, the case where the aqueous electrolytic solution 102 is used as the electrolyte 102 will be described as an example, but the present invention is not limited to this.
- the positive electrode 101 is configured using 2,5-dimethoxy-1,4-benzoquinone as an active material.
- Negative electrode 103 is configured using magnesium or aluminum as an active material.
- An aqueous electrolytic solution (electrolyte) 102 is arranged so as to be in contact with the positive electrode 101 and the negative electrode 103 .
- the primary battery of the present embodiment is characterized in that the positive electrode 101 contains an active material of 2,5-dimethoxy-1,4-benzoquinone and the negative electrode 103 contains an active material of magnesium or aluminum.
- the discharge reaction at the positive electrode 101 can be expressed as follows.
- a reaction using magnesium (Mg) for the negative electrode 103 is shown below.
- Magnesium ions (Mg 2+ ) are inserted into 2,5-dimethoxy-1,4-benzoquinone by reacting magnesium ions (Mg 2+ ), which will be described later, with the positive electrode 101 .
- the discharge reaction at the negative electrode 103 can be expressed as follows.
- Magnesium ions (Mg 2+ ) in the above formula dissolve from the negative electrode 103 into the aqueous electrolytic solution 102 by electrochemical reduction and migrate through the aqueous electrolytic solution 102 to the surface of the positive electrode 101 .
- the discharge reaction at the positive electrode 101 using aluminum (Al) for the negative electrode 103 can be expressed as follows.
- the discharge reaction at the negative electrode 103 can be expressed as follows.
- Aluminum ions (Al 3+ ) in the above formula are dissolved in the aqueous electrolytic solution 102 from the negative electrode 103 by electrochemical reduction and migrate through the aqueous electrolytic solution 102 to the surface of the positive electrode 101 .
- the theoretical electromotive force is about 3 V (when 2,5-dimethoxy-1,4-benzoquinone is used as the positive electrode active material and Mg is used as the negative electrode active material), 4-benzoquinone and when Al is used as the negative electrode active material).
- the primary battery of the present embodiment uses 2,5-dimethoxy-1,4-benzoquinone as a positive electrode active material, magnesium or aluminum as a negative electrode active material, and an aqueous electrolytic solution as an electrolyte. It can be expected as a low environmental load battery composed of materials.
- the positive electrode 101 can contain a positive electrode active material and a conductive aid as constituent elements. Further, the positive electrode 101 preferably contains a binder for integrating the materials.
- the negative electrode 103 can contain a negative electrode active material and a conductive aid as constituent elements. Further, the negative electrode 103 preferably contains a binder for integrating the materials.
- the positive electrode contains at least a positive electrode active material, and if necessary, may contain additives such as a conductive aid and a binder.
- the positive electrode may be formed into a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
- the positive electrode active material of the present embodiment contains at least 2,5-dimethoxy-1,4-benzoquinone.
- the particle size of the positive electrode active material is preferably 0.3 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m.
- 2,5-Dimethoxy-1,4-benzoquinone can be obtained, for example, as a commercial product or by known synthesis.
- the positive electrode may contain a conductive aid.
- a conductive aid for example, carbon or the like can be used as the conductive aid.
- Specific examples include carbon blacks such as ketjen black and acetylene black, activated carbons, graphites, and carbon fibers.
- Small carbon particles are suitable for ensuring sufficient reaction sites in the positive electrode. Specifically, it is desirable that the particle size is 1 ⁇ m or less. These carbons are available, for example, as commercial products or by known syntheses.
- the positive electrode active material may be directly coated with carbon.
- Coating methods include physical methods such as vapor deposition, sputtering, and planetary ball milling, chemical methods such as coating with an organic substance followed by heat treatment, and known methods.
- the positive electrode may contain a binder.
- the binder is not particularly limited, examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber. Styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber, which do not contain fluorine, are more preferable from the viewpoint of environmental load and waste disposal.
- binders can be used as powders or as dispersions.
- the content of the positive electrode active material, conductive aid, and binder in the positive electrode of the present embodiment is based on the weight of the entire positive electrode, and the positive electrode active material is greater than 0% by weight and 99% or less, preferably 70 to 95% by weight. %, the conductive aid is 0 to 90% by weight, preferably 1 to 30% by weight, and the binder is 0 to 50% by weight, preferably 1 to 30% by weight.
- a positive electrode can be prepared as follows. 2,5-dimethoxy-1,4-benzoquinone powder, which is a positive electrode active material, carbon powder, and, if necessary, a dispersion such as styrene-butadiene rubber are mixed, and the mixture is applied to a current collector and dried. Thereby, a positive electrode can be formed.
- the current collector is not particularly limited, but for example, a sheet-like or mesh-like current collector using at least one (one element) selected from the group consisting of copper, iron, titanium, nickel and carbon is used. can do.
- the current collector is preferably sheet-like. Moreover, from the viewpoint of environmental load and disposal, a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon is more preferable. Thus, the positive electrode is preferably applied to a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
- a more stable positive electrode can be produced by applying cold pressing or hot pressing to the dried electrode.
- the negative electrode contains at least a negative electrode active material and, if necessary, may contain additives such as a conductive aid and a binder.
- the negative electrode may be formed in a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
- the negative electrode active material of the present embodiment contains at least magnesium (Mg) or aluminum (Al).
- the negative electrode active material may contain magnesium (Mg) or aluminum (Al) as a main component, and may also contain zinc (Zn), calcium (Ca), lithium (Li), manganese (Mn), and iron (Fe). , tin (Sn), and carbon (C).
- the negative electrode active material can be produced by molding magnesium (Mg) foil or aluminum (Al) foil into a predetermined shape.
- Magnesium (Mg) or aluminum (Al) may be used in powder form. However, when it is used in the form of powder, the number of reaction sites increases and the output performance improves, but the oxidation of magnesium (Mg) or aluminum (Al) and the progress of corrosion by the electrolyte accelerate. Therefore, it is preferable to use magnesium (Mg) or aluminum (Al) in the form of foil or bulk.
- the negative electrode active material when used in the form of powder, the negative electrode may contain a conductive aid.
- a conductive aid for example, carbon or the like can be used as the conductive aid.
- Specific examples include carbon blacks such as ketjen black and acetylene black, activated carbons, graphites, and carbon fibers. Small particles of carbon are suitable for ensuring sufficient reaction sites in the negative electrode. Specifically, it is desirable that the particle size is 1 ⁇ m or less. These carbons are available, for example, as commercial products or by known syntheses.
- the negative electrode active material may be directly coated with carbon.
- Coating methods include physical methods such as vapor deposition, sputtering, and planetary ball milling, chemical methods such as coating with an organic substance followed by heat treatment, or known methods.
- the negative electrode may contain a binder.
- the binder is not particularly limited, but examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber. Styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber, which do not contain fluorine, are more preferable from the viewpoint of environmental load and waste disposal. These binders can be used as powders or as dispersions.
- the content of the negative electrode active material, conductive aid, and binder is preferably greater than 0% by weight and 99% or less, based on the weight of the entire negative electrode. 70 to 95% by weight, 0 to 90% by weight, preferably 1 to 30% by weight, of the conductive aid, and 0 to 50% by weight, preferably 1 to 30% by weight, of the binder.
- the negative electrode can be prepared as follows.
- a negative electrode can be formed by processing magnesium (Mg) or aluminum (Al) into a predetermined shape and attaching this negative electrode active material to a current collector by welding or the like.
- the current collector is not particularly limited, but for example, a sheet-like or mesh-like current collector using at least one (one element) selected from the group consisting of copper, iron, titanium, nickel and carbon is used. can do.
- the current collector is preferably sheet-like. Moreover, from the viewpoint of environmental load and disposal, a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon is more preferable.
- the negative electrode is preferably formed as a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
- the negative electrode active material when using the negative electrode active material in the form of powder, it can be prepared as follows. Magnesium (Mg) powder or aluminum (Al) powder as a negative electrode active material, carbon powder, and, if necessary, a dispersion such as styrene-butadiene rubber are mixed, and the mixture is applied to a current collector and dried. can form a negative electrode.
- Mg Magnesium
- Al aluminum
- a more stable negative electrode can be produced by applying cold pressing or hot pressing to the dried electrode.
- a highly active negative electrode can be obtained by manufacturing a negative electrode containing magnesium (Mg) or aluminum (Al), which is a negative electrode active material. Furthermore, by manufacturing the negative electrode of the primary battery having the above structure, it is possible to sufficiently bring out the potential of magnesium (Mg) or aluminum (Al), which is the negative electrode active material.
- Aqueous electrolyte (electrolyte)
- the primary battery of this embodiment contains an aqueous electrolyte.
- This aqueous electrolyte is an aqueous solution containing an electrolyte capable of transferring magnesium ions (Mg 2+ ) or aluminum ions (Al 3+ ).
- the aqueous electrolytic solution uses water as a main solvent and may contain a solvent other than water.
- Aqueous electrolytes include, for example, sulfates, acetates, carbonates, phosphates, pyrophosphates, metaphosphates, citrates, borates, ammonium salts, formates, hydrogen carbonates, hydroxides , an aqueous solution in which at least one electrolyte selected from the group consisting of chlorides is dissolved in water can be used.
- an aqueous electrolytic solution is used as the electrolyte, but a solid electrolyte such as gel or solid may also be used. That is, the electrolyte may be in any form such as liquid, cream, gel or solid.
- the pH of the electrolytic solution is preferably 5.8 or more and 8.6 or less. Normally, the stronger the alkaline electrolyte, the better the performance. However, organic substances such as 2,5-dimethoxy-1,4-benzoquinone have weak alkali resistance and are eluted into the electrolyte.
- the Water Pollution Control Law stipulates that the allowable limit for the pH (hydrogen ion concentration) of wastewater discharged into public water areas other than sea areas is 5.8 or more and 8.6 or less. Therefore, the pH of the aqueous electrolyte is preferably 5.8 or more and 8.6 or less from the viewpoint of environmental load and disposal.
- the primary battery of the present embodiment can include structural members such as separators and battery cases, and other elements required for primary batteries.
- Conventionally known materials can be used as these materials, but from the viewpoint of environmental load and disposal, it is preferable that they do not contain harmful substances, rare metals, rare earths, and the like. Further, these other elements are more preferably bio-derived, biodegradable materials.
- the primary battery of the present embodiment includes at least a positive electrode, a negative electrode, and an aqueous electrolyte solution, and as illustrated in FIG. An aqueous electrolyte is placed so as to be in contact with the negative electrode.
- a primary battery having such a configuration can be prepared in the same manner as a conventional primary battery.
- the primary battery contains a positive electrode active material containing 2,5-dimethoxy-1,4-benzoquinone as described above, a positive electrode containing a conductive aid and a binder, and magnesium (Mg) or aluminum (Al).
- a positive electrode active material containing 2,5-dimethoxy-1,4-benzoquinone as described above
- a positive electrode containing a conductive aid and a binder and magnesium (Mg) or aluminum (Al).
- Mg magnesium
- Al aluminum
- FIG. 2 is a schematic cross-sectional view showing the structure of a coin-type primary battery. Specifically, first, a separator (not shown) is placed on the positive electrode case 201 on which the positive electrode 101 is placed, and the electrolytic solution 102 is injected into the placed separator. Next, the negative electrode 103 is placed on the electrolytic solution 102 and the negative electrode case 202 is put on the positive electrode case 201 . Next, by crimping the peripheral edges of the positive electrode case 201 and the negative electrode case 202 with a coin cell crimping machine, a coin-type primary battery including the propylene gasket 203 can be manufactured.
- the illustrated coin-type primary battery uses 2,5-dimethoxy-1,4-benzoquinone powder as a positive electrode active material. Therefore, unlike an air battery that uses oxygen in the air as a positive electrode active material, there is no need to provide an air inlet in the positive electrode case 201 of this embodiment. That is, in this embodiment, a sealed battery can be produced. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
- a primary battery manufacturing method for example, a primary battery having a bipolar stack structure can be manufactured.
- FIG. 3A is a configuration diagram showing a configuration example of a bipolar stack primary battery.
- FIG. 3B is a plan view showing a configuration example of a bipolar stack primary battery.
- the primary battery of this embodiment uses a water-based electrolyte, the battery voltage cannot be expected. Therefore, it is preferable to increase the voltage by using a primary battery having a stack structure.
- the positive electrode 101 and the negative electrode 103 are respectively bonded to both surfaces of a current collector 322 such as a copper foil to form the positive electrode 101 and the negative electrode 103 on one current collector 322 .
- a bipolar electrode 320 in which the positive electrode 101 and the negative electrode 103 are formed on one side of the current collector 322 is produced.
- each current collector 303A, 303B for the outermost layer may have electrodes formed on only one side, and preferably has tabs 313A, 313B for extracting electricity.
- the positive electrode 101 is formed only on one side of the illustrated outermost current collector 303A, and a tab 313A is formed.
- the outermost current collector 303B has the negative electrode 103 formed on only one side thereof and a tab 313B formed thereon.
- the tabs 313A and 313B may be processed into a shape having projections on the current collectors 303A and 303B, or another metal tab may be joined to the current collectors 303A and 303B by ultrasonic welding, spot welding, or the like.
- the current collector 322 formed with the positive electrode 101 and the negative electrode 103 is stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the separator 301 is inserted so as to be in contact with the positive electrode 101 and the negative electrode 103 .
- the outermost current collectors 303A and 303B on which the positive electrode 101 or the negative electrode 103 is formed are also stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the separator 301 is inserted so as to be in contact with the positive electrode 101 and the negative electrode 103. .
- the peripheral edges of the respective copper foils of the current collectors are sealed by hot pressing using a heat-sealing sheet 302.
- one side (or a part of one side) of the peripheral portion needs to be left open without hot pressing in order to inject an aqueous electrolyte, which will be described later.
- the prepared stack is sandwiched between aluminum laminate films 304 or the like, and after injecting an aqueous electrolyte into each cell (each chamber), the unsealed side of the stack and the periphery of the aluminum laminate film are vacuum-sealed to obtain a bipolar structure. It is possible to fabricate a stack structure primary battery of the type.
- Such a primary battery is a sealed battery that does not require an air intake port, unlike an air battery that uses oxygen in the air as the positive electrode active material. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
- Example 10 Examples of the primary battery according to the present embodiment will be described in detail below.
- a primary battery using magnesium (Mg) for the negative electrode and a primary battery using aluminum (Al) for the negative electrode were produced.
- Mg magnesium
- Al aluminum
- the present invention is not limited to the examples shown below, and can be modified as appropriate without changing the gist of the invention.
- Example 1 Two coin-type primary batteries (FIG. 2) described above were produced by the following procedure.
- a magnesium (Mg) foil was used as the negative electrode active material, and a 2.0 mol/L aqueous solution of magnesium sulfate (MgSO 4 ) was used as the aqueous electrolyte.
- an aluminum (Al) foil was used as the negative electrode active material, and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) was used as the aqueous electrolyte.
- a magnesium (Mg) foil (thickness of 150 ⁇ m, The Nilaco Corporation) and an aluminum (Al) foil (thickness of 150 ⁇ m, The Nilaco Corporation) were each cut into a circle with a diameter of 16 mm to obtain a negative electrode.
- the negative electrode 103 of magnesium (Mg) foil is placed on the aqueous electrolyte 102, the negative electrode case 202 is placed on the positive electrode case 201, and the peripheral edges of the positive electrode case 201 and the negative electrode case 202 are crimped with a coin cell crimping machine.
- a coin-type primary battery including the propylene gasket 203 was obtained.
- a cellulose-based separator cut into a diameter of 18 mm was placed in the positive electrode case 201 in which the positive electrode 101 prepared by the above method was installed, and an aqueous electrolyte solution was placed on the placed separator.
- a 2.0 mol/L aluminum sulfate aqueous solution Al 2 (SO 4 ) 3 ) is injected.
- the negative electrode 103 made of aluminum (Al) foil is placed on the aqueous electrolyte 102, the negative electrode case 202 is placed on the positive electrode case 201, and the peripheral edges of the positive electrode case 201 and the negative electrode case 202 are crimped with a coin cell crimping machine.
- a coin-type primary battery including the propylene gasket 203 was obtained.
- Battery performance The battery performance of the primary battery prepared by the above procedure was measured.
- a charge/discharge measurement system manufactured by Bio Logic
- the discharge voltage was measured until the discharge voltage was reached.
- a discharge test of the battery was performed under a normal living environment. The discharge capacity was expressed as a value (mAh/g) per unit weight of the positive electrode active material (2,5-dimethoxy-1,4-benzoquinone).
- Fig. 4 shows a discharge curve using magnesium (Mg) for the negative electrode.
- Mg magnesium
- the average discharge voltage was 1.3 V and the discharge capacity was 200 mAh/g when 2,5-dimethoxy-1,4-benzoquinone was used as the positive electrode active material.
- the average discharge voltage is defined as the discharge voltage when the discharge capacity is 1/2 of the total discharge capacity (here, 100 mAh/g).
- Table 1 shows the discharge voltage and average discharge capacity of a primary battery using magnesium (Mg) for the negative electrode and a primary battery using aluminum (Al) for the negative electrode. Thus, it was found that each primary battery of Example 1 had excellent battery performance.
- Example 2 Two coin-type primary batteries described above were produced by the following procedure.
- the positive electrode was prepared by coating a copper sheet collector (copper foil), and the negative electrode was prepared by welding the copper sheet collector (copper foil).
- a 2.0 mol/L magnesium sulfate aqueous solution (MgSO 4 ) and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) were added to the aqueous electrolyte. each used.
- the production and evaluation method of the battery were performed in the same manner as in Example 1.
- Magnesium (Mg) foil (thickness 150 ⁇ m, Nilaco) and aluminum (Al) foil (thickness 150 ⁇ m, Nilaco) were each cut into a circle with a diameter of 16 mm, and each of these was cut into a copper foil (Nilaco). A sonic welder was used to join them to obtain a negative electrode.
- Example 2 The discharge capacities and average discharge voltages of the two primary batteries of Example 2 are shown in Table 1. As shown in Table 1, the discharge capacity of Example 2 in the battery using magnesium (Mg) for the negative electrode was 250 mAh/g, which was larger than that of Example 1. Even in the battery using aluminum (Al) for the negative electrode, the discharge capacity of Example 2 was larger than that of Example 1.
- Mg magnesium
- Al aluminum
- Example 2 the average discharge voltage of Example 2 is higher than the average discharge voltage of Example 1. That is, in Example 2, a decrease in overvoltage was observed as compared with Example 1, and an improvement in discharge energy efficiency could be achieved.
- Example 3 In Example 3, two of the above-described bipolar three-stack primary batteries were fabricated by the following procedure.
- FIG. 3A is an exploded view of a bipolar three-stack primary battery.
- the aqueous electrolytes were a 2.0 mol/L magnesium sulfate aqueous solution (MgSO 4 ) and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ). and were used respectively.
- the battery evaluation method was the same as in Examples 1 and 2. However, the measurement in the charge/discharge test was performed until the discharge voltage decreased to 1.00V.
- magnesium (Mg) is used for the negative electrode 103
- a magnesium (Mg) foil (thickness 150 ⁇ m, Nilaco) is cut into 2 cm ⁇ 2 cm, and this is attached to a copper foil (Nilaco) by an ultrasonic welding machine. used to connect.
- the positive electrode 101 2,5-dimethoxy-1,4-benzoquinone powder (Tokyo Chemical Industry Co., Ltd.), Ketjen black powder (EC600JD, Lion Specialty Chemicals), styrene-butadiene rubber (AA Portable Power) ) in a weight ratio of 80:10:10 using a kneader (Thinky Co.) to prepare a slurry.
- Tokyo Chemical Industry Co., Ltd. Ketjen black powder
- AA Portable Power styrene-butadiene rubber
- This slurry was applied to the back surface of the copper foil to which the negative electrode was bonded earlier in a size of 2 cm x 2 cm, and dried in a vacuum dryer at 100°C for 12 hours. After that, it was pressed at 120° C. to obtain a bipolar electrode 320 in which the positive electrode 101 and the negative electrode 103 were bonded to each other on one side.
- the positive electrode 101 and the negative electrode 103 of the outermost layer were formed by bonding the positive electrode 101 or the negative electrode 103 on only one side of the copper foil (current collectors 303A and 303B).
- the adjustment method is the same as above.
- the outermost copper foils (current collectors 303A and 303B) were cut out to have tabs 313A and 313B.
- the negative electrode 103 When aluminum (Al) is used for the negative electrode 103, as the negative electrode 103, aluminum (Al) foil (thickness 150 ⁇ m, Nilaco) is cut into 2 cm ⁇ 2 cm, and this is attached to a copper foil (Nilaco) with an ultrasonic welding machine. After that, the bipolar electrode 320 , the outermost positive electrode 101 and the negative electrode 103 were obtained in the same manner as in the case of using magnesium (Mg) for the negative electrode 103 .
- Mg magnesium
- bipolar electrode 320 For the primary battery using magnesium (Mg) for the negative electrode 103, two sheets of the bipolar electrode 320 prepared by the above method were stacked so that the positive electrode 101 and the negative electrode 103 faced each other, and the space between the bipolar electrodes 320 was 2.2 cm ⁇ 2.2 cm. A separator 301 cut out to 2.2 cm and a frame-shaped heat-sealing sheet 302 cut out in the center are inserted. After lamination, three sides of the peripheral edge portions of the current collectors 322 are hot-pressed at 180° C. to seal.
- Mg magnesium
- the outermost negative electrode 103, positive electrode 101, separator 301, and heat-sealing sheet 302 are also stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the same three sides as the sides sealed above are heat-pressed. Seal by doing.
- the stack thus produced is sandwiched between the aluminum laminate film 304 and the heat-sealing sheet 302, and the same three sides as the sides sealed above are hot-pressed to make the aluminum laminate film into a bag shape.
- magnesium sulfate aqueous solution (MgSO 4 ) is injected into each cell (chamber) of the stack structure, and after the separator 301 is sufficiently immersed, one side of the aluminum laminate film 304 that is not sealed is was vacuum-sealed, and finally, the unsealed side of the stack was sealed from above with an aluminum laminate film 304 to obtain a bipolar stack primary battery using magnesium (Mg) for the negative electrode 103 .
- a primary battery using aluminum (Al) for the negative electrode 103 was adjusted in the same manner as the primary battery using magnesium (Mg) for the negative electrode 103 to obtain a bipolar stacked primary battery.
- a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) is injected into each cell (chamber) of the stack structure instead of the magnesium sulfate aqueous solution (MgSO 4 ), and the separator 301 is fully immersed.
- Example 3 Although three stacks are used in Example 3, it is possible to fabricate a bipolar stacked primary battery with three or more stacks. In that case, the number of stacked bipolar electrodes 320 may be increased.
- Table 1 shows the discharge capacities and average discharge voltages of the two primary batteries of this example. As shown in Table 1, the discharge capacity of Example 3 in the battery using magnesium (Mg) for the negative electrode was 260 mAh/g, which was equivalent to that of Example 2. The discharge capacity of Example 3 was the same as that of Example 2 even in the battery using aluminum (Al) for the negative electrode.
- Mg magnesium
- Al aluminum
- the average discharge voltage is about three times that of Example 1, and by using a bipolar type stack structure primary battery, it is possible to achieve a voltage equivalent to that of a conventional lithium ion battery. .
- the primary battery of the present embodiment uses 2,5-dimethoxy-1,4-benzoquinone as the positive electrode active material and magnesium or aluminum as the negative electrode active material. can be simplified.
- the primary battery of the present embodiment is a sealed battery that does not require an air intake port unlike an air battery. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
- a water-based electrolyte As the electrolyte, it is preferable to use a water-based electrolyte as the electrolyte.
- organic electrolytes When organic electrolytes are used, they are flammable and may cause fires, explosions, etc. In addition, there are concerns about adverse effects on the human body and the environment when they leak. In contrast, in the present embodiment, by using an aqueous electrolyte, a battery with high safety and low cost can be produced.
- the pH of the aqueous electrolytic solution is preferably 5.8 or more and 8.6 or less. As a result, it is possible to manufacture an environmentally friendly battery that is easy to dispose of.
- the primary battery of this embodiment can be effectively used as a new drive source for various electronic devices such as small devices, sensors, and mobile devices.
- Positive electrode 102 Aqueous electrolytic solution (electrolyte) 103: Negative electrode 201: Positive electrode case 202: Negative electrode case 203: Propylene gasket 301: Separator 302: Thermal fusion sheet 303A, 303B: Outermost layer current collector 304: Aluminum laminate film 320: Bipolar electrode 322: Current collector
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Primary Cells (AREA)
Abstract
Description
図1は、本発明の実施の形態における一次電池の構成を示す構成図である。この一次電池は、2,5-ジメトキシ-1,4-ベンゾキノン(2,5-Dimethoxy-1,4-benzoquinone)を含む正極101と、マグネシウムまたはアルミニウムを含む負極103と、正極101と負極103との間に配置された電解質102と、を備える。2,5-ジメトキシ-1,4-ベンゾキノンは、2,5-位にメトキシ基を有する有機化合物である。電解質102として、水系電解液102を用いることが好ましい。以下に説明する本実施形態では、電解質102に水系電解液102を用いた場合を一例として説明するが、これに限定されない。
上式中のマグネシウムイオン(Mg2+)は、負極103から電気化学還元により水系電解液102中に溶解し、水系電解液102中を正極101の表面まで移動する。
上式中のアルミニウムイオン(Al3+)は、負極103から電気化学還元により水系電解液102中に溶解し、水系電解液102中を正極101の表面まで移動する。
正極は、正極活物質を少なくとも含み、必要に応じて導電助剤、結着剤等の添加物を含むことができる。正極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成されてもよい。
本実施形態の正極活物質は、少なくとも2,5-ジメトキシ-1,4-ベンゾキノンを含む。
本実施形態では、正極に導電助剤を含んでもよい。導電助剤には、例えばカーボンなどを用いることができる。具体的には、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭類、グラファイト類、カーボン繊維類などを挙げることができる。正極中で反応部位を十分確保するために、カーボンは粒子が小さいものが適している。具体的には、粒子径が1μm以下のものが望ましい。これらのカーボンは、例えば市販品として、又は公知の合成により入手することが可能である。
正極は、結着剤を含んでもよい。結着剤は、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムなどを例として挙げることができる。環境負荷及び廃棄物処理の観点から、フッ素が使用されていないスチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムがより好ましい。
正極は以下のように調製することができる。正極活物質である2,5-ジメトキシ-1,4-ベンゾキノン粉末、カーボン粉末、及び必要に応じて、スチレンブタジエンゴムのような分散液を混合し、この混合物を集電体に塗布し乾燥することにより、正極を形成することができる。
負極は、負極活物質を少なくとも含み、必要に応じて導電助剤、結着剤等の添加物を含むことができる。負極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成されてもよい。
本実施形態の負極活物質は、少なくともマグネシウム(Mg)またはアルミニウム(Al)を含む。
負極活物質を粉末で使用する場合、負極は導電助剤を含んでもよい。導電助剤には、例えばカーボンなどを用いることができる。具体的には、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭類、グラファイト類、カーボン繊維類などを挙げることができる。負極中で反応部位を十分確保するために、カーボンは粒子が小さいものが適している。具体的には、粒子径が1μm以下のものが望ましい。これらのカーボンは、例えば市販品として、または公知の合成により入手することが可能である。
負極活物質を粉末で使用する場合、負極は結着剤を含んでもよい。結着剤は、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムなどを例として挙げることができる。環境負荷及び廃棄物処理の観点から、フッ素が使用されていないスチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムがより好ましい。これらの結着剤は、粉末として又は分散液として用いることができる。
負極は、以下のように調製することができる。マグネシウム(Mg)またはアルミニウム(Al)を所定の形状に加工し、この負極活物質を集電体に溶接等で張り付けることにより、負極を形成することができる。
本実施形態の一次電池は、水系電解液を含む。この水系電解液は、マグネシウムイオン(Mg2+)またはアルミニウムイオン(Al3+)の移動が可能な電解質を含む水溶液である。水系電解液は、主溶媒として水を用い、水以外の溶媒を含んでもよい。水系電解液には、例えば、硫酸塩、酢酸塩、炭酸塩、リン酸塩、ピロリン酸塩、メタリン酸塩、クエン酸塩、ホウ酸塩、アンモニウム塩、ギ酸塩、炭酸水素塩、水酸化物、塩化物からなら群より選ばれる少なくとも1つの電解質を水に溶解させた水溶液を用いることができる。
本実施形態の一次電池は、上記構成要素に加え、セパレータ、電池ケースなどの構造部材、その他一次電池に要求される要素を含むことができる。これらは、従来公知のものが使用できるが、環境負荷及び廃棄処理の観点から、有害物質、レアメタル、レアアース等を含まないことが好ましい。更に、これらの他の要素は、生物由来、生分解性材料であることがより好適である。
本実施形態の一次電池は、上述した通り、少なくとも正極、負極及び水系電解液を含み、図1に例示されるように、正極と負極との間に、正極および負極に接するように水系電解液が配置される。このような構成の一次電池は、従来型の一次電池と同様に調製することができる。
一次電池の製造方法の一実施形態として、例えばコイン型一次電池を製造することができる。
一次電池の製造方法の一実施形態として、例えばバイポーラ型のスタック構造を有する一次電池を製造することができる。
以下に本実施形態に係る一次電池の実施例を詳細に説明する。各実施例では、負極にマグネシウム(Mg)を用いた一次電池と、負極にアルミニウム(Al)を用いた一次電池とを、それぞれ作製した。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
実施例1では、前述したコイン型の一次電池(図2)を、以下の手順で2つ作製した。1つの一次電池では、負極活物資にはマグネシウム(Mg)箔を使用し、水系電解液には2.0 mol/Lの硫酸マグネシウム水溶液(MgSO4)を使用した。もう1つの一次電池では、負極活物資にはアルミニウム(Al)箔を使用し、水系電解液には2.0 mol/Lの硫酸アルミニウム水溶液(Al2(SO4)3)を使用した。
2,5-ジメトキシ-1,4-ベンゾキノン粉末(東京化成工業株式会社)、ケッチェンブラック粉末(EC600JD、ライオン・スペシャリティ・ケミカルズ社)、ポリテトラフルオロエチレン(PTFE)粉末を、80:10:10の重量比でらいかい機を用いて十分に粉砕混合し、ロール成形して、シート状電極(厚さ:0.5mm)を作製した。このシート状電極を直径16mmの円形に切り抜き、銅メッシュ上にプレスすることにより、正極を得た。
マグネシウム(Mg)箔(厚さ150μm、ニラコ社)、及びアルミニウム(Al)箔(厚さ150μm、ニラコ社)をそれぞれ直径16mmの円形に切り抜き、負極を得た。
コイン電池用ケース(宝泉社)を使用して、図2に示すコイン型一次電池を2つ作製した。1つの一次電池では、上記の方法で調整した正極101を設置した正極ケース201に直径18mmに切り抜いたセルロース系セパレータ(ニッポン高度紙工業社)を載置し、載置したセパレータに2.0 mol/Lの硫酸マグネシウム水溶液(MgSO4)を水系電解液102として注入する。水系電解液102の上にマグネシウム(Mg)箔の上記負極103を設置し、負極ケース202を正極ケース201に被せ、コインセルカシメ機で正極ケース201及び負極ケース202の周縁部をかしめることにより、プロピレンガスケット203を含むコイン型一次電池を得た。
以上の手順で調整した一次電池の電池性能を測定した。電池のサイクル試験は、充放電測定システム(Bio Logic社製)を用いて、正極の有効面積当たりの電流密度で1mA/cm2を通電し、開回路電圧から電池電圧が、0.60Vに低下するまで放電電圧の測定を行った。電池の放電試験は、通常の生活環境下で行った。放電容量は正極活物質(2,5-ジメトキシ-1,4-ベンゾキノン)単位重量当たりの値(mAh/g)で表した。
実施例2では、前述したコイン型の一次電池を以下の手順で2つ作製した。実験例2では、正極は銅のシート状集電体(銅箔)に塗布して調製し、負極は銅のシート状集電体(銅箔)に溶接して調製した。水系電解液には、実験例1と同様に、2.0 mol/Lの硫酸マグネシウム水溶液(MgSO4)と、2.0 mol/Lの硫酸アルミニウム水溶液(Al2(SO4)3)とをそれぞれ使用した。電池の作製及び評価法は、実施例1と同様にして行った。
2,5-ジメトキシ-1,4-ベンゾキノン粉末(東京化成工業株式会社)、ケッチェンブラック粉末(EC600JD、ライオン・スペシャリティ・ケミカルズ社)、スチレンブタジエンゴム(AAポータブルパワー社)が、重量比で80:10:10になるように、混錬機(シンキー社)を使用して十分に混合し、スラリーを作製した。このスラリーを銅箔(ニラコ社)に塗布し、100℃の真空乾燥機で12時間乾燥させた。その後、120℃でプレスし、このシート状電極を直径16mmの円形に切り抜き、正極を得た。
マグネシウム(Mg)箔(厚さ150μm、ニラコ社)、及び、アルミニウム(Al)箔(厚さ150μm、ニラコ社)を、それぞれ直径16mmの円形に切り抜き、これらをそれぞれ銅箔(ニラコ社)に超音波溶接機を使用して接合させて負極を得た。
実施例2の2つの一次電池の放電容量及び平均放電電圧を、表1に示す。表1に示すように、負極にマグネシウム(Mg)を用いた電池における実施例2の放電容量は、250mAh/gを示し、実施例1よりも大きい値であった。負極にアルミニウム(Al)を用いた電池においても、実施例2の放電容量は実施例1よりも大きい値であった。
実施例3では、前述したバイポーラ型の3スタック構造の一次電池を、以下の手順で2つ作製した。
負極103にマグネシウム(Mg)を用いた場合、負極103として、マグネシウム(Mg)箔(厚さ150μm、ニラコ社)を2cm×2cmに切り抜き、これを銅箔(ニラコ社)に超音波溶接機を使用して接合させた。
アルミラミネートフィルム304を使用して、図3に示すバイポーラ型の3スタック構造の一次電池を2つ作製した。
本実施例の2つの一次電池の放電容量及び平均放電電圧を、表1に示す。表1に示すように、負極にマグネシウム(Mg)を用いた電池における実施例3の放電容量は、260mAh/gを示し、実施例2と同等であった。負極にアルミニウム(Al)を用いた電池においても、実施例3の放電容量は実施例2と同等であった。
102:水系電解液(電解質)
103:負極
201:正極ケース
202:負極ケース
203:プロピレンガスケット
301:セパレータ
302:熱融着シート
303A、303B:最外層集電体
304:アルミラミネートフィルム
320:バイポーラ電極
322:集電体
Claims (3)
- 2,5-ジメトキシ-1,4-ベンゾキノンを含む正極と、
マグネシウムまたはアルミニウムを含む負極と、
前記正極と前記負極との間に配置された水系電解液と、を備える
一次電池。 - 前記正極及び前記負極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成される
請求項1に記載の一次電池。 - バイポーラ型のスタック構造を有する
請求項1または2に記載の一次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/553,252 US20240204211A1 (en) | 2021-05-13 | 2021-05-13 | Primary Battery |
JP2023520692A JPWO2022239197A1 (ja) | 2021-05-13 | 2021-05-13 | |
PCT/JP2021/018248 WO2022239197A1 (ja) | 2021-05-13 | 2021-05-13 | 一次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/018248 WO2022239197A1 (ja) | 2021-05-13 | 2021-05-13 | 一次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022239197A1 true WO2022239197A1 (ja) | 2022-11-17 |
Family
ID=84028066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018248 WO2022239197A1 (ja) | 2021-05-13 | 2021-05-13 | 一次電池 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240204211A1 (ja) |
JP (1) | JPWO2022239197A1 (ja) |
WO (1) | WO2022239197A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024142391A1 (ja) * | 2022-12-28 | 2024-07-04 | 日本電信電話株式会社 | 二次電池 |
WO2024150328A1 (ja) * | 2023-01-11 | 2024-07-18 | 日本電信電話株式会社 | 二次電池 |
WO2024166382A1 (ja) * | 2023-02-10 | 2024-08-15 | 日本電信電話株式会社 | 一次電池 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007032443A1 (ja) * | 2005-09-14 | 2007-03-22 | Mitsubishi Chemical Corporation | 一次電池用非水電解液及びそれを用いた非水電解液一次電池 |
JP2015065028A (ja) * | 2013-09-25 | 2015-04-09 | 独立行政法人産業技術総合研究所 | 非水マグネシウム二次電池 |
JP2016514897A (ja) * | 2013-04-10 | 2016-05-23 | ユニバーシティー オブ ヒューストン システム | 有機電極材料を用いた水溶液系エネルギー貯蔵装置 |
WO2020138377A1 (ja) * | 2018-12-27 | 2020-07-02 | 富士フイルム和光純薬株式会社 | 硫黄系マグネシウム電池用電解液 |
-
2021
- 2021-05-13 US US18/553,252 patent/US20240204211A1/en active Pending
- 2021-05-13 WO PCT/JP2021/018248 patent/WO2022239197A1/ja active Application Filing
- 2021-05-13 JP JP2023520692A patent/JPWO2022239197A1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007032443A1 (ja) * | 2005-09-14 | 2007-03-22 | Mitsubishi Chemical Corporation | 一次電池用非水電解液及びそれを用いた非水電解液一次電池 |
JP2016514897A (ja) * | 2013-04-10 | 2016-05-23 | ユニバーシティー オブ ヒューストン システム | 有機電極材料を用いた水溶液系エネルギー貯蔵装置 |
JP2015065028A (ja) * | 2013-09-25 | 2015-04-09 | 独立行政法人産業技術総合研究所 | 非水マグネシウム二次電池 |
WO2020138377A1 (ja) * | 2018-12-27 | 2020-07-02 | 富士フイルム和光純薬株式会社 | 硫黄系マグネシウム電池用電解液 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024142391A1 (ja) * | 2022-12-28 | 2024-07-04 | 日本電信電話株式会社 | 二次電池 |
WO2024150328A1 (ja) * | 2023-01-11 | 2024-07-18 | 日本電信電話株式会社 | 二次電池 |
WO2024166382A1 (ja) * | 2023-02-10 | 2024-08-15 | 日本電信電話株式会社 | 一次電池 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022239197A1 (ja) | 2022-11-17 |
US20240204211A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022239197A1 (ja) | 一次電池 | |
KR101513821B1 (ko) | 전지용 전극 및 그 이용 | |
JP5039956B2 (ja) | 負極活物質、負極およびリチウム二次電池 | |
WO2009093504A1 (ja) | 電極および電極製造方法 | |
US10002717B2 (en) | High performance lithium-ion capacitor laminate cells | |
JP2001143702A (ja) | 非水二次電池 | |
CN102024934B (zh) | 电极组件及包括该电极组件的二次电池 | |
CN101937994A (zh) | 锂离子电池的石墨烯/铝复合负极材料及其制备方法 | |
CN109216781A (zh) | 氟化物穿梭二次电池 | |
JP2019016484A (ja) | 全固体電池用負極およびそれを備える全固体電池 | |
JP2023536628A (ja) | ラミネート固体電解質系コンポーネントの製造方法及びそれを用いた電気化学セル | |
JP5120213B2 (ja) | 水系リチウムイオン二次電池 | |
WO2022102032A1 (ja) | 鉄亜鉛電池 | |
JP5904543B2 (ja) | コンバージョン反応により充放電を行うリチウム二次電池用活物質、該活物質を用いたリチウム二次電池 | |
JP4993860B2 (ja) | 非水電解液一次電池 | |
CN116845235A (zh) | 正极材料、正极极片及电池 | |
Sakuda et al. | Bulk-type all-solid-state lithium secondary battery with Li2S-P2S5 thin-film separator | |
JPH11126600A (ja) | リチウムイオン二次電池 | |
WO2023073868A1 (ja) | 一次電池 | |
JP4993859B2 (ja) | 非水電解液一次電池 | |
WO2022107325A1 (ja) | 一次電池 | |
WO2022102024A1 (ja) | 鉄亜鉛電池 | |
JP2010003614A (ja) | 電極用集電体の製造方法 | |
JP2022144122A (ja) | 非水系アルカリ金属蓄電素子 | |
JP2014175243A (ja) | ナトリウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21941930 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18553252 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023520692 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21941930 Country of ref document: EP Kind code of ref document: A1 |