WO2022233100A1 - 第二代高温超导带材及其制备方法 - Google Patents

第二代高温超导带材及其制备方法 Download PDF

Info

Publication number
WO2022233100A1
WO2022233100A1 PCT/CN2021/112263 CN2021112263W WO2022233100A1 WO 2022233100 A1 WO2022233100 A1 WO 2022233100A1 CN 2021112263 W CN2021112263 W CN 2021112263W WO 2022233100 A1 WO2022233100 A1 WO 2022233100A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting tape
protective layer
copper
graphene
generation high
Prior art date
Application number
PCT/CN2021/112263
Other languages
English (en)
French (fr)
Inventor
赵跃
吴东红
姜广宇
程春生
朱佳敏
吴蔚
丁逸珺
金之俭
Original Assignee
上海超导科技股份有限公司
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海超导科技股份有限公司, 上海交通大学 filed Critical 上海超导科技股份有限公司
Priority to US17/731,236 priority Critical patent/US11894508B2/en
Publication of WO2022233100A1 publication Critical patent/WO2022233100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the invention relates to the technical field of high-temperature superconducting tape preparation, in particular to a second-generation high-temperature superconducting tape and a preparation method thereof, in particular to a second-generation high-temperature superconducting tape with a high-strength and high-conductivity protective layer structure and preparation thereof method.
  • the second-generation high-temperature superconducting tape is based on a multi-layer coating process. After the superconducting layer, a silver layer and a copper layer need to be deposited to protect the superconducting layer and prevent the "quench" of the superconducting layer caused by excessive current. .
  • the mechanical properties of the second-generation high-temperature superconducting tape mainly depend on the metal base tape; the mechanical properties of the later deposited silver and copper protective layers are poor, so that the overall mechanical properties of the second-generation high-temperature superconducting tape are obviously inferior to that of the metal base tape.
  • the second-generation high-temperature superconducting tapes are usually post-packaged, that is, strengthened with high-strength metal thin strips, but this method sacrifices the second-generation high-temperature superconducting tapes.
  • Engineering current density of conduction strips In applications with high spatial localization (such as superconducting high-field interpolating magnets), the second-generation high-temperature superconducting tapes are required to have higher engineering current densities. Studies have shown that the higher the thickness ratio of the protective layer of silver and copper is, the more significant the mechanical properties of the superconducting tape are compared with the metal base tape. The reduction in engineering current density caused by thicker protective layers is particularly pronounced on HTS tapes produced with thin base tapes (A. Sundaram, et al, SUST, 29(2016) 104007).
  • the invention of a protective layer composite structure with mechanical and electrical multifunctional coordination is of great significance for improving the performance of the second-generation high-temperature superconducting tape, and will increase the robustness of the second-generation high-temperature superconducting tape application.
  • the purpose of the present invention is to provide a second-generation high-temperature superconducting tape and a preparation method thereof.
  • a protective layer for the second-generation high-temperature superconducting tape characterized in that the protective layer is a copper-graphene composite film; the mass fraction of graphene in the protective layer is 0.1% to 1%.
  • graphene is dispersed in the copper layer, or distributed in a continuous layer or in a discontinuous layer.
  • a first aspect of the present invention provides a second-generation high-temperature superconducting tape, comprising a superconducting tape body, and a protective layer disposed on at least one side of the superconducting tape body, and the protective layer is copper-graphite
  • the mass fraction of graphene in the protective layer is 0.1% to 1%.
  • the total thickness of the protective layer on one side is 2-30 microns.
  • graphene is dispersed in the copper layer, or distributed in a continuous layer or in a discontinuous layer.
  • the superconducting tape body is a long tape with superconductivity plated with silver on the surface.
  • the long tape is a superconducting tape comprising a base tape, a buffer layer, a superconducting layer and a silver layer.
  • the thickness uniformity of the protective layer along the width direction of the superconducting tape body reaches more than 99%, and fully wraps the edge of the superconducting tape body.
  • the protective layer is deposited on one or both sides of the superconducting tape body by a copper-graphene dual target co-sputtering vapor deposition method.
  • a second aspect of the present invention provides a method for preparing a second-generation high-temperature superconducting tape, comprising the following steps:
  • the high-strength and high-conductivity protective layer is coated on the surface of the superconducting tape body on one side, or on the front and back.
  • the coating process is a continuous roll-to-roll coating.
  • the length of the superconducting tape body is 50 meters to 1000 meters
  • the working gas is argon, methane, hydrogen or a mixture of the three gases.
  • the coating equipment includes a water cooling structure, the coating temperature does not exceed 200°C, and the performance of the superconducting tape is not attenuated after coating.
  • the coating temperature is 100°C, 150°C or 200°C.
  • the present invention has the following beneficial effects:
  • the second-generation high-temperature superconducting tape with a high-strength and high-conductivity protective layer structure of the present invention has a tensile strength that is 30%-70% higher than that of the tape with the same structure obtained by the traditional copper electroplating post-treatment process;
  • the conductivity decay is less than 10% IACS, which solves the problem that the mechanical and electrical properties of the high-temperature superconducting tape are significantly reduced by traditional electrolytic copper plating, packaging and other post-treatment processes, which affects its application.
  • the second-generation high-temperature superconducting tape with a high-strength and high-conductivity protective layer structure of the present invention utilizes the high strength and high conductivity of copper-graphene to improve the mechanical properties and properties of the second-generation high-temperature superconducting tape. electrical properties.
  • the stronger tensile strength improves the mechanical properties of the superconducting tape
  • the high electrical conductivity of the copper-graphene protective layer improves the electrical properties of the second-generation high-temperature superconducting tape, both of which expand the application field of the material .
  • 1 is a schematic cross-sectional structure diagram of a high-temperature superconducting tape prepared by the present invention with a protective layer on one side, wherein 1 is a superconducting tape, and 2 is a unilateral copper-graphene dispersion protective layer;
  • FIG. 2 is a schematic cross-sectional structure diagram of a high-temperature superconducting tape prepared by the present invention with a double-sided protective layer coating, wherein 1 is a superconducting tape, and 3 is a double-sided copper-graphene layer distribution protective layer;
  • 3 is a schematic cross-sectional structure diagram of a traditional single-sided electroplated copper superconducting tape prepared in Comparative Example 5, wherein 1 is a superconducting tape, and 4 is a single-sided electroplated copper protective layer;
  • 4 is a schematic cross-sectional structure diagram of a conventional double-sided copper electroplated superconducting tape prepared in Comparative Example 6, wherein 1 is a superconducting tape, and 4 is a double-sided copper electroplated protective layer.
  • the present invention will be described in detail below with reference to specific embodiments. The following examples will help those skilled in the art to further understand the present invention, but do not limit the present invention in any form. It should be noted that, for those skilled in the art, several changes and improvements can be made without departing from the inventive concept. These all belong to the protection scope of the present invention.
  • the present invention relates to a schematic diagram of a cross-sectional structure, and the thickness ratio of the multi-layer material is for the convenience of description and does not represent an actual ratio.
  • the invention discloses a second-generation high-temperature superconducting tape with a high-strength and high-conductivity protective layer structure. Its structure is to deposit a copper-graphene thin film protective layer on one side or both sides of the second-generation high-temperature superconducting tape by a copper-graphene double-target co-sputtering vapor deposition method.
  • the second-generation high-temperature superconducting tape includes a metal base tape, a buffer layer, a superconducting layer and a silver layer.
  • the tensile strength involved in the present invention refers to 0.2% of the specified plastic elongation strength, and the test is measured with reference to the standard IEC 61788-25:2018 "Mechanical properties measurement-Room temperature tension test on REBCO wires" developed by the International Electrotechnical Standards Committee), The measurement of conductivity refers to the National Metrology Technical Specification, JJF 1516-2015 Non-ferromagnetic Metal Conductivity Sample (Standard) Calibration Specification.
  • the second-generation high-temperature superconducting tape that is, a long tape with superconductivity and silver-coated surface with a length of 500 meters, put it into the magnetron sputtering reaction chamber (for a roll-to-roll continuous coating device), and pump it.
  • the target materials are copper and graphene; start sputtering coating, deposit it on the surface of the second-generation high-temperature superconducting tape, and obtain high-strength and high-conductivity protection with a copper-graphene structure grown on the surface
  • the protective layer is plated to the side of the superconducting layer; by controlling the magnetron sputtering power, a protective layer with a graphene mass fraction ratio of 0.3% is obtained, and the graphene is uniformly dispersed in the copper layer; by controlling During the coating time, a protective layer with a thickness of 30 microns is obtained; during the coating process, the surface temperature of the superconducting tape is guaranteed to be 150 degrees Celsius by controlling the water cooling device.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 99%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped;
  • the cross-sectional schematic diagram of the superconducting tape is shown in Figure 1. , where 1 is the superconducting tape, and 2 is the single-sided copper-graphene dispersed protective layer.
  • the second-generation high-temperature superconducting tape obtained by the above process has a tensile strength of 1500 MPa and a conductivity decay of 5% IACS. As shown in Table 1.
  • the second-generation high-temperature superconducting tape that is, a long tape with superconductivity silver-plated on the surface, with a length of 1000 meters, put it into a magnetron sputtering reaction chamber (for a roll-to-roll continuous coating device), and pump it.
  • the target materials are copper and graphene; start sputtering coating, deposit it on the surface of the second-generation high-temperature superconducting tape, and obtain a high-strength and high-conductivity protective layer with a copper-graphene structure grown on the surface
  • the protective layer is plated on one side of the superconducting layer; by controlling the magnetron sputtering power, a protective layer with a graphene mass fraction of 0.1% is obtained, and the graphene is uniformly dispersed in the copper layer; by controlling the coating Time to obtain a protective layer with a thickness of 10 microns; during the coating process, the surface temperature of the superconducting tape is guaranteed to be 200 degrees Celsius by controlling the water cooling device.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 99%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped; the cross-sectional schematic diagram of the superconducting tape is shown in Figure 1. .
  • the second-generation high-temperature superconducting tape obtained by the above process has a tensile strength of 1295 MPa and a conductivity decay of 9% IACS. As shown in table 2.
  • the second-generation high-temperature superconducting tape that is, a long tape with superconductivity and silver-plated surface, with a length of 50 meters, put it into a magnetron sputtering reaction chamber (for a roll-to-roll continuous coating device), and pump it. to high vacuum, and then filled with methane; the target materials are copper and graphite; the sputtering coating is started, and it is deposited on the surface of the second-generation high-temperature superconducting tape to obtain a high-strength and high-conductivity protective layer with a copper-graphene structure grown on the surface.
  • the protective layer is plated on both sides of the superconducting layer; by controlling the magnetron sputtering power, a protective layer with a graphene mass fraction of 1% is obtained, and the graphene is uniformly distributed in the copper layer; by controlling the coating A protective layer with a thickness of 2 microns can be obtained within a short period of time; during the coating process, the surface temperature of the superconducting tape is guaranteed to be 100 degrees Celsius by controlling the water cooling device.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 99%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped;
  • the cross-sectional schematic diagram of the superconducting tape is shown in Figure 2 , where 1 is a superconducting tape, and 3 is a double-sided copper-graphene layer distribution protective layer.
  • the second-generation high-temperature superconducting tape obtained by the above process has a tensile strength of 1220 MPa and a conductivity decay of 2% IACS. As shown in table 2.
  • the second-generation high-temperature superconducting tape that is, a long tape with superconductivity and a silver-plated surface, with a length of 500 meters, put it into an electroplating copper tank (for a roll-to-roll continuous electroplating device), and deposit copper on the surface.
  • an electroplating copper tank for a roll-to-roll continuous electroplating device
  • deposit copper on the surface On the surface of the second-generation high-temperature superconducting tape, a tape with a protective layer of pure copper structure grown on the surface is obtained. The protective layer.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 70%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped;
  • the cross-sectional schematic diagram of the superconducting tape is shown in Figure 3 , where 1 is a superconducting tape, and 4 is a single-sided copper electroplating protective layer.
  • the tensile strength of the second-generation high-temperature superconducting tape obtained by the above process was 880 MPa, and the electrical conductivity did not decay, as shown in Table 1.
  • a high-strength and high-conductivity protective layer was prepared on the surface of the second-generation high-temperature superconducting tape, the difference being that a protective layer with a graphene mass fraction of 5% was obtained by controlling the magnetron sputtering power.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 99%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped; the cross-sectional schematic diagram of the superconducting tape is shown in Figure 1. .
  • the second-generation high-temperature superconducting tape obtained by the above process has a tensile strength of 1090 MPa and a conductivity decay of 32% IACS, as shown in Table 1.
  • a high-strength and high-conductivity protective layer was prepared on the surface of the second-generation high-temperature superconducting tape in the same process as in Example 1, except that after being pumped to a high vacuum, nitrogen was filled again to obtain a surface protected by a copper nitride-copper carbide-copper structure. layers of strips.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 99%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped; the cross-sectional schematic diagram of the superconducting tape is shown in Figure 1. .
  • the second-generation high-temperature superconducting tape obtained by the above process has a tensile strength of 900 MPa and a conductivity decay of 14% IACS, as shown in Table 1.
  • the tensile strength of Comparative Example 1 is lower than that of Example 1, which is mainly due to the fact that the mechanical properties of the high-strength and high-conductivity protective layer of the copper-graphene structure of Example 1 are significantly better than those of Comparative Example 1 for pure copper protection.
  • the tensile strength is better than that of Comparative Example 2, because the graphene content of Comparative Example 2 is too high, and its tensile strength decreases; the tensile strength is better than that of Comparative Example 3, because no copper- The structure of graphene.
  • Example 1 The conductivity decay of Example 1 is lower than that of Comparative Examples 2 and 3, because it selects an optimized copper-graphene structure and an optimized graphene content; the conductivity decay of Example 1 is slightly higher than that of Comparative Example 1. , because even though the copper-graphene structure is preferred, its conductivity is slightly worse than that of pure copper.
  • Example 1 a high-strength and high-conductivity protective layer was prepared on the surface of the second-generation high-temperature superconducting tape, except that during the coating process, the water cooling device was controlled to ensure that the surface temperature of the superconducting tape was 250 degrees Celsius.
  • the current of the second-generation high-temperature superconducting tape with a protective layer obtained by the above process has a large attenuation.
  • a second-generation high-temperature superconducting tape with a protective layer differs from Example 2 in that the preparation method is to put a long tape with superconductivity on the surface silver-plated into the In the copper electroplating tank (roll-to-roll continuous electroplating device), copper is deposited on the surface of the second-generation high-temperature superconducting tape to obtain a tape with a protective layer of pure copper structure grown on the surface.
  • the protective layer is plated on one side of the superconducting layer; the length is 1000 meters, and the thickness is 10 micrometers.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape obtained by the above process reaches 70%, and the edge of the second-generation high-temperature superconducting tape is completely wrapped; the second-generation high-temperature superconducting tape is obtained by the above process.
  • the tensile strength of the material is 920MPa, and the electrical conductivity is not attenuated. As shown in table 2.
  • a second-generation high-temperature superconducting tape with a protective layer differs from Example 3 in that its preparation method is to put a long tape with superconductivity on the surface silver-plated into In the copper electroplating tank (roll-to-roll continuous electroplating device), copper is deposited on the surface of the second-generation high-temperature superconducting tape to obtain a tape with a protective layer of pure copper structure grown on the surface.
  • the protective layer is plated on both sides of the superconducting layer, the length is 50 meters, the thickness of one side is 2 microns by controlling the tape, and the total thickness is 4 microns.
  • the thickness uniformity of the protective layer along the width direction of the second-generation high-temperature superconducting tape can reach 70%, and the edge of the second-generation high-temperature superconducting tape can be completely wrapped;
  • the cross-sectional schematic diagram of the superconducting tape is shown in Figure 4 , where 1 is a superconducting tape, and 4 is a double-sided copper electroplating protective layer.
  • the tensile strength of the second-generation high-temperature superconducting tape obtained by the above process is 925 MPa, and the electrical conductivity is not attenuated. As shown in table 2.
  • Example 2 Comparative Example 5
  • Example 3 Comparative Example 6
  • Comparative Example 5 It can be seen from Table 2 that the tensile strength and strip thickness uniformity of Comparative Example 5 are lower than those of Example 2, which is mainly because the traditional electrolytic copper plating process is adopted in Comparative Example 5. In this process, due to the concentration of the electric field at the edge of the strip, the copper plating speed of the edge is fast, and a structure with uneven thickness is formed; The performance is significantly better than that of the pure copper protection layer of Comparative Example 5.
  • the conductivity decay of Example 2 is slightly higher than that of Comparative Example 5, because even if the structure of copper-graphene is preferred, its conductivity is slightly worse than that of pure copper.
  • Comparing Comparative Example 6 and Example 3 it can be seen that the tensile strength and strip thickness uniformity of Comparative Example 6 are lower than those of Example 3, and the conductivity decay of Example 3 is higher than that of Comparative Example 6. This reason is the same as above.

Abstract

提供了一种第二代高温超导带材(1)及其制备方法,第二代高温超导带材(1)包括超导带材(1)本体,以及设置于超导带材(1)本体至少一侧的保护层(2,3),保护层(2,3)为铜-石墨烯复合膜,保护层(2,3)单面总厚度为2~30微米。制备方法包括以下步骤:(1)将超导带材(1)本体放入磁控溅射反应腔内,抽至高真空,再充入工作气体;(2)通过控制磁控溅射功率,以铜、石墨烯作为靶材,开始溅射镀膜,将靶材材料沉积在超导带材(1)本体表面,即得到表面生长有铜-石墨烯结构的第二代高温超导带材(1)。制备的包含铜-石墨烯高强高导保护层(2,3)的超导带材(1),抗拉强度比传统电镀铜的超导带材抗拉强度提高了30%~70%,导电率衰减小于10%IACS,且临界电流无衰减。

Description

第二代高温超导带材及其制备方法
本申请要求于2021年05月06日提交中国专利局、申请号为CN202110491577.7、发明名称为“第二代高温超导带材及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高温超导带材制备技术领域,具体涉及第二代高温超导带材及其制备方法,尤其涉及一种具有高强高导保护层结构的第二代高温超导带材及其制备方法。
背景技术
自第二代高温超导材料被发现以来,由于其优异的材料性能,引来世界范围的普遍关注和研究。在过去的十几年间,第二代高温超导带材及其相关应用技术飞速发展,第二代高温超导带材电力学性能优异,在超导储能、超导发电机、超导输电、超导限流器、超导磁体等应用领域取得显著进展。在超导磁体的应用中,高温超导带材的工程电流密度、抗拉强度、导电率都是影响其超导器件/装置制造和使用的关键性能指标。
第二代高温超导带材基于多层镀膜工艺,在超导层后,需要沉积银层和铜层,对超导层起保护作用,也防止电流过大引起超导层的“失超”。第二代高温超导带材的力学性能主要依赖金属基带;后沉积的银和铜保护层力学性能较差,使第二代高温超导带材整体力学性能明显不及金属基带。为了增强第二代高温超导带材的力学性能,通常对第二代高温超导带材进行封装后处理,即采用高强度金属薄带进行加强,但是这种方法牺牲了第二代高温超导带材的工程电流密度。而在空间局域高的应用中(如超导高场内插磁体),要求第二代高温超导带材具有较高的工程电流密度。已有研究表明,银和铜的保护层所占厚度比例越高,超导带材力学性能较金属基带下降越显著。较厚保护层所导致工程电流密度的降低在采用薄基带生产的高温超导带材上尤为突出(A.Sundaram,et al,SUST,29(2016)104007)。
基于此,发明一种具有力学和电学多功能协调的保护层复合结构,对 于提高第二代高温超导带材性能有重要意义,将增加第二代高温超导带材应用的鲁棒性。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种第二代高温超导带材及其制备方法。
本发明的目的是通过以下方案实现的:
一种用于第二代高温超导带材的保护层,其特征在于,所述保护层为铜-石墨烯复合膜;所述保护层中石墨烯的质量分数为0.1%~1%。
优选地,所述保护层中,石墨烯在铜层中弥散分布,或者连续层状分布或者非连续层状分布。
本发明的第一方面提供一种第二代高温超导带材,包括超导带材本体,以及设置于所述超导带材本体至少一侧的保护层,所述保护层为铜-石墨烯复合膜,所述保护层中石墨烯的质量分数为0.1%~1%。
优选地,所述保护层单面总厚度为2~30微米。
优选地,所述保护层中,石墨烯在铜层中弥散分布,或者连续层状分布或者非连续层状分布。
优选地,所述超导带材本体为具有超导电性的表面镀银的长带。优选的,该长带为包含基带、缓冲层、超导层和银层的超导带材。
优选地,所述保护层沿所述超导带材本体宽度方向厚度均匀性达到99%以上,对所述超导带材本体边缘实现全部包裹。
优选地,所述保护层通过铜-石墨烯双靶共溅射气相沉积法沉积于所述超导带材本体的一侧或两侧。
本发明的第二方面提供一种第二代高温超导带材的制备方法,包括以下步骤:
(1)将超导带材本体放入磁控溅射反应腔内,抽至高真空,再充入工作气体;
(2)通过控制磁控溅射功率,以铜、石墨烯作为靶材,溅射镀膜,将靶材沉积在超导带材本体表面,得到表面生长有铜-石墨烯结构的第二代高温超导带材,高强高导保护层在超导带材本体表面进行单面镀膜,或 者正反面镀膜。镀膜过程是卷对卷的连续镀膜。
优选地,所述超导带材本体长度为50米~1000米
优选地,所述步骤(1)中,工作气体为氩气、甲烷、氢气或三种气体的混合气。
优选地,所述步骤(2)中,镀膜过程中,镀膜设备包含水冷结构,镀膜温度不超过200℃,镀膜后超导带材性能无衰减。
优选地,所述步骤(2)中,镀膜过程中,镀膜温度100℃、150℃或200℃。
与现有技术相比,本发明具有如下的有益效果:
(1)本发明的具有高强高导保护层结构的第二代高温超导带材,抗拉强度比传统电镀铜后处理工艺获得相同结构的带材抗拉强度提高了30%-70%;导电率衰减小于10%IACS,解决了传统电解镀铜、封装等后处理工艺造成高温超导带材力学、电学性能显著降低从而影响其应用的问题。
(2)本发明的具有高强高导保护层结构的第二代高温超导带材,利用铜-石墨烯的高强度和高导电性,提高了第二代高温超导带材的力学性能和电学性能。较强的抗拉强度提高了超导带材的力学性能,铜-石墨烯保护层的高导电率提高了第二代高温超导带材的电学性能,此二项扩大了该材料的应用领域。
说明书附图
图1为本发明制备的单侧镀保护层的高温超导带材的截面结构示意图,其中,1为超导带材,2为单侧铜-石墨烯弥散分布保护层;
图2为本发明制备的双侧镀保护层的高温超导带材的截面结构示意图,其中,1为超导带材,3为双侧铜-石墨烯层分布保护层;
图3为对比例5制备的传统单面电镀铜超导带材的截面结构示意图,其中,1为超导带材,4为单面电镀铜保护层;
图4为对比例6制备的传统双面电镀铜超导带材的截面结构示意图,其中,1为超导带材,4为双面电镀铜保护层。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。此外,本发明涉及截面结构示意图,多层材料的厚度比例为便于说明,不代表实际比例。
本发明公开了一种具有高强高导保护层结构的第二代高温超导带材。其结构为通过铜-石墨烯双靶共溅射气相沉积法在第二代高温超导带材的一侧或两侧沉积铜-石墨烯薄膜保护层。其中,第二代高温超导带材包括金属基带、缓冲层、超导层和银层。
本发明所涉及的抗拉强度指0.2%规定塑性延伸强度,测试参照国际电工标准委员会制定的标准IEC 61788-25:2018《Mechanical properties measurement-Room temperature tensile test on REBCO wires》测量标准进行测量),导电率的测量参照国家计量技术规范,JJF 1516-2015非铁磁金属电导率样(标)块校准规范。
实施例1
选取第二代高温超导带材,即具有超导电性的表面镀银的长带,长度为500米,将其放入磁控溅射反应腔内(为卷对卷连续镀膜装置),抽至高真空,再充入氩气;靶材为铜和石墨烯;开始溅射镀膜,将其沉积在第二代高温超导带材表面,得到表面生长有铜-石墨烯结构的高强高导保护层的带材,保护层镀至在超导层一面;通过控制磁控溅射功率,获得石墨烯质量分数比例为0.3%的保护层,石墨烯在铜层中是均匀弥散分布的;通过控制镀膜时间得到厚度为30微米的保护层;镀膜过程中,通过控制水冷装置,保证超导带材表面温度在150摄氏度。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到99%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图1所示,其中,1为超导带材,2为单侧铜-石墨烯弥散分布保护层。用上述工艺获得第二代高温超导带材与对比例1相同结构的传统电镀铜带材相比抗拉强度达到1500MPa,导电率衰减为5%IACS。如表1所示。
实施例2
选取第二代高温超导带材,即具有超导电性的表面镀银的长带,长度为1000米,将其放入磁控溅射反应腔内(为卷对卷连续镀膜装置),抽至高真空,再充入氢气;靶材为铜和石墨烯;开始溅射镀膜,将其沉积在第二代高温超导带材表面,得到表面生长有铜-石墨烯结构的高强高导保护层的带材,保护层镀至在超导层一面;通过控制磁控溅射功率,获得石墨烯质量分数比例为0.1%的保护层,石墨烯在铜层中是均匀弥散分布的;通过控制镀膜时间得到厚度为10微米的保护层;镀膜过程中,通过控制水冷装置,保证超导带材表面温度在200摄氏度。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到99%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图1所示。用上述工艺获得第二代高温超导带材与对比例2相同结构的传统电镀铜带材相比抗拉强度达到1295MPa,导电率衰减为9%IACS。如表2所示。
实施例3
选取第二代高温超导带材,即具有超导电性的表面镀银的长带,长度为50米,将其放入磁控溅射反应腔内(为卷对卷连续镀膜装置),抽至高真空,再充入甲烷;靶材为铜和石墨;开始溅射镀膜,将其沉积在第二代高温超导带材表面,得到表面生长有铜-石墨烯结构的高强高导保护层的带材,保护层镀至在超导层两面;通过控制磁控溅射功率,获得石墨烯质量分数比例为1%的保护层,石墨烯在铜层中是均匀层状分布的;通过控制镀膜时间得到厚度为2微米的保护层;镀膜过程中,通过控制水冷装置,保证超导带材表面温度在100摄氏度。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到99%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图2所示,其中,1为超导带材,3为双侧铜-石墨烯层分布保护层。用上述工艺获得第二代高温超导带材与对比例3相同结构的传统电镀铜带材相比抗拉强度达到1220MPa,导电率衰减为2%IACS。如表2所示。
对比例1
选取第二代高温超导带材,即具有超导电性的表面镀银的长带,长度 为500米,将其放入电镀铜槽内(为卷对卷连续电镀装置),将铜沉积在第二代高温超导带材表面,得到表面生长有纯铜结构的保护层的带材,保护层镀至在超导层一面;通过控制走带速度和电压得到单侧厚度30微米的纯铜保护层。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到70%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图3所示,其中,1为超导带材,4为单面电镀铜保护层。用上述工艺获得第二代高温超导带材抗拉强度为880MPa,导电率没有衰减,如表1所示。
对比例2
与实施例1相同,在第二代高温超导带材表面制备高强高导保护层,不同处在于通过控制磁控溅射功率,获得石墨烯质量分数比例为5%的保护层。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到99%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图1所示。用上述工艺获得第二代高温超导带材与实施例1相同结构的超导带材相比抗拉强度达到1090MPa,导电率衰减为32%IACS,如表1所示。
对比例3
与实施例1相同工艺在第二代高温超导带材表面制备高强高导保护层,不同处在于抽至高真空后,再充入氮气,得到表面生长有氮化铜-碳化铜-铜结构保护层的带材。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到99%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图1所示。用上述工艺获得第二代高温超导带材与实施例1相同结构的超导带材相比抗拉强度达到900MPa,导电率衰减为14%IACS,如表1所示。
表1、实施例1与对比例1、2、3的超导带材电学、力学性能比较
  实施例1 对比例1 对比例2 对比例3
抗拉强度MPa 1500 880 1090 900
导电率衰减%ICAS 5% 0 32% 14%
由表1可以看出,对比例1的抗拉强度比实施例1低,这主要是由于实施例1的铜-石墨烯结构的高强高导保护层力学性能显著优于对比例1纯铜保护层;优于对比例2的抗拉强度,是因为对比例2的石墨烯含量过高,其抗拉强度反而下降;优于对比例3的抗拉强度,是因为对比例3未形成铜-石墨烯的结构。实施例1的导电率衰减比对比例2、3的低,是因为其选择了优化的铜-石墨烯的结构以及优化的石墨烯含量;实施例1的导电率衰减比对比例1的略高,是因为即便优选铜-石墨烯的结构,其导电率较纯铜略差。
对比例4
与实施例1相同在第二代高温超导带材表面制备高强高导保护层,不同处在于镀膜过程中,通过控制水冷装置,保证超导带材表面温度在250摄氏度。
采用上述工艺获得带保护层的第二代高温超导带材电流有较大的衰减。
对比例5
一种带保护层的第二代高温超导带材,其结构如图3所示,与实施例2不同之处在于:其制备方法为将具有超导电性的表面镀银的长带放入电镀铜槽内(为卷对卷连续电镀装置),将铜沉积在第二代高温超导带材表面,得到表面生长有纯铜结构的保护层的带材。与实施例2相同的是保护层都镀在超导层一面;长度1000米,厚度都是10微米。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到70%,且对第二代高温超导带材边缘实现全部包裹;用上述工艺获得第二代高温超导带材抗拉强度为920MPa,导电率没有衰减。如表2所示。
对比例6
一种带保护层的第二代高温超导带材,其结构如图4所示,与实施例3不同之处在于:其制备方法为将具有超导电性的表面镀银的长带放入电镀铜槽内(为卷对卷连续电镀装置),将铜沉积在第二代高温超导带材表面,得到表面生长有纯铜结构的保护层的带材。与实施例3相比相同处在于:保护层镀在超导层两面,长度50米,通过控制走带单侧厚度2微米,总厚度4微米。
采用上述工艺获得保护层沿第二代高温超导带材宽度方向厚度均匀性达到70%,且对第二代高温超导带材边缘实现全部包裹;超导带材截面示意图如图4所示,其中,1为超导带材,4为双面电镀铜保护层。用上述工艺获得第二代高温超导带材抗拉强度为925MPa,导电率没有衰减。如表2所示。
表2、实施例2、3与对比例5、6的超导带材电学、力学性能比较
  实施例2 对比例5 实施例3 对比例6
抗拉强度MPa 1295 920 1220 925
导电率衰减%ICAS 9% 0 2% 0
带材厚度均匀性 99% 70% 99% 70%
由表2可以看出,对比例5的抗拉强度和带材厚度均匀性比实施例2低,这主要是由于对比例5采用了传统的电解镀铜的工艺。在该工艺中,由于电场在带材边缘的集中,导致边缘镀铜速度快,形成厚度不均匀的结构;同时由于实施例2采用了铜-石墨烯结构的高强高导保护层,使得其力学性能显著优于对比例5纯铜保护层。实施例2的导电率衰减比对比例5的略高,是因为即便优选铜-石墨烯的结构,其导电率较纯铜略差。
比较对比例6和实施例3可知,对比例6的抗拉强度和带材厚度均匀性比实施例3低,实施例3的导电率衰减比对比例6的高。这个原因与上述相同。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术 人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (13)

  1. 一种用于第二代高温超导带材的保护层,其特征在于,所述保护层为铜-石墨烯复合膜;所述保护层中石墨烯的质量分数为0.1%~1%。
  2. 根据权利要求1所述的保护层,其特征在于,所述保护层中,石墨烯在铜层中弥散分布,或者连续层状分布或者非连续层状分布。
  3. 一种第二代高温超导带材,其特征在于,包括超导带材本体,以及设置于所述超导带材本体至少一侧的保护层,所述保护层为铜-石墨烯复合膜,所述保护层中石墨烯的质量分数为0.1%~1%。
  4. 根据权利要求3所述的第二代高温超导带材,其特征在于,所述保护层单面总厚度为2~30微米。
  5. 根据权利要求3或4所述的第二代高温超导带材,其特征在于,所述保护层中,石墨烯在铜层中弥散分布,或者连续层状分布或者非连续层状分布。
  6. 根据权利要求3所述的第二代高温超导带材,其特征在于,所述超导带材本体为具有超导电性的表面镀银的长带。
  7. 根据权利要求3所述的第二代高温超导带材,其特征在于,所述保护层沿所述超导带材本体宽度方向厚度均匀性达到99%以上,对所述超导带材本体边缘实现全部包裹。
  8. 根据权利要求3所述的第二代高温超导带材,其特征在于,所述保护层通过铜-石墨烯双靶共溅射气相沉积法沉积于所述超导带材本体的一侧或两侧。
  9. 一种第二代高温超导带材的制备方法,其特征在于,包括以下步骤:
    (1)将超导带材本体放入磁控溅射反应腔内,抽至高真空,再充入工作气体;
    (2)通过控制磁控溅射功率,以铜、石墨烯作为靶材,开始溅射镀膜,将靶材材料沉积在超导带材本体表面,得到表面生长有铜-石墨烯结构的第二代高温超导带材;在超导带材本体表面进行单面镀膜,或者正反面镀膜。
  10. 根据权利要求9所述的制备方法,其特征在于,所述超导带材本 体长度为50米~1000米。
  11. 根据权利要求9所述的制备方法,其特征在于,所述步骤(1)中,工作气体为氩气、甲烷、氢气或三种气体的混合气。
  12. 根据权利要求9所述的制备方法,其特征在于,所述步骤(2)中,镀膜过程中,镀膜温度不超过200℃。
  13. 根据权利要求12所述的制备方法,其特征在于,所述步骤(2)中,镀膜过程中,镀膜温度100℃、150℃或200℃。
PCT/CN2021/112263 2021-05-06 2021-08-12 第二代高温超导带材及其制备方法 WO2022233100A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/731,236 US11894508B2 (en) 2021-05-06 2022-04-27 Second-generation HTS strip and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110491577.7 2021-05-06
CN202110491577.7A CN113223773B (zh) 2021-05-06 2021-05-06 第二代高温超导带材及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/731,236 Continuation US11894508B2 (en) 2021-05-06 2022-04-27 Second-generation HTS strip and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2022233100A1 true WO2022233100A1 (zh) 2022-11-10

Family

ID=77091072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112263 WO2022233100A1 (zh) 2021-05-06 2021-08-12 第二代高温超导带材及其制备方法

Country Status (2)

Country Link
CN (1) CN113223773B (zh)
WO (1) WO2022233100A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223773B (zh) * 2021-05-06 2022-07-01 上海超导科技股份有限公司 第二代高温超导带材及其制备方法
CN113774348B (zh) * 2021-09-22 2023-06-02 季华实验室 一种具有非晶氧化钒薄膜的高温超导体及其制备方法和高温超导线圈
CN114758849B (zh) * 2022-05-12 2023-01-31 上海超导科技股份有限公司 超导带材及其镀铜、制备方法以及超导线圈及其浸渍方法
CN115171973B (zh) * 2022-06-30 2023-03-03 上海超导科技股份有限公司 铜银合金加强的超导带材、加强方法及超导线圈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法
CN108504976A (zh) * 2018-04-10 2018-09-07 中国科学院宁波材料技术与工程研究所 一种金属-石墨烯复合涂层的制备方法
CN108715992A (zh) * 2018-06-05 2018-10-30 武汉大学 一种集成电路陶瓷电路板表面铜-石墨烯复合涂层及其制备方法
CN113223773A (zh) * 2021-05-06 2021-08-06 上海超导科技股份有限公司 第二代高温超导带材及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000033393A1 (en) * 1998-11-30 2000-06-08 Nordic Superconductor Technologies A/S A method of producing a superconducting tape
DE102009054427B4 (de) * 2009-11-25 2014-02-13 Kme Germany Ag & Co. Kg Verfahren zum Aufbringen von Gemengen aus Kohlenstoff und Metallpartikeln auf ein Substrat, nach dem Verfahren erhältliches Substrat und dessen Verwendung
CN101728018B (zh) * 2009-12-25 2013-07-31 清华大学 一种具有外加金属壳层的高温超导导线及其制备方法
KR101458513B1 (ko) * 2012-08-29 2014-11-07 주식회사 서남 초전도 선재 제조방법 및 그에 의해 제조된 초전도 선재
CN108666044A (zh) * 2017-03-31 2018-10-16 上海新昇半导体科技有限公司 一种复合石墨烯超导带材结构及其制备方法
US10861616B2 (en) * 2018-07-23 2020-12-08 General Cable Technologies Corporation Cables exhibiting increased ampacity due to lower temperature coefficient of resistance
CN112349667A (zh) * 2019-08-09 2021-02-09 昆山微电子技术研究院 一种石墨烯/铜复合金属互连线的制备方法
CN111739693B (zh) * 2020-07-02 2022-04-22 中国科学院合肥物质科学研究院 一种基于高温超导带材的层状圆形超导导体及制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法
CN108504976A (zh) * 2018-04-10 2018-09-07 中国科学院宁波材料技术与工程研究所 一种金属-石墨烯复合涂层的制备方法
CN108715992A (zh) * 2018-06-05 2018-10-30 武汉大学 一种集成电路陶瓷电路板表面铜-石墨烯复合涂层及其制备方法
CN113223773A (zh) * 2021-05-06 2021-08-06 上海超导科技股份有限公司 第二代高温超导带材及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI SHUANGGYI, LI AIJUN; DAI DAN; LIU YING; WU YUMING; BAI HUA; LIN CHENG-TE: "Preparation, Properties and Application of Graphene/Cu Composite Materials", JOURNAL OF FUNCTIONAL MATERIALS, GAI-KAN BIANJIBU , CHONGQING, CN, vol. 48, no. 9, 30 September 2017 (2017-09-30), CN , pages 9043 - 9051, XP093000531, ISSN: 1001-9731 *
YU JIE, ZENG HONGLIANG; WEN YECHENG; MA XIAOYAN; LI XIULAN; LI XUAN; HU XINJUN: "Research Progress of Graphene Reinforced Copper Matrix Composites", CAILIAO-KEXUE-YU-GONGCHENG-XUEBAO= JOURNAL OF MATERIALS SCIENCE AND ENGINEERING / ZHEJIANG DAXUE CAILIAOXI, ZHEJIANG-DAXUE <HANGZHOU> CAILIAO-XI, HANGZHOU, CN, vol. 39, no. 1, 20 February 2021 (2021-02-20), Hangzhou, CN , pages 167 - 173, XP093000537, ISSN: 1673-2812 *

Also Published As

Publication number Publication date
CN113223773A (zh) 2021-08-06
CN113223773B (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2022233100A1 (zh) 第二代高温超导带材及其制备方法
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
CN103985479B (zh) 一种高温超导涂层导体带材的制备方法
CN107452964A (zh) 一种提高锂电池负极铜箔集电极电性能的方法
CN113089060A (zh) 卷对卷超导带材镀铜装置及方法
JP7320862B2 (ja) 膜及び製造プロセス
CN104885165A (zh) 超导线的制造方法以及通过其制作的超导线
US11894508B2 (en) Second-generation HTS strip and preparation method thereof
CN112962099A (zh) 一种高导电性的铜/石墨烯/铜复合材料及其制备方法
JP2012216487A (ja) 高温超伝導線材
CN113470884A (zh) 一种一代二代复合高温超导带材
CN114464374A (zh) 一种提高金属绞线导电性的方法及装置
CN111161903B (zh) 石墨烯铝复合导线及其制备方法
JP4048270B2 (ja) MgB2超伝導膜状体とその製造方法
US20240052491A1 (en) Composite material for improving metal conductivity and method of preparing the same
CN116607108B (zh) 一种MAX-Ag导电复合涂层及其制备方法
Du et al. Study on AC Over-Current Characteristics With Physical Properties of the Outer Layer of GdBa 2 Cu 3 O 7-x Thin-Film-Type Superconducting Wire Having Composite Structure Using RF Sputtering Deposition Method
Tu et al. Improved Efficiency of Structured Si Solar Cells via Graphene Hybrid Materials as Top Electrodes
TWI464286B (zh) 作為緩衝層之銅鍍層及其製作方法
Cui et al. Chemical solution derived YBa2Cu3. 3O7-δ/Y2O3 (CuO) multilayers on oxide buffered metallic tapes
Xue et al. Preparation of Double-Sided MgO Template for YB2Cu3O7-δ Coated Conductors
JP4811998B2 (ja) 超伝導MgB2膜の電気メッキによる作製法
CN116024536A (zh) 一种Nb3Al前驱体线材的表面覆铜方法
Zhang et al. Analysis and Development Review of Metal and Metal/Ceramic Composite Coating Prepared on Magnesium Alloy Surface
Jeong et al. A new process to prepare thick bufferless Tl-1223/Ag high temperature superconducting coated conductors using electrodeposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE