WO2022239197A1 - 一次電池 - Google Patents

一次電池 Download PDF

Info

Publication number
WO2022239197A1
WO2022239197A1 PCT/JP2021/018248 JP2021018248W WO2022239197A1 WO 2022239197 A1 WO2022239197 A1 WO 2022239197A1 JP 2021018248 W JP2021018248 W JP 2021018248W WO 2022239197 A1 WO2022239197 A1 WO 2022239197A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
primary battery
battery
active material
Prior art date
Application number
PCT/JP2021/018248
Other languages
English (en)
French (fr)
Inventor
正也 野原
三佳誉 岩田
博章 田口
武志 小松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US18/553,252 priority Critical patent/US20240204211A1/en
Priority to JP2023520692A priority patent/JPWO2022239197A1/ja
Priority to PCT/JP2021/018248 priority patent/WO2022239197A1/ja
Publication of WO2022239197A1 publication Critical patent/WO2022239197A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/12Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with flat electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to primary batteries.
  • Batteries in general use today are often composed of rare metals such as lithium, nickel, manganese, and cobalt, which poses the problem of resource depletion.
  • Patent Document 1 In addition, air batteries with low environmental impact are being studied.
  • Patent Document 1 The battery principle of Patent Document 1 is an air battery, and oxygen in the air is used as the positive electrode active material, so the battery must have an air intake port. Therefore, the air battery has the disadvantage that the electrolyte volatilizes from the air intake port, making it unsuitable for long-term storage. Therefore, there is a demand for a new low-environmental-load battery capable of battery reaction in a closed system.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a primary battery that has a low environmental load and can be stored for a long period of time.
  • a primary battery of one embodiment of the present invention includes a positive electrode containing 2,5-dimethoxy-1,4-benzoquinone, a negative electrode containing magnesium or aluminum, and an aqueous electrolyte interposed between the positive electrode and the negative electrode. , provided.
  • FIG. 1 is a basic schematic diagram of the primary battery of this embodiment.
  • FIG. 2 is a schematic cross-sectional view showing the structure of a coin-type primary battery.
  • FIG. 3A is a configuration diagram showing a configuration example of a bipolar stack primary battery.
  • FIG. 3B is a plan view showing a configuration example of a bipolar stack primary battery.
  • 4 is a graph showing a discharge curve of the primary battery of Example 1.
  • FIG. 1 is a configuration diagram showing the configuration of a primary battery according to an embodiment of the present invention.
  • This primary battery includes a positive electrode 101 containing 2,5-Dimethoxy-1,4-benzoquinone, a negative electrode 103 containing magnesium or aluminum, and a positive electrode 101 and a negative electrode 103. and an electrolyte 102 disposed between.
  • 2,5-Dimethoxy-1,4-benzoquinone is an organic compound having methoxy groups at the 2,5-positions.
  • As the electrolyte 102 it is preferable to use an aqueous electrolytic solution 102. In this embodiment described below, the case where the aqueous electrolytic solution 102 is used as the electrolyte 102 will be described as an example, but the present invention is not limited to this.
  • the positive electrode 101 is configured using 2,5-dimethoxy-1,4-benzoquinone as an active material.
  • Negative electrode 103 is configured using magnesium or aluminum as an active material.
  • An aqueous electrolytic solution (electrolyte) 102 is arranged so as to be in contact with the positive electrode 101 and the negative electrode 103 .
  • the primary battery of the present embodiment is characterized in that the positive electrode 101 contains an active material of 2,5-dimethoxy-1,4-benzoquinone and the negative electrode 103 contains an active material of magnesium or aluminum.
  • the discharge reaction at the positive electrode 101 can be expressed as follows.
  • a reaction using magnesium (Mg) for the negative electrode 103 is shown below.
  • Magnesium ions (Mg 2+ ) are inserted into 2,5-dimethoxy-1,4-benzoquinone by reacting magnesium ions (Mg 2+ ), which will be described later, with the positive electrode 101 .
  • the discharge reaction at the negative electrode 103 can be expressed as follows.
  • Magnesium ions (Mg 2+ ) in the above formula dissolve from the negative electrode 103 into the aqueous electrolytic solution 102 by electrochemical reduction and migrate through the aqueous electrolytic solution 102 to the surface of the positive electrode 101 .
  • the discharge reaction at the positive electrode 101 using aluminum (Al) for the negative electrode 103 can be expressed as follows.
  • the discharge reaction at the negative electrode 103 can be expressed as follows.
  • Aluminum ions (Al 3+ ) in the above formula are dissolved in the aqueous electrolytic solution 102 from the negative electrode 103 by electrochemical reduction and migrate through the aqueous electrolytic solution 102 to the surface of the positive electrode 101 .
  • the theoretical electromotive force is about 3 V (when 2,5-dimethoxy-1,4-benzoquinone is used as the positive electrode active material and Mg is used as the negative electrode active material), 4-benzoquinone and when Al is used as the negative electrode active material).
  • the primary battery of the present embodiment uses 2,5-dimethoxy-1,4-benzoquinone as a positive electrode active material, magnesium or aluminum as a negative electrode active material, and an aqueous electrolytic solution as an electrolyte. It can be expected as a low environmental load battery composed of materials.
  • the positive electrode 101 can contain a positive electrode active material and a conductive aid as constituent elements. Further, the positive electrode 101 preferably contains a binder for integrating the materials.
  • the negative electrode 103 can contain a negative electrode active material and a conductive aid as constituent elements. Further, the negative electrode 103 preferably contains a binder for integrating the materials.
  • the positive electrode contains at least a positive electrode active material, and if necessary, may contain additives such as a conductive aid and a binder.
  • the positive electrode may be formed into a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
  • the positive electrode active material of the present embodiment contains at least 2,5-dimethoxy-1,4-benzoquinone.
  • the particle size of the positive electrode active material is preferably 0.3 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m.
  • 2,5-Dimethoxy-1,4-benzoquinone can be obtained, for example, as a commercial product or by known synthesis.
  • the positive electrode may contain a conductive aid.
  • a conductive aid for example, carbon or the like can be used as the conductive aid.
  • Specific examples include carbon blacks such as ketjen black and acetylene black, activated carbons, graphites, and carbon fibers.
  • Small carbon particles are suitable for ensuring sufficient reaction sites in the positive electrode. Specifically, it is desirable that the particle size is 1 ⁇ m or less. These carbons are available, for example, as commercial products or by known syntheses.
  • the positive electrode active material may be directly coated with carbon.
  • Coating methods include physical methods such as vapor deposition, sputtering, and planetary ball milling, chemical methods such as coating with an organic substance followed by heat treatment, and known methods.
  • the positive electrode may contain a binder.
  • the binder is not particularly limited, examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber. Styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber, which do not contain fluorine, are more preferable from the viewpoint of environmental load and waste disposal.
  • binders can be used as powders or as dispersions.
  • the content of the positive electrode active material, conductive aid, and binder in the positive electrode of the present embodiment is based on the weight of the entire positive electrode, and the positive electrode active material is greater than 0% by weight and 99% or less, preferably 70 to 95% by weight. %, the conductive aid is 0 to 90% by weight, preferably 1 to 30% by weight, and the binder is 0 to 50% by weight, preferably 1 to 30% by weight.
  • a positive electrode can be prepared as follows. 2,5-dimethoxy-1,4-benzoquinone powder, which is a positive electrode active material, carbon powder, and, if necessary, a dispersion such as styrene-butadiene rubber are mixed, and the mixture is applied to a current collector and dried. Thereby, a positive electrode can be formed.
  • the current collector is not particularly limited, but for example, a sheet-like or mesh-like current collector using at least one (one element) selected from the group consisting of copper, iron, titanium, nickel and carbon is used. can do.
  • the current collector is preferably sheet-like. Moreover, from the viewpoint of environmental load and disposal, a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon is more preferable. Thus, the positive electrode is preferably applied to a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
  • a more stable positive electrode can be produced by applying cold pressing or hot pressing to the dried electrode.
  • the negative electrode contains at least a negative electrode active material and, if necessary, may contain additives such as a conductive aid and a binder.
  • the negative electrode may be formed in a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
  • the negative electrode active material of the present embodiment contains at least magnesium (Mg) or aluminum (Al).
  • the negative electrode active material may contain magnesium (Mg) or aluminum (Al) as a main component, and may also contain zinc (Zn), calcium (Ca), lithium (Li), manganese (Mn), and iron (Fe). , tin (Sn), and carbon (C).
  • the negative electrode active material can be produced by molding magnesium (Mg) foil or aluminum (Al) foil into a predetermined shape.
  • Magnesium (Mg) or aluminum (Al) may be used in powder form. However, when it is used in the form of powder, the number of reaction sites increases and the output performance improves, but the oxidation of magnesium (Mg) or aluminum (Al) and the progress of corrosion by the electrolyte accelerate. Therefore, it is preferable to use magnesium (Mg) or aluminum (Al) in the form of foil or bulk.
  • the negative electrode active material when used in the form of powder, the negative electrode may contain a conductive aid.
  • a conductive aid for example, carbon or the like can be used as the conductive aid.
  • Specific examples include carbon blacks such as ketjen black and acetylene black, activated carbons, graphites, and carbon fibers. Small particles of carbon are suitable for ensuring sufficient reaction sites in the negative electrode. Specifically, it is desirable that the particle size is 1 ⁇ m or less. These carbons are available, for example, as commercial products or by known syntheses.
  • the negative electrode active material may be directly coated with carbon.
  • Coating methods include physical methods such as vapor deposition, sputtering, and planetary ball milling, chemical methods such as coating with an organic substance followed by heat treatment, or known methods.
  • the negative electrode may contain a binder.
  • the binder is not particularly limited, but examples thereof include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber. Styrene-butadiene rubber, ethylene-propylene-diene rubber, and natural rubber, which do not contain fluorine, are more preferable from the viewpoint of environmental load and waste disposal. These binders can be used as powders or as dispersions.
  • the content of the negative electrode active material, conductive aid, and binder is preferably greater than 0% by weight and 99% or less, based on the weight of the entire negative electrode. 70 to 95% by weight, 0 to 90% by weight, preferably 1 to 30% by weight, of the conductive aid, and 0 to 50% by weight, preferably 1 to 30% by weight, of the binder.
  • the negative electrode can be prepared as follows.
  • a negative electrode can be formed by processing magnesium (Mg) or aluminum (Al) into a predetermined shape and attaching this negative electrode active material to a current collector by welding or the like.
  • the current collector is not particularly limited, but for example, a sheet-like or mesh-like current collector using at least one (one element) selected from the group consisting of copper, iron, titanium, nickel and carbon is used. can do.
  • the current collector is preferably sheet-like. Moreover, from the viewpoint of environmental load and disposal, a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon is more preferable.
  • the negative electrode is preferably formed as a sheet-like current collector containing at least one selected from the group consisting of copper, iron and carbon.
  • the negative electrode active material when using the negative electrode active material in the form of powder, it can be prepared as follows. Magnesium (Mg) powder or aluminum (Al) powder as a negative electrode active material, carbon powder, and, if necessary, a dispersion such as styrene-butadiene rubber are mixed, and the mixture is applied to a current collector and dried. can form a negative electrode.
  • Mg Magnesium
  • Al aluminum
  • a more stable negative electrode can be produced by applying cold pressing or hot pressing to the dried electrode.
  • a highly active negative electrode can be obtained by manufacturing a negative electrode containing magnesium (Mg) or aluminum (Al), which is a negative electrode active material. Furthermore, by manufacturing the negative electrode of the primary battery having the above structure, it is possible to sufficiently bring out the potential of magnesium (Mg) or aluminum (Al), which is the negative electrode active material.
  • Aqueous electrolyte (electrolyte)
  • the primary battery of this embodiment contains an aqueous electrolyte.
  • This aqueous electrolyte is an aqueous solution containing an electrolyte capable of transferring magnesium ions (Mg 2+ ) or aluminum ions (Al 3+ ).
  • the aqueous electrolytic solution uses water as a main solvent and may contain a solvent other than water.
  • Aqueous electrolytes include, for example, sulfates, acetates, carbonates, phosphates, pyrophosphates, metaphosphates, citrates, borates, ammonium salts, formates, hydrogen carbonates, hydroxides , an aqueous solution in which at least one electrolyte selected from the group consisting of chlorides is dissolved in water can be used.
  • an aqueous electrolytic solution is used as the electrolyte, but a solid electrolyte such as gel or solid may also be used. That is, the electrolyte may be in any form such as liquid, cream, gel or solid.
  • the pH of the electrolytic solution is preferably 5.8 or more and 8.6 or less. Normally, the stronger the alkaline electrolyte, the better the performance. However, organic substances such as 2,5-dimethoxy-1,4-benzoquinone have weak alkali resistance and are eluted into the electrolyte.
  • the Water Pollution Control Law stipulates that the allowable limit for the pH (hydrogen ion concentration) of wastewater discharged into public water areas other than sea areas is 5.8 or more and 8.6 or less. Therefore, the pH of the aqueous electrolyte is preferably 5.8 or more and 8.6 or less from the viewpoint of environmental load and disposal.
  • the primary battery of the present embodiment can include structural members such as separators and battery cases, and other elements required for primary batteries.
  • Conventionally known materials can be used as these materials, but from the viewpoint of environmental load and disposal, it is preferable that they do not contain harmful substances, rare metals, rare earths, and the like. Further, these other elements are more preferably bio-derived, biodegradable materials.
  • the primary battery of the present embodiment includes at least a positive electrode, a negative electrode, and an aqueous electrolyte solution, and as illustrated in FIG. An aqueous electrolyte is placed so as to be in contact with the negative electrode.
  • a primary battery having such a configuration can be prepared in the same manner as a conventional primary battery.
  • the primary battery contains a positive electrode active material containing 2,5-dimethoxy-1,4-benzoquinone as described above, a positive electrode containing a conductive aid and a binder, and magnesium (Mg) or aluminum (Al).
  • a positive electrode active material containing 2,5-dimethoxy-1,4-benzoquinone as described above
  • a positive electrode containing a conductive aid and a binder and magnesium (Mg) or aluminum (Al).
  • Mg magnesium
  • Al aluminum
  • FIG. 2 is a schematic cross-sectional view showing the structure of a coin-type primary battery. Specifically, first, a separator (not shown) is placed on the positive electrode case 201 on which the positive electrode 101 is placed, and the electrolytic solution 102 is injected into the placed separator. Next, the negative electrode 103 is placed on the electrolytic solution 102 and the negative electrode case 202 is put on the positive electrode case 201 . Next, by crimping the peripheral edges of the positive electrode case 201 and the negative electrode case 202 with a coin cell crimping machine, a coin-type primary battery including the propylene gasket 203 can be manufactured.
  • the illustrated coin-type primary battery uses 2,5-dimethoxy-1,4-benzoquinone powder as a positive electrode active material. Therefore, unlike an air battery that uses oxygen in the air as a positive electrode active material, there is no need to provide an air inlet in the positive electrode case 201 of this embodiment. That is, in this embodiment, a sealed battery can be produced. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
  • a primary battery manufacturing method for example, a primary battery having a bipolar stack structure can be manufactured.
  • FIG. 3A is a configuration diagram showing a configuration example of a bipolar stack primary battery.
  • FIG. 3B is a plan view showing a configuration example of a bipolar stack primary battery.
  • the primary battery of this embodiment uses a water-based electrolyte, the battery voltage cannot be expected. Therefore, it is preferable to increase the voltage by using a primary battery having a stack structure.
  • the positive electrode 101 and the negative electrode 103 are respectively bonded to both surfaces of a current collector 322 such as a copper foil to form the positive electrode 101 and the negative electrode 103 on one current collector 322 .
  • a bipolar electrode 320 in which the positive electrode 101 and the negative electrode 103 are formed on one side of the current collector 322 is produced.
  • each current collector 303A, 303B for the outermost layer may have electrodes formed on only one side, and preferably has tabs 313A, 313B for extracting electricity.
  • the positive electrode 101 is formed only on one side of the illustrated outermost current collector 303A, and a tab 313A is formed.
  • the outermost current collector 303B has the negative electrode 103 formed on only one side thereof and a tab 313B formed thereon.
  • the tabs 313A and 313B may be processed into a shape having projections on the current collectors 303A and 303B, or another metal tab may be joined to the current collectors 303A and 303B by ultrasonic welding, spot welding, or the like.
  • the current collector 322 formed with the positive electrode 101 and the negative electrode 103 is stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the separator 301 is inserted so as to be in contact with the positive electrode 101 and the negative electrode 103 .
  • the outermost current collectors 303A and 303B on which the positive electrode 101 or the negative electrode 103 is formed are also stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the separator 301 is inserted so as to be in contact with the positive electrode 101 and the negative electrode 103. .
  • the peripheral edges of the respective copper foils of the current collectors are sealed by hot pressing using a heat-sealing sheet 302.
  • one side (or a part of one side) of the peripheral portion needs to be left open without hot pressing in order to inject an aqueous electrolyte, which will be described later.
  • the prepared stack is sandwiched between aluminum laminate films 304 or the like, and after injecting an aqueous electrolyte into each cell (each chamber), the unsealed side of the stack and the periphery of the aluminum laminate film are vacuum-sealed to obtain a bipolar structure. It is possible to fabricate a stack structure primary battery of the type.
  • Such a primary battery is a sealed battery that does not require an air intake port, unlike an air battery that uses oxygen in the air as the positive electrode active material. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
  • Example 10 Examples of the primary battery according to the present embodiment will be described in detail below.
  • a primary battery using magnesium (Mg) for the negative electrode and a primary battery using aluminum (Al) for the negative electrode were produced.
  • Mg magnesium
  • Al aluminum
  • the present invention is not limited to the examples shown below, and can be modified as appropriate without changing the gist of the invention.
  • Example 1 Two coin-type primary batteries (FIG. 2) described above were produced by the following procedure.
  • a magnesium (Mg) foil was used as the negative electrode active material, and a 2.0 mol/L aqueous solution of magnesium sulfate (MgSO 4 ) was used as the aqueous electrolyte.
  • an aluminum (Al) foil was used as the negative electrode active material, and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) was used as the aqueous electrolyte.
  • a magnesium (Mg) foil (thickness of 150 ⁇ m, The Nilaco Corporation) and an aluminum (Al) foil (thickness of 150 ⁇ m, The Nilaco Corporation) were each cut into a circle with a diameter of 16 mm to obtain a negative electrode.
  • the negative electrode 103 of magnesium (Mg) foil is placed on the aqueous electrolyte 102, the negative electrode case 202 is placed on the positive electrode case 201, and the peripheral edges of the positive electrode case 201 and the negative electrode case 202 are crimped with a coin cell crimping machine.
  • a coin-type primary battery including the propylene gasket 203 was obtained.
  • a cellulose-based separator cut into a diameter of 18 mm was placed in the positive electrode case 201 in which the positive electrode 101 prepared by the above method was installed, and an aqueous electrolyte solution was placed on the placed separator.
  • a 2.0 mol/L aluminum sulfate aqueous solution Al 2 (SO 4 ) 3 ) is injected.
  • the negative electrode 103 made of aluminum (Al) foil is placed on the aqueous electrolyte 102, the negative electrode case 202 is placed on the positive electrode case 201, and the peripheral edges of the positive electrode case 201 and the negative electrode case 202 are crimped with a coin cell crimping machine.
  • a coin-type primary battery including the propylene gasket 203 was obtained.
  • Battery performance The battery performance of the primary battery prepared by the above procedure was measured.
  • a charge/discharge measurement system manufactured by Bio Logic
  • the discharge voltage was measured until the discharge voltage was reached.
  • a discharge test of the battery was performed under a normal living environment. The discharge capacity was expressed as a value (mAh/g) per unit weight of the positive electrode active material (2,5-dimethoxy-1,4-benzoquinone).
  • Fig. 4 shows a discharge curve using magnesium (Mg) for the negative electrode.
  • Mg magnesium
  • the average discharge voltage was 1.3 V and the discharge capacity was 200 mAh/g when 2,5-dimethoxy-1,4-benzoquinone was used as the positive electrode active material.
  • the average discharge voltage is defined as the discharge voltage when the discharge capacity is 1/2 of the total discharge capacity (here, 100 mAh/g).
  • Table 1 shows the discharge voltage and average discharge capacity of a primary battery using magnesium (Mg) for the negative electrode and a primary battery using aluminum (Al) for the negative electrode. Thus, it was found that each primary battery of Example 1 had excellent battery performance.
  • Example 2 Two coin-type primary batteries described above were produced by the following procedure.
  • the positive electrode was prepared by coating a copper sheet collector (copper foil), and the negative electrode was prepared by welding the copper sheet collector (copper foil).
  • a 2.0 mol/L magnesium sulfate aqueous solution (MgSO 4 ) and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) were added to the aqueous electrolyte. each used.
  • the production and evaluation method of the battery were performed in the same manner as in Example 1.
  • Magnesium (Mg) foil (thickness 150 ⁇ m, Nilaco) and aluminum (Al) foil (thickness 150 ⁇ m, Nilaco) were each cut into a circle with a diameter of 16 mm, and each of these was cut into a copper foil (Nilaco). A sonic welder was used to join them to obtain a negative electrode.
  • Example 2 The discharge capacities and average discharge voltages of the two primary batteries of Example 2 are shown in Table 1. As shown in Table 1, the discharge capacity of Example 2 in the battery using magnesium (Mg) for the negative electrode was 250 mAh/g, which was larger than that of Example 1. Even in the battery using aluminum (Al) for the negative electrode, the discharge capacity of Example 2 was larger than that of Example 1.
  • Mg magnesium
  • Al aluminum
  • Example 2 the average discharge voltage of Example 2 is higher than the average discharge voltage of Example 1. That is, in Example 2, a decrease in overvoltage was observed as compared with Example 1, and an improvement in discharge energy efficiency could be achieved.
  • Example 3 In Example 3, two of the above-described bipolar three-stack primary batteries were fabricated by the following procedure.
  • FIG. 3A is an exploded view of a bipolar three-stack primary battery.
  • the aqueous electrolytes were a 2.0 mol/L magnesium sulfate aqueous solution (MgSO 4 ) and a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ). and were used respectively.
  • the battery evaluation method was the same as in Examples 1 and 2. However, the measurement in the charge/discharge test was performed until the discharge voltage decreased to 1.00V.
  • magnesium (Mg) is used for the negative electrode 103
  • a magnesium (Mg) foil (thickness 150 ⁇ m, Nilaco) is cut into 2 cm ⁇ 2 cm, and this is attached to a copper foil (Nilaco) by an ultrasonic welding machine. used to connect.
  • the positive electrode 101 2,5-dimethoxy-1,4-benzoquinone powder (Tokyo Chemical Industry Co., Ltd.), Ketjen black powder (EC600JD, Lion Specialty Chemicals), styrene-butadiene rubber (AA Portable Power) ) in a weight ratio of 80:10:10 using a kneader (Thinky Co.) to prepare a slurry.
  • Tokyo Chemical Industry Co., Ltd. Ketjen black powder
  • AA Portable Power styrene-butadiene rubber
  • This slurry was applied to the back surface of the copper foil to which the negative electrode was bonded earlier in a size of 2 cm x 2 cm, and dried in a vacuum dryer at 100°C for 12 hours. After that, it was pressed at 120° C. to obtain a bipolar electrode 320 in which the positive electrode 101 and the negative electrode 103 were bonded to each other on one side.
  • the positive electrode 101 and the negative electrode 103 of the outermost layer were formed by bonding the positive electrode 101 or the negative electrode 103 on only one side of the copper foil (current collectors 303A and 303B).
  • the adjustment method is the same as above.
  • the outermost copper foils (current collectors 303A and 303B) were cut out to have tabs 313A and 313B.
  • the negative electrode 103 When aluminum (Al) is used for the negative electrode 103, as the negative electrode 103, aluminum (Al) foil (thickness 150 ⁇ m, Nilaco) is cut into 2 cm ⁇ 2 cm, and this is attached to a copper foil (Nilaco) with an ultrasonic welding machine. After that, the bipolar electrode 320 , the outermost positive electrode 101 and the negative electrode 103 were obtained in the same manner as in the case of using magnesium (Mg) for the negative electrode 103 .
  • Mg magnesium
  • bipolar electrode 320 For the primary battery using magnesium (Mg) for the negative electrode 103, two sheets of the bipolar electrode 320 prepared by the above method were stacked so that the positive electrode 101 and the negative electrode 103 faced each other, and the space between the bipolar electrodes 320 was 2.2 cm ⁇ 2.2 cm. A separator 301 cut out to 2.2 cm and a frame-shaped heat-sealing sheet 302 cut out in the center are inserted. After lamination, three sides of the peripheral edge portions of the current collectors 322 are hot-pressed at 180° C. to seal.
  • Mg magnesium
  • the outermost negative electrode 103, positive electrode 101, separator 301, and heat-sealing sheet 302 are also stacked so that the positive electrode 101 and the negative electrode 103 face each other, and the same three sides as the sides sealed above are heat-pressed. Seal by doing.
  • the stack thus produced is sandwiched between the aluminum laminate film 304 and the heat-sealing sheet 302, and the same three sides as the sides sealed above are hot-pressed to make the aluminum laminate film into a bag shape.
  • magnesium sulfate aqueous solution (MgSO 4 ) is injected into each cell (chamber) of the stack structure, and after the separator 301 is sufficiently immersed, one side of the aluminum laminate film 304 that is not sealed is was vacuum-sealed, and finally, the unsealed side of the stack was sealed from above with an aluminum laminate film 304 to obtain a bipolar stack primary battery using magnesium (Mg) for the negative electrode 103 .
  • a primary battery using aluminum (Al) for the negative electrode 103 was adjusted in the same manner as the primary battery using magnesium (Mg) for the negative electrode 103 to obtain a bipolar stacked primary battery.
  • a 2.0 mol/L aluminum sulfate aqueous solution (Al 2 (SO 4 ) 3 ) is injected into each cell (chamber) of the stack structure instead of the magnesium sulfate aqueous solution (MgSO 4 ), and the separator 301 is fully immersed.
  • Example 3 Although three stacks are used in Example 3, it is possible to fabricate a bipolar stacked primary battery with three or more stacks. In that case, the number of stacked bipolar electrodes 320 may be increased.
  • Table 1 shows the discharge capacities and average discharge voltages of the two primary batteries of this example. As shown in Table 1, the discharge capacity of Example 3 in the battery using magnesium (Mg) for the negative electrode was 260 mAh/g, which was equivalent to that of Example 2. The discharge capacity of Example 3 was the same as that of Example 2 even in the battery using aluminum (Al) for the negative electrode.
  • Mg magnesium
  • Al aluminum
  • the average discharge voltage is about three times that of Example 1, and by using a bipolar type stack structure primary battery, it is possible to achieve a voltage equivalent to that of a conventional lithium ion battery. .
  • the primary battery of the present embodiment uses 2,5-dimethoxy-1,4-benzoquinone as the positive electrode active material and magnesium or aluminum as the negative electrode active material. can be simplified.
  • the primary battery of the present embodiment is a sealed battery that does not require an air intake port unlike an air battery. Therefore, the primary battery of this embodiment can be stored for a long period of time without volatilization of the electrolytic solution from the air intake.
  • a water-based electrolyte As the electrolyte, it is preferable to use a water-based electrolyte as the electrolyte.
  • organic electrolytes When organic electrolytes are used, they are flammable and may cause fires, explosions, etc. In addition, there are concerns about adverse effects on the human body and the environment when they leak. In contrast, in the present embodiment, by using an aqueous electrolyte, a battery with high safety and low cost can be produced.
  • the pH of the aqueous electrolytic solution is preferably 5.8 or more and 8.6 or less. As a result, it is possible to manufacture an environmentally friendly battery that is easy to dispose of.
  • the primary battery of this embodiment can be effectively used as a new drive source for various electronic devices such as small devices, sensors, and mobile devices.
  • Positive electrode 102 Aqueous electrolytic solution (electrolyte) 103: Negative electrode 201: Positive electrode case 202: Negative electrode case 203: Propylene gasket 301: Separator 302: Thermal fusion sheet 303A, 303B: Outermost layer current collector 304: Aluminum laminate film 320: Bipolar electrode 322: Current collector

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Primary Cells (AREA)

Abstract

一次電池であって、2,5-ジメトキシ-1,4-ベンゾキノンを含む正極101と、マグネシウムまたはアルミニウムを含む負極103と、前記正極101と前記負極103との間に配置された水系電解液102と、を備える。

Description

一次電池
 本発明は、一次電池に関する。
 従来、小型デバイス、センサ、モバイル機器等に、使い捨ての一次電池及び、充電可能な二次電池としてアルカリ電池、マンガン電池、高性能なコイン型リチウム一次電池、ニカド電池、ニッケル水素電池、リチウムイオン電池等が広く使用されている。また、近年のIoT(Internet of Things)の発展において、土壌や森の中等自然界の至る所に設置して用いるばらまき型センサの開発も進んでいる。
 現在一般に用いられている電池は、リチウム、ニッケル、マンガン、コバルトなどのレアメタルで構成されている場合が多く、資源枯渇の問題がある。
 また、低環境負荷な空気電池の検討がされている(特許文献1)。
特許第6711915
 特許文献1の電池原理は空気電池であり、空気中の酸素を正極活物質として利用するため、電池に空気取り込み口が必須となる。そのため、空気電池には、上記空気取り込み口から電解液が揮発し、長期保存には不向きという欠点が存在する。したがって、密閉系での電池反応が可能な、新しい低環境負荷な電池が求められている。
 本発明は、上記事情に鑑みてなされたものであり、低環境負荷で、長期保存が可能な一次電池を提供することを目的とする。
 本発明の一態様の一次電池は、2,5-ジメトキシ-1,4-ベンゾキノンを含む正極と、マグネシウムまたはアルミニウムを含む負極と、前記正極と前記負極との間に配置された水系電解液と、を備える。
 本発明によれば、低環境負荷で、長期保存が可能な一次電池を提供することができる。
図1は、本実施形態の一次電池の基本的な概略図である。 図2は、コイン型一次電池の構造を示す概略断面図である。 図3Aは、バイポーラ型のスタック一次電池の構成例を示す構成図である。 図3Bは、バイポーラ型のスタック一次電池の構成例を示す平面図である。 実施例1の一次電池の放電曲線を示すグラフである。
 以下、本発明の実施の形態について図を参照して説明する。
 [一次電池の構成]
 図1は、本発明の実施の形態における一次電池の構成を示す構成図である。この一次電池は、2,5-ジメトキシ-1,4-ベンゾキノン(2,5-Dimethoxy-1,4-benzoquinone)を含む正極101と、マグネシウムまたはアルミニウムを含む負極103と、正極101と負極103との間に配置された電解質102と、を備える。2,5-ジメトキシ-1,4-ベンゾキノンは、2,5-位にメトキシ基を有する有機化合物である。電解質102として、水系電解液102を用いることが好ましい。以下に説明する本実施形態では、電解質102に水系電解液102を用いた場合を一例として説明するが、これに限定されない。
 具体的には、正極101は、活物質として2,5-ジメトキシ-1,4-ベンゾキノンを用いて構成される。負極103は、活物質としてマグネシウムまたはアルミニウムを用いて構成される。水系電解液(電解質)102は、正極101および負極103と接するように配置される。このように、本実施形態の一次電池は、正極101に2,5-ジメトキシ-1,4-ベンゾキノンの活物質を含み、負極103にマグネシウムまたはアルミニウムの活物質を含むことを特徴とする。
 正極101での放電反応は、次のように表すことができる。下記に一例として、負極103にマグネシウム(Mg)を用いた反応を示す。
Figure JPOXMLDOC01-appb-C000001
 
 後述するマグネシウムイオン(Mg2+)と正極101とが反応することにより、2,5-ジメトキシ-1,4-ベンゾキノンにマグネシウムイオン(Mg2+)が挿入される。
 負極103での放電反応は次のように表すことができる。
 Mg→Mg2++2e・・・(2)
 上式中のマグネシウムイオン(Mg2+)は、負極103から電気化学還元により水系電解液102中に溶解し、水系電解液102中を正極101の表面まで移動する。
 これら式(1)~(2)の反応により、放電が可能であり、全反応は、次のように表すことができる。
Figure JPOXMLDOC01-appb-C000002
 
 負極103にアルミニウム(Al)を用いた正極101での放電反応は、次のように表すことができる。
Figure JPOXMLDOC01-appb-C000003
 
 後述するアルミニウムイオン(Al3+)と正極101とが反応することにより、2,5-ジメトキシ-1,4-ベンゾキノンにアルミニウムイオン(Al3+)が挿入される。
 負極103での放電反応は次のように表すことができる。
 Al→Al3++3e・・・(5)
 上式中のアルミニウムイオン(Al3+)は、負極103から電気化学還元により水系電解液102中に溶解し、水系電解液102中を正極101の表面まで移動する。
 これら式(4)~(5)の反応により、放電が可能であり、全反応は、次のように表すことができる。
Figure JPOXMLDOC01-appb-C000004
 
 また、理論起電力は約3V(正極活物質に2,5-ジメトキシ-1,4-ベンゾキノン及び負極活物質にMg使用時)と、約2V(正極活物質に2,5-ジメトキシ-1,4-ベンゾキノン及び負極活物質にAl使用時)となっている。
 本実施形態の一次電池は、正極活物質に2,5-ジメトキシ-1,4-ベンゾキノンを使用し、負極活物質にマグネシウムまたはアルミニウムを使用し、電解質に水系電解液を用いることで、安価な材料で構成される、低環境負荷な電池として期待できる。
 正極101は、正極活物質及び導電助剤を構成要素に含むことができる。また、正極101には、前記材料を一体化するための結着剤を含むことが好ましい。
 負極103は、負極活物質及び導電助剤を構成要素に含むことができる。また、負極103には、前記材料を一体化するための結着剤を含むことが好ましい。
 以下に上記の各構成要素について説明する。
 (1)正極
 正極は、正極活物質を少なくとも含み、必要に応じて導電助剤、結着剤等の添加物を含むことができる。正極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成されてもよい。
 (1-1)正極活物質
 本実施形態の正極活物質は、少なくとも2,5-ジメトキシ-1,4-ベンゾキノンを含む。
 また正極活物質の粒子径は、0.3μm~10μmが好ましく、0.5μm~5μmがより好適である。
 これは、粒子径が小さいほど、反応するサイトが増加し、出力性能が向上する一方、電解液中への溶出が促進され、放電容量が低下してしまうためである。
 2,5-ジメトキシ-1,4-ベンゾキノンは、例えば市販品として、又は公知の合成により入手することが可能である。
 (1-2)導電助剤
 本実施形態では、正極に導電助剤を含んでもよい。導電助剤には、例えばカーボンなどを用いることができる。具体的には、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭類、グラファイト類、カーボン繊維類などを挙げることができる。正極中で反応部位を十分確保するために、カーボンは粒子が小さいものが適している。具体的には、粒子径が1μm以下のものが望ましい。これらのカーボンは、例えば市販品として、又は公知の合成により入手することが可能である。
 正極活物質に直接カーボンをコーティングしても良い。コーティングする手法には、蒸着、スパッタリング、遊星ボールミルといった物理的手法、有機物をコーティングした後に熱処理するといった化学的手法、又は公知の手法によりコーティングが可能である。
 (1-3)結着剤
 正極は、結着剤を含んでもよい。結着剤は、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムなどを例として挙げることができる。環境負荷及び廃棄物処理の観点から、フッ素が使用されていないスチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムがより好ましい。
 これらの結着剤は、粉末として又は分散液として用いることができる。
 本実施形態の正極における上記正極活物質、導電助剤及び結着剤の含有量は、正極全体の重量を基準として、正極活物質が0重量%より大きく99%以下、好ましくは70~95重量%であり、導電助剤が0~90重量%、好ましくは1~30重量%であり、結着剤が0~50重量%、好ましくは1~30重量%である。
 (1-4)正極の調製
 正極は以下のように調製することができる。正極活物質である2,5-ジメトキシ-1,4-ベンゾキノン粉末、カーボン粉末、及び必要に応じて、スチレンブタジエンゴムのような分散液を混合し、この混合物を集電体に塗布し乾燥することにより、正極を形成することができる。
 集電体は、特に限定されないが、例えば、銅、鉄、チタン、ニッケルおよびカーボンからなる群より選択される少なくとも1つ(1つの元素)を用いたシート状またはメッシュ状の集電体を使用することができる。
 後述するバイポーラ型のスタック構造に電池を組み立てるためには、集電体は、シート状であることが好ましい。また、環境負荷及び廃棄の観点から、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体がより好ましい。このように正極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に塗布されることが好ましい。
 電極の強度を高めるために、乾燥後の電極に冷間プレスまたはホットプレスを適用することによって、より安定性に優れた正極を作製することができる。
 以上のように、正極活物質である2,5-ジメトキシ-1,4-ベンゾキノンを含む正極を作製することで、充電反応及び放電反応に対して高活性な正極を得ることができる。更に、上記のような構成の一次電池の正極を作製することにより、正極活物質である2,5-ジメトキシ-1,4-ベンゾキノンのポテンシャルを十分引き出すことが可能である。
 (2)負極
 負極は、負極活物質を少なくとも含み、必要に応じて導電助剤、結着剤等の添加物を含むことができる。負極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成されてもよい。
 (2-1)負極活物質
 本実施形態の負極活物質は、少なくともマグネシウム(Mg)またはアルミニウム(Al)を含む。
 負極活物質は、主成分としてマグネシウム(Mg)またはアルミニウム(Al)を含めばよく、他にも、亜鉛(Zn)、カルシウム(Ca)、リチウム(Li)、マンガン(Mn)、鉄(Fe)、錫(Sn)、カーボン(C)からなら群から選ばれる少なくとの1つの成分を含む合金であっても良い。
 負極活物質は、マグネシウム(Mg)箔またはアルミニウム(Al)箔を所定の形状に成形することで作製することが可能である。
 マグネシウム(Mg)またはアルミニウム(Al)を粉末で使用してもよい。ただし、粉末で使用すると、反応するサイトが増加し、出力性能が向上する一方、マグネシウム(Mg)またはアルミニウム(Al)の酸化及び電解液による腐食の進行が加速してしまう。このため、マグネシウム(Mg)またはアルミニウム(Al)は、箔状またはバルク状で使用することが好ましい。
 (2-2)導電助剤
 負極活物質を粉末で使用する場合、負極は導電助剤を含んでもよい。導電助剤には、例えばカーボンなどを用いることができる。具体的には、ケッチェンブラック、アセチレンブラックなどのカーボンブラック類、活性炭類、グラファイト類、カーボン繊維類などを挙げることができる。負極中で反応部位を十分確保するために、カーボンは粒子が小さいものが適している。具体的には、粒子径が1μm以下のものが望ましい。これらのカーボンは、例えば市販品として、または公知の合成により入手することが可能である。
 負極活物質に直接カーボンをコーティングしても良い。コーティングする手法には、蒸着、スパッタリング、遊星ボールミルといった物理的手法、有機物をコーティングした後に熱処理するといった化学的手法、または公知の手法によりコーティングが可能である。
 (2-3)結着剤
 負極活物質を粉末で使用する場合、負極は結着剤を含んでもよい。結着剤は、特に限定されないが、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムなどを例として挙げることができる。環境負荷及び廃棄物処理の観点から、フッ素が使用されていないスチレンブタジエンゴム、エチレンプロピレンジエンゴム、天然ゴムがより好ましい。これらの結着剤は、粉末として又は分散液として用いることができる。
 負極活物質を粉末で使用する場合、上記負極活物質、導電助剤及び結着剤の含有量は、負極全体の重量を基準として、負極活物質が0重量%より大きく99%以下、好ましくは70~95重量%であり、導電助剤が0~90重量%、好ましくは1~30重量%であり、結着剤が0~50重量%、好ましくは1~30重量%である。
 (2-4)負極の調製
 負極は、以下のように調製することができる。マグネシウム(Mg)またはアルミニウム(Al)を所定の形状に加工し、この負極活物質を集電体に溶接等で張り付けることにより、負極を形成することができる。
 集電体は、特に限定されないが、例えば、銅、鉄、チタン、ニッケルおよびカーボンからなる群より選択される少なくとも1つ(1つの元素)を用いたシート状またはメッシュ状の集電体を使用することができる。
 後述するバイポーラ型のスタック構造に電池を組み立てるためには、集電体は、シート状であることが好ましい。また、環境負荷及び廃棄の観点から、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体がより好ましい。このように負極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成されることが好ましい。
 また、負極活物質を粉末で使用する場合は以下のように調製することができる。負極活物質であるマグネシウム(Mg)粉末またはアルミニウム(Al)粉末、カーボン粉末、及び必要に応じて、スチレンブタジエンゴムのような分散液を混合し、この混合物を集電体に塗布し乾燥することにより、負極を形成することができる。
 電極の強度を高めるために、乾燥後の電極を冷間プレスやホットプレスを適用することによって、より安定性に優れた負極を作製することができる。
 以上のように、負極活物質であるマグネシウム(Mg)またはアルミニウム(Al)を含む負極を作製することで、高活性な負極を得ることができる。更に、上記のような構成の一次電池の負極を作製することにより、負極活物質であるマグネシウム(Mg)またはアルミニウム(Al)のポテンシャルを十分引き出すことが可能である。
 (3)水系電解液(電解質)
 本実施形態の一次電池は、水系電解液を含む。この水系電解液は、マグネシウムイオン(Mg2+)またはアルミニウムイオン(Al3+)の移動が可能な電解質を含む水溶液である。水系電解液は、主溶媒として水を用い、水以外の溶媒を含んでもよい。水系電解液には、例えば、硫酸塩、酢酸塩、炭酸塩、リン酸塩、ピロリン酸塩、メタリン酸塩、クエン酸塩、ホウ酸塩、アンモニウム塩、ギ酸塩、炭酸水素塩、水酸化物、塩化物からなら群より選ばれる少なくとも1つの電解質を水に溶解させた水溶液を用いることができる。
 本実施形態では、電解質に水系電解液を用いるが、ゲル状、固体状などの固体電解質を用いてもよい。すなわち、電解質は、液状、クリーム状、ゲル状、固体状などのいずれの形態であってもよい。
 水系電解液に、酸性水溶液またはアルカリ水溶液を使用する場合は、電解液のpHは、5.8以上8.6以下であることが好ましい。通常、電解液は、強アルカリであるほど性能が向上するが、2,5-ジメトキシ-1,4-ベンゾキノンを始めとする有機質はアルカリ性の耐性が弱く電解液に溶出してしまう。
 また国の法律である水質汚濁防止法では、海域以外の公共用水域に排出される排液のpH(水素イオン濃度)の許容限度は、5.8以上8.6以下と定められている。このため、環境負荷及び廃棄処理の観点からも、水系電解液のpHは、5.8以上8.6以下が好ましい。
 (4)他の要素
 本実施形態の一次電池は、上記構成要素に加え、セパレータ、電池ケースなどの構造部材、その他一次電池に要求される要素を含むことができる。これらは、従来公知のものが使用できるが、環境負荷及び廃棄処理の観点から、有害物質、レアメタル、レアアース等を含まないことが好ましい。更に、これらの他の要素は、生物由来、生分解性材料であることがより好適である。
 (5)一次電池の製造方法
 本実施形態の一次電池は、上述した通り、少なくとも正極、負極及び水系電解液を含み、図1に例示されるように、正極と負極との間に、正極および負極に接するように水系電解液が配置される。このような構成の一次電池は、従来型の一次電池と同様に調製することができる。
 例えば、一次電池は、上述したような2,5-ジメトキシ-1,4-ベンゾキノンを含む正極活物質、導電助剤および結着剤を含む正極と、マグネシウム(Mg)またはアルミニウム(Al)を含む負極と、正極と負極とに接すように配置された水系電解液とを、従来技術に従って各要素を組み立てればよい。
 (5-1)コイン型一次電池の製造方法
 一次電池の製造方法の一実施形態として、例えばコイン型一次電池を製造することができる。
 図2は、コイン型一次電池の構造を示す概略断面図である。具体的には、まず、上記正極101を設置した正極ケース201に、図示しないセパレータを載置し、載置したセパレータに電解液102を注入する。次に、電解液102の上に負極103を設置し、負極ケース202を正極ケース201に被せる。次に、コインセルカシメ機で正極ケース201及び負極ケース202の周縁部をかしめることにより、プロピレンガスケット203を含むコイン型一次電池を作製することが可能である。
 図示するコイン型一次電池は、正極活物質として2,5-ジメトキシ-1,4-ベンゾキノン粉末を利用する。そのため、正極活物質に空気中の酸素を用いる空気電池とは異なり、本実施形態の正極ケース201には空気取り込み口を設ける必要がない。すなわち、本実施形態では、密閉型の電池を作製することができる。したがって、本実施形態の一次電池は、空気取り込み口から電解液が揮発することなく、長期保存することができる。
 (5-2)バイポーラ型のスタック構造一次電池の製造方法
 一次電池の製造方法の一実施形態として、例えばバイポーラ型のスタック構造を有する一次電池を製造することができる。
 図3Aは、バイポーラ型のスタック一次電池の構成例を示す構成図である。図3Bは、バイポーラ型のスタック一次電池の構成例を示す平面図である。
 本実施形態の一次電池は、使用する電解液が水系のため、電池電圧に期待が出来ない。このため、スタック構造の一次電池とすることで、電圧を上げることが好ましい。
 具体的には、まず、銅箔等の集電体322の両面にそれぞれ、上記正極101と上記負極103とを接合し、1枚の集電体322に正極101及び負極103をそれぞれ形成する。これにより、正極及101および負極103がそれぞれ集電体322の片面に形成されたバイポーラ電極320を作製する。
 また、最外層用の各集電体303A、303Bは、片面のみの電極形成でよく、電気を取り出すためのタブ313A、313Bがあることが好ましい。図示する最外層の集電体303Aには、片面のみに正極101が形成され、タブ313Aが形成されている。最外層の集電体303Bには、片面のみに負極103が形成され、タブ313Bが形成されている。
 タブ313A、313Bは、集電体303A、303Bに突起を有する形状で加工しても良く、集電体303A、303Bに別の金属タブを超音波溶接、スポット溶接等により接合しても良い。
 正極101および負極103を形成した集電体322を、正極101及び負極103が向かい合うように重ね、正極101と負極103に接するようにセパレータ301を挿入する。正極101または負極103を形成した最外層用の各集電体303A、303Bについても、同様に、正極101及び負極103が向かい合うように重ね、正極101と負極103に接するようにセパレータ301を挿入する。
 集電体303A、303B、322およびセパレータ301を積層したら、集電体の各銅箔同士の周縁部を熱融着シート302を使用して、熱プレスすることでシールする。ただし、周縁部は後述する水系電解液を注入するために1辺(又は一辺の一部)は熱プレスを実施せずに開けておく必要がある。
 作製したスタックをアルミラミネートフィルム304等で挟み、水系電解液を各セル(各部屋)に注液後、スタックの封止していない一辺とアルミラミネートフィルムの周縁部を真空シールすることで、バイポーラ型のスタック構造一次電池を作製が可能である。
 このような一次電池は、正極活物質に空気中の酸素を用いる空気電池とは異なり、空気取り込み口が不要な、密閉型の電池である。したがって、本実施形態の一次電池は、空気取り込み口から電解液が揮発することなく、長期保存することができる。
 [実施例]
 以下に本実施形態に係る一次電池の実施例を詳細に説明する。各実施例では、負極にマグネシウム(Mg)を用いた一次電池と、負極にアルミニウム(Al)を用いた一次電池とを、それぞれ作製した。なお、本発明は下記の実施例に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。
 <実施例1>
 実施例1では、前述したコイン型の一次電池(図2)を、以下の手順で2つ作製した。1つの一次電池では、負極活物資にはマグネシウム(Mg)箔を使用し、水系電解液には2.0 mol/Lの硫酸マグネシウム水溶液(MgSO)を使用した。もう1つの一次電池では、負極活物資にはアルミニウム(Al)箔を使用し、水系電解液には2.0 mol/Lの硫酸アルミニウム水溶液(Al(SO)を使用した。
 (正極の調製)
 2,5-ジメトキシ-1,4-ベンゾキノン粉末(東京化成工業株式会社)、ケッチェンブラック粉末(EC600JD、ライオン・スペシャリティ・ケミカルズ社)、ポリテトラフルオロエチレン(PTFE)粉末を、80:10:10の重量比でらいかい機を用いて十分に粉砕混合し、ロール成形して、シート状電極(厚さ:0.5mm)を作製した。このシート状電極を直径16mmの円形に切り抜き、銅メッシュ上にプレスすることにより、正極を得た。
 (負極の調製)
 マグネシウム(Mg)箔(厚さ150μm、ニラコ社)、及びアルミニウム(Al)箔(厚さ150μm、ニラコ社)をそれぞれ直径16mmの円形に切り抜き、負極を得た。
 (一次電池の調製)
 コイン電池用ケース(宝泉社)を使用して、図2に示すコイン型一次電池を2つ作製した。1つの一次電池では、上記の方法で調整した正極101を設置した正極ケース201に直径18mmに切り抜いたセルロース系セパレータ(ニッポン高度紙工業社)を載置し、載置したセパレータに2.0 mol/Lの硫酸マグネシウム水溶液(MgSO)を水系電解液102として注入する。水系電解液102の上にマグネシウム(Mg)箔の上記負極103を設置し、負極ケース202を正極ケース201に被せ、コインセルカシメ機で正極ケース201及び負極ケース202の周縁部をかしめることにより、プロピレンガスケット203を含むコイン型一次電池を得た。
 もう1つの一次電池では、上記の方法で調整した正極101を設置した正極ケース201に直径18mmに切り抜いたセルロース系セパレータ(ニッポン高度紙工業社)を載置し、載置したセパレータに水系電解液102として2.0 mol/Lの硫酸アルミニウム水溶液(Al(SO)を注入する。水系電解液102の上にアルミニウム(Al)箔の上記負極103を設置し、負極ケース202を正極ケース201に被せ、コインセルカシメ機で正極ケース201及び負極ケース202の周縁部をかしめることにより、プロピレンガスケット203を含むコイン型一次電池を得た。
 (電池性能)
 以上の手順で調整した一次電池の電池性能を測定した。電池のサイクル試験は、充放電測定システム(Bio Logic社製)を用いて、正極の有効面積当たりの電流密度で1mA/cmを通電し、開回路電圧から電池電圧が、0.60Vに低下するまで放電電圧の測定を行った。電池の放電試験は、通常の生活環境下で行った。放電容量は正極活物質(2,5-ジメトキシ-1,4-ベンゾキノン)単位重量当たりの値(mAh/g)で表した。
 図4に、負極にマグネシウム(Mg)を用いた放電曲線を示す。図4より、2,5-ジメトキシ-1,4-ベンゾキノンを正極活物質に用いたときの平均放電電圧は1.3V、放電容量は200mAh/gであることが分かる。ここで、平均放電電圧は、全放電容量の1/2の放電容量(ここでは、100mAh/g)の時の放電電圧と定義する。
 以下の表1に、負極にマグネシウム(Mg)用いた一次電池、及び、負極にアルミニウム(Al)を用いた一次電池の放電電圧及び平均放電容量を示す。このように、実施例1の各一次電池は、優れた電池性能を有していることが分かった。
Figure JPOXMLDOC01-appb-T000005
 
 <実施例2>
 実施例2では、前述したコイン型の一次電池を以下の手順で2つ作製した。実験例2では、正極は銅のシート状集電体(銅箔)に塗布して調製し、負極は銅のシート状集電体(銅箔)に溶接して調製した。水系電解液には、実験例1と同様に、2.0 mol/Lの硫酸マグネシウム水溶液(MgSO)と、2.0 mol/Lの硫酸アルミニウム水溶液(Al(SO)とをそれぞれ使用した。電池の作製及び評価法は、実施例1と同様にして行った。
 (正極の調製)
 2,5-ジメトキシ-1,4-ベンゾキノン粉末(東京化成工業株式会社)、ケッチェンブラック粉末(EC600JD、ライオン・スペシャリティ・ケミカルズ社)、スチレンブタジエンゴム(AAポータブルパワー社)が、重量比で80:10:10になるように、混錬機(シンキー社)を使用して十分に混合し、スラリーを作製した。このスラリーを銅箔(ニラコ社)に塗布し、100℃の真空乾燥機で12時間乾燥させた。その後、120℃でプレスし、このシート状電極を直径16mmの円形に切り抜き、正極を得た。
 (負極の調製)
 マグネシウム(Mg)箔(厚さ150μm、ニラコ社)、及び、アルミニウム(Al)箔(厚さ150μm、ニラコ社)を、それぞれ直径16mmの円形に切り抜き、これらをそれぞれ銅箔(ニラコ社)に超音波溶接機を使用して接合させて負極を得た。
 (電池性能)
 実施例2の2つの一次電池の放電容量及び平均放電電圧を、表1に示す。表1に示すように、負極にマグネシウム(Mg)を用いた電池における実施例2の放電容量は、250mAh/gを示し、実施例1よりも大きい値であった。負極にアルミニウム(Al)を用いた電池においても、実施例2の放電容量は実施例1よりも大きい値であった。
 また、表1に示すように、実施例2の平均放電電圧は、実施例1の平均放電電圧よりも大きい。すなわち、実施例2では、実施例1よりも過電圧の減少が見られ、放電のエネルギー効率の改善を達成することができた。
 これらの特性の向上は、銅のシート状集電体に正極及び負極をそれぞれ接合して形成したため、電池の内部抵抗が減少し、電池反応がスムーズに行われたことによると考えられる。
 <実施例3>
 実施例3では、前述したバイポーラ型の3スタック構造の一次電池を、以下の手順で2つ作製した。
 図3Aは、バイポーラ型の3スタック構造の一次電池の分解図である。水系電解液には、実施例1~2と同様に、2.0 mol/Lの硫酸マグネシウム水溶液(MgSO)と、2.0 mol/Lの硫酸アルミニウム水溶液(Al(SO)とをそれぞれ使用した。
 電池の評価法は、実施例1~2と同様に行った。但し、充放電試験の測定は、放電電圧が1.00Vまで低下するまで行った。
 (正極及び負極の調製)
 負極103にマグネシウム(Mg)を用いた場合、負極103として、マグネシウム(Mg)箔(厚さ150μm、ニラコ社)を2cm×2cmに切り抜き、これを銅箔(ニラコ社)に超音波溶接機を使用して接合させた。
 次に、正極101として、2,5-ジメトキシ-1,4-ベンゾキノン粉末(東京化成工業株式会社)、ケッチェンブラック粉末(EC600JD、ライオン・スペシャリティ・ケミカルズ社)、スチレンブタジエンゴム(AAポータブルパワー社)が重量比で80:10:10になるように、混錬機(シンキー社)を使用して十分に混合し、スラリーを作製した。
 このスラリーを先ほどの負極を接合させた銅箔の裏面に2cm×2cmで塗布し、100℃の真空乾燥機で12時間乾燥させた。その後、120℃でプレスし、正極及101および負極103がそれぞれ片面ずつ接合されたバイポーラ電極320を得た。
 但し、最外層の正極用電極101および負極用電極103は、前述の銅箔(集電体303A、303B)の片面のみ前述の正極101または負極103をそれぞれ接合した。調整方法は上記と同様である。この最外層の銅箔(集電体集電体303A、303B)には、タブ313A、313Bを有する形状で切り抜いたものを使用した。
 負極103にアルミニウム(Al)を用いた場合、負極103として、アルミニウム(Al)箔(厚さ150μm、ニラコ社)を2cm×2cmに切り抜き、これを銅箔(ニラコ社)に超音波溶接機を使用して接合させ、その後、負極103にマグネシウム(Mg)を用いた場合と同様に、バイポーラ電極320、最外層の正極用電極101および負極用電極103を得た。
 (一次電池の調製)
 アルミラミネートフィルム304を使用して、図3に示すバイポーラ型の3スタック構造の一次電池を2つ作製した。
 負極103にマグネシウム(Mg)を用いた一次電池については、上記の方法で調整したバイポーラ電極320を2枚、正極101及び負極103が向かい合うように重ね、バイポーラ電極320同士の間に2.2cm×2.2cmに切り抜いたセパレータ301と、中心部を切り抜いたフレーム形状の熱融着シート302とを挿入する。積層したら、各集電体322同士の周縁部3辺を180℃で熱プレスすることでシールする。
 最外層も上記と同様に、正極101及び負極103が向かい合うように最外層の負極103、正極101、セパレータ301、熱融着シート302も重ね、上記でシールした辺と同一の3辺を熱プレスすることでシールする。
 このようにして作製したスタックを、アルミラミネートフィルム304と熱融着シート302とで挟み、上記でシールした辺と同一の3辺を熱プレスすることでアルミラミネートフィルムを袋状にする。
 その後、2.0 mol/Lの硫酸マグネシウム水溶液(MgSO)をスタック構造の各セル(部屋)に注入し、セパレータ301を十分に浸漬させた後、アルミラミネートフィルム304の封止していない一辺を真空シールし、最後に、スタックの封止していない一辺をアルミラミネートフィルム304の上から封止することで、負極103にマグネシウム(Mg)を用いたバイポーラ型のスタック一次電池を得た。
 負極103にアルミニウム(Al)を用いた一次電池についても、負極103にマグネシウム(Mg)を用いた一次電池と同様に調整してバイポーラ型のスタック一次電池を得た。ただし、この一次電池では、硫酸マグネシウム水溶液(MgSO)の代わりに2.0 mol/Lの硫酸アルミニウム水溶液(Al(SO)をスタック構造の各セル(部屋)に注入し、セパレータ301を十分に浸漬させる。
 なお、実施例3では、3スタックであるが、3スタック以上のバイポーラ型のスタック一次電池の作製も可能で、その場合は、積層するバイポーラ電極320の積層数を増やせば良い。
 (電池性能)
 本実施例の2つの一次電池の放電容量及び平均放電電圧を、表1に示す。表1に示すように、負極にマグネシウム(Mg)を用いた電池における実施例3の放電容量は、260mAh/gを示し、実施例2と同等であった。負極にアルミニウム(Al)を用いた電池においても、実施例3の放電容量は実施例2と同等であった。
 また、表1に示すように平均放電電圧は、実施例1の3倍程度であり、バイポーラ型のスタック構造一次電池にすることで、従来のリチウムイオン電池と同等の電圧を達成することができる。
 以上の結果より、本実施形態の一次電池は、正極活物質として2,5-ジメトキシ-1,4-ベンゾキノンを用い、負極活物質としてマグネシウムまたはアルミニウムを用いることにより、低環境負荷で、廃棄処理を簡便化することができる。
 また、本実施形態の一次電池は、空気電池とは異なり空気取り込み口が不要な、密閉型の電池である。そのため、本実施形態の一次電池は、空気取り込み口から電解液が揮発することなく、長期保存することができる。
 電解質に水系電解液を用いることが好ましい。有機系電解液を用いた場合、燃えやすいため火災、爆発などの原因になる恐れがあり、また、漏洩時に人体や環境に対する悪影響が懸念される。これに対し、本実施形態では、水系電解液を用いることで、安全性が高く、安価な電池を作製することができる。
 水系電解液のpHは、5.8以上8.6以下であることが好ましい。これにより、環境に配慮した、廃棄処理が容易な電池を作製することができる。
 したがって、本実施形態の一次電池は、小型デバイス、センサ、モバイル機器などの様々な電子機器の新しい駆動源として有効利用することができる。
 なお、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想内で、様々な変形および組み合わせが可能である。
 101:正極
 102:水系電解液(電解質)
 103:負極
 201:正極ケース
 202:負極ケース
 203:プロピレンガスケット
 301:セパレータ
 302:熱融着シート
 303A、303B:最外層集電体
 304:アルミラミネートフィルム
 320:バイポーラ電極
 322:集電体

Claims (3)

  1.  2,5-ジメトキシ-1,4-ベンゾキノンを含む正極と、
     マグネシウムまたはアルミニウムを含む負極と、
     前記正極と前記負極との間に配置された水系電解液と、を備える
     一次電池。
  2.  前記正極及び前記負極は、銅、鉄およびカーボンからなる群より選択される少なくとも1つを含むシート状集電体に形成される
     請求項1に記載の一次電池。
  3.  バイポーラ型のスタック構造を有する
     請求項1または2に記載の一次電池。
PCT/JP2021/018248 2021-05-13 2021-05-13 一次電池 WO2022239197A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/553,252 US20240204211A1 (en) 2021-05-13 2021-05-13 Primary Battery
JP2023520692A JPWO2022239197A1 (ja) 2021-05-13 2021-05-13
PCT/JP2021/018248 WO2022239197A1 (ja) 2021-05-13 2021-05-13 一次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/018248 WO2022239197A1 (ja) 2021-05-13 2021-05-13 一次電池

Publications (1)

Publication Number Publication Date
WO2022239197A1 true WO2022239197A1 (ja) 2022-11-17

Family

ID=84028066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018248 WO2022239197A1 (ja) 2021-05-13 2021-05-13 一次電池

Country Status (3)

Country Link
US (1) US20240204211A1 (ja)
JP (1) JPWO2022239197A1 (ja)
WO (1) WO2022239197A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024142391A1 (ja) * 2022-12-28 2024-07-04 日本電信電話株式会社 二次電池
WO2024150328A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 二次電池
WO2024166382A1 (ja) * 2023-02-10 2024-08-15 日本電信電話株式会社 一次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032443A1 (ja) * 2005-09-14 2007-03-22 Mitsubishi Chemical Corporation 一次電池用非水電解液及びそれを用いた非水電解液一次電池
JP2015065028A (ja) * 2013-09-25 2015-04-09 独立行政法人産業技術総合研究所 非水マグネシウム二次電池
JP2016514897A (ja) * 2013-04-10 2016-05-23 ユニバーシティー オブ ヒューストン システム 有機電極材料を用いた水溶液系エネルギー貯蔵装置
WO2020138377A1 (ja) * 2018-12-27 2020-07-02 富士フイルム和光純薬株式会社 硫黄系マグネシウム電池用電解液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032443A1 (ja) * 2005-09-14 2007-03-22 Mitsubishi Chemical Corporation 一次電池用非水電解液及びそれを用いた非水電解液一次電池
JP2016514897A (ja) * 2013-04-10 2016-05-23 ユニバーシティー オブ ヒューストン システム 有機電極材料を用いた水溶液系エネルギー貯蔵装置
JP2015065028A (ja) * 2013-09-25 2015-04-09 独立行政法人産業技術総合研究所 非水マグネシウム二次電池
WO2020138377A1 (ja) * 2018-12-27 2020-07-02 富士フイルム和光純薬株式会社 硫黄系マグネシウム電池用電解液

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024142391A1 (ja) * 2022-12-28 2024-07-04 日本電信電話株式会社 二次電池
WO2024150328A1 (ja) * 2023-01-11 2024-07-18 日本電信電話株式会社 二次電池
WO2024166382A1 (ja) * 2023-02-10 2024-08-15 日本電信電話株式会社 一次電池

Also Published As

Publication number Publication date
JPWO2022239197A1 (ja) 2022-11-17
US20240204211A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
WO2022239197A1 (ja) 一次電池
KR101513821B1 (ko) 전지용 전극 및 그 이용
JP5039956B2 (ja) 負極活物質、負極およびリチウム二次電池
WO2009093504A1 (ja) 電極および電極製造方法
US10002717B2 (en) High performance lithium-ion capacitor laminate cells
JP2001143702A (ja) 非水二次電池
CN102024934B (zh) 电极组件及包括该电极组件的二次电池
CN101937994A (zh) 锂离子电池的石墨烯/铝复合负极材料及其制备方法
CN109216781A (zh) 氟化物穿梭二次电池
JP2019016484A (ja) 全固体電池用負極およびそれを備える全固体電池
JP2023536628A (ja) ラミネート固体電解質系コンポーネントの製造方法及びそれを用いた電気化学セル
JP5120213B2 (ja) 水系リチウムイオン二次電池
WO2022102032A1 (ja) 鉄亜鉛電池
JP5904543B2 (ja) コンバージョン反応により充放電を行うリチウム二次電池用活物質、該活物質を用いたリチウム二次電池
JP4993860B2 (ja) 非水電解液一次電池
CN116845235A (zh) 正极材料、正极极片及电池
Sakuda et al. Bulk-type all-solid-state lithium secondary battery with Li2S-P2S5 thin-film separator
JPH11126600A (ja) リチウムイオン二次電池
WO2023073868A1 (ja) 一次電池
JP4993859B2 (ja) 非水電解液一次電池
WO2022107325A1 (ja) 一次電池
WO2022102024A1 (ja) 鉄亜鉛電池
JP2010003614A (ja) 電極用集電体の製造方法
JP2022144122A (ja) 非水系アルカリ金属蓄電素子
JP2014175243A (ja) ナトリウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941930

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18553252

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023520692

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941930

Country of ref document: EP

Kind code of ref document: A1