WO2022227656A1 - 车辆的后视镜控制方法、装置、电子设备及存储介质 - Google Patents

车辆的后视镜控制方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2022227656A1
WO2022227656A1 PCT/CN2021/141603 CN2021141603W WO2022227656A1 WO 2022227656 A1 WO2022227656 A1 WO 2022227656A1 CN 2021141603 W CN2021141603 W CN 2021141603W WO 2022227656 A1 WO2022227656 A1 WO 2022227656A1
Authority
WO
WIPO (PCT)
Prior art keywords
obstacle
vehicle
rearview mirror
position information
distance
Prior art date
Application number
PCT/CN2021/141603
Other languages
English (en)
French (fr)
Inventor
李超
杜建宇
陈博
刘斌
王祎男
王皓南
曹天书
王恒凯
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022227656A1 publication Critical patent/WO2022227656A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/02Rear-view mirror arrangements
    • B60R1/06Rear-view mirror arrangements mounted on vehicle exterior
    • B60R1/062Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position
    • B60R1/07Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators
    • B60R1/074Rear-view mirror arrangements mounted on vehicle exterior with remote control for adjusting position by electrically powered actuators for retracting the mirror arrangements to a non-use position alongside the vehicle

Definitions

  • the embodiments of the present application relate to the technical field of automobiles, for example, to a vehicle rearview mirror control method, device, electronic device, and storage medium.
  • Vehicles in the related art are basically electric rearview mirrors.
  • the function of electrically folding and opening the rearview mirror is added.
  • the driver has limited vision or great psychological pressure, and often forgets to fold the rearview mirror, which leads to bumping of the rearview mirror when passing through a narrow road section, resulting in an accident of scratching the rearview mirror, which may scratch or damage the outside rearview mirror. cause unnecessary losses.
  • the embodiments of the present application provide a vehicle rearview mirror control method, device, electronic device and storage medium, which can automatically control the folding of the vehicle rearview mirror, avoid damage to the vehicle rearview mirror, and reduce unnecessary loss.
  • An embodiment of the present application provides a method for controlling a rearview mirror of a vehicle.
  • the method includes: when the vehicle is in a first motion state, acquiring position information of an obstacle; when the vehicle is in a second motion state , calculate the distance between the rearview mirror and the obstacle according to the real-time pose of the vehicle and the position information of the obstacle; when the distance meets the first preset control condition, control the rearview mirror Mirrors folded.
  • the embodiment of the present application also provides a vehicle rearview mirror control device, the device includes: an obstacle position information acquisition module, configured to obtain the obstacle position information when the vehicle is in a first motion state; distance calculation The module is configured to calculate the distance between the rearview mirror and the obstacle according to the real-time pose of the vehicle and the position information of the obstacle when the vehicle is in the second motion state; the rearview mirror The folding control module is configured to control the folding of the rearview mirror when the distance satisfies the first preset control condition.
  • An embodiment of the present application further provides an electronic device, the device includes: one or more processors; a storage device configured to store one or more programs, when the one or more programs are stored by the one or more programs The processor executes, so that the one or more processors implement the vehicle rearview mirror control method according to any one of the embodiments of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, implements the vehicle rearview mirror control method according to any one of the embodiments of the present application.
  • FIG. 1 is a flowchart of a method for controlling a rearview mirror of a vehicle provided by an embodiment of the present application
  • FIG. 2 is a flowchart of another vehicle rearview mirror control method provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of another method for controlling a rearview mirror of a vehicle provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a rearview mirror control device of a vehicle provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for controlling a rearview mirror of a vehicle provided by an embodiment of the present application.
  • the method may be performed by a rearview mirror control device of a vehicle, the device may be implemented in software and/or hardware, and the device may be configured in an electronic device for vehicle control.
  • the method is applied in a scene requiring reversing.
  • the technical solution provided by the embodiment of the present application includes the following steps.
  • S110 Acquire position information of obstacles when the vehicle is in the first motion state.
  • the first motion state may be the vehicle's forward driving state or the reversing state; the obstacle is something that will cause damage to the rearview mirror of the vehicle during the driving process of the vehicle; the location information of the obstacle may be the location coordinates of the obstacle, or Other forms of location information.
  • the position information of the obstacles around the vehicle can be obtained in real time. Obstacle map.
  • acquiring the location information of the obstacle includes: constructing an obstacle map through the location information of the obstacle detected by the radar; or, determining the obstacle through the environmental image of the vehicle captured by the camera The location information of the obstacle map is constructed; or, the location information of the obstacle determined by the radar and the environmental image of the vehicle captured by the camera is used to construct the obstacle map.
  • the position information of obstacles can be detected in real time through radar, and an obstacle map can be constructed.
  • the position information of the obstacle detected by the radar and the environmental image of the vehicle captured by the camera are combined to determine the position information of the obstacle, and the obstacle map is constructed based on the integrated position information of the obstacle.
  • the obstacle map may be a map including a vehicle model and an obstacle model constructed on the ground plane where the vehicle is located. According to the spatial position of the obstacle obtained by radar or camera, the model of the obstacle can be placed on the virtual ground plane to form an obstacle map.
  • the obstacle map is constructed through the location information of the obstacle detected by the radar and/or the location information of the obstacle determined by the environmental image of the vehicle captured by the camera in real time.
  • the detection is more comprehensive, and it can avoid the situation that obstacles are missed by using a single detection method.
  • the radar may be an ultrasonic radar, a millimeter-wave radar or a lidar; the camera may be a surround-view camera.
  • Ultrasonic radar is mainly used as a safety aid when parking or reversing. It informs the driver of the surrounding obstacles through sound or display, and relieves the driver of the blind spot and blurred vision that may exist when parking, reversing and starting.
  • the working principle of ultrasonic radar is to send out ultrasonic waves through the ultrasonic transmitting device, and use the time difference between the receiver to receive the reflected ultrasonic waves to measure the distance.
  • the working principle of lidar is to transmit a detection signal (laser beam) to the target, and then compare the received signal (target echo) reflected from the target with the transmitted signal, and after proper processing, the relevant information of the target can be obtained. , such as target distance, bearing, altitude, speed, attitude, and even shape and other parameters.
  • Lidar can achieve extremely high angle, distance and velocity resolution.
  • Millimeter-wave radar refers to a radar whose working frequency band is in the millimeter-wave frequency band.
  • the principle of ranging is to send out radio waves (radar waves), and then receive echoes. According to the time difference between sending and receiving, the position data of the target can be measured directly.
  • the surround-view camera can stitch together bird-view images from multiple directions on the top of the vehicle and dynamically display it on the LCD screen in the car; in addition, the surround-view camera can also identify parking lane signs, curbs and nearby vehicles. It can also be used in conjunction with sonar to issue real-time warnings to warn drivers and obstacles that are too close.
  • an obstacle map is constructed based on the position information of the obstacle detected by the radar; or, the obstacle map is constructed based on the position information of the obstacle determined by the environmental image of the vehicle captured by the camera. ;
  • the position information of the obstacle determined by the radar and the environmental image of the vehicle captured by the camera further includes: if an obstacle map construction trigger event is detected, the rear axle of the vehicle is used as the trigger event. The point is the origin of the coordinates, the current direction of the vehicle is taken as the first coordinate axis, and the axial direction of the rear axle of the vehicle is taken as the second coordinate axis to establish a coordinate system in the plane.
  • an obstacle map construction event is triggered to establish a plane coordinate system. Taking the midpoint of the rear axle of the vehicle as the coordinate origin, taking the current direction of the vehicle, that is, the front direction of the vehicle as the abscissa, and the axis of the rear axle of the vehicle as the ordinate, a plane coordinate system is constructed.
  • the position information of the obstacle detected by the radar uses the coordinate system as the reference system to determine the coordinate position information of the obstacle in the coordinate system.
  • the center point of the rear axle of the vehicle is taken as the coordinate origin
  • the current direction of the vehicle is taken as the first coordinate axis
  • the axis of the rear axle of the vehicle is taken as the second coordinate axis
  • the control of the two rearview mirrors of the vehicle in this solution can be processed by the same control logic. Therefore, the rearview mirror described here can be the left or right rearview mirror , that is, it holds true for either the left or right side mirrors.
  • the second motion state may be that the vehicle switches to the reverse gear or activates the return-to-track function to enter the reverse state, and may also be a forward driving state of the vehicle.
  • the posture of the vehicle in real time for example, it can be the real-time body orientation of the vehicle and the real-time position of the vehicle, wherein the body orientation of the vehicle can be determined according to the angle of the steering wheel of the vehicle and determined in combination with the position information of obstacles The distance between the mirror and the obstacle.
  • calculating the distance between the rearview mirror and the obstacle according to the real-time pose of the vehicle and the position information of the obstacle includes: according to the real-time body orientation of the vehicle information, the real-time position information of the vehicle, and the position information of the obstacle, and calculate the distance between the rearview mirror and the obstacle.
  • the position information of the vehicle can be determined in real time. Since the position of the side radar in the vehicle is fixed, the position information of the side radar can be determined; since the distance between the side radar and the camera is known, the position information of the side radar can be determined. The plane coordinate position information of the camera can then be used to calculate the distance between the rearview mirror and the obstacle according to the real-time body orientation information of the vehicle, the real-time position information of the vehicle and the position information of the obstacle.
  • the lateral distance when the vehicle passes through the obstacle can be accurately determined, and a more accurate calculation of the distance according to the distance can be achieved. Controls the rearview mirror of the vehicle.
  • the method further includes: if the radar detects If the verification information of the position information of the obstacle is obtained, the height of the obstacle is obtained through the camera; if the height satisfies the third preset control condition, the height of the obstacle is calculated according to the real-time posture of the vehicle and the position information of the obstacle. The distance between the sight glass and the obstacle.
  • the verification information can be the existence status of the obstacle and the position information of the obstacle sent when the radar detects the obstacle.
  • the radar will perform real-time secondary confirmation on the information of the obstacles in the constructed obstacle map and the information of the obstacles detected in real time, and send the verification information after confirming the existence of the obstacles .
  • the verification information of the position information of the obstacle is detected by the radar, the height of the obstacle detected by the radar can be obtained by the camera.
  • the third preset control condition is used to exclude obstacles detected by the radar that do not meet the height condition, and can be set according to actual needs.
  • the third preset control condition can be 1 m. Compare the height of the obstacle detected by the radar with the third preset control condition, if the height is greater than the third preset control condition, it means that the obstacle is relatively high, and continue according to the real-time posture of the vehicle and the position information of the obstacle The distance between the rearview mirror and the obstacle is calculated, and the folding of the rearview mirror is controlled according to the relationship between the distance and the first preset control condition.
  • the height of the obstacle detected by the radar obtained through the camera is less than or equal to the third preset control condition, it indicates that the position of the obstacle is relatively low, and it will not affect the rearview mirror, so it is not necessary to control the folding of the rearview mirror.
  • the radar and camera configured in the vehicle to determine the position information and height information of the obstacles, it is possible to eliminate the obstacles that are incorrectly counted when constructing the obstacle map without adding additional hardware equipment, and avoid false alarms. Occurs; obstacles that have no effect on the rearview mirror of the vehicle during the reversing process can be eliminated, avoiding unnecessary folding operations of the rearview mirror of the vehicle; cost savings can be achieved and driving experience can be improved.
  • the first preset control condition can exclude obstacles that do not meet the distance condition, for example, it can be 0.3m, which can be set according to actual needs, and the determined distance between the rearview mirror and the obstacle can be compared with the first preset control condition. For comparison, if the distance is less than or equal to the first preset control condition, the rearview mirror of the vehicle is controlled to be automatically folded. For example, according to the distance between the rear-view mirror and the obstacle, a control signal can be sent to the rear-view mirror to control the rear-view mirror to be folded at different angles to a corresponding degree.
  • the position information of the obstacle is obtained; if the vehicle is in the second motion state, the position information of the obstacle is calculated according to the real-time pose of the vehicle and the position information of the obstacle.
  • the distance between the vehicle rearview mirror and the position of the obstacle is calculated in real time, and the folding of the rearview mirror is controlled according to the relationship between the distance and the first preset control condition.
  • the folding of the vehicle rearview mirror can be automatically controlled, so as to avoid damage to the vehicle rearview mirror and reduce unnecessary losses.
  • FIG. 2 is a flowchart of a method for controlling a rearview mirror of a vehicle provided by an embodiment of the present application. This solution is described on the basis of the above technical solution. The method further includes: after controlling the folding of the rear-view mirror, if the distance satisfies a second preset control condition, controlling the unfolding of the rear-view mirror.
  • the technical solution provided by the embodiment of the present application includes the following steps.
  • S210 Acquire position information of obstacles when the vehicle is in the first motion state.
  • S220 If the vehicle is in the second motion state, calculate the distance between the rear-view mirror and the obstacle according to the real-time pose of the vehicle and the position information of the obstacle.
  • the second preset control condition is a distance that satisfies the deployment condition of the rearview mirror, for example, it may be 0.8m, which may be set according to actual needs. After the vehicle controls the folding of the rearview mirror during the reversing process, it will still calculate the distance between the rearview mirror and the obstacle in real time, and compare the distance with the second preset control condition. If the distance between the rearview mirror and the obstacle is The distance is greater than the second preset control condition, indicating that the obstacle will not damage the rearview mirror when the rearview mirror is unfolded, and a control signal can be sent to the rearview mirror to control the rearview mirror to be fully unfolded.
  • the position information of the obstacle is obtained; if the vehicle is in the second motion state, the position information of the obstacle is calculated according to the real-time pose of the vehicle and the position information of the obstacle.
  • FIG. 3 is a flowchart of a method for controlling a rearview mirror of a vehicle provided by an embodiment of the present application. As shown in FIG. 3 , the technical solution provided by the embodiment of the present application may further include the following steps.
  • Step 1 When it is detected that the vehicle starts, the vehicle pose module is activated, and the current pose of the vehicle is output at all times.
  • the vehicle pose module When the vehicle pose module is activated, take the midpoint of the rear axle of the vehicle as the coordinate origin, take the current direction of the vehicle as the first coordinate axis, and take the rear axle axis of the vehicle as the second coordinate axis, establish a local coordinate system, and output the vehicle at all times
  • the current pose (abscissa x, ordinate y).
  • Step 2 When it is detected that the vehicle is in the first motion state, an obstacle map is constructed according to the position information of the obstacle detected by the radar; or the obstacle map is constructed according to the position information of the obstacle determined by the vehicle environment image captured by the camera. ; or, construct an obstacle map through radar and location information of obstacles determined by the vehicle environment image captured by the camera. Reference may be made to the method for establishing an obstacle map in the related art.
  • Step 3 When it is detected that the vehicle is switched to reverse gear or the function of returning to the original road is activated, the obstacle map is first drawn on the instrument, and the distance judgment module is activated, and the distance between the rearview mirror of the vehicle and the obstacle is displayed on the instrument, and the distance The judgment module always calculates the position information of the obstacles memorized in the obstacle map, and judges the distance between the vehicle rearview mirror and the obstacle.
  • the distance judgment module When the distance judgment module detects that the distance between the obstacle and the vehicle rearview mirror is smaller than the first preset control condition (for example, the first preset control condition can be 0.3m), activate the rearview mirror control module, perform the folding action of the rearview mirror, and give the driver corresponding sound, light or text prompts, when the distance judgment module detects an obstacle If the distance between the object and the vehicle is greater than the second preset control condition (for example, the second preset control condition can be 0.8m), the rearview mirror will be controlled to unfold, and corresponding sound, light and text prompts will be given to the driver.
  • the first preset control condition for example, the first preset control condition can be 0.3m
  • the vehicles on the market are basically electric rear-view mirrors.
  • the function of electric folding and opening of the rear-view mirrors is added.
  • the outside rearview mirror will be scratched or damaged, and the driver often forgets to fold the outside rearview mirror during driving, which will cause the rearview mirror to bump and cause unnecessary losses.
  • the car In order to avoid the driver's visual error or negligence resulting in not folding the rearview mirror, the car needs to be able to detect the distance between the obstacle and the body and automatically fold the rearview mirror after warning.
  • the vehicle in the related art provides a car rearview mirror that can automatically avoid obstacles.
  • the structure is simple, easy to use, safe and efficient, it can protect the safety of the vehicle and other vehicles to the greatest extent, which is a great progress of the related technology. Need to add a distance sensor to the rearview mirror, increasing the cost.
  • the vehicle in the related art solves the problem of automatic folding of the rearview mirror when the vehicle is driving forward, and can automatically detect the distance relationship between the obstacle and the vehicle according to the ultrasonic radar without increasing the extra cost, so as to ensure that the vehicle is in front of the vehicle.
  • the rearview mirror is automatically folded and unfolded according to the distance relationship.
  • the front ultrasonic radar cannot detect the obstacles behind the vehicle, when the vehicle is in the original road return function or reverse driving, this function is affected by the usage scene.
  • the driver often forgets to fold the rearview mirror due to the limited field of vision or the high psychological pressure in the reversing scene, which is more likely to cause scratches when passing through a narrow road section. Sight glass accident. Therefore, a function that can automatically fold the rearview mirror is also urgently needed when the vehicle is in a reversing situation or the return-to-track function is activated.
  • the position information of the obstacles around the vehicle is continuously recorded based on the on-board radar, and the obstacle map is constructed according to the recorded position information of the obstacles.
  • the distance between the obstacle and the vehicle is always judged according to the distribution of the obstacles recorded before. If the distance between the obstacle and the vehicle side is less than or equal to the first preset control condition, Control the side mirrors to automatically fold, and give the driver corresponding light and sound prompts. When it is detected that the distance between the obstacle and the vehicle is greater than the second preset control condition, the rear-view mirror is controlled to unfold.
  • FIG. 4 is a schematic structural diagram of a rearview mirror control device of a vehicle provided by an embodiment of the present application.
  • the apparatus may be configured in an electronic device for vehicle control.
  • the apparatus includes: an obstacle location information acquisition module 410, configured to acquire the location of the obstacle when the vehicle is in the first motion state. information; the distance calculation module 420 is configured to calculate the distance between the rearview mirror and the obstacle according to the real-time posture of the vehicle and the position information of the obstacle if the vehicle is in the second motion state;
  • the mirror folding control module 430 is configured to control the folding of the rearview mirror if the distance satisfies the first preset control condition.
  • the device further includes a rearview mirror unfolding control module, configured to control the rearview mirror to unfold if the distance satisfies a second preset control condition after the rearview mirror is controlled to be folded.
  • a rearview mirror unfolding control module configured to control the rearview mirror to unfold if the distance satisfies a second preset control condition after the rearview mirror is controlled to be folded.
  • the calculating the distance between the rearview mirror and the obstacle according to the real-time pose of the vehicle and the position information of the obstacle includes: according to the real-time body orientation information of the vehicle, the The real-time position information and the position information of the obstacle are used to calculate the distance between the rearview mirror and the obstacle.
  • the obtaining the position information of the obstacle includes: constructing the obstacle map through the position information of the obstacle detected by the radar; or, constructing the obstacle according to the position information of the obstacle determined by the environmental image of the vehicle captured by the camera.
  • the obstacle map is constructed; alternatively, the obstacle map is constructed by the location information of the obstacle determined by the radar and the environmental image of the vehicle captured by the camera.
  • the device further includes a coordinate system building module, configured to construct an obstacle map based on the position information of the obstacle detected by the radar; or, the position information of the obstacle determined by the environmental image of the vehicle captured by the camera, Build an obstacle map; or, determine the location information of the obstacle through radar and the environmental image of the vehicle captured by the camera.
  • a coordinate system building module configured to construct an obstacle map based on the position information of the obstacle detected by the radar; or, the position information of the obstacle determined by the environmental image of the vehicle captured by the camera, Build an obstacle map; or, determine the location information of the obstacle through radar and the environmental image of the vehicle captured by the camera.
  • the radar includes ultrasonic radar, millimeter-wave radar or lidar; and the camera includes a surround-view camera.
  • the device further includes a re-confirmation module, which is configured to, before calculating the distance between the rearview mirror and the obstacle according to the real-time posture of the vehicle and the position information of the obstacle, if the distance between the rearview mirror and the obstacle is calculated, if the radar is passed If the verification information of the position information of the obstacle is detected, the height of the obstacle is obtained through the camera; the distance calculation module 420 is set to be based on the real-time posture of the vehicle and the position information of the obstacle in the following manner Calculate the distance between the rearview mirror and the obstacle: if the height meets the third preset control condition, calculate the distance between the rearview mirror and the obstacle according to the real-time posture of the vehicle and the position information of the obstacle .
  • a re-confirmation module which is configured to, before calculating the distance between the rearview mirror and the obstacle according to the real-time posture of the vehicle and the position information of the obstacle, if the distance between the rearview mirror and the obstacle is calculated, if the radar is passed If the verification
  • the device provided by the above embodiment can execute the vehicle rearview mirror control method provided by any embodiment of the present application, and has functional modules corresponding to the execution method.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in FIG. 5 , the device includes: one or more processors 510 , one processor 510 is taken as an example in FIG. 5 ; a memory 520 ; the device may further include: an input device 530 and an output device 540 .
  • the processor 510 , the memory 520 , the input device 530 and the output device 540 in the device may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 5 .
  • the memory 520 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to a vehicle rearview mirror control method in the embodiments of the present application. .
  • the processor 510 executes a variety of functional applications and data processing of the computer device by running the software programs, instructions and modules stored in the memory 520, that is, to implement a vehicle rearview mirror control method of the above method embodiment, that is: When the vehicle is in the first motion state, the position information of the obstacle is obtained; if the vehicle is in the second motion state, the rearview mirror and the obstacle are calculated according to the real-time pose of the vehicle and the position information of the obstacle The distance between them; if the distance satisfies the first preset control condition, the rearview mirror is controlled to be folded.
  • a vehicle rearview mirror control method of the above method embodiment that is: When the vehicle is in the first motion state, the position information of the obstacle is obtained; if the vehicle is in the second motion state, the rearview mirror and the obstacle are calculated according to the real-time pose of the vehicle and the position information of the obstacle The distance between them; if the distance satisfies the first preset control condition, the rearview mirror is controlled to be folded.
  • the memory 520 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the computer equipment, and the like. Additionally, memory 520 may include high-speed random access memory, and may also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid-state storage device. In some embodiments, the memory 520 may optionally include memory located remotely from the processor 510, and these remote memories may be connected to the terminal device through a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 530 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the computer device.
  • the output device 540 may include a display device such as a display screen.
  • Embodiments of the present application provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements a vehicle rearview mirror control method as provided by the embodiments of the present application, that is: in When the vehicle is in the first motion state, the position information of the obstacle is obtained; if the vehicle is in the second motion state, the distance between the rearview mirror and the obstacle is calculated according to the real-time pose of the vehicle and the position information of the obstacle. If the distance satisfies the first preset control condition, the rearview mirror is controlled to be folded.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above.
  • Examples (a non-exhaustive list) of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read- Only Memory, ROM), Erasable Programmable Read-Only Memory (EPROM) or Flash, Optical Fiber, Portable Compact Disc Read-Only Memory (CD-ROM), Optical Memory devices, magnetic memory devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including - but not limited to - wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including - but not limited to - wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for performing the operations of the present application may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, but also conventional Procedural programming language - such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network—including a Local Area Network (LAN) or a Wide Area Network (WAN)—or, can be connected to an external computer ( For example, using an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆的后视镜控制方法、装置、电子设备及存储介质。该方法包括:在车辆处于第一运动状态的情况下,获取障碍物的位置信息;在车辆处于第二运动状态的情况下,根据车辆的实时位姿与障碍物的位置信息计算后视镜与障碍物之间的距离;在该距离满足第一预设控制条件的情况下,控制后视镜折叠。

Description

车辆的后视镜控制方法、装置、电子设备及存储介质
本申请要求在2021年04月28日提交中国专利局、申请号为202110467239.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及汽车技术领域,例如涉及一种车辆的后视镜控制方法、装置、电子设备及存储介质。
背景技术
随着科技发展的日新月异和大众生活水平的提高,拥有越来越多人性化功能的汽车逐渐走进千家万户,给用户带来的使用体验越来越好。
相关技术中的车辆基本都是电动后视镜,在锁车或启动车辆的时候,增加了后视镜电动折叠与打开的功能,但是当车辆处于倒车情况或者原路返回功能被激活时,由于驾驶员视野有限或者心理压力较大,往往会忘记折叠后视镜,导致在经过狭小路段时后视镜产生磕碰,发生刮蹭后视镜事故,有可能会刮伤或者损伤外后视镜,造成不必要的损失。
发明内容
本申请实施例提供了一种车辆的后视镜控制方法、装置、电子设备及存储介质,可以实现自动控制车辆后视镜的折叠,避免对车辆后视镜造成折损,可以减少不必要的损失。
本申请实施例提供了一种车辆的后视镜控制方法,该方法包括:在车辆处于第一运动状态的情况下,获取障碍物的位置信息;在所述车辆处于第二运动状态的情况下,根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与所述障碍物之间的距离;在所述距离满足第一预设控制条件的情况下,控制所述后视镜折叠。
本申请实施例还提供了一种车辆的后视镜控制装置,该装置包括:障碍物位置信息获取模块,设置为在车辆处于第一运动状态的情况下,获取障碍物的位置信息;距离计算模块,设置为在所述车辆处于第二运动状态的情况下,根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与所述障碍物之间的距离;后视镜折叠控制模块,设置为在所述距离满足第一预设控制条件的情况下,控制所述后视镜折叠。
本申请实施例还提供了一种电子设备,该设备包括:一个或多个处理器;存储装置,设置为存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一项所述的车辆的后视镜控制方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例中任一项所述的车辆的后视镜控制方法。
附图说明
图1是本申请实施例提供的一种车辆的后视镜控制方法的流程图;
图2是本申请实施例提供的另一种车辆的后视镜控制方法的流程图;
图3是本申请实施例提供的又一种车辆的后视镜控制方法的流程图;
图4是本申请实施例提供的一种车辆的后视镜控制装置结构示意图;
图5是本申请实施例提供的一种电子设备结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1是本申请实施例提供的车辆的后视镜控制方法的流程图。所述方法可以由车辆的后视镜控制装置来执行,所述装置可以由软件和/或硬件的方式实现,所述装置可以配置在用于车辆控制的电子设备中。所述方法应用于需要倒车的场景中。如图1所示,本申请实施例提供的技术方案包括如下步骤。
S110:在车辆处于第一运动状态时,获取障碍物的位置信息。
第一运动状态可以是车辆前向行驶状态或者倒车状态;障碍物是在车辆行驶过程中会对车辆后视镜造成损害的事物;障碍物的位置信息可以是障碍物的位置坐标,还可以是其他形式的位置信息。
在车辆前向行驶或倒车过程中,实时获取车辆周围的障碍物的位置信息,例如可以是通过雷达探测的障碍物的位置信息或摄像头拍摄的车辆的环境图像获取障碍物的位置信息,以构建障碍物地图。
在一个可行的实施方式中,可选的,获取障碍物的位置信息,包括:通过雷达探测的障碍物的位置信息,构建障碍物地图;或者,通过摄像头拍摄的车 辆的环境图像确定的障碍物的位置信息,构建障碍物地图;或者,通过雷达和通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图。
以车辆处于前进过程为例,可以通过雷达实时探测障碍物的位置信息,构建障碍物地图,也可以通过摄像头实时拍摄的车辆的环境图像,确定障碍物的位置信息并构建障碍物地图,还可以将雷达探测的障碍物的位置信息以及摄像头拍摄的车辆的环境图像确定障碍物的位置信息进行综合,基于综合起来的障碍物的位置信息构建障碍物地图。
障碍物地图可以是以车辆所处位置的地平面进行构建的包括车辆模型和障碍物模型的地图。可以根据采用雷达或者摄像头获取的障碍物的空间位置,将障碍物的模型落在虚拟的地平面中,形成障碍物地图。
由此,通过雷达探测的障碍物的位置信息和/或摄像头实时拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图,可以包含更多的车辆周围的障碍物,使障碍物的探测更加全面,可以避免采用单独的一种探测方法造成障碍物漏检的情况。
在一个可行的实施方式中,可选的,雷达可以是超声波雷达,毫米波雷达或者激光雷达;摄像头可以是环视摄像头。
超声波雷达主要用作停车或者倒车时的安全辅助装置,它通过声音或显示器告知驾驶员周围障碍物的情况,解除了驾驶员停车、倒车和起动时可能存在的视野死角和视线模糊的状况。超声波雷达的工作原理是通过超声波发射装置向外发出超声波,利用接收器接收到反射回来的超声波的时间差来测算距离。激光雷达的工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(目标回波)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数。激光雷达可以获得极高的角度、距离和速度分辨率。毫米波雷达,是指工作频段在毫米波频段的雷达,测距原理是把无线电波(雷达波)发出去,然后接收回波,根据收发之间的时间差测得目标的位置数据,可以直接测量距离和速度信息。环视摄像头,能将车辆顶部多个方向的鸟视画面拼接起来,并动态显示在车内的液晶屏上;此外,环视摄像头还能识别停车通道标识、路缘和附近车辆。还可以配合声纳使用发出实时预警,提醒驾驶员和障碍物靠得太近。
由此,通过使用超声波雷达、毫米波雷达或者激光雷达以及环视摄像头,可以实现全面的检测到车辆周围的障碍物,使得构建的障碍物地图更加准确和完整,可以避免误报的情况发生。
在一个可行的实施方式中,可选的,在通过雷达探测的障碍物的位置信息, 构建障碍物地图;或者,通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图;或者,通过雷达和通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图之前,还包括:若检测到障碍物地图构建触发事件,则以所述车辆的后轴中点为坐标原点,以车辆的当前方向为第一坐标轴,以所述车辆的后轴轴向为第二坐标轴,建立平面中的坐标系。
当检测到车辆由静止状态切换为启动状态时,触发障碍物地图构建事件,建立平面坐标系。将车辆的后轴中点作为坐标原点,将车辆的当前方向,即车头朝向作为横坐标,将车辆的后轴轴向作为纵坐标,构建平面坐标系。
通过雷达探测的障碍物的位置信息,或者,通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,均以该坐标系为参考系确定障碍物在该坐标系中的坐标位置信息。
由此,通过在检测到障碍物地图构建触发事件时,以车辆的后轴中点为坐标原点,以车辆的当前方向为第一坐标轴,以所述车辆的后轴轴向为第二坐标轴,建立平面中的坐标系,标记车辆以及车辆周围的障碍物的位置信息,可以精确地确定出坐标系中车辆与多个障碍物之间的位置关系或者距离,为后续的步骤提供了准确的数据基础。
需要说明的是,本方案中对于车辆的两个后视镜的控制,是可以采用同一种控制逻辑进行处理,因此,此处所述的后视镜可以是左侧或者右侧的后视镜,即对左侧或者右侧的后视镜均成立。
S120:若所述车辆处于第二运动状态,则根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离。
第二运动状态可以是车辆切换至倒车档或者激活原路返回功能进入倒车状态,也可以是车辆前向行驶状态。在车辆倒车过程中,实时根据车辆的位姿,例如可以是车辆的实时车身朝向和车辆的实时位置,其中,车辆的车身朝向可以根据车辆方向盘的转角来确定,并结合障碍物的位置信息确定后视镜与障碍物之间的距离。
在一个可行的实施方式中,可选的,根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离,包括:根据所述车辆的实时车身朝向信息、所述车辆的实时位置信息以及所述障碍物的位置信息,计算后视镜与障碍物之间的距离。
在建立的平面坐标系中,可以实时确定车辆的位置信息,由于侧面雷达在车辆中的位置固定,进而可以确定侧面雷达的位置信息;由于侧面雷达与摄像头之间的距离已知,进而可以确定摄像头的平面坐标位置信息,进而可以根据 车辆的实时车身朝向信息、车辆的实时位置信息以及障碍物的位置信息,计算出后视镜与障碍物之间的距离。
由此,通过根据所述车辆的实时位姿与障碍物的位置信息计算后视镜与障碍物之间的距离,可以精确确定车辆经过障碍物处时的横向距离,可以实现更加准确地根据距离对车辆后视镜进行控制。
在本实施例中,可选的,在根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离之前,还包括:若通过所述雷达检测到障碍物的位置信息的核实信息,则通过所述摄像头获取所述障碍物高度;若所述高度满足第三预设控制条件,则根据车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离。
核实信息可以为当雷达检测到障碍物时发送的障碍物存在状态以及障碍物的位置信息。当车辆处于第二运动状态时,雷达会对已经构建的障碍物地图中的障碍物的信息,以及实时检测的障碍物的信息进行实时的二次确认,并在确认障碍物存在后发送核实信息。当通过雷达检测到障碍物的位置信息的核实信息时,通过摄像头可以获取到雷达检测到的障碍物的高度。
第三预设控制条件用于排除雷达检测到的不满足高度条件的障碍物,可以根据实际需要进行设置,例如第三预设控制条件可以是1m。将雷达检测到的障碍物的高度与第三预设控制条件进行比较,如果该高度大于第三预设控制条件,则表示障碍物比较高,继续根据车辆的实时位姿与障碍物的位置信息计算后视镜与障碍物之间的距离,根据该距离与第一预设控制条件的关系,控制后视镜的折叠。如果通过摄像头获取到雷达检测到的障碍物的高度小于或等于第三预设控制条件,则表明障碍物的位置比较低,对后视镜不会造成影响,可以不用控制后视镜折叠。
由此,通过利用车辆中配置的雷达以及摄像头确定障碍物的位置信息和高度信息,可以实现不需要增加额外的硬件设备将构建障碍物地图时错误统计的障碍物进行排除,避免误报的情况发生;可以实现将倒车过程中对车辆后视镜没有影响的障碍物排除,避免了车辆后视镜不必要的折叠操作;可以实现节约成本,可以提高驾驶体验。
S130:若所述距离满足第一预设控制条件,则控制所述后视镜折叠。
车辆在倒车时如果距离周围的障碍物较近,可以控制车辆后视镜进行折叠以保护后视镜避免剐蹭事件发生。第一预设控制条件可以排除掉不满足距离条件的障碍物,例如可以是0.3m,可以根据实际需要进行设置,将确定的后视镜与障碍物之间的距离与第一预设控制条件进行比较,如果距离小于或等于第一 预设控制条件,控制车辆后视镜自动折叠。例如可以根据后视镜与障碍物之间的距离,向后视镜发出控制信号,控制后视镜以不同的角度进行折叠到对应程度。
本申请实施例提供的技术方案,在车辆处于第一运动状态时,获取障碍物的位置信息;若车辆处于第二运动状态,则根据车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离;若距离满足第一预设控制条件,则控制后视镜折叠,即当车辆处于第一运动状态时对障碍物的位置信息进行记录,当车辆处于第二运动状态时,实时计算车辆后视镜与障碍物位置之间的距离,并根据距离与第一预设控制条件的关系控制后视镜的折叠。通过执行本方案,可以实现自动控制车辆后视镜的折叠,避免对车辆后视镜造成折损,减少不必要的损失。
图2是本申请实施例提供的车辆的后视镜控制方法的流程图。本方案在上述技术方案的基础上进行了说明。所述方法还包括:在控制所述后视镜折叠之后,若所述距离满足第二预设控制条件,则控制所述后视镜展开。
如图2所示,本申请实施例提供的技术方案包括如下步骤。
S210:在车辆处于第一运动状态时,获取障碍物的位置信息。
S220:若所述车辆处于第二运动状态,则根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离。
S230:若所述距离满足第一预设控制条件,则控制所述后视镜折叠。
多个步骤的介绍详见上述方案。
S240:若所述距离满足第二预设控制条件,则控制所述后视镜展开。
第二预设控制条件为满足后视镜展开条件的距离,例如可以是0.8m,可以根据实际需要进行设置。车辆在倒车过程中控制后视镜折叠之后,依然会实时计算后视镜与障碍物之间的距离,并将该距离与第二预设控制条件进行比较,如果后视镜与障碍物之间的距离大于第二预设控制条件,表示障碍物不会在后视镜展开时损伤后视镜,可以向后视镜发出控制信号,控制后视镜完全展开。
本申请实施例提供的技术方案,在车辆处于第一运动状态时,获取障碍物的位置信息;若车辆处于第二运动状态,则根据车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离;若距离满足第一预设控制条件,则控制后视镜折叠;在控制后视镜折叠之后,若距离满足第二预设控制条件,则控制所述后视镜展开。通过执行本方案,可以根据实际情况实现自动、灵活地控制车辆后视镜的折叠和展开,可以避免对车辆后视镜造成折损,可以给用户提供人性化的使用体验。
图3是本申请实施例提供的车辆的后视镜控制方法的流程图。如图3所示,本申请实施例提供的技术方案还可以包括如下步骤。
步骤1、当检测到车辆启动时,车辆位姿模块激活,时刻输出车辆当前的位姿。当车辆位姿模块激活时,以车辆后轴中点为坐标原点,以车辆的当前方向为第一坐标轴,以车辆的后轴轴向为第二坐标轴,建立局部坐标系,时刻输出车辆当前位姿(横坐标x、纵坐标y)。
步骤2、当检测到车辆处于第一运动状态时,根据雷达探测到的障碍物的位置信息,构建障碍物地图;或者通过摄像头拍摄的车辆环境图像确定的障碍物的位置信息,构建障碍物地图;或者,通过雷达和通过摄像头拍摄的车辆环境图像确定的障碍物的位置信息,构建障碍物地图。可以参考相关技术中的障碍物地图建立方法。
步骤3、当检测到车辆切换至倒车档或者原路返回功能激活后,首先在仪表上描绘障碍物地图,并激活距离判断模块,在仪表上显示车辆后视镜距离障碍物最近的距离,距离判断模块时刻计算障碍物地图中记忆的障碍物的位置信息,判断车辆后视镜与障碍物之间的距离,当距离判断模块检测到障碍物与车辆后视镜的距离小于第一预设控制条件(例如第一预设控制条件可以为0.3m),激活后视镜控制模块,进行后视镜的折叠动作,并给予驾驶员相应的声音、灯光或文字提示,当距离判断模块检测到障碍物与车辆距离大于第二预设控制条件(例如第二预设控制条件可以为0.8m),会控制后视镜进行展开动作,并给予驾驶员相应的声音、灯光和文字提示。
随着功能升级,市面上车辆基本都是电动后视镜,在锁车启动时候,增加了后视镜电动折叠与打开的功能,在汽车行驶过程中,遇到较狭窄的路况时,有可能会刮伤或损伤外后视镜,驾驶员在驾驶过程中往往忘记折叠外后视镜,使得后视镜产生磕碰,造成不必要的损失。为了避免驾驶人员视觉误差或者发生疏忽导致没有折叠后视镜,汽车需要能够侦测障碍物与车身距离并预警后自动折叠后视镜的功能。
相关技术中的车辆,提供了能够自动避障的汽车后视镜,虽然结构简单,使用方便,安全高效,可以最大程度地保护己车和其他车辆的安全,是相关技术的极大进步,但是需要在后视镜上增加距离传感器,增加成本。
相关技术中的车辆,解决了车辆前向行驶时后视镜自动折叠的问题,可以在不增加额外成本的情况下,自动根据超声波雷达检测障碍物与车辆之间的距离关系,保证车辆处于前向行驶时并根据距离关系自动折叠与展开后视镜,但是,由于前置超声波雷达检测不到车辆后方的障碍物,所以当车辆处于原路返回功能或者倒车行驶时,该功能由于使用场景受限,导致该功能无法激活,而 倒车场景相较于前行场景而言,由于驾驶员视野有限或者心理压力较大,往往会忘记折叠后视镜,更容易导致在经过狭小路段时候刮蹭后视镜事故的发生。因此,针对车辆处于倒车情况或者原路返回功能激活时,也亟需要一种能够自动折叠后视镜的功能。
本申请实施例提供的技术方案,当车辆处于前进档或者未激活原路返回系统时,基于车载雷达不断记录车辆周围的障碍物的位置信息,并根据记录的障碍物的位置信息构建障碍物地图,在原路返回系统激活或者车辆处于倒车档时,根据之前记录的障碍物的分布情况时刻判断障碍物与车辆的距离,如果障碍物与车辆一侧的距离小于等于第一预设控制条件时,控制该侧后视镜自动折叠,并给予驾驶员相应的灯光和声音提示。当检测到障碍物与车辆距离大于第二预设控制条件时,控制后视镜展开。可以实现不需要额外增加距离感应装置,仅通过软件算法即可实现后视镜折叠与打开控制,防止在车辆挂入倒车档或者处于原路返回过程中由于车辆距离障碍物过近而导致折损后视镜事故的发生,可以节省硬件成本,提高驾驶体验。
图4是本申请实施例提供的车辆的后视镜控制装置结构示意图。所述装置可以配置在用于车辆控制的电子设备中,如图4所示,所述装置包括:障碍物位置信息获取模块410,设置为在车辆处于第一运动状态时,获取障碍物的位置信息;距离计算模块420,设置为若所述车辆处于第二运动状态,则根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离;后视镜折叠控制模块430,设置为若所述距离满足第一预设控制条件,则控制所述后视镜折叠。
可选的,所述装置还包括后视镜展开控制模块,设置为在控制所述后视镜折叠之后,若所述距离满足第二预设控制条件,则控制所述后视镜展开。
可选的,所述根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离,包括:根据所述车辆的实时车身朝向信息、所述车辆的实时位置信息以及所述障碍物的位置信息,计算后视镜与障碍物之间的距离。
可选的,所述获取障碍物的位置信息,包括:通过雷达探测的障碍物的位置信息,构建障碍物地图;或者,通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图;或者,通过雷达和通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图。
可选的,所述装置还包括坐标系构建模块,设置为在通过雷达探测的障碍物的位置信息,构建障碍物地图;或者,通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图;或者,通过雷达和通过摄像头拍摄的车辆的环境图像确定的障碍物的位置信息,构建障碍物地图之前,若检测到 障碍物地图构建触发事件,则以所述车辆的后轴中点为坐标原点,以车辆的当前方向为第一坐标轴,以所述车辆的后轴轴向为第二坐标轴,建立平面中的坐标系。
可选的,所述雷达包括超声波雷达,毫米波雷达或者激光雷达;所述摄像头包括环视摄像头。
可选的,所述装置还包括再次确认模块,设置为在根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离之前,若通过所述雷达检测到障碍物的位置信息的核实信息,则通过所述摄像头获取所述障碍物的高度;距离计算模块420是设置为通过如下方式根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离:若所述高度满足第三预设控制条件,则根据车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离。
上述实施例所提供的装置可以执行本申请任意实施例所提供的车辆的后视镜控制方法,具备执行方法相应的功能模块。
图5是本申请实施例提供的一种电子设备结构示意图。如图5所示,该设备包括:一个或多个处理器510,图5中以一个处理器510为例;存储器520;所述设备还可以包括:输入装置530和输出装置540。
所述设备中的处理器510、存储器520、输入装置530和输出装置540可以通过总线或者其他方式连接,图5中以通过总线连接为例。
存储器520作为一种非暂态计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的一种车辆的后视镜控制方法对应的程序指令/模块。处理器510通过运行存储在存储器520中的软件程序、指令以及模块,从而执行计算机设备的多种功能应用以及数据处理,即实现上述方法实施例的一种车辆的后视镜控制方法,即:在车辆处于第一运动状态时,获取障碍物的位置信息;若所述车辆处于第二运动状态,则根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离;若所述距离满足第一预设控制条件,则控制所述后视镜折叠。
存储器520可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非暂态性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态性固态存储器件。在一些实施例中,存储器520可选包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至终端设备。上述网 络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置530可设置为接收输入的数字或字符信息,以及产生与计算机设备的用户设置以及功能控制有关的键信号输入。输出装置540可包括显示屏等显示设备。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请实施例提供的一种车辆的后视镜控制方法,也即:在车辆处于第一运动状态时,获取障碍物的位置信息;若所述车辆处于第二运动状态,则根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与障碍物之间的距离;若所述距离满足第一预设控制条件,则控制所述后视镜折叠。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)或闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、电线、光缆、射频(Radio Frequency,RF)等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算 机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种车辆的后视镜控制方法,包括:
    在车辆处于第一运动状态的情况下,获取障碍物的位置信息;
    在所述车辆处于第二运动状态的情况下,根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与所述障碍物之间的距离;
    在所述距离满足第一预设控制条件的情况下,控制所述后视镜折叠。
  2. 根据权利要求1所述的方法,在控制所述后视镜折叠之后,所述方法还包括:
    在所述距离满足第二预设控制条件的情况下,控制所述后视镜展开。
  3. 根据权利要求1所述的方法,其中,根据所述车辆的实时位姿与所述障碍物的位置信息计算所述后视镜与所述障碍物之间的距离,包括:
    根据所述车辆的实时车身朝向信息、所述车辆的实时位置信息以及所述障碍物的位置信息,计算所述后视镜与所述障碍物之间的距离。
  4. 根据权利要求1所述的方法,其中,获取所述障碍物的位置信息,包括:
    通过雷达探测的所述障碍物的位置信息,构建障碍物地图;或者,
    通过摄像头拍摄的所述车辆的环境图像确定的所述障碍物的位置信息,构建障碍物地图;或者,
    通过雷达和通过摄像头拍摄的所述车辆的环境图像确定的所述障碍物的位置信息,构建障碍物地图。
  5. 根据权利要求4所述的方法,在通过所述雷达探测的所述障碍物的位置信息,构建所述障碍物地图;或者,通过所述摄像头拍摄的所述车辆的环境图像确定的所述障碍物的位置信息,构建所述障碍物地图;或者,通过所述雷达和通过所述摄像头拍摄的所述车辆的环境图像确定的所述障碍物的位置信息,构建所述障碍物地图之前,还包括:
    在检测到障碍物地图构建触发事件的情况下,以所述车辆的后轴中点为坐标原点,以所述车辆的当前方向为第一坐标轴,以所述车辆的后轴轴向为第二坐标轴,建立平面中的坐标系。
  6. 根据权利要求4所述的方法,其中,所述雷达包括超声波雷达,毫米波雷达或者激光雷达;
    所述摄像头包括环视摄像头。
  7. 根据权利要求4所述的方法,在根据所述车辆的实时位姿与所述障碍物的位置信息计算所述后视镜与所述障碍物之间的距离之前,还包括:
    在通过所述雷达检测到所述障碍物的位置信息的核实信息的情况下,通过所述摄像头获取所述障碍物的高度;
    所述根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与所述障碍物之间的距离,包括:在所述高度满足第三预设控制条件的情况下,根据所述车辆的实时位姿与所述障碍物的位置信息计算所述后视镜与所述障碍物之间的距离。
  8. 一种车辆的后视镜控制装置,包括:
    障碍物位置信息获取模块,设置为在车辆处于第一运动状态的情况下,获取障碍物的位置信息;
    距离计算模块,设置为在所述车辆处于第二运动状态的情况下,根据所述车辆的实时位姿与所述障碍物的位置信息计算后视镜与所述障碍物之间的距离;
    后视镜折叠控制模块,设置为在所述距离满足第一预设控制条件的情况下,控制所述后视镜折叠。
  9. 一种电子设备,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序,
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-7任一项所述的方法。
PCT/CN2021/141603 2021-04-28 2021-12-27 车辆的后视镜控制方法、装置、电子设备及存储介质 WO2022227656A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110467239.X 2021-04-28
CN202110467239.XA CN113071418A (zh) 2021-04-28 2021-04-28 车辆的后视镜控制方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022227656A1 true WO2022227656A1 (zh) 2022-11-03

Family

ID=76619087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141603 WO2022227656A1 (zh) 2021-04-28 2021-12-27 车辆的后视镜控制方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN113071418A (zh)
WO (1) WO2022227656A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113071418A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 车辆的后视镜控制方法、装置、电子设备及存储介质
CN113734190B (zh) * 2021-09-09 2023-04-11 北京百度网讯科技有限公司 车辆信息提示方法、装置、电子设备、介质和车辆
FR3140325A1 (fr) * 2022-09-29 2024-04-05 Psa Automobiles Sa Procédé et dispositif de contrôle d’un déploiement d’un rétroviseur extérieur d’un véhicule
CN115534881B (zh) * 2022-11-30 2023-03-03 陕西昂车郡电子科技有限公司 一种洗车机器人恒距行走装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202753864U (zh) * 2012-06-29 2013-02-27 浙江吉利汽车研究院有限公司杭州分公司 一种车辆后视镜控制装置
KR20130123527A (ko) * 2012-05-03 2013-11-13 이선구 자동차의 아웃사이드 미러 충돌 방지 장치
CN204077520U (zh) * 2014-06-24 2015-01-07 山东科技大学 一种能自动避障的汽车后视镜
CN104648254A (zh) * 2015-02-09 2015-05-27 浙江吉利汽车研究院有限公司 一种车辆后视镜自动折叠系统
CN106218516A (zh) * 2016-09-06 2016-12-14 浙江吉利控股集团有限公司 一种外后视镜自适应自动折叠系统及方法
WO2017014358A1 (ko) * 2015-07-22 2017-01-26 알앤더스 주식회사 차량용 사이드미러 자동폴딩장치
CN107878332A (zh) * 2017-12-01 2018-04-06 北京汽车研究总院有限公司 一种汽车后视镜系统及汽车
CN112109639A (zh) * 2019-06-20 2020-12-22 长城汽车股份有限公司 外后视镜避障方法、系统、车辆及机器可读存储介质
CN112693399A (zh) * 2021-01-06 2021-04-23 广州橙行智动汽车科技有限公司 车辆后视镜的控制方法、装置、车辆及存储介质
CN113071418A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 车辆的后视镜控制方法、装置、电子设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827804B2 (ja) * 1997-04-09 2006-09-27 富士重工業株式会社 車両用運転支援装置
JP2001180374A (ja) * 1999-12-24 2001-07-03 Aisin Aw Co Ltd 運転支援装置及び運転支援方法
DE102012201905A1 (de) * 2012-02-09 2013-08-14 Robert Bosch Gmbh Vorrichtung zum Schutz der Außenspiegel beim KFZ vor Kollision mit seitlichen Hindernissen
US9896032B2 (en) * 2016-04-25 2018-02-20 Ford Global Technologies, Llc Folding mirror apparatus and method for improving fuel efficiency
US11021106B2 (en) * 2018-03-29 2021-06-01 Intel Corporation Vehicle, side mirror assembly for a vehicle, and methods thereof
KR102042929B1 (ko) * 2018-08-16 2019-11-08 송해성 자동차의 차폭 및 측 후방 표시 장치
KR20210041224A (ko) * 2019-10-07 2021-04-15 현대자동차주식회사 자동차 및 그를 위한 주변 정보 출력 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130123527A (ko) * 2012-05-03 2013-11-13 이선구 자동차의 아웃사이드 미러 충돌 방지 장치
CN202753864U (zh) * 2012-06-29 2013-02-27 浙江吉利汽车研究院有限公司杭州分公司 一种车辆后视镜控制装置
CN204077520U (zh) * 2014-06-24 2015-01-07 山东科技大学 一种能自动避障的汽车后视镜
CN104648254A (zh) * 2015-02-09 2015-05-27 浙江吉利汽车研究院有限公司 一种车辆后视镜自动折叠系统
WO2017014358A1 (ko) * 2015-07-22 2017-01-26 알앤더스 주식회사 차량용 사이드미러 자동폴딩장치
CN106218516A (zh) * 2016-09-06 2016-12-14 浙江吉利控股集团有限公司 一种外后视镜自适应自动折叠系统及方法
CN107878332A (zh) * 2017-12-01 2018-04-06 北京汽车研究总院有限公司 一种汽车后视镜系统及汽车
CN112109639A (zh) * 2019-06-20 2020-12-22 长城汽车股份有限公司 外后视镜避障方法、系统、车辆及机器可读存储介质
CN112693399A (zh) * 2021-01-06 2021-04-23 广州橙行智动汽车科技有限公司 车辆后视镜的控制方法、装置、车辆及存储介质
CN113071418A (zh) * 2021-04-28 2021-07-06 中国第一汽车股份有限公司 车辆的后视镜控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN113071418A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022227656A1 (zh) 车辆的后视镜控制方法、装置、电子设备及存储介质
US10346705B2 (en) Method and apparatus for estimating articulation angle
CA3069114C (en) Parking assistance method and parking assistance device
KR102181196B1 (ko) 주차 제어 방법 및 주차 제어 장치
KR20160009828A (ko) 차량 통신을 이용한 차량 제어 장치 및 제어 방법
US20190135169A1 (en) Vehicle communication system using projected light
JP5471141B2 (ja) 駐車支援装置及び駐車支援方法
TWI488764B (zh) 鄰車動態駕駛資訊輔助系統
WO2018180579A1 (ja) 撮像制御装置、および撮像制御装置の制御方法、並びに移動体
JP4214841B2 (ja) 周囲状況認識システム
JP2018037737A (ja) 周辺監視装置及び周辺監視方法
KR20210043566A (ko) 정보 처리 장치, 이동체, 정보 처리 방법 및 프로그램
JP6394440B2 (ja) 汚れ判定装置
US11347216B2 (en) Remote parking system
WO2022062000A1 (zh) 一种基于透明a柱的辅助驾驶方法
JP4848644B2 (ja) 障害物認識システム
JP6363393B2 (ja) 車両周辺監視装置
JP6193177B2 (ja) 動作支援システム及び物体認識装置
CN115497338B (zh) 辅路路口的盲区预警系统、方法及装置
JPH07229961A (ja) 車両周囲の物体検知装置及び車両周囲の物体検知方法
WO2023284748A1 (zh) 一种辅助驾驶系统及车辆
CN115743093A (zh) 车辆控制方法、装置、自动泊车辅助控制器、终端及系统
US11480957B2 (en) Vehicle control system
JP2019010909A (ja) 駐車支援方法及び駐車支援装置
JP6996228B2 (ja) 駐車制御方法及び駐車制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21939115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21939115

Country of ref document: EP

Kind code of ref document: A1