WO2022224713A1 - 溶接装置および温度測定装置 - Google Patents

溶接装置および温度測定装置 Download PDF

Info

Publication number
WO2022224713A1
WO2022224713A1 PCT/JP2022/014702 JP2022014702W WO2022224713A1 WO 2022224713 A1 WO2022224713 A1 WO 2022224713A1 JP 2022014702 W JP2022014702 W JP 2022014702W WO 2022224713 A1 WO2022224713 A1 WO 2022224713A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
temperature
cover
weld bead
section
Prior art date
Application number
PCT/JP2022/014702
Other languages
English (en)
French (fr)
Inventor
康晴 櫻井
義也 竹村
篤人 高田
敦史 福永
泰成 藤本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021071102A external-priority patent/JP7498142B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020237035685A priority Critical patent/KR20230159513A/ko
Priority to CN202280029694.4A priority patent/CN117203014A/zh
Priority to CA3217453A priority patent/CA3217453A1/en
Publication of WO2022224713A1 publication Critical patent/WO2022224713A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the present invention relates to a welding device and a temperature measuring device.
  • the temperature of one weld bead and the workpiece in the vicinity of one weld bead are measured after the formation of one weld bead and before welding the next welding pass. may be measured (see, for example, Patent Document 1).
  • An object of the present invention is to protect a measuring unit that measures temperature with a simple and compact configuration.
  • the present invention provides a welding apparatus capable of performing multi-layer welding on an object to be welded, comprising: a welding torch; a movable portion for moving the welding torch; At least one of the temperature of the one weld bead and the temperature of the object to be welded near the one weld bead can be measured for a predetermined period of time after the weld bead is formed and before welding the next weld pass. a measuring portion, a cover portion capable of covering at least the measuring portion, and a support member that supports the cover portion so as to be moved in a predetermined direction so that the cover portion is moved when the weld bead is formed.
  • a welding device comprising:
  • the drive section may drive the support member using compressed air.
  • the welding torch may be replaced by a supply unit for supplying compressed air used when using another tool, and the drive unit may drive the support member using the compressed air supplied by the supply unit. good.
  • the cover it is preferable to provide a guide part that guides the movement of the cover in addition to the driving part.
  • the guide section covers the periphery of the measurement section so that the measurement section can measure the temperature with the cover section exposing the measurement section.
  • a display section that indicates a position of the object to be welded at which the temperature is measured by the measurement section.
  • the display unit may be covered by the cover unit together with the measurement unit when the cover unit covers the measurement unit, and may be exposed together with the measurement unit when the cover unit exposes the measurement unit.
  • the movable section may have a plurality of link sections configured to be movable via a drive shaft, and the measurement section may be held by the link sections to which the welding torch is attached.
  • the measurement section is arranged on at least one side in the left-right direction of the movable section in the reference posture.
  • the present invention provides a temperature measuring device for use in a welding apparatus capable of multi-layer welding on a work piece by moving a welding torch by a movable portion, wherein the temperature measuring device is provided in the movable portion, At least one of the temperature of the one weld bead and the temperature of the welded object near the one weld bead is measured for a predetermined period after the weld bead is formed and before welding the next weld pass.
  • a measuring portion that can be measured, a cover portion that can cover at least the measuring portion, and a support member that supports the cover portion to move in a predetermined direction by driving the cover portion when the weld bead is formed. covers the measuring part, and drives the support member to move in a direction opposite to the predetermined direction, thereby exposing the measuring part during the predetermined period.
  • a temperature measuring device comprising:
  • FIG. 1 is an overall view of a welding device of this embodiment
  • FIG. FIG. 4 is an enlarged side view of the tool portion of the welding robot in the reference posture as seen from the Y-axis direction
  • FIG. 4 is an enlarged plan view of the tool portion of the welding robot in the reference posture as seen from the Z-axis direction
  • 1 is an exploded perspective view of a temperature measuring device according to this embodiment
  • FIG. It is an overall view of a sensor section of the present embodiment. It is a cross-sectional view of the temperature measuring device of the present embodiment.
  • FIG. 4 is an explanatory diagram of the operation of the temperature measurement device of the present embodiment, and is a diagram of the temperature measurement device viewed in the A direction from the object side.
  • FIG. 4 is an explanatory diagram of the operation of the temperature measurement device of the present embodiment, and is a diagram of the temperature measurement device viewed in the A direction from the object side.
  • It is a flow chart which shows an example of the operation flow of the welding equipment of this embodiment.
  • FIG. 1 is an overall view of a welding device 1 of this embodiment.
  • the horizontal directions are the X axis and the Y axis.
  • the X-axis and the Y-axis are orthogonal.
  • the vertical direction is the Z-axis.
  • the Z-axis is orthogonal to the X-axis and the Y-axis, respectively.
  • the welding apparatus 1 includes a welding robot 10 that welds workpieces W, which are examples of objects to be welded, and an air compressor 70, which is an example of a supply section that supplies compressed air. , a controller 80 for controlling the operation of the welding robot 10, and a power supply 90 for supplying a welding current.
  • welding robot 10 There are various types of welding robots 10 according to their uses. In the description of the present embodiment, an example of a welding robot 10 used for welding steel frames is used. Moreover, the welding robot 10 of this embodiment is an articulated robot. Furthermore, the welding robot 10 of this embodiment is a robot that performs arc welding on the workpiece W. As shown in FIG.
  • the welding robot 10 has a base portion 100, a movable manipulator portion 20, and a tool portion 30 attached to the manipulator portion 20. Further, the welding robot 10 has a relay box 35 that relays electrical signals and the like to the control device 80 and relays compressed air from the air compressor 70, and a temperature measuring device 40 that measures temperature.
  • the base unit 100 is fixed to an installation target such as a floor, for example.
  • the base section 100 supports each constituent section of the welding robot 10 including the manipulator section 20 .
  • the manipulator section 20 has a rotating section 21 , a lower arm section 22 , an upper arm section 23 , a wrist rotating section 24 , a wrist bending section 25 and a wrist rotating section 26 .
  • each of the rotating portion 21, the lower arm portion 22, the upper arm portion 23, the wrist rotating portion 24, the wrist bending portion 25, and the wrist rotating portion 26 is referred to as a "link portion" when not distinguished from each other.
  • the swivel portion 21 is connected to the base portion 100 via a first drive shaft S1 extending in the vertical direction.
  • the turning portion 21 can turn with respect to the base portion 100 around the first drive shaft S1.
  • the lower arm portion 22 is connected to the swivel portion 21 via a second drive shaft S2 along the horizontal direction.
  • the lower arm portion 22 is rotatable with respect to the turning portion 21 around the second drive shaft S2.
  • the upper arm portion 23 is connected to the lower arm portion 22 via a third drive shaft S3 along the horizontal direction.
  • the upper arm 23 is rotatable with respect to the lower arm 22 around the third drive shaft S3.
  • the wrist turning portion 24 is connected to the upper arm portion 23 via the fourth drive shaft S4.
  • the wrist turning portion 24 is rotatable with respect to the upper arm portion 23 around the fourth drive shaft S4.
  • the wrist bending portion 25 is connected to the wrist turning portion 24 via a fifth drive shaft S5 along the horizontal direction.
  • the wrist bending portion 25 is rotatable with respect to the wrist turning portion 24 around the fifth drive shaft S5.
  • the wrist rotation portion 26 is connected to the wrist bending portion 25 via the sixth drive shaft S6.
  • the wrist rotation portion 26 is rotatable with respect to the wrist bending portion 25 around the sixth drive shaft S6.
  • a tool portion 30 is attached to the wrist rotation portion 26 of the present embodiment.
  • the manipulator section 20 moves each link section around the first drive shaft S1 to the sixth drive shaft S6 as a rotation center, thereby moving the welding torch 31, which will be described later, of the tool section 30 to an arbitrary position with respect to the work W. move.
  • the reference posture in this embodiment is set to an origin angle at which the rotation angles of the first drive shaft S1 to the sixth drive shaft S6 in the welding robot 10 form an angle of 0 degrees with respect to a predetermined reference. state.
  • the origin angle can be exemplified as an angle at which the welding robot 10 is in the following states.
  • the origin angle is the angle of the second drive shaft S2 that causes the lower arm 22 to extend vertically.
  • the origin angle is the angle of the third drive axis S3 and the fifth drive axis S5 that make the upper arm portion 23 and the wrist bend portion 25 parallel to the horizontal direction, respectively.
  • the origin angle is the angle of the first drive shaft S1, the fourth drive shaft S4, and the sixth drive shaft S6 that makes the second drive shaft S2, the third drive shaft S3, and the fifth drive shaft S5 parallel to each other. is the angle.
  • the tool section 30 has a welding torch 31 for welding and a torch support section 32 for supporting the welding torch 31 .
  • the welding torch 31 forms a weld bead on the workpiece W by feeding the welding wire and passing the electric current supplied from the power source 90 through the welding wire.
  • the torch support part 32 holds the welding torch 31 at one end. Also, the torch support portion 32 is connected to the wrist rotation portion 26 at the other end. The torch support portion 32 moves integrally with the wrist rotation portion 26 . Further, the torch support portion 32 moves the supported welding torch 31 integrally with the wrist rotation portion 26 .
  • the welding robot 10 of this embodiment can be replaced with a tool different from the welding torch 31 described above in the tool section 30 .
  • a slag chipper (not shown) can be attached to the wrist rotating portion 26 as the tool portion 30 instead of the welding torch 31 and the torch support portion 32 .
  • a slag chipper is a tool for removing slag generated at a weld bead formed on a work W.
  • a slag chipper for example, removes slag generated at a weld bead by hitting a vibrating needle against the weld bead.
  • the relay box 35 has an air control section 351 and a temperature sensor amplifier 352 .
  • an air flow path (hereinafter referred to as an "air path") supplies compressed air from an air compressor 70 to a tool such as a slag chipper. Compressed air is supplied from the air compressor 70 to the air cylinder section 60 described later through the air path.
  • the air control section 351 controls the flow of compressed air in the air path.
  • the air control unit 351 uses an air flow control valve to control the flow speed of compressed air flowing through the air path.
  • the air control unit 351 uses an air opening/closing control valve to open and close the flow path of the compressed air in the air path.
  • the air control section 351 controls the velocity and flow rate of the compressed air flowing through the air path, and drives, for example, the blades of the slag chipper and the air cylinder section 60 described later.
  • the air control unit 351 operates based on control commands from the control device 80 .
  • the temperature sensor amplifier 352 is electrically connected to the sensor cable 55 of the temperature measuring device 40, which will be described later.
  • the temperature sensor amplifier 352 amplifies the voltage output from the temperature sensor 52 described later via the sensor cable 55 .
  • Temperature sensor amplifier 352 then sends the amplified voltage to controller 80 .
  • the controller 80 converts the input voltage value into the measured temperature.
  • the temperature sensor amplifier 352 may convert the voltage value acquired from the temperature measuring device 40 into a measured temperature and send it to the control device 80 .
  • FIG. 2 is an enlarged side view of the tool portion 30 of the welding robot 10 in the standard posture as seen from the Y-axis direction.
  • FIG. 3 is an enlarged plan view of the tool portion 30 of the welding robot 10 in the reference posture as seen from the Z-axis direction.
  • the temperature measuring device 40 is provided in a movable part that moves the welding torch 31 in the welding robot 10 , such as the manipulator part 20 and the torch support part 32 connected to the manipulator part 20 . Then, the temperature measuring device 40 of the present embodiment measures the temperature of one weld bead or one The temperature of the workpiece W in the vicinity of the weld bead is measured. Note that the temperature measuring device 40 of the present embodiment may measure both the temperature of one weld bead and the temperature of the workpiece W in the vicinity of the one weld bead during the predetermined period.
  • the vicinity of the weld bead described above can be exemplified by a position on the work W that is separated from the weld bead formed on the work W by, for example, about 10 mm.
  • the measurement position of the temperature in one weld bead can be exemplified by one point in the central portion of the formed weld bead in the longitudinal direction, for example.
  • the temperature measurement device 40 may measure temperatures at a plurality of different locations in the longitudinal direction of the weld bead of one welding pass. And this content is the same when measuring the temperature of the workpiece W in the vicinity of the weld bead.
  • the temperature measuring device 40 of this embodiment is provided on the torch support portion 32 of the tool portion 30 .
  • the torch support portion 32 is connected to the wrist rotation portion 26 of the manipulator portion 20 . Therefore, the temperature measuring device 40 is held by the wrist rotating portion 26 via the torch support portion 32 .
  • the temperature measuring device 40 is moved integrally with the welding torch 31 by the wrist rotating portion 26 at the end of the manipulator portion 20 .
  • the relative positional relationship between the temperature measuring device 40 and the welding torch 31 is fixed by providing the temperature measuring device 40 on the torch support portion 32 that supports the welding torch 31. ing.
  • the welding robot 10 performs welding by moving the welding torch 31 to a predetermined position with respect to the workpiece W.
  • the welding robot 10 needs to move the welding torch 31 so that the movable part such as the torch support part 32 for moving the welding torch 31 with respect to the work W does not interfere with the work W. That is, in the welding robot 10, the movement of the welding torch 31 is restricted by the external shape of the movable portion such as the torch support portion 32. For example, in order not to hinder the movement of the welding torch 31 relative to the work W, as shown in FIG. It is preferable not to provide structural parts other than the part 32 .
  • the welding robot 10 in the reference posture is viewed from the upper side in the Z-axis direction, which is the vertical direction, from the direction along which the manipulator section 20 is along the X-axis direction.
  • the temperature measuring device 40 is arranged on one side of the manipulator section 20 in the left-right direction.
  • the temperature measuring device 40 is arranged on the left side of the torch support portion 32 when viewed from the welding torch 31 side.
  • the temperature measuring device 40 of the present embodiment is arranged on the lateral side of the tool portion 30 in the horizontal direction, not on the vertical upper side or the vertical lower side of the tool portion 30 in the welding robot 10 in the reference posture.
  • the temperature measuring device 40 is provided inside the contour C, which is the outer shape of the tool portion 30, when the welding robot 10 in the reference posture is viewed from the Y-axis direction, which is the horizontal direction. . Further, even when the temperature measuring device 40 is arranged on one side of the tool portion 30 in the left-right direction, the temperature measuring device 40 is arranged so as not to protrude with respect to the regions A1 and A2.
  • FIG. 4 is an exploded perspective view of the temperature measuring device 40 of this embodiment.
  • FIG. 5 is an overall view of the sensor section 50 of this embodiment.
  • FIG. 6 is a cross-sectional view of the temperature measuring device 40 of this embodiment.
  • the temperature measurement device 40 includes a base portion 41 to which various parts are attached, a cover portion 42 that covers at least a temperature sensor 52 (described later), a sensor portion 50 that detects temperature, and a cover portion 42. and an air cylinder portion 60 as an example of a driving portion that drives the .
  • the pedestal part 41 is a plate-like member having an L-shaped cross section.
  • the pedestal portion 41 has a first surface portion 411 and a second surface portion 412 provided so as to rise from the first surface portion 411 .
  • the sensor section 50 and the air cylinder section 60 are attached to the first surface section 411 .
  • the first surface portion 411 forms an installation surface when installing the temperature measuring device 40 on the torch support portion 32 (see FIG. 2).
  • the first surface portion 411 is provided along the XZ plane (see FIG. 2) when the temperature measuring device 40 is installed on the torch support portion 32 .
  • the first surface portion 411 has a rectangular shape when viewed from the Y-axis direction, and has a short side 411a inclined at a predetermined angle ⁇ with respect to the X-axis and a long side 411b inclined at an angle ⁇ with respect to the Z-axis. provided to do so.
  • the direction in which the short side 411a extends is referred to as the "A direction”
  • the direction in which the long side 411b extends is referred to as the "B direction”.
  • the second surface portion 412 is formed extending in a plate shape along the Y-axis direction (see FIG. 2).
  • the second surface portion 412 is provided so as to face the welding torch 31 side when the temperature measuring device 40 is installed on the torch support portion 32 .
  • the second surface portion 412 is provided so as to be interposed between the sensor portion 50 and the air cylinder portion 60 and the welding torch 31 (see FIG. 2).
  • the second surface portion 412 has a first opening 413 , a second opening 414 and a third opening 415 .
  • the first opening 413 is a U-shaped opening. As shown in FIG. 7, the first opening 413 is open on the cover portion 42 side.
  • the first opening 413 is provided at a position of the sensor unit 50 facing a measurement lens 521, which will be described later.
  • the second opening 414 is an opening formed in a circular shape.
  • the second opening 414 is provided at a position of the sensor unit 50 facing the first laser irradiation unit 53, which will be described later.
  • the third opening 415 is an opening formed in a circular shape.
  • the third opening 415 is provided at a position of the sensor section 50 facing the second laser irradiation section 54, which will be described later.
  • the second surface portion 412 is provided to face a cover surface portion 422, which will be described later, of the cover portion 42 (see FIG. 6). Also, the second surface portion 412 is provided along the moving direction of the cover portion 42 .
  • the second surface portion 412 functions as an example of a guide portion that guides the movement of the cover portion 42 separately from the shaft 62 of the air cylinder portion 60, which will be described later, when the cover portion 42 moves.
  • the cover portion 42 of this embodiment is supported only by the shaft 62 of the air cylinder portion 60, which will be described later. Therefore, the cover part 42 may rotate with respect to the shaft 62 depending on how it is supported by the shaft 62 .
  • the second surface portion 412 of the present embodiment stabilizes the movement of the cover portion 42 by guiding the cover portion 42 even if the cover portion 42 tries to rotate.
  • the cover part 42 is a box-shaped member.
  • the cover portion 42 has a top surface portion 421 , a cover surface portion 422 rising from the top surface portion 421 , a back surface portion 423 , a first side surface portion 424 and a second side surface portion 425 .
  • the cover portion 42 is provided movably with respect to the pedestal portion 41 so that the box-shaped opening 42 ⁇ /b>H faces the pedestal portion 41 .
  • the cover surface portion 422 can face a measurement lens 521 (described later) of the sensor portion 50 in the temperature measurement device 40 . Moreover, the cover surface portion 422 has a cover opening portion 422H.
  • the cover opening 422 ⁇ /b>H is provided at a position corresponding to the first opening 413 of the pedestal 41 in the moving direction of the cover 42 . By moving, the cover surface portion 422 exposes or covers the temperature sensor 52 according to the position of the cover opening 422H with respect to the temperature sensor 52 (described later).
  • the rear portion 423 has a cable opening 423H.
  • the cable opening 423 ⁇ /b>H forms a portion in the rear portion 423 through which the sensor cable 55 of the sensor portion 50 and the air tube 63 of the air cylinder portion 60 , which will be described later, are passed.
  • the cover portion 42 is fixed to a shaft 62 of the air cylinder portion 60, which will be described later. Specifically, the top surface portion 421 of the cover portion 42 is sandwiched between the fixing member 426 and the shaft 62 . The cover portion 42 is supported by the shaft 62 . Furthermore, the cover portion 42 moves along with the operation of the shaft 62 of the air cylinder portion 60 .
  • the sensor unit 50 includes an installation table 51, a temperature sensor 52 as an example of a measurement unit, a first laser irradiation unit 53 as an example of a display unit, and a second laser irradiation unit 53 as an example of a display unit. It has a laser irradiation unit 54 and a sensor cable 55 .
  • the installation table 51 holds a temperature sensor 52 , a first laser irradiation section 53 and a second laser irradiation section 54 . Then, the installation table 51 is fixed to the pedestal portion 41 (see FIG. 4). Moreover, the installation table 51 has a mark 51M used when adjusting the laser direction of each of the first laser irradiation section 53 and the second laser irradiation section 54 .
  • the temperature sensor 52 has a measurement lens 521 and a detection element (not shown) that detects infrared rays condensed by the measurement lens 521 .
  • the temperature sensor 52 identifies the temperature of the weld bead and the work W in the vicinity of the weld bead by detecting infrared rays emitted from the weld bead to be measured and the work W in the vicinity of the weld bead. That is, the temperature sensor 52 measures the temperature of the weld bead and the work W in the vicinity of the weld bead in a non-contact manner without contacting the weld bead to be measured or the work W in the vicinity of the weld bead.
  • the measurement lens 521 is provided on the installation table 51 on the side of the welding torch 31 (see FIG. 3).
  • the measurement lens 521 is directed toward the weld bead and the work W when the temperature sensor 52 measures the temperature of the weld bead and the work W in the vicinity of the weld bead.
  • a thermopile for example, can be used for the detection element.
  • the temperature of the detection element rises as it absorbs infrared light.
  • the detection element then outputs an electric signal having a voltage value corresponding to the increased temperature.
  • the first laser irradiation unit 53 and the second laser irradiation unit 54 irradiate a target object with line lasers, which are linear lasers.
  • the line laser irradiated by the first laser irradiation unit 53 and the line laser irradiated by the second laser irradiation unit 54 intersect at an object such as the work W.
  • the first laser irradiation unit 53 and the second laser irradiation unit 54 of the present embodiment are set so that the point where the line lasers irradiated respectively intersect indicates the temperature measurement position by the temperature sensor 52 .
  • the temperature sensor 52 measures the temperature of the weld bead and the workpiece W in the vicinity of the weld bead in a non-contact manner. Therefore, it is difficult for the operator to visually confirm the measurement position of the temperature sensor 52 .
  • the temperature measurement device 40 of the present embodiment visualizes the temperature measurement position by the first laser irradiation section 53 and the second laser irradiation section 54 .
  • the temperature measuring device 40 of the present embodiment allows the operator to confirm the measurement position, for example, when incorporating the setting of the temperature measurement position into the operation program.
  • the sensor cable 55 has a signal line for sending the electric signal of the voltage value output by the temperature sensor 52 to the junction box 35 .
  • the sensor cable 55 is a power supply line that supplies the current for the first laser irradiation section 53 and the second laser irradiation section 54 to irradiate the line laser to the first laser irradiation section 53 and the second laser irradiation section 54. have.
  • the air cylinder section 60 has a cylinder section 61, a shaft 62 as an example of a support member, and an air tube 63 as an air path.
  • the cylinder portion 61 is fixed to the base portion 41 .
  • One end of the shaft 62 is inserted into the cylinder portion 61 .
  • the cylinder portion 61 supports the shaft 62 so that the shaft 62 can move in the axial direction.
  • the cylinder portion 61 has a first chamber 611 and a second chamber 612 into which compressed air supplied from the air tube 63 flows.
  • the first chamber 611 forms a space into which compressed air flows when the shaft 62 is pushed out from the cylinder portion 61 .
  • the second chamber 612 forms a space into which compressed air flows when the shaft 62 is pulled into the cylinder portion 61 .
  • An air tube 63 is connected to each of the first chamber 611 and the second chamber 612 so that compressed air can flow thereinto.
  • the shaft 62 is a rod-shaped member elongated in the axial direction. One end of the shaft 62 is inserted into the cylinder portion 61 . Also, the shaft 62 is connected to the cover portion 42 on the other end side. A female screw is formed in the shaft 62 of this embodiment. By sandwiching the cover portion 42 between the shaft 62 and the fixing member 426 and fastening the fixing member 426 to the female screw of the shaft 62 , the shaft 62 supports the cover portion 42 . Further, shaft 62 is configured to be axially movable. Then, the shaft 62 protrudes from the cylinder portion 61 or retreats toward the cylinder portion 61 side.
  • One end of the air tube 63 communicates with the air compressor 70 via the air control section 351 of the relay box 35 and the other end communicates with the cylinder section 61 .
  • the air tube 63 supplies compressed air from the air compressor 70 to the cylinder portion 61 .
  • compressed air is selectively supplied to either one of the first chamber 611 and the second chamber 612 via the air tube 63, so that the shaft 62 protrudes or retracts. do.
  • the air cylinder portion 60 drives the shaft 62 to move the cover portion 42 connected to the shaft 62 .
  • the temperature measuring device 40 of the present embodiment uses the air cylinder section 60 to drive the cover section 42, but the use of the air cylinder section 60 is not the only option. Any other structure may be used as long as it is possible to drive the support member that supports the cover portion 42 and move the support member to one side and the other side in a predetermined direction to move the cover portion 42 . .
  • 7A and 7B are explanatory diagrams of the operation of the temperature measuring device 40 of the present embodiment, and are diagrams of the temperature measuring device 40 viewed in the A direction from the object side.
  • 7A shows a state in which the cover portion 42 is separated from the pedestal portion 41
  • FIG. 7B shows a state in which the cover portion 42 approaches the pedestal portion 41. As shown in FIG.
  • the air cylinder portion 60 drives the shaft 62 with compressed air supplied to the cylinder portion 61, and moves the shaft 62 away from the cylinder portion 61 in the axial direction of the shaft 62. . That is, the air cylinder portion 60 pushes the shaft 62 out of the cylinder portion 61 . Then, the cover portion 42 supported by the shaft 62 moves away from the base portion 41 .
  • the cover opening 422 ⁇ /b>H of the cover surface part 422 of the cover part 42 faces the measurement lens 521 of the temperature sensor 52 . Thereby, the cover part 42 exposes the measurement lens 521 of the temperature sensor 52 . Further, by moving the cover portion 42 away from the base portion 41 , the cover surface portion 422 exposes the first laser irradiation portion 53 and the second laser irradiation portion 54 .
  • the second surface portion 412 of the pedestal portion 41 is provided between the cover portion 42, the temperature sensor 52, the first laser irradiation portion 53, and the second laser irradiation portion 54. is provided.
  • the second surface portion 412 exposes the measurement lens 521 through the first opening 413 but covers the periphery of the measurement lens 521 .
  • the second surface portion 412 exposes the first laser irradiation portion 53 and the second laser irradiation portion 54 through the second opening portion 414 and the third opening portion 415, the first laser irradiation portion 53 and the second laser irradiation portion 53 are exposed. It surrounds each of the portions 54 .
  • the temperature measuring device 40 is configured such that the cover portion 42 exposes the temperature sensor 52, the first laser irradiation portion 53, and the second laser irradiation portion 54, and the second surface portion 412 of the base portion 41 is positioned so that the temperature sensor 52 is exposed. , the first laser irradiation unit 53 and the second laser irradiation unit 54 are covered. As a result, the temperature measurement device 40 protects the temperature sensor 52, the first laser irradiation section 53, and the second laser irradiation section 54 while enabling temperature measurement and line laser irradiation.
  • the air cylinder section 60 drives the shaft 62 by means of compressed air supplied to the cylinder section 61, and moves the shaft 62 in the axial direction of the shaft 62 in a direction approaching the cylinder section 61. . That is, the air cylinder portion 60 pulls the shaft 62 into the cylinder portion 61 . Then, the cover portion 42 supported by the shaft 62 moves toward the base portion 41 .
  • the cover opening 422 ⁇ /b>H of the cover surface portion 422 of the cover portion 42 retreats from the measurement lens 521 of the temperature sensor 52 .
  • the cover portion 42 faces the temperature sensor 52 in the area where the cover opening 422H is not formed.
  • the cover part 42 covers the measurement lens 521 of the temperature sensor 52 .
  • the cover surface portion 422 covers the first laser irradiation portion 53 and the second laser irradiation portion 54 .
  • the cover part 42 of this embodiment is formed in a box shape as described with reference to FIG. Accordingly, the cover portion 42 moves in a direction approaching the base portion 41 so as to entirely wrap the sensor portion 50 and the air cylinder portion 60 installed on the base portion 41 .
  • the temperature measuring device 40 of the present embodiment drives the shaft 62 to move the shaft 62 to one side and the other side along the axial direction of the shaft 62 , thereby moving the cover portion 42 .
  • the temperature measuring device 40 of this embodiment realizes the movement of the cover portion 42 with a simple and compact configuration.
  • the cover portion 42 is directly supported on the shaft 62 of the air cylinder portion 60 .
  • the temperature measuring device 40 has a direction in which the cover portion 42 moves when the cover portion 42 exposes or covers the temperature sensor 52, and a direction in which the shaft 62, which is the driving shaft of the air cylinder portion 60, moves. are in the same direction.
  • the temperature measuring device 40 of the present embodiment can, for example, interpose another structural part between the air cylinder part 60 and the cover part 42, or adjust the movement direction of the shaft 62, which is the driving shaft of the air cylinder part 60. This configuration is simple and compact compared to a configuration in which the cover portion 42 is moved by transmitting power in different directions.
  • the temperature measurement device 40 of this embodiment may have an air blower for injecting compressed air to the sensor section 50 . Then, in the temperature measuring device 40, the compressed air jetted by the air blower may be used to blow off the foreign matter adhering to the temperature sensor 52, the first laser irradiation section 53, and the second laser irradiation section . In this case, the compressed air used for air blow can be supplied from the air compressor 70 .
  • the measuring axis of the temperature sensor 52 of the temperature measuring device 40 configured as above will be described. As shown in FIG. 3, the XZ plane through which the central axis L1 of the welding torch 31 passes and the XZ plane through which the measurement axis L2 of the temperature sensor 52 passes are separated by a certain distance in the Y-axis direction. In the welding robot 10 of this embodiment, interference between the measurement axis L2 of the temperature sensor 52 and the center axis L1 of the welding torch 31 is avoided. That is, the temperature measuring device 40 is not affected by the temperature of the welding torch 31 when measuring the temperature of the object.
  • the measurement axis L2 of the temperature sensor 52 of the temperature measuring device 40 is set so as to correspond to the weld bead and the workpiece W in the vicinity of the weld bead. Thereby, the temperature measuring device 40 can measure the temperature of the weld bead and the work W in the vicinity of the weld bead.
  • the relative positional relationship between the welding torch 31 and the temperature measuring device 40 is fixed. Therefore, the measurement axis L2 position of the temperature sensor 52 of the temperature measurement device 40 can be easily calculated from the arc point coordinates of the welding torch 31 .
  • Air compressor 70 The air compressor 70 shown in FIG. 1 supplies air compressed by driving a rotor and a piston to a supply destination of the compressed air.
  • the air compressor 70 supplies compressed air to the slag chipper to drive the needle of the slag chipper.
  • the air compressor 70 supplies compressed air to the air cylinder section 60 of the temperature measuring device 40 .
  • the air compressor 70 also drives the air cylinder section 60 .
  • the welding device 1 of this embodiment includes the air compressor 70 for supplying compressed air used when using other tools such as a slag chipper instead of the welding torch 31 .
  • the cover portion 42 is driven by using the air compressor 70 used when using other tools.
  • the air compressor 70 can be used not only for driving the needle of the slag chipper but also for the following operations.
  • the air compressor 70 can be used to drive a tool changer that replaces the welding torch 31 and slag chipper.
  • the air compressor 70 can be used for blowing air for blowing off the slag removed by the slag chipper.
  • the air compressor 70 can be used to drive a wire clamp in the welding torch 31 that maintains the projection of the welding wire at the tip of the welding torch 31 .
  • it can be used for jetting air of an air blower for cleaning foreign matter adhering to the tip of the welding torch 31 .
  • the air compressor 70 can then be used to drive a wire cutter for cutting the welding wire.
  • the control device 80 shown in FIG. 1 is configured by, for example, a computer.
  • the computer includes a CPU (Central Processing Unit) that executes the control program, a non-volatile semiconductor memory that stores the startup program, etc., a volatile semiconductor memory that executes the control program, and various types of data collected from the welding robot 10. It consists of a hard disk device, etc. that records the information of
  • Controller 80 controls operations of welding robot 10 and air compressor 70 .
  • the control device 80 controls the moving operation of the manipulator section 20 based on a welding program preset based on the shape of the work W and the like. Furthermore, the control device 80 controls the welding operation of the welding torch 31 in the tool section 30 .
  • the control device 80 also controls the temperature measurement of the temperature measuring device 40 and the operation of the cover portion 42 .
  • the control device 80 processes temperature information obtained from the temperature measurement device 40 .
  • the control device 80 has an operation program that determines the timing of covering or exposing the temperature sensor 52 with the cover portion 42 . This operation program defines that the cover part 42 covers the temperature sensor 52 when the workpiece W is being welded. Also, this operation program defines that the cover portion 42 exposes the temperature sensor 52 for a predetermined period of time after forming one weld bead and before welding the next welding pass.
  • the control device 80 controls the operation of the cover section 42 in the temperature measurement device 40 via the air control section 351 of the relay box 35 .
  • FIG. 8 is a flow chart showing an example of the operation flow of the welding device 1 of this embodiment.
  • a welding task is started (step 101).
  • welding robot 10 moves welding torch 31 to a predetermined position on workpiece W using manipulator section 20 under the control of control device 80 .
  • the welding robot 10 then starts welding the workpiece W using the welding torch 31 .
  • the temperature sensor 52 is covered by the cover part 42 in the temperature measuring device 40 .
  • the temperature sensor 52 in the temperature measuring device 40 is protected from spatters, fumes, and radiant heat generated along with the formation of the weld bead.
  • the temperature of the weld bead in one welding pass is measured (step 102).
  • the cover portion 42 exposes the temperature sensor 52 .
  • the control device 80 controls the manipulator section 20 according to a pre-created operation program, and moves the temperature measuring device 40 to a position where the temperature sensor 52 can measure the temperature of the weld bead in one welding pass on the workpiece W. Control device 80 then identifies the temperature of the weld bead based on the voltage value measured by temperature sensor 52 .
  • the temperature measuring device 40 of the present embodiment is configured such that the cover portion 42 exposes the temperature sensor 52 for a predetermined period of time after the formation of one weld bead and before welding the next welding pass. Then, the temperature sensor 52 measures the temperature of one weld bead.
  • control device 80 determines whether or not the measured temperature of the weld bead is equal to or lower than the threshold (step 103). If the measured weld bead temperature is equal to or lower than the threshold (YES in step 103), control device 80 returns to step 101 to form another weld pass following one weld pass. As a result, multi-layer welding is performed in which one weld bead is laminated with another weld bead.
  • step 104 instead of or in addition to waiting for a certain period of time, cooling of the workpiece W may be performed, or welding at another position on the workpiece W may be performed.
  • control device 80 returns to step 101 to transition to the formation of the weld path of
  • the temperature measuring device 40 may measure the temperature of the workpiece W in the vicinity of the formed weld bead.
  • the welding robot 10 is assumed to be a steel frame welding robot used for welding steel frames.
  • the application is not limited to the steel frame welding robot as long as the application requires measurement of the temperature of one weld bead or the temperature of the work W in the vicinity of one weld bead for a predetermined period before welding.
  • the welding robot 10 is a multi-joint robot, but it may be a single-joint robot.
  • the temperature measuring device 40 may be provided in the movable portion that moves the welding torch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Laser Beam Processing (AREA)
  • Radiation Pyrometers (AREA)
  • Manipulator (AREA)

Abstract

溶接装置は、溶接トーチと、溶接トーチを移動させる可動部と、可動部に設けられ、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、一の溶接ビードの温度、および一の溶接ビードの近傍の被溶接物の温度の少なくとも一方を測定可能な測定部と、少なくとも測定部を覆うことが可能なカバー部と、カバー部を支持する支持部材を駆動して所定方向に移動させることで溶接ビードの形成の際にカバー部が測定部を覆った状態とし、支持部材を駆動して所定方向とは逆方向に移動させることで所定期間にカバー部が測定部を露出させた状態にする駆動部と、を備える。

Description

溶接装置および温度測定装置
 本発明は、溶接装置および温度測定装置に関する。
 被溶接物に対して多層溶接を行う場合に、一の溶接ビードの形成後であって次の溶接パスを溶接する前に、一の溶接ビードの温度や一の溶接ビードの近傍の被溶接物の温度を測定する場合がある(例えば、特許文献1参照)。
日本国特開2008-275482号公報
 ここで、被溶接物に対して溶接が行われる際には、溶接ビードの形成に伴って、スパッタ、ヒュームおよび輻射熱が発生する。そして、スパッタ、ヒュームおよび輻射熱の影響が、温度を測定する測定部に及ぶと、測定部に支障が生じる可能性がある。そのため、溶接ビードの形成に伴って発生するスパッタ、ヒュームおよび輻射熱から測定部を保護する必要がある。この場合に、例えば装置の誤作動や故障などの可能性および動作時の干渉を低減するために、測定部を保護するための構成は、複雑ではなく簡易で小型の構成であることが好ましい。
 本発明は、簡易で小型の構成によって、温度を測定する測定部を保護することを目的とする。
 かかる目的のもと、本発明は、被溶接物に対して、多層溶接可能な溶接装置であって、溶接トーチと、前記溶接トーチを移動させる可動部と、前記可動部に設けられ、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、当該一の溶接ビードの温度、および当該一の溶接ビードの近傍の前記被溶接物の温度の少なくとも一方を測定可能な測定部と、少なくとも前記測定部を覆うことが可能なカバー部と、前記カバー部を支持する支持部材を駆動して所定方向に移動させることで前記溶接ビードの形成の際に当該カバー部が前記測定部を覆った状態とし、当該支持部材を駆動して当該所定方向とは逆方向に移動させることで前記所定期間に当該カバー部が当該測定部を露出させた状態にする駆動部と、を備えることを特徴とする、溶接装置である。
 ここで、前記駆動部は、圧縮空気を用いて前記支持部材を駆動するとよい。
 また、前記溶接トーチに代えて他のツールを利用する際に用いられる圧縮空気を供給する供給部を備え、前記駆動部は、前記供給部が供給する圧縮空気を用いて前記支持部材を駆動するとよい。
 また、前記カバー部が移動する際に、前記駆動部とは別に、当該カバー部の移動を案内する案内部を備えるとよい。
 また、前記案内部は、前記カバー部が前記測定部を露出させた状態で当該測定部による温度の測定を可能に、当該測定部の周囲を覆うとよい。
 また、前記被溶接物における前記測定部による温度の測定位置を示す表示部を備えるとよい。
 また、前記表示部は、前記カバー部が前記測定部を覆う際に当該測定部とともに当該カバー部に覆われ、当該カバー部が当該測定部を露出させる際に当該測定部とともに露出されるとよい。
 また、前記可動部は、駆動軸を介して移動可能に構成された複数のリンク部を有し、前記測定部は、前記溶接トーチが取り付けられる前記リンク部によって保持されるとよい。
 また、前記測定部は、基準姿勢の前記可動部における左右方向の少なくとも一方側に配置されるとよい。
 かかる目的のもと、本発明は、溶接トーチを可動部によって移動させて被溶接物に対して多層溶接可能な溶接装置にて用いられる温度測定装置であって、前記可動部に設けられ、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、当該一の溶接ビードの温度、および当該一の溶接ビードの近傍の前記被溶接物の温度の少なくとも一方を測定可能な測定部と、少なくとも前記測定部を覆うことが可能なカバー部と、前記カバー部を支持する支持部材を駆動して所定方向に移動させることで前記溶接ビードの形成の際に当該カバー部が前記測定部を覆った状態とし、当該支持部材を駆動して当該所定方向とは逆方向に移動させることで前記所定期間に当該カバー部が当該測定部を露出させた状態にする駆動部と、を備えることを特徴とする、温度測定装置である。
 本発明によれば、簡易で小型の構成によって、温度を測定する測定部を保護することができる。
本実施形態の溶接装置の全体図である。 基準姿勢の溶接ロボットのツール部を拡大してY軸方向から見た側面図である。 基準姿勢の溶接ロボットのツール部を拡大してZ軸方向から見た平面図である。 本実施形態の温度測定装置の分解斜視図である。 本実施形態のセンサ部の全体図である。 本実施形態の温度測定装置の断面図である。 本実施形態の温度測定装置の動作の説明図であり、温度測定装置を対象物側からA方向に見た図である。 本実施形態の温度測定装置の動作の説明図であり、温度測定装置を対象物側からA方向に見た図である。 本実施形態の溶接装置の動作フローの一例を示すフローチャートである。
 以下、添付図面を参照して、本発明の実施形態について説明する。
 図1は、本実施形態の溶接装置1の全体図である。
 なお、図1に示すように、本実施形態の説明において、水平方向は、X軸およびY軸とする。X軸とY軸とは、直交する。また、鉛直方向は、Z軸とする。Z軸は、X軸およびY軸に対してそれぞれ直交する。
 図1に示すように、溶接装置1は、溶接の対象である被溶接物の一例としてのワークW同士を溶接する溶接ロボット10と、圧縮空気を供給する供給部の一例としてのエアコンプレッサ70と、溶接ロボット10の動作を制御する制御装置80と、溶接電流を供給するための電源90とを有する。
[溶接ロボット10]
 溶接ロボット10は、用途に応じて様々な種類がある。本実施形態の説明では、鉄骨の溶接に使用される溶接ロボット10の例を用いる。また、本実施形態の溶接ロボット10は、多関節ロボットである。さらに、本実施形態の溶接ロボット10は、ワークWに対してアーク溶接を行うロボットである。
 図1に示すように、溶接ロボット10は、基台部100と、可動するマニピュレータ部20と、マニピュレータ部20に装着されるツール部30と、を有する。さらに、溶接ロボット10は、制御装置80に電気信号等を中継したり、エアコンプレッサ70から圧縮空気を中継したりする中継ボックス35と、温度を測定する温度測定装置40と、を有する。
(基台部100)
 基台部100は、例えば床等の設置対象に固定される。そして、基台部100は、マニピュレータ部20を含め溶接ロボット10の各構成部を支持する。
(マニピュレータ部20)
 マニピュレータ部20は、旋回部21、下腕部22、上腕部23、手首旋回部24、手首曲げ部25および手首回転部26を有する。なお、以下の説明において、旋回部21、下腕部22、上腕部23、手首旋回部24、手首曲げ部25および手首回転部26を区別しない場合には、各々を「リンク部」と称する。
 旋回部21は、鉛直方向に沿った第1駆動軸S1を介して基台部100に接続する。そして、旋回部21は、第1駆動軸S1回りに基台部100に対して旋回可能である。
 下腕部22は、水平方向に沿った第2駆動軸S2を介して旋回部21に接続する。下腕部22は、第2駆動軸S2回りに旋回部21に対して回転可能である。
 上腕部23は、水平方向に沿った第3駆動軸S3を介して下腕部22に接続する。上腕部23は、第3駆動軸S3回りに下腕部22に対して回転可能である。
 手首旋回部24は、第4駆動軸S4を介して上腕部23に接続する。手首旋回部24は、第4駆動軸S4回りに上腕部23に対して回転可能である。
 手首曲げ部25は、水平方向に沿った第5駆動軸S5を介して手首旋回部24に接続する。手首曲げ部25は、第5駆動軸S5回りに手首旋回部24に対して回転可能である。
 手首回転部26は、第6駆動軸S6を介して手首曲げ部25に接続する。手首回転部26は、第6駆動軸S6回りに手首曲げ部25に対して回転可能である。そして、本実施形態の手首回転部26には、ツール部30が装着される。
 そして、マニピュレータ部20は、第1駆動軸S1~第6駆動軸S6を回転中心として、各リンク部を動かすことで、ワークWに対して任意の位置にツール部30の後述する溶接トーチ31を移動させる。
 続いて、溶接ロボット10の基準姿勢について説明する。
 本実施形態における基準姿勢とは、溶接ロボット10における第1駆動軸S1~第6駆動軸S6の回転角度が、予め定められた基準に対して成す角度が0度となる原点角度に設定された状態である。
 本実施形態において、原点角度は、溶接ロボット10が以下の状態となる角度であることを例示できる。例えば、図1に示すように、原点角度は、下腕部22が鉛直方向に沿った状態にする第2駆動軸S2の角度である。さらに、原点角度は、上腕部23および手首曲げ部25がそれぞれ水平方向に沿った状態にする第3駆動軸S3および第5駆動軸S5の角度である。さらに、原点角度は、第2駆動軸S2、第3駆動軸S3および第5駆動軸S5が相互に平行となる状態にする第1駆動軸S1、第4駆動軸S4および第6駆動軸S6の角度である。
(ツール部30)
 ツール部30は、溶接する溶接トーチ31と、溶接トーチ31を支持するトーチ支持部32と、を有する。
 溶接トーチ31は、溶接ワイヤを送給しつつ、電源90より供給された電流を当該溶接ワイヤに流してワークWに溶接ビードを形成する。
 トーチ支持部32は、一端部にて溶接トーチ31を保持する。また、トーチ支持部32は、他端部にて手首回転部26に連結される。そして、トーチ支持部32は、手首回転部26と一体的に移動する。さらに、トーチ支持部32は、支持する溶接トーチ31を手首回転部26と一体的に移動させる。
 なお、本実施形態の溶接ロボット10は、ツール部30において、上述した溶接トーチ31とは別のツールに交換可能になっている。本実施形態の溶接ロボット10では、ツール部30として、溶接トーチ31およびトーチ支持部32に代えて、スラグチッパー(不図示)を手首回転部26に装着することが可能になっている。スラグチッパーは、ワークWに形成された溶接ビードにて発生したスラグを除去するためのツールである。スラグチッパーは、例えば、振動するニードルを溶接ビードに当てることで、溶接ビードにて発生したスラグを取り除く。
(中継ボックス35)
 中継ボックス35は、エア制御部351と、温度センサアンプ352とを有している。
 本実施形態では、空気の流動経路(以下「空気経路」という)によって、エアコンプレッサ70からスラグチッパーなどのツールに圧縮空気が供給される。また、空気経路によって、エアコンプレッサ70から後述するエアシリンダ部60に圧縮空気が供給される。
 そして、エア制御部351は、空気経路における圧縮空気の流れを制御する。エア制御部351は、エア流速制御弁を用いて、空気経路を流れる圧縮空気の流速を制御する。また、エア制御部351は、エア開閉制御弁を用いて、空気経路における圧縮空気の流路の開閉を行う。これによって、エア制御部351は、空気経路を流れる圧縮空気の流速や流量を制御し、例えばスラグチッパーのブレードを駆動したり、後述するエアシリンダ部60を駆動したりする。
 なお、エア制御部351は、制御装置80からの制御コマンドに基づいて動作する。
 温度センサアンプ352は、温度測定装置40の後述するセンサケーブル55と電気的に接続している。温度センサアンプ352は、センサケーブル55を介して後述の温度センサ52から出力された電圧を増幅する。そして、温度センサアンプ352は、増幅した電圧を制御装置80に送る。なお、本実施形態では、制御装置80が、入力された電圧値を測定温度に換算する。ただし、温度センサアンプ352は、温度測定装置40から取得した電圧値を測定温度に換算し、制御装置80に送ってもよい。
(温度測定装置40)
 図2は、基準姿勢の溶接ロボット10のツール部30を拡大してY軸方向から見た側面図である。図3は、基準姿勢の溶接ロボット10のツール部30を拡大してZ軸方向から見た平面図である。
 図2に示すように、温度測定装置40は、マニピュレータ部20や、マニピュレータ部20に接続するトーチ支持部32など、溶接ロボット10において溶接トーチ31を移動させる可動部に設けられる。そして、本実施形態の温度測定装置40は、ワークWに対する一の溶接ビードの形成後であってワークWに次の溶接パスを溶接する前の所定期間に、一の溶接ビードの温度または一の溶接ビードの近傍のワークWの温度を測定する。なお、本実施形態の温度測定装置40は、上記の所定期間に、一の溶接ビードの温度および一の溶接ビードの近傍のワークWの温度の両方を測定してもよい。
 ここで、上述した、溶接ビードの近傍とは、ワークWにおける、ワークWに形成された溶接ビードから例えば約10mm離れた位置を例示することができる。さらに、一の溶接ビードにおける温度の測定位置は、例えば、形成された溶接ビードの長手方向における中央部の一箇所を例示することができる。なお、温度測定装置40は、一の溶接パスの溶接ビードの長手方向において異なる複数箇所の温度を測定してもよい。そして、この内容は、溶接ビードの近傍のワークWの温度を測定する場合においても同様である。
 図2に示すように、本実施形態の温度測定装置40は、ツール部30のトーチ支持部32に設けられている。上述したように、トーチ支持部32は、マニピュレータ部20の手首回転部26に接続している。従って、温度測定装置40は、トーチ支持部32を介して、手首回転部26に保持される。これによって、温度測定装置40は、マニピュレータ部20の末端である手首回転部26によって、溶接トーチ31と一体的に移動する。
 また、本実施形態の溶接ロボット10では、温度測定装置40を、溶接トーチ31を支持するトーチ支持部32に設けることで、温度測定装置40と溶接トーチ31との相対的な位置関係を固定している。
 ここで、溶接ロボット10は、ワークWに対して溶接トーチ31を予め定められた位置に移動させて溶接を行う。この場合に、溶接ロボット10は、ワークWに対して溶接トーチ31を移動させるトーチ支持部32などの可動部が、ワークWに干渉しないように溶接トーチ31を移動させる必要がある。すなわち、溶接ロボット10において、溶接トーチ31の移動は、トーチ支持部32などの可動部の外形による制約を受けることになる。例えば、ワークWに対する溶接トーチ31の移動の妨げにならないように、図2に示すように、ツール部30の鉛直方向における上側の領域A1および下側の領域A2には、溶接トーチ31およびトーチ支持部32以外の構造部を設けないことが好ましい。
 そこで、図3に示すように、本実施形態の溶接ロボット10では、基準姿勢の溶接ロボット10を鉛直方向であるZ軸方向の上側であって、X軸方向にマニピュレータ部20が沿う方向から見た場合に、マニピュレータ部20の左右方向における一方の側に温度測定装置40が配置される。図3に示す例では、温度測定装置40は、溶接トーチ31側から見て、トーチ支持部32における紙面向かって左側に配置される。このように、本実施形態の温度測定装置40は、基準姿勢の溶接ロボット10において、ツール部30の鉛直方向における上側や鉛直方向における下側ではなく、左右方向における側部に配置される。
 さらに、図2に示すように、温度測定装置40は、基準姿勢の溶接ロボット10を水平方向であるY軸方向から見た場合に、ツール部30の外形である輪郭Cよりも内側に設けられる。そして、温度測定装置40は、ツール部30の左右方向における一方側に配置された状態においても、領域A1や領域A2に対して突出しないようにしている。
 続いて、温度測定装置40の構造について詳細に説明する。
 図4は、本実施形態の温度測定装置40の分解斜視図である。
 図5は、本実施形態のセンサ部50の全体図である。
 図6は、本実施形態の温度測定装置40の断面図である。
 図4に示すように、温度測定装置40は、各種の部品が取り付けられる台座部41と、少なくとも温度センサ52(後述)を覆うカバー部42と、温度を検知するセンサ部50と、カバー部42を駆動する駆動部の一例としてのエアシリンダ部60と、を備える。
 台座部41は、断面がL字状に形成された板状の部材である。そして、台座部41は、第1面部411と、第1面部411から立ち上がるように設けられる第2面部412と、を有する。
 第1面部411には、センサ部50およびエアシリンダ部60が取り付けられる。さらに、第1面部411は、温度測定装置40をトーチ支持部32(図2参照)に設置する際の設置面を形成する。第1面部411は、温度測定装置40がトーチ支持部32に設置された状態で、XZ平面(図2参照)に沿うように設けられる。第1面部411は、Y軸方向から見た場合の形状が長方形であり、短辺411aがX軸に対して予め定められた角度α傾斜するとともに長辺411bがZ軸に対して角度α傾斜するように設けられる。以下、短辺411aが延びる方向を「A方向」、長辺411bが延びる方向を「B方向」という。
 第2面部412は、Y軸方向(図2参照)に沿って板状に延びて形成される。第2面部412は、温度測定装置40がトーチ支持部32に設置された状態で、溶接トーチ31側を向くように設けられる。そして、第2面部412は、センサ部50およびエアシリンダ部60と、溶接トーチ31(図2参照)との間に介在するように設けられる。
 さらに、第2面部412は、第1開口部413、第2開口部414および第3開口部415を有する。
 第1開口部413は、U字状に形成された開口である。第1開口部413は、図7に示すように、カバー部42側が開放されている。そして、第1開口部413は、センサ部50の後述する測定レンズ521に対向する位置に設けられる。
 第2開口部414は、円形状に形成された開口である。そして、第2開口部414は、センサ部50の後述する第1レーザ照射部53に対向する位置に設けられる。
 第3開口部415は、円形状に形成された開口である。そして、第3開口部415は、センサ部50の後述する第2レーザ照射部54に対向する位置に設けられる。
 さらに、第2面部412は、カバー部42の後述するカバー面部422に対向して設けられる(図6参照)。また、第2面部412は、カバー部42の移動方向に沿って設けられる。そして、第2面部412は、カバー部42が移動する際に、エアシリンダ部60の後述するシャフト62とは別に、カバー部42の移動を案内する案内部の一例として機能する。
 ここで、後述するように、本実施形態のカバー部42は、エアシリンダ部60の後述するシャフト62のみによって支持されている。従って、カバー部42は、シャフト62による支持状態によっては、シャフト62に対して回転する可能性がある。これに対して、本実施形態の第2面部412は、仮にカバー部42が回転しようとしても、カバー部42を案内することで、カバー部42の移動を安定させる。
 図4に示すように、カバー部42は、箱状に形成された部材である。カバー部42は、天面部421と、天面部421からそれぞれ立ち上がるカバー面部422、背面部423、第1側面部424および第2側面部425を有する。そして、カバー部42は、箱状における開口42Hが台座部41を向くようにして、台座部41に対して移動可能に設けられる。
 カバー面部422は、温度測定装置40においてセンサ部50の後述する測定レンズ521と対向することが可能になっている。また、カバー面部422は、カバー開口部422Hを有する。カバー開口部422Hは、カバー部42の移動方向において、台座部41の第1開口部413と対応する位置に設けられる。
 そして、カバー面部422は、移動することで、温度センサ52(後述)に対するカバー開口部422Hの位置に応じて、温度センサ52を露出させたり、温度センサ52を覆ったりする。
 背面部423は、ケーブル開口部423Hを有する。ケーブル開口部423Hは、背面部423において、センサ部50の後述するセンサケーブル55およびエアシリンダ部60の後述するエアチューブ63を通す箇所を形成する。
 そして、カバー部42は、エアシリンダ部60の後述するシャフト62に固定される。具体的には、カバー部42は、天面部421が固定部材426とシャフト62とによって挟み込まれる。そして、カバー部42は、シャフト62によって支持される。さらに、カバー部42は、エアシリンダ部60のシャフト62の動作に伴って移動する。
 図5に示すように、センサ部50は、設置台51と、測定部の一例としての温度センサ52と、表示部の一例としての第1レーザ照射部53と、表示部の一例としての第2レーザ照射部54と、センサケーブル55と、を有する。
 設置台51は、温度センサ52、第1レーザ照射部53および第2レーザ照射部54を保持する。そして、設置台51は、台座部41に固定される(図4参照)。
 また、設置台51は、第1レーザ照射部53および第2レーザ照射部54の各々のレーザの向きを調整する際に用いられるマーク51Mを有する。
 温度センサ52は、測定レンズ521と、測定レンズ521が集光した赤外線を検出する検出素子(不図示)とを有する。そして、温度センサ52は、測定対象である溶接ビードや溶接ビードの近傍のワークWから放射された赤外線を検知することで、溶接ビードや溶接ビードの近傍のワークWの温度を特定する。すなわち、温度センサ52は、測定対象の溶接ビードや溶接ビードの近傍のワークWに接触することなく、非接触で、溶接ビードや溶接ビードの近傍のワークWの温度を測定する。
 測定レンズ521は、設置台51において、溶接トーチ31(図3参照)側に設けられる。そして、測定レンズ521は、温度センサ52によって溶接ビードや溶接ビードの近傍のワークWの温度を測定する際に、溶接ビードやワークWに向けられる。
 検出素子には、例えばサーモパイルを用いることができる。検出素子は、赤外線を吸収することで温度が上昇する。そして、検出素子は、上昇した温度に応じた電圧値の電気信号を出力する。
 第1レーザ照射部53および第2レーザ照射部54は、線状のレーザであるラインレーザを対象物に向けて照射する。第1レーザ照射部53が照射したラインレーザと、第2レーザ照射部54が照射したラインレーザとは、ワークWなどの対象物にて交わる。そして、本実施形態の第1レーザ照射部53および第2レーザ照射部54は、各々照射したラインレーザが交わる点が、温度センサ52による温度の測定位置を示すように設定されている。
 上述したように、温度センサ52は、非接触で、溶接ビードや溶接ビードの近傍のワークWの温度を測定する。そのため、温度センサ52による測定位置を作業者が目視により確認することが困難である。これに対して、本実施形態の温度測定装置40は、第1レーザ照射部53および第2レーザ照射部54によって温度の測定位置を可視化する。そして、本実施形態の温度測定装置40は、例えば、温度の測定位置の設定を動作プログラムに組み込む際などに、測定位置を作業者が確認できるようにしている。
 センサケーブル55は、温度センサ52が出力する電圧値の電気信号を、中継ボックス35に送る信号線を有する。また、センサケーブル55は、第1レーザ照射部53および第2レーザ照射部54がラインレーザを照射するための電流を、第1レーザ照射部53および第2レーザ照射部54に供給する給電線を有する。
 図6に示すように、エアシリンダ部60は、シリンダ部61と、支持部材の一例としてのシャフト62と、空気の経路であるエアチューブ63とを有する。
 シリンダ部61は、台座部41に固定される。また、シリンダ部61には、シャフト62の一方の端部が挿入される。そして、シリンダ部61は、シャフト62が軸方向に移動可能にシャフト62を支持する。
 シリンダ部61は、内部に、エアチューブ63から供給される圧縮空気が流入する第1室611および第2室612を有する。第1室611は、シリンダ部61からシャフト62を押し出す際に圧縮空気が流入する空間を形成する。第2室612は、シリンダ部61にシャフト62を引き込む際に圧縮空気が流入する空間を形成する。なお、第1室611および第2室612には、それぞれエアチューブ63が圧縮空気を流入可能に接続している。
 シャフト62は、軸方向に長く延びた棒状の部材である。シャフト62は、一端側がシリンダ部61に挿入される。また、シャフト62は、他端側にてカバー部42と接続する。本実施形態のシャフト62には、雌ネジが形成されている。そして、シャフト62と固定部材426との間にカバー部42を挟んで、固定部材426をシャフト62の雌ネジに締結することで、シャフト62は、カバー部42を支持する。さらに、シャフト62は、軸方向に移動可能に構成される。そして、シャフト62は、シリンダ部61から突出したり、シリンダ部61側に退いたりする。
 エアチューブ63は、一端が中継ボックス35のエア制御部351を介してエアコンプレッサ70に連絡し、他端がシリンダ部61に連絡する。そして、エアチューブ63は、エアコンプレッサ70の圧縮空気を、シリンダ部61に供給する。
 そして、エアシリンダ部60では、エアチューブ63を介して第1室611および第2室612のうち何れか一方に選択的に圧縮空気が供給されることで、シャフト62が突出したり、退出したりする。そして、エアシリンダ部60は、シャフト62を駆動することで、シャフト62に接続されるカバー部42を移動させる。
 なお、上述したとおり、本実施形態の温度測定装置40では、カバー部42を駆動するためにエアシリンダ部60を用いているが、エアシリンダ部60を用いることに限定されない。カバー部42を支持する支持部材を駆動し、支持部材を所定方向における一方と他方とに移動させてカバー部42を移動させることが可能な構成であれば、他の構造であっても構わない。
 続いて、温度測定装置40におけるカバー部42の移動動作について説明する。
 図7A,図7Bは、本実施形態の温度測定装置40の動作の説明図であり、温度測定装置40を対象物側からA方向に見た図である。
 なお、図7Aは、台座部41に対してカバー部42が離れた状態を示し、図7Bは、台座部41に対してカバー部42が近づいている状態を示している。
 図7Aに示すように、エアシリンダ部60は、シリンダ部61に供給される圧縮空気によってシャフト62を駆動し、シャフト62の軸方向において、シリンダ部61に対して離れる方向にシャフト62を移動させる。つまり、エアシリンダ部60は、シリンダ部61からシャフト62を押し出す。そうすると、シャフト62に支持されるカバー部42は、台座部41に対して離れる方向に移動する。
 そして、カバー部42は、カバー面部422のカバー開口部422Hが、温度センサ52の測定レンズ521と対向した状態になる。これによって、カバー部42は、温度センサ52の測定レンズ521を露出させた状態にする。
 また、カバー部42が台座部41に対して離れる方向に移動することで、カバー面部422は、第1レーザ照射部53および第2レーザ照射部54を露出させた状態にする。
 ここで、本実施形態の温度測定装置40では、カバー部42と、温度センサ52、第1レーザ照射部53および第2レーザ照射部54との間には、台座部41の第2面部412が設けられている。第2面部412は、第1開口部413にて測定レンズ521を露出させるものの、測定レンズ521の周囲を覆っている。また、第2面部412は、第2開口部414および第3開口部415によって、第1レーザ照射部53および第2レーザ照射部54を露出させるものの、第1レーザ照射部53および第2レーザ照射部54の各々の周囲を覆っている。
 このように、温度測定装置40は、カバー部42が温度センサ52、第1レーザ照射部53および第2レーザ照射部54を露出させた状態で、台座部41の第2面部412が温度センサ52、第1レーザ照射部53および第2レーザ照射部54の周囲を覆う。これによって、温度測定装置40は、温度の測定やラインレーザの照射を可能にしつつ、温度センサ52、第1レーザ照射部53および第2レーザ照射部54を保護する。
 図7Bに示すように、エアシリンダ部60は、シリンダ部61に供給される圧縮空気によってシャフト62を駆動し、シャフト62の軸方向において、シリンダ部61に対して近づく方向にシャフト62を移動させる。つまり、エアシリンダ部60は、シリンダ部61にシャフト62を引き込む。そうすると、シャフト62に支持されるカバー部42は、台座部41に対して近づく方向に移動する。
 そして、カバー部42は、カバー面部422のカバー開口部422Hが、温度センサ52の測定レンズ521から退く。その結果、カバー部42は、カバー開口部422Hが形成されていない領域が温度センサ52と対向した状態になる。これによって、カバー部42は、温度センサ52の測定レンズ521を覆った状態になる。
 また、カバー部42が台座部41に対して近づく方向に移動することで、カバー面部422は、第1レーザ照射部53および第2レーザ照射部54を覆った状態になる。
 本実施形態のカバー部42は、図4を参照しながら説明したように、箱状に形成されている。従って、カバー部42は、台座部41に対して近づく方向に移動することによって、台座部41に設置されるセンサ部50およびエアシリンダ部60を全体的に包み込む状態になる。
 そして、本実施形態の温度測定装置40は、シャフト62を駆動することで、シャフト62の軸方向に沿ってシャフト62を一方側と他方側とに移動させ、カバー部42を移動させる。このように、本実施形態の温度測定装置40は、カバー部42の移動を、簡易で小型の構成によって実現している。
 特に、本実施形態の温度測定装置40では、エアシリンダ部60のシャフト62に対してカバー部42が直接的に支持される。また、温度測定装置40は、カバー部42が温度センサ52を露出させたり、覆ったりする際にカバー部42が移動する方向と、エアシリンダ部60の駆動軸であるシャフト62が移動する方向とが同じ方向になっている。この点において、本実施形態の温度測定装置40は、例えばエアシリンダ部60とカバー部42との間に別の構造部を介在させたり、エアシリンダ部60の駆動軸であるシャフト62の移動方向に対して異なる方向に動力が伝わるようにしてカバー部42を移動させたりするような構成と比較して簡易で小型の構成となっている。
 なお、本実施形態の温度測定装置40は、センサ部50に対して圧縮空気を噴射するエアブローを有していてもよい。そして、温度測定装置40において、エアブローが噴射する圧縮空気によって、温度センサ52、第1レーザ照射部53および第2レーザ照射部54に付着した異物を吹き飛ばすようにしてもよい。この場合において、エアブローに用いる圧縮空気は、エアコンプレッサ70から供給することができる。
 以上のように構成される温度測定装置40の温度センサ52の測定軸について説明する。
 図3に示すように、溶接トーチ31の中心軸L1が通るXZ面と、温度センサ52の測定軸L2が通るXZ面は、Y軸方向に一定距離だけ離れている。そして、本実施形態の溶接ロボット10では、温度センサ52の測定軸L2と溶接トーチ31の中心軸L1との干渉が避けられている。すなわち、温度測定装置40は、対象物の温度を測定しようとする際に、溶接トーチ31の温度の影響を受けないようになっている。
 そして、本実施形態の溶接ロボット10では、温度測定装置40の温度センサ52の測定軸L2が、溶接ビードや溶接ビードの近傍のワークWに対応するように設定されている。これによって、温度測定装置40は、溶接ビードや溶接ビードの近傍のワークWの温度を測定することができる。
 そして、上述したように、溶接トーチ31と温度測定装置40との相対的な位置関係は固定されている。そのため、温度測定装置40の温度センサ52の測定軸L2位置は、溶接トーチ31のアーク点の座標から容易に計算することができる。
[エアコンプレッサ70]
 図1に示すエアコンプレッサ70は、ロータやピストンを駆動することで圧縮した空気を、圧縮空気の供給先に供給する。
 ここで、ツール部30としてのスラグチッパーがマニピュレータ部20に装着されている場合、エアコンプレッサ70は、スラグチッパーのニードルを駆動するために、スラグチッパーに圧縮空気を供給する。
また、エアコンプレッサ70は、温度測定装置40のエアシリンダ部60に対して圧縮空気を供給する。このように、エアコンプレッサ70は、エアシリンダ部60の駆動も行う。
 上述したように、本実施形態の溶接装置1では、溶接トーチ31に代えて、スラグチッパーなどの他のツールを利用する際に用いられる圧縮空気を供給するエアコンプレッサ70を備えている。そして、温度測定装置40では、他のツールを利用する際に用いられるエアコンプレッサ70を用いて、カバー部42を駆動するようにしている。
 なお、溶接装置1において、エアコンプレッサ70は、スラグチッパーのニードルの駆動に限らず、以下の動作に利用することができる。
エアコンプレッサ70は、溶接トーチ31とスラグチッパーとを交換するツールチェンジャーの駆動に用いることができる。
 また、エアコンプレッサ70は、スラグチッパーによって除去されたスラグを吹き飛ばすためのエアブローのエアーの噴射に用いることができる。
 また、エアコンプレッサ70は、溶接トーチ31において、溶接ワイヤの溶接トーチ31の先端における出代を維持するワイヤクランプの駆動に用いることができる。
 また、溶接トーチ31の先端に付着した異物を清掃するためのエアブローのエアーの噴射に用いることができる。
 そして、エアコンプレッサ70は、溶接ワイヤを切断するためのワイヤカッタの駆動に用いることができる。
[制御装置80]
 図1に示す制御装置80は、例えばコンピュータによって構成される。コンピュータは、制御プログラムを実行するCPU(Central Processing Unit)と、起動プログラム等を記憶する不揮発性の半導体メモリと、制御プログラムが実行される揮発性の半導体メモリと、溶接ロボット10から収集される各種の情報を記録するハードディスク装置等で構成される。
 そして、制御装置80は、溶接ロボット10およびエアコンプレッサ70の動作を制御する。
 制御装置80は、ワークWに対する溶接を行うために、ワークWの形状等に基づいて予め設定された溶接プログラムに基づいてマニピュレータ部20の移動動作を制御する。さらに、制御装置80は、ツール部30における溶接トーチ31の溶接動作を制御する。
 また、制御装置80は、温度測定装置40の温度の測定およびカバー部42の動作を制御する。制御装置80は、温度測定装置40から取得した温度に関する情報を処理する。
 さらに、制御装置80は、カバー部42によって温度センサ52を覆ったり露出させたりするタイミングを定める動作プログラムを有している。この動作プログラムは、ワークWに対して溶接が行われているときには、カバー部42が温度センサ52を覆った状態にすることを定める。また、この動作プログラムは、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、カバー部42が温度センサ52を露出させた状態にすることを定める。そして、制御装置80は、温度測定装置40におけるカバー部42の動作の制御を、中継ボックス35のエア制御部351を介して行う。
 続いて、溶接装置1を用いた溶接動作について具体的に説明する。
 図8は、本実施形態の溶接装置1の動作フローの一例を示すフローチャートである。
 以下では、溶接装置1を用いて、ワークWに対して、一の溶接パスにおいて形成された一の溶接ビードに、他の溶接パスとして他の溶接ビードを積層させる多層溶接を行う例を説明する。
 図8に示すように、まず、溶接タスクが開始される(ステップ101)。溶接タスクが開始されると、溶接ロボット10は、制御装置80の制御に従って、マニピュレータ部20を用いて溶接トーチ31をワークWにおける所定の位置に移動させる。そして、溶接ロボット10は、溶接トーチ31を用いてワークWに対する溶接を開始する。
 なお、溶接トーチ31を用いてワークWに対する溶接が開始される際には、温度測定装置40において、カバー部42は、温度センサ52を覆った状態になっている。そして、溶接トーチ31によって溶接が行われる際、温度測定装置40における温度センサ52は、溶接ビードの形成に伴って発生するスパッタ、ヒュームおよび輻射熱から保護される。
 そして、一の溶接パスにおける溶接ビードの形成が終了すると、一の溶接パスの溶接ビードの温度の測定が実行される(ステップ102)。
 このとき、温度測定装置40では、カバー部42は、温度センサ52を露出させた状態にする。
 制御装置80は、予め作成された動作プログラムに従ってマニピュレータ部20を制御し、温度センサ52がワークW上の一の溶接パスにおける溶接ビードの温度を測定可能な位置に温度測定装置40を移動させる。そして、制御装置80は、温度センサ52で測定された電圧値に基づいて、溶接ビードの温度を特定する。
 このように、本実施形態の温度測定装置40は、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、カバー部42が温度センサ52を露出させた状態になり、温度センサ52によって一の溶接ビードの温度の測定を行う。
 次に、制御装置80は、測定された溶接ビードの温度が閾値以下か否かを判定する(ステップ103)。
 測定した溶接ビードの温度が閾値以下の場合(ステップ103にてYES)、制御装置80は、ステップ101に戻って、一の溶接パスの次の他の溶接パスの形成に移行する。これによって、一の溶接ビードに他の溶接ビードが積層された多層溶接が行われる。
 一方、一の溶接パスにおける溶接ビードの温度が閾値を超える場合(ステップ103にてNO)、制御装置80は、一の溶接パスの次の他の溶接パスにおける溶接の開始を行わずに、一定時間待機させる(ステップ104)。その後、一定時間が経過すると、一の溶接パスにおける溶接ビードの温度を再び測定する(ステップ102)。
 なお、ステップ104において、一定時間の待機の代わりに、または、一定時間の待機に加えて、ワークWに対する冷却を行ったり、ワークWにおける別の位置の溶接作業を行ったりしてもよい。
 その後、測定した一の溶接パスの溶接ビードの温度が閾値以下と判定された場合(ステップ103にてYES)には、制御装置80は、ステップ101に戻って、一の溶接パスの次の他の溶接パスの形成に移行する。
 なお、上述した動作では、温度測定装置40を用いて、溶接ビードの温度を測定する例を用いているが、この例に限定されない。温度測定装置40は、形成された溶接ビードの近傍のワークWの温度を測定してもよい。
 また、前述の実施の形態の場合には、溶接ロボット10として鉄骨の溶接に使用される鉄骨溶接ロボットを想定しているが、多層溶接において一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、一の溶接ビードの温度または一の溶接ビードの近傍のワークWの温度の測定が求められる用途であれば、鉄骨溶接ロボットに限らない。
 さらに、前述の実施の形態では、溶接ロボット10が多関節ロボットである例を説明したが、単関節型のロボットでも構わない。この場合においても、温度測定装置40は、溶接トーチを移動させる可動部に設ければよい。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年4月20日出願の日本特許出願(特願2021-071102)に基づくものであり、その内容は本出願の中に参照として援用される。
1…溶接装置、10…溶接ロボット、20…マニピュレータ部、30…ツール部、31…溶接トーチ、32…トーチ支持部、35…中継ボックス、40…温度測定装置、41…台座部、42…カバー部、50…センサ部、52…温度センサ、53…第1レーザ照射部、54…第2レーザ照射部、60…エアシリンダ部、70…エアコンプレッサ、80…制御装置

Claims (10)

  1.  被溶接物に対して、多層溶接可能な溶接装置であって、
     溶接トーチと、
     前記溶接トーチを移動させる可動部と、
     前記可動部に設けられ、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、当該一の溶接ビードの温度、および当該一の溶接ビードの近傍の前記被溶接物の温度の少なくとも一方を測定可能な測定部と、
     少なくとも前記測定部を覆うことが可能なカバー部と、
     前記カバー部を支持する支持部材を駆動して所定方向に移動させることで前記溶接ビードの形成の際に当該カバー部が前記測定部を覆った状態とし、当該支持部材を駆動して当該所定方向とは逆方向に移動させることで前記所定期間に当該カバー部が当該測定部を露出させた状態にする駆動部と、
    を備えることを特徴とする、溶接装置。
  2.  前記駆動部は、圧縮空気を用いて前記支持部材を駆動することを特徴とする、請求項1に記載の溶接装置。
  3.  前記溶接トーチに代えて他のツールを利用する際に用いられる圧縮空気を供給する供給部を備え、
     前記駆動部は、前記供給部が供給する圧縮空気を用いて前記支持部材を駆動することを特徴とする、請求項2に記載の溶接装置。
  4.  前記カバー部が移動する際に、前記駆動部とは別に、当該カバー部の移動を案内する案内部を備えることを特徴とする、請求項1に記載の溶接装置。
  5.  前記案内部は、前記カバー部が前記測定部を露出させた状態で当該測定部による温度の測定を可能に、当該測定部の周囲を覆うことを特徴とする、請求項4に記載の溶接装置。
  6.  前記被溶接物における前記測定部による温度の測定位置を示す表示部を備えることを特徴とする、請求項1に記載の溶接装置。
  7.  前記表示部は、前記カバー部が前記測定部を覆う際に当該測定部とともに当該カバー部に覆われ、当該カバー部が当該測定部を露出させる際に当該測定部とともに露出されることを特徴とする、請求項6に記載の溶接装置。
  8.  前記可動部は、駆動軸を介して移動可能に構成された複数のリンク部を有し、
     前記測定部は、前記溶接トーチが取り付けられる前記リンク部によって保持されることを特徴とする、請求項1に記載の溶接装置。
  9.  前記測定部は、基準姿勢の前記可動部における左右方向の少なくとも一方側に配置されることを特徴とする、請求項8に記載の溶接装置。
  10.  溶接トーチを可動部によって移動させて被溶接物に対して多層溶接可能な溶接装置にて用いられる温度測定装置であって、
    前記可動部に設けられ、一の溶接ビードの形成後であって次の溶接パスを溶接する前の所定期間に、当該一の溶接ビードの温度、および当該一の溶接ビードの近傍の前記被溶接物の温度の少なくとも一方を測定可能な測定部と、
     少なくとも前記測定部を覆うことが可能なカバー部と、
     前記カバー部を支持する支持部材を駆動して所定方向に移動させることで前記溶接ビードの形成の際に当該カバー部が前記測定部を覆った状態とし、当該支持部材を駆動して当該所定方向とは逆方向に移動させることで前記所定期間に当該カバー部が当該測定部を露出させた状態にする駆動部と、
    を備えることを特徴とする、温度測定装置。
PCT/JP2022/014702 2021-04-20 2022-03-25 溶接装置および温度測定装置 WO2022224713A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237035685A KR20230159513A (ko) 2021-04-20 2022-03-25 용접 장치 및 온도 측정 장치
CN202280029694.4A CN117203014A (zh) 2021-04-20 2022-03-25 焊接装置以及温度测定装置
CA3217453A CA3217453A1 (en) 2021-04-20 2022-03-25 Welding apparatus and temperature measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071102A JP7498142B2 (ja) 2021-04-20 溶接装置および温度測定装置
JP2021-071102 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224713A1 true WO2022224713A1 (ja) 2022-10-27

Family

ID=83722143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014702 WO2022224713A1 (ja) 2021-04-20 2022-03-25 溶接装置および温度測定装置

Country Status (4)

Country Link
KR (1) KR20230159513A (ja)
CN (1) CN117203014A (ja)
CA (1) CA3217453A1 (ja)
WO (1) WO2022224713A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126387A (en) * 1979-03-22 1980-09-30 Hitachi Ltd Protective device for weld line detector
WO2018169049A1 (ja) * 2017-03-17 2018-09-20 株式会社ダイヘン 溶接用センサ装置
CN210147217U (zh) * 2019-07-08 2020-03-17 北京创想智控科技有限公司 激光测距传感器保护装置及焊接机器人
WO2020250755A1 (ja) * 2019-06-11 2020-12-17 本田技研工業株式会社 ハウジング及び加工装置の取扱方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275482A (ja) 2007-04-27 2008-11-13 Kobe Steel Ltd パス間温度測定装置及びパス間温度測定装置を使用した溶接方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126387A (en) * 1979-03-22 1980-09-30 Hitachi Ltd Protective device for weld line detector
WO2018169049A1 (ja) * 2017-03-17 2018-09-20 株式会社ダイヘン 溶接用センサ装置
WO2020250755A1 (ja) * 2019-06-11 2020-12-17 本田技研工業株式会社 ハウジング及び加工装置の取扱方法
CN210147217U (zh) * 2019-07-08 2020-03-17 北京创想智控科技有限公司 激光测距传感器保护装置及焊接机器人

Also Published As

Publication number Publication date
CA3217453A1 (en) 2022-10-27
KR20230159513A (ko) 2023-11-21
CN117203014A (zh) 2023-12-08
JP2022165670A (ja) 2022-11-01

Similar Documents

Publication Publication Date Title
US10688612B2 (en) Machine tool
JPS623891A (ja) 工業用マニピユレ−タと併用するツ−リング装置
JP2009255174A (ja) 保護囲いを備えたレーザ加工装置
JP5502462B2 (ja) アーク溶接ロボットの制御装置及びプログラム
KR101720038B1 (ko) 제트/빔 커팅용 수치 제어 툴-홀딩 장치
WO2022224713A1 (ja) 溶接装置および温度測定装置
JP2012051051A (ja) 自動溶接システムにおける溶接方法および自動溶接システム
KR20190104362A (ko) 아크점 조정봉 장착 구조, 다관절 용접 로봇 및 용접 장치
JP7498142B2 (ja) 溶接装置および温度測定装置
JP5409836B2 (ja) ワイヤ放電加工機およびワイヤ放電加工機を用いたワーク測定方法
US20060043080A1 (en) Disconnection box for a robot system
EP1467832B1 (en) Means for visualizing the laser beam in a laser machining system
WO2019138574A1 (ja) ブレーズ装置及び方法
US5650078A (en) Apparatus for cooling a laser-type weld line detecting device of an industrial welding robot
JP7498141B2 (ja) 溶接システム、溶接方法、溶接ロボット及びプログラム
WO2022224714A1 (ja) 溶接システム、溶接方法、溶接ロボット及びプログラム
JP5320682B2 (ja) レーザ加工装置およびレーザ加工方法
JP6955414B2 (ja) 溶接ロボットシステム及び溶接ロボットシステムを用いた溶接方法
JP2008275482A (ja) パス間温度測定装置及びパス間温度測定装置を使用した溶接方法
JP2013193085A (ja) 溶接システム
EP4059653A2 (en) Laser processing device and laser processing system
JP2020069595A (ja) 扉開閉装置と工作機械
JP3507223B2 (ja) 熱切断加工方法およびその装置
KR102437009B1 (ko) 컴퓨터 비전 기반의 용접 로봇 비전 장치 및 그 방법
JP2013027966A (ja) 溶接位置検出方法、及び溶接位置検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791488

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237035685

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035685

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280029694.4

Country of ref document: CN

Ref document number: 18556285

Country of ref document: US

Ref document number: 3217453

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791488

Country of ref document: EP

Kind code of ref document: A1