WO2022224926A1 - 透明なゴム変性スチレン系樹脂組成物 - Google Patents

透明なゴム変性スチレン系樹脂組成物 Download PDF

Info

Publication number
WO2022224926A1
WO2022224926A1 PCT/JP2022/018013 JP2022018013W WO2022224926A1 WO 2022224926 A1 WO2022224926 A1 WO 2022224926A1 JP 2022018013 W JP2022018013 W JP 2022018013W WO 2022224926 A1 WO2022224926 A1 WO 2022224926A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
resin composition
styrene
styrenic resin
modified styrenic
Prior art date
Application number
PCT/JP2022/018013
Other languages
English (en)
French (fr)
Inventor
広平 西野
亘 渡辺
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280027974.1A priority Critical patent/CN117120492A/zh
Priority to KR1020237039821A priority patent/KR20230170784A/ko
Publication of WO2022224926A1 publication Critical patent/WO2022224926A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/006Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to block copolymers containing at least one sequence of polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a rubber-modified styrenic resin composition containing a continuous phase containing a styrenic copolymer and dispersed particles containing a rubber-like polymer.
  • High impact polystyrene one of the rubber-modified styrenic resin compositions with excellent impact resistance, is obtained by graft copolymerizing styrene monomers in the presence of polybutadiene. It is opaque due to the refractive index difference of the dispersed particles it contains.
  • a styrene-butadiene rubber obtained by copolymerizing (meth)acrylic acid ester-based monomer units is used in the continuous phase and styrene is used in the dispersed particles to obtain a transparent material.
  • a rubber-modified styrenic resin composition is obtained, and it is used in a wide range of fields because it has various properties such as transparency, impact resistance, and rigidity. Due to its excellent moldability, molded articles are often produced by injection molding, but there was a problem with surface impact strength, which is related to practical strength.
  • An object of the present invention is to provide a rubber-modified styrenic resin composition that is excellent in transparency, surface impact strength and Charpy impact strength.
  • a rubber-modified styrenic resin composition containing a continuous phase containing a styrenic copolymer and dispersed particles containing a rubber-like polymer, wherein the styrenic copolymer is styrene and one or more (meth)acrylic ester-based monomer units, and the rubber-modified styrenic resin composition has a graft ratio of 2.12 to 2.40;
  • a rubber-modified styrenic resin composition is provided in which the rubber-like polymer has a hydrogenation rate of less than 7 mol %.
  • the styrene copolymer has 35 to 75% by mass of the styrene monomer unit and 25 to 65% by mass of the (meth)acrylic acid ester monomer unit, (1)
  • the rubber-modified styrenic resin composition according to any one of (5).
  • the rubber-modified styrenic resin composition of the present invention is excellent in transparency, surface impact strength and Charpy impact strength, so that molded articles with high appearance and practical strength can be obtained. In addition, because of its excellent fluidity, it is particularly suitable for injection molding applications.
  • the resin composition of the present invention is a rubber-modified styrenic resin composition containing a continuous phase containing a styrenic copolymer and dispersed particles containing a rubber-like polymer, wherein the styrenic copolymer is It is a transparent rubber-modified styrenic resin composition having styrenic monomer units and one or more (meth)acrylic acid ester-based monomer units.
  • a styrene-based monomer unit is a unit derived from a styrene-based monomer used for polymerization.
  • Styrenic monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl -p-methylstyrene and the like.
  • styrene is preferred.
  • the styrene-based monomer units may be used alone or in combination of two or more.
  • the (meth)acrylic acid ester-based monomer unit is a unit derived from the (meth)acrylic acid ester-based monomer used for polymerization.
  • (Meth) acrylic ester-based monomers include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (meth) acrylate, methyl acrylate, ethyl Acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate and decyl acrylate may be used alone or in mixtures of two or more.
  • methyl (meth)acrylate As the main component, it is preferable that methyl (meth)acrylate and n-butyl acrylate are included as (meth)acrylic acid ester-based monomer units.
  • the styrenic copolymer constituting the continuous phase is a copolymer having styrenic monomer units and one or more (meth)acrylic acid ester monomer units.
  • the styrene-based copolymer is mainly composed of styrene-based monomer units and contains one or more (meth)acrylic acid ester-based monomer units, but two or more (meth)acrylic acid ester-based monomer units It is preferable to contain a unit, and the fluidity of the rubber-modified resin composition can be improved by using a component having excellent heat resistance and a component having excellent fluidity in combination. For example, there is a styrene-methyl (meth)acrylate-butyl acrylate copolymer.
  • the rubber-like polymer exhibits rubber-like properties at room temperature, and examples thereof include those having a butadiene component such as polybutadiene and styrene-butadiene rubber-based copolymers.
  • a butadiene component such as polybutadiene and styrene-butadiene rubber-based copolymers.
  • styrene-butadiene rubber or styrene- It is a styrene-butadiene rubber copolymer having styrene monomer units and butadiene monomer units such as butadiene block rubber (block copolymer).
  • the content of styrene monomer units in the styrene-butadiene rubber copolymer is preferably 10 to 50% by mass, more preferably 30 to 45% by mass.
  • the content of styrene monomer units in the styrene-butadiene rubber-based copolymer is specifically, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50% by mass. It may be in a range between any two of the numbers given.
  • some of the unsaturated units such as butadiene monomer units contained in the rubber-like polymer may be hydrogenated, but the proportion of hydrogenated units among the unsaturated units contained (hydrogen addition rate) is less than 7 mol %, preferably 5 mol % or less, more preferably 1 mol % or less.
  • a rubber-modified styrene-based resin composition is obtained by graft copolymerizing a styrene-based monomer and a (meth)acrylic acid ester-based monomer in the presence of a rubber-like polymer.
  • a graft copolymerization method a method used in the production of high impact polystyrene (HIPS) can be used.
  • HIPS high impact polystyrene
  • the production of HIPS is often carried out by a continuous polymerization method. It is continuously supplied to the reactor to carry out graft copolymerization. After undergoing phase inversion in which dispersed particles are formed as the polymerization progresses, the polymerization reaction is further advanced.
  • the polymerized solution coming out of the reactor is supplied to the devolatilization step to remove the unreacted monomers and the polymerization solvent and at the same time promote cross-linking of the rubber-like polymer constituting the dispersed particles.
  • the type of reactor include a complete mixing tank reactor, a tower reactor having a plug flow property, and a loop reactor from which a part of the polymerization solution is withdrawn while the polymerization is progressing. There is no particular restriction on the order of arrangement of these reactors.
  • the devolatilization process consists of a vacuum devolatilization tank with a heater and a devolatilization extruder with a vent. The molten resin that has exited the devolatilization step is transferred to the granulation step.
  • the molten resin is extruded in strands from a multi-hole die and processed into pellets by a cold cut method, an air hot cut method, or an underwater hot cut method.
  • One or more polymerization reactors are arranged in series, but in the case of one, it may be singular, and in the case of two or more, at least two are arranged in series (in series).
  • a polymerization solvent, polymerization initiator, and chain transfer agent can be used to control the polymerization reaction.
  • the polymerization solvent is used to adjust the polymerization rate, adjust the molecular weight, and reduce the viscosity of the polymerization solution. Examples include alkylbenzenes such as benzene, toluene, ethylbenzene and xylene; and aliphatic hydrocarbons such as cyclohexane can be used.
  • the amount of the polymerization solvent used is not particularly limited, but it is usually preferably 1 to 50% by mass, more preferably 3 to 25% by mass, as the composition in the polymerization reactor. preferable. If it exceeds 50% by mass, the productivity may be remarkably lowered, or the molecular weight of the rubber-modified styrenic resin composition may be excessively lowered.
  • the polymerization initiator is preferably a radical polymerization initiator, such as known and commonly used 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(t-butylperoxy)butane, 2,2-di (4,4-di-t-butylperoxycyclohexyl)propane, 1,1-di(t-amylperoxy)cyclohexane and other peroxyketals, cumene hydroperoxide, t-butyl hydroperoxide and other hydro Peroxides, t-butyl peroxyacetate, alkyl peroxides such as t-amyl peroxy isononanoate, t-butyl cumyl peroxide, di-t-butyl peroxide, dicumyl peroxide, di-t- Dialkyl peroxides such as hexyl peroxide, peroxyesters such as t-butyl peroxyacetate, t-
  • the rubber-modified styrenic resin composition has a graft ratio of 2.12 to 2.40, preferably 2.15 to 2.35. If the graft ratio is less than 2.12, the surface impact strength and transparency may be poor, and if it exceeds 2.40, the Charpy impact strength may be lowered.
  • the graft rate is, for example, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.25, 2.30, 2.35, 2.40, and may be in the range between any two of the numbers exemplified here.
  • Components other than rubber include a component such as styrene bound to rubber, a grafted styrene copolymer, an encapsulated styrene copolymer, and the like.
  • the grafting ratio can be adjusted by the composition of the rubber-like polymer used, the content of 1,2-vinyl bonds, the type and amount of polymerization initiator added at the beginning, the type of reactor for forming rubber particles, and the like. However, it can also be adjusted by the type and amount of the polymerization initiator added to the polymerization solution after phase inversion.
  • the gel content represents the content of dispersed particles.
  • 1 g of the rubber-modified styrenic resin composition was precisely weighed (mass W), dissolved by adding 35 ml of a 50% methyl ethyl ketone/50% acetone mixed solution, and the solution was centrifuged. In a separator (Kokusan H-2000B (rotor: H)), centrifuge at 14000 rpm for 30 minutes to precipitate insoluble matter, remove the supernatant by decantation to obtain insoluble matter, and place in a safety oven. Pre-dry at 90 ° C. for 2 hours, further vacuum dry at 120 ° C.
  • the rubber content is calculated as a butadiene component (butadiene monomer units).
  • a butadiene component butadiene monomer units.
  • the content of the butadiene component can be determined from the amount of iodine monochloride obtained.
  • the swelling ratio SR of the rubber-modified styrenic resin composition is preferably 8-12.
  • the swelling ratio represents the degree of cross-linking of the dispersed particles. If it is less than 8, the impact resistance may deteriorate, and if it exceeds 12, the appearance may deteriorate.
  • the swelling ratio SR was obtained by precisely weighing 1 g of rubber-modified styrene resin, adding 30 ml of toluene to dissolve the resin, and centrifuging the solution (H-2000B manufactured by Kokusan Co., Ltd. (rotor: H)) at 14000 rpm for 30 minutes.
  • the particle size of the dispersed particles containing the rubber-like polymer is preferably 0.2-2.0 ⁇ m, more preferably 0.4-1.5 ⁇ m. If the particle size is less than 0.2 ⁇ m, the impact resistance may deteriorate, and if it exceeds 2.0 ⁇ m, appearance such as transparency may deteriorate.
  • the particle size was determined by cutting an ultra-thin section from the pellet of the rubber-modified styrene resin composition, observing it with a transmission electron microscope (TEM), and analyzing the image of the particles dispersed in the continuous phase. It is a value calculated by the following formula by measuring the equivalent circle diameter Di of .
  • Particle size ⁇ ni ⁇ Di 4 / ⁇ ni ⁇ Di 3
  • the particle size depends on the composition of the rubber-like polymer used, the content of 1,2-vinyl bonds, the number of reactor agitations during phase inversion when dispersed particles are formed, the polymerization initiator and chain added before phase inversion. It can be adjusted by the type and amount of the transfer agent.
  • the monomer unit of the styrenic copolymer constituting the continuous phase is preferably 35 to 75% by mass of styrenic monomer units and 25 to 65% by mass of (meth)acrylic acid ester monomers, More preferably, it contains 45 to 70% by mass of styrene-based monomer units and 30 to 55% by mass of (meth)acrylic acid ester-based monomers. If the structural unit is within the above range, the resulting rubber-modified styrenic resin composition will have an excellent balance of physical properties such as transparency, impact resistance, and fluidity.
  • the structural unit constituting the continuous phase is the value measured by 13C-NMR using the reprecipitate of the supernatant from which the gel content was removed.
  • the monomer units of the styrenic resin that constitutes the continuous phase can be adjusted according to the composition of the raw materials used for polymerization.
  • the weight average molecular weight of the styrenic copolymer constituting the continuous phase is preferably 80,000 to 220,000, more preferably 120,000, from the viewpoint of the strength and moldability of the rubber-modified styrenic resin composition. 000 to 180,000.
  • the weight average molecular weight is a polystyrene-equivalent value measured in a THF solvent using gel permeation chromatography (GPC). was used and measured under the following conditions.
  • the haze of a rubber-modified styrenic resin composition having a thickness of 2 mm is preferably 5% or less, more preferably 2% or less.
  • the degree of haze was measured using an injection molding machine (IS-50EP manufactured by Toshiba Machine Co., Ltd.) under the conditions of a cylinder temperature of 230°C and a mold temperature of 60°C. It was measured using a haze meter (NDH-1001DP model manufactured by Nippon Denshoku Industries Co., Ltd.) according to D1003.
  • the refractive index of the rubber-modified styrenic resin composition is preferably 1.53-1.57, more preferably 1.54-1.56. If the refractive index is within the above range, the obtained rubber-modified styrenic resin composition will have an excellent balance of physical properties such as transparency, impact resistance, and fluidity.
  • the refractive index can be measured using an Abbe refractometer by producing a molded article having a thickness of 2 mm.
  • the rubber-modified styrenic resin composition contains dyes such as bluing agents, plasticizers, hindered phenol antioxidants, phosphorus antioxidants, ultraviolet absorbers, hindered amine stabilizers, Antistatic agents, internal lubricants such as stearic acid, external lubricants such as ethylenebisstearylamide, MS resins, MBS resins, emulsion graft copolymers, and the like may be added.
  • dyes such as bluing agents, plasticizers, hindered phenol antioxidants, phosphorus antioxidants, ultraviolet absorbers, hindered amine stabilizers, Antistatic agents, internal lubricants such as stearic acid, external lubricants such as ethylenebisstearylamide, MS resins, MBS resins, emulsion graft copolymers, and the like may be added.
  • the rubber-modified styrenic resin composition can be formed into a molded body by a known molding method, but it is preferably used for injection molding because of its excellent fluidity.
  • Examples 1 to 5, Comparative Examples 1 to 3 A polymerization process was constituted by connecting in series the first and second reactors, which are complete mixing tanks, and the third reactor, which is a tower-type plug flow reactor with stirring blades. The capacity of each reactor was 5 L for the first reactor, 15 L for the second reactor, and 40 L for the third reactor. A raw material solution was prepared with the raw material composition shown in Table 1, and the raw material solution was continuously supplied to the first reactor at the flow rate shown in Table 1.
  • the rubber-like polymer is Asahi Kasei Asaprene 670A (styrene-butadiene block rubber, styrene content: 40% by mass, viscosity of 5% by mass styrene solution at 25°C: 32 mPa ⁇ s, ratio of 1,2-vinyl bonds: 13. 5 mol %, hydrogenation rate 0 mol %) was used.
  • the polymerization initiator and the chain transfer agent are added to the raw material solution at the inlets of the first reactor and the third reactor so that the concentration shown in Table 1 (mass-based concentration with respect to the raw material supply flow rate) is added and uniformly mixed. added.
  • polymerization initiator-1 is 1,1-bis(t-butylperoxy)-cyclohexane (Perhexa C manufactured by NOF Corporation was used.), and polymerization initiator-2 is t-butylcumin. Ruperoxide (perbutyl C manufactured by NOF Corporation was used), and the chain transfer agent was n-dodecyl mercaptan.
  • the reaction temperature was adjusted to the temperature shown in Table 1, and in the third reactor, the temperature was adjusted so that the inlet temperature was 130°C and the outlet temperature was 165°C.
  • the polymerization solution continuously taken out from the third reactor is introduced into a vacuum devolatilization tank equipped with a preheater, the temperature of the preheater is adjusted so that the resin temperature becomes 230° C., and the pressure in the devolatilization tank is increased.
  • Unreacted styrene and ethylbenzene (EB) are separated by adjusting the pressure to 1 kPa, extruded into strands from a perforated die, and the strands are cooled and cut by a cold cut method to pelletize the rubber-modified styrenic resin.
  • a composition was obtained.
  • Table 2 shows the measurements and evaluations of the obtained rubber-modified styrenic resin composition and the styrenic copolymer contained therein.
  • the content (% by mass) of the butadiene component was determined as the rubber content. Dissolve the rubber-modified styrenic resin composition in chloroform, add a certain amount of iodine monochloride/carbon tetrachloride solution, leave for about 1 hour in a dark place, add potassium iodide solution, and reduce excess iodine monochloride to zero. It was determined from the amount of iodine monochloride added by titration with 1N sodium thiosulfate/ethanol aqueous solution.
  • the refractive index was measured using an Abbe refractometer in accordance with JIS K 7142 by producing a molded product with a thickness of 2 mm.
  • the weight average molecular weight of the styrenic copolymer constituting the continuous phase is obtained by measuring the gel content as a polystyrene-equivalent value measured in THF solvent using gel permeation chromatography (GPC). Measurement was performed under the following conditions using the reprecipitate of the supernatant from which the minutes had been removed.
  • the reprecipitate is obtained by putting the supernatant liquid separated by decantation into a 300 ml beaker in the measurement of the gel content, rapidly adding 250 ml of methanol to reprecipitate the polymer content, and filtering the precipitated polymer content with suction through a filter.
  • the polymer on the filter was placed in a vacuum dryer and vacuum-dried for 1.5 hours or longer before use.
  • styrene content/MMA content The content of styrene monomer units (styrene content) and the content of methyl methacrylate monomer units (MMA content), which are the constituent units of the styrene copolymer that constitutes the continuous phase, are the gel fraction. Measurement was carried out by 13C-NMR using the reprecipitate of the supernatant obtained in the measurement from which the gel content was removed. The reprecipitate is the same as the reprecipitate in (weight average molecular weight).
  • the structural unit of the styrene copolymer contains n-butyl acrylate (n-BA) as a (meth)acrylic acid ester-based monomer unit, and the content of the n-butyl acrylate is 100% by mass. minus the styrene content and the MMA content.
  • Melt mass flow rate Melt mass flow rate was measured at 200° C. and 49 N load based on JIS K7210.
  • the Charpy impact strength was measured according to JIS K7111-1, using notched test pieces and adopting an edgewise impact direction. A digital impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd. was used as the measuring machine.
  • the bending elastic modulus was measured at a bending speed of 2 mm/min according to JIS K7171.
  • the rubber-modified styrenic resin compositions of Examples are excellent in transparency, surface impact strength and Charpy impact strength.
  • the rubber-modified styrenic resin composition of the present invention yields a molded article that is transparent and has excellent impact resistance. Moreover, since it has excellent fluidity, it is particularly suitable for injection molding, and since it has excellent surface impact strength, it can be used for housings of home electric appliances and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

透明性と面衝撃強度に優れるゴム変性スチレン系樹脂組成物を提供する。 本発明によれば、スチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物であって、前記スチレン系共重合体が、スチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位と、を有し、前記ゴム変性スチレン系樹脂組成物のグラフト率が2.12~2.40であり、前記ゴム状重合体の水素添加率が7モル%未満であるゴム変性スチレン系樹脂組成物が提供される。

Description

透明なゴム変性スチレン系樹脂組成物
 本発明はスチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物に関するものである。
 耐衝撃性に優れるゴム変性スチレン系樹脂組成物の1つであるハイインパクトポリスチレン(HIPS)は、ポリブタジエンの存在下でスチレンモノマーをグラフト共重合して得られるが、連続相であるポリスチレンとポリブタジエンを含む分散粒子の屈折率差により不透明である。連続相と分散粒子の屈折率を合わせるため、連続相では(メタ)アクリル酸エステル系単量体単位を共重合し、分散粒子ではスチレンを共重合したスチレン-ブタジエンゴムを使用することで透明なゴム変性スチレン系樹脂組成物が得られ、透明性、耐衝撃性、剛性などの諸性質を有することから、幅広い分野で使用されている。成形性に優れることから射出成形で成形体が作られることが多いが、実用的な強度に関連する面衝撃強度に課題があった。
特許第4663107号公報 特許第4386772号公報 特許第3618876号公報 特許第3151481号公報 特表2004-520459号公報
 本発明は、透明性、面衝撃強度及びシャルピー衝撃強さに優れるゴム変性スチレン系樹脂組成物を提供することを課題とする。
本発明によれば、スチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物であって、前記スチレン系共重合体が、スチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位と、を有し、前記ゴム変性スチレン系樹脂組成物のグラフト率が2.12~2.40であり、前記ゴム状重合体の水素添加率が7モル%未満であるゴム変性スチレン系樹脂組成物が提供される。
 以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
(1)スチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物であって、前記スチレン系共重合体が、スチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位と、を有し、前記ゴム変性スチレン系樹脂組成物のグラフト率が2.12~2.40であり、前記ゴム状重合体の水素添加率が7モル%未満である、ゴム変性スチレン系樹脂組成物。
(2)2mm厚み成形体の曇り度が5%以下である、(1)に記載のゴム変性スチレン系樹脂組成物。
(3)前記ゴム状重合体がスチレン-ブタジエンゴム系共重合体である、(1)または(2)に記載のゴム変性スチレン系樹脂組成物。
(4)前記スチレン-ブタジエンゴム系共重合体のスチレン単量体単位の含有量は10~50質量%である、(3)に記載のゴム変性スチレン系樹脂組成物。
(5)屈折率が1.53~1.57である、(1)~(4)いずれかに記載のゴム変性スチレン系樹脂組成物。
(6)前記スチレン系共重合体が、前記スチレン系単量体単位35~75質量%と、前記(メタ)アクリル酸エステル系単量体単位25~65質量%と、を有する、(1)~(5)のいずれかに記載のゴム変性スチレン系樹脂組成物。
 本発明のゴム変性スチレン系樹脂組成物は、透明性、面衝撃強度及びシャルピー衝撃強さに優れることから、外観と実用強度の高い成形体が得られる。また、流動性に優れることから、特に射出成形用途に適している。
<用語の説明>
 本願明細書において、例えば、「A~B」なる記載は、A以上でありB以下であることを意味する。
 以下、本発明の実施形態について、詳細に説明する。
 本発明の樹脂組成物は、スチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物であって、前記スチレン系共重合体がスチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位とを有する、透明なゴム変性スチレン系樹脂組成物である。
 スチレン系単量体単位は、重合に用いられたスチレン系単量体に由来する単位である。スチレン系単量体とは、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等である。これらの中でもスチレンが好ましい。スチレン系単量体単位は、単独でも良いが2種類以上を併用してもよい。
 (メタ)アクリル酸エステル系単量体単位は、重合に用いられた(メタ)アクリル酸エステル系単量体に由来する単位である。(メタ)アクリル酸エステル系単量体とは、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートの(メタ)アクリル酸エステル、メチルアクリレート、エチルアクリレート、n-ブチルアクリレート、2-メチルへキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレートの単独又は2種以上の混合物がある。色相や耐熱性に優れるという観点から、メチル(メタ)アクリレートを主成分として用いることが好ましい。また、一態様においては、(メタ)アクリル酸エステル系単量体単位として、メチル(メタ)アクリレート及びn-ブチルアクリレートを含むことが好ましい。
 連続相を構成するスチレン系共重合体は、スチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位と、を有する共重合体である。スチレン系共重合体がスチレン系単量体単位を主成分とし、一種以上の(メタ)アクリル酸エステル系単量体単位を含有するが、二種以上の(メタ)アクリル酸エステル系単量体単位を含有することが好ましく、耐熱性に優れる成分と流動性に優れる成分を併用することでゴム変性樹脂組成物の流動性を向上することができる。例えば、スチレン-メチル(メタ)アクリレート-ブチルアクリレート共重合体がある。
 ゴム状重合体は、常温でゴム的性質を示すもので、例えば、ポリブタジエン、スチレン-ブタジエンゴム系共重合体等のブタジエン成分を有するものが挙げられるが、好ましくは、スチレン-ブタジエンゴム又はスチレン-ブタジエンブロックゴム(ブロック共重合体)等のスチレン単量体単位及びブタジエン単量体単位を有するスチレン-ブタジエンゴム系共重合体である。スチレン-ブタジエンゴム系共重合体のスチレン単量体単位の含有量は10~50質量%であることが好ましく、より好ましくは30~45質量%である。スチレン-ブタジエンゴム系共重合体のスチレン単量体単位の含有量は、具体的には例えば、10,15,20,25,30,35,40,45,50質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、ゴム状重合体に含まれるブタジエン単量体単位等の不飽和単位のうち一部は水素添加されていてもよいが、含まれる不飽和単位のうち水素添加されている単位の割合(水素添加率)は、7モル%未満であり、好ましくは5モル%以下であり、より好ましくは1モル%以下である。
 ゴム変性スチレン系樹脂組成物は、ゴム状重合体の存在下に、スチレン系単量体、(メタ)アクリル酸エステル系単量体をグラフト共重合して得らえる。グラフト共重合の方法は、ハイインパクトポリスチレン(HIPS)の製造で行われている方法を用いることができる。HIPSの製造は連続重合法で行われることが多く、例えば、ゴム状重合体をスチレン系単量体、(メタ)アクリル酸エステル系単量体、重合溶媒に溶解し、原料溶液とした後、反応器に連続的に供給し、グラフト共重合を行う。重合の進行とともに分散粒子が形成される転相を経た後、さらに重合反応を進める。反応器から出てきた重合溶液は、脱揮工程に供給され、未反応単量体と重合溶媒の除去と同時に分散粒子を構成するゴム状重合体の架橋を進める。反応器の様式としては、完全混合型の槽型反応器、プラグフロー性を有する塔型反応器、重合を進行させながら一部の重合溶液を抜き出すループ型の反応器等が例示される。これら反応器の配列の順序に特に制限は無い。脱揮工程は加熱器付きの真空脱揮槽やベント付き脱揮押出機などで構成される。脱揮工程を出た溶融状態の樹脂は造粒工程へ移送される。造粒工程では、多孔ダイよりストランド状に溶融樹脂を押出し、コールドカット方式や空中ホットカット方式、水中ホットカット方式にてペレット形状に加工される。重合反応器は、1個以上連続して配置されるが、1個の場合は、単独でよく、2個以上の場合は、少なくとも2つは連続的(直列)に配置される。
 重合反応の制御のため、重合溶媒、重合開始剤、連鎖移動剤を使用することができる。重合溶媒は、重合速度の調整、分子量の調整、重合溶液の粘性を低下させるために用いるものであり、例えば、ベンゼン、トルエン、エチルベンゼン及びキシレン等のアルキルベンゼン類やアセトンやメチルエチルケトン等のケトン類、ヘキサンやシクロヘキサン等の脂肪族炭化水素等が使用できる。重合溶媒の使用量は、特に限定されるものではないが、通常、重合反応器内の組成として、1~50質量%であることが好ましく、3~25質量%の範囲内であることがより好ましい。50質量%を超える場合は、生産性が著しく低下したり、ゴム変性スチレン系樹脂組成物の分子量が過度に低下する場合がある。
 重合開始剤は、ラジカル重合開始剤が好ましく、公知慣用の例えば、1,1-ジ(t-ブチルパーオキシ)シクロヘキサン、2,2-ジ(t-ブチルパーオキシ)ブタン、2,2-ジ(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、1,1-ジ(t-アミルパーオキシ)シクロヘキサン等のパーオキシケタール類、クメンハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等のハイドロパーオキサイド類、t-ブチルパーオキシアセテート、t-アミルパーオキシイソノナノエート等のアルキルパーオキサイド類、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、ジ-t-ヘキシルパーオキサイド等のジアルキルパーオキサイド類、t-ブチルパーオキシアセテート、t-ブチルパーオキシベンゾエート、t-ブチルパーオキシイソプロピルモノカーボネート等のパーオキシエステル類、t-ブチルパーオキシイソプロピルカーボネート、ポリエーテルテトラキス(t-ブチルパーオキシカーボネート)等のパーオキシカーボネート類、N,N'-アゾビス(シクロヘキサン-1-カルボニトリル)、N,N'-アゾビス(2-メチルブチロニトリル)、N,N'-アゾビス(2,4-ジメチルバレロニトリル)、N,N'-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等が挙げられ、これらの1種あるいは2種以上を組み合わせて使用することができる。連鎖移動剤は、例えば、脂肪族メルカプタン、芳香族メルカプタン、ペンタフェニルエタン、α-メチルスチレンダイマー及びテルピノーレン等が挙げられる。
ゴム変性スチレン系樹脂組成物のグラフト率は、2.12~2.40であり、2.15~2.35であることが好ましい。グラフト率が2.12未満では、面衝撃強度や透明性に劣る場合があり、2.40を超えると、シャルピー衝撃強度が低下することがある。グラフト率は、具体的には例えば、2.12,2.13,2.14,2.15,2.16,2.17,2.18,2.19,2.20,2.25,2.30,2.35,2.40であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。グラフト率はゲル分とゴム分より、グラフト率=(ゲル分-ゴム分)/ゴム分によって算出され、単位ゴム分当たりのゴム以外の成分の比を表す。ゴム以外の成分とは、ゴムに結合したスチレン等の成分、グラフトしたスチレン系共重合体、内包したスチレン系共重合体等である。グラフト率は、使用するゴム状重合体の組成や1,2-ビニル結合の含有量、初期に添加する重合開始剤の種類及び添加量、ゴム粒子を形成させる反応器の形式などによって調整することができるが、更に、転相後の重合溶液に添加する重合開始剤の種類及び添加量によっても調整することができる。
 ゲル分は、分散粒子の含有量を表し、1gのゴム変性スチレン系樹脂組成物を精秤し(質量W)、50%メチルエチルケトン/50%アセトン混合溶液35mlを加えて溶解し、その溶液を遠心分離機(コクサン社製H-2000B(ローター:H))にて、14000rpmで30分間遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去して不溶分を得て、セーフティーオーブンにて90℃で2時間予備乾燥し、更に真空乾燥機にて120℃で1時間真空乾燥し、20分間デシケーター中で冷却した後、乾燥した不溶分の質量Gを測定して、次のように求めることができる。
  ゲル分(質量%)=(G/W)×100
 なお、デカンテーションにより分離した上澄み液を300mlビーカーに入れ、メタノール250mlを急激に加え、ポリマー分を再沈させ、沈殿したポリマー分をフィルターで吸引ろ過し、フィルター上のポリマーを真空乾燥機にいれて1.5時間以上真空乾燥し、後述の連続相を構成するスチレン系樹脂の単量体単位と重量平均分子量の測定に使用した。
 ゴム分は、ゴム状重合体がブタジエン単量体単位を含む重合体である場合には、ブタジエン成分(ブタジエン単量体単位)として算出され、ゴム変性スチレン系樹脂組成物をクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え、暗所に約1時間放置後、ヨウ化カリウム溶液を加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量からブタジエン成分の含有量を求めることができる。
 ゴム変性スチレン系樹脂組成物の膨潤比SRは8~12であることが好ましい。膨潤比は分散粒子の架橋度を表しており、8未満では耐衝撃性が低下することがあり、12を超えると外観が悪化することがある。膨潤比SRは、1gのゴム変性スチレン系樹脂を精秤し、トルエン30mlを加え溶解し、その溶液を遠心分離機(コクサン社製H-2000B(ローター:H))にて、14000rpmで30分間遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去してトルエンで膨潤した不溶分の質量Sを測定し、続いてトルエンで膨潤した不溶分をセーフティーオーブンにて90℃で2時間予備乾燥した後、更に真空乾燥機にて120℃で1時間真空乾燥し、20分間デシケーター中で冷却した後、不溶分の乾燥質量Dを測定して、次のように求めることができる。
  膨潤比SR=S/D
 ゴム状重合体を含む分散粒子の粒子径は、0.2~2.0μmであることが好ましく、より好ましくは0.4~1.5μmである。粒子径が0.2μm未満では、耐衝撃性が低下することがあり、2.0μmを超えると透明性等の外観が悪化することがある。粒子径は、ゴム変性スチレン系樹脂組成物のペレットから超薄切片を切り出し、透過型電子顕微鏡(TEM)の観察を行い、連続相に分散した粒子の画像解析により、約2,000個の粒子の円相当径Diを計測して下記の式により算出した値である。
  粒子径=Σni・ Di/Σni・Di
 粒子径は、使用するゴム状重合体の組成や1,2-ビニル結合の含有量、分散粒子が形成される転相時の反応器攪拌数、転相前に添加される重合開始剤および連鎖移動剤の種類や添加量で調整することができる。
 連続相を構成するスチレン系共重合体の単量体単位は、スチレン系単量体単位35~75質量%、(メタ)アクリル酸エステル系単量体25~65質量%であることが好ましく、より好ましくは、スチレン系単量体単位45~70質量%、(メタ)アクリル酸エステル系単量体30~55質量%である。構成単位が上記範囲内であれば、得られるゴム変性スチレン系樹脂組成物の透明性と耐衝撃性や流動性などの物性バランスに優れる。連続相を構成する構成単位は、ゲル分の測定で得られた、ゲル分を除いた上澄み液の再沈物を用い、13C-NMRによって測定した値である。連続相を構成するスチレン系樹脂の単量体単位は、重合に使用する原料の組成によって調整することができる。
 連続相を構成するスチレン系共重合体の重量平均分子量は、ゴム変性スチレン系樹脂組成物の強度と成形性の観点から、80,000~220,000であることが好ましく、より好ましくは120,000~180,000である。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、THF溶媒中で測定されるポリスチレン換算の値であり、ゲル分の測定で得られた、ゲル分を除いた上澄み液の再沈物を用い、次の条件で測定した。
  装置名:SYSTEM-21 Shodex(昭和電工社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
 ゴム変性スチレン系樹脂組成物の2mm厚みの成形体の曇り度は、5%以下であることが好ましく、2%以下であることがより好ましい。曇り度は、射出成型機(東芝機械社製IS-50EP)を用いて、シリンダー温度230℃、金型温度60℃の成形条件で成形された縦90mm、横55mm、厚み2mmの鏡面プレートをASTM D1003に準拠しヘーズメータ(日本電色工業社製NDH-1001DP型)を用いて測定した。
 ゴム変性スチレン系樹脂組成物の屈折率は、1.53~1.57であることが好ましく、より好ましくは1.54~1.56である。屈折率が上記範囲内であれば、得られるゴム変性スチレン系樹脂組成物の透明性と耐衝撃性や流動性などの物性バランスに優れる。屈折率は2mm厚みの成形品を作製し、アッベ屈折率計を用いて測定することができる。
 ゴム変性スチレン系樹脂組成物は、透明性を損なわない範囲で、ブルーイング剤等の染料、可塑剤、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、紫外線吸収剤、ヒンダードアミン系安定剤、帯電防止剤、ステアリン酸等の内部潤滑剤、エチレンビスステアリルアミド等の外部潤滑剤、MS樹脂、MBS樹脂、乳化グラフト共重合体等を添加しても良い。
 ゴム変性スチレン系樹脂組成物は公知の成形方法によって成形体とすることができるが、流動性に優れるため、特に射出成形用に使用することが好ましい。
 以下、詳細な内容について実施例を用いて説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1~5、比較例1~3)
 完全混合型撹拌槽である第1反応器および第2反応器と攪拌翼付塔型プラグフロー型反応器である第3反応器を直列に接続して重合工程を構成した。各反応器の容量は、第1反応器を5L、第2反応器を15L、第3反応器を40Lとした。表1に記載の原料組成にて、原料溶液を作成し、第1反応器に原料溶液を表1に記載の流量にて連続的に供給した。ゴム状重合体は、旭化成社製アサプレン670A(スチレン-ブタジエンブロックゴム、スチレン含有量が40質量%、温度25℃における5質量%スチレン溶液粘度32mPa・s、1,2-ビニル結合の割合13.5モル%、水素添加率0モル%)を使用した。重合開始剤及び連鎖移動剤は、第1反応器および第3反応器の入口で表1に記載の添加濃度(原料供給流量に対する質量基準の濃度)となるように原料溶液に添加し、均一混合した添加した。表1中、重合開始剤-1は1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン(日油株式会社製パーヘキサCを使用した。)であり、重合開始剤-2はt-ブチルクミルパーオキサイド(日油株式会社製パーブチルCを使用した。)であり、連鎖移動剤はn-ドデシルメルカプタンである。反応温度は表1記載の温度に槽内温度を調整し、第3反応器では、入口温度130℃から出口温度が165℃となるよう勾配をつけて調整した。続いて、第3反応器より連続的に取り出した重合溶液を予熱器付き真空脱揮槽に導入し、樹脂温度が230℃となるよう予熱器の温度を調整し、脱揮槽内の圧力を1kPaに調整することで、未反応スチレン及びエチルベンゼン(EB)を分離した後、多孔ダイよりストランド状に押し出しして、コールドカット方式にて、ストランドを冷却および切断しペレット化したゴム変性スチレン系樹脂組成物を得た。得たゴム変性スチレン系樹脂組成物及びこれに含まれるスチレン系共重合体についての測定及び評価について表2に示す。
(ゴム分)
 ブタジエン成分の含有量(質量%)をゴム分として求めた。ゴム変性スチレン系樹脂組成物をクロロホルムに溶解させ、一定量の一塩化ヨウ素/四塩化炭素溶液を加え、暗所に約1時間放置後、ヨウ化カリウム溶液を加え、過剰の一塩化ヨウ素を0.1Nチオ硫酸ナトリウム/エタノール水溶液で滴定し、付加した一塩化ヨウ素量から求めた。
(ゲル分)
 1gのゴム変性スチレン系樹脂組成物を精秤し(質量W)、50%メチルエチルケトン/50%アセトン混合溶液35mlを加えて溶解した。その溶液を遠心分離機(コクサン社製H-2000B(ローター:H))にて、14000rpmで30分間遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去して不溶分を得た。その不溶分を、セーフティーオーブンにて90℃で2時間予備乾燥し、更に真空乾燥機にて120℃で1時間真空乾燥し、20分間デシケーター中で冷却した後、乾燥した不溶分の質量Gを測定した。G及びWを用いて、次の式に基づきゲル分を算出した。
  ゲル分(質量%)=(G/W)×100
(グラフト率)
 グラフト率は次の式に基づき算出した。
 グラフト率=(ゲル分-ゴム分)/ゴム分
(膨潤比SR)
 膨潤比SRは、1gのゴム変性スチレン系樹脂を精秤し、トルエン30mlを加え溶解し、その溶液を遠心分離機(コクサン社製H-2000B(ローター:H))にて、14000rpmで30分間遠心分離して不溶分を沈降させ、デカンテーションにより上澄み液を除去してトルエンで膨潤した不溶分の質量Sを測定し、続いてトルエンで膨潤した不溶分をセーフティーオーブンにて90℃で2時間予備乾燥した後、更に真空乾燥機にて120℃で1時間真空乾燥し、20分間デシケーター中で冷却した後、不溶分の乾燥質量Dを測定して、次の式に基づき算出した。
  膨潤比SR=S/D
(ゴム粒子径)
 粒子径は、ゴム変性スチレン系樹脂組成物のペレットから超薄切片を切り出し、透過型電子顕微鏡(TEM)の観察を行い、連続相に分散した粒子の画像解析により、約2,000個の粒子の円相当径Diを計測して下記の式により算出した。
  粒子径=Σni・ Di/Σni・Di
(屈折率)
 屈折率は2mm厚みの成形品を作製し、JIS K 7142に準じてアッベ屈折率計を用いて測定した。
(重量平均分子量)
 連続相を構成するスチレン系共重合体の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、THF溶媒中で測定されるポリスチレン換算の値として、ゲル分の測定で得られた、ゲル分を除いた上澄み液の再沈物を用い、次の条件で測定した。
  装置名:SYSTEM-21 Shodex(昭和電工社製)
  カラム:PL gel MIXED-Bを3本直列
  温度:40℃
  検出:示差屈折率
  溶媒:テトラヒドロフラン
  濃度:2質量%
  検量線:標準ポリスチレン(PS)(PL社製)を用いて作製した。
 再沈物は、上記ゲル分の測定において、デカンテーションにより分離した上澄み液を300mlビーカーに入れ、メタノール250mlを急激に加え、ポリマー分を再沈させ、沈殿したポリマー分をフィルターで吸引ろ過し、フィルター上のポリマーを真空乾燥機にいれて1.5時間以上真空乾燥したものを使用した。
(スチレン含有量・MMA含有量)
 連続相を構成するスチレン系共重合体の構成単位である、スチレン単量体単位の含有量(スチレン含有量)及びメタクリル酸メチル単量体単位の含有量(MMA含有量)は、ゲル分の測定で得られた、ゲル分を除いた上澄み液の再沈物を用い、13C-NMRによって測定した。再沈物については、(重量平均分子量)における再沈物と同様である。なお、スチレン系共重合体の構成単位には、n-ブチルアクリレート(n-BA)が(メタ)アクリル酸エステル系単量体単位として含まれ、当該n-ブチルアクリレートの含有量は100質量%からスチレン含有量及びMMA含有量を差し引いた量である。
Figure JPOXMLDOC01-appb-T000001
(メルトマスフローレイト)
メルトマスフローレイトは、JIS K7210に基づき、200℃、49N荷重にて測定した。
(曇り度)
射出成型機(東芝機械社製IS-50EP)を用いて、シリンダー温度230℃、金型温度60℃の成形条件で成形された縦90mm、横55mm、厚み2mmの鏡面プレートをASTM D1003に準拠しヘーズメータ(日本電色工業社製NDH-1001DP型)を用いてHazeを測定した。
(シャルピー衝撃強さ)
 シャルピー衝撃強さは、JIS K7111-1に基づき、ノッチあり試験片を用い、打撃方向はエッジワイズを採用して測定した。なお、測定機は東洋精機製作所社製デジタル衝撃試験機を使用した。
(面衝撃強度)
 射出成型機(東芝機械社製IS-55EPN)を用いて、シリンダー温度230℃、金型温度60℃、射出速度70%の成形条件で成形された縦90mm、横90mm、厚み2mmの試験片(フィルムゲート)を用い、島津製作所製の高速パンクチャー衝撃試験機(HITS-PX)で面衝撃試験を実施した。23℃、ストライカー径12.7mm(ASTM D3763)、ピストン速度5m/secの条件で、クランプに固定した試験片の中央部分に衝撃を加えて破壊し、最大衝撃点に達するまでに吸収したエネルギーを面衝撃強度とした。
(曲げ弾性率)
 曲げ弾性率は、JIS K7171に基づき、曲げ速度2mm/minで測定した。
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、実施例のゴム変性スチレン系樹脂組成物は透明性、面衝撃強度及びシャルピー衝撃強さに優れる。
 本発明のゴム変性スチレン系樹脂組成物により、透明で耐衝撃性に優れた成形体が得られる。また、流動性に優れることから、特に射出成形用に適しており、面衝撃強度に優れることから家電製品の筐体等に使用することができる。

Claims (6)

  1. スチレン系共重合体を含む連続相と、ゴム状重合体を含む分散粒子と、を含有するゴム変性スチレン系樹脂組成物であって、
    前記スチレン系共重合体が、スチレン系単量体単位と、一種以上の(メタ)アクリル酸エステル系単量体単位と、を有し、
    前記ゴム変性スチレン系樹脂組成物のグラフト率が2.12~2.40であり、
    前記ゴム状重合体の水素添加率が7モル%未満である、
    ゴム変性スチレン系樹脂組成物。
  2. 2mm厚み成形体の曇り度が5%以下である、請求項1に記載のゴム変性スチレン系樹脂組成物。
  3. 前記ゴム状重合体がスチレン-ブタジエンゴム系共重合体である、請求項1に記載のゴム変性スチレン系樹脂組成物。
  4. 前記スチレン-ブタジエンゴム系共重合体のスチレン単量体単位の含有量は10~50質量%である、請求項3に記載のゴム変性スチレン系樹脂組成物。
  5. 屈折率が1.53~1.57である、請求項1に記載のゴム変性スチレン系樹脂組成物。
  6. 前記スチレン系共重合体が、前記スチレン系単量体単位35~75質量%と、前記(メタ)アクリル酸エステル系単量体単位25~65質量%と、を有する、請求項1~請求項5のいずれかに記載のゴム変性スチレン系樹脂組成物。
PCT/JP2022/018013 2021-04-20 2022-04-18 透明なゴム変性スチレン系樹脂組成物 WO2022224926A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280027974.1A CN117120492A (zh) 2021-04-20 2022-04-18 透明的橡胶改性苯乙烯系树脂组合物
KR1020237039821A KR20230170784A (ko) 2021-04-20 2022-04-18 투명한 고무 변성 스티렌계 수지 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071179A JP7145271B1 (ja) 2021-04-20 2021-04-20 透明なゴム変性スチレン系樹脂組成物
JP2021-071179 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224926A1 true WO2022224926A1 (ja) 2022-10-27

Family

ID=83452900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018013 WO2022224926A1 (ja) 2021-04-20 2022-04-18 透明なゴム変性スチレン系樹脂組成物

Country Status (5)

Country Link
JP (1) JP7145271B1 (ja)
KR (1) KR20230170784A (ja)
CN (1) CN117120492A (ja)
TW (1) TW202309179A (ja)
WO (1) WO2022224926A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157249A (ja) * 1995-12-08 1997-06-17 Japan Synthetic Rubber Co Ltd 有機パーオキサイド化合物
JPH09302045A (ja) * 1996-05-14 1997-11-25 Japan Synthetic Rubber Co Ltd 吸油剤およびこれを含む吸油材
JP2002128976A (ja) * 2000-10-26 2002-05-09 A & M Styrene Co Ltd 樹脂組成物及び木目模様を有する樹脂成形品
JP2002338776A (ja) * 2001-05-17 2002-11-27 Denki Kagaku Kogyo Kk 透明なゴム変性芳香族ビニル系共重合樹脂組成物およびその製造法
WO2019009421A1 (ja) * 2017-07-07 2019-01-10 テクノUmg株式会社 鍍金性改良剤、鍍金用成形体、鍍金用ペレット組成物、鍍金成形体及び鍍金方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3151481B2 (ja) 1990-11-15 2001-04-03 大日本インキ化学工業株式会社 ゴム変性共重合樹脂の製法およびゴム変性共重合樹脂組成物
JP3618876B2 (ja) 1996-02-22 2005-02-09 旭化成ケミカルズ株式会社 ゴム変性スチレン系樹脂組成物
JP2002097335A (ja) * 2000-07-17 2002-04-02 Denki Kagaku Kogyo Kk ゴム変性芳香族ビニル系共重合樹脂組成物
JP2002060573A (ja) * 2000-08-18 2002-02-26 Dainippon Ink & Chem Inc 熱可塑性樹脂組成物、及びその製造方法
JP2004520459A (ja) 2000-12-12 2004-07-08 エルジー・ケム・リミテッド ゴム変性スチレン系共重合透明樹脂の製造方法
JP4663107B2 (ja) * 2000-12-18 2011-03-30 電気化学工業株式会社 ゴム変性芳香族ビニル系共重合樹脂組成物およびその製造方法
JP4413048B2 (ja) * 2003-03-27 2010-02-10 Psジャパン株式会社 耐候性、耐衝撃性に優れたゴム変性スチレン系樹脂とその製造方法及びその樹脂を用いてなる積層体
JP4386772B2 (ja) 2004-03-19 2009-12-16 電気化学工業株式会社 ゴム変性共重合樹脂及び製造方法
EP3632981B1 (en) * 2017-06-01 2021-04-07 Toray Industries, Inc. Thermoplastic resin composition, production method for thermoplastic resin composition, molded article, and production method for molded article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157249A (ja) * 1995-12-08 1997-06-17 Japan Synthetic Rubber Co Ltd 有機パーオキサイド化合物
JPH09302045A (ja) * 1996-05-14 1997-11-25 Japan Synthetic Rubber Co Ltd 吸油剤およびこれを含む吸油材
JP2002128976A (ja) * 2000-10-26 2002-05-09 A & M Styrene Co Ltd 樹脂組成物及び木目模様を有する樹脂成形品
JP2002338776A (ja) * 2001-05-17 2002-11-27 Denki Kagaku Kogyo Kk 透明なゴム変性芳香族ビニル系共重合樹脂組成物およびその製造法
WO2019009421A1 (ja) * 2017-07-07 2019-01-10 テクノUmg株式会社 鍍金性改良剤、鍍金用成形体、鍍金用ペレット組成物、鍍金成形体及び鍍金方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HE Y., E.S. DANIELS,A. KLEIN,M.S. EL-AASSER: "Grafting behavior of n-butyl acrylate onto poly(butadiene-co-styrene) latexes", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 65, no. 3, 18 July 1997 (1997-07-18), pages 511 - 523, XP055978494, DOI: 10.1002/(SICI)1097-4628(19970718)65:3<511::AID-APP11>3.0.CO;2-# *
JIANG D. D., WILKIE C. A.: "GRAFT COPOLYMERIZATION OF METHACRYLIC ACID, ACRYLIC ACID AND METHYL ACRYLATE ONTO STYRENE-BUTADIENE BLOCK COPOLYMER.", EUROPEAN POLYMER JOURNAL, PERGAMON PRESS LTD OXFORD, GB, vol. 34., no. 07., 1 July 1998 (1998-07-01), GB , pages 997 - 1006., XP000668531, ISSN: 0014-3057, DOI: 10.1016/S0014-3057(97)00222-X *

Also Published As

Publication number Publication date
JP2022165716A (ja) 2022-11-01
KR20230170784A (ko) 2023-12-19
CN117120492A (zh) 2023-11-24
JP7145271B1 (ja) 2022-09-30
TW202309179A (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
EP3299415B1 (en) Heat-resistant resin composition and method for producing same
US8378026B2 (en) Transparent rubber modified styrene resin and method for preparing the same by continuous bulk polymerization
EP3299398B1 (en) Copolymer for use as polymer blend compatibilizer, and resin composition
JP5930668B2 (ja) インジェクションブロー成形品の製造方法
JP5913919B2 (ja) 高分岐型ゴム変性スチレン系樹脂組成物及びシート
JP7145271B1 (ja) 透明なゴム変性スチレン系樹脂組成物
JP2013100436A (ja) 高分岐型ブロー成形用ゴム変性スチレン系樹脂組成物及び成形品
EP3960814B1 (en) Thermoplastic resin composition and molded article thereof
EP4212584A1 (en) Heat resistance resin composition and injection molded body thereof
KR20140018640A (ko) 고무강화 열가소성 투명 수지 조성물 및 열가소성 고투명 수지
CN106867128B (zh) 热可塑性树脂组成物及其所形成的成型品
JPH05194676A (ja) ゴム変性芳香族ビニル系共重合体樹脂及びその製造方法
EP4223796A1 (en) Production method for heat-resistant resin composition
JP4458931B2 (ja) 透明なゴム変性共重合樹脂組成物、それから得られる成形物及び該組成物の製造方法
JP4386772B2 (ja) ゴム変性共重合樹脂及び製造方法
TW202227549A (zh) 耐熱性樹脂組成物
JP2023136647A (ja) ゴム変性スチレン系樹脂組成物、シート、及び成形品
TW202222859A (zh) 馬來酰亞胺系共聚物
JP2023115374A (ja) スチレン系樹脂組成物及び成形品
JP4776148B2 (ja) ゴム変性共重合樹脂およびその成形体
JP2007224130A (ja) 光学用成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791698

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301006785

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20237039821

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039821

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791698

Country of ref document: EP

Kind code of ref document: A1