WO2022227458A1 - 有机电致发光器件及显示装置 - Google Patents

有机电致发光器件及显示装置 Download PDF

Info

Publication number
WO2022227458A1
WO2022227458A1 PCT/CN2021/127158 CN2021127158W WO2022227458A1 WO 2022227458 A1 WO2022227458 A1 WO 2022227458A1 CN 2021127158 W CN2021127158 W CN 2021127158W WO 2022227458 A1 WO2022227458 A1 WO 2022227458A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
substituted
group
unsubstituted
energy level
Prior art date
Application number
PCT/CN2021/127158
Other languages
English (en)
French (fr)
Inventor
吴勇
张晓晋
孙海雁
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022227458A1 publication Critical patent/WO2022227458A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present disclosure belongs to the field of display technology, and in particular relates to an organic electroluminescence device and a display device.
  • Organic light-emitting diode (Organic Light-Emitting Device, OLED) is a light-emitting device that uses organic solid-state semiconductors as light-emitting materials. Therefore, it has broad application prospects.
  • OLED Organic Light-Emitting Device
  • When a voltage is applied to the OLED device holes are injected from the anode, electrons, electrons and holes are injected from the cathode and recombine in the light-emitting layer to form excitons. According to the statistical law of spin, singlet excitons are generated in the ratio of 25%: 75%. excitons and triplet excitons, and excitons undergo radiative transitions to achieve light emission.
  • fluorescent OLEDs use singlet excitons to radiate light, resulting in the theoretical limit of their internal quantum efficiency (IQE) not exceeding 25%, so the efficiency of fluorescent OLEDs is low; phosphorescent OLEDs use triplet excitons to radiate light.
  • IQE internal quantum efficiency
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and provides an organic electroluminescence device and a display device.
  • embodiments of the present disclosure provide an organic electroluminescence device, the organic electroluminescence device comprising: a first electrode and a second electrode disposed opposite to each other, and a first electrode and a second electrode located on the first electrode and the second electrode between the light-emitting layers;
  • the light-emitting layer includes: a first compound, a second compound and a third compound; wherein, the first compound satisfies the first general formula; the third compound satisfies the second general formula; the triplet state of the second compound The difference between the energy level and the singlet energy level is less than or equal to 0.3eV;
  • the first general formula includes:
  • ring A represents a substituted or unsubstituted C6-C30 arylene group or a substituted or unsubstituted C3-C30 heteroarylene group;
  • Ring B represents phenyl, naphthyl, phenylene, naphthylene, phenanthryl, fluoranthenyl, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, substituted or unsubstituted alkyl chain , or substituted or unsubstituted C6-C30 aryl or heteroaryl;
  • A1 represents phenyl, phenylene, naphthyl, naphthylene, dibenzofuran, dibenzothiophene, carbazole, pyrimidine ring, pyrazine ring, cyano group, substituted or unsubstituted aryl or heteroaryl base;
  • R1 to R7 are each independently selected from hydrogen, deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, substituted or unsubstituted C3-C30 silyl group, Substituted or unsubstituted boron, substituted or unsubstituted C1-C30 alkyl, substituted or unsubstituted C3-C30 cycloalkyl, substituted or unsubstituted alkoxy, substituted or unsubstituted substituted or unsubstituted aryloxy, substituted or unsubstituted alkylthio, substituted or unsubstituted arylthio, substituted or unsubstituted alkylsulfonyl, substituted or unsubstituted Substituted C6-C30 arylsulfonyl, substituted or unsubstituted alkenyl,
  • the second general formula includes:
  • A1, A2, A3, A14, A15 are each independently an aryl group having 6 to 30 aromatic ring atoms, the aryl group is optionally substituted by one or more groups R1;
  • R1 may be an aldehyde group , carbonyl group, carboxyl group, halogen atom, sulfonic acid group, haloalkyl group, cyano group, nitro group, tertiary amino group, cyano group, nitro group, formyl group, acyl group, thiophene, dibenzothiophene, furan, dibenzofuran, Cycloalkyl, arylalkynyl, heterocyclic group, halogen atom, alkoxy group, aralkyl group, silyl group, carboxyl group, aryloxy group, substituted amino group, benzene, naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, two Hydropyrene,
  • A5-A8, A9-A12 are each independently a straight-chain alkyl group having 1 to 10 carbon atoms, a branched or cyclic alkyl group having 3 to 10 carbon atoms, an alkenyl group, an alkynyl group, Substituted cycloalkyl, aryl, substituted aryl, fused-ring aryl, substituted fused-ring aryl, heterocyclyl, substituted heterocyclyl;
  • A4 and A13 are selected from linear or branched alkyl groups having 1 to 10 carbon atoms, aromatic or heteroaromatic or fused rings having 6 to 30 ring atoms.
  • the organic electroluminescence device further comprises: an exciton separation layer located on the side of the light-emitting layer close to the first electrode;
  • the exciton separation layer includes: a fourth compound and a fifth compound; the fourth compound satisfies the first general formula; the difference between the triplet energy level and the singlet energy level of the fifth compound is less than or equal to 0.3 eV.
  • the overlapping area between the emission spectrum of the first compound and the absorption spectrum of the second compound is greater than 5%;
  • the overlapping area of the emission spectrum of the second compound and the absorption spectrum of the third compound is greater than 5%.
  • the overlapping area of the emission spectrum of the fourth compound and the absorption spectrum of the fifth compound is greater than 5%.
  • the organic electroluminescence device further comprises: a hole injection layer, a hole transport layer, a hole injection layer, a hole transport layer located between the first electrode and the exciton separation layer and arranged in sequence along a direction away from the first electrode layer and an electron blocking layer, and an electron injection layer, an electron transport layer and a hole blocking layer which are located between the second electrode and the light emitting layer and are arranged in this order along a direction away from the second electrode.
  • the triplet energy level of the third compound is lower than the triplet energy level of the second compound
  • the triplet energy level of the second compound is lower than the triplet energy level of the first compound
  • the triplet energy level of the first compound is lower than the triplet energy level of the material of the electron blocking layer or the triplet energy level of the material of the hole blocking layer.
  • the triplet energy level of the fifth compound is lower than the triplet energy level of the fourth compound
  • the triplet energy level of the fourth compound is lower than the triplet energy level of the material of the electron blocking layer or the triplet energy level of the material of the hole blocking layer.
  • the difference between the absolute value of the LUMO energy level of the material of the electron blocking layer and the absolute value of the LUMO energy level of the fourth compound is less than or equal to 0.3 eV.
  • the difference between the absolute value of the HOMO energy level of the material of the hole blocking layer and the absolute value of the HOMO energy level of the third compound is greater than 0.3 eV.
  • the thickness of the light-emitting layer is less than or equal to 22 nanometers
  • the thickness of the exciton separation layer is less than or equal to 3 nanometers.
  • the doping ratio of the first compound and the second compound is 80%: 20% to 60%: 40%;
  • the doping ratio of the fourth compound and the fifth compound is 80%:20% to 60%:40%.
  • the organic electroluminescent device further comprises: a light extraction layer on the side of the second electrode away from the first electrode.
  • embodiments of the present disclosure provide a display device including the organic electroluminescence device provided above.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another organic electroluminescent device provided in an embodiment of the present disclosure.
  • 3 to 42 are respectively a molecular structure of the first compound in the organic electroluminescent device
  • 43 to 74 are respectively a molecular structure of the third compound in the organic electroluminescent device.
  • Figures 75 to 85 are molecular structures of compounds corresponding to each film layer in the organic electroluminescent device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence device provided by an embodiment of the present disclosure.
  • the organic electroluminescence device It includes: a first electrode 101 and a second electrode 102 arranged oppositely, and a light-emitting layer 103 located between the first electrode 101 and the second electrode 102; the light-emitting layer 103 includes: a first compound, a second compound and a third compound; Wherein, the first compound satisfies the first general formula; the third compound satisfies the second general formula; and the difference between the triplet energy level and the singlet energy level of the second compound is less than or equal to 0.3 eV.
  • the first general formula includes: Wherein, ring A represents substituted or unsubstituted C6-C30 arylene or substituted or unsubstituted C3-C30 heteroarylene; B ring represents phenyl, naphthyl, phenylene, naphthylene, phenanthryl, fluoranthenyl, pyridine ring, pyrazine ring, pyrimidine ring, pyridazine ring, triazine ring, substituted or unsubstituted alkyl chain, or substituted or unsubstituted C6-C30 aryl or heteroaryl; A1 represents phenyl, phenylene, naphthyl, naphthylene, dibenzofuran, dibenzothiophene, carbazole, pyrimidine ring, pyrazine ring, cyano group, substituted or unsubstituted aryl or heteroaryl R1 to R7 are each independently selected from hydrogen,
  • the organic light-emitting device can be formed on a substrate (not shown in the figure), and the substrate can be made of a flexible transparent material or a rigid transparent material, specifically glass, polyimide, thermoplastic polyester, metal film etc., the material of the substrate can be selected according to actual needs, which will not be listed one by one here.
  • the first electrode 101 can be an anode of an organic electroluminescent device, and the anode can be made of a high power function electrode material, which can be a single-layer structure or a multi-layer composite structure, for example, the anode can be made of indium tin oxide (ITO), indium zinc oxide (IZO) and other transparent materials, it can also be made of metal materials with good electrical conductivity sandwiched between two layers of indium tin oxide (ITO).
  • the metal materials can be aluminum (Al), silver ( Ag), titanium (Ti), molybdenum (Mo), or any of the above alloys.
  • the polarity of the second electrode 102 is opposite to that of the first electrode 101, and can be the cathode of the organic electroluminescence device, and the cathode can be made of metal materials, for example, the cathode can be lithium (Li), aluminum (Al), magnesium (Mg), silver (Ag) and other metal materials, or an alloy of any of the above-mentioned materials.
  • the light-emitting layer 103 is composed of a first compound, a second compound and a third compound, wherein the first compound can be regarded as a host material, the third compound can be regarded as a guest material, and the second compound can be regarded as a matching material.
  • the first compound satisfies the above-mentioned first general formula.
  • the molecular structure of the first compound may include, but is not limited to, any one of the molecular structures shown in FIGS. 3 to 42 .
  • the excited state energy level of the second compound satisfies: S1-T1 ⁇ 0.3eV; wherein, S1 represents the triplet state energy level, and T1 represents the singlet state energy level.
  • the difference between the triplet energy level and the singlet energy level of the second compound is less than or equal to 0.3 eV, which can facilitate the efficient transfer of exciton energy, so as to improve the efficiency of the organic electroluminescent device and reduce the Roll Off of the light-emitting device.
  • the third compound satisfies the above-mentioned second general formula, and specifically, the molecular structure of the second compound may include, but is not limited to, any one of the molecular structures shown in Figure 43 to Figure 74 .
  • the light emitting layer 103 may include a first compound, a second compound and a third compound
  • the first compound may be any one of the above-mentioned compounds satisfying the first general formula
  • the third compound The compound can be any one of the above-mentioned compounds that satisfy the second general formula
  • the second compound can be a thermally activated delayed doping material (TADF), whose triplet energy level and singlet energy level difference is less than or equal to 0.3eV, in practical applications Among them, the first compound, the second compound and the third compound can be mixed in a certain ratio, so that the exciton energy transfer efficiency between the first compound and the third compound in the light-emitting layer 103 can be improved, so that the organic electricity can be improved.
  • TADF thermally activated delayed doping material
  • the light-emitting layer 103 is composed of the first compound, the second compound and the third compound, which can effectively improve the stability of the light-emitting layer 103, thereby improving the service life of the organic electroluminescent device, and further improving the user experience.
  • the organic electroluminescence device further includes: an exciton separation layer 104 located on the side of the light emitting layer 103 close to the first electrode 101; the exciton separation layer includes: a fourth compound and a fifth compound; the fourth compound satisfies The first general formula; the difference between the triplet energy level and the singlet energy level of the fifth compound is less than or equal to 0.3 eV.
  • the exciton separation layer 104 can be arranged with the light-emitting layer, which includes a fourth compound and a fifth compound, the fourth compound satisfies the above-mentioned first general formula, and the difference between the triplet energy level and the singlet energy level of the fifth compound is less than or equal to 0.3 eV.
  • the fourth compound may be the same material as the first compound
  • the fifth compound may be the same material as the second compound
  • the exciton separation layer 104 is different from the light emitting layer in that the exciton separation layer 104 does not contain
  • the third compound makes the exciton separation layer 104 itself not emit light.
  • the difference between the triplet energy level and the singlet energy level of the fifth compound is less than or equal to 0.3 eV, it has the property of forming triplet excitons in it and forming singlet excitons through anti-intersystem crossing, so it can be used in organic electroluminescence.
  • Excitons can also be formed in the exciton separation layer 104 in the device, and the exciton energy is transferred from the triplet energy level to the triplet energy level in the exciton separation layer 104 by Forster energy transfer (FET) with small energy loss , which can effectively suppress the Dexter energy transfer (DET) between triplet energy levels with high energy consumption, so the energy transfer efficiency can be improved, which in turn can improve the luminous efficiency of organic electroluminescent devices and reduce the Roll Off of organic electroluminescent devices. .
  • FET Forster energy transfer
  • DET Dexter energy transfer
  • the exciton energy can be transferred to the light-emitting layer 103, which can further effectively improve the stability of the light-emitting layer 103, thereby improving the service life of the organic electroluminescent device, which in turn can improve the User experience.
  • the fourth compound can also be a different material from the first compound
  • the fifth compound can also be a different material from the second compound, as long as the fourth compound and the fifth compound can meet the requirements of forming excitons and performing energy transfer. The performance is sufficient, and the principle is the same as the above-mentioned distance, and will not be repeated here.
  • the exciton separation layer 104 can be arranged on the side of the light-emitting layer 103 close to the first electrode 101, which is beneficial to the recombination of electrons and holes in the exciton separation layer 104 to achieve the desired exciton density, Therefore, the excitons formed in the exciton separation layer 104 can be effectively transferred to the light-emitting layer, the light-emitting efficiency of the organic electroluminescent device can be improved, and the Roll Off of the organic electroluminescent device can be reduced.
  • the exciton separation layer 104 can be disposed on the side of the light-emitting layer close to the second electrode 102 (as shown in FIG.
  • the required exciton density can effectively transfer the excitons formed in the exciton separation layer 104 to the light-emitting layer, which can improve the light-emitting efficiency of the organic electroluminescent device and reduce the Roll Off of the organic electroluminescent device.
  • the area of overlap between the emission spectrum of the first compound and the absorption spectrum of the second compound is greater than 5%; the area of overlap between the emission spectrum of the second compound and the absorption spectrum of the third compound is greater than 5%.
  • the larger the overlapping area between the emission spectrum of the first compound and the absorption spectrum of the second compound the higher the overlap
  • the more favorable the exciton energy transfer from the first compound to the second compound is.
  • the larger the overlapping area (higher overlap) between the emission spectrum of the second compound and the absorption spectrum of the third compound the more favorable the transfer of exciton energy in the second compound to the third compound is.
  • the overlapping area between the emission spectrum of the first compound and the absorption spectrum of the second compound is greater than 5%; the overlapping area of the emission spectrum of the second compound and the absorption spectrum of the third compound is greater than 5%, which can be It is conducive to the transfer of exciton energy in the first compound to the second compound, and the transfer of exciton energy in the second compound to the third compound, so that the luminous efficiency of the organic electroluminescence device can be improved, and the organic electroluminescence can be reduced. Roll Off of the device.
  • the area of overlap of the emission spectrum of the fourth compound and the absorption spectrum of the fifth compound is greater than 5%.
  • the overlapping area of the emission spectrum of the fourth compound and the absorption spectrum of the fifth compound is greater than 5%, which can facilitate the transfer of exciton energy in the fourth compound to the fifth compound, thereby improving the organic electrical energy.
  • the luminous efficiency of electroluminescent devices is reduced, and the Roll Off of organic electroluminescent devices is reduced.
  • the organic electroluminescent device further includes: a hole injection layer 105 and a hole transport layer 106 located between the first electrode 101 and the exciton separation layer 104 and arranged in sequence along a direction away from the first electrode 101 . and an electron blocking layer 107 , and an electron injection layer 108 , an electron transport layer 109 and a hole blocking layer 110 which are located between the second electrode 102 and the light emitting layer 103 and are sequentially arranged along the direction away from the second electrode 102 .
  • the main function of the hole injection layer 105 is to reduce the hole injection barrier and improve the hole injection efficiency. It is prepared in a heterogeneous manner, for example, NPB: F4TCNQ, TAPC: MnO3, etc., and the P-type doping concentration is generally 0.5% to 10%.
  • the thickness of the hole injection layer 105 may be 5 nm to 20 nm, and may be formed by a co-evaporation process.
  • the hole transport layer 106 has good hole transport properties, and can be made of materials such as NPB, m-MTDATA, TPD, TAPC and the like.
  • the hole transport layer 106 may have a thickness of 10 nm to 2000 nm, and may be formed through an evaporation process.
  • the hole mobility of the electron blocking layer 107 is generally 1 to 2 orders of magnitude greater than the electron mobility, and is mainly used to transfer holes, which can effectively block electron transport, and can be made of materials such as TCTA.
  • the thickness of the electron blocking layer 107 may be 5 nm to 100 nm.
  • the electron injection layer 108 is made of LiF, Yb, LiQ and other materials.
  • the thickness of the electron injection layer 108 may be 1 nm to 10 nm.
  • the electron transport layer 109 has good electron transport properties, and can be made of materials such as TmPyPB, B4PyPPM, and the like, and its thickness can be 20 nm to 100 nm.
  • the electron mobility of the hole blocking layer 110 is generally 1 to 2 orders of magnitude greater than the hole mobility. It is mainly used to transfer electrons and can effectively block the transmission of holes.
  • the thickness of the hole blocking layer 110 may be 5 nm to 100 nm.
  • the triplet energy level of the third compound is less than the triplet energy level of the second compound; the triplet energy level of the second compound is less than the triplet energy level of the first compound; the triplet energy level of the first compound Less than the triplet energy level of the material of the electron blocking layer or the triplet energy level of the material of the hole blocking layer.
  • the triplet energy level of the third compound is smaller than the triplet energy level of the second compound; the triplet energy level of the second compound is smaller than that of the first compound, and the triplet energy level of the first compound is smaller than that of the first compound.
  • the triplet energy level of the material of the electron blocking layer or the triplet energy level of the material of the hole blocking layer can ensure that the exciton energy is transferred in the light-emitting layer 103 and prevent the exciton energy from being blocked by the light-emitting layer 103 to the adjacent electrons layer 107 or the hole blocking layer 110, so as to facilitate the efficient transfer of exciton energy, so as to improve the efficiency of the organic electroluminescent device and reduce the Roll Off of the light-emitting device.
  • the triplet energy level of the fifth compound is less than the triplet energy level of the fourth compound; the triplet energy level of the fourth compound is less than the triplet energy level of the material of the electron blocking layer or the material of the hole blocking layer the triplet energy level.
  • the triplet energy level of the fifth compound is smaller than the triplet energy level of the fourth compound, and the triplet energy level of the fourth compound is smaller than the triplet energy level of the material of the electron blocking layer or the energy level of the material of the hole blocking layer.
  • the triplet energy level can ensure that the exciton energy is transferred in the exciton separation layer 104 and avoid the transfer of exciton energy from the exciton separation layer 104 to the adjacent electron blocking layer 107 or hole blocking layer 110, which can be beneficial to the Efficient transfer of exciton energy to improve the efficiency of organic electroluminescent devices and reduce the Roll Off of light-emitting devices.
  • the difference between the absolute value of the LUMO energy level of the material of the electron blocking layer 107 and the absolute value of the LUMO energy level of the fourth compound is less than or equal to 0.3 eV.
  • the difference between the absolute value of the LUMO energy level of the material of the electron blocking layer 107 and the absolute value of the LUMO energy level of the fourth compound is less than or equal to 0.3 eV, which can ensure that the exciton energy is transferred in the exciton separation layer 104, avoiding The exciton energy is transferred from the exciton separation layer 104 to the adjacent electron blocking layer 107, which can facilitate the efficient transfer of exciton energy, so as to improve the efficiency of the organic electroluminescent device and reduce the Roll Off of the light-emitting device.
  • the difference between the absolute value of the HOMO energy level of the material of the hole blocking layer 110 and the absolute value of the HOMO energy level of the third compound is greater than 0.3 eV.
  • the difference between the absolute value of the HOMO energy level of the material of the hole blocking layer 110 and the absolute value of the HOMO energy level of the third compound is greater than 0.3 eV, which can ensure that the exciton energy is transferred in the light-emitting layer 103 and avoid exciton energy.
  • the transfer from the light-emitting layer 103 to the adjacent hole blocking layer 110 can facilitate the efficient transfer of exciton energy, so as to improve the efficiency of the organic electroluminescent device and reduce the Roll Off of the light-emitting device.
  • the thickness of the light emitting layer 103 is less than or equal to 22 nanometers; the thickness of the exciton separation layer 104 is less than or equal to 3 nanometers.
  • the doping ratio of the first compound and the second compound is 80%: 20% to 60%: 40%; the doping ratio of the fourth compound and the fifth compound is 80%: 20% to 60% : 40%.
  • the thicknesses of the light-emitting layer 103 and the exciton separation layer 104 and the doping ratio of the compounds therein can refer to the above parameters, and the thicknesses of the light-emitting layer 103 and the exciton separation layer 104 can be reasonably set according to actual needs. As well as the doping ratio of the compounds therein, the specific settings will be described in the subsequent collection table, which will not be described in detail here.
  • the organic electroluminescent device further includes: a light extraction layer 111 located on the side of the second electrode 102 away from the first electrode 101 .
  • the light extraction layer 111 can be made of an organic small molecule organic material, such as NPB(N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4 '-diamine), CBP (4,4'-bis(N-carbazole)-1,1'-biphenyl), etc., the refractive index of the light extraction layer 111 is large, and the light extraction layer 111 can make the The light of the second electrode 102 can be refracted and reflected in different directions, reducing the probability of total reflection at the interface between the second electrode 102 and the light extraction layer 111 , thereby improving the extraction rate of light, thereby improving the organic electroluminescence device. luminous efficiency.
  • organic small molecule organic material such as NPB(N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4-4 '-diamine), CBP
  • Example 1 the structure of each film layer in the organic electroluminescent device is set with reference to the following parameters, wherein the film thickness (unit: nm) is indicated in brackets.
  • Hole injection layer HIL(10);
  • Hole transport layer HTL(100);
  • Electron blocking layer EBL(5);
  • Hole blocking layer HBL(5);
  • Electron transport layer ETL(40);
  • Electron injection layer EIL(1);
  • Cathode Mg:Ag(8:2)(100);
  • the molecular structure of the material used in the hole injection layer is shown in Figure 75
  • the molecular structure of the material used in the hole transport layer is shown in Figure 76
  • the molecular structure of the material used in the electron blocking layer is shown in Figure 77
  • the molecular structure of compound 1-1 used in the exciton separation layer and the light-emitting layer is shown in Figure 78
  • the molecular structure of compound 2-1 used in the light-emitting layer is shown in Figure 81
  • the compound TH used in the light-emitting layer is shown in Figure 81.
  • the molecular structure of the material is shown in Figure 80, the molecular structure of the material used for the hole blocking layer is shown in Figure 83, the molecular structure of the material used for the electron transport layer is shown in Figure 84, and the molecular structure of the material used for the electron injection layer is shown in Figure 84.
  • the molecular structure is shown in Figure 85.
  • Comparative Example 1 the exciton separation layer was removed, and the thickness of the light-emitting layer was increased to 25 nm, and the rest was the same as the organic electroluminescent device in Example 1.
  • Comparative Example 2 the compound 2-1 in the light-emitting layer was replaced with a conventional light-emitting material RD, and the rest was the same as the organic electroluminescent device in Example 1.
  • the molecular structure of the conventional light-emitting material RD is shown in FIG. 82 .
  • Example 4 the compound 1-1 of the exciton separation layer and the light-emitting layer was replaced with 1-2, and the rest was the same as the organic electroluminescent device in Example 1. Among them, the molecular structure of compound 1-2 is shown in FIG. 79 .
  • Example 1 100% 100% (0.67, 0.33) 39.3 100% Comparative Example 1 104% 92% (0.67, 0.33) 39.3 83% Comparative Example 2 96% 94% (0.67, 0.33) 41.2 77% Example 2 98% 113% (0.67, 0.33) 38.9 64% Example 3 103% 89% (0.67, 0.33) 39.3 118% Example 4 99% 92% (0.67, 0.33) 40.1 106%
  • Example 1 in the above table comparing the organic electrode light-emitting device provided in Example 1 with the organic electroluminescent devices provided in Comparative Example 1 and Comparative Example 2, it can be seen that the embodiment of the present disclosure provides The service life of the organic electroluminescent device can be significantly improved, and its luminous efficiency can also be correspondingly improved, so that the user experience can be improved.
  • an embodiment of the present disclosure provides a display device, the display device includes the organic electroluminescent device provided in any of the above embodiments, and the display device can be, for example, a mobile phone, a tablet computer, an electronic watch, or a sports bracelet , notebook computers and other electronic devices with display functions.
  • the display device can be, for example, a mobile phone, a tablet computer, an electronic watch, or a sports bracelet , notebook computers and other electronic devices with display functions.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种有机电致发光器件及显示装置,属于显示技术领域,其可解决现有的有机电致发光器件发光效率较差,寿命较短的问题。包括:相对设置的第一电极(101)和第二电极(102)、以及位于第一电极(101)和第二电极(102)之间的发光层(103);发光层(103)包括:第一化合物、第二化合物和第三化合物;其中,第一化合物满足第一通式;第三化合物满足第二通式;第二化合物的三线态能级和单线态能级差小于或等于0.3eV。

Description

有机电致发光器件及显示装置 技术领域
本公开属于显示技术领域,具体涉及一种有机电致发光器件及显示装置。
背景技术
有机电致发光二极管(Organic Light-Emitting Device,OLED)是一种利用有机固态半导体作为发光材料的发光器件,由于其具有制备工艺简单、成本低、功耗低、发光亮度高、工作温度适应范围广等优点,因而有着广阔的应用前景。OLED器件施加电压时,从阳极注入空穴,阴极注入电子,电子和空穴并在发光层中进行复合形成激子,根据自旋的统计规律,以25%:75%的比例生成单线态激子和三线态激子,激子进行辐射跃迁实现发光。
目前,荧光OLED利用单线态激子辐射发光,导致其内量子效率(Internal Quantum Efficiency,IQE)理论极限不超过25%,因此荧光OLED的效率都较低;磷光OLED利用三线态激子进行辐射发光,其量子效率更高,IQE可达到100%,但是磷光材料的光致发光光谱(Photoluminescence Spectroscopy,PL)的半峰宽较宽,并且其三线态激子寿命较长,激子浓度过高,很容易发生三线态-三线态、极化子-三线态湮灭等,导致其器件效率下降,尤其是随着电流密度增加,激子密度增大,三线态-三线态、极化子-三线态湮灭导致器件效率急剧下降,其器件效率和效率滚降(Roll off)问题严重限制了OLED的发展和应用。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种有机电致发光器件及显示装置。
第一方面,本公开实施例提供一种有机电致发光器件,所述有机电致发光器件包括:相对设置的第一电极和第二电极、以及位于所述第一电极和所述第二电极之间的发光层;
所述发光层包括:第一化合物、第二化合物和第三化合物;其中,所述 第一化合物满足第一通式;所述第三化合物满足第二通式;所述第二化合物的三线态能级和单线态能级差小于或等于0.3eV;
所述第一通式包括:
Figure PCTCN2021127158-appb-000001
其中,A环表示为取代或未取代的C6~C30的亚芳基或取代或未取代的C3~C30的亚杂芳基;
B环表示苯基、奈基、亚苯基、亚奈基、菲基、荧蒽基、吡啶环、吡嗪环、嘧啶环、哒嗪环、三嗪环、取代或未取代的烷基链、或者取代或未取代的C6~C30芳基或杂芳基;
A1表示为苯基、亚苯基、奈基、亚奈基、二苯并呋喃、二苯并噻吩、咔唑、嘧啶环、吡嗪环、氰基、取代或未取代的芳基或杂芳基;
R1至R7各自独立地选自氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、经取代或未经取代C3~C30的甲硅烷基、经取代或未经取代的硼基、经取代或未经取代的C1~C30烷基、经取代或未经取代的C3~C30的环烷基、经取代或未经取代的烷氧基、经取代或未经取代的芳氧基、经取代或未经取代的烷基硫基、经取代或未经取代的芳基硫基、经取代或未经取代的烷基磺酰基、经取代或未经取代C6~C30的芳基磺酰基、经取代或未经取代的烯基、经取代或未经取代的芳烷基、经取代或未经取代的芳烯基、经取代或未经取代的烷基芳基、经取代或未经取代的烷基胺基、经取代或未经取代的C1~C30芳烷基胺基、经取代或未经取代的C6~C30杂芳基胺基、经取代或未经取代的C6~C30芳基胺基、经取代或未经取代的C6~C30芳基杂芳基胺基、经取代或未经取代的C6~C30芳基膦基、经取代或未经取 代的氧化膦基团、经取代或未经取代C6~C30的芳基,或者经取代或未经取代的杂环基,或者取代或未取代的(C1-C30)烷基二(C6-C30)芳基甲硅烷基;
所述第二通式包括:
Figure PCTCN2021127158-appb-000002
其中,M选自硼;n=1;
A1、A2、A3、A14、A15各自独立的为具有6至30个芳族环原子的芳基基团,该芳基基团任选被一个或多个基团R1取代;R1可以为醛基、羰基、羧基、卤原子、磺酸基、卤代烷基、氰基、硝基、叔胺基、氰基、硝基、甲酰基、酰基、噻吩、二苯并噻吩、呋喃、二苯并呋喃、环烷基、芳香炔基、杂环基、卤素原子、烷氧基、芳烷基、甲硅烷基、羧基、芳氧基、取代氨基、苯、萘、蒽、菲、芘、荧蒽、二氢芘、苯并蒽、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲叮、苯并喹啉、噻吩嗪、吩噁嗪;
A5-A8、A9-A12各自独立的为具有1至10个碳原子的直链烷基基团、具有3至10个碳原子的支链或环状的烷基、烯基、炔基基、取代环烷基、芳香基、取代芳香基、稠环芳香基、取代稠环芳香基、杂环基、取代杂环基;
A4、A13选自具有1至10个碳原子的直链或支链烷基基团、具有6至30个环原子的芳族环或杂芳族或稠环。
可选地,所述有机电致发光器件还包括:位于所述发光层靠近所述第一电极一侧的激子分离层;
所述激子分离层包括:第四化合物和第五化合物;所述第四化合物满足 所述第一通式;所述第五化合物的三线态能级和单线态能级差小于或等于0.3eV。
可选地,所述第一化合物的发射光谱和所述第二化合物的吸收光谱之间的重叠面积大于5%;
所述第二化合物的发射光谱和所述第三化合物的吸收光谱的重叠面积大于5%。
可选地,所述第四化合物的发射光谱和所述第五化合物的吸收光谱的重叠面积大于5%。
可选地,所述有机电致发光器件还包括:位于所述第一电极与所述激子分离层之间且沿着背离所述第一电极方向依次设置的空穴注入层、空穴传输层和电子阻挡层、以及位于所述第二电极与所述发光层之间且沿着背离所述第二电极方向依次设置的电子注入层、电子传输层和空穴阻挡层。
可选地,所述第三化合物的三线态能级小于所述第二化合物的三线态能级;
所述第二化合物的三线态能级小于所述第一化合物的三线态能级;
所述第一化合物的三线态能级小于所述电子阻挡层的材料的三线态能级或所述空穴阻挡层的材料的三线态能级。
可选地,所述第五化合物的三线态能级小于所述第四化合物的三线态能级;
所述第四化合物的三线态能级小于所述电子阻挡层的材料的三线态能级或所述空穴阻挡层的材料的三线态能级。
可选地,所述电子阻挡层的材料的LUMO能级绝对值与所述第四化合物的LUMO能级绝对值差小于或等于0.3eV。
可选地,所述空穴阻挡层的材料的HOMO能级绝对值与所述第三化合物的HOMO能级绝对值差大于0.3eV。
可选地,所述发光层的厚度小于或等于22纳米;
所述激子分离层的厚度小于或等于3纳米。
可选地,所述第一化合物与所述第二化合物的掺杂比例为80%:20%至60%:40%;
所述第四化合物与所述第五化合物的掺杂比例为80%:20%至60%:40%。
可选地,所述有机电致发光器件还包括:位于所述第二电极背离所述第一电极一侧的光取出层。
第二方面,本公开实施例提供一种显示装置,包括如上述提供的有机电致发光器件。
附图说明
图1为本公开实施例提供的一种有机电致发光器件的结构示意图;
图2为本公开实施例提供的另一种有机电致发光器件的结构示意图;
图3至图42分别为有机电致发光器件中的第一化合物的一种分子结构;
图43至图74分别为有机电致发光器件中的第三化合物的一种分子结构;
图75至图85有机电致发光器件中的各个膜层所对应的化合物的分子结构。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而 不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,本公开实施例提供了一种有机电致发光器件,图1为本公开实施例提供的一种有机电致发光器件的结构示意图,如图1所示,该有机电致发光器件包括:相对设置的第一电极101和第二电极102、以及位于第一电极101和第二电极102之间的发光层103;发光层103包括:第一化合物、第二化合物和第三化合物;其中,第一化合物满足第一通式;第三化合物满足第二通式;第二化合物的三线态能级和单线态能级差小于或等于0.3eV。第一通式包括:
Figure PCTCN2021127158-appb-000003
其中,A环表示为取代或未取代的C6~C30的亚芳基或取代或未取代的C3~C30的亚杂芳基;B环表示苯基、奈基、亚苯基、亚奈基、菲基、荧蒽基、吡啶环、吡嗪环、嘧啶环、哒嗪环、三嗪环、取代或未取代的烷基链、或者取代或未取代的C6~C30芳基或杂芳基;A1表示为苯基、亚苯基、奈基、亚奈基、二苯并呋喃、二苯并噻吩、咔唑、嘧啶环、吡嗪环、氰基、取代或未取代的芳基或杂芳基;R1至R7各自独立地选自氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、经取代或未经取代C3~C30的甲硅烷基、经取代或未经取代的硼基、经取代或未经取代的C1~C30烷基、经取代或未经取代的C3~C30的环烷基、经取代或未经取代的烷氧基、经取代或未经取代的芳氧基、经取代或未经取代的烷基硫基、经取代或未经取代的芳基硫基、经取代或未经取代的 烷基磺酰基、经取代或未经取代C6~C30的芳基磺酰基、经取代或未经取代的烯基、经取代或未经取代的芳烷基、经取代或未经取代的芳烯基、经取代或未经取代的烷基芳基、经取代或未经取代的烷基胺基、经取代或未经取代的C1~C30芳烷基胺基、经取代或未经取代的C6~C30杂芳基胺基、经取代或未经取代的C6~C30芳基胺基、经取代或未经取代的C6~C30芳基杂芳基胺基、经取代或未经取代的C6~C30芳基膦基、经取代或未经取代的氧化膦基团、经取代或未经取代C6~C30的芳基,或者经取代或未经取代的杂环基,或者取代或未取代的(C1-C30)烷基二(C6-C30)芳基甲硅烷基。第二通式包括:
Figure PCTCN2021127158-appb-000004
其中,M选自硼;n=1;A1、A2、A3、A14、A15各自独立的为具有6至30个芳族环原子的芳基基团,该芳基基团任选被一个或多个基团R1取代;R1可以为醛基、羰基、羧基、卤原子、磺酸基、卤代烷基、氰基、硝基、叔胺基、氰基、硝基、甲酰基、酰基、噻吩、二苯并噻吩、呋喃、二苯并呋喃、环烷基、芳香炔基、杂环基、卤素原子、烷氧基、芳烷基、甲硅烷基、羧基、芳氧基、取代氨基、苯、萘、蒽、菲、芘、荧蒽、二氢芘、苯并蒽、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲叮、苯并喹啉、噻吩嗪、吩噁嗪;A5-A8、A9-A12各自独立的为具有1至10个碳原子的直链烷基基团、具有3至10个碳原子的支链或环状的烷基、烯基、炔基基、取代环烷基、芳香基、取代芳香基、稠环芳香基、取代稠环芳香基、杂环基、取代杂环基;A4、A13选自具有1至10个碳原子的直链或支链烷基基团、具有6至30个环原子的 芳族环或杂芳族或稠环。
有机发光器件可以形成在基底(图中未示出)上,基底可以采用柔性透明材料制成,也可以采用刚性透明材料制成,具体可以为玻璃、聚酰亚胺、热塑性聚酯、金属薄膜等,可以根据实际需要选择基底的材料,在此不在一一列举。
第一电极101可以为有机电致发光器件的阳极,该阳极可以采用高功率函数电极材料制成,其可以为单层结构,也可以为多层复合结构,例如,该阳极可以采用氧化铟锡(ITO)、氧化铟锌(IZO)等透明材料构成,也可以采用两层氧化铟锡(ITO)之间夹导电性较好的金属材料制成,金属材料可以为铝(Al)、银(Ag)、钛(Ti)、钼(Mo)中的任意一种,或者上述任意多种的合金。
第二电极102与第一电极101的极性相反,可以为有机电致发光器件的阴极,该阴极可以采用金属材料制成,例如,该阴极可以采用锂(Li)、铝(Al)、镁(Mg)、银(Ag)等金属材料中的任意一种,或者上述任意多种材料的合金。
第一电极101和第二电极102之间施加电压时,空穴和电子被导入至发光层103中,并在103中形成激子,形成的激子可以发光层103中发生能级跃迁,释放出能量以进行发光。发光层103由第一化合物、第二化合物和第三化合物构成,其中,第一化合物可以被认为为主体材料,第三化合物可以被认为为客体材料,第二化合物可以被认为为搭配材料。
第一化合物满足上述的第一通式,具体地,第一化合物的分子结构可以包括但不限于如图3至图42所示的分子结构中的任意一种。
第二化合物的激发态能级满足:S1-T1≤0.3eV;其中,S1表示三线态能级,T1表示单线态能级。第二化合物的三线能能级与单线态能级差小于或等于0.3eV,可以有利于激子能量高效传递,以提高有机电致发光器件的效率,降低发光器件的Roll Off。
第三化合物满足上述的第二通式,具体地,第二化合物的分子结构可以 包括但不限于如图43至图74所示的分子结构中的任意一种。
本公开实施例提供的有机电致发光器件中,发光层103可以包括第一化合物、第二化合物和第三化合物,第一化合物可以为上述的满足第一通式的任意一种化合物,第三化合物可以为上述的满足第二通式的任意一种化合物,第二化合物可以采用热激活延迟掺杂材料(TADF),其三线态能级和单线态能级差小于或等于0.3eV,在实际应用中,第一化合物、第二化合物和第三化合物可以通过一定的比例进行混合,这样可以提高发光层103中的第一化合物与第三化合物之间的激子能量转移效率,从而可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。再者,发光层103采用第一化合物、第二化合物和第三化合物构成,这样可以有效提高发光层103的稳定性,从而可以提高有机电致发光器件的使用寿命,进而可以提高用户使用体验。
在一些实施例中,有机电致发光器件还包括:位于发光层103靠近第一电极101一侧的激子分离层104;激子分离层包括:第四化合物和第五化合物;第四化合物满足第一通式;第五化合物的三线态能级和单线态能级差小于或等于0.3eV。
激子分离层104可以与发光层叠层设置,其中包括第四化合物和第五化合物,第四化合物满足上述的第一通式,第五化合物的三线态能级和单线态能级差小于或等于0.3eV。具体地,第四化合物可以与第一化合物为相同的材料,第五化合物可以与第二化合物为相同的材料,激子分离层104与发光层不同之处在于,激子分离层104中不含有第三化合物,使得激子分离层104自身不进行发光。由于第五化合物的三线态能级和单线态能级差小于或等于0.3eV,具有在其内形成三线态激子并经反系间穿越形成单线态激子的性能,因此可以在有机电致发光器件中的激子分离层104中也可以形成激子,并在激子分离层104中通过能量损失较小的Forster能量转移(FET)从激子能量由三线态能级转移至三线态能级,有效抑制能耗较大的三线态能级之间的Dexter能量转移(DET),因此可以提高能量转移效率,进而可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。并且, 由于激子分离层104的存在,可以将激子能量转移至发光层103中,这样可以进一步有效提高发光层103的稳定性,从而可以提高有机电致发光器件的使用寿命,进而可以提高用户使用体验。可以理解的是,第四化合物也可以与第一化合物为不同的材料,第五化合物也可以与第二化合物为不同的材料,只要第四化合物和第五化合物可以满足形成激子并进行能量转移的性能即可,其原理与上述的远离相同,在此不在赘述。
当发光层103中的第一化合物的电子迁移率大于空穴迁移率时,即发光层103中的第一化合物为电子型材料时,电子容易从第二电极102一侧通过发光层103向第一电极101一侧传输,因此,激子分离层104可以设置于发光层103靠近第一电极101的一侧,有利于电子和空穴在激子分离层104复合达到所需的激子密度,从而可以将激子分离层104中形成的激子有效转移至发光层中,可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。
当发光层103中的以化合物的空穴迁移率大于电子迁移率时,即发光层103中的第一化合物为空穴型材料时,空穴容易从第一电极101一侧通过发光层103向第二电极102一侧传输,因此,激子分离层104可以设置于发光层靠近第二电极102的一侧(如图2所示),有利于电子和空穴在激子分离层104复合达到所需的激子密度,从而可以将激子分离层104中形成的激子有效转移至发光层中,可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。
在一些实施例中,第一化合物的发射光谱和第二化合物的吸收光谱之间的重叠面积大于5%;第二化合物的发射光谱和第三化合物的吸收光谱的重叠面积大于5%。
在实际应用中,第一化合物的发射光谱和第二化合物的吸收光谱之间的重叠面积越大(重叠性越高),越有利于第一化合物中的激子能量向第二化合物中转移,同样的,第二化合物的发射光谱与第三化合物的吸收光谱之间的重叠面积越大(重叠性越高),越有利于第二化合物中的激子能量向第三化合物中转移。在本公开实施例中,第一化合物的发射光谱和第二化合物的 吸收光谱之间的重叠面积大于5%;第二化合物的发射光谱和第三化合物的吸收光谱的重叠面积大于5%,可以有利于第一化合物中的激子能量向第二化合物中转移,以及第二化合物中的激子能量向第三化合物中转移,从而可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。
在一些实施例中,第四化合物的发射光谱和第五化合物的吸收光谱的重叠面积大于5%。
在此需要说明的是,第四化合物的发射光谱和第五化合物的吸收光谱的重叠面积大于5%,可以有利于第四化合物中的激子能量向第五化合物中转移,从而可以提高有机电致发光器件的发光效率,降低有机电致发光器件的Roll Off。
在一些实施例中,有机电致发光器件还包括:位于第一电极101与激子分离层104之间且沿着背离第一电极101方向依次设置的空穴注入层105、空穴传输层106和电子阻挡层107、以及位于第二电极102与发光层103之间且沿着背离第二电极102方向依次设置的电子注入层108、电子传输层109和空穴阻挡层110。
空穴注入层105的主要作用是为了降低空穴注入势垒,提高空穴注入效率,可以采用HATCN、CuPc等注入材料制备形成的单层膜结构,也可以在空穴传输材料进行P型掺杂的方式进行制备,例如,NPB:F4TCNQ,TAPC:MnO3等,P型掺杂浓度一般为0.5%至10%。空穴注入层105的厚度可以为5nm至20nm,可以通过共蒸工艺形成。
空穴传输层106具有良好的空穴传输特性,可以选用NPB,m-MTDATA,TPD,TAPC等材料制成。空穴传输层106的厚度可以为10nm至2000nm,可以通过蒸镀工艺形成。
电子阻挡层107的空穴迁移率一般要大于电子迁移率1至2个数量级,主要用作传递空穴,可以有效阻挡电子的传输,可以选用TCTA等材料制成。电子阻挡层107的厚度可以为5nm至100nm。
电子注入层108选用LiF,Yb,LiQ等材料制成。电子注入层108的厚 度可以为1nm至10nm。
电子传输层109具有良好的电子传输特性,可以选用TmPyPB,B4PyPPM等材料制成,其厚度可以为20nm至100nm。
空穴阻挡层110的电子迁移率一般要大于空穴迁移率1至2个数量级,主要用作传递电子,可以有效阻挡空穴的传输,可以选用BCP,TPBI,TBB,TBD等材料制成。空穴阻挡层110的厚度可以为5nm至100nm。
在一些实施例中,第三化合物的三线态能级小于第二化合物的三线态能级;第二化合物的三线态能级小于第一化合物的三线态能级;第一化合物的三线态能级小于电子阻挡层的材料的三线态能级或空穴阻挡层的材料的三线态能级。
需要说明的是,第三化合物的三线态能级小于第二化合物的三线态能级;第二化合物的三线态能级小于第一化合物的三线态能级,第一化合物的三线态能级小于电子阻挡层的材料的三线态能级或空穴阻挡层的材料的三线态能级,这样可以保证激子能量在发光层103中进行传递,避免激子能量由发光层103向邻近的电子阻挡层107或者空穴阻挡层110传递,从而可以有利于激子能量高效传递,以提高有机电致发光器件的效率,降低发光器件的Roll Off。在一些实施例中,第五化合物的三线态能级小于第四化合物的三线态能级;第四化合物的三线态能级小于电子阻挡层的材料的三线态能级或空穴阻挡层的材料的三线态能级。
需要说明的是,第五化合物的三线态能级小于第四化合物的三线态能级,第四化合物的三线态能级小于电子阻挡层的材料的三线态能级或空穴阻挡层的材料的三线态能级,这样可以保证激子能量在激子分离层104中进行传递,避免激子能量由激子分离层104向邻近的电子阻挡层107或者空穴阻挡层110传递,从而可以有利于激子能量高效传递,以提高有机电致发光器件的效率,降低发光器件的Roll Off。
在一些实施例中,电子阻挡层107的材料的LUMO能级绝对值与第四化合物的LUMO能级绝对值差小于或等于0.3eV。
需要说明的是,电子阻挡层107的材料的LUMO能级绝对值与第四化合物的LUMO能级绝对值差小于或等于0.3eV,可以保证激子能量在激子分离层104中进行传递,避免激子能量由激子分离层104向邻近的电子阻挡层107传递,从而可以有利于激子能量高效传递,以提高有机电致发光器件的效率,降低发光器件的Roll Off。
在一些实施例中,空穴阻挡层110的材料的HOMO能级绝对值与第三化合物的HOMO能级绝对值差大于0.3eV。
需要说明的是,空穴阻挡层110的材料的HOMO能级绝对值与第三化合物的HOMO能级绝对值差大于0.3eV,可以保证激子能量在发光层103中进行传递,避免激子能量由发光层103向邻近的空穴阻挡层110传递,从而可以有利于激子能量高效传递,以提高有机电致发光器件的效率,降低发光器件的Roll Off。
在一些实施例中,发光层103的厚度小于或等于22纳米;激子分离层104的厚度小于或等于3纳米。
在一些实施例中,第一化合物与第二化合物的掺杂比例为80%:20%至60%:40%;第四化合物与第五化合物的掺杂比例为80%:20%至60%:40%。
在此需要说明的是,发光层103和激子分离层104的厚度、以及其中的化合物的掺杂比例可以参照上述的参数,根据实际需要,合理设置发光层103与激子分离层104的厚度以及其中的化合物的掺杂比例,其具体设置将在后续集合表格进行描述,在此不在详述。
在一些实施例中,有机电致发光器件还包括:位于第二电极102背离第一电极101一侧的光取出层111。
光取出层111可以采用有机小分子有机材料制成,如NPB(N,N′-二(1-萘基)-N,N′-二苯基-1,1′-联苯-4-4′-二胺),CBP(4,4'-双(N-咔唑)-1,1'-联苯)等,光取出层111的折射率较大,并且光取出层111可以使得经过第二电极102的光线可以向各个不同的方向发生折射及反射,降低在第二电极102与 光取出层111的界面发生全反射的概率,从而可以提高光线的取出率,进而提高有机电致发光器件的发光效率。
下面将以一种具体的有机电致发光器件为例,并结合对比例,对本公开实施例提供的有机电致发光器件的性能进行进一步说明。
实施例1,有机电致发光器件中的各个膜层结构参照如下参数进行设置,其中括号内表示膜厚(单位:nm)。
空穴注入层:HIL(10);
空穴传输层:HTL(100);
电子阻挡层:EBL(5);
激子分离层:化合物1-1:TH=80%:20%(3);
发光层:化合物1-1:TH:化合物2-1=70%:30%:1%(22);
空穴阻挡层:HBL(5);
电子传输层:ETL(40);
电子注入层:EIL(1);
阴极:Mg:Ag(8:2)(100);
光取出层CPL:(65)。
其中,空穴注入层所采用的材料的分子结构如图75所示,空穴传输层所采用的材料的分子结构如图76所示,电子阻挡层所采用的材料的分子结构如图77所示,激子分离层和发光层所采用的化合物1-1的分子结构如图78所示,发光层所采用的化合物2-1的分子结构如图81所示,发光层所采用的化合物TH的分子结构如图80所示,空穴阻挡层所采用的材料的分子结构如图83所示,电子传输层所采用的材料的分子结构如图84所示,电子注入层所采用的材料的分子结构如图85所示。
对比例1,去除激子分离层,将发光层的厚度增加至25nm,其余与实施例1相同的有机电致发光器件。
对比例2,将发光层中的化合物2-1替换成常规发光材料RD,其余与实 施例1相同的有机电致发光器件。其中,常规发光材料RD的分子结构如图82所示。
实施例2,将发光层中掺杂比替换成-化合物1-1:TH:化合物2-1=80%:20%:1%,其余与实施例1相同的有机电致发光器件。
实施例3,将发光层中掺杂比替换成-化合物1-1:TH:化合物2-1=60%:40%:1%,其余与实施例1相同的有机电致发光器件。
实施例4,将激子分离层和发光层的化合物1-1替换成1-2,其余与实施例1相同的有机电致发光器件。其中,化合物1-2的分子结构如图79所示。
测试结果如下表:
  V(V) CE(cd/A) CIE FWHM LT 95
实施例1 100% 100% (0.67,0.33) 39.3 100%
对比例1 104% 92% (0.67,0.33) 39.3 83%
对比例2 96% 94% (0.67,0.33) 41.2 77%
实施例2 98% 113% (0.67,0.33) 38.9 64%
实施例3 103% 89% (0.67,0.33) 39.3 118%
实施例4 99% 92% (0.67,0.33) 40.1 106%
以上述表格中的实施例1为例,实施例1中所提供的有机电极发光器件与对比例1及对比例2所提供的有机电致发光器件相比,可以看出,本公开实施例提供的有机电致发光器件的使用寿命可以得到明显提升,并且其发光效率还可以得到相应的提升,从而可以提高用户使用体验。
第二方面,本公开实施例提供了一种显示装置,该显示装置包括如上述任一实施例提供的有机电致发光器件,该显示装置例如可为手机、平板电脑、电子手表、运动手环、笔记本电脑等具有显示功能的电子设备。该显示装置具有的技术效果可参考上述对有机电致发光器件的技术效果的论述,在此不再赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示 例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种有机电致发光器件,其特征在于,所述有机电致发光器件包括:相对设置的第一电极和第二电极、以及位于所述第一电极和所述第二电极之间的发光层;
    所述发光层包括:第一化合物、第二化合物和第三化合物;其中,所述第一化合物满足第一通式;所述第三化合物满足第二通式;所述第二化合物的三线态能级和单线态能级差小于或等于0.3eV;
    所述第一通式包括:
    Figure PCTCN2021127158-appb-100001
    其中,A环表示为取代或未取代的C6~C30的亚芳基或取代或未取代的C3~C30的亚杂芳基;
    B环表示苯基、奈基、亚苯基、亚奈基、菲基、荧蒽基、吡啶环、吡嗪环、嘧啶环、哒嗪环、三嗪环、取代或未取代的烷基链、或者取代或未取代的C6~C30芳基或杂芳基;
    A1表示为苯基、亚苯基、奈基、亚奈基、二苯并呋喃、二苯并噻吩、咔唑、嘧啶环、吡嗪环、氰基、取代或未取代的芳基或杂芳基;
    R1至R7各自独立地选自氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、经取代或未经取代C3~C30的甲硅烷基、经取代或未经取代的硼基、经取代或未经取代的C1~C30烷基、经取代或未经取代的C3~C30的环烷基、经取代或未经取代的烷氧基、经取代或未经取代的芳氧基、经取代或未经取代的烷基硫基、经取代或未经取代的芳基硫基、经取代或未经取代的烷基磺酰基、经取代或未经取代C6~C30的芳基磺酰基、经取代或未经取代的烯基、经取代或未经取代的芳烷基、经取代或未经取代的芳烯基、经取代或未经取代的烷基芳基、经取代或未经取代的烷基胺基、经取代或未经取代的C1~C30芳烷基胺基、经取代或未经取代的C6~C30杂芳基胺基、经取代或未经取代的C6~C30芳基胺基、经取代或未经取代的C6~C30 芳基杂芳基胺基、经取代或未经取代的C6~C30芳基膦基、经取代或未经取代的氧化膦基团、经取代或未经取代C6~C30的芳基,或者经取代或未经取代的杂环基,或者取代或未取代的(C1-C30)烷基二(C6-C30)芳基甲硅烷基;
    所述第二通式包括:
    Figure PCTCN2021127158-appb-100002
    其中,M选自硼;n=1;
    A1、A2、A3、A14、A15各自独立的为具有6至30个芳族环原子的芳基基团,该芳基基团任选被一个或多个基团R1取代;R1可以为醛基、羰基、羧基、卤原子、磺酸基、卤代烷基、氰基、硝基、叔胺基、氰基、硝基、甲酰基、酰基、噻吩、二苯并噻吩、呋喃、二苯并呋喃、环烷基、芳香炔基、杂环基、卤素原子、烷氧基、芳烷基、甲硅烷基、羧基、芳氧基、取代氨基、苯、萘、蒽、菲、芘、荧蒽、二氢芘、苯并蒽、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲叮、苯并喹啉、噻吩嗪、吩噁嗪;
    A5-A8、A9-A12各自独立的为具有1至10个碳原子的直链烷基基团、具有3至10个碳原子的支链或环状的烷基、烯基、炔基基、取代环烷基、芳香基、取代芳香基、稠环芳香基、取代稠环芳香基、杂环基、取代杂环基;
    A4、A13选自具有1至10个碳原子的直链或支链烷基基团、具有6至30个环原子的芳族环或杂芳族或稠环。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,所述有机电致发光器件还包括:位于所述发光层靠近所述第一电极一侧的激子分离层;
    所述激子分离层包括:第四化合物和第五化合物;所述第四化合物满足所述第一通式;所述第五化合物的三线态能级和单线态能级差小于或等于0.3eV。
  3. 根据权利要求1所述的有机电致发光器件,其特征在于,所述第一化合物的发射光谱和所述第二化合物的吸收光谱之间的重叠面积大于5%;
    所述第二化合物的发射光谱和所述第三化合物的吸收光谱的重叠面积大于5%。
  4. 根据权利要求2所述的有机电致发光器件,其特征在于,所述第四化合物的发射光谱和所述第五化合物的吸收光谱的重叠面积大于5%。
  5. 根据权利要求2所述的有机电致发光器件,其特征在于,所述有机电致发光器件还包括:位于所述第一电极与所述激子分离层之间且沿着背离所述第一电极方向依次设置的空穴注入层、空穴传输层和电子阻挡层、以及位于所述第二电极与所述发光层之间且沿着背离所述第二电极方向依次设置的电子注入层、电子传输层和空穴阻挡层。
  6. 根据权利要求5所述的有机电致发光器件,其特征在于,所述第三化合物的三线态能级小于所述第二化合物的三线态能级;
    所述第二化合物的三线态能级小于所述第一化合物的三线态能级;
    所述第一化合物的三线态能级小于所述电子阻挡层的材料的三线态能级或所述空穴阻挡层的材料的三线态能级。
  7. 根据权利要求5所述的有机电致发光器件,其特征在于,所述第五化合物的三线态能级小于所述第四化合物的三线态能级;
    所述第四化合物的三线态能级小于所述电子阻挡层的材料的三线态能级或所述空穴阻挡层的材料的三线态能级。
  8. 根据权利要求5所述的有机电致发光器件,其特征在于,所述电子阻挡层的材料的LUMO能级绝对值与所述第四化合物的LUMO能级绝对值差小于或等于0.3eV。
  9. 根据权利要求5所述的有机电致发光器件,其特征在于,所述空穴阻挡层的材料的HOMO能级绝对值与所述第三化合物的HOMO能级绝对值差大于0.3eV。
  10. 根据权利要求2所述的有机电致发光器件,其特征在于,所述发光层的厚度小于或等于22纳米;
    所述激子分离层的厚度小于或等于3纳米。
  11. 根据权利要求2所述的有机电致发光器件,其特征在于,所述第一化合物与所述第二化合物的掺杂比例为80%:20%至60%:40%;
    所述第四化合物与所述第五化合物的掺杂比例为80%:20%至60%:40%。
  12. 根据权利要求1或2所述的有机电致发光器件,其特征在于,所述有机电致发光器件还包括:位于所述第二电极背离所述第一电极一侧的光取出层。
  13. 一种显示装置,其特征在于,包括如权利要求1-12任一项所述的有机电致发光器件。
PCT/CN2021/127158 2021-04-27 2021-10-28 有机电致发光器件及显示装置 WO2022227458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110457279.6 2021-04-27
CN202110457279.6A CN113178527A (zh) 2021-04-27 2021-04-27 有机电致发光器件及显示装置

Publications (1)

Publication Number Publication Date
WO2022227458A1 true WO2022227458A1 (zh) 2022-11-03

Family

ID=76926390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127158 WO2022227458A1 (zh) 2021-04-27 2021-10-28 有机电致发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN113178527A (zh)
WO (1) WO2022227458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178527A (zh) * 2021-04-27 2021-07-27 京东方科技集团股份有限公司 有机电致发光器件及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276587A (zh) * 2010-06-03 2011-12-14 三星移动显示器株式会社 杂环化合物、有机发光装置和平板显示器装置
US20150303378A1 (en) * 2014-04-17 2015-10-22 Samsung Electronics Co., Ltd. Compound and organic photoelectronic device and image sensor
CN105409020A (zh) * 2012-05-15 2016-03-16 密歇根大学董事会 用于光伏的基于次甲基二吡咯的材料、能够在极化介质中经历对称性破缺分子内电荷转移的化合物以及包含它们的有机光伏器件
CN111848513A (zh) * 2020-07-28 2020-10-30 武汉大学 热激活延迟荧光材料及其制备方法与应用
CN112047968A (zh) * 2020-09-16 2020-12-08 上海天马有机发光显示技术有限公司 一种有机电致发光化合物及有机电致发光器件
CN113178527A (zh) * 2021-04-27 2021-07-27 京东方科技集团股份有限公司 有机电致发光器件及显示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101641417B1 (ko) * 2013-12-27 2016-07-20 주식회사 두산 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20150129928A (ko) * 2014-05-12 2015-11-23 삼성디스플레이 주식회사 유기 발광 소자
KR102427671B1 (ko) * 2015-09-07 2022-08-02 삼성디스플레이 주식회사 유기 발광 소자
KR102613183B1 (ko) * 2017-02-28 2023-12-14 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
WO2018160022A1 (en) * 2017-02-28 2018-09-07 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent device
CN106972109B (zh) * 2017-04-21 2018-10-12 瑞声科技(南京)有限公司 一种发光器件
CN109671850A (zh) * 2017-10-16 2019-04-23 北京鼎材科技有限公司 一种有机电致发光器件
KR102326304B1 (ko) * 2017-11-30 2021-11-12 엘지디스플레이 주식회사 우수한 발광 특성을 가지는 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기발광장치
KR102505169B1 (ko) * 2017-12-18 2023-02-28 엘지디스플레이 주식회사 유기 화합물, 이를 포함하는 유기발광다이오드 및 유기 발광장치
CN108484576B (zh) * 2018-04-18 2020-07-07 上海天马有机发光显示技术有限公司 一种化合物及制备方法、一种有机发光显示装置
CN109860425B (zh) * 2019-03-12 2021-07-13 江苏三月科技股份有限公司 一种含有覆盖层的有机电致发光装置及用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276587A (zh) * 2010-06-03 2011-12-14 三星移动显示器株式会社 杂环化合物、有机发光装置和平板显示器装置
CN105409020A (zh) * 2012-05-15 2016-03-16 密歇根大学董事会 用于光伏的基于次甲基二吡咯的材料、能够在极化介质中经历对称性破缺分子内电荷转移的化合物以及包含它们的有机光伏器件
US20150303378A1 (en) * 2014-04-17 2015-10-22 Samsung Electronics Co., Ltd. Compound and organic photoelectronic device and image sensor
CN111848513A (zh) * 2020-07-28 2020-10-30 武汉大学 热激活延迟荧光材料及其制备方法与应用
CN112047968A (zh) * 2020-09-16 2020-12-08 上海天马有机发光显示技术有限公司 一种有机电致发光化合物及有机电致发光器件
CN113178527A (zh) * 2021-04-27 2021-07-27 京东方科技集团股份有限公司 有机电致发光器件及显示装置

Also Published As

Publication number Publication date
CN113178527A (zh) 2021-07-27

Similar Documents

Publication Publication Date Title
TWI673894B (zh) 有機電致發光器件
Ye et al. Pyridine‐containing electron‐transport materials for highly efficient blue phosphorescent OLEDs with ultralow operating voltage and reduced efficiency roll‐off
TWI441898B (zh) 有機el元件
KR102445081B1 (ko) 유기전계발광소자
JP6357422B2 (ja) 有機電界発光素子
Komatsu et al. High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter
CN110492005B (zh) 一种以激基复合物作为主体材料的有机电致发光器件
WO2017101657A1 (zh) 一种磷光有机电致发光器件
CN109817818B (zh) 一种有机电致发光器件和显示装置
TW201335333A (zh) 有機電致發光元件及有機電致發光元件用材料
TW201403904A (zh) 有機電激發光元件
CN111029472B (zh) 有机发光二极管以及包括其的有机发光装置
KR20160030429A (ko) 유기 일렉트로루미네센스 소자
Li et al. Highly efficient blue and warm white organic light-emitting diodes with a simplified structure
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
KR20160017596A (ko) 유기 전계 발광 소자
JP2010225563A (ja) 有機el素子
KR20160047297A (ko) 유기 전계 발광 소자
TWI618273B (zh) 有機發光裝置
TW201829738A (zh) 有機電致發光裝置
KR20150077587A (ko) 유기 전계 발광 소자
TW201410650A (zh) 有機電致發光元件
WO2022227458A1 (zh) 有机电致发光器件及显示装置
WO2022078094A1 (zh) 发光器件、显示基板
CN111740020B (zh) 一种高效长寿命的蓝光器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17914337

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/03/2024)