WO2022226812A1 - 一种使用手性辅基制备左旋特布他林的方法 - Google Patents

一种使用手性辅基制备左旋特布他林的方法 Download PDF

Info

Publication number
WO2022226812A1
WO2022226812A1 PCT/CN2021/090369 CN2021090369W WO2022226812A1 WO 2022226812 A1 WO2022226812 A1 WO 2022226812A1 CN 2021090369 W CN2021090369 W CN 2021090369W WO 2022226812 A1 WO2022226812 A1 WO 2022226812A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
terbutaline
added
preparing
tert
Prior art date
Application number
PCT/CN2021/090369
Other languages
English (en)
French (fr)
Inventor
陆红彬
樊超
杨颖栋
Original Assignee
苏州弘森药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州弘森药业股份有限公司 filed Critical 苏州弘森药业股份有限公司
Priority to EP21938298.3A priority Critical patent/EP4332085A1/en
Priority to PCT/CN2021/090369 priority patent/WO2022226812A1/zh
Priority to JP2023558989A priority patent/JP2024514774A/ja
Priority to US18/282,913 priority patent/US20240190807A1/en
Publication of WO2022226812A1 publication Critical patent/WO2022226812A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/20Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated the carbon skeleton being saturated and containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/54Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C217/64Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms
    • C07C217/66Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms with singly-bound oxygen atoms and six-membered aromatic rings bound to the same carbon atom of the carbon chain
    • C07C217/70Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton with amino groups linked to the six-membered aromatic ring, or to the condensed ring system containing that ring, by carbon chains further substituted by singly-bound oxygen atoms with singly-bound oxygen atoms and six-membered aromatic rings bound to the same carbon atom of the carbon chain linked by carbon chains having two carbon atoms between the amino groups and the six-membered aromatic ring or the condensed ring system containing that ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C313/00Sulfinic acids; Sulfenic acids; Halides, esters or anhydrides thereof; Amides of sulfinic or sulfenic acids, i.e. compounds having singly-bound oxygen atoms of sulfinic or sulfenic groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C313/02Sulfinic acids; Derivatives thereof
    • C07C313/06Sulfinamides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/09Geometrical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of medicine, and in particular relates to a chiral preparation method of levterbutaline.
  • Terbutaline is a fast-acting and short-acting ⁇ -adrenoceptor agonist, which can selectively activate ⁇ 2 receptors, relax bronchial smooth muscle, inhibit the release of endogenous spasmolytics and inhibit the release of endogenous transmitters and Edema due to increased mucociliary clearance (Kyeong HK, Hyun JK, Seon-Pyo H., Sang DS, Arch. Pharm. Res. 2000, 23:441-445). Clinically, it is mainly used to treat bronchial asthma, asthmatic bronchitis, emphysema and bronchospasm in chronic obstructive pulmonary disease.
  • Terbutaline has a chiral center of a benzylic secondary alcohol, but the racemates are currently used clinically.
  • the levorotatory body of terbutaline is the active ingredient that exerts its efficacy ( J. Med. Chem. , 1972, 15 , 1182-1183 ), and the dextrorotate body is not only ineffective, but also has toxic and side effects, so the study of levorotatory
  • the preparation method of butaline, and the re-marketing of this levorotatory form has important clinical application value.
  • CN110156614A disclosed that compared with the commercially available racemate, levorotatory ( ⁇ ) terbutaline can double the anti-bacterial effect. Asthma efficacy, providing a new preferred treatment plan for asthma-related diseases.
  • the published preparation methods of L-terbutaline mainly include the following: 1. Splitting method.
  • the use of tartaric acid or tartaric acid derivatives to split racemic terbutaline is the most simple and intuitive method for preparing lev-terbutaline (CN1273966A, CN201810147612.1).
  • this method often requires multiple crystallizations to obtain satisfactory enantiomeric purity.
  • the whole process is complicated to operate, the yield is low, and at least half of the products are discarded, which does not conform to the principles of green chemistry currently advocated.
  • the enzymatic reduction method is a common method for preparing chiral secondary alcohols from latent chiral ketones, but it needs to screen suitable enzyme catalysts and often has disadvantages such as low reduction efficiency (Journal). of Molecular Catalysis B: Enzymatic, 84, (2012), 83–88).
  • chiral ruthenium-catalyzed transfer hydrogenation method achieves asymmetric reduction of 2-chloroacetophenone, and obtains a key intermediate for the synthesis of L-terbutaline (Chem. Pharm. Bull. 65, (2017), 389-395).
  • This kind of method uses expensive precious metals, and the ee of the product is only 91%, which cannot meet the demand.
  • the purpose of the present invention is to provide a method for preparing levoterbutaline; the method is simple and reliable, the preparation cost is low, and the ee of the chiral product is as high as 99.9%.
  • the technical scheme of the present invention is: a method for preparing L-terbutaline by using a chiral prosthetic group, in the presence of a palladium catalyst and hydrochloric acid, hydrogenolysis of compound 7 in an alcohol solvent is performed to obtain L-terbutaline; wherein,
  • the chemical structural formula of compound 7 is as follows.
  • the palladium catalyst is a palladium-carbon catalyst
  • the alcohol solvent is a small molecular alcohol, preferably methanol.
  • compound 7 was dissolved in methanol, palladium-carbon catalyst was added, hydrochloric acid was added dropwise, hydrogenolysis was carried out in normal pressure hydrogen for 1 to 3 hours, palladium-carbon was removed by filtration, the filtrate was distilled under reduced pressure, and the residual solid was crystallized to obtain the product hydrochloric acid Levoterbutaline 8 .
  • Ketones are reduced to chiral alcohols (compound 6 ) under the control of chiral tert-butyl sulfinamide.
  • Compound 5 was dissolved in a solvent, quaternary ammonium salt was added, and sodium borohydride was added in batches within 1 to 2 hours at 0 to 10 °C.
  • the organic solvent refers to one or more of THF, ethanol, methanol, and isopropanol, preferably a mixed solvent of THF and isopropanol;
  • Described quaternary ammonium salt refers to tetrabutylammonium bromide, tetrabutylammonium chloride, tetrapropylammonium bromide, tetraethylammonium bromide or triethylbenzylammonium bromide, preferably tetrabutylammonium bromide ammonium and tetrabutylammonium chloride, more preferably tetrabutylammonium bromide; the reaction is shown below.
  • the present invention has the following advantages compared with the prior art: the present invention uses the commercialized cheap chiral source tert-butyl sulfinamide as the auxiliary group for the first time to control the asymmetric reduction of the ketone, and a small amount of non- The enantiomers are easily removed by crystallization, and the ee of the product is as high as 99.9%; the operation of the whole route is very simple, and the reagents used are cheap, readily available, non-toxic, and very suitable for industrial production.
  • Fig. 1 is the hydrogen nuclear magnetic spectrum of the hydrochloride of R-terbutaline prepared in Example 1.
  • Fig. 2 is the carbon nuclear magnetic spectrum of the hydrochloride of R-terbutaline prepared in Example 1.
  • Figure 3 is the mass spectrum of the hydrochloride of R-terbutaline prepared in Example 1.
  • Figure 4 is the liquid chromatography of the hydrochloride of R-terbutaline prepared in Example 1.
  • Figure 5 shows the liquid chromatogram of the existing racemic terbutaline (Hongsen Pharmaceutical).
  • the specific preparation method and testing method of the present invention are conventional methods, such as testing purity and ee value by conventional liquid chromatography (HPLC+chiral column).
  • HPLC+chiral column HPLC+chiral column
  • the production method of the present invention can be expressed as follows.
  • Example 2 On the basis of Example 1, the mixed solvent of THF (200 mL) and isopropanol (200 mL) was replaced with isopropanol (400 mL), and the rest remained unchanged, and the two-step yield of compound 6 was 60%, Further preparation of R-terbutaline hydrochloride 8 , ee 98.8%.
  • the method provided by the invention uses cheap and easily available chiral tert-butyl sulfinamide as a chiral auxiliary group, controls the asymmetric reduction of ketones to a desired chiral secondary alcohol, and the chiral auxiliary group can be removed under simple acidic conditions .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

一种使用手性辅基制备左旋特布他林的方法,以S-(-)-叔丁基亚磺酰胺为原料,依次与叔丁基溴、3,5-二苄氧基溴代苯乙酮反应,得到化合物5;化合物5在季铵盐催化下,还原反应得到化合物6;化合物6脱除叔丁基亚磺酰基保护得到化合物7,在钯催化剂与盐酸存在下,将化合物7在醇溶剂中氢解,得到左旋特布他林。该方法简单可靠,制备成本低廉,手性产物的ee高达99.9%。

Description

一种使用手性辅基制备左旋特布他林的方法 技术领域
本发明属于医药技术领域,具体涉及左旋特布他林的手性制备方法。
背景技术
特布他林是一种速效短效的β-肾上腺受体激动剂,可选择性激动β2受体, 松弛支气管平滑肌、抑制内源性致痉物的释放并可抑制由内源性递质及粘膜纤毛清除加剧而引起的水肿(Kyeong H. K., Hyun J. K., Seon-Pyo H., Sang D. S., Arch. Pharm. Res. 2000,23:441-445)。临床上主要用于治疗支气管哮喘、哮喘型支气管炎、肺气肿和慢性阻塞性肺部疾病时的支气管痉挛等。特布他林具有一个苄位仲醇的手性中心,但是目前临床使用的都是消旋体。研究表明,特布他林的左旋体才是发挥药效的有效成分( J. Med. Chem., 1972, 15, 1182-1183),右旋体不仅无效,而且还有毒副作用,所以研究左旋特布他林的制备方法,并对这种左旋体进行重新上市,具有重要的临床应用价值,比如CN110156614A公开了左旋(‑)特布他林与市售消旋体相比,可以成倍提高抗哮喘药效,为哮喘相关疾病提供一种新的优选治疗方案。
已经公布的左旋特布他林的制备方法主要有以下几种:一,拆分法。使用酒石酸或者酒石酸衍生物对消旋的特布他林进行拆分是最简单直观的制备左旋特布他林的方法(CN1273966A,CN201810147612.1)。但是这种方法往往需要多次结晶才能得到满意的对映体纯度,整个过程操作复杂,收率低,而且至少有一半的产物被废弃,不符合目前倡导的绿色化学的原则。
二,酶法。酶还原方法是由潜手性酮制备手性仲醇的常用方法,但是需要筛选合适的酶类催化剂,而且经常存在还原效率低等缺点(Journal of Molecular Catalysis B: Enzymatic, 84, (2012), 83–88)。
三,硼烷在手性硼催化剂(Corey-Bakshi-Shibata催化剂或者类似物)作用下对潜手性酮的还原,存在硼烷的毒性和后处理困难的缺点,难以实现工业化生产。
四,手性钌催化的转移氢化法实现2-氯苯乙酮的不对称还原,得到合成左旋特布他林的关键中间体(Chem. Pharm. Bull. 65, (2017), 389-395)。这类方法用到了价格较高的贵金属,而且产物的ee只有91%,不能满足需求。
现有技术存在种种缺点,因此研发新的操作简单、高效、低成本的方法来制备左旋特布他林具有重要意义。
技术问题
本发明的目的是提供一种制备左旋特布他林的方法;本方法简单可靠,制备成本低廉,手性产物的ee高达99.9%。
技术解决方案
本发明的技术方案是:一种使用手性辅基制备左旋特布他林的方法,在钯催化剂与盐酸存在下,将化合物7在醇溶剂中氢解,得到左旋特布他林;其中,化合物7的化学结构式如下。
Figure 511269dest_path_image001
左旋特布他林的化学结构式如下:
Figure 36928dest_path_image002
上述技术方案中,钯催化剂为钯碳催化剂;醇溶剂为小分子醇,优选甲醇。具体的,把化合物 7溶于甲醇中,加入钯碳催化剂,滴入盐酸,在常压氢气中氢解1~3小时,过滤除去钯碳,滤液减压蒸馏,残余固体经结晶,得到产物盐酸左旋特布他林 8
本发明中,以S-(-)-叔丁基亚磺酰胺为原料,依次与叔丁基溴、3,5-二苄氧基溴代苯乙酮反应,得到化合物 5;化合物 5在季铵盐催化下,还原反应得到化合物 6;化合物 6脱除叔丁基亚磺酰基保护得到中间体 7。具体步骤以及化合物结构式如下:(1)制备叔丁基亚磺酰胺取代的苯乙酮中间体(化合物 5)。把S-(-)-叔丁基亚磺酰胺 1溶于有机溶剂中,加入碱,然后滴入叔丁基溴,0~60℃反应2~5小时,然后加入3,5-二苄氧基溴代苯乙酮 4,继续在30~80℃反应2~8小时;反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应;所述有机溶剂是指乙腈、THF、DMF、丙酮、甲苯或者乙酸乙酯,优选乙腈、THF和DMF,更优选乙腈;所述碱是指碳酸钾、碳酸钠、氢氧化钠、氢氧化钾、磷酸钾、氟化钾、氢化钠或者叔丁醇钾,优选碳酸钾和碳酸钠,更优选碳酸钾;反应示意如下。
Figure 850164dest_path_image003
(2)手性叔丁基亚磺酰胺控制下酮被还原为手性醇(化合物 6)。把化合物 5溶于溶剂,加入季铵盐,然后在0~10℃下1~2小时内分批加入硼氢化钠,加完后继续搅拌1小时,再加入氯化铵水溶液淬灭,萃取,干燥,减压蒸馏,残余固体用乙醇结晶,得到化合物 6;所述有机溶剂是指THF、乙醇、甲醇、异丙醇中的一种或几种,优选THF和异丙醇的混合溶剂;所述的季铵盐是指四丁基溴化铵、四丁基氯化铵、四丙基溴化铵、四乙基溴化铵或者三乙基苄基溴化铵,优选四丁基溴化铵和四丁基氯化铵,更优选四丁基溴化铵;反应示意如下。
Figure 348141dest_path_image004
(3)脱除叔丁基亚磺酰基保护得到中间体(化合物 7)。把化合物 6溶于甲醇中,加入浓盐酸,0~60℃反应2~5小时,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液,用有机溶剂萃取,干燥,减压蒸馏,得到化合物 7,直接用于下步反应。反应示意如下。
Figure 791892dest_path_image005
(4)脱除苄基保护得到目标产物左旋特布他林。把化合物7溶于甲醇中,加入钯碳催化剂,滴入盐酸,在常压氢气中氢解1~3小时,过滤除去钯碳,滤液减压蒸馏,残余固体经结晶,得到R-盐酸特布他林 8。反应示意如下。
Figure 476951dest_path_image006
有益效果
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明首次使用商品化的便宜的手性源叔丁基亚磺酰胺为辅基来控制酮的不对称还原,少量的非对映异构体很容易通过结晶除去,产物的ee高达99.9%;整个路线的操作非常简单,所用试剂都便宜易得、无毒害,非常适用于工业化生产。
附图说明
图1为实施例一制备的R-特布他林的盐酸盐的核磁氢谱。
图2为实施例一制备的R-特布他林的盐酸盐的核磁碳谱。
图3为实施例一制备的R-特布他林的盐酸盐的质谱。
图4为实施例一制备的R-特布他林的盐酸盐的液相色谱。
图5为现有消旋特布他林(弘森药业)的液相色谱。
本发明的实施方式
本发明具体的制备方法与测试方法为常规方法,比如通过常规液相色谱(HPLC+手性柱)测试纯度与ee值。下面结合实施例对本发明作进一步描述。
本发明的制备方法可以表示如下。
Figure 359457dest_path_image007
实施例一。
S-(-)-叔丁基亚磺酰胺 1(14.8 g, 110 mmol)溶于乙腈(300 mL)中,加入碳酸钾(18.0 g, 130 mmol),然后滴入叔丁基溴(17.8 g, 130 mmol),再加热到50℃反应4小时,然后加入3,5-二苄氧基溴代苯乙酮 4(41.1 g, 100 mmol),然后在60℃反应6小时。反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应。
把上述得到的化合物 5溶于THF(200 mL)和异丙醇(200 mL)的混合溶剂中,加入四丁基溴化铵(3.22 g, 10 mmol),把反应体系冷至0℃,然后在1.5小时内分三批均匀加入硼氢化钠(3.02 g, 80 mmol),加完后继续在0℃搅拌1小时,加入氯化铵水溶液(50 mL)淬灭,用乙酸乙酯萃取,萃取液合并,硫酸钠干燥,减压蒸馏,残余固体用乙醇(90 mL)结晶,得到化合物 6白色固体37.1 g,两步收率71%。
把化合物 6(26.1 g, 50 mmol)溶于甲醇(150 mL)中,加入浓盐酸(12.5 mL,37.5wt%),50℃反应3小时,反应结束后,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液(80 mL),用乙酸乙酯萃取三次,合并有机层,硫酸钠干燥,减压蒸馏除去溶剂,得到化合物 7,直接用于下步反应。
把以上得到的化合物 7溶于甲醇(200 mL)中,加入10wt%的钯碳催化剂(2.0 g),滴入2 mol/L的氯化氢甲醇溶液(25 mL),然后在常压氢气中氢解2小时,然后过滤除去钯碳,滤液经过常规减压蒸馏除去溶剂,残余固体用四氢呋喃(100 mL)结晶,得到R-特布他林的盐酸盐 8共11.7 g,两步收率85%,纯度99.7%,ee 99.9%,旋光值 [α] D 20 = -39.2 (c = 1.0 in MeOH)。
实施例二。
在实施例一的基础上,碳酸钾(18.0 g, 130 mmol)更换为碳酸钠(130 mmol),其余不变,得到R-特布他林的盐酸盐 8,纯度99.6%,ee 99.7%。
在实施例一的基础上,四丁基溴化铵(3.22 g, 10 mmol)更换为四丁基氯化铵(10 mmol),其余不变,得到R-特布他林的盐酸盐 8 纯度99.5%,ee 99.1%。
在实施例一的基础上,异丙醇(200 mL)更换为乙醇(200 mL),其余不变,得到R-特布他林的盐酸盐 8,纯度99.1%,ee 99.2%。
对比例一。
在实施例一的基础上,省略四丁基溴化铵,其余不变,得到化合物6的两步收率为55%,进一步制备得到R-特布他林的盐酸盐 8,ee 95.2%。
在实施例一的基础上,THF(200 mL)和异丙醇(200 mL)的混合溶剂更换为异丙醇(400 mL),其余不变,得到化合物6的两步收率为60%,进一步制备R-特布他林的盐酸盐 8,ee 98.8%。
在实施例一的基础上,将硼氢化钠(3.02 g, 80 mmol)更换为硼氢化钾(80 mmol),其余不变,得到化合物6的两步收率为59%,进一步制备R-特布他林的盐酸盐 8,ee 98.3%。
实施例三。
S-(-)-叔丁基亚磺酰胺 1(14.8 g, 110 mmol)溶于乙腈(300 mL)中,加入碳酸钾(18.0 g, 130 mmol),然后滴入叔丁基溴(17.8 g, 130 mmol),再加热到40℃反应3小时,然后加入3,5-二苄氧基溴代苯乙酮 4(41.1 g, 100 mmol),然后在60℃反应6小时。反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应。
把上述得到的化合物 5溶于THF(200 mL)和异丙醇(200 mL)的混合溶剂中,加入四丁基溴化铵(3.22 g, 10 mmol),把反应体系冷至0℃,然后在1.5小时内分三批均匀加入硼氢化钠 (3.02 g, 80 mmol),加完后继续在0℃搅拌1小时,加入氯化铵水溶液(50 mL)淬灭,用乙酸乙酯萃取,萃取液合并,硫酸钠干燥,减压蒸馏,残余固体用乙醇(90 mL)结晶,得到白色固体化合物 6
把化合物 6(26.1 g, 50 mmol)溶于甲醇(150 mL)中,加入浓盐酸(12.5 mL,37.5wt%),50℃反应3小时,反应结束后,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液(80 mL),用乙酸乙酯萃取三次,合并有机层,硫酸钠干燥,减压蒸馏除去溶剂,得到化合物 7,直接用于下步反应。
把以上得到的化合物 7溶于甲醇(200 mL)中,加入10wt%的钯碳催化剂(2.0 g),滴入2 mol/L的氯化氢甲醇溶液(25 mL),然后在常压氢气中氢解2小时,然后过滤除去钯碳,滤液经过常规减压蒸馏除去溶剂,残余固体用四氢呋喃(100 mL)结晶,得到R-特布他林的盐酸盐 8
实施例四。
S-(-)-叔丁基亚磺酰胺 1(14.8 g, 110 mmol)溶于乙腈(300 mL)中,加入碳酸钾(18.0 g, 130 mmol),然后滴入叔丁基溴(17.8 g, 130 mmol),再加热到50℃反应4小时,然后加入3,5-二苄氧基溴代苯乙酮 4(41.1 g, 100 mmol),然后在60℃反应6小时。反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应。
把上述得到的化合物 5溶于THF(200 mL)和异丙醇(200 mL)的混合溶剂中,加入四丁基溴化铵(3.22 g, 10 mmol),把反应体系冷至5℃,然后在1小时内分两批均匀加入硼氢化钠 (3.02 g, 80 mmol),加完后在0℃搅拌1小时,加入氯化铵水溶液(50 mL)淬灭,用乙酸乙酯萃取,萃取液合并,硫酸钠干燥,减压蒸馏,残余固体用乙醇(90 mL)结晶,得到白色固体化合物 6
把化合物 6(26.1 g, 50 mmol)溶于甲醇(150 mL)中,加入浓盐酸(12.5 mL,37.5wt%),50℃反应3小时,反应结束后,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液(80 mL),用乙酸乙酯萃取三次,合并有机层,硫酸钠干燥,减压蒸馏除去溶剂,得到化合物 7,直接用于下步反应。
把以上得到的化合物 7溶于甲醇(200 mL)中,加入10wt%的钯碳催化剂(2.0 g),滴入2 mol/L的氯化氢甲醇溶液(25 mL),然后在常压氢气中氢解2小时,然后过滤除去钯碳,滤液经过常规减压蒸馏除去溶剂,残余固体用四氢呋喃(100 mL)结晶,得到R-特布他林的盐酸盐 8
实施例五。
S-(-)-叔丁基亚磺酰胺 1(14.8 g, 110 mmol)溶于乙腈(300 mL)中,加入碳酸钾(18.0 g, 130 mmol),然后滴入叔丁基溴(17.8 g, 130 mmol),再加热到50℃反应4小时,然后加入3,5-二苄氧基溴代苯乙酮 4(41.1 g, 100 mmol),然后在60℃反应6小时。反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应。
把上述得到的化合物 5溶于THF(200 mL)和异丙醇(200 mL)的混合溶剂中,加入四丁基溴化铵(3.22 g, 10 mmol),把反应体系冷至0℃,然后在1.5小时内分三批均匀加入硼氢化钠(3.02 g, 80 mmol),加完后继续在0℃搅拌1小时,加入氯化铵水溶液(50 mL)淬灭,用乙酸乙酯萃取,萃取液合并,硫酸钠干燥,减压蒸馏,残余固体用乙醇(90 mL)结晶,得到白色固体化合物 6
把化合物 6(26.1 g, 50 mmol)溶于甲醇(150 mL)中,加入浓盐酸(12.5 mL,37.5wt%),50℃反应4小时,反应结束后,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液(80 mL),用乙酸乙酯萃取三次,合并有机层,硫酸钠干燥,减压蒸馏除去溶剂,得到化合物 7,直接用于下步反应。
把以上得到的化合物 7溶于甲醇(200 mL)中,加入10wt%的钯碳催化剂(2.0 g),滴入2 mol/L的氯化氢甲醇溶液(25 mL),然后在常压氢气中氢解2小时,然后过滤除去钯碳,滤液经过常规减压蒸馏除去溶剂,残余固体用四氢呋喃(100 mL)结晶,得到R-特布他林的盐酸盐 8
实施例六。
S-(-)-叔丁基亚磺酰胺 1(14.8 g, 110 mmol)溶于乙腈(300 mL)中,加入碳酸钾(18.0 g, 130 mmol),然后滴入叔丁基溴(17.8 g, 130 mmol),再加热到50℃反应4小时,然后加入3,5-二苄氧基溴代苯乙酮 4(41.1 g, 100 mmol),然后在60℃反应6小时。反应结束后,过滤除去固体物质,然后减压蒸馏除去溶剂,得到化合物 5,直接用于下步反应。
把上述得到的化合物 5溶于THF(200 mL)和异丙醇(200 mL)的混合溶剂中,加入四丁基溴化铵(3.22 g, 10 mmol),把反应体系冷至0℃,然后在1.5小时内分三批均匀加入硼氢化钠(3.02 g, 80 mmol),加完后继续在0℃搅拌1小时,加入氯化铵水溶液(50 mL)淬灭,用乙酸乙酯萃取,萃取液合并,硫酸钠干燥,减压蒸馏,残余固体用乙醇(90 mL)结晶,得到白色固体化合物 6
把化合物 6(26.1 g, 50 mmol)溶于甲醇(150 mL)中,加入浓盐酸(12.5 mL,37.5wt%),50℃反应3小时,反应结束后,减压蒸馏除去溶剂,残余物加入碳酸氢钠饱和溶液(80 mL),用乙酸乙酯萃取三次,合并有机层,硫酸钠干燥,减压蒸馏除去溶剂,得到化合物 7,直接用于下步反应。
把以上得到的化合物 7溶于甲醇(200 mL)中,加入10wt%的钯碳催化剂(2.0 g),滴入2 mol/L的氯化氢甲醇溶液(25 mL),然后在常压氢气中氢解2.5小时,然后过滤除去钯碳,滤液经过常规减压蒸馏除去溶剂,残余固体用四氢呋喃(100 mL)结晶,得到R-特布他林的盐酸盐 8
本发明提供的方法是以廉价易得的手性叔丁基亚磺酰胺为手性辅基,控制酮不对称还原成所需的手性仲醇,手性辅基可以在简单酸性条件下除去。

Claims (10)

  1. 一种使用手性辅基制备左旋特布他林的方法,其特征在于,在钯催化剂与盐酸存在下,将化合物7在醇溶剂中氢解,得到左旋特布他林;其中,化合物7的化学结构式如下:
    Figure 291162dest_path_image001
    左旋特布他林的化学结构式如下:
    Figure 455428dest_path_image002
  2. 根据权利要求1所述使用手性辅基制备左旋特布他林的方法,其特征在于,以S-(-)-叔丁基亚磺酰胺为原料,依次与叔丁基溴、3,5-二苄氧基溴代苯乙酮反应,得到化合物5;化合物5在季铵盐催化下,还原反应得到化合物6;化合物6脱除叔丁基亚磺酰基保护得到化合物7;
    其中,化合物5的化学结构式如下:
    Figure 369157dest_path_image003
    化合物6的化学结构式如下:
    Figure 378701dest_path_image004
  3. 根据权利要求2所述使用手性辅基制备左旋特布他林的方法,其特征在于,把S-(-)-叔丁基亚磺酰胺溶于有机溶剂中,加入碱,然后滴入叔丁基溴,0~60℃反应2~5小时,然后加入3,5-二苄氧基溴代苯乙酮,继续在30~80℃反应2~8小时,得到化合物5。
  4. 根据权利要求2所述使用手性辅基制备左旋特布他林的方法,其特征在于,把化合物5溶于溶剂,加入季铵盐,然后在0~10℃下加入硼氢化钠,还原反应得到化合物6。
  5. 根据权利要求2所述使用手性辅基制备左旋特布他林的方法,其特征在于,把化合物6溶于醇溶剂中,加入浓盐酸,0~60℃反应2~5小时,得到化合物7。
  6. 根据权利要求1所述使用手性辅基制备左旋特布他林的方法,其特征在于,钯催化剂为无机钯催化剂;醇溶剂为小分子醇。
  7. 根据权利要求6所述使用手性辅基制备左旋特布他林的方法,其特征在于,钯催化剂为钯碳催化剂;醇溶剂为甲醇。
  8. 根据权利要求1所述使用手性辅基制备左旋特布他林的方法,其特征在于,把化合物 7溶于醇溶剂中,加入钯催化剂,滴入盐酸,在常压氢气中氢解1~3小时,得到产物左旋特布他林。
  9. S-(-)-叔丁基亚磺酰胺在制备左旋特布他林中的应用。
  10. 用于制备左旋特布林的化合物,其特征在于,具有如下化学结构式:
     
    Figure 22172dest_path_image005
PCT/CN2021/090369 2021-04-27 2021-04-27 一种使用手性辅基制备左旋特布他林的方法 WO2022226812A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21938298.3A EP4332085A1 (en) 2021-04-27 2021-04-27 Method for preparing l-terbutaline by using chiral auxiliary group
PCT/CN2021/090369 WO2022226812A1 (zh) 2021-04-27 2021-04-27 一种使用手性辅基制备左旋特布他林的方法
JP2023558989A JP2024514774A (ja) 2021-04-27 2021-04-27 不斉補助剤を使用してレボテルブタリンを調製する方法
US18/282,913 US20240190807A1 (en) 2021-04-27 2021-04-27 A method for preparing r-terbutaline using chiral auxiliary groups

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/090369 WO2022226812A1 (zh) 2021-04-27 2021-04-27 一种使用手性辅基制备左旋特布他林的方法

Publications (1)

Publication Number Publication Date
WO2022226812A1 true WO2022226812A1 (zh) 2022-11-03

Family

ID=83847702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090369 WO2022226812A1 (zh) 2021-04-27 2021-04-27 一种使用手性辅基制备左旋特布他林的方法

Country Status (4)

Country Link
US (1) US20240190807A1 (zh)
EP (1) EP4332085A1 (zh)
JP (1) JP2024514774A (zh)
WO (1) WO2022226812A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273966A (zh) 1999-10-19 2000-11-22 中国科学院成都有机化学研究所 光学纯的肾上腺素类β-激动剂的组合拆分制备法
CN105330553A (zh) * 2015-12-02 2016-02-17 湖南理工学院 一种采用疏水性相转移手性萃取分离特布他林对映体的方法
CN106631831A (zh) * 2015-10-29 2017-05-10 北京盈科瑞药物研究院有限公司 一种左旋特布他林的制备方法
CN108129367A (zh) * 2018-02-05 2018-06-08 南开大学 一种构建手性亚磺酰亚胺α位手性四级碳的构建方法及其产品与应用
CN110156614A (zh) 2018-02-13 2019-08-23 东莞市凯法生物医药有限公司 一种左旋(-)特布他林的制备方法及其抗哮喘的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1273966A (zh) 1999-10-19 2000-11-22 中国科学院成都有机化学研究所 光学纯的肾上腺素类β-激动剂的组合拆分制备法
CN106631831A (zh) * 2015-10-29 2017-05-10 北京盈科瑞药物研究院有限公司 一种左旋特布他林的制备方法
CN105330553A (zh) * 2015-12-02 2016-02-17 湖南理工学院 一种采用疏水性相转移手性萃取分离特布他林对映体的方法
CN108129367A (zh) * 2018-02-05 2018-06-08 南开大学 一种构建手性亚磺酰亚胺α位手性四级碳的构建方法及其产品与应用
CN110156614A (zh) 2018-02-13 2019-08-23 东莞市凯法生物医药有限公司 一种左旋(-)特布他林的制备方法及其抗哮喘的应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CHEM. PHARM. BULL., vol. 65, 2017, pages 389 - 395
J. MED. CHEM., vol. 15, 1972, pages 1182 - 1183
JOURNAL OF MOLECULAR CATALYSIS B, vol. 84, 2012, pages 83 - 88
KYEONG H. K.HYUN J. K.SEON-PYO H.SANG D. S., ARCH. PHARM. RES., vol. 23, 2000, pages 441 - 445
LIAO JIAN, PENG XIAOHUA, ZHANG JUHUA, YU KAIBEI, CUI XIN, ZHU JIN, DENG JINGEN: "Facile resolution of racemic terbutaline and a study of molecular recognition through chiral supramolecules based on enantiodifferentiating self-assembly", ORG.BIOMOL.CHEM., 20 February 2003 (2003-02-20), XP055980446, Retrieved from the Internet <URL:https://pubs.rsc.org/en/content/articlepdf/2003/ob/b211327a> [retrieved on 20221111] *
UCHIMOTO HITOMI, IKEDA MIKI, TANIDA SAORI, OHHASHI KAYO, CHIHARA YOSHIKO, SHIGETA TAKASHI, ARIMITSU KENJI, YAMASHITA MASAYUKI, NIS: "Green Synthesis of (<i>R</i>)-Terbutaline for Recyclable Catalytic Asymmetric Transfer Hydrogenation in Ionic Liquids", CHEMICAL AND PHARMACEUTICAL BULLETIN, PHARMACEUTICAL SOCIETY OF JAPAN, JP, vol. 65, no. 4, 1 January 2017 (2017-01-01), JP , pages 389 - 395, XP055980448, ISSN: 0009-2363, DOI: 10.1248/cpb.c16-00949 *

Also Published As

Publication number Publication date
US20240190807A1 (en) 2024-06-13
JP2024514774A (ja) 2024-04-03
EP4332085A1 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
EP2484673B1 (en) A process for the resolution of (R,S)-nicotine
KR100812046B1 (ko) 1-(2s,3s)-2-벤즈히드릴-n-(5-삼급-부틸-2-메톡시벤질)퀴누클리딘-3-아민의 제조 방법
JPH11505229A (ja) 4−アリール−ピペリジン誘導体を製造する方法
US20130096346A1 (en) Resolution methods for isolating desired enantiomers of tapentadol intermediates and use thereof for the preparation of tapentadol
CN112062767A (zh) 一种卢美哌隆的制备方法及其中间体
CN106631831B (zh) 一种左旋特布他林的制备方法
WO2006074479A1 (en) Process for preparing tolterodine tartrate
EP2094693B1 (en) A method for the preparation of solifenacin
WO2022226812A1 (zh) 一种使用手性辅基制备左旋特布他林的方法
WO2002068376A1 (en) Process for the preparation of rasagiline and its salts
CN113264839B (zh) 一种使用手性辅基制备左旋特布他林的方法
WO2014034957A1 (ja) (r)-1,1,3-トリメチル-4-アミノインダンの製造方法
US20120259121A1 (en) Process for the preparation of montelukast and salts thereof
EP1074539B1 (en) Process for producing optically active 3,3,3,-trifluoro-2-hydroxy-2-methylpropionic acid, and salt thereof
CN111944855B (zh) 一种合成(r)-1-(4-(苄氧基)-3-硝基苯基)-2-溴乙醇的方法
MXPA02007594A (es) Procedimiento para la separacion enzimatica de racematos de derivados de aminometil-aril-ciclohexanol.
MX2012009920A (es) Proceso para la obtencion de los enantiomeros del praziquantel y sus derivados 4´-hidroxilados.
EP2545028A1 (en) A novel stereospecific synthesis of (-) (2s,3s)-1-dimethylamino-3-(3-methoxyphenyl)-2-methyl pentan-3-ol
JP2009507783A (ja) 高光学純度を有するキラル3−ヒドロキシピロリジン化合物及びその誘導体の製造方法
WO2005121066A1 (fr) Procede de preparation de (1r, 2s)-(x)-ephedrine ou d&#39;un hydrochlorure de cette derniere
EP2099740B1 (en) A process for the preparation of optically pure r (-) salbutamol and its pharmaceutically acceptable salts
JP4350530B2 (ja) 光学活性3,3,3−トリフルオロ−2−ヒドロキシプロピオン酸誘導体の製造方法
CN114409552A (zh) 一种盐酸左旋沙丁胺醇的制备方法
JP2018507178A (ja) ジペプチジルペプチダーゼ−4(dpp−4)酵素阻害剤の調製のための新規プロセス
KR20230096576A (ko) 광학활성 3-디메틸아미노-3-페닐-1-프로판올 및 이를 이용한 다폭세틴 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282913

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023558989

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2021938298

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021938298

Country of ref document: EP

Effective date: 20231127