WO2022234732A1 - 導電性樹脂組成物 - Google Patents

導電性樹脂組成物 Download PDF

Info

Publication number
WO2022234732A1
WO2022234732A1 PCT/JP2022/013037 JP2022013037W WO2022234732A1 WO 2022234732 A1 WO2022234732 A1 WO 2022234732A1 JP 2022013037 W JP2022013037 W JP 2022013037W WO 2022234732 A1 WO2022234732 A1 WO 2022234732A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
conductive
resin composition
conductive resin
resin
Prior art date
Application number
PCT/JP2022/013037
Other languages
English (en)
French (fr)
Inventor
祐基 白川
Original Assignee
サカタインクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サカタインクス株式会社 filed Critical サカタインクス株式会社
Priority to CN202280032308.7A priority Critical patent/CN117321145A/zh
Priority to EP22798839.1A priority patent/EP4335899A1/en
Priority to KR1020237038971A priority patent/KR20240004508A/ko
Publication of WO2022234732A1 publication Critical patent/WO2022234732A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or Groups 14 to 16 of the Periodic system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Definitions

  • the present invention relates to a conductive resin composition.
  • the present invention also relates to a conductive film, a conductive ink used in forming a circuit or the like by screen printing on a substrate, and a circuit connecting material used in conductive connection of an electronic component to a circuit board or the like.
  • compositions are known as conductive resin compositions, and are used as conductive pastes, conductive films, conductive inks, conductive paints, circuit connection materials, conductive adhesives, etc. to form electronic circuits. , and is used for various purposes such as adhesion of electronic parts.
  • conductive films that are useful for forming conductive structures such as conductive circuits and electrodes.
  • conductive inks that are applicable to a variety of printing methods and useful in the manufacture of flexible plastic substrates and the like having conductive structures such as interconnects and traces, electrodes and the like.
  • circuit connection materials for high-density mounting and high integration of various electronic components such as LED elements, semiconductor elements and capacitors on the same circuit board.
  • a conductive resin composition (conductive paste) containing a resin and conductive particles has been known as a conductive composition.
  • the conductive resin composition does not have a sufficiently low volume resistivity, and silver particles have to be used as the conductive particles for applications that require a low volume resistivity.
  • the conductive powder is a silver-based powder using at least silver
  • the resin component is at least one of a thermosetting resin and a thermoplastic resin
  • a conductive paste composition containing an ether/amine-based compound or a salt thereof, or an ether/amine-based compound is disclosed.
  • the problem to be solved by the present invention is that when a conductive film is formed, it has a low volume resistivity, exhibits good conductivity, can be used as a substitute for silver paste, and is useful as a conductive ink, circuit connection material, etc.
  • An object of the present invention is to provide an excellent conductive resin composition.
  • Item 1 A conductive resin composition containing tin powder, a resin, and an organic acid compound.
  • Item 2 The conductive resin composition according to Item 1, which contains lead-free solder powder.
  • Item 3 The resin contains one or more selected from the group consisting of polyvinyl butyral-based resins, resol-type phenolic resins, acrylic resins, polyester-based resins, phenoxy resins, polyimide-based resins, epoxy-based resins, and xylene-based resins. 3.
  • Item 4 A conductive film having a volume resistivity of less than 1.0 ⁇ 10 ⁇ 2 ⁇ cm, formed from the conductive resin composition according to any one of Items 1 to 3.
  • Item 5 A conductive ink comprising the conductive resin composition according to any one of Items 1 to 3.
  • Item 6 A circuit connecting material comprising the conductive resin composition according to any one of Items 1 to 3.
  • the present invention has a low volume resistivity when a conductive film is formed, exhibits good conductivity, can be used as an alternative to silver paste, and is useful as a conductive ink, circuit connection material, etc. It exhibits a remarkable effect of obtaining a resin composition. Furthermore, since the conductive resin composition of the present invention can lower the heating temperature when forming a conductive connection, it is possible to use a low-melting plastic as a base material, which has not been used as a base material in the past. becomes. INDUSTRIAL APPLICABILITY
  • the conductive resin composition of the present invention is useful as a printed electronics material, and is extremely useful in mass production of various electronic devices such as display devices, vehicle-related parts, IoT, and mobile communication systems. .
  • the present invention relates to a conductive resin composition, a conductive film, a conductive ink, and a circuit connecting material. These will be described in detail below.
  • the tin powder contained in the conductive resin composition of the present invention is powder composed of 99.5% by mass or more of tin and unavoidable impurities.
  • the content of tin in the tin powder can be easily measured using an X-ray fluorescence spectrometer (XRF) or the like.
  • Examples of inevitable impurities contained in the tin powder include Mn, Sb, Si, K, Na, Li, Ba, Sr, Ca, Mg, Be, Zn, Pb, Cd, Tl, V, Al, Zr, W, One or more other atoms selected from the group consisting of Mo, Ti, Co, Ag, Cu, Ni, Au, B, C, N, O, Ge, Sb, In, As, Al, Fe, etc. .
  • the content of other atoms is preferably less than 0.3% by mass, more preferably 0.1% by mass or less in the tin powder.
  • the shape of the tin powder is not particularly limited.
  • scale-like (flake-like), flattened, spherical, substantially spherical (e.g., vertical and horizontal aspect ratio of 1.5 or less), block-like, plate-like, polygonal pyramid-like, polyhedral-like, rod-like, fibrous, needle-like Shapes, irregular shapes, etc. can be used depending on the application.
  • scaly, spherical, substantially spherical, and flat particles are preferred.
  • the volume average particle size of the spherical tin powder is not particularly limited.
  • D50 is, for example, 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, and is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • D50 is 0.5 ⁇ m or more
  • the dispersibility and handleability of the tin powder are improved.
  • the volume resistivity can be lowered, and the dispersibility and handleability are improved.
  • the average diameter, average thickness and aspect ratio (average diameter/average thickness) of the flat or scale-like tin powder are not particularly limited.
  • the average diameter is, for example, 0.5 ⁇ m or more, preferably 1.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, and for example, 500.0 ⁇ m or less, preferably 300.0 ⁇ m or less, more preferably 150.0 ⁇ m or less.
  • the average thickness is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, and is, for example, 50.0 ⁇ m or less, preferably 20.0 ⁇ m or less, more preferably 10.0 ⁇ m or less.
  • the aspect ratio is, for example, 2 or more, preferably 10 or more, more preferably 50 or more.
  • the content of tin powder in the conductive resin composition is not particularly limited. It can be determined as appropriate from the viewpoint of the conductivity of the conductive resin composition.
  • the total amount of all solids in the conductive resin composition is 100% by mass, for example, 5.0 to 97.0% by mass, preferably 60.0 to 97.0% by mass, more preferably 85.0 to 97.0% by mass, more preferably 90.0 to 97.0% by mass.
  • the resin contained in the conductive resin composition of the present invention may be either a thermoplastic resin or a thermosetting resin, and may be used singly or in combination of two or more.
  • thermoplastic resins include polyvinyl butyral resins, acrylic resins, polyester resins, phenoxy resins, polyimide resins, polyolefin resins, thermoplastic polyurethane resins, polyamide resins, polycarbonate resins, and polyphenylene ether resins. , polyvinyl ether-based resins, polyvinyl alcohol-based resins, polyvinyl acetate-based resins, ionomer resins, and the like.
  • thermosetting resins include one or more selected from the group consisting of resol-type phenolic resins, polyimide resins, epoxy resins, xylene resins, polyurethane resins, melamine resins, urea resins, and the like. be done.
  • the resin is one or more selected from the group consisting of polyvinyl butyral resin, resol type phenol resin, acrylic resin, polyester resin, phenoxy resin, polyimide resin, epoxy resin and xylene resin. preferably included.
  • polyvinyl butyral resins it is more preferable to include one or more selected from the group consisting of polyvinyl butyral resins, resol type phenol resins, acrylic resins, polyester resins, phenoxy resins, polyimide resins and xylene resins.
  • polyvinyl butyral-based resins are preferably used from the viewpoint of film formation state, connection reliability, adhesion to substrates, and the like.
  • a polyvinyl butyral-based resin is a resin obtained by acetalizing the alcohol portion of polyvinyl alcohol with butyraldehyde.
  • a thermoplastic resin containing vinyl butyral units represented by the following formula (1), vinyl acetate units represented by the formula (2), and vinyl alcohol units represented by the formula (3) as main repeating units is.
  • Polyvinyl butyral resins vary in physical properties, chemical properties, mechanical properties, etc., depending on the proportion of each unit in the above formulas (1) to (3) and the weight average molecular weight (degree of polymerization). For example, compatibility and solubility in non-polar solvents are improved by increasing the number of vinyl butyral units represented by formula (1) in the polyvinyl butyral resin (increasing the degree of butyralization). By increasing the number of vinyl acetate units represented by formula (2) (increasing the amount of acetyl groups), the viscosity when dissolved in a solvent can be decreased, and the glass transition temperature of the resin can be decreased. When the number of vinyl alcohol units represented by formula (3) increases, the adhesiveness, solubility in polar solvents, and the like can be improved.
  • the amount ratio of each group of butyral group, acetyl group and hydroxyl group in the polyvinyl butyral resin is not particularly limited. For example, if the total amount of these groups is 100 mol, butyral groups can be 55 mol % to 80 mol %, acetyl groups can be 25 mol % or less, and hydroxyl groups can be 10 to 20 mol %. In addition, in the present invention, it is preferable that the amount of acetyl groups is large. For example, it is preferable to use a polyvinyl butyral resin having an acetyl group content of 7 to 25 mol %.
  • the weight average molecular weight of the polyvinyl butyral resin is not particularly limited. From the viewpoint of the mechanical properties of the conductive resin composition, compatibility with solvents, etc., it can be, for example, 10,000 to 250,000, preferably 20,000 to 120,000.
  • the polyvinyl butyral-based resin may be synthesized during preparation of the conductive resin composition, or a commercially available product may be used.
  • synthesizing known methods are used without limitation. For example, an aqueous polyvinyl alcohol solution and butyraldehyde are reacted in the presence of an acid catalyst, and the resulting polyvinyl butyral resin slurry is neutralized with an alkali, separated from the solvent, washed, dehydrated, and dried to obtain a powdery product.
  • a method for producing a resin can be mentioned.
  • Examples of commercially available polyvinyl butyral resins include S-LEC series (trade name) manufactured by Sekisui Chemical Co., Ltd.
  • Kuraray's product name Mowital series for example, LPB16B, B20H, 30T, 30H, 30HH
  • the content of the resin in the conductive resin composition is not particularly limited. It can be determined as appropriate from the viewpoint of the conductivity of the conductive resin composition.
  • the total amount of all solids in the conductive resin composition is 100% by mass, for example, 1.0 to 15.0% by mass, preferably 1.0 to 12.0% by mass, more preferably 2.0 to 15.0% by mass. 10.0% by mass, more preferably 3.0 to 10.0% by mass.
  • organic acid compounds include R—X n (wherein R is hydrogen, an organic group having 1 to 50 carbon atoms, X is an acid group, and a plurality of Xs may be different from each other, n is an integer of 1 or more.).
  • organic acid compound examples include one or more selected from the group consisting of organic carboxylic acid compounds, organic carboxylic acid anhydrides, organic sulfonic acid compounds, organic phosphonic acid compounds, and the like.
  • Organic carboxylic acid compounds and/or organic carboxylic acid anhydrides are preferred.
  • Organic carboxylic acid compound is not particularly limited as long as it is a compound having 1 to 50 carbon atoms and having one or more carboxyl groups (--COOH) in its molecular structure.
  • organic carboxylic acid compounds include formic acid, acetic acid, propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octylic acid, lauric acid, myristic acid, pentadecyl acid, palmitic acid, margaric acid, stearic acid, 12 - hydroxystearic acid, ricinoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid, montanic acid, melissic acid, lactic acid, gluconic acid, malic acid, tartaric acid, citric
  • the organic carboxylic anhydride is obtained by intermolecular dehydration of two organic carboxylic acid molecules and/or intramolecular dehydration of one organic carboxylic acid molecule.
  • the organic carboxylic acids for example, one or more selected from the group consisting of those obtained by intermolecular dehydration of organic monocarboxylic acids and those obtained by molecular dehydration of organic polycarboxylic acids. be done.
  • acetic anhydride Preferably from acetic anhydride, propionic anhydride, oxalic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, succinic anhydride, 2-methylsuccinic anhydride, trimellitic anhydride, etc.
  • acetic anhydride propionic anhydride, oxalic anhydride, maleic anhydride, phthalic anhydride, benzoic anhydride, succinic anhydride, 2-methylsuccinic anhydride, trimellitic anhydride, etc.
  • the organic sulfonic acid compound is not particularly limited as long as it is a compound having one or more sulfonic acid groups (--SO 3 H) in its molecular structure.
  • benzenesulfonic acid n-butylbenzenesulfonic acid, n-octylbenzenesulfonic acid, n-dodecylbenzenesulfonic acid, pentadecylbenzenesulfonic acid, 2,5-dimethylbenzenesulfonic acid, p-chlorobenzenesulfonic acid, 2 , 5-dichlorobenzenesulfonic acid, p-phenolsulfonic acid, cumenesulfonic acid, xylenesulfonic acid, o-cresolsulfonic acid, m-cresolsulfonic acid, p-cresolsulfonic acid, p-toluenes
  • the organic phosphonic acid compound is not particularly limited as long as it is a compound having one or more phosphate groups (—PO 3 H 2 ) in its molecular structure.
  • phosphate groups —PO 3 H 2
  • the organic phosphonic acid compound may be a surfactant having a phosphate group within its molecular structure.
  • a surfactant having a phosphate group preferably has a polyoxyethylene group or a phenyl group in its molecular structure.
  • the surfactant having a phosphate group one or more selected from the group consisting of commercially available products such as Phosphanol (trade name, manufactured by Toho Chemical Industry Co., Ltd.) and Disperbyk (manufactured by BYK-Chemie Japan) can be used.
  • Phosphanol trade name, manufactured by Toho Chemical Industry Co., Ltd.
  • Disperbyk manufactured by BYK-Chemie Japan
  • the content of the organic acid compound in the conductive resin composition is not particularly limited. It can be appropriately determined from the viewpoint of the conductivity, stability, etc. of the conductive resin composition.
  • the total amount of all solids in the conductive resin composition is 100% by mass, for example, 0.1 to 10.0% by mass, preferably 0.1 to 8.0% by mass, more preferably 0.5 to 7% by mass 0 mass %, more preferably 0.5 to 4.0 mass %.
  • the conductive resin composition of the present invention may contain lead-free solder particles.
  • the lead-free solder is not particularly limited as long as it does not contain more than the amount of lead that is unavoidably contained in view of the effects on workers, users, the environment, and the like.
  • the melting point of the lead-free solder powder is preferably 300°C or lower, more preferably 220°C or lower, and still more preferably 50 to 220°C. If the melting point of the lead-free solder powder exceeds 300° C., the members to be connected such as circuit boards and electronic parts may be thermally destroyed or deteriorated. If the melting point is less than 50° C., the mechanical strength may be weak and the reliability of conductive connection may be lowered.
  • lead-free solder powder examples include tin (Sn)-based, silver (Ag), bismuth (Bi), zinc (Zn), copper (Cu), indium (In), aluminum (Al) and antimony (Sb).
  • Lead-free solder powder containing one or more selected from the group consisting of (for example, Sn-Bi system, Sn-Cu system, Sn-Sb system, Sn-Zn system, Sn-Ag system, Sn-Ag-Cu system, Sn--Zn--Bi system, Sn--Ag--In--Bi system, Sn--Zn--Al system, Sn--Ag--Bi system, Sn--Ag--Cu--Bi system, Sn--Ag--Cu---Bi--In--Sb system, etc.), Bi-based lead-free solder powder (Bi-In system, etc.), and In-based lead-free solder powder (In-Ag system, In-B
  • the shape of the lead-free solder powder is not particularly limited.
  • a spherical shape, a substantially spherical shape (for example, the vertical and horizontal aspect ratio is 1.5 or less), a flat shape, a polyhedral shape, a scaly shape, a fibrous shape, an irregular shape, and the like can be used depending on the application.
  • spherical, substantially spherical, flat or scale-like particles are preferred.
  • the volume average particle size of the lead-free solder powder is not particularly limited.
  • D50 can be 0.5 ⁇ m to 50 ⁇ m, preferably 1 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 30 ⁇ m. If D50 is less than 0.5 ⁇ m, the dispersibility and handleability of the lead-free solder powder may deteriorate. If D50 exceeds 50 ⁇ m, connection stability may decrease, volume resistivity may increase, and dispersibility and handleability may decrease.
  • the content of lead-free solder powder in the conductive resin composition is not particularly limited. It can be determined as appropriate from the viewpoint of the conductivity of the conductive resin composition.
  • the total amount of all solids in the conductive resin composition is 100% by mass, for example, 5.0 to 85.0% by mass, preferably 10.0 to 82.0% by mass, more preferably 20.0 to 85.0% by mass. 80.0% by mass, more preferably 25.0 to 80.0% by mass.
  • the conductive resin composition of the present invention may optionally contain a solvent, a pigment, a conductive powder other than tin powder and lead-free solder powder, a filler, an antioxidant, a corrosion inhibitor, an antifoaming agent, and a dispersant.
  • a viscosity modifier thixotropy modifier
  • an adhesive agent a coupling agent
  • an anti-settling agent a leveling agent, etc.
  • the conductive resin composition of the present invention may contain a solvent. This can improve the fluidity of the conductive resin composition and contribute to the improvement of workability. Moreover, by mixing the conductive resin composition and the solvent, a conductive resin paste, a conductive ink, or a circuit connecting agent can be formed.
  • any one or more selected from the group consisting of water and various organic solvents can be used as the solvent.
  • organic solvents include ethyl alcohol, propyl alcohol, butyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and ethylene glycol monopropyl ether.
  • ethylene glycol monobutyl ether propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, methylmethoxybutanol, ⁇ -terpineol, ⁇ -terpineol, hexylene glycol, benzyl alcohol, 2-phenyl Alcohols such as ethyl alcohol, isopalmityl alcohol, isostearyl alcohol, lauryl alcohol, ethylene glycol, propylene glycol or glycerin; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol (4-hydroxy-4-methyl-2 -pentanone), 2-octanone, isophorone (3,5,5-trimethyl-2-cyclohexene-1-one) or diisobutyl ketone (2,6-dimethyl-4-
  • ether solvents such as 1,2-bis(2-methoxyethoxy)ethane
  • ester ethers such as 2-(2-butoxyethoxy)ethane acetate
  • ether alcohol solvents such as 2-(2-methoxy
  • the amount used is not particularly limited, and the viscosity of the conductive resin composition is such that it can be appropriately applied or printed on the substrate and / or can be appropriately impregnated into the porous body.
  • the viscosity may be adjusted as appropriate.
  • the properties of the conductive resin composition of the present invention can be any of powder, solid, paste, liquid (varnish), and the like. When used as a conductive ink or circuit-connecting material, it is preferably in the form of paste or liquid (varnish) at room temperature (20° C.).
  • the conductive resin composition of the present invention has excellent conductivity.
  • the conductivity of the conductive resin composition is such that the volume resistivity of the conductive film obtained by casting or coating the conductive resin composition on the peelable substrate and peeling after drying is 1.0 ⁇ 10 -2 . It is less than ⁇ cm.
  • the conductive film preferably has a volume resistivity of less than 8.0 ⁇ 10 ⁇ 3 ⁇ cm, more preferably less than 1.0 ⁇ 10 ⁇ 3 ⁇ cm.
  • the volume resistivity is obtained by the method described in Examples.
  • the conductive resin composition of the present invention has excellent adhesion to various substrates.
  • the adhesiveness to glass or PET is excellent.
  • the conductive resin composition of the present invention can be made excellent in storage stability, for example, without viscosity changes such as thickening before and after storage for 60 days, and without precipitation. .
  • tin powder, resin, and organic acid compound are essential components, and if necessary, lead-free solder powder, solvent, etc. are added in an arbitrary order to a mixing vessel and mixed. can do.
  • rotation/revolution mixer for example, rotation/revolution mixer, ball mill, roll mill, bead mill, planetary mixer, tumbler, stirrer, stirrer, mechanical homogenizer, ultrasonic homogenizer, high pressure homogenizer, paint shaker, V-type blender, Nauta mixer, Banbury
  • a method of mixing with a mixer, a kneading roll, a single-screw or twin-screw extruder, or the like is appropriately used.
  • the temperature when preparing the conductive resin composition is not particularly limited. Heating or the like can be performed as necessary, and the temperature can be, for example, 10 to 100°C.
  • the atmosphere in preparing the conductive resin composition is not particularly limited. It can be carried out in the atmosphere, or it can be carried out under an inert atmosphere.
  • the use of the conductive resin composition of the present invention is for the production of conductive objects.
  • the conductive object may contain other members in addition to the conductive resin composition.
  • Examples of conductive substances include conductive inks, circuit connection materials, conductive pastes, conductive films, conductive fibers, conductive paints, conductive materials for semiconductor packages, conductive materials for microelectronic devices, antistatic materials, and electromagnetic wave shields.
  • conductive ink, conductive paste, conductive paint, etc. can be formed.
  • the viscosity at that time is not particularly limited, and it can be in the form of a low-viscosity varnish or a high-viscosity paste or the like depending on the application.
  • a conductive resin composition containing a solvent or the like as necessary is subjected to a casting method, a dipping method, a bar coating method, a dispenser method, a roll coating method, a gravure coating method, a screen printing method, a flexographic printing method, a spray coating method, a spin coating method, or the like.
  • Atmosphere during drying may be one or more selected from the group consisting of air, inert gas, vacuum, reduced pressure, and the like.
  • an inert gas atmosphere such as nitrogen or argon is preferable from the viewpoint of suppressing deterioration of the conductive film (antioxidation of tin powder, lead-free solder powder, etc.).
  • the conductive resin composition of the present invention can be molded by a molding method such as extrusion molding, injection molding, or compression molding and used as a molded product.
  • molded articles include electronic device parts, automobile parts, machine mechanism parts, food containers, films, sheets, and fibers.
  • the conductive film of the present invention is formed from the conductive resin composition and has a volume resistivity of less than 1.0 ⁇ 10 ⁇ 2 ⁇ cm.
  • the conductive film preferably has a volume resistivity of less than 8.0 ⁇ 10 ⁇ 3 ⁇ cm, more preferably less than 1.0 ⁇ 10 ⁇ 3 ⁇ cm.
  • the conductive film of the present invention can also have a volumetric efficiency of less than 1.0 ⁇ 10 ⁇ 4 ⁇ cm (on the order of 10 ⁇ 5 ⁇ cm), which is comparable to a conductive film formed from silver paste. .
  • the volume resistivity is obtained by the method described in Examples.
  • a method for forming a conductive film from a conductive resin composition is not particularly limited.
  • a conductive film can be formed by using the conductive resin composition containing a solvent, coating it on an arbitrary substrate, and drying it. Alternatively, it can be obtained by casting or coating a conductive resin composition on a peelable substrate, drying the composition, and then peeling it off. Conditions for forming the conductive film are not particularly limited, and can be appropriately set according to the object to be coated and the like.
  • the temperature for drying after applying the conductive resin composition is, for example, 50° C. or higher, preferably 90° C. or higher, and is, for example, 250° C. or lower, preferably 220° C. or lower.
  • the drying time is, for example, 5 minutes or more, preferably 7 minutes or more, and is, for example, 300 minutes or less, preferably 200 minutes or less.
  • the dry film thickness of the conductive film is not particularly limited, and can be appropriately adjusted depending on the application. For example, it is 10 ⁇ m or more, preferably 30 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the conductive ink of the present invention can be obtained by dissolving and/or dispersing the conductive resin composition in a solvent.
  • the conductive ink of the present invention contains tin powder, resin, organic acid compound and solvent, and if necessary, lead-free solder powder, surfactant, pH adjuster (amine compound), leveling agent, pigment, and UV absorber. It contains additive components such as additives, antioxidants, and flame retardants.
  • Conductive ink is prepared by placing the above ingredients in a mixing vessel and then using a rotation/revolution mixer, ball mill, roll mill, bead mill, planetary mixer, tumbler, stirrer, stirrer, mechanical homogenizer, ultrasonic homogenizer, high pressure homogenizer, paint shaker, etc. It is obtained by mixing using one or more mixers selected from the group consisting of to form a varnish or paste.
  • the conductive ink of the present invention can be used, for example, as a printing conductive ink for forming wiring.
  • the printing method include one or more selected from the group consisting of screen printing, inkjet printing, flexographic printing, gravure printing, and the like.
  • the mesh in the screen printing method can be appropriately selected, and it is preferable to adopt a mesh that does not excessively remove the conductive powder and lead-free solder powder in the conductive ink.
  • the film thickness of the coating film formed by applying the conductive ink of the present invention can be set to an appropriate thickness according to various uses. For example, it is 1 ⁇ m or more, preferably 2 ⁇ m or more, more preferably 5 ⁇ m or more, and 100 ⁇ m or less.
  • the conductive ink of the present invention is excellent in one or more properties selected from the group consisting of conductivity, adhesion to various substrates, storage stability, leveling (surface smoothness), printability, and the like. .
  • the circuit-connecting material of the present invention is used for conductive connection between various electronic components and circuit boards and connection (adhesion) between electrical and electronic circuits.
  • the shape of the circuit-connecting material is not particularly limited, but it is preferably liquid or film-like.
  • a liquid circuit connecting material can be obtained, for example, by mixing the conductive resin composition of the present invention with a solvent such as an organic solvent to liquefy the mixture.
  • a film-like circuit-connecting material can be produced, for example, by directly casting and coating the liquefied conductive resin composition of the present invention on a peelable substrate to form a film, and drying to remove the solvent. It can be obtained by peeling off the peelable substrate after forming the film.
  • the film-like circuit connecting material is formed on a peelable substrate after impregnating a nonwoven fabric or the like with the liquefied conductive resin composition of the present invention, and dried to remove the solvent. It can be obtained by peeling off from the peelable substrate.
  • the method of electrical connection using the circuit-connecting material of the present invention is not particularly limited.
  • a circuit-connecting material is provided between the electrodes of an electronic component or circuit and the electrodes on the base material facing each other, and the electrodes are electrically connected and the electrodes are bonded together by heating. be done. During heating, pressure can be applied as necessary.
  • the method of providing the circuit connecting material between the facing electrodes is not particularly limited. Examples thereof include a method of applying a liquid circuit-connecting material and a method of sandwiching a film-like circuit-connecting material.
  • a method of forming a conductive connection by providing a circuit connecting material at the base of the pin and butt-joining them when conducting conductive connection between a pin of an electronic component and a circuit, there is a method of forming a conductive connection by providing a circuit connecting material at the base of the pin and butt-joining them.
  • the circuit-connecting material of the present invention can be used substantially as an anisotropically conductive material.
  • a circuit-connecting material having excellent adhesiveness is formed between opposing electrodes on a base material, and heated and pressurized to form both electrodes. It can be used in an electrode connection method for obtaining electrode contact and adhesion between substrates.
  • As the base material for forming the electrodes inorganic substances such as semiconductors, glass and ceramics, organic substances such as polyimides and polycarbonates, and composite combinations thereof such as glass/epoxy can be applied.
  • the circuit connecting material of the present invention contains solder powder that melts at a low temperature as a component, it is possible to make conductive connection at a low temperature of 250° C. or lower, for example, 200° C. or lower.
  • Tin powder 1 Stamped tin flake powder (more than 70% by mass has a particle size of less than 45 ⁇ m)
  • Lead-free solder 1 Sn42-Bi58 (type 5) (manufactured by Mitsui Mining & Smelting Co., Ltd.)
  • Lead-free solder 2: Sn42-Bi58 (type 4) manufactured by Mitsui Mining & Smelting Co., Ltd.
  • Lead-free solder 3 Sn42-Bi58 (type 9) (manufactured by 5N Plus)
  • Resin 1 Polyvinyl butyral resin (manufactured by Sekisui Chemical Co
  • the volume resistivity of the conductive films formed from the conductive resin compositions was measured and evaluated by the following methods.
  • ⁇ Conductivity> After preparing a wet coating film on a plastic film substrate by spin-coating the conductive resin composition using a spin coater, the film thickness after firing (fired film thickness) is shown in Tables 1 and 2.
  • a conductive film was produced.
  • the volume resistivity of the conductive film was measured with a resistivity meter “Loresta GP-MCP T610” (manufactured by Nitto Seiko Analytic Tech).
  • a conductive film having a volume resistivity of less than 1.0 ⁇ 10 ⁇ 2 ⁇ cm was regarded as acceptable.
  • Example 1 A varnish was obtained by mixing 0.84 parts of Resin 1 with 5.00 parts of diethylene glycol monoethyl ether acetate (EDGAC). Mix 5.84 parts of the prepared varnish, 15.00 parts of tin powder 1 and 0.4 parts of organic acid 1, and use a rotation / revolution mixer (manufactured by Thinky, "Awatori Mixer AR-100"). A conductive resin composition was obtained by mixing and stirring. Table 1 shows the solid content of tin powder, resin and organic acid in the obtained conductive resin composition.
  • EGAC diethylene glycol monoethyl ether acetate
  • the resulting conductive resin composition was spin-coated using a spin coater at 500 rpm for 5 seconds and then at 2000 rpm for 30 seconds, applied onto a substrate, and heated to prepare a conductive film having a dry film thickness of 100 ⁇ m. , conductivity (volume resistivity) was measured. The results are shown in Tables 1 and 2.
  • Examples 2 to 20, Comparative Examples 1 and 2 In the same manner as in Example 1, the conductive resin composition and A conductive film was produced. The volume resistivity of the conductive film formed from the obtained conductive resin composition was evaluated. The results are also shown in Tables 1 and 2.
  • the conductive films formed from the conductive resin compositions according to Examples 1 to 20 all have a volume resistivity of 1.0 ⁇ 10 -2 ( ⁇ cm). Less than 1.0 ⁇ 10 ⁇ 4 ( ⁇ cm) in some cases, which is equal to or higher than that of the silver paste, and was excellent in conductivity. From this, it can be seen that a conductive resin composition was formed which is lower in cost than silver paste or the like and exhibits high conductivity equivalent to that of silver paste. Further, as in Examples 1, 2, 10 and 11, etc., the conductive film formed from the conductive resin composition of the present invention has various firing film thickness conditions at the time of forming the conductive film. It can be seen that the volume resistivity can also be lowered. On the other hand, the conductive films formed from the conductive resin compositions according to Comparative Examples 1 and 2 containing no organic acid compound had unmeasurable volume resistivity and poor conductivity.

Abstract

導電膜を形成した際の体積抵抗率が低く、良好な導電性を示し、銀ペーストの代替として使用可能であり、導電性インクや回路接続材料等として有用な導電性樹脂組成物を提供することを課題とする。解決手段として、錫粉末と、樹脂と、有機酸化合物と、を含む導電性樹脂組成物を提供する。

Description

導電性樹脂組成物
 本発明は、導電性樹脂組成物に関する。また、本発明は、導電膜、基材にスクリーン印刷して回路等を形成する際に用いられる導電性インク、及び電子部品を回路基板等に導電接続する際に用いられる回路接続材料に関する。
 導電性樹脂組成物としては、多種多様な組成のものが知られており、導電性ペースト、導電膜、導電性インク、導電性塗料、回路接続材料、導電性接着剤等として、電子回路の形成、電子部品の接着等の種々の用途に使用されている。
 例えば、導電回路や電極等の導電構造を形成するために有用な導電膜が求められている。
 例えば、各種の印刷方法に適用可能であり、相互接続及びトレース、電極などの導電構造を有するフレキシブルプラスチック基材等の製造に有用な導電性インクが求められている。
 例えば、コンピュータや携帯電話などの電子機器において、LED素子、半導体素子、コンデンサなど各種の電子部品が同一回路基板上に高密度実装し高集積化するための回路接続材料が求められている。
 これまで、導電性組成物としては、樹脂と導電性粒子を含む導電性樹脂組成物(導電性ペースト)が知られている。しかし、導電性樹脂組成物は、体積抵抗率が十分に低くならず、低い体積抵抗率が求められる用途とする場合には、導電性粒子として銀粒子を用いる必要があった。
 例えば、特許文献1には、導電性粉末が少なくとも銀を用いた銀系粉末であり、樹脂成分が熱硬化性樹脂および熱可塑性樹脂の少なくとも一方であり、さらに、特定の分子量及び構造を有するエステル系化合物又はその塩、あるいは、エーテル/アミン系化合物を含有する、導電性ペースト組成物が開示されている。
特開2020-205245号公報
 しかし、銀粒子は、非常に高価でコスト的に不利であり、また、銀が酸化されやすい等の問題もあった。銀粒子以外の導電性粒子を用いた場合には、導電性樹脂組成物の膜の体積抵抗率が高くなり導電性が不十分になることがあった。
 これまで、導電膜を形成した際の体積抵抗率が低く、良好な導電性を示し、高価な銀粒子を用いることなく銀ペーストの代替として使用可能な導電性樹脂組成物は知られていなかった。
 本発明が解決しようとする課題は、導電膜を形成した際の体積抵抗率が低く、良好な導電性を示し、銀ペーストの代替として使用可能であり、導電性インクや回路接続材料等として有用な導電性樹脂組成物を提供することである。
 本発明者は、上記課題を解決すべく鋭意検討を行った結果、特定の組成の導電性樹脂組成物とすることで、上記課題が解決できることを見出し、本発明を完成するに至った。
 具体的には、以下に示すとおりである。
項1:錫粉末と、樹脂と、有機酸化合物と、を含む導電性樹脂組成物。
項2:無鉛ハンダ粉末を含む、項1に記載の導電性樹脂組成物。
項3:樹脂が、ポリビニルブチラール系樹脂、レゾール型フェノール系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ポリイミド系樹脂、エポキシ系樹脂及びキシレン系樹脂からなる群より選ばれる1種以上を含む、項1又は2に記載の導電性樹脂組成物。
項4:項1~3のいずれか1項に記載の導電性樹脂組成物から形成された、体積抵抗率が1.0×10-2Ω・cm未満である導電膜。
項5:項1~3のいずれか1項に記載の導電性樹脂組成物を含む、導電性インク。
項6:項1~3のいずれか1項に記載の導電性樹脂組成物を含む、回路接続材料。
 本発明は、導電膜を形成した際の体積抵抗率が低く、良好な導電性を示すものであり、銀ペーストの代替として使用可能であり、導電性インクや回路接続材料等として有用な導電性樹脂組成物が得られるという顕著な効果を発揮する。
 さらに、本発明の導電性樹脂組成物は、導電接続を形成する際の加熱温度を低くすることができるため、従来基材として使用されていなかった低融点のプラスチックを基材として用いることが可能となる。
 本発明の導電性樹脂組成物は、プリンテッドエレクトロニクス材料として有用であり、表示装置、車両関連部品、IoT、移動通信システム(Mobile Communication System)等の各種電子機器等の大量生産に際して極めて有用である。
 本発明は、導電性樹脂組成物、導電膜、導電性インク及び回路接続材料に係るものである。以下、これらについて詳細に説明する。
[導電性樹脂組成物]
<錫粉末>
 本発明の導電性樹脂組成物が含む錫粉末は、錫99.5質量%以上と不可避不純物から構成される粉末である。
 錫粉末における錫の含有率は、蛍光X線分析(XRF)装置等を用いることで容易に測定できる。
 錫粉末に含まれる不可避不純物としては、例えば、Mn、Sb、Si、K、Na、Li、Ba、Sr、Ca、Mg、Be、Zn、Pb、Cd、Tl、V、Al、Zr、W、Mo、Ti、Co、Ag、Cu、Ni、Au、B、C、N、O、Ge、Sb、In、As、Al、Fe等からなる群より選ばれる1種以上の他の原子があげられる。
 他の原子の含有率は、好ましくは錫粉末中0.3質量%未満、より好ましくは0.1質量%以下である。
 錫粉末の形状は、特に限定されない。例えば、鱗片状(フレーク状)、扁平状、真球状、略球状(例えば、縦横のアスペクト比が1.5以下)、ブロック状、板状、多角錐状、多面体状、棒状、繊維状、針状、不定形状等のものを、用途等に応じて用いることができる。本発明においては、体積抵抗率、分散性、取扱性等の観点から、鱗片状、真球状、略球状、扁平状のものが好ましい。
 球状の錫粉末の体積平均粒子径は、特に制限されない。D50としては、例えば0.5μm以上、好ましくは1.0μm以上、より好ましくは3.0μm以上であり、例えば300μm以下、好ましくは200μm以下、より好ましくは100μm以下である。D50が0.5μm以上であると、錫粉末の分散性及び取扱性が良好になる。D50が300μm以下であると、体積抵抗率を低くでき、分散性及び取扱性が良好になる。
 扁平状又は鱗片状の錫粉末の平均直径、平均厚及びアスペクト比(平均直径/平均厚)は、特に限定されない。
 平均直径は、例えば0.5μm以上、好ましくは1.0μm以上、より好ましくは5.0μm以上であり、例えば500.0μm以下、好ましくは300.0μm以下、より好ましくは150.0μm以下である。
 平均厚は、例えば、0.1μm以上、好ましくは0.5μm以上、より好ましくは1.0μm以上であり、例えば50.0μm以下、好ましくは20.0μm以下、より好ましくは10.0μm以下である。
 アスペクト比は、例えば、2以上、好ましくは10以上、より好ましくは50以上である。
 導電性樹脂組成物における、錫粉末の含有量は特に限定されない。導電性樹脂組成物の導電性等の観点から適宜定めることができる。導電性樹脂組成物中の全固形分の合計量を100質量%として、例えば、5.0~97.0質量%、好ましくは60.0~97.0質量%、より好ましくは85.0~97.0質量%、さらに好ましくは90.0~97.0質量%である。
<樹脂>
 本発明の導電性樹脂組成物が含む樹脂は、熱可塑性樹脂又は熱硬化性樹脂のいずれでもよく、1種単独又は2種以上を用いることができる。
 熱可塑性樹脂としては、例えば、ポリビニルブチラール系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、熱可塑性ポリウレタン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリフェニレンエーテル系樹脂、ポリビニルエーテル系樹脂、ポリビニルアルコール系樹脂、ポリ酢酸ビニル系樹脂、アイオノマー樹脂等からなる群より選ばれる1種以上があげられる。
 熱硬化性樹脂としては、例えば、レゾール型フェノール系樹脂、ポリイミド系樹脂、エポキシ系樹脂、キシレン系樹脂、ポリウレタン系樹脂、メラミン系樹脂、ウレア系樹脂等からなる群より選ばれる1種以上があげられる。
 本発明においては、樹脂としてポリビニルブチラール系樹脂、レゾール型フェノール系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ポリイミド系樹脂、エポキシ系樹脂及びキシレン系樹脂からなる群より選ばれる1種以上を含むことが好ましい。このうち、ポリビニルブチラール系樹脂、レゾール型フェノール系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ポリイミド系樹脂及びキシレン系樹脂からなる群より選ばれる1種以上を含むことがより好ましい。
 これらの中でも、膜形成状態、接続信頼性、基材への密着性等の観点から、ポリビニルブチラール系樹脂が好適に用いられる。
  ポリビニルブチラール系樹脂は、ポリビニルアルコールのアルコール部分をブチルアルデヒドでアセタール化した樹脂である。一般的に、下記の式(1)で表されるビニルブチラール単位、式(2)で表される酢酸ビニル単位及び式(3)で表されるビニルアルコール単位を主たる繰り返し単位として含む熱可塑性樹脂である。
Figure JPOXMLDOC01-appb-C000001
 ポリビニルブチラール系樹脂は、上記の式(1)~(3)の各単位の割合と重量平均分子量(重合度)により、物理的性質、化学的性質及び機械的性質等が変化する。
 例えば、ポリビニルブチラール系樹脂中の式(1)で表されるビニルブチラール単位が多くなる(ブチラール化度が高くなる)ことで、相溶性や非極性溶剤溶解性等が向上する。式(2)で表される酢酸ビニル単位が多くなる(アセチル基量が増える)ことで、溶剤に溶解した際の粘度を低下させることができ、樹脂のガラス転移温度を低下させることができる。式(3)で表されるビニルアルコール単位が多くなると、接着性や極性溶媒溶解性等を向上させることができる。
 本発明において、ポリビニルブチラール系樹脂中のブチラール基、アセチル基及び水酸基の各基の量比は、特に限定されない。例えば、これらの基の総量を100molとして、ブチラール基を55mol%~80mol%、アセチル基が25mol%以下、水酸基が10~20mol%とすることができる。
 なお、本発明において、アセチル基の量が多いほうが好ましい。例えば、アセチル基の量が7~25mol%のポリビニルブチラール系樹脂を用いることが好ましい。
 ポリビニルブチラール系樹脂の重量平均分子量は、特に限定されない。導電性樹脂組成物の機械的特性や溶媒との相溶性等の観点から、例えば10,000~250,000、好ましくは20,000~120,000とすることができる。
 ポリビニルブチラール系樹脂は、導電性樹脂組成物の調製に際して合成してもよく、市販品を用いてもよい。
 合成する場合は、公知の方法が制限なく用いられる。例えば、ポリビニルアルコール水溶液とブチルアルデヒドを酸触媒の存在下で反応させ、生成したポリビニルブチラール系樹脂スラリーをアルカリで中和し、溶媒と分離後、さらに洗浄・脱水ののち乾燥することにより粉末状の樹脂を製造する方法があげられる。
 ポリビニルブチラール系樹脂の市販品としては、例えば、積水化学工業社製の商品名S-LECシリーズ(例えば、BL-1、BL-1H、BL-2H、BL-5Z、BL-7Z、BL-10、BL-S、BM-1、BM-2、BM-5、BM-S、BM-SHZ、BH-3、BH-6、BH-A、BH-S、BX-1、BX-L、BX-3、BX-5、KS-1、KS-5Z、KS-6Z、KS-10、KX-1、KX-5、KW-M、KW-10、SV-12、SV-16、SV-22、SV-26等)、クラレ社製の商品名Mowitalシリーズ(例えば、LPB16B、B20H、30T、30H、30HH、45M、45H、60H、60T、60HH、70HH、75H等)からなる群より選ばれる1種以上を使用することができる。
 導電性樹脂組成物における、樹脂の含有量は特に限定されない。導電性樹脂組成物の導電性等の観点から適宜定めることができる。導電性樹脂組成物中の全固形分の合計量を100質量%として、例えば、1.0~15.0質量%、好ましくは1.0~12.0質量%、より好ましくは2.0~10.0質量%、さらに好ましくは3.0~10.0質量%である。
<有機酸化合物>
 有機酸化合物としては、例えば、R-X(式中、Rは、水素、炭素数1~50の有機基であり、Xは酸基であって複数のXは互いに異なっていてもよく、nは1以上の整数である。)で表される有機酸化合物の1種又は2種以上があげられる。
 Xで表される酸基としては、例えば、カルボキシル基(-COOH)、カルボン酸無水物基(-C(=O)-O-C(=O)-)、スルホン酸基(-SOH)、リン酸基(-PO)等があげられる。
 有機酸化合物としては、例えば、有機カルボン酸化合物、有機カルボン酸無水物、有機スルホン酸化合物、有機ホスホン酸化合物等からなる群より選ばれる1種以上があげられる。好ましくは、有機カルボン酸化合物及び/又は有機カルボン酸無水物である。
 有機酸化合物を用いることで、錫粉末の分散性等が向上し効率的に配置することができ、導電接続および絶縁信頼性を高めることができる。
(有機カルボン酸化合物)
 有機カルボン酸化合物は、分子構造中にカルボキシル基(-COOH)を1つ以上有する炭素数1~50の化合物であれば、特に限定されない。
 有機カルボン酸化合物としては、例えば、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクチル酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、12-ヒドロキシステアリン酸、リシノール酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、アラキジン酸、ベヘン酸、リグノセリン酸、セロチン酸、モンタン酸、メリシン酸、乳酸、グルコン酸、リンゴ酸、酒石酸、クエン酸、アスコルビン酸、アビエチン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、グルタコン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカン二酸ドデカン二酸、エイコ酸二酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、アラキドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、ドデセニルコハク酸、シトラコン酸、メサコン酸、イタコン酸、ジメチロールプロピオン酸、ジメチロールブタン酸、ジメチロール酪酸、ジメチロール吉草酸、トリメチロールプロパン酸、トリメチロールブタン酸、安息香酸、サリチル酸、ピルビン酸、パラメチル安息香酸、トルイル酸、4-エチル安息香酸、4-プロピル安息香酸、2-メチルプロパン酸、イソペンタン酸、2-エチルヘキサン酸、アクリル酸、メタクリル酸、プロピオル酸、クロトン酸、2-エチル-2-ブテン酸、マレイン酸、フマル酸、シュウ酸、ヘキサントリカルボン酸、シクロヘキシルカルボン酸、1,4-シクロヘキシルジカルボン酸、エチレンジアミン四酢酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、トリメリット酸、ピロメリット酸等からなる群より選ばれる1種以上があげられる。
(有機カルボン酸無水物)
 有機カルボン酸無水物は、分子構造中にカルボン酸無水物基(-C(=O)-O-C(=O)-)を1つ以上有する化合物であれば、特に限定されない。
 有機カルボン酸無水物は、有機カルボン酸2分子の分子間での脱水及び/又は有機カルボン酸1分子の分子内での脱水により得られたものである。本発明においては、例えば、前記有機カルボン酸のうち、有機モノカルボン酸の分子間脱水により得られたもの及び有機ポリカルボン酸の分子脱水により得られるものからなる群より選ばれる1種以上があげられる。
 好ましくは、酢酸無水物、プロピオン酸無水物、シュウ酸無水物、マレイン酸無水物、フタル酸無水物、安息香酸無水物、コハク酸無水物、2‐メチルコハク酸無水物、無水トリメリット酸等からなる群より選ばれる1種以上があげられる。
(有機スルホン酸化合物)
 有機スルホン酸化合物は、分子構造内にスルホン酸基(-SOH)を1つ以上有する化合物であれば、特に限定されない。
 例えば、ベンゼンスルホン酸、n-ブチルベンゼンスルホン酸、n-オクチルベンゼンスルホン酸、n-ドデシルベンゼンスルホン酸、ペンタデシルベンゼンスルホン酸、2,5-ジメチルベンゼンスルホン酸、p-クロルベンゼンスルホン酸、 2,5-ジクロロベンゼンスルホン酸、p-フェノールスルホン酸、クメンスルホン酸、キシレンスルホン酸、o-クレゾ-ルスルホン酸、m-クレゾ-ルスルホン酸、p-クレゾ-ルスルホン酸、p-トルエンスルホン酸、2-ナフタレンスルホン酸、1-ナフタレンスルホン酸、スチレンスルホン酸、4,4-ビフェニルジスルホン酸、アントラキノン-2-スルホン酸、m-ベンゼンジスルホン酸、アニリン-2,4-ジスルホン酸、アントラキノン-1,5-ジスルホン酸、ポリスチレンスルホン酸等の芳香族スルホン酸化合物;メタンスルホン酸、エタンスルホン酸、1-プロパンスルホン酸、n-オクチルスルホン酸、ペンタデシルスルホン酸、トリフルオロメタンスルホン酸、トリクロロメタンスルホン酸、1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、アミノメタンスルホン酸、2-アミノエタンスルホン酸等の脂肪族スルホン酸化合物;シクロペンタンスルホン酸、シクロヘキサンスルホン酸、3-シクロヘキシルアミノプロパンスルホン酸脂環族スルホン酸化合物等からなる群より選ばれる1種以上があげられる。
 好ましくは、ベンゼンスルホン酸、ドデシルベンゼンスルホン酸、メタンスルホン酸、p-フェノールスルホン酸、p-トルエンスルホン酸及び(ポリ)スチレンスルホン酸等からなる群より選ばれる1種以上があげられる。
(有機ホスホン酸化合物)
 有機ホスホン酸化合物は、分子構造内にリン酸基(-PO)を1つ以上有する化合物であれば、特に限定されない。
 例えば、1-ヒドロキシエチリデン-1,1-ジホスホン酸、1-ヒドロキシプロピリデン-1,1-ジホスホン酸、1-ヒドロキシブチリデン-1,1-ジホスホン酸、アミノトリメチレンホスホン酸、メチルジホスホン酸、ニトロトリスメチレンホスホン酸、エチレンジアミンテトラメチレンホスホン酸、エチレンジアミンビスメチレンホスホン酸、ヘキサメチレンジアミンテトラメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸、シクロヘキサンジアミンテトラメチレンホスホン酸、カルボキシエチルホスホン酸、ホスホノ酢酸、2-ホスホノブタン-1,2,4-トリカルボン酸、2,3-ジカルボキシプロパン-1,1-ジホスホン酸、ホスホノブチル酸、ホスホノプロピオン酸、スルホニルメチルホスホン酸、N-カルボキシメチル-N,N-ジメチレンホスホン酸、N,N-ジカルボキシメチル-N-メチレンホスホン酸、2-エチルヘキシルアシッドホスフェート、ステアリルアシッドホスフェート、ベンゼンホスホン酸等からなる群より選ばれる1種以上があげられる。
 有機ホスホン酸化合物は、分子構造内にリン酸基を有する界面活性剤であってもよい。
 リン酸基を有する界面活性剤としては、分子構造内にポリオキシエチレン基又はフェニル基を有するものが好ましい。例えば、ポリオキシエチレンアルキルフェニルエーテルリン酸、ポリオキシエチレンアルキルエーテルリン酸、ジポリオキシプロピレンラウリルエーテルリン酸、ジポリオキシエチレンオレイルエーテルリン酸、ジポリオキシエチレンオキシプロピレンラウリルエーテルリン酸、ジポリオキシプロピレンオレイルエーテルリン酸、ラウリルリン酸アンモニウム、オクチルエ-テルリン酸アンモニウム、セチルエーテルリン酸アンモニウム、ポリオキシエチレンラウリルエーテルリン酸、ポリオキシエチレンオキシプロピレンラウリルエーテルリン酸、ポリオキシプロピレンラウリルエーテルリン酸、ポリオキシエチレントリスチリルフェニルエーテルリン酸、ポリオキシエチレンオキシプロピレントリスチリルフェニルエーテルリン酸、ポリオキシプロピレントリスチリルフェニルエーテルリン酸等からなる群より選ばれる1種以上があげられる。
 リン酸基を有する界面活性剤としては、東邦化学工業社製の商品名フォスファノールやビックケミー・ジャパン社製のDisperbyk等の市販品からなる群より選ばれる1種以上を用いることができる。
(含有量)
 導電性樹脂組成物における、有機酸化合物の含有量は特に限定されない。導電性樹脂組成物の導電性や安定性等の観点から適宜定めることができる。導電性樹脂組成物中の全固形分の合計量を100質量%として、例えば0.1~10.0質量%、好ましくは0.1~8.0質量%、より好ましくは0.5~7.0質量%、さらに好ましくは0.5~4.0質量%である。
<無鉛ハンダ粉末>
 本発明の導電性樹脂組成物は、無鉛ハンダ粒子を含んでいてもよい。無鉛ハンダは、作業者、使用者、環境等への影響から、不可避的に含まれる量以上の鉛を含有しないハンダであれば、特に限定されない。
 無鉛ハンダ粉末の融点は、好ましくは300℃以下であり、より好ましくは220℃以下であり、さらに好ましくは50~220℃である。無鉛ハンダ粉末の融点が300℃を超えると、回路基板や電子部品等の被接続部材が熱破壊や熱劣化するおそれがある。融点が50℃未満であると、機械的強度が弱くなり、導電接続の信頼性が低下するおそれがある。
 無鉛ハンダ粉末としては、例えば、錫(Sn)をベースとし、銀(Ag)、ビスマス(Bi)、亜鉛(Zn)、銅(Cu)、インジウム(In)、アルミニウム(Al)及びアンチモン(Sb)等からなる群より選ばれる1種以上を含む無鉛ハンダ粉末(例えば、Sn-Bi系、Sn-Cu系、Sn-Sb系、Sn-Zn系、Sn-Ag系、Sn-Ag-Cu系、Sn-Zn-Bi系、Sn-Ag-In-Bi系、Sn-Zn-Al系、Sn-Ag-Bi系、Sn-Ag-Cu-Bi系、Sn-Ag-Cu-Bi-In-Sb系等)、Biをベースとする無鉛ハンダ粉末(Bi-In系等)及びInをベースとする無鉛ハンダ粉末(In-Ag系、In-Bi系等)からなる群より選ばれる1種以上があげられる。
 無鉛ハンダ粉末の形状は、特に限定されない。真球状、略球状(例えば、縦横のアスペクト比が1.5以下)、扁平状、多面体状、鱗片状、繊維状、不定形状等のものを、用途等に応じて用いることができる。本発明においては、接続安定性、体積抵抗率、分散性、取扱性等の観点から、真球状、略球状、扁平状又は鱗片状のものが好ましい。
 無鉛ハンダ粉末の体積平均粒子径は、特に制限されない。例えば、D50が0.5μm~50μm、好ましくは1μm~40μm、より好ましくは3μm~30μmとすることができる。D50が0.5μm未満であると、無鉛ハンダ粉末の分散性及び取扱性が低下するおそれがある。D50が50μmを超えると、接続安定性が低下するおそれがあり、体積抵抗率が高くなるおそれがあり、分散性及び取扱性が低下するおそれがある。
 導電性樹脂組成物における、無鉛ハンダ粉末の含有量は特に限定されない。導電性樹脂組成物の導電性等の観点から適宜定めることができる。導電性樹脂組成物中の全固形分の合計量を100質量%として、例えば、5.0~85.0質量%、好ましくは10.0~82.0質量%、より好ましくは20.0~80.0質量%、さらに好ましくは25.0~80.0質量%である。
<その他成分>
 本発明の導電性樹脂組成物は、必要に応じて、溶媒、顔料、錫粉末及び無鉛ハンダ粉末以外の導電性粉末、充填剤(フィラー)、酸化防止剤、腐食抑制剤、消泡剤、分散剤、粘度調整剤(チキソトロピー調整剤)、接着性付与剤、カップリング剤、沈降防止剤等、レベリング剤等からなる群より選ばれる1種以上の各種添加剤を混合することができる。
(溶媒)
 本発明の導電性樹脂組成物は、溶媒を含んでいてもよい。これにより、導電性樹脂組成物の流動性を向上させ、作業性の向上に寄与することができる。また、導電性樹脂組成物と溶媒を混合することで、導電性樹脂ペースト、導電性インクや回路接続剤を構成することができる。
 溶媒としては、水及び各種有機溶媒からなる群より選ばれる1種以上から、任意のものを用いることができる。有機溶媒としては、例えば、エチルアルコール、プロピルアルコール、ブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、メチルメトキシブタノール、α-ターピネオール、β-ターピネオール、へキシレングリコール、ベンジルアルコール、2-フェニルエチルアルコール、イゾパルミチルアルコール、イソステアリルアルコール、ラウリルアルコール、エチレングリコール、プロピレングリコールもしくはグリセリン等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジアセトンアルコール(4-ヒドロキシ-4-メチル-2-ペンタノン)、2-オクタノン、イソホロン(3,5,5-トリメチル-2-シクロヘキセン-1-オン)もしくはジイソブチルケトン(2,6-ジメチル-4-ヘプタノン)等のケトン系溶媒;酢酸エチル、酢酸ブチル、ジエチルフタレート、ジブチルフタレート、アセトキシエタン、酪酸メチル、ヘキサン酸メチル、オクタン酸メチル、デカン酸メチル、メチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、1,2-ジアセトキシエタン等のエステル系溶媒;テトラヒドロフラン、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、プロピレングリコールジメチルエーテル、エトキシエチルエーテル、1,2-ビス(2-ジエトキシ)エタンもしくは1,2-ビス(2-メトキシエトキシ)エタン等のエーテル系溶媒;酢酸2-(2-ブトキシエトキシ)エタン等のエステルエーテル類;2-(2-メトキシエトキシ)エタノール等のエーテルアルコール系溶媒;ベンゼン、トルエン、キシレン、n-パラフィン、イソパラフィン、ドデシルベンゼン、テレピン油、ケロシンもしくは軽油等の炭化水素系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン等の含窒素極性溶媒;シリコンオイル系溶媒等からなる群より選ばれる1種以上があげられる。
 溶剤を用いる場合の使用量は、特に限定されず、導電性樹脂組成物の粘度が、基材上に適切に塗布、印刷等できる程度の粘度及び/又は多孔質体に適切に含浸し得る程度の粘度となるように適宜調整すればよい。
<導電性樹脂組成物の性状>
 本発明の導電性樹脂組成物の性状は、粉末状、固体状、ペースト状、液体状(ワニス状)等の任意の性状とすることができる。導電性インクや回路接続材料としての用途の際には、室温(20℃)でペースト状又は液体状(ワニス状)であることが好適である。
<導電性樹脂組成物の特性>
 本発明の導電性樹脂組成物は導電性に優れている。導電性樹脂組成物の導電性は、剥離性基材の上に導電性樹脂組成物を流延又は塗布し乾燥後に剥離して得られた導電膜の体積抵抗率が1.0×10-2Ω・cm未満である。好ましくは導電膜の体積抵抗率が8.0×10-3Ω・cm未満、より好ましくは1.0×10-3Ω・cm未満である。ここで、体積抵抗率は、実施例において記載した方法により得られる。
 本発明の導電性樹脂組成物は、各種の基材に対する密着性に優れている。特に、ポリビニルブチラール系樹脂を含む場合、ガラス又はPETに対する密着性に優れている。
 本発明の導電性樹脂組成物は、例えば、60日間の保存前後において、増粘等の粘度変化等がなく、沈殿の発生等もない、保存安定性に優れたものとすることが可能である。
<導電性樹脂組成物の調製方法>
 本発明の導電性樹脂組成物の調製に際しては、錫粉末、樹脂及び有機酸化合物を必須成分とし、必要に応じて無鉛ハンダ粉末、溶媒等を、任意の順序で混合容器に加えて混合し製造することができる。混合に際しては、例えば、自転・公転ミキサー、ボールミル、ロールミル、ビーズミル、プラネタリーミキサー、タンブラー、スターラー、撹拌機、メカニカルホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、ペイントシェーカー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、単軸或いは二軸の押出機などで混合する方法が適宜用いられる。
 導電性樹脂組成物を調製する際の温度(各成分を混合する際の温度)は、特に限定されない。必要に応じて、加熱等をすることができ、例えば、10~100℃とすることができる。
 導電性樹脂組成物を調製する際の雰囲気は、特に限定されない。大気中で行うことができ、不活性雰囲気下で行うこともできる。
<導電性樹脂組成物の用途>
 本発明の導電性樹脂組成物の用途は、導電性物体の製造に係る用途である。導電性物体は、導電性樹脂組成物に加えて他の部材等を含んでいてもよい。
 導電性物体としては、例えば、導電性インク、回路接続材料、導電性ペースト、導電膜、導電性繊維、導電性塗料、半導体パッケージ用導電材料、マイクロエレクトロニクスデバイス用導電材料、帯電防止材料、電磁波シールド材料、異方性導電性接着剤(ダイ取付接着剤等)、ダイアタッチペースト、アクチュエータ、センサー、導電性樹脂成形体からなる群より選ばれる1種以上があげられる。
 例えば、溶媒を導電性樹脂組成物の成分とすることで、導電性インク、導電性ペースト、導電性塗料等を構成することができる。その際の粘度は特に限定されず、用途等に応じて低粘度のワニス状から高粘度のペースト状等とすることができる。
 例えば、必要に応じて溶媒等を含む導電性樹脂組成物を、キャスティング法、ディッピング法、バーコート法、ディスペンサ法、ロールコート法、グラビアコート法、スクリーン印刷、フレキソ印刷法、スプレーコート法、スピンコート法、又はインクジェット法等により各種の基材に塗布し、300℃以下の温度で加熱乾燥させて導電膜とすることができる。乾燥時の雰囲気は、大気中、不活性ガス中、真空中、減圧等からなる群より選ばれる1種以上があげられる。特に、導電膜の劣化抑制(錫粉末や無鉛ハンダ粉末等の酸化防止等)の観点からは、窒素、アルゴン等の不活性ガス雰囲気が好ましい。
 本発明の導電性樹脂組成物は,押出成形、射出成形、圧縮成形等の成形方法により成形し、成形体として用いることができる。成形体としては、例えば電子機器部品、自動車用部品、機械機構部品、食品容器、フィルム、シート、繊維等があげられる。
[導電膜]
 本発明の導電膜は、前記導電性樹脂組成物から形成され、体積抵抗率が1.0×10-2Ω・cm未満である。好ましくは導電膜の体積抵抗率が8.0×10-3Ω・cm未満、より好ましくは1.0×10-3Ω・cm未満である。本発明の導電膜は、1.0×10-4Ω・cm未満(10-5Ω・cmオーダー)という、銀ペーストから形成された導電膜に匹敵する体積低効率とすることも可能である。
 ここで、体積抵抗率は、実施例において記載した方法により得られる。
 導電性樹脂組成物から導電膜を形成する方法としては、特に限定されない。例えば、前記導電性樹脂組成物を溶媒含有のものとし、これを任意の基材上に塗布し乾燥等することで、導電膜を形成できる。また、剥離性基材の上に導電性樹脂組成物を流延又は塗布し乾燥等した後に剥離して得ることができる。
 導電膜の形成条件は、特に限定されず、被塗物等に応じて適宜設定できる。導電性樹脂組成物を塗布した後の乾燥等に際しての温度は、例えば50℃以上、好ましくは90℃以上であり、例えば250℃以下、好ましくは220℃以下である。乾燥等の時間としては、例えば5分以上、好ましくは7分以上であり、例えば300分以下、好ましくは200分以下である。
 導電膜の乾燥膜厚は、特に限定されず、用途等に応じて適宜調整できる。例えば、10μm以上、好ましくは30μm以上であり、例えば1000μm以下、好ましくは500μm以下である。
[導電性インク]
 本発明の導電性インクは、前記導電性樹脂組成物を溶媒に溶解及び/又は分散させて得ることができる。
 本発明の導電性インクは、錫粉末、樹脂、有機酸化合物及び溶媒を含み、必要に応じて、無鉛ハンダ粉末、界面活性剤、pH調整剤(アミン系化合物)、レベリング剤、顔料、紫外線吸収剤、酸化防止剤、難燃剤等の添加剤成分等を含んでいる。
 導電性インクは、前記成分を混合容器に入れた後に、自転・公転ミキサー、ボールミル、ロールミル、ビーズミル、プラネタリーミキサー、タンブラー、スターラー、撹拌機、メカニカルホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、ペイントシェーカー等からなる群より選ばれる1種以上の混合機を用いて混合し、ワニス状又はペースト状とすることで得られる。
 本発明の導電性インクは、例えば配線形成用の印刷用導電性インクとして利用できる。印刷方法としては、例えばスクリーン印刷、インクジェット印刷、フレキソ印刷、グラビア印刷等からなる群より選ばれる1種以上があげられる。本発明においては、印刷性や形状保持性に優れるため、スクリーン印刷、インクジェット印刷からなる群より選ばれる1種以上の印刷方法を用いることが好ましい。
 ここで、スクリーン印刷法におけるメッシュは適宜選択でき、導電性インク中の導電性粉末や無鉛ハンダ粉末が過度に除去されないだけのメッシュを採用することが好ましい。
 本発明の導電性インクを塗布してなる塗布膜の膜厚は、各種の用途に応じて適当な厚みとすることができる。例えば1μm以上、好ましくは2μm以上、より好ましくは5μm以上であり、100μm以下である。
 本発明の導電性インクは、導電性、各種基材への密着性、保存安定性、レベリング(表面平滑性)、印刷性等からなる群より選ばれる1種以上の特性に優れたものである。
[回路接続材料]
 本発明の回路接続材料は、各種電子部品と回路基板との導電接続や電気・電子回路相互の接続(接着)に用いられる。
 回路接続材料の形状等は特に限定されないが、液状又はフィルム状であることが好ましい。
 液状の回路接続材料は、例えば、本発明の導電性樹脂組成物に有機溶媒等の溶媒を混合して液状化することで得ることができる。
 フィルム状の回路接続材料は、例えば、前記の液状化した本発明の導電性樹脂組成物を剥離性基材上に直接流延・塗布して膜を形成し、乾燥して溶媒を除去してフィルムを形成した後に剥離性基材上から剥がすことで得ることができる。
 また、フィルム状の回路接続材料は、例えば、前記の液状化した本発明の導電性樹脂組成物を不織布等に含浸させた後に剥離性基材上に形成し、乾燥して溶媒を除去した後に剥離性基材上から剥がすことで得ることができる。
 本発明の回路接続材料を用いた電気的接続方法等は特に限定されない。例えば、電子部品や回路等の電極と、それと相対峙する基材上の電極との間に回路接続材料を設け、加熱して両電極の電気的接続と両電極間の接着を行う方法があげられる。加熱の際、必要に応じて加圧することができる。
 相対峙する電極との間に回路接続材料を設ける方法は、特に限定されない。例えば、液状の回路接続材料を塗布する方法、フィルム状の回路接続材料を挟む方法等があげられる。
 また、電子部品等が有するピンと回路との導電接続に際して、ピンの根元に回路接続材料を設け、突合せ接合して導電接続を構成する方法等があげられる。
 本発明の回路接続材料は、実質的に異方導電材料として用いることができ、また、接着性に優れた回路接続材料を基材上の相対峙する電極間に形成し、加熱加圧により両電極の接触と基材間の接着を得る電極の接続方法に用いることができる。電極を形成する基材としては、半導体、ガラス、セラミック等の無機質、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等のこれら複合の各組み合わせが適用できる。
 さらに、本発明の回路接続材料は、低温で溶融するハンダ粉末を成分としていることから、250℃以下、例えば200℃以下という低温で導電接続を可能とすることができる。
 以下に実施例をあげて本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されない。特に断りのない限り、「%」は「質量%」を、「部」は「質量部」を意味する。
 実施例及び比較例において用いた錫粉末、樹脂、有機酸化合物及び無鉛ハンダ粉末は、それぞれ以下のとおりである。
<錫粉末>
錫粉末1:搗砕法錫フレーク粉末(70質量%超が粒径45μm未満)
錫粉末2:ガスアトマイズ錫粉末(D50=73.5μm、Sn≧99.9質量%)
錫粉末3:球状錫粉末(D50=5.5μm、Sn≧99.5質量%)
<無鉛ハンダ粉末>
無鉛ハンダ1:Sn42-Bi58(type 5)(三井金属鉱業社製)
無鉛ハンダ2:Sn42-Bi58(type 4)(三井金属鉱業社製)
無鉛ハンダ3:Sn42-Bi58(type 9)(5N Plus社製)
<樹脂>
樹脂1:ポリビニルブチラール樹脂(積水化学工業社製、S-LEC BH-A)
<有機酸化合物>
有機酸1:グルタル酸
有機酸2:ドデカン二酸(岡本製油社製、SL-12)
有機酸3:エイコサン二酸(岡本製油社製、SL-20)
有機酸4:ステアリン酸
 実施例及び比較例において、導電性樹脂組成物により形成された導電膜の体積抵抗率の測定・評価は、以下に示す方法で測定した。
<導電性>
 スピンコーターを用いて、導電性樹脂組成物をスピンコートしてウエット塗膜をプラスチックフィルム基材上に作製した後に、焼成後の膜厚(焼成膜厚)が表1及び表2に記載される導電膜を作製した。導電膜の体積抵抗率を、抵抗率計「ロレスタGP-MCP T610」(日東精工アナリテック社製)により測定した。
 本発明においては、導電膜の体積抵抗率が1.0×10-2Ω・cm未満であるものを合格とした。
[実施例1]
 0.84部の樹脂1をジエチレングリコールモノエチルエーテルアセテート(EDGAC)5.00部と混合して、ワニスを得た。作製したワニスを5.84部、錫粉末1を15.00部及び有機酸1を0.4部混合し、自転・公転ミキサー(シンキー社製、「あわとり練太郎 AR-100」)を用い混合、撹拌して導電性樹脂組成物を得た。得られた導電性樹脂組成物における、錫粉末、樹脂及び有機酸の固形分含有量を表1に示す。
 得られた導電性樹脂組成物を、スピンコーターを用いて500rpm5秒、次いで2000rpm30秒の条件でスピンコートして、基材上に塗布し、加熱することで乾燥膜厚100μmの導電膜を作製し、導電性(体積抵抗率)を測定した。結果を表1及び表2に示す。
[実施例2~20、比較例1、2]
 導電性樹脂組成物の構成成分、その固形分含有量及び導電膜の焼成膜厚を、それぞれ表1及び表2に示すものとしたほかは、実施例1と同様にして導電性樹脂組成物及び導電膜を作製した。得られた導電性樹脂組成物により形成された導電膜について、その体積抵抗率を評価した。結果を表1及び表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表2から看取できるように、実施例1~20に係る導電性樹脂組成物により形成された導電膜は、いずれも体積抵抗率が1.0×10-2(Ω・cm)未満、場合によっては1.0×10-4(Ω・cm)未満という、銀ペーストと同等以上の導電性を示し、導電性に優れたものであった。これより、銀ペースト等と比較して低コストであり、銀ペーストと同等の高い導電性を示す導電性樹脂組成物が形成されたことがわかる。
 また、実施例1、2、10及び11等にあるように、本発明の導電性樹脂組成物により形成される導電膜は、導電膜の作成時の焼成膜厚条件が多様なものであっても、体積抵抗率を低くできることがわかる。
 一方、有機酸化合物を含まない比較例1、2に係る導電性樹脂組成物により形成された導電膜は、体積抵抗率が測定不能であり、導電性が劣るものであった。

Claims (6)

  1.  錫粉末と、樹脂と、有機酸化合物と、を含む導電性樹脂組成物。
  2.  無鉛ハンダ粉末を含む、請求項1に記載の導電性樹脂組成物。
  3.  樹脂が、ポリビニルブチラール系樹脂、レゾール型フェノール系樹脂、アクリル系樹脂、ポリエステル系樹脂、フェノキシ樹脂、ポリイミド系樹脂、エポキシ系樹脂及びキシレン系樹脂からなる群より選ばれる1種以上を含む、請求項1又は2に記載の導電性樹脂組成物。
  4.  請求項1~3のいずれか1項に記載の導電性樹脂組成物から形成された、体積抵抗率が1.0×10-2Ω・cm未満である導電膜。
  5.  請求項1~3のいずれか1項に記載の導電性樹脂組成物を含む、導電性インク。
  6.  請求項1~3のいずれか1項に記載の導電性樹脂組成物を含む、回路接続材料。
PCT/JP2022/013037 2021-05-07 2022-03-22 導電性樹脂組成物 WO2022234732A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280032308.7A CN117321145A (zh) 2021-05-07 2022-03-22 导电性树脂组合物
EP22798839.1A EP4335899A1 (en) 2021-05-07 2022-03-22 Electroconductive resin composition
KR1020237038971A KR20240004508A (ko) 2021-05-07 2022-03-22 도전성 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021079191A JP2022172874A (ja) 2021-05-07 2021-05-07 導電性樹脂組成物
JP2021-079191 2021-05-07

Publications (1)

Publication Number Publication Date
WO2022234732A1 true WO2022234732A1 (ja) 2022-11-10

Family

ID=83932081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013037 WO2022234732A1 (ja) 2021-05-07 2022-03-22 導電性樹脂組成物

Country Status (5)

Country Link
EP (1) EP4335899A1 (ja)
JP (1) JP2022172874A (ja)
KR (1) KR20240004508A (ja)
CN (1) CN117321145A (ja)
WO (1) WO2022234732A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017811A (ja) * 1996-07-03 1998-01-20 Fukuda Metal Foil & Powder Co Ltd 水性銀色インキ
JP2000309773A (ja) * 1998-11-30 2000-11-07 Nippon Handa Kk 導電性接着剤およびそれを使用した接着方法
WO2015019666A1 (ja) * 2013-08-06 2015-02-12 千住金属工業株式会社 導電性接着剤、接合体および継手
WO2019175859A1 (en) * 2018-03-15 2019-09-19 Printcb Ltd. Two-component printable conductive composition
JP2020205245A (ja) 2019-06-12 2020-12-24 京都エレックス株式会社 導電性ペースト組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1017811A (ja) * 1996-07-03 1998-01-20 Fukuda Metal Foil & Powder Co Ltd 水性銀色インキ
JP2000309773A (ja) * 1998-11-30 2000-11-07 Nippon Handa Kk 導電性接着剤およびそれを使用した接着方法
WO2015019666A1 (ja) * 2013-08-06 2015-02-12 千住金属工業株式会社 導電性接着剤、接合体および継手
WO2019175859A1 (en) * 2018-03-15 2019-09-19 Printcb Ltd. Two-component printable conductive composition
JP2020205245A (ja) 2019-06-12 2020-12-24 京都エレックス株式会社 導電性ペースト組成物

Also Published As

Publication number Publication date
CN117321145A (zh) 2023-12-29
EP4335899A1 (en) 2024-03-13
JP2022172874A (ja) 2022-11-17
KR20240004508A (ko) 2024-01-11

Similar Documents

Publication Publication Date Title
JP4389148B2 (ja) 導電ペースト
KR102360657B1 (ko) 구리 잉크 및 이로부터 제조되는 전도성 납땜가능한 구리 트레이스
JP6075373B2 (ja) 導電性インク組成物
EP1594928A2 (en) High conductivity inks with improved adhesion
JP4235887B2 (ja) 導電ペースト
JPS612202A (ja) 鑞付容易な電気伝導性組成物、その製法、該組成物が適用される基材の処理法および該組成物が適用されたプリント回路板
KR101243895B1 (ko) 도전성 잉크 조성물 및 그 제조방법
KR102214300B1 (ko) 전기 전도성 잉크
JP2004063446A (ja) 導電ペースト
WO2022234732A1 (ja) 導電性樹脂組成物
CN111243778B (zh) 一种丝网印刷用低温导电银胶及其制备方法
JP2012023088A (ja) 太陽電池電極用ペーストおよび太陽電池セル
JP2015133182A (ja) 導電性ペーストおよび導電膜付き基材
WO2022163045A1 (ja) 導電性樹脂組成物
JP2022115037A (ja) 導電性樹脂組成物
JP2022070194A (ja) 導電性樹脂組成物
JP5712488B2 (ja) 絶縁性樹脂フィルム及びそれを用いた積層板、配線板
CN108140442B (zh) 聚合物厚膜铜导体组合物的光子烧结
KR101582407B1 (ko) 저점도 금속 잉크 조성물, 이를 이용한 적층시트, 연성 금속박 적층판 및 인쇄회로기판
JP2004047418A (ja) 導電ペースト
CN105378005A (zh) 导电油墨
JP2020055912A (ja) 電極形成用樹脂組成物並びにチップ型電子部品及びその製造方法
TWI714867B (zh) 導電性糊
TW202328265A (zh) 導電性樹脂組成物、導電膜、導電性油墨、導電性接著劑及電路連接材料
TW202140694A (zh) 導電墨水、其用途及使用其製造電子電路之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22798839

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18559258

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237038971

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022798839

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022798839

Country of ref document: EP

Effective date: 20231207