WO2022224085A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2022224085A1
WO2022224085A1 PCT/IB2022/053452 IB2022053452W WO2022224085A1 WO 2022224085 A1 WO2022224085 A1 WO 2022224085A1 IB 2022053452 W IB2022053452 W IB 2022053452W WO 2022224085 A1 WO2022224085 A1 WO 2022224085A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
pixel electrode
organic layer
display device
Prior art date
Application number
PCT/IB2022/053452
Other languages
English (en)
French (fr)
Inventor
山崎舜平
中村太紀
山内諒
岡崎健一
江口晋吾
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US18/287,339 priority Critical patent/US20240196657A1/en
Priority to CN202280028291.8A priority patent/CN117157695A/zh
Priority to JP2023515415A priority patent/JPWO2022224085A1/ja
Priority to KR1020237036425A priority patent/KR20230169178A/ko
Publication of WO2022224085A1 publication Critical patent/WO2022224085A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • One embodiment of the present invention relates to a display device.
  • One embodiment of the present invention relates to a method for manufacturing a display device.
  • one aspect of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input/output devices, and driving methods thereof. , or methods for producing them, can be mentioned as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • Devices that require high-definition display panels include, for example, smartphones, tablet terminals, and notebook computers.
  • stationary display devices such as television devices and monitor devices are also required to have higher definition along with higher resolution.
  • Display devices applicable to display panels typically include liquid crystal display devices, organic EL (Electro Luminescence) elements, and light-emitting elements (also referred to as light-emitting devices) such as light-emitting diodes (LEDs).
  • LCDs Organic EL
  • LEDs light-emitting diodes
  • a light-emitting device, an electronic paper that performs display by an electrophoresis method, and the like are included.
  • the basic structure of an organic EL device is to sandwich a layer containing a light-emitting organic compound between a pair of electrodes. By applying a voltage to this device, light can be obtained from the light-emitting organic compound.
  • a display device to which such an organic EL element is applied does not require a backlight, which is required in a liquid crystal display device or the like.
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • An object of one embodiment of the present invention is to provide a display device with a wide viewing angle.
  • An object of one embodiment of the present invention is to provide a display device with high color purity.
  • An object of one embodiment of the present invention is to provide a display device that can easily achieve high definition.
  • An object of one embodiment of the present invention is to provide a display device having both high display quality and high definition.
  • An object of one embodiment of the present invention is to provide a high-contrast display device.
  • An object of one embodiment of the present invention is to provide a highly reliable display device.
  • An object of one embodiment of the present invention is to provide a display device with a novel structure.
  • An object of one embodiment of the present invention is to provide a method for manufacturing the above display device.
  • An object of one embodiment of the present invention is to provide a method for manufacturing the above display device with high yield.
  • One aspect of the present invention aims to alleviate at least one of the problems of the prior art.
  • One embodiment of the present invention is a display device including a first light-emitting element and a second light-emitting element over a substrate.
  • the first light emitting element has a first pixel electrode, a first organic layer, and a common electrode
  • the second light emitting element has a second pixel electrode, a second organic layer, and a common electrode.
  • the first light emitting element When viewed from the top of the substrate, the first light emitting element has a first side and a second side that is shorter than the first side.
  • the absolute value of the difference between the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the first direction and the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction is less than or equal to 0.05.
  • the projection onto the substrate in the first direction is parallel to the first side and the projection onto the substrate in the second direction is parallel to the second side.
  • the angle between the first direction and the normal direction of the substrate surface is 70°, and the angle between the second direction and the normal direction of the substrate surface is 70°.
  • Another embodiment of the present invention is a display device including a first light-emitting element and a second light-emitting element over a substrate.
  • the first light emitting element has a first pixel electrode, a first organic layer, and a common electrode
  • the second light emitting element has a second pixel electrode, a second organic layer, and a common electrode.
  • the first light emitting element When viewed from the top of the substrate, the first light emitting element has a first side and a second side that is shorter than the first side.
  • Ratio of the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction to the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the first direction is 0.5 or more and 1.5 or less.
  • the projection onto the substrate in the first direction is parallel to the first side and the projection onto the substrate in the second direction is parallel to the second side.
  • the angle between the first direction and the normal direction of the substrate surface is 70°, and the angle between the second direction and the normal direction of the substrate surface is 70°.
  • the first pixel electrode in a region where the first pixel electrode and the common electrode overlap with each other with the light emitting region of the first organic layer interposed therebetween in the top view of the first light emitting element, the first pixel electrode It is preferable that the entire surface of the electrode 1 on the side of the organic layer and the entire surface of the common electrode on the side of the first organic layer are parallel or substantially parallel.
  • the display device further includes an insulating layer, an edge of the first pixel electrode and an edge of the first organic layer are aligned or substantially aligned, and an edge of the second pixel electrode and an edge of the first organic layer are aligned.
  • the insulating layer is in contact with the side surfaces of the first pixel electrode, the second pixel electrode, the first organic layer, and the second organic layer. It is preferable to have a region.
  • the display device further comprises an insulating layer, the width of the first pixel electrode is smaller than the width of the first organic layer, and the width of the second pixel electrode is smaller than the width of the second organic layer.
  • a small first organic layer covering the sides and top of the first pixel electrode; a second organic layer covering the sides and top of the second pixel electrode; an insulating layer covering the first organic layer; and a region in contact with a portion of the top surface and the side surface of each of the second organic layer.
  • the display device further comprises an insulating layer, the width of the first pixel electrode is greater than the width of the first organic layer, and the width of the second pixel electrode is greater than the width of the second organic layer.
  • the insulating layer covers part of the top surface and side surfaces of each of the first pixel electrode and the second pixel electrode, and a region in contact with each side surface of the first organic layer and the second organic layer. It is preferable to have
  • the display device further includes a first insulating layer and a second insulating layer, the first insulating layer covering the edge of the first pixel electrode, and the first organic layer covering the first pixel electrode.
  • the second insulating layer is provided on the first organic layer and the first insulating layer, and the second insulating layer is provided on the first insulating layer and the first organic layer. It is preferable to have a region in contact with part of the upper surface and side surface of the first organic layer and part of the upper surface of the first insulating layer.
  • the first insulating layer has a tapered end
  • the second insulating layer has a region overlapping with the end of the first insulating layer with the first organic layer interposed therebetween. is preferred.
  • the first light emitting element has a common layer between the first organic layer and the common electrode
  • the second light emitting element has a common layer between the second organic layer and the common electrode. It is preferred to have a common layer in between.
  • the common layer preferably has one or both of an electron transport layer and an electron injection layer.
  • the substrate is preferably flexible and has a non-rectangular shape.
  • a display device with a wide viewing angle can be provided.
  • a display device with high color purity can be provided.
  • a display device having both high display quality and high definition can be provided.
  • a display device with high contrast can be provided.
  • a highly reliable display device can be provided.
  • a display device having a novel structure can be provided.
  • a method for manufacturing the above display device can be provided.
  • at least one of the problems of the prior art can be alleviated.
  • FIG. 1A is a schematic top view showing a configuration example of a display device.
  • 1B and 1C are schematic cross-sectional views showing configuration examples of the display device.
  • 2A to 2C are schematic cross-sectional views showing configuration examples of the display device.
  • FIG. 3 is a diagram showing directions when calculating the chromaticity difference.
  • FIG. 4 is a schematic top view showing a configuration example of a display device.
  • 5A to 5D are cross-sectional views showing configuration examples of the display device.
  • 6A to 6C are cross-sectional views showing configuration examples of the display device.
  • 7A to 7E are cross-sectional views showing configuration examples of the display device.
  • 8A to 8F are cross-sectional views showing configuration examples of the display device.
  • FIG. 9A to 9F are cross-sectional views showing configuration examples of the display device.
  • 10A to 10D are cross-sectional views showing configuration examples of display devices.
  • 11A to 11D are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 12A to 12C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 13A to 13D are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • 14A to 14C are cross-sectional views illustrating an example of a method for manufacturing a display device.
  • FIG. 15 is a perspective view showing an example of a display device.
  • 16A is a cross-sectional view showing an example of a display device
  • 16B and 16C are cross-sectional views showing examples of transistors.
  • FIG. 17 is a cross-sectional view showing an example of a display device.
  • 18A to 18D are cross-sectional views showing examples of display devices.
  • 19A to 19D are top views showing examples of pixels.
  • 20A to 20D are top views showing examples of pixels.
  • 21A to 21E are top views showing examples of pixels.
  • 22A to 22C are top views showing examples of pixels.
  • 23A to 23C are top views showing examples of pixels.
  • 24A, 24B, and 24D are cross-sectional views showing examples of display devices.
  • 24C and 24E are diagrams showing examples of images.
  • 24F and 24G are top views showing examples of pixels.
  • 25A and 25D are cross-sectional views showing configuration examples of the display device.
  • 25B, 25C, 25E, and 25F are top views showing example pixels.
  • 26A to 26F are diagrams showing configuration examples of light-emitting devices.
  • 27A and 27B are diagrams showing configuration examples of a light-emitting device and a light-receiving device.
  • 28A and 28B are diagrams showing configuration examples of a display device.
  • 29A, 29C, and 29E are schematic top views of the display panel in an unfolded state
  • FIGS. 29B, 29D, and 29F are external views of a display device showing one embodiment of the present invention.
  • FIG. 30A is a schematic top view showing a plurality of display panels before being superimposed, and FIG.
  • 30B is an external view of a display device showing one embodiment of the present invention.
  • 31A to 31C are diagrams showing configuration examples of display devices.
  • 32A and 32B are schematic diagrams of a vehicle using display panels.
  • 33A and 33B are diagrams showing an example of an electronic device using a display panel.
  • FIG. 34 is a diagram showing a configuration example of a vehicle.
  • 35A to 35F are diagrams illustrating examples of electronic devices.
  • film and the term “layer” can be interchanged with each other.
  • conductive layer or “insulating layer” may be interchangeable with the terms “conductive film” or “insulating film.”
  • an EL layer refers to a layer provided between a pair of electrodes of a light-emitting element and containing at least a light-emitting substance (also referred to as a light-emitting layer) or a laminate including a light-emitting layer.
  • a display panel which is one aspect of a display device, has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is one aspect of the output device.
  • the substrate of the display panel is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or the substrate is mounted with a COG (Chip On Glass) method.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
  • COG Chip On Glass
  • the heights are the same or approximately the same” refers to a configuration in which the heights from a reference surface (for example, a flat surface such as a substrate surface) are equal in cross-sectional view.
  • planarization processing typically CMP processing
  • CMP processing may expose the surface of a single layer or multiple layers.
  • the surfaces to be CMP-processed have the same height from the reference surface.
  • the heights of the layers may differ depending on the processing equipment, processing method, or material of the surface to be processed during the CMP processing. In this specification and the like, this case is also treated as "the height matches or roughly matches".
  • the height of the top surface of the first layer and the height of the second layer A case where the height difference from the upper surface is 20 nm or less is also referred to as "matching or substantially matching heights".
  • the ends match or roughly match means that at least part of the outline overlaps between the laminated layers when viewed from the top.
  • the upper layer and the lower layer may be processed with the same mask pattern or partially with the same mask pattern.
  • the contours do not overlap, and the upper contour may be positioned inside the lower contour, or the upper contour may be positioned outside the lower contour. “match or approximate match”.
  • the display device of this embodiment has a first light-emitting element and a second light-emitting element.
  • the first light-emitting element and the second light-emitting element each have a first electrode, a light-emitting layer over the first electrode, and a second electrode over the light-emitting layer.
  • the display device of this embodiment may further include a third light-emitting element.
  • a third light-emitting element has a first electrode, a light-emitting layer over the first electrode, and a second electrode over the light-emitting layer.
  • the display device of this embodiment has a first electrode, a second electrode, and a light-emitting layer. Furthermore, the top surface of the first electrode overlapping the light emitting region of the light emitting layer is flat, and the bottom surface of the second electrode overlapping the light emitting region of the light emitting layer is flat.
  • the light-emitting layer when an insulating layer is provided so as to cover the end of the first electrode, light may be emitted from the light-emitting layer located on the insulating layer. Furthermore, when the insulating layer in the region overlapping with the light-emitting layer has a slope, the light is emitted obliquely, which may affect the viewing angle of the display device. Specifically, the viewing angle of the display device may be narrowed.
  • the light-emitting region of the light-emitting layer is flat. Thereby, the viewing angle can be widened in the horizontal (left and right) direction and the vertical (up and down) direction.
  • the viewing angle dependence of chromaticity can be reduced in the horizontal (left and right) direction and the vertical (up and down) direction. Furthermore, the viewing angle dependency of chromaticity in the horizontal (left and right) direction and the viewing angle dependency of chromaticity in the vertical direction (up and down) can be made comparable.
  • the chromaticity difference ⁇ u′ between the chromaticity in the front direction and the chromaticity in the oblique direction (the direction in which the absolute value of the inclination from the front is greater than 0° and less than 90°) in light emission from each light emitting element.
  • v' is preferably 0.05 or less, more preferably 0.02 or less.
  • v' is preferably 0.05 or less, more preferably 0.02 or less.
  • the chromaticity in the front direction and the oblique direction (the absolute value of the inclination from the front) in the CIE 1976 chromaticity coordinates is greater than 0° and less than 90°) is preferably 0.05 or less, more preferably 0.02 or less.
  • the chromaticity difference ⁇ u′v′ between the chromaticity in the front direction and the chromaticity in the direction inclined from 30° to 60° (more preferably from 30° to 80°) from the front is 0.05. It is preferably 0.02 or less, more preferably 0.02 or less.
  • the first light-emitting element, the second light-emitting element, and the third light-emitting element are used.
  • a color other than white may be used.
  • the chromaticity difference ⁇ u'v' described above may be calculated for one angle selected from 30° or more and 80° or less. For example, it is preferable to calculate for one angle selected from 60° or more and 80° or less, specifically 70°. If the above-described chromaticity difference ⁇ u'v' is small with respect to the angle, it can be considered that the viewing angle dependency of chromaticity is small. Alternatively, the chromaticity difference ⁇ u'v' described above may be an average value of the chromaticity differences ⁇ u'v' calculated in a part or all of the range from 30° to 80°.
  • the chromaticity difference ⁇ u′v′ between the chromaticity in the front direction and the chromaticity in the first direction, and the chromaticity in the front direction and the chromaticity in the second direction of light emission from each light emitting element
  • the absolute value of the difference from the chromaticity difference ⁇ u'v' is preferably 0.05 or less, more preferably 0.02 or less.
  • the absolute value of the difference between ⁇ u'v' and the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction is preferably 0.05 or less, and 0.02 or less. It is more preferable to have Note that the first direction and the second direction will be described later.
  • the ratio of the chromaticity difference ⁇ u'v' to the chromaticity is preferably 0.5 or more and 1.5 or less, more preferably 0.6 or more and 1.3 or less, and 0.8 or more and 1.2 or less. More preferred.
  • the chromaticity of the light emitted from each light emitting element is the chromaticity in the front direction and the chromaticity in the first direction tilted from the front by 30° or more and 60° or less (more preferably 30° or more and 80° or less).
  • the ratio of the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction to the difference ⁇ u'v' is preferably 0.5 or more and 1.5 or less, and is 0.6. It is more preferably 1.3 or less, and further preferably 0.8 or more and 1.2 or less. Note that the first direction and the second direction will be described later.
  • the chromaticity of the chromaticity in the front direction and the chromaticity in the first direction in CIE1976 chromaticity coordinates
  • the absolute value of the difference between the difference ⁇ u'v' and the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction is preferably 0.05 or less, and 0.02 or less. is more preferred.
  • the absolute value of the difference between ⁇ u'v' and the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction is preferably 0.05 or less, and 0.02 or less.
  • the first light-emitting element, the second light-emitting element, and the third light-emitting element are used.
  • a color other than white may be used.
  • the chromaticity in the front direction and the chromaticity in the first direction in CIE1976 chromaticity coordinates
  • the ratio of the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction to the chromaticity difference ⁇ u'v' of is preferably 0.5 or more and 1.5 or less, It is more preferably 0.6 or more and 1.3 or less, and further preferably 0.8 or more and 1.2 or less.
  • the ratio of the chromaticity difference ⁇ u'v' between the chromaticity in the front direction and the chromaticity in the second direction is preferably 0.5 or more and 1.5 or less, and is 0.6 or more and 1.3 or less. is more preferable, and more preferably 0.8 or more and 1.2 or less.
  • the first light-emitting element, the second light-emitting element, and the third light-emitting element are used.
  • a color other than white may be used.
  • the absolute value of the above difference or the above ratio may be calculated for one angle selected from 30° or more and 80° or less. For example, it is preferable to calculate for one angle selected from 60° or more and 80° or less, specifically 70°. If the absolute value of the above-mentioned difference or the above-mentioned ratio is small with respect to the angle, the viewing angle dependence of chromaticity in the horizontal (left and right) direction and the viewing angle dependence of chromaticity in the vertical (up and down) direction are calculated. be considered to be the same.
  • the above-mentioned absolute value of the difference or the above-mentioned ratio is the average value of the absolute values of the differences calculated in part or all of the range of 30 ° or more and 80 ° or less, or the average value of the ratios. good too.
  • the display device of the present embodiment has small viewing angle dependency in the horizontal (left and right) direction and the vertical (up and down) direction, and even when the display device is observed from an oblique direction, there is no decrease in contrast and no change in chromaticity depending on the angle. Few. Therefore, high visibility can be obtained not only when the display device is viewed from the front, but also when the display device is viewed from an oblique direction. For example, a plurality of people can observe the display device of this embodiment from various angles at the same time and recognize information displayed on the display device. Moreover, even when observing the flexible display in a bent state, high visibility can be obtained.
  • the display device of this embodiment mode can be applied to various uses such as a display portion of a portable electronic device, a large-screen display portion, and a curved display portion.
  • the display device has a configuration in which one color is expressed by sub-pixels of three colors of R (red), G (green), and B (blue), and sub-pixels of four colors of R, G, B, and W (white). , or a configuration in which one color is expressed by four sub-pixels of R, G, B, and Y (yellow).
  • Color elements are not limited, and colors other than RGBWY (for example, cyan, magenta, etc.) may be used.
  • the end portion of the first electrode is not covered with the insulating layer.
  • an insulating layer is not provided between the first electrode and the light-emitting layer.
  • the edge of the first electrode and the edge of the light-emitting layer match or substantially match.
  • the width of the first electrode is preferably smaller than the width of the light emitting layer.
  • an end portion of the first electrode be covered with an insulating layer, and the insulating layer be in contact with a side surface of the light-emitting layer.
  • the width of the first electrode is larger than the width of the light-emitting layer, and the insulating layer is in contact with the side surface of the first electrode, part of the top surface of the first electrode, and the side surface of the light-emitting layer. is preferred.
  • the end portion of the first electrode is covered with a first insulating layer, and the light-emitting layer overlapping with the first insulating layer is provided with a second electrode.
  • a configuration in which two insulating layers are provided is preferable.
  • FIG. 1A is a schematic top view of a display area 80 of a display device.
  • the display area 80 has a plurality of light emitting elements 90R exhibiting red, light emitting elements 90G exhibiting green, and light emitting elements 90B exhibiting blue.
  • the light emitting region of each light emitting element is labeled with R, G, and B. As shown in FIG.
  • the light emitting elements 90R, 90G, and 90B are arranged in a matrix.
  • FIG. 1A shows a configuration in which light emitting elements have a stripe arrangement.
  • the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may be applied, or a pentile arrangement, a diamond arrangement, or the like may be used.
  • FIG. 1B is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1A.
  • FIG. 1B shows a schematic cross-sectional view of light emitting element 90R, light emitting element 90G, and light emitting element 90B.
  • the light emitting element 90R, the light emitting element 90G, and the light emitting element 90B are provided on a layer 101 including transistors (not shown).
  • Layer 101 is also provided on a substrate (not shown).
  • layer 101 includes a substrate (not shown).
  • the substrate preferably has flexibility. Also, the shape of the substrate is preferably non-rectangular. By forming a light-emitting element over the substrate, a display device having a curved display surface can be manufactured.
  • Layer 101 for example, a stacked structure in which a plurality of transistors are provided and an insulating layer is provided so as to cover these transistors can be applied.
  • Layer 101 may have recesses between adjacent light emitting elements.
  • recesses may be provided in the insulating layer located on the outermost surface of layer 101 . A configuration example of the layer 101 will be described later.
  • the light emitting element 90R has a pixel electrode 111R, an organic layer 112R, and a common electrode 113.
  • the light emitting element 90G has a pixel electrode 111G, an organic layer 112G, and a common electrode 113.
  • the light emitting element 90B has a pixel electrode 111B, an organic layer 112B, and a common electrode 113.
  • FIG. The common electrode 113 is commonly provided for the light emitting element 90R, the light emitting element 90G, and the light emitting element 90B.
  • the symbols added to the reference numerals may be omitted and the light emitting element 90 may be used for description.
  • the light-emitting element 90 described in this specification and the like may refer to any one or more of the light-emitting element 90R, the light-emitting element 90G, and the light-emitting element 90B.
  • the symbols added to the reference numerals may be omitted and the pixel electrode 111 may be used for description.
  • the pixel electrode 111 described in this specification and the like may refer to any one or more of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B.
  • the symbols added to the reference numerals may be omitted and the description may be made by referring to the organic layer 112.
  • the organic layer 112 described in this specification and the like may refer to any one or more of the organic layer 112R, the organic layer 112G, and the organic layer 112B.
  • the pixel electrode 111 is provided for each light emitting element.
  • the organic layer 112R has a light-emitting organic compound that emits light having an intensity in at least the red wavelength range.
  • the organic layer 112G contains a light-emitting organic compound that emits light having an intensity in at least the green wavelength range.
  • the organic layer 112B contains a light-emitting organic compound that emits light having an intensity in at least the blue wavelength range.
  • Each of the organic layer 112R, the organic layer 112G, and the organic layer 112B can also be called an EL layer.
  • the edge of the pixel electrode 111R and the edge of the organic layer 112R match or substantially match.
  • the edge of the pixel electrode 111G and the edge of the organic layer 112G match or substantially match.
  • the edge of the pixel electrode 111B and the edge of the organic layer 112B match or substantially match.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B are preferably provided so as not to contact each other. This can suitably prevent current from flowing through two adjacent organic layers and causing unintended light emission. Therefore, color purity can be improved, and a display device with high display quality can be realized.
  • the display device has an insulating layer 119, and the insulating layer 119 is provided in the gap.
  • the insulating layer 119 has regions in contact with side surfaces of the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, the organic layer 112R, the organic layer 112G, and the organic layer 112B.
  • the insulating layer 119 has a single-layer structure in FIG. 1B, it is not limited to this.
  • the insulating layer 119 may have a multilayer structure of two or more layers.
  • FIG. 1C shows a configuration in which the insulating layer 119 has two layers.
  • the display device shown in FIG. 1C has an insulating layer 119a and an insulating layer 119b on the insulating layer 119a, and other configurations are the same as those of the display device shown in FIG. 1B.
  • the insulating layer 119a with an inorganic material and forming the insulating layer 119b with an organic material, an electrical short between the pixel electrode 111 and the common electrode 113 and leakage current between them can be further effectively prevented. can be effectively suppressed.
  • the common electrode 113 is provided as a continuous layer common to each light emitting element. Also, the common electrode 113 is provided on the organic layer 112R, the organic layer 112G, the organic layer 112B, and the insulating layer 119. FIG. Note that the common electrode 113 may be provided for each light emitting element. At this time, a conductive layer functioning as a wiring may be provided above each common electrode, and the conductive layer and each common electrode may be electrically connected.
  • the light emitting region of the organic layer 112 is the hatched region in FIG. 1B. In other words, the light emitting region of the organic layer 112 is the entire organic layer 112 .
  • the organic layer 112 can be flattened. Furthermore, the common electrode 113 that overlaps the light-emitting region of the organic layer 112 can be planarized. In other words, the entire top surface of the pixel electrode 111 and the entire bottom surface of the common electrode 113 overlapping the light emitting region of the organic layer 112 are parallel or substantially parallel when the light emitting element 90 is viewed in cross section.
  • the entire surface of the pixel electrode 111 on the organic layer 112 side and the common electrode 113 , and the entire surface on the side of the organic layer 112 are parallel or substantially parallel in a cross-sectional view of the light emitting element 90 .
  • FIG. 1B shows a structure in which the edge portions of the pixel electrode 111 and the edge portions of the organic layer 112 are aligned or substantially aligned
  • one embodiment of the present invention is not limited to this.
  • a configuration example of a display device different from the above configuration will be described with reference to FIGS. 2A to 2C.
  • FIG. 2A is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1A.
  • the display shown in FIG. 2A differs from the display shown in FIG. 1B in that the width of the pixel electrode 111 is greater than the width of the organic layer 112 . Note that the description of the parts that overlap with the above-described configuration example 1 will be omitted, and the different parts will be described.
  • the width of the pixel electrode 111R is greater than the width of the organic layer 112R.
  • the width of the pixel electrode 111G is larger than the width of the organic layer 112G.
  • the width of the pixel electrode 111B is larger than the width of the organic layer 112B.
  • the insulating layer 119 forms part of the upper surface and side surfaces of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B, and the organic layer 112R, the organic layer 112G, and the organic layer 112B. has a region that touches the sides of the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B, and the organic layer 112R, the organic layer 112G, and the organic layer 112B. has a region that touches the sides of the
  • the light emitting region of the organic layer 112 is the shaded region in FIG. 2A. In other words, the light emitting region of the organic layer 112 is the entire organic layer 112 .
  • the organic layer 112 can be flattened. Furthermore, the common electrode 113 that overlaps the light-emitting region of the organic layer 112 can be planarized. In other words, the entire top surface of the pixel electrode 111 and the entire bottom surface of the common electrode 113 overlapping the light emitting region of the organic layer 112 are parallel or substantially parallel when the light emitting element 90 is viewed in cross section.
  • the entire surface of the pixel electrode 111 on the organic layer 112 side and the common electrode 113 , and the entire surface on the side of the organic layer 112 are parallel or substantially parallel in a cross-sectional view of the light emitting element 90 .
  • FIG. 2B is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1A.
  • the display shown in FIG. 2B differs from the display shown in FIG. 1B in that the width of the pixel electrode 111 is smaller than the width of the organic layer 112 . Note that the description of the parts that overlap with the above-described configuration example 1 will be omitted, and the different parts will be described.
  • the width of the pixel electrode 111R is smaller than the width of the organic layer 112R.
  • the width of the pixel electrode 111G is smaller than the width of the organic layer 112G.
  • the width of the pixel electrode 111B is smaller than the width of the organic layer 112B.
  • the organic layer 112R is provided so as to cover the top and side surfaces of the pixel electrode 111R.
  • the organic layer 112G is provided so as to cover the top and side surfaces of the pixel electrode 111G.
  • the organic layer 112B is provided so as to cover the top and side surfaces of the pixel electrode 111B.
  • FIG. 2B shows an example in which the side surface of the pixel electrode 111 is vertical, the present invention is not limited to this, and the end portion of the pixel electrode 111 may be tapered. Accordingly, the step coverage of the organic layer 112 is improved, and a highly reliable display device can be obtained.
  • the tapered end of the object means that the angle formed by the side surface (surface) and the formation surface (bottom surface) in the region of the end is greater than 0° and less than 90°. and having a cross-sectional shape in which the thickness increases continuously from the end.
  • a taper angle is an angle formed between a bottom surface (surface to be formed) and a side surface (surface) at an end of an object.
  • the insulating layer 119 has regions in contact with part of the top surface and the side surface of each of the organic layer 112R, the organic layer 112G, and the organic layer 112B.
  • narrowing of the distance between the pixel electrode 111 and the common electrode 113 in a region that does not overlap with the pixel electrode 111 can be suppressed. Therefore, when viewed from above, the organic layer 112 in the region not overlapping the pixel electrode 111 can be prevented from emitting light. That is, the region of the organic layer 112 overlapping the pixel electrode 111 (the hatched region in FIG. 2B) can be used as the light emitting region of the organic layer 112 .
  • the light emitting region of the organic layer 112 can be flattened. Furthermore, the common electrode 113 that overlaps the light-emitting region of the organic layer 112 can be planarized. In other words, the entire top surface of the pixel electrode 111 and the entire bottom surface of the common electrode 113 overlapping the light emitting region of the organic layer 112 are parallel or substantially parallel when the light emitting element 90 is viewed in cross section.
  • the entire surface of the pixel electrode 111 on the organic layer 112 side and the common electrode 113 , and the entire surface on the side of the organic layer 112 are parallel or substantially parallel in a cross-sectional view of the light emitting element 90 .
  • FIG. 2C is a schematic cross-sectional view corresponding to the dashed-dotted line A1-A2 in FIG. 1A.
  • the display device shown in FIG. 2C is different from the display device shown in FIG. 1B in that an insulating layer 118 is provided so as to cover the edge of the pixel electrode 111 .
  • the display device shown in FIG. 2C is different from the display device shown in FIG. 1B in that an insulating layer 119 is provided so as to cover the end portion of the organic layer 112 . Note that the description of the parts that overlap with the above-described configuration example 1 will be omitted, and the different parts will be described.
  • the insulating layer 118 is provided on the layer 101 and the pixel electrode 111 so as to cover the edge of the pixel electrode 111 .
  • the insulating layer 118 is in contact with part of the upper surface and side surfaces of the pixel electrode 111 .
  • the ends of the insulating layer 118 are preferably tapered. Thereby, the coverage of the organic layer 112 formed on the insulating layer 118 can be improved.
  • the organic layer 112 is provided on the pixel electrode 111 and the insulating layer 118 .
  • FIG. 2C shows a configuration in which the end portions of the organic layer 112 and the end portions of the pixel electrodes 111 are aligned or substantially aligned, but the configuration is not limited to this.
  • the width of the pixel electrode 111 may be larger than the width of the organic layer 112 or the width of the pixel electrode 111 may be smaller than the width of the organic layer 112 .
  • the insulating layer 119 is provided on the organic layer 112 and the insulating layer 118 . Further, the insulating layer 119 has a region in contact with part of the top surface and part of the side surface of the organic layer 112 and part of the top surface and part of the side surface of the insulating layer 118 . Note that the region where the insulating layer 119 is in contact with the insulating layer 118 varies depending on the width of the organic layer 112, the shape of the insulating layer 118, and the like. For example, in the display device shown in FIG.
  • the insulating layer 119 has a region in contact with a portion of the top surface and side surfaces of the organic layer 112 and a portion of the top surface and side surfaces of the insulating layer 118 . Further, for example, when the insulating layer 118 is formed using an organic resin, the insulating layer 118 may not have recesses in regions that do not overlap with the pixel electrodes 111 . At this time, the insulating layer 119 has a region in contact with part of the top surface and side surfaces of the organic layer 112 and the top surface of the insulating layer 118 .
  • the insulating layer 119 is preferably provided over the sloped region of the organic layer 112 or a region overlapping with an end portion of the insulating layer 118 . It is more preferably provided over a region overlapping with an end portion of the insulating layer 118 with the insulating layer 118 interposed therebetween.
  • the pixel electrode 111 and the common electrode 113 are connected via the region indicated by the arrow in FIG. interval can be increased. Therefore, the region of the organic layer 112 that overlaps the region where the distance between the pixel electrode 111 and the common electrode 113 is the shortest (the hatched region in FIG. 2C) can be used as the light emitting region of the organic layer 112 .
  • the light emitting region of the organic layer 112 can be flattened. Furthermore, the common electrode 113 that overlaps the light-emitting region of the organic layer 112 can be planarized. In other words, the entire top surface of the pixel electrode 111 and the entire bottom surface of the common electrode 113 overlapping the light emitting region of the organic layer 112 are parallel or substantially parallel when the light emitting element 90 is viewed in cross section.
  • the entire surface of the pixel electrode 111 on the organic layer 112 side and the common electrode 113 , and the entire surface on the side of the organic layer 112 are parallel or substantially parallel in a cross-sectional view of the light emitting element 90 .
  • the display device of this embodiment mode has a plurality of light-emitting elements and can realize full-color display. Several standard values are defined as indicators of quality in full-color display.
  • the sRGB standard is widely established as an international standard color space standard established by the IEC (International Electrotechnical Commission) to unify differences in color reproduction between devices. is doing.
  • the chromaticity (x, y) in the CIE1931 chromaticity coordinates is intended to make the perceived color difference approximately proportional to the distance in space by using the following conversion formula (1). It can also be indicated by CIE1976 chromaticity coordinates (u'v' chromaticity coordinates) defined as .
  • BT.2020 Recommendation ITU-R BT. 2020
  • chromaticity (x, y) is set to red (0.708, 0.292), green (0.170, 0.797), blue (0.131, 0.046 ).
  • Any of a color luminance meter, a spectral radiance meter, and an emission spectrum measuring instrument may be used in calculating the chromaticity.
  • FIG. 3 is a perspective view of the display area 80 of the display device.
  • FIG. 3 shows a configuration in which three light emitting elements (light emitting element 90R, light emitting element 90G, and light emitting element 90B) are arranged. Note that the display area 80 is parallel to the substrate (not shown) surface. Thus, the display area 80 described below can replace the substrate.
  • each light emitting element is described as being rectangular when viewed from above. That is, the top surface shape of each light emitting element is assumed to be a rectangle having a pair of long sides and a pair of short sides.
  • FIG. 3 shows an example in which the light emitting element 90R, the light emitting element 90G, and the light emitting element 90B have a rectangular shape when viewed from above, but the present invention is not limited to this. At least one of the light emitting element 90R, the light emitting element 90G, and the light emitting element 90B preferably has a rectangular shape when viewed from above.
  • each light emitting element is not limited to a rectangle, and may be a shape other than a circle (perfect circle) or a regular polygon. For example, it may be a rectangle with rounded vertices, an oval (oval, oval, elliptical, etc.), or a polygon with two or more different side lengths.
  • the normal direction of the display area 80 is the z-axis
  • the direction perpendicular to the z-axis is the x-axis
  • the direction perpendicular to the z-axis and the x-axis is the y-axis.
  • the x-axis and y-axis are parallel to the display area 80 .
  • a plane parallel to the display area 80 may be referred to as an xy plane.
  • a first direction 31 and a second direction 32 are illustrated in FIG.
  • a first direction 31 corresponds to the first direction described above
  • a second direction 32 corresponds to the second direction described above.
  • the angle between the first direction 31 and the z-axis is an angle 31A
  • the angle between the second direction 32 and the z-axis is an angle 32A
  • the angle between the projection of the first direction 31 onto the xy plane and the x axis is defined as angle 31B
  • the angle between the projection of the second direction 32 onto the xy plane and the x axis is defined as angle 32B.
  • the chromaticity difference ⁇ u′v′ between the chromaticity in the front direction and the chromaticity in the first direction, and the chromaticity in the front direction and the chromaticity in the second direction of the light emission of each light emitting element When calculating the absolute value of the difference between the chromaticity and the chromaticity difference ⁇ u′v′, the first direction 31 is set so that the projection of the first direction 31 onto the xy plane is parallel to the long side of the light emitting element. Then, the second direction 32 is set so that the projection of the second direction 32 onto the xy plane is parallel to the short side of the light emitting element.
  • the first direction 31 is parallel to the long sides of the light emitting elements
  • the second direction 32 is parallel to the short sides of the light emitting elements.
  • the angle between the long side of the light-emitting element and the short side of the light-emitting element is a right angle. It is perpendicular to the projection of the first direction 31 onto the xy plane.
  • the angle formed by the front direction (corresponding to the z-axis direction) and the first direction 31 is equal to the angle formed by the front direction and the second direction 32, and
  • the first direction 31 and the second direction 32 are set so that the projection of the direction 31 onto the xy plane and the projection of the second direction 32 onto the xy plane form an angle of 90° or 270°.
  • the first direction 31 and the second direction are arranged such that the angles of the corners 31A and 32A are equal, and the difference between the angles of the corners 31B and 32B is 90° or 270°. 32 is set.
  • the absolute value of the difference between the two chromaticity differences ⁇ u'v' is an angle selected from 30° or more and 80° or less, or an angle of 30° or more and 80° or less. It is preferable to calculate for a part or all of the range.
  • the second direction 32 has the same absolute value of inclination from the front as the first direction 31 , and the projection onto the display area 80 is perpendicular to the projection of the first direction 31 onto the display area 80 . direction. Also, the second direction 32 can be regarded as the first direction 31 when the display area 80 is rotated by 90° in top view while the first direction 31 is fixed.
  • the first direction 31 is set so that the projection of the first direction 31 onto the xy plane is parallel to the axis of symmetry, and the xy plane of the second direction 32 is set.
  • the second direction 32 may be set such that the projection onto is perpendicular to the axis of symmetry.
  • the first direction 31 is set so that the projection of the first direction 31 onto the xy plane is parallel to the straight line that passes through the center of gravity of the shape of the light emitting element and has the longest distance to the outer edge (outline) of the shape.
  • the projection of the second direction 32 onto the xy plane is parallel to the straight line that passes through the center of gravity of the shape and has the shortest distance to the outer edge of the shape.
  • the angle between the projection of the first direction 31 onto the xy plane and the projection of the second direction 32 onto the xy plane is not limited to a right angle (90° or 270°).
  • a display device with a wide viewing angle can be provided.
  • a display device with high color purity can be provided.
  • a display device with high color purity in the horizontal (left and right) direction and the vertical (up and down) direction can be provided.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • One embodiment of the present invention is a display device including a light-emitting element (also referred to as a light-emitting device).
  • a full-color display device can be realized by including three types of light-emitting elements that emit red (R), green (G), and blue (B) light.
  • island-shaped EL layers and an island-shaped EL layer and an active layer are processed into fine patterns by photolithography without using a shadow mask such as a metal mask.
  • a shadow mask such as a metal mask.
  • an island shape indicates a state in which two or more layers using the same material formed in the same process are physically separated.
  • an island-shaped EL layer means that the EL layer is physically separated from an adjacent EL layer.
  • the distance between the EL layers of different colors or between the EL layers and the active layer is difficult to make the distance between the EL layers of different colors or between the EL layers and the active layer less than 10 ⁇ m, for example, by a formation method using a metal mask. , can be narrowed down to 1 ⁇ m or less.
  • the gap can be narrowed to 500 nm or less, 200 nm or less, 100 nm or less, or even 50 nm or less.
  • the aperture ratio can be brought close to 100%.
  • the aperture ratio can be 50% or more, 60% or more, 70% or more, 80% or more, or even 90% or more, and less than 100%.
  • the patterns of the EL layer and the active layer themselves can also be made much smaller than when a metal mask is used.
  • the thickness varies between the center and the edge of the pattern, so the effective area that can be used as the light emitting region is smaller than the area of the entire pattern.
  • the pattern is formed by processing a film formed to have a uniform thickness, the thickness can be made uniform within the pattern, and even if the pattern is fine, almost the entire area of the pattern can emit light. It can be used as a region. Therefore, with the above manufacturing method, both high definition and high aperture ratio can be achieved.
  • an organic film formed using FMM is often a film with an extremely small taper angle (for example, greater than 0° and less than 30°) such that the thickness becomes thinner as it approaches the end. . Therefore, in the organic film formed using FMM, since the side surface and the top surface are continuously connected, it may be difficult to clearly confirm the side surface. On the other hand, in one embodiment of the present invention, since the EL layer is processed without using FMM, the side surface can be clearly confirmed.
  • the taper angle of the EL layer is preferably 30° to 120°, preferably 60° to 120°.
  • devices manufactured using metal masks or FMM are sometimes referred to as devices with MM (metal mask) structures.
  • a device manufactured using FMM may be referred to as a device with an FMM structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure. Since a display device with an MML structure is manufactured without using a metal mask, it has a higher degree of freedom in designing pixel arrangement, pixel shape, etc. than a display device with an FMM structure or an MM structure.
  • the island-shaped EL layer is not formed by the pattern of the metal mask, but is formed by processing after forming the EL layer over the entire surface. Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Furthermore, since the EL layer can be separately formed for each color, a display device with extremely vivid, high-contrast, and high-quality display can be realized. Further, by providing the sacrificial layer over the EL layer, damage to the EL layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting element can be improved. Note that the sacrificial layer may be referred to as a mask layer in this specification and the like.
  • the display device of one embodiment of the present invention can have a structure in which an insulator covering an end portion of the pixel electrode is not provided. In other words, an insulator is not provided between the pixel electrode and the EL layer.
  • the viewing angle (the maximum angle at which a constant contrast ratio is maintained when the screen is viewed obliquely) is 100° or more and less than 180°, preferably 150°. It can be in the range of 170° or more.
  • the viewing angle described above can be applied to both the vertical direction and the horizontal direction.
  • a metal mask also referred to as FMM
  • FMM metal mask having openings
  • EL vapor deposition is performed on a desired region by performing EL vapor deposition through FMM.
  • the substrate size for EL vapor deposition increases, the size and weight of the FMM also increase.
  • heat or the like is applied to the FMM during EL vapor deposition, the FMM may be deformed.
  • the display device of one embodiment of the present invention has the MML structure, it has an excellent effect such as a higher degree of freedom in designing the pixel arrangement structure than the display device with the FMM structure.
  • this structure is highly compatible with, for example, a flexible device, and one or both of the pixel and the driver circuit can have various circuit arrangements.
  • a light-emitting element capable of emitting white light is sometimes referred to as a white light-emitting element.
  • a white light-emitting element can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
  • the light-emitting element can be roughly classified into a single structure and a tandem structure.
  • a single-structure element preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • the light-emitting layers may be selected such that the respective light-emitting colors of the two light-emitting layers are in a complementary color relationship. For example, by setting the emission color of the first light-emitting layer and the emission color of the second light-emitting layer to have a complementary color relationship, it is possible to obtain a configuration in which the entire light-emitting element emits white light.
  • the light-emitting element as a whole may emit white light by combining the light-emitting colors of the three or more light-emitting layers.
  • a tandem structure element preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit preferably includes one or more light-emitting layers.
  • each light-emitting unit preferably includes one or more light-emitting layers.
  • luminance per predetermined current can be increased, and a light-emitting element with higher reliability than a single structure can be obtained.
  • an intermediate layer such as a charge generation layer is preferably provided between a plurality of light emitting units.
  • the white light emitting element when comparing the white light emitting element (single structure or tandem structure) and the light emitting element having the SBS structure, the light emitting element having the SBS structure can consume less power than the white light emitting element. If it is desired to keep power consumption low, it is preferable to use a light-emitting element having an SBS structure.
  • the white light emitting element is preferable because the manufacturing process is simpler than that of the SBS structure light emitting element, so that the manufacturing cost can be reduced or the manufacturing yield can be increased.
  • the structure of the light-emitting element of this embodiment is not particularly limited, and may be a single structure or a tandem structure.
  • FIG. 4 shows a schematic top view of the display area of the display device 100 and its surroundings.
  • the display region of the display device 100 includes a plurality of light emitting elements 90R exhibiting red, light emitting elements 90G exhibiting green, and light emitting elements 90B exhibiting blue.
  • the light emitting regions of the light emitting elements are denoted by R, G, and B symbols.
  • the light emitting elements 90R, 90G, and 90B are arranged in a matrix.
  • FIG. 4 shows a configuration with a stripe arrangement.
  • the arrangement method of the light emitting elements is not limited to this, and an arrangement method such as an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may be applied, or a pentile arrangement, a diamond arrangement, or the like may be used.
  • connection electrode 111C electrically connected to the common electrode 113.
  • the connection electrode 111C is given a potential (for example, an anode potential or a cathode potential) to be supplied to the common electrode 113 .
  • the connection electrode 111C is provided outside the display area where the light emitting elements 90R and the like are arranged. Also, in FIG. 4, the common electrode 113 is indicated by a dashed line.
  • connection electrodes 111C can be provided along the periphery of the display area. For example, it may be provided along one side of the periphery of the display area, or may be provided over two or more sides of the periphery of the display area. That is, when the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped, L-shaped, U-shaped (square bracket-shaped), square, or the like.
  • FIG. 5A is a cross-sectional view corresponding to the dashed-dotted line A1-A2 and the dashed-dotted line C1-C2 in FIG.
  • FIG. 5A shows a cross-sectional view of the light emitting element 90R, the light emitting element 90G, the light emitting element 90B, and the connecting portion 140.
  • FIG. Light emitting element 90 R, light emitting element 90 G, and light emitting element 90 B are provided on layer 101 .
  • Layer 101 is also provided on a substrate (not shown). Alternatively, layer 101 includes a substrate (not shown).
  • the layer 101 for example, a plurality of transistors (not shown) are provided, and a laminated structure in which an insulating layer is provided so as to cover these transistors can be applied.
  • FIG. 5A shows an example in which the layer 101 does not have recesses between adjacent light emitting elements, it may have recesses.
  • the layer 101 preferably includes, for example, a pixel circuit, a scanning line driving circuit (gate driver), a signal line driving circuit (source driver), and the like.
  • a pixel circuit preferably includes, for example, a scanning line driving circuit (gate driver), a signal line driving circuit (source driver), and the like.
  • gate driver scanning line driving circuit
  • source driver signal line driving circuit
  • an arithmetic circuit, a memory circuit, or the like may be configured.
  • the light emitting element 90R has a pixel electrode 111R, an organic layer 112R, an organic layer 114, and a common electrode 113.
  • the light emitting element 90G has a pixel electrode 111G, an organic layer 112G, an organic layer 114, and a common electrode 113.
  • the light emitting element 90B has a pixel electrode 111B, an organic layer 112B, an organic layer 114, and a common electrode 113.
  • the organic layer 114 and the common electrode 113 are commonly provided for the light emitting elements 90R, 90G, and 90B.
  • the organic layer 114 can also be referred to as a common layer.
  • the organic layer 112R has a light-emitting organic compound that emits light having an intensity in at least the red wavelength range.
  • the organic layer 112G contains a light-emitting organic compound that emits light having an intensity in at least the green wavelength range.
  • the organic layer 112B contains a light-emitting organic compound that emits light having an intensity in at least the blue wavelength range.
  • Each of the organic layer 112R, the organic layer 112G, and the organic layer 112B can also be called an EL layer.
  • Each of the organic layer 112R, the organic layer 112G, and the organic layer 112B may have one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the organic layer 114 can have a structure without a light-emitting layer.
  • organic layer 114 includes one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the uppermost layer that is, the layer in contact with the organic layer 114 is preferably a layer other than the light-emitting layer.
  • an electron-injection layer, an electron-transport layer, a hole-injection layer, a hole-transport layer, or a layer other than these layers be provided to cover the light-emitting layer, and the layer and the organic layer 114 are in contact with each other. .
  • the pixel electrode 111 is provided for each light emitting element. Also, the common electrode 113 and the organic layer 114 are provided as a continuous layer common to each light emitting element. A conductive film having a property of transmitting visible light is used for one of the pixel electrodes and the common electrode 113, and a conductive film having a reflective property is used for the other. By making each pixel electrode translucent and the common electrode 113 reflective, a bottom emission type display device can be obtained. By making the display device light, a top emission display device can be obtained. Note that by making both the pixel electrodes and the common electrode 113 transparent, a dual-emission display device can be obtained.
  • a gap is provided between the two organic layers 112 between the light emitting elements of different colors.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B are preferably provided so as not to contact each other. This can suitably prevent current from flowing through two adjacent organic layers 112 and causing unintended light emission. Therefore, the contrast can be increased, and a display device with high display quality can be realized.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B preferably have a taper angle of 30° or more.
  • the angle between the side surface (surface) and the bottom surface (formation surface) at the end is 30° or more and 120° or less, preferably 45° or more and 120° or less, or more. It is preferably 60° or more and 120° or less.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B preferably each have a taper angle of 90° or its vicinity (for example, 80° or more and 100° or less).
  • a protective layer 121 is provided on the common electrode 113 .
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • the protective layer 121 can have, for example, a single layer structure or a laminated structure including at least an inorganic insulating film.
  • the inorganic insulating film include oxide films such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, and a hafnium oxide film; An oxide film or a nitride film can be mentioned.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
  • the protective layer 121 a laminated film of an inorganic insulating film and an organic insulating film can be used.
  • a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable.
  • the organic insulating film functions as a planarizing film.
  • the upper surface of the organic insulating film can be flattened, so that the coverage of the inorganic insulating film thereon can be improved, and the barrier property against impurities of the protective layer 121 can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, unevenness due to the underlying structure may occur. This is preferable because it can reduce the impact.
  • a structure for example, a color filter, an electrode of a touch sensor, or a lens array
  • connection portion 140 the common electrode 113 is provided on the connection electrode 111C so as to be in contact therewith, and the protective layer 121 is provided to cover the common electrode 113.
  • the edge of the pixel electrode 111R and the edge of the organic layer 112R are aligned or substantially aligned
  • the edge of the pixel electrode 111G and the edge of the organic layer 112G are aligned or substantially aligned
  • the edge of the pixel electrode 111B is aligned.
  • An example of a case where the edge and the edge of the organic layer 112B match or substantially match is shown.
  • the organic layer 114 is provided to cover the top and side surfaces of the organic layer 112R, the organic layer 112G, and the organic layer 112B.
  • the organic layer 114 can prevent the pixel electrode 111 and the common electrode 113 from coming into contact with each other and causing an electrical short.
  • the display device of one embodiment of the present invention is not limited to the structure illustrated in FIG. 5A.
  • a configuration example of a display device partially different from that in FIG. 5A will be described below.
  • FIG. 5B shows an example in which the display device has the organic layer 112R, the organic layer 112G, the organic layer 112B, and the insulating layer 125 provided in contact with the side surface of the pixel electrode 111.
  • the insulating layer 125 By providing the insulating layer 125, an electrical short between the pixel electrode 111 and the common electrode 113 and leakage current therebetween can be effectively suppressed.
  • the insulating layer 125 may be provided in contact with the side surface of the connection electrode 111C.
  • FIG. 5B shows an example in which the insulating layer 125 has a region in contact with part of the upper surface and the side surface of the connection electrode 111C.
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • Examples include a hafnium film and a tantalum oxide film.
  • Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an atomic layer deposition (ALD) method to the insulating layer 125, there are few pinholes and the organic layer is protected.
  • the insulating layer 125 having an excellent function of functioning can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen.
  • aluminum oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • aluminum oxynitride refers to a material whose composition contains more nitrogen than oxygen. indicates
  • a resin layer 126 is provided so as to fill the gap between two opposing pixel electrodes and the gap between two opposing organic layers. That is, the display device shown in FIG. 5C is different from the display device shown in FIG. 5A in that the resin layer 126 is included. Since the surface on which the organic layer 114, the common electrode 113, and the like are formed can be flattened by the resin layer 126, the common electrode 113 is disconnected due to poor coverage of the common electrode 113 at the step between adjacent light emitting elements. can be prevented.
  • the upper surface of the resin layer 126 is preferably as flat as possible, the surface of the resin layer 126 may be concave or convex depending on the uneven shape of the surface on which the resin layer 126 is formed, conditions for forming the resin layer 126, and the like. be.
  • the resin layer 126 may be provided in contact with the side surface of the connection electrode 111C.
  • FIG. 5C shows an example in which the resin layer 126 has a region in contact with part of the top surface and the side surface of the connection electrode 111C.
  • An insulating layer containing an organic material can be suitably used as the resin layer 126 .
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied as the resin layer 126. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used as the resin layer 126 .
  • a photosensitive resin can be used as the resin layer 126 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the resin layer 126 can be produced only through the steps of exposure and development.
  • the resin layer 126 may be formed using a negative photosensitive resin (for example, a resist material).
  • a negative photosensitive resin for example, a resist material.
  • an insulating layer containing an organic material it is preferable to use a material that absorbs visible light.
  • light emitted from the EL layer can be absorbed by the resin layer 126, and light (stray light) that can leak to the adjacent EL layer can be suppressed. Therefore, a display device with high display quality can be provided.
  • a colored material for example, a material containing a black pigment
  • a function of blocking stray light from adjacent pixels and suppressing color mixture may be imparted.
  • an insulating layer 125 and a resin layer 126 are provided on the insulating layer 125 . That is, the display device shown in FIG. 5D is different from the display device shown in FIG. 5A in having the insulating layer 125 and the resin layer 126 .
  • the insulating layer 125 prevents the organic layer 112 and the resin layer 126 from being in contact with each other, so that impurities such as moisture contained in the resin layer 126 can be prevented from diffusing into the organic layer 112, and a highly reliable display device can be obtained. can do.
  • a reflective film for example, a metal film containing one or more selected from silver, palladium, copper, titanium, and aluminum
  • a mechanism may be provided to improve the light extraction efficiency by reflecting emitted light with the reflective film.
  • the display devices shown in FIGS. 6A to 6C and FIGS. 7A to 7E are different from the display device shown in FIG. 5A in that the width of the pixel electrode 111 is different from the width of the organic layer 112 .
  • the width of the pixel electrode 111R is greater than the width of the organic layer 112R
  • the width of the pixel electrode 111G is greater than the width of the organic layer 112G
  • the width of the pixel electrode 111B is greater than the width of the organic layer 112B.
  • An example of a large case is shown.
  • the organic layer 112R is provided inside the edge of the pixel electrode 111R
  • the organic layer 112G is provided inside the edge of the pixel electrode 111G
  • the organic layer 112B is provided inside the edge of the pixel electrode 111B.
  • FIG. 6A shows an example in which an insulating layer 125 is provided.
  • the insulating layer 125 is provided to cover the side surface of the organic layer 112 of the light-emitting element and part of the upper surface and side surface of the pixel electrode 111 .
  • FIG. 6B shows an example in which the resin layer 126 is provided.
  • the resin layer 126 is located between two adjacent light emitting elements, and is provided to cover the side surface of the organic layer 112 and part of the upper surface and side surface of the pixel electrode 111 .
  • FIG. 6C shows an example in which both the insulating layer 125 and the resin layer 126 are provided.
  • An insulating layer 125 is provided between the organic layer 112 and the resin layer 126 .
  • the width of the pixel electrode 111R is smaller than the width of the organic layer 112R
  • the width of the pixel electrode 111G is smaller than the width of the organic layer 112G
  • the width of the pixel electrode 111B is larger than the width of the organic layer 112B.
  • An example of a small case is shown.
  • the edge of the organic layer 112R is positioned outside the edge of the pixel electrode 111R
  • the edge of the organic layer 112G is positioned outside the edge of the pixel electrode 111G
  • the edge of the organic layer 112B is positioned outside the edge of the pixel electrode 111B. located outside the end of the
  • FIG. 7B shows an example with an insulating layer 125.
  • the insulating layer 125 is provided in contact with the side surfaces of the organic layers 112 of two adjacent light emitting elements. Note that the insulating layer 125 may be provided to cover not only the side surfaces of the organic layer 112 but also a portion of the upper surface.
  • FIG. 7C shows an example with a resin layer 126.
  • the resin layer 126 is located between two adjacent light emitting elements and is provided to cover part of the side surface and top surface of the organic layer 112 . Note that the resin layer 126 may be in contact with the side surface of the organic layer 112 and may not cover the upper surface.
  • FIG. 7D shows an example in which both the insulating layer 125 and the resin layer 126 are provided.
  • An insulating layer 125 is provided between the organic layer 112 and the resin layer 126 .
  • FIG. 7E shows an example in which an insulating layer 124, an insulating layer 125, and a resin layer 126 are provided.
  • An insulating layer 124 is provided between the organic layer 112 and the insulating layer 125 .
  • the insulating layer 124 is formed from a sacrificial layer provided over the organic layer 112 .
  • the sacrificial layer will be described later in [Manufacturing Method Example].
  • the layer 101 may have recesses between adjacent light emitting elements.
  • recesses may be provided in the insulating layer located on the outermost surface of layer 101 .
  • the layer 101 may not have recesses between adjacent light emitting elements.
  • FIGS. 8A to 9F show enlarged views of the edge of the pixel electrode 111R of the light emitting element 90R, the edge of the pixel electrode 111G of the light emitting element 90G, and their vicinity.
  • FIG. 8A to 8C show enlarged views of the resin layer 126 and its vicinity when the upper surface of the resin layer 126 is flat.
  • FIG. 8A shows an example in which the organic layer 112R is wider than the pixel electrode 111R and the organic layer 112G is wider than the pixel electrode 111G.
  • FIG. 8B shows an example in which the width of the pixel electrode 111R and the width of the organic layer 112R match or substantially match, and the width of the pixel electrode 111G and the width of the organic layer 112G match or substantially match.
  • FIG. 8C shows an example in which the width of the organic layer 112R is smaller than the width of the pixel electrode 111R and the width of the organic layer 112G is smaller than the width of the pixel electrode 111G.
  • the organic layer 112R is provided to cover the edge of the pixel electrode 111R, and the organic layer 112G is provided to cover the edge of the pixel electrode 111G.
  • the ends are preferably tapered. Accordingly, the step coverage of the organic layer 112R and the organic layer 112G is improved, and a highly reliable display device can be obtained.
  • 9D to 9F show examples in which part of the resin layer 126 covers part of the side surface and top surface of the organic layer 112R and part of the side surface and top surface of the organic layer 112G.
  • an insulating layer 125 is provided between the resin layer 126 and part of the side surface and upper surface of the organic layer 112R or the organic layer 112G.
  • FIGS. 9D to 9F show examples in which part of the upper surface of the resin layer 126 is concave. At this time, uneven portions reflecting the upper surface of the resin layer 126 are formed on the upper surfaces of the organic layer 114 , the common electrode 113 , and the protective layer 121 .
  • FIG. 10A and 10B show an example with an insulating layer 118.
  • FIG. 10A and 10B show an example with an insulating layer 118.
  • An insulating layer 118 is provided to cover the edge of the pixel electrode 111 .
  • the ends of the insulating layer 118 are preferably tapered.
  • the surface can be made into a gently curved surface. Therefore, coverage with a film formed over the insulating layer 118 can be improved.
  • Examples of materials that can be used for the insulating layer 118 include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like. be done.
  • an inorganic insulating material may be used as the insulating layer 118 .
  • inorganic insulating materials that can be used for the insulating layer 118 include oxides, oxynitrides, such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, or hafnium oxide.
  • Nitrided oxides or nitrides can be used.
  • yttrium oxide, zirconium oxide, gallium oxide, tantalum oxide, magnesium oxide, lanthanum oxide, cerium oxide, neodymium oxide, or the like may be used.
  • FIG. 10A shows an example having an insulating layer 118 and a resin layer 126.
  • FIG. 10A shows an example having an insulating layer 118 and a resin layer 126.
  • the display device shown in FIG. 10A is different from the display device shown in FIG. 5A in that the insulating layer 118 and the resin layer 126 are included.
  • the resin layer 126 is located between two adjacent light emitting elements and is provided to cover part of the top surface and side surfaces of the organic layer 112 and the top surface of the insulating layer 118 .
  • FIG. 10B shows an example in which the insulating layer 118, the insulating layer 125, and the resin layer 126 are provided.
  • the display device shown in FIG. 10B is different from the display device shown in FIG. 10A in that the insulating layer 125 is included.
  • An insulating layer 125 is provided between the organic layer 112 and the insulating layer 118 and the resin layer 126 .
  • the resin layer 126 may not be provided in the configuration shown in FIG. 10B.
  • the insulating layer 125 or the resin layer 126 provided between the two opposing organic layers between the two adjacent light emitting elements shown in FIGS. 5B and 5C corresponds to the insulating layer 119 described in Embodiment 1. do.
  • the display device shown in FIG. 10C is mainly different from the display device shown in FIG. 5C in that it has a conductive layer 122R, a conductive layer 122G, and a conductive layer 122B.
  • the conductive layer 122R, the conductive layer 122G, and the conductive layer 122B function as optical adjustment layers.
  • the light emitting element 90R has a conductive layer 122R between the pixel electrode 111R and the organic layer 112R.
  • the light emitting element 90G has a conductive layer 122G between the pixel electrode 111G and the organic layer 112G.
  • the light emitting element 90B has a conductive layer 122B between the pixel electrode 111B and the organic layer 112B.
  • each of the conductive layer 122R, the conductive layer 122G, and the conductive layer 122B has translucency to visible light.
  • the conductive layer 122R, the conductive layer 122G, and the conductive layer 122B have different thicknesses. Thereby, the optical path length can be varied for each light emitting element.
  • each light emitting element has a so-called microcavity structure (microresonator structure), and light of a specific wavelength is enhanced. Thereby, a display device with improved color purity can be realized.
  • a conductive material that is transparent to visible light can be used for each optical adjustment layer.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, gallium-containing zinc oxide, silicon-containing indium tin oxide, and silicon-containing indium zinc oxide can be used. .
  • Each optical adjustment layer can be formed after forming the pixel electrode 111R, the pixel electrode 111G, and the pixel electrode 111B and before forming the organic film that becomes the organic layer 112.
  • Each optical adjustment layer may be a conductive film having a different thickness, or may have a single-layer structure, a two-layer structure, a three-layer structure, etc. in order from the thinnest.
  • the optical adjustment layer is not limited to the display device shown in FIG. 5C, and the display devices shown in FIGS. 5A, 5B, 5D, 6A to 6C, 7A to 7E, 10A and 10B are You may provide in each light emitting element which has.
  • the display device shown in FIG. 10D mainly differs from the display device shown in FIG. 10C in that it does not have an optical adjustment layer.
  • the display shown in FIG. 10D differs from the display shown in FIG. 5C mainly in that the thickness of each organic layer 112 is different.
  • the display device shown in FIG. 10D is an example in which the thicknesses of the organic layer 112R, the organic layer 112G, and the organic layer 112B are made different to realize a microcavity structure. By adopting such a structure, it is not necessary to separately provide an optical adjustment layer, so the process can be simplified.
  • the organic layer 112R of the light emitting element 90R emitting light with the longest wavelength is the thickest
  • the organic layer 112B of the light emitting element 90B emitting light with the shortest wavelength is the thinnest.
  • the thickness of each organic layer can be adjusted in consideration of the wavelength of light emitted by each light emitting element, the optical characteristics of the layers constituting the light emitting element, the electrical characteristics of the light emitting element, and the like. .
  • the light emitting device may be provided with a microcavity structure by varying the thickness of the organic layers 112 .
  • the color purity can be increased.
  • Example of manufacturing method An example of a method for manufacturing a display device of one embodiment of the present invention is described below with reference to drawings. Here, the display device 100 shown in FIG. 7E will be described as an example.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device can be formed by sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD). ) method, ALD method, or the like.
  • the CVD method includes a plasma enhanced CVD (PECVD) method, a thermal CVD method, or the like.
  • PECVD plasma enhanced CVD
  • thermal CVD is the metal organic CVD (MOCVD) method.
  • MOCVD metal organic CVD
  • the ALD method there is a PEALD method, a thermal ALD method, or the like.
  • thin films that make up the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, etc. It can be formed by a method such as coating or knife coating.
  • the thin film when processing the thin film that constitutes the display device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • a photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used to etch the thin film.
  • a layer 101 is formed on a substrate (not shown).
  • the layer 101 can have a stacked structure in which an insulating layer is provided to cover the transistor, for example.
  • the substrate it is preferable to use a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a substrate it is preferable to use a substrate having heat resistance that can withstand at least the subsequent heat treatment.
  • a conductive film is formed on the layer 101 to form the pixel electrode 111 and the connection electrode 111C. Specifically, the conductive film is formed on the insulating surface of the layer 101, for example. Subsequently, part of the conductive film is etched and removed to form a pixel electrode 111R, a pixel electrode 111G, a pixel electrode 111B, and a connection electrode 111C over the layer 101 (FIG. 11A).
  • a material for example, silver or aluminum
  • a material that has as high a reflectance as possible over the entire wavelength range of visible light.
  • an organic film 112Rf that will later become the organic layer 112R is formed on the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, and the layer 101 (FIG. 11B).
  • the organic film 112Rf is preferably provided so as not to overlap the connection electrode 111C.
  • the organic film 112Rf can be formed so as not to overlap the connection electrode 111C. Since the metal mask used at this time does not need to shield the pixel region of the display portion, there is no need to use a high-definition metal mask.
  • the organic film 112Rf has at least a film containing a luminescent compound. Alternatively, one or more of films functioning as a hole injection layer, a hole transport layer, a hole block layer, an electron block layer, an electron transport layer, or an electron injection layer may be stacked.
  • the organic film 112Rf can be formed by, for example, a vapor deposition method, a sputtering method, an inkjet method, or the like. Note that the method is not limited to this, and the film forming method described above can be used as appropriate.
  • a sacrificial film 144Ra is formed on the organic film 112Rf, the connection electrode 111C, and the layer 101, and a sacrificial film 144Rb is formed on the sacrificial film 144Ra (FIG. 11B). That is, a sacrificial film having a two-layer laminated structure is formed on the organic film 112Rf, the connection electrode 111C, and the layer 101 . Note that the sacrificial film may have a single layer structure, or may have a laminated structure of three or more layers.
  • the sacrificial film When the sacrificial film is formed in the subsequent steps, the sacrificial film has a two-layer laminated structure, but may have a single layer structure or a laminated structure of three or more layers. Note that the sacrificial film may be referred to as a mask film in this specification and the like.
  • a sputtering method for example, a CVD method, an ALD method, or a vacuum deposition method can be used.
  • a formation method that causes little damage to the EL layer is preferable, and it is preferable to form the sacrificial film 144Ra directly on the organic film 112Rf by using the ALD method or the vacuum deposition method.
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be suitably used.
  • an oxide film can be used as the sacrificial film 144Ra.
  • an oxide film or an oxynitride film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum oxynitride film, a hafnium oxide film, or a hafnium oxynitride film can be used.
  • a nitride film, for example, can also be used as the sacrificial film 144Ra.
  • nitride films such as a silicon nitride film, an aluminum nitride film, a hafnium nitride film, a titanium nitride film, a tantalum nitride film, a tungsten nitride film, a gallium nitride film, and a germanium nitride film can also be used.
  • Such an inorganic insulating material can be formed using a film formation method such as a sputtering method, a CVD method, or an ALD method. It is preferable to form
  • metal materials such as nickel, tungsten, chromium, molybdenum, cobalt, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or alloy materials containing such metal materials can be used.
  • a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (In--Ga--Zn oxide, also referred to as IGZO) can be used as the sacrificial film 144Ra.
  • indium oxide, indium zinc oxide (In—Zn oxide), indium tin oxide (In—Sn oxide), indium titanium oxide (In—Ti oxide), indium tin zinc oxide (In—Sn -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide), or the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • the material that can be used as the sacrificial film 144Ra mentioned above can be used.
  • one material can be selected for the sacrificial film 144Ra and the other can be selected for the sacrificial film 144Rb from the materials that can be used for the sacrificial film 144Ra listed above.
  • one or a plurality of materials are selected for the sacrificial film 144Ra from among the materials that can be used for the sacrificial film 144Ra, and materials other than those selected for the sacrificial film 144Ra are selected for the sacrificial film 144Rb. materials can be used.
  • the film formation temperature for film formation by the ALD method and the sputtering method is room temperature or higher and 120° C. or lower, preferably room temperature or higher and 100° C. or lower. It is preferable because it can be reduced.
  • the stress of the lamination structure is small.
  • the stress of the laminated structure is ⁇ 500 MPa or more and +500 MPa or less, more preferably ⁇ 200 MPa or more and +200 MPa or less, process troubles such as film peeling and peeling can be suppressed, which is preferable.
  • a film having high resistance to the etching process of each EL film such as the organic film 112Rf, that is, a film having a high etching selectivity can be used.
  • a film that can be removed by a wet etching method that causes less damage to each EL film as the sacrificial film 144Ra is particularly preferable to use.
  • a material that can be dissolved in a chemically stable solvent may be used for at least the film positioned at the top of the organic film 112Rf.
  • a material that dissolves in water or alcohol can be suitably used for the sacrificial film 144Ra.
  • the sacrificial film 144Ra is formed, it is preferable that the sacrificial film 144Ra is dissolved in a solvent such as water or alcohol and applied by a wet film forming method, and then heat-treated to evaporate the solvent. At this time, the heat treatment is preferably performed in a reduced pressure atmosphere because the solvent can be removed at a low temperature in a short period of time, so that thermal damage to the organic film 112Rf can be reduced.
  • wet film formation methods that can be used to form the sacrificial film 144Ra include spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife coating. There are coats, etc.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used.
  • PVA polyvinyl alcohol
  • polyvinyl butyral polyvinylpyrrolidone
  • polyethylene glycol polyglycerin
  • pullulan polyethylene glycol
  • pullulan polyglycerin
  • pullulan water-soluble cellulose
  • alcohol-soluble polyamide resin water-soluble polyamide resin
  • a film having a large selectivity with respect to the sacrificial film 144Ra may be used for the sacrificial film 144Rb.
  • the sacrificial film 144Ra inorganic insulating materials such as aluminum oxide, hafnium oxide, and silicon oxide formed by ALD are used, and as the sacrificial film 144Rb, nickel, tungsten, chromium, molybdenum, cobalt, palladium, and titanium formed by sputtering are used. , aluminum, yttrium, zirconium, and tantalum, or an alloy material containing such metal materials. In particular, it is preferable to use tungsten formed by a sputtering method as the sacrificial film 144Rb.
  • a metal oxide containing indium such as an In--Ga--Zn oxide formed by a sputtering method may be used.
  • an inorganic material may be used as the sacrificial film 144Rb.
  • an oxide film such as a silicon oxide film, a silicon oxynitride film, a silicon nitride oxide film, a silicon nitride film, an aluminum oxide film, an aluminum oxynitride film, or a hafnium oxide film, an oxynitride film, a nitride oxide film, or a nitride Membranes can be used.
  • an organic film that can be used for the organic film 112Rf or the like may be used as the sacrificial film 144Rb.
  • the same organic film as the organic film 112Rf can be used as the sacrificial film 144Rb.
  • the organic film 112Rf and the film forming apparatus can be used in common, which is preferable.
  • the sacrificial film 144Rb can be removed at the same time when the organic film 112Rf is etched, the process can be simplified.
  • a resist mask (not shown) is formed on the sacrificial film 144Rb at a position overlapping with the pixel electrode 111R and the connection electrode 111C.
  • a resist material containing a photosensitive resin such as a positive resist material or a negative resist material can be used.
  • portions of the sacrificial films 144Rb and 144Ra that are not covered with the resist mask are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Rb and 145Ra (FIG. 11C).
  • the sacrificial layer 145Rb and the sacrificial layer 145Ra can be formed, for example, on the pixel electrode 111R and the connection electrode 111C.
  • a portion of the sacrificial film 144Rb is removed by etching using the resist mask to form the sacrificial layer 145Rb, the resist mask is removed, and then the sacrificial film 144Ra is etched using the sacrificial layer 145Rb as a hard mask. is preferred. In this case, it is preferable to etch the sacrificial film 144Rb under etching conditions with a high selectivity with respect to the sacrificial film 144Ra.
  • a wet etching method or a dry etching method can be used for etching for forming the hard mask, and the use of the dry etching method can suppress pattern shrinkage.
  • the processing of the sacrificial film 144Ra and the sacrificial film 144Rb and the removal of the resist mask can be performed by a wet etching method or a dry etching method.
  • the sacrificial film 144Ra and the sacrificial film 144Rb can be processed by a dry etching method using a fluorine-containing gas.
  • the resist mask can be removed by a dry etching method (also referred to as a plasma ashing method) using a gas containing oxygen (also referred to as an oxygen gas).
  • the resist mask can be removed while the organic film 112Rf is covered with the sacrificial film 144Ra.
  • the organic film 112Rf is exposed to oxygen, it may adversely affect the electrical characteristics of the light emitting element 90R. Therefore, when the resist mask is removed by a method using oxygen gas such as plasma ashing, it is preferable to etch the sacrificial film 144Ra using the sacrificial layer 145Rb as a hard mask.
  • the etching rate can be increased by using a dry etching method using oxygen gas for etching the organic film 112Rf. Therefore, etching can be performed under low-power conditions while maintaining a sufficiently high etching rate, so that damage to the organic film 112Rf due to etching can be reduced. Furthermore, problems such as adhesion of reaction products generated during etching to the organic layer 112R can be suppressed.
  • the organic film 112Rf is etched by a dry etching method using an etching gas that does not contain oxygen as a main component, deterioration of the organic film 112Rf can be suppressed and the display device 100 can be a highly reliable display device.
  • the etching gas that does not contain oxygen as a main component include gases containing carbon tetrafluoride (CF 4 ), C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , He, etc. gas containing a group 18 element of Further, a mixed gas of the above gas and a diluent gas that does not contain oxygen can be used as an etching gas.
  • the etching of the organic film 112Rf is not limited to the above, and may be performed by a dry etching method using another gas, or may be performed by a wet etching method.
  • the organic layer 112R is formed by etching the organic film 112Rf, if impurities adhere to the side surface of the organic layer 112R, the impurities may penetrate into the organic layer 112R in subsequent steps. This may reduce the reliability of the display device 100 . Therefore, it is preferable to remove impurities adhering to the surface of the organic layer 112R after forming the organic layer 112R, because the reliability of the display device 100 can be improved.
  • the removal of impurities adhering to the surface of the organic layer 112R can be performed, for example, by irradiating the surface of the organic layer 112R with an inert gas.
  • an inert gas for example, any one or more selected from Group 18 elements (typically helium, neon, argon, xenon, krypton, etc.) and nitrogen can be used.
  • the surface states of the pixel electrodes 111G and 111B may change.
  • the surface of the pixel electrode 111G and the pixel electrode 111B may become hydrophilic.
  • the organic film 112Rf is etched using a gas containing oxygen to obtain a layer containing the indium tin oxide. The layer becomes hydrophilic.
  • the organic film formed so as to have a region in contact with the pixel electrode 111G and the organic film formed so as to have a region in contact with the pixel electrode 111B in a later step are hydrophobic, for example.
  • the adhesion between the hydrophilic surface and the hydrophobic surface is lower than the adhesion between the hydrophilic surfaces and the adhesion between the hydrophobic surfaces.
  • the adhesiveness to the organic film formed in a later step may be lowered. Therefore, the organic film may be peeled off at the interface with the pixel electrode 111G or the interface with the pixel electrode 111B in the subsequent steps.
  • the organic film 112Rf is etched using a gas containing oxygen, the surface work function of the pixel electrode 111G and the pixel electrode 111B may change in addition to the change in the surface state.
  • the display device 100 can be a highly reliable display device.
  • the yield in manufacturing the display device 100 can be increased, and the display device 100 can be inexpensive.
  • Hydrophobic treatment can be performed, for example, by modifying the pixel electrode 111G and the pixel electrode 111B with fluorine.
  • Fluorine modification can be performed, for example, by treatment with a fluorine-containing gas, heat treatment, plasma treatment in a fluorine-containing gas atmosphere, or the like.
  • fluorine gas can be used, and for example, fluorocarbon gas can be used.
  • fluorocarbon gas for example, low - grade fluorocarbon gases such as CF4 gas, C4F6 gas, C2F6 gas, C4F8 gas, and C5F8 gas can be used.
  • As the gas containing fluorine for example, SF6 gas, NF3 gas , CHF3 gas , etc. can be used.
  • helium gas, argon gas, hydrogen gas, or the like can be added to these gases as appropriate.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then to treatment using a silylating agent.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B can be made hydrophobic.
  • a silylating agent hexamethyldisilazane (HMDS), trimethylsilylimidazole (TMSI), or the like can be used.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B may be subjected to plasma treatment in a gas atmosphere containing a group 18 element such as argon, and then to treatment using a silane coupling agent.
  • the surface of the pixel electrode 111G, and the surface of the pixel electrode 111B can be made hydrophobic.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are subjected to plasma treatment in a gas atmosphere containing a group 18 element such as argon, so that the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are treated with plasma.
  • a group 18 element such as argon
  • silane coupling by the silane coupling agent is likely to occur.
  • the surface of the pixel electrode 111G and the surface of the pixel electrode 111B are subjected to plasma treatment in a gas atmosphere containing a Group 18 element such as argon, and then a silylating agent or a silane coupling agent is used.
  • a silylating agent or a silane coupling agent is used.
  • the treatment using a silylating agent, silane coupling agent, or the like can be performed by applying the silylating agent, silane coupling agent, or the like, for example, using a spin coating method, a dipping method, or the like.
  • the treatment using a silylating agent, a silane coupling agent, or the like is performed by using a vapor phase method, for example, to form a film having a silylating agent on the pixel electrode 111G, the pixel electrode 111B, or the like, or a silane coupling agent.
  • the material containing the silylating agent or the material containing the silane coupling agent is volatilized so that the atmosphere contains the silylating agent, the silane coupling agent, or the like.
  • a substrate on which the pixel electrode 111G and the pixel electrode 111B are formed is placed in the atmosphere.
  • a film containing a silylating agent, a silane coupling agent, or the like can be formed on the pixel electrode 111G, the pixel electrode 111B, or the like, and the surface of the pixel electrode 111G or the pixel electrode 111B can be made hydrophobic.
  • an organic film 112Gf that will later become the organic layer 112G is formed on the sacrificial layer 145Rb, the pixel electrode 111G, the pixel electrode 111B, and the layer 101.
  • FIG. By forming the organic film 112Gf after forming the sacrificial layer 145Rb, it is possible to prevent the organic film 112Gf from contacting the upper surface of the organic layer 112R.
  • the description of the formation of the organic film 112Rf can be referred to.
  • a sacrificial film 144Ga is formed on the organic film 112Gf and the sacrificial layer 145Rb, and a sacrificial film 144Gb is formed on the sacrificial film 144Ga (FIG. 12A).
  • a resist mask (not shown) is formed on the sacrificial film 144Gb so as to overlap with the pixel electrode 111G.
  • the description of the formation of the sacrificial film 144Ra, the sacrificial film 144Rb, and the resist mask provided over the sacrificial film 144Rb can be referred to.
  • portions of the sacrificial films 144Gb and 144Ga that are not covered with the resist mask are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Gb and 145Ga. Also, the resist mask is removed (FIG. 12B).
  • the sacrificial layer 145Gb and the sacrificial layer 145Ga can be formed on the pixel electrode 111G.
  • the description of the formation of the sacrificial layer 145Rb and the sacrificial layer 145Ra and the removal of the resist mask provided over the sacrificial film 144Rb can be referred to.
  • a part of the organic film 112Gf that is not covered with the sacrificial layer 145Ga is removed by etching to form an island-shaped or strip-shaped organic layer 112G (FIG. 12C).
  • the description of the formation of the organic layer 112R and the like can be referred to.
  • the substrate on which the organic layer 112G is formed is placed in an inert gas atmosphere, thereby removing impurities adhering to the organic layer 112G.
  • an organic film 112Bf that will later become the organic layer 112B is formed on the sacrificial layer 145Rb, the sacrificial layer 145Gb, the pixel electrode 111B, and the layer 101 .
  • the organic film 112Bf After forming the sacrificial layer 145Gb, it is possible to prevent the organic film 112Bf from contacting the upper surface of the organic layer 112G.
  • the description of the formation of the organic film 112Rf can be referred to.
  • a sacrificial film 144Ba is formed on the organic film 112Bf and the sacrificial layer 145Rb, and a sacrificial film 144Bb is formed on the sacrificial film 144Ba (FIG. 13A).
  • a resist mask (not shown) is formed at a position overlapping with the pixel electrode 111B on the sacrificial film 144Bb.
  • the description of the formation of the sacrificial film 144Ra, the sacrificial film 144Rb, and the resist mask provided over the sacrificial film 144Rb can be referred to.
  • portions of the sacrificial films 144Bb and 144Ba that are not covered with the resist mask are removed by etching to form island-shaped or strip-shaped sacrificial layers 145Bb and 145Ba. Also, the resist mask is removed (FIG. 13B).
  • the sacrificial layer 145Bb and the sacrificial layer 145Ba can be formed on the pixel electrode 111B.
  • the description of the formation of the sacrificial layer 145Rb and the sacrificial layer 145Ra and the removal of the resist mask provided over the sacrificial film 144Rb can be referred to.
  • the organic film 112Bf that is not covered with the sacrificial layer 145Ba is removed by etching to form an island-shaped or strip-shaped organic layer 112B (FIG. 13C).
  • the description of the formation of the organic layer 112R can be referred to.
  • the substrate on which the organic layer 112B is formed is placed in an inert gas atmosphere to remove impurities attached to the organic layer 112B.
  • the sacrificial layer 145Rb, the sacrificial layer 145Gb, and the sacrificial layer 145Bb are removed using etching or the like (FIG. 13D). It is preferable to etch the sacrificial layer 145Rb, the sacrificial layer 145Gb, and the sacrificial layer 145Bb under a condition with a high selection ratio with respect to the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba. Note that the sacrificial layer 145Rb, the sacrificial layer 145Gb, and the sacrificial layer 145Bb may not be removed in some cases.
  • an insulating film 125f that will later become the insulating layer 125 is formed on the sacrificial layer 145Ra, the sacrificial layer 145Ga, the sacrificial layer 145Ba, and the layer 101 (FIG. 14A).
  • the insulating film 125f is preferably formed by a method with high coverage, for example.
  • the insulating film 125f can be deposited by ALD.
  • the insulating film 125f may be formed by a sputtering method, a CVD method, a PLD method, or the like.
  • An inorganic insulating material can be used as the insulating film 125f.
  • oxide, oxynitride, nitride oxide, or nitride can be used for the insulating film 125f, such as aluminum oxide, silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxynitride, and hafnium oxide. and/or the like.
  • the insulating film 125f is preferably deposited, for example, to a thickness of 1 nm to 60 nm, more preferably 1 nm to 40 nm, and more preferably 5 nm to 20 nm. more preferably.
  • an insulating film that will later become the resin layer 126 is formed on the insulating film 125f.
  • An insulating film containing an organic material is preferably used as the insulating film, and a resin is preferably used as the organic material.
  • a photosensitive resin can be used as the insulating film.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the insulating film can be formed using a spin coating method, a spray method, a screen printing method, a paint method, or the like.
  • the insulating film may be flattened. In addition, it may have smooth unevenness reflecting the unevenness of the formation surface.
  • a resin layer 126 is formed (FIG. 14A).
  • the resin layer 126 can be formed without providing an etching mask such as a resist mask or a hard mask.
  • the photosensitive resin can be processed only by exposure and development steps, the resin layer 126 can be formed without using a dry etching method or the like. Therefore, the process can be simplified.
  • damage to the organic layer 112 due to the etching of the insulating film can be reduced.
  • the height of the surface may be adjusted by etching a portion of the upper portion of the resin layer 126 .
  • the resin layer 126 may be formed by substantially uniformly etching the upper surface of the insulating film. Such uniform etching and flattening is also called etchback.
  • the exposure and development process and the etch-back process may be used in combination.
  • the insulating layer 125 is formed from the insulating film 125f.
  • the insulating layer 125 is formed to have a region in contact with the side surface of the resin layer 126 and a region in contact with the bottom surface of the resin layer 126 .
  • a portion of each of the sacrificial layer 145Ra, the sacrificial layer 145Ga, and the sacrificial layer 145Ba is preferably removed by a method that does not damage the organic layer 112 as much as possible, such as wet etching.
  • a part of the sacrificial layer 145Ra may remain on the organic layer 112R.
  • a portion of the sacrificial layer 145Ga may remain on the organic layer 112G.
  • a portion of the sacrificial layer 145Ba may remain on the organic layer 112B.
  • vacuum baking is performed to remove water and the like adsorbed on the surface of the organic layer 112R, the surface of the organic layer 112G, and the surface of the organic layer 112B.
  • Vacuum baking is preferably performed in a temperature range that does not alter the organic compounds contained in the organic layers 112R, 112G, and 112B, for example, 70° C. or higher and 120° C. or lower, more preferably 80° C. or higher and 100° C. or lower. can be done with If the amount of water adsorbed on the surface of the organic layer 112R, the surface of the organic layer 112G, the surface of the organic layer 112B, and the like is small, and the reliability of the display device 100 is not affected, vacuum baking is performed. You don't have to.
  • the organic layer 114 is formed on the organic layer 112R, the organic layer 112G, the organic layer 112B, and the resin layer 126.
  • the organic layer 114 includes at least one of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron transport layer, or an electron injection layer, such as an electron injection layer. , or with a hole injection layer.
  • the organic layer 114 can be formed by, for example, an evaporation method, a sputtering method, an inkjet method, or the like. Note that when the organic layer 114 is not provided on the connection electrode 111C, a metal mask that shields the connection electrode 111C may be used in forming the organic layer 114. FIG. Since the metal mask used at this time does not need to shield the pixel region of the display portion, there is no need to use a high-definition metal mask.
  • a common electrode 113 is formed on the organic layer 114 .
  • the common electrode 113 can be formed by, for example, a sputtering method, a vacuum deposition method, or the like.
  • a protective layer 121 is formed on the common electrode 113 (FIG. 14C).
  • the protective layer 121 is preferably formed by a sputtering method, a CVD method, or an ALD method, for example.
  • an organic insulating film is used as the protective layer 121, it is preferable to form the protective layer 121 by using an inkjet method, for example, because a uniform film can be formed in a desired area.
  • the display device 100 can be manufactured through the above steps.
  • the EL layer is separately formed using, for example, a photolithography method and an etching method without using a shadow mask such as a metal mask.
  • the pattern of the EL layer can be a fine pattern. Therefore, by the method for manufacturing a display device of one embodiment of the present invention, a high-definition display device with a high aperture ratio can be manufactured. Further, a high-resolution display device and a large-sized display device can be manufactured. Furthermore, since the EL layer can be formed separately, a display device with extremely vivid, high contrast, and high display quality can be manufactured.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can be used for display portions of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproducing devices.
  • FIG. 15 shows a perspective view of the display device 100A
  • FIG. 16A shows a cross-sectional view of the display device 100A.
  • the display device 100A has a configuration in which a substrate 152 and a substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by dashed lines.
  • the display device 100A has a display section 162, a circuit 164, wiring 165, and the like.
  • FIG. 15 shows an example in which an IC 173 and an FPC 172 are mounted on the display device 100A. Therefore, the configuration shown in FIG. 15 can also be said to be a display module including the display device 100A, an IC (integrated circuit), and an FPC.
  • a scanning line driving circuit for example, can be used as the circuit 164 .
  • the wiring 165 has a function of supplying signals and power to the display section 162 and the circuit 164 .
  • the signal and power are input to the wiring 165 from the outside through the FPC 172 or from the IC 173 .
  • FIG. 15 shows an example in which the IC 173 is provided on the substrate 151 by the COG method or the COF (Chip On Film) method.
  • the IC 173 for example, an IC having a scanning line driver circuit or a signal line driver circuit can be applied.
  • the display device 100A and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 16A shows an example of a cross-section of the display device 100A when part of the region including the FPC 172, part of the circuit 164, part of the display section 162, and part of the region including the end are cut. show.
  • a display device 100A illustrated in FIG. 16A includes a transistor 201, a transistor 205, a light-emitting device 130a, a light-emitting device 130b, a light-emitting device 130c, a colored layer 129a, a colored layer 129b, a colored layer 129c, and the like, which are provided between a substrate 151 and a substrate 152. have.
  • the light emitting device 130a emits red light
  • the light emitting device 130b emits green light
  • the light emitting device 130c emits blue light.
  • the colored layer 129a transmits red light
  • the colored layer 129b transmits green light
  • the colored layer 129c transmits blue light.
  • the color purity of the light emitted from each light emitting device can be improved, and a display device with higher display quality can be realized.
  • the colored layer 129a, the colored layer 129b, and the colored layer 129c are not necessarily provided.
  • light emitting device 130a, light emitting device 130b, and light emitting device 130c may emit white light.
  • the colored layer 129a, the colored layer 129b, and the colored layer 129c have a function of transmitting different colors. Note that the colored layer may be called a color filter.
  • Structures capable of emitting white light include a single structure and a tandem structure.
  • a light-emitting device having a tandem structure is preferable because high-brightness light emission can be obtained.
  • a structure capable of emitting white light one or both of a single structure and a tandem structure
  • a color filter, and an MML structure of one embodiment of the present invention a display device having a high contrast ratio is provided. can do.
  • the three sub-pixels are red (R), green (G), and blue (B).
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, R, G, B, and Y four-color sub-pixels, and the like. is mentioned.
  • a display device of one embodiment of the present invention is a top emission type in which light is emitted in a direction opposite to a substrate over which a light-emitting device is formed, and light is emitted toward a substrate over which a light-emitting device is formed.
  • a bottom emission type bottom emission type
  • a double emission type dual emission type in which light is emitted from both sides may be used.
  • an EL device such as an OLED (Organic Light Emitting Diode) or a QLED (Quantum-dot Light Emitting Diode).
  • OLED Organic Light Emitting Diode
  • QLED Quadratum-dot Light Emitting Diode
  • light-emitting substances that EL devices have include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescence materials), inorganic compounds (quantum dot materials, etc.), and substances that exhibit heat-activated delayed fluorescence (heat-activated delayed fluorescence (Thermally Activated Delayed Fluorescence: TADF) material).
  • the TADF material a material in which a singlet excited state and a triplet excited state are in thermal equilibrium may be used. Since such a TADF material has a short emission lifetime (excitation lifetime), it is possible to suppress a decrease in efficiency in a high-luminance region of a light-emitting device.
  • a light-emitting device has an EL layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the pixel electrode functions as an anode and the common electrode functions as a cathode will be described below as an example.
  • the light-emitting device 130a includes a pixel electrode 111a, a conductive layer 122a on the pixel electrode 111a, an island-shaped first layer 123a on the conductive layer 122a, an organic layer 114 on the island-shaped first layer 123a, and a common electrode 113 on the organic layer 114 .
  • the first layer 123a and the organic layer 114 can be collectively called an EL layer.
  • the light-emitting device 130b includes a pixel electrode 111b, a conductive layer 122b on the pixel electrode 111b, an island-shaped second layer 123b on the conductive layer 122b, an organic layer 114 on the island-shaped second layer 123b, and a common electrode 113 on the organic layer 114 .
  • the second layer 123b and the organic layer 114 can be collectively called an EL layer.
  • the light-emitting device 130c includes a pixel electrode 111c, a conductive layer 122c on the pixel electrode 111c, an island-shaped third layer 123c on the conductive layer 122c, an organic layer 114 on the island-shaped third layer 123c, and a common electrode 113 on the organic layer 114 .
  • the third layer 123c and the organic layer 114 can be collectively called an EL layer.
  • the same film is shared as a common electrode in each color light-emitting device.
  • a common electrode shared by each light emitting device is electrically connected to the conductive layer provided in the connecting portion 204 . Thereby, the same potential is supplied to the common electrode of each light emitting device.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side of the pixel electrode and common electrode.
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • indium tin oxide also referred to as In—Sn oxide, ITO
  • In—Si—Sn oxide also referred to as ITSO
  • indium zinc oxide In—Zn oxide
  • In—W— Zn oxides aluminum-containing alloys (aluminum alloys) such as alloys of aluminum, nickel, and lanthanum (Al-Ni-La)
  • Al-Ni-La aluminum-containing alloys
  • Al-Ni-La aluminum-containing alloys
  • alloys of silver, palladium and copper Ag-Pd-Cu, also referred to as APC
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium
  • Yb rare earth metal
  • an alloy containing an appropriate combination thereof, graphene, or the like can be used.
  • a micro optical resonator (microcavity) structure is preferably applied to the light emitting device. Therefore, one of the pair of electrodes of the light-emitting device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the light-emitting device preferably uses an electrode having a transmittance of 40% or more for visible light (light with a wavelength of 400 nm or more and less than 750 nm).
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the first layer 123a, the second layer 123b, and the third layer 123c are each provided in an island shape.
  • the first layer 123a, the second layer 123b, and the third layer 123c each have a light-emitting layer.
  • the first layer 123a has a light-emitting layer that emits red light
  • the second layer 123b has a light-emitting layer that emits green light
  • the third layer 123c has a light-emitting layer that emits blue light. is preferred.
  • the first layer 123a, the second layer 123b, and the third layer 123c may have light-emitting layers that emit white light.
  • the island-shaped first layer 123a, the island-shaped second layer 123b, and the island-shaped third layer 123c preferably have the same material. That is, the island-shaped first layer 123a, the island-shaped second layer 123b, and the island-shaped third layer 123c are preferably formed by patterning films formed in the same step.
  • a light-emitting layer is a layer containing a light-emitting substance.
  • the emissive layer can have one or more emissive materials.
  • a substance exhibiting emission colors such as blue, purple, violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the first layer 123a, the second layer 123b, and the third layer 123c include, as layers other than the light-emitting layer, a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, and an electron layer.
  • a layer containing a highly transportable substance, a highly electron-injecting substance, an electron-blocking material, a bipolar substance (a substance with high electron-transporting and hole-transporting properties), or the like may be further included.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-emitting device, and inorganic compounds may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the first layer 123a, the second layer 123b, and the third layer 123c are respectively a hole-injecting layer, a hole-transporting layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, and an electron layer. It may have one or more of the injection layers.
  • layers commonly formed in each light-emitting device include a hole injection layer, a hole transport layer, a hole blocking layer (sometimes referred to as a hole blocking layer), and an electron blocking layer ( may be referred to as an electron blocking layer), an electron transport layer, and an electron injection layer.
  • a carrier injection layer (hole injection layer or electron injection layer) may be formed as the organic layer 114 . Note that all layers of the EL layer may be formed separately for each color. In other words, the EL layer does not have to have a layer that is commonly formed for each color.
  • Each of the first layer 123a, the second layer 123b, and the third layer 123c preferably has a light emitting layer and a carrier transport layer on the light emitting layer.
  • the hole-injecting layer is a layer that injects holes from the anode into the hole-transporting layer, and contains a material with high hole-injecting properties.
  • highly hole-injecting materials include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer by means of the hole-injecting layer.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other highly hole-transporting materials. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other highly hole-transporting materials is preferred.
  • the electron-transporting layer is a layer that transports electrons injected from the cathode to the light-emitting layer by the electron-injecting layer.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ electron deficient including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron transport property such as a type heteroaromatic compound can be used.
  • the electron-transporting layer may have a laminated structure, and has a hole-blocking layer in contact with the light-emitting layer for blocking holes from moving from the anode side to the cathode side through the light-emitting layer. It's okay to be
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • the electron injection layer examples include lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF x , X is an arbitrary number), and 8-(quinolinolato)lithium (abbreviation: Liq), 2-(2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)pheno Alkali metals such as latolithium (abbreviation: LiPPP), lithium oxide (LiO x ), cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. As the laminated structure, for example, lithium fluoride can be used for the first layer and ytterbium can be used for the second layer.
  • an electron-transporting material may be used as the electron injection layer.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably -3.6 eV or more and -2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-di(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • an intermediate layer is provided between the two light-emitting units.
  • the intermediate layer has a function of injecting electrons into one of the two light-emitting units and holes into the other when a voltage is applied between the pair of electrodes.
  • a material that can be applied to an electron injection layer such as lithium
  • a material applicable to the hole injection layer can be preferably used.
  • a layer containing a hole-transporting material and an acceptor material can be used for the intermediate layer.
  • a layer containing an electron-transporting material and a donor material can be used for the intermediate layer.
  • the conductive layers 122a, 122b, and 122c function as optical adjustment layers. Note that the conductive layers 122a, 122b, and 122c may not be provided in some cases.
  • the organic layer 114 (or the common electrode 113) is formed on any side surface of the pixel electrode 111a, the pixel electrode 111b, the pixel electrode 111c, the first layer 123a, the second layer 123b, and the third layer 123c. It is possible to suppress contact with the light-emitting device and suppress short-circuiting of the light-emitting device.
  • the insulating layer 127 corresponds to the resin layer 126 described in the first embodiment and the like.
  • the insulating layer 125 can be an insulating layer having an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • Examples include a hafnium film and a tantalum oxide film.
  • Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • an aluminum oxide film is preferable because it has a high etching selectivity with respect to the EL layer and has a function of protecting the EL layer during formation of the insulating layer 127 described later.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an ALD method to the insulating layer 125, the insulating layer 125 with few pinholes and an excellent function of protecting the EL layer can be obtained. can be formed.
  • a sputtering method, a CVD method, a PLD method, an ALD method, or the like can be used to form the insulating layer 125 .
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • the insulating layer 127 provided on the insulating layer 125 has the function of flattening the recesses of the insulating layer 125 formed between adjacent light emitting devices. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 113 is formed.
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used for the insulating layer 127 .
  • a photosensitive resin can be used as the insulating layer 127 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the difference between the height of the upper surface of the insulating layer 127 and the height of the upper surface of any one of the first layer 123a, the second layer 123b, and the third layer 123c is, for example, 0 of the thickness of the insulating layer 127. 0.5 times or less is preferable, and 0.3 times or less is more preferable. Further, for example, the insulating layer 127 may be provided so that the top surface of any one of the first layer 123 a , the second layer 123 b , and the third layer 123 c is higher than the top surface of the insulating layer 127 .
  • the insulating layer 127 may be provided so that the top surface of the insulating layer 127 is higher than the top surface of the light-emitting layer included in the first layer 123a, the second layer 123b, or the third layer 123c. good.
  • An organic layer 114 is provided on the first layer 123a, the second layer 123b, the third layer 123c, the insulating layer 125, and the insulating layer 127, and the common electrode 113 is provided on the organic layer 114.
  • a protective layer 131 is provided on each of the light emitting device 130a, the light emitting device 130b, and the light emitting device 130c.
  • a protective layer 132 is provided on the protective layer 131 .
  • the conductivity of the protective layers 131 and 132 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used for the protective layers 131 and 132 .
  • the common electrode 113 is prevented from being oxidized, and impurities (moisture, oxygen, etc.) are prevented from entering the light emitting device 130a, the light emitting device 130b, and the light emitting device 130c.
  • impurities moisture, oxygen, etc.
  • deterioration of the light-emitting device can be suppressed, and the reliability of the display device can be improved.
  • inorganic insulating films such as oxide insulating films, nitride insulating films, oxynitride insulating films, and oxynitride insulating films can be used.
  • oxide insulating film include a silicon oxide film, an aluminum oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, and the like.
  • the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • Each of the protective layers 131 and 132 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
  • In the protective layers 131 and 132 In—Sn oxide (also referred to as ITO), In—Zn oxide, Ga—Zn oxide, Al—Zn oxide, or indium gallium zinc oxide (In ⁇
  • ITO In—Sn oxide
  • In—Zn oxide In—Zn oxide
  • Ga—Zn oxide Ga—Zn oxide
  • Al—Zn oxide Al—Zn oxide
  • indium gallium zinc oxide In ⁇
  • An inorganic film containing Ga—Zn oxide (also referred to as IGZO) or the like can also be used.
  • the inorganic film preferably has a high resistance, and specifically, preferably has a higher resistance than the common electrode 113 .
  • the inorganic film may further contain nitrogen.
  • the protective layers 131 and 132 When the light emitted from the light-emitting device is taken out through the protective layers 131 and 132, the protective layers 131 and 132 preferably have high transparency to visible light.
  • the protective layers 131 and 132 preferably have high transparency to visible light.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials with high transparency to visible light.
  • the protective layers 131 and 132 for example, a laminated structure of an aluminum oxide film and a silicon nitride film over the aluminum oxide film, or a laminated structure of an aluminum oxide film and an IGZO film over the aluminum oxide film. etc. can be used.
  • impurities such as water and oxygen
  • the protective layers 131 and 132 may have an organic film.
  • the protective layer 132 may have both organic and inorganic films.
  • the protective layer 131 and the protective layer 132 may be formed using different film formation methods.
  • the protective layer 131 may be formed using an ALD method
  • the protective layer 132 may be formed using a sputtering method.
  • Colored layers (colored layer 129 a , colored layer 129 b , and colored layer 129 c ) are provided on the protective layer 131 .
  • Colored layer 129a has a region that overlaps light emitting device 130a
  • colored layer 129b has a region that overlaps light emitting device 130b
  • colored layer 129c has a region that overlaps light emitting device 130c.
  • the colored layer 129a has at least a region that overlaps with the light-emitting layer of the light-emitting device 130a
  • the colored layer 129b has at least a region that overlaps with the light-emitting layer of the light-emitting device 130b
  • the colored layer 129c has at least the light-emitting layer of the light-emitting device 130c. has a region that overlaps with
  • the colored layer 129a, the colored layer 129b, and the colored layer 129c have a function of transmitting lights of different colors.
  • the colored layer 129a has a function of transmitting red light
  • the colored layer 129b has a function of transmitting green light
  • the colored layer 129c has a function of transmitting blue light. Accordingly, the display device 100 can perform full-color display.
  • the colored layer 129a, the colored layer 129b, and the colored layer 129c may have a function of transmitting any one of cyan, magenta, and yellow light.
  • the protective layer 132 and the substrate 152 are adhered via the adhesive layer 142 .
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to sealing the light-emitting device.
  • the space between substrates 152 and 151 is filled with an adhesive layer 142 to apply a solid sealing structure.
  • the space may be filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 142 may be provided so as not to overlap the light emitting device.
  • the space may be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • the pixel electrode 111a, the pixel electrode 111b, and the pixel electrode 111c are connected to the conductive layer 222b of the transistor 205 through openings provided in the insulating layer 214, respectively.
  • a concave portion is formed in the pixel electrode 111a, the pixel electrode 111b, and the pixel electrode 111c so as to cover the opening provided in the insulating layer 214 .
  • a layer 128 is preferably embedded in the recess. It is preferable to form a conductive layer 122a over the pixel electrode 111a and the layer 128, form a conductive layer 122b over the pixel electrode 111b and the layer 128, and form a conductive layer 122c over the pixel electrode 111c and the layer 128.
  • the conductive layers 122a, 122b, and 122c can also be called pixel electrodes.
  • the layer 128 has a function of planarizing the concave portions of the pixel electrodes 111a, 111b, and 111c. By providing the layer 128, unevenness of the surface on which the EL layer is formed can be reduced, and coverage can be improved.
  • a conductive layer 122a electrically connected to the pixel electrode 111a is provided over the pixel electrode 111a and the layer 128, and a conductive layer electrically connected to the pixel electrode 111b is provided over the pixel electrode 111b and the layer 128.
  • the conductive layer 122c electrically connected to the pixel electrode 111c is provided over the pixel electrode 111c and the layer 128, so that regions overlapping with the concave portions of the pixel electrodes 111a, 111b, and 111c also emit light. May be used as an area. Thereby, the aperture ratio of the pixel can be increased.
  • the layer 128 may be an insulating layer or a conductive layer.
  • Various inorganic insulating materials, organic insulating materials, and conductive materials can be used as appropriate for layer 128 .
  • layer 128 is preferably formed using an insulating material.
  • An insulating layer containing an organic material can be suitably used as the layer 128 .
  • an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimideamide resin, a siloxane resin, a benzocyclobutene resin, a phenol resin, precursors of these resins, or the like can be applied.
  • a photosensitive resin can be used as the layer 128 .
  • a positive material or a negative material can be used for the photosensitive resin.
  • the layer 128 can be formed only through the steps of exposure and development, and the influence of dry etching, wet etching, or the like on the surfaces of the pixel electrodes 111a, 111b, and 111c can be eliminated. can be reduced. Further, when the layer 128 is formed using a negative photosensitive resin, the layer 128 can be formed using the same photomask (exposure mask) used for forming the opening of the insulating layer 214 in some cases. be.
  • the conductive layer 122 a is provided on the pixel electrode 111 a and the layer 128 .
  • the conductive layer 122 a has a first region in contact with the top surface of the pixel electrode 111 a and a second region in contact with the top surface of the layer 128 . It is preferable that the height of the top surface of the pixel electrode 111a in contact with the first region and the height of the top surface of the layer 128 in contact with the second region match or substantially match.
  • the conductive layer 122b is provided on the pixel electrode 111b and the layer 128.
  • the conductive layer 122 b has a first region in contact with the top surface of the pixel electrode 111 b and a second region in contact with the top surface of the layer 128 .
  • the height of the top surface of the pixel electrode 111b in contact with the first region and the height of the top surface of the layer 128 in contact with the second region are preferably the same or substantially the same.
  • the conductive layer 122c is provided on the pixel electrode 111c and the layer 128.
  • the conductive layer 122 c has a first region in contact with the top surface of the pixel electrode 111 c and a second region in contact with the top surface of the layer 128 .
  • the height of the top surface of the pixel electrode 111c in contact with the first region and the height of the top surface of the layer 128 in contact with the second region are preferably the same or substantially the same.
  • the pixel electrode contains a material that reflects visible light
  • the counter electrode contains a material that transmits visible light
  • the display device 100A is of the top emission type. Light emitted by the light emitting device is emitted to the substrate 152 side. A material having high visible light transmittance is preferably used for the substrate 152 .
  • Layer 101 includes a laminated structure from substrate 151 to insulating layer 214 .
  • Both the transistor 201 and the transistor 205 are formed over the substrate 151 . These transistors can be made with the same material and the same process.
  • An insulating layer 211, an insulating layer 213, an insulating layer 215, and an insulating layer 214 are provided on the substrate 151 in this order.
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material in which impurities such as water and hydrogen are difficult to diffuse for at least one insulating layer covering the transistor.
  • Inorganic insulating films are preferably used for the insulating layer 211, the insulating layer 213, and the insulating layer 215, respectively.
  • As the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • the organic insulating film preferably has openings near the ends of the display device 100A. As a result, it is possible to prevent impurities from entering through the organic insulating film from the end of the display device 100A.
  • the organic insulating film may be formed so that the edges of the organic insulating film are located inside the edges of the display device 100A so that the organic insulating film is not exposed at the edges of the display device 100A.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a planarizing layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • the insulating layer 214 may have a laminated structure of an organic insulating film and an inorganic insulating film. The outermost layer of the insulating layer 214 preferably functions as an etching protection film.
  • recesses in the insulating layer 214 can be suppressed when processing the pixel electrode 111a, the conductive layer 122a, or the like.
  • recesses may be provided in the insulating layer 214 during processing of the pixel electrode 111a, the conductive layer 122a, or the like.
  • An opening is formed in the insulating layer 214 in a region 228 shown in FIG. 16A.
  • the transistors 201 and 205 include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as sources and drains, a semiconductor layer 231, and an insulating layer functioning as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the semiconductor layer of the transistor is not particularly limited, either. ) may be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • a metal oxide is a metal oxide in a broad sense.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), oxide semiconductors (also referred to as oxide semiconductors or simply OSs), and the like.
  • oxide semiconductors also referred to as oxide semiconductors or simply OSs
  • an OS transistor can be referred to as a transistor including a metal oxide or an oxide semiconductor.
  • the bandgap of the metal oxide used for the semiconductor layer of the transistor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the off-state current of the OS transistor can be reduced by using a metal oxide with a large bandgap.
  • the metal oxide preferably contains at least indium or zinc, and more preferably contains indium and zinc.
  • metal oxides include indium and M (where M is gallium, aluminum, yttrium, tin, silicon, boron, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium). , hafnium, tantalum, tungsten, magnesium, and cobalt) and zinc.
  • M is preferably one or more selected from gallium, aluminum, yttrium and tin, more preferably gallium.
  • a metal oxide containing indium, M, and zinc may be hereinafter referred to as an In-M-Zn oxide.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) is preferably used for a semiconductor layer of a transistor.
  • an oxide containing indium (In), aluminum (Al), and zinc (Zn) also referred to as IAZO
  • IAZO oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn)
  • IAGZO oxide containing indium (In), aluminum (Al), gallium (Ga), and zinc (Zn)
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the atomic ratio of In in the In-M-Zn oxide may be less than the atomic ratio of M.
  • the amount of change in the threshold voltage or the amount of change in the shift voltage (Vsh) measured by NBTIS (Negative Bias Temperature Illumination Stress) test of the transistor can be reduced.
  • the semiconductor layer of the transistor may contain silicon.
  • silicon examples include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • the semiconductor layer of the transistor may have a layered material that functions as a semiconductor.
  • a layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds such as van der Waals forces that are weaker than covalent or ionic bonds.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity. By using a material that functions as a semiconductor and has high two-dimensional electrical conductivity for the channel formation region, a transistor with high on-state current can be provided.
  • Chalcogenides are compounds containing chalcogens (elements belonging to group 16). Chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • transition metal chalcogenides applicable as semiconductor layers of transistors include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), molybdenum tellurium (typically MoTe 2 ), tungsten sulfide (typically WS 2 ), tungsten selenide (typically WSe 2 ), tungsten tellurium (typically WTe 2 ), hafnium sulfide (typically HfS 2 ), hafnium selenide (typically HfSe 2 ), zirconium sulfide (typically ZrS 2 ), zirconium selenide (typically ZrSe 2 ), and the like.
  • molybdenum sulfide typically MoS 2
  • molybdenum selenide typically MoSe 2
  • molybdenum tellurium typically MoTe 2
  • tungsten sulfide typically WS 2
  • the transistor included in the circuit 164 and the transistor included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may all have the same structure, or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may all be the same, or may be of two or more types.
  • a connecting portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connecting layer 242 .
  • the conductive layer 166 is formed by processing the same conductive film as the pixel electrode 111a, the pixel electrode 111b, and the pixel electrode 111c, and the same conductive film as the conductive layer 122a, the conductive layer 122b, and the conductive layer 122c.
  • An example of a laminated structure of a conductive film obtained by the above is shown.
  • the conductive layer 166 is exposed on the upper surface of the connecting portion 204 . Thereby, the connecting portion 204 and the FPC 172 can be electrically connected via the connecting layer 242 .
  • a light shielding layer 117 is preferably provided on the surface of the substrate 152 on the substrate 151 side. Further, the colored layer 129a, the colored layer 129b, and the colored layer 129c may be provided on the surface of the substrate 152 on the substrate 151 side. 16A, when the substrate 152 is viewed through the substrate 151, the colored layers 129a, 129b, and 129c are provided so as to partially cover the light shielding layer 117. In FIG.
  • optical members can be arranged outside the substrate 152 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 152 .
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the occurrence of scratches due to use
  • a shock absorption layer, etc. are arranged.
  • the protective layers 131 and 132 that cover the light-emitting device By providing the protective layers 131 and 132 that cover the light-emitting device, it is possible to prevent impurities such as water from entering the light-emitting device and improve the reliability of the light-emitting device.
  • the insulating layer 215 and the protective layer 131 or 132 are in contact with each other through the opening of the insulating layer 214 in the region 228 near the edge of the display device 100A.
  • the inorganic insulating films are in contact with each other. This can prevent impurities from entering the display section 162 from the outside through the organic insulating film. Therefore, the reliability of the display device 100A can be improved.
  • the substrates 151 and 152 glass, quartz, ceramics, sapphire, resins, metals, alloys, semiconductors, etc. can be used, respectively.
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 151 or the substrate 152 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyether resins are used, respectively.
  • PES resin Sulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like can be used.
  • PES polyamide resin
  • aramid polysiloxane resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE resin polytetrafluoroethylene
  • ABS resin cellulose nanofiber, or the like
  • One or both of the substrates 151 and 152 may be made of glass having a thickness sufficient to be flexible.
  • a substrate having high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetyl cellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • a film having a low water absorption rate as the substrate.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • connection layer 242 an anisotropic conductive film (ACF: Anisotropic Conductive Film), an anisotropic conductive paste (ACP: Anisotropic Conductive Paste), or the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a layered film of an alloy of silver and magnesium and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting devices.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • 16B and 16C show other configuration examples of the transistor.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located at least between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided to cover the transistor.
  • the transistor 209 shown in FIG. 16B shows an example in which the insulating layer 225 covers the top surface and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the insulating layer 225 overlaps the channel formation region 231i of the semiconductor layer 231 and does not overlap the low resistance region 231n.
  • the structure shown in FIG. 16C can be manufactured by processing the insulating layer 225 using the conductive layer 223 as a mask.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance region 231n through openings in the insulating layer 215, respectively.
  • transistors including silicon in a semiconductor layer in which a channel is formed may be used for all of the transistors included in pixel circuits that drive light-emitting devices.
  • Materials used for Si transistors include single crystal silicon, polycrystalline silicon, amorphous silicon, and the like.
  • a transistor including low-temperature polysilicon (LTPS) in a semiconductor layer (hereinafter also referred to as an LTPS transistor) can be used.
  • the LTPS transistor has high field effect mobility and good frequency characteristics.
  • Si transistors such as LTPS transistors
  • circuits that need to be driven at high frequencies for example, source driver circuits
  • the external circuit mounted on the display device can be simplified, and the component cost and mounting cost can be reduced.
  • An OS transistor is preferably used for at least one of the transistors included in the pixel circuit.
  • OS transistors have much higher field-effect mobility than transistors using amorphous silicon.
  • an OS transistor has extremely low source-drain leakage current (hereinafter also referred to as an off-state current) in an off state, and can retain charge accumulated in a capacitor connected in series with the transistor for a long time. is possible. Further, by using the OS transistor, power consumption of the display device can be reduced.
  • the off-current value of the OS transistor per 1 ⁇ m channel width at room temperature is 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A).
  • the off current value of the Si transistor per 1 ⁇ m channel width at room temperature is 1 fA (1 ⁇ 10 ⁇ 15 A) or more and 1 pA (1 ⁇ 10 ⁇ 12 A) or less. Therefore, it can be said that the off-state current of the OS transistor is about ten digits smaller than the off-state current of the Si transistor.
  • LTPS transistors for some of the transistors included in the pixel circuit and OS transistors for others, a display device with low power consumption and high driving capability can be realized.
  • a structure in which an LTPS transistor and an OS transistor are combined is sometimes called an LTPO.
  • an OS transistor as a transistor or the like that functions as a switch for controlling conduction/non-conduction between wirings, and use an LTPS transistor as a transistor or the like that controls current.
  • one of the transistors provided in the pixel circuit functions as a transistor for controlling the current flowing through the light emitting device, and can be called a driving transistor.
  • One of the source and drain of the driving transistor is electrically connected to the pixel electrode of the light emitting device.
  • An LTPS transistor is preferably used as the driving transistor. This makes it possible to increase the current flowing through the light emitting device in the pixel circuit.
  • the other transistor provided in the pixel circuit functions as a switch for controlling selection and non-selection of pixels, and can be called a selection transistor.
  • the gate of the selection transistor is electrically connected to the gate line, and one of the source and the drain is electrically connected to the source line (signal line).
  • An OS transistor is preferably used as the selection transistor.
  • a display device with high aperture ratio, high definition, high display quality, and low power consumption can be realized.
  • the display device of one embodiment of the present invention includes an OS transistor and a light-emitting device with an MML (metal maskless) structure.
  • MML metal maskless
  • leakage current that can flow through the transistor and leakage current that can flow between adjacent light-emitting devices also referred to as lateral leakage current, side leakage current, or the like
  • an observer can observe any one or more of sharpness of the image, sharpness of the image, high saturation, and high contrast ratio.
  • the leakage current that can flow in the transistor and the horizontal leakage current between light-emitting devices are extremely small, so that light leakage (so-called whitening) that can occur during black display is extremely small (also called pure black display).
  • a layer provided between light-emitting devices (for example, an organic layer commonly used between light-emitting devices, also referred to as a common layer) is Since the structure is divided, a display with no side leakage or very little side leakage can be obtained.
  • the amount of current flowing through the light emitting device it is necessary to increase the amount of current flowing through the light emitting device.
  • the OS transistor when the transistor operates in the saturation region, the OS transistor can reduce the change in the current between the source and the drain with respect to the change in the voltage between the gate and the source compared to the Si transistor. Therefore, by applying an OS transistor as a drive transistor included in a pixel circuit, the current flowing between the source and the drain can be finely determined according to the change in the voltage between the gate and the source. You can control it. Therefore, it is possible to increase the gradation in the pixel circuit.
  • the OS transistor flows a more stable current (saturation current) than the Si transistor even when the source-drain voltage gradually increases. be able to. Therefore, by using the OS transistor as the driving transistor, a stable current can be supplied to the light-emitting device even if the current-voltage characteristics of the light-emitting device including the EL material are varied. That is, when the OS transistor operates in the saturation region, even if the source-drain voltage is increased, the source-drain current hardly changes, so that the light emission luminance of the light-emitting device can be stabilized.
  • an OS transistor as a driving transistor included in a pixel circuit, it is possible to suppress black floating, increase emission luminance, provide multiple gradations, and suppress variations in light emitting devices. can be planned.
  • Display device 100B A display device 100B shown in FIG. 17 is mainly different from the display device 100A in that it is of a bottom emission type. Note that the description of the same parts as those of the display device 100A will be omitted.
  • FIG. 17 shows a sub-pixel including the first layer 123a and a sub-pixel including the second layer 123b, three or more types of sub-pixels can be provided as in FIG. 16A.
  • the light emitted by the light emitting device is emitted to the substrate 151 side.
  • a material having high visible light transmittance is preferably used for the substrate 151 .
  • the material used for the substrate 152 may or may not be translucent.
  • the pixel electrodes 111a, 111b, and the conductive layers 122a and 122b contain a material that transmits visible light
  • the common electrode 113 contains a material that reflects visible light
  • the conductive layer 166 obtained by processing the same conductive film as the pixel electrodes 111a, 111b, and the conductive layers 122a and 122b also contains a material that transmits visible light.
  • a light shielding layer 117 is preferably formed between the substrate 151 and the transistor 201 and between the substrate 151 and the transistor 205 .
  • 17 shows an example in which the light-blocking layer 117 is provided over the substrate 151, the insulating layer 153 is provided over the light-blocking layer 117, and the transistor 201, the transistor 205, and the like are provided over the insulating layer 153.
  • FIG. 17 shows an example in which the light-blocking layer 117 is provided over the substrate 151, the insulating layer 153 is provided over the light-blocking layer 117, and the transistor 201, the transistor 205, and the like are provided over the insulating layer 153.
  • the colored layer 129a and the colored layer 129b are provided between the insulating layer 215 and the insulating layer 214. It is preferable that end portions of the colored layers 129 a and 129 b overlap with the light-blocking layer 117 .
  • FIGS. 18A to 18D show cross-sectional structures of the pixel electrode 111a, the layer 128, and the region 138 including the periphery thereof. 18A to 18D also apply to the light emitting device 130b and the light emitting device 130c.
  • 16A and 17 show an example in which the upper surface of the layer 128 and the upper surface of the pixel electrode 111a are substantially aligned, but the present invention is not limited to this.
  • the top surface of layer 128 may be higher than the top surface of pixel electrode 111a.
  • the upper surface of the layer 128 has a convex shape that gently swells toward the center.
  • the upper surface of the layer 128 may be lower than the upper surface of the pixel electrode 111a.
  • the upper surface of the layer 128 has a shape that is concave toward the center and gently recessed.
  • the top of the layer 128 when the top surface of the layer 128 is higher than the top surface of the pixel electrode 111a, the top of the layer 128 may extend beyond the concave portion formed in the pixel electrode 111a. At this time, part of the layer 128 may be formed covering part of the substantially flat region of the pixel electrode 111a.
  • the recess has a shape that is gently recessed toward the center.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles, trapezoids, etc.), polygons such as pentagons, shapes with rounded corners of these polygons, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting device.
  • a stripe arrangement is applied to the pixels 110 shown in FIG. 19A.
  • a pixel 110 shown in FIG. 19A is composed of three sub-pixels: a sub-pixel 110a, a sub-pixel 110b, and a sub-pixel 110c.
  • the sub-pixel 110a may be the red sub-pixel R
  • the sub-pixel 110b may be the green sub-pixel G
  • the sub-pixel 110c may be the blue sub-pixel B.
  • a pixel 110 shown in FIG. 19B is composed of three sub-pixels, a sub-pixel 110a, a sub-pixel 110b, and a sub-pixel 110c.
  • the sub-pixel 110a may be the blue sub-pixel B
  • the sub-pixel 110b may be the red sub-pixel R
  • the sub-pixel 110c may be the green sub-pixel G.
  • FIG. 19C is an example in which sub-pixels of each color are arranged in a zigzag pattern. Specifically, when viewed from above, the positions of the upper sides of two sub-pixels (for example, sub-pixel 110a and sub-pixel 110b or sub-pixel 110b and sub-pixel 110c) aligned in the column direction are shifted.
  • the sub-pixel 110a may be the red sub-pixel R
  • the sub-pixel 110b may be the green sub-pixel G
  • the sub-pixel 110c may be the blue sub-pixel B.
  • the pixel 110 shown in FIG. 19D includes a subpixel 110a having a substantially trapezoidal top shape with rounded corners, a subpixel 110b having a substantially triangular top surface shape with rounded corners, and a substantially square or substantially hexagonal top surface shape with rounded corners. and a sub-pixel 110c having Also, the sub-pixel 110a has a larger light emitting area than the sub-pixel 110b.
  • the shape and size of each sub-pixel can be determined independently. For example, sub-pixels with more reliable light emitting devices can be smaller in size.
  • the sub-pixel 110a may be the green sub-pixel G
  • the sub-pixel 110b may be the red sub-pixel R
  • the sub-pixel 110c may be the blue sub-pixel B.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • a stripe arrangement is applied to the pixels 110 shown in FIGS. 21A to 21C.
  • FIG. 21A shows an example in which each subpixel has a rectangular top surface shape
  • FIG. 21B shows an example in which each subpixel has a top surface shape (also referred to as an oval shape) connecting two semicircles and a rectangle
  • FIG. 21C is an example in which each sub-pixel has an elliptical top surface shape.
  • a pixel 110 shown in FIGS. 21A to 21C is composed of four sub-pixels: a sub-pixel 110a, a sub-pixel 110b, a sub-pixel 110c, and a sub-pixel 110d.
  • the sub-pixel 110a, sub-pixel 110b, sub-pixel 110c, and sub-pixel 110d emit light of different colors.
  • subpixel 110a, subpixel 110b, subpixel 110c, and subpixel 110d can be red, green, blue, and white subpixels, respectively.
  • subpixel 110a, subpixel 110b, subpixel 110c, and subpixel 110d can be red, green, blue, and white subpixels, respectively.
  • subpixel 110a, subpixel 110b, subpixel 110c, and subpixel 110d can be red, green, blue, and infrared-emitting subpixels, respectively.
  • the sub-pixel 110d has a light-emitting device.
  • the light-emitting device has a pixel electrode, an island-shaped fourth layer of the pixel electrode, an organic layer 114 on the island-shaped fourth layer, and a common electrode 113 on the organic layer 114 .
  • the fourth layer and the organic layer 114 can be collectively called an EL layer.
  • the same material as the pixel electrodes 111a, 111b, and 111c may be used.
  • a material similar to that of the first layer 123a, the second layer 123b, and the third layer 123c may be used.
  • FIG. 21D shows an example in which one pixel 110 is composed of 2 rows and 3 columns.
  • the pixel 110 has three sub-pixels (sub-pixel 110a, sub-pixel 110b, sub-pixel 110c) in the upper row (first row) and three sub-pixels 110d in the lower row (second row).
  • pixel 110 has sub-pixels 110a and 110d in the left column (first column), sub-pixels 110b and 110d in the center column (second column), and sub-pixels 110b and 110d in the middle column (second column).
  • a column (third column) has a sub-pixel 110c and a sub-pixel 110d.
  • FIG. 21D by arranging the arrangement of the sub-pixels in the upper row and the lower row in the same manner, it is possible to efficiently remove dust and the like that may occur in the manufacturing process. Therefore, a display device with high display quality can be provided.
  • FIG. 21E shows an example in which one pixel 110 is composed of 2 rows and 3 columns.
  • the pixel 110 has three sub-pixels (sub-pixel 110a, sub-pixel 110b, sub-pixel 110c) in the upper row (first row) and one sub-pixel (sub-pixel 110c) in the lower row (second row). sub-pixel 110d).
  • pixel 110 has sub-pixel 110a in the left column (first column), sub-pixel 110b in the middle column (second column), and sub-pixel 110b in the right column (third column). It has pixels 110c and sub-pixels 110d over these three columns.
  • the pixel 110 shown in FIGS. 21D and 21E for example, as shown in FIGS. can be the blue sub-pixel B and the sub-pixel 110d can be the white sub-pixel W.
  • a display device of one embodiment of the present invention may include a light-receiving device (also referred to as a light-receiving element) in a pixel.
  • a light-receiving device also referred to as a light-receiving element
  • three may be configured to have light-emitting devices, and the remaining one may be configured to include light-receiving devices.
  • a pn-type or pin-type photodiode can be used as the light receiving device.
  • a light-receiving device functions as a photoelectric conversion device (also referred to as a photoelectric conversion element) that detects light incident on the light-receiving device and generates an electric charge. The amount of charge generated from the light receiving device is determined based on the amount of light incident on the light receiving device.
  • organic photodiode having a layer containing an organic compound as the light receiving device.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • an organic EL device is used as the light emitting device and an organic photodiode is used as the light receiving device.
  • An organic EL device and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL device.
  • a light receiving device has an active layer that functions at least as a photoelectric conversion layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • the sub-pixels 110a, 110b, and 110c may be sub-pixels of three colors of R, G, and B, and the sub-pixel 110d may be a sub-pixel having a light receiving device.
  • the fourth layer has at least an active layer.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the light-receiving device can be driven by applying a reverse bias between the pixel electrode and the common electrode, thereby detecting light incident on the light-receiving device, generating electric charge, and extracting it as a current.
  • the pixel electrode may function as a cathode and the common electrode may function as an anode.
  • a manufacturing method similar to that for the light-emitting device can also be applied to the light-receiving device.
  • the island-shaped active layer (also called photoelectric conversion layer) of the light receiving device is not formed by a pattern of a metal mask, but is formed by processing after forming a film that will be the active layer over the entire surface. , an island-shaped active layer can be formed with a uniform thickness. Further, by providing the sacrificial layer over the active layer, the damage to the active layer during the manufacturing process of the display device can be reduced, and the reliability of the light receiving device can be improved.
  • a layer shared by the light-receiving device and the light-emitting device may have different functions in the light-emitting device and in the light-receiving device. Components are sometimes referred to herein based on their function in the light emitting device.
  • a hole-injecting layer functions as a hole-injecting layer in light-emitting devices and as a hole-transporting layer in light-receiving devices.
  • an electron-injecting layer functions as an electron-injecting layer in light-emitting devices and as an electron-transporting layer in light-receiving devices.
  • a layer shared by the light-receiving device and the light-emitting device may have the same function in the light-emitting device as in the light-receiving device.
  • a hole-transporting layer functions as a hole-transporting layer in both a light-emitting device and a light-receiving device
  • an electron-transporting layer functions as an electron-transporting layer in both a light-emitting device and a light-receiving device.
  • the active layer of the light receiving device contains a semiconductor.
  • the semiconductor include inorganic semiconductors such as silicon and organic semiconductors including organic compounds.
  • an organic semiconductor is used as the semiconductor included in the active layer.
  • the light-emitting layer and the active layer can be formed by the same method (for example, a vacuum deposition method), and a manufacturing apparatus can be shared, which is preferable.
  • Electron-accepting organic semiconductor materials such as fullerenes (eg, C 60 , C 70 , etc.) and fullerene derivatives can be used as n-type semiconductor materials for the active layer.
  • Fullerenes have a soccer ball-like shape, which is energetically stable.
  • Fullerene has both deep (low) HOMO and LUMO levels. Since fullerene has a deep LUMO level, it has an extremely high electron-accepting property (acceptor property). Normally, as in benzene, if the ⁇ -electron conjugation (resonance) spreads in the plane, the electron-donating property (donor property) increases. and the electron acceptability becomes higher.
  • a high electron-accepting property is useful as a light-receiving device because charge separation occurs quickly and efficiently.
  • Both C 60 and C 70 have broad absorption bands in the visible light region, and C 70 is particularly preferable because it has a larger ⁇ -electron conjugated system than C 60 and has a wide absorption band in the long wavelength region.
  • [6,6]-Phenyl-C71-butylic acid methyl ester (abbreviation: PC70BM), [6,6]-Phenyl-C61-butylic acid methyl ester (abbreviation: PC60BM), 1′, 1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene- C60 (abbreviation: ICBA) etc. are mentioned.
  • Materials for the n-type semiconductor include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, quinone derivatives, etc. is mentioned.
  • Materials for the p-type semiconductor of the active layer include copper (II) phthalocyanine (CuPc), tetraphenyldibenzoperiflanthene (DBP), zinc phthalocyanine (ZnPc), and tin phthalocyanine.
  • electron-donating organic semiconductor materials such as (SnPc) and quinacridone;
  • Examples of p-type semiconductor materials include carbazole derivatives, thiophene derivatives, furan derivatives, and compounds having an aromatic amine skeleton.
  • materials for p-type semiconductors include naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives and the like.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • a spherical fullerene as the electron-accepting organic semiconductor material, and use an organic semiconductor material with a shape close to a plane as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close to each other, so the carrier transportability can be enhanced.
  • the active layer is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the active layer may be formed by laminating an n-type semiconductor and a p-type semiconductor.
  • the light-receiving device further includes, as layers other than the active layer, a layer containing a highly hole-transporting substance, a highly electron-transporting substance, a bipolar substance (substances having high electron-transporting and hole-transporting properties), or the like. may have.
  • the layer is not limited to the above, and may further include a layer containing a highly hole-injecting substance, a hole-blocking material, a highly electron-injecting material, an electron-blocking material, or the like.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-receiving device, and inorganic compounds may be included.
  • the layers constituting the light-receiving device can be formed by methods such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, and a coating method.
  • polymer compounds such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), molybdenum oxide, and iodide Inorganic compounds such as copper (CuI) can be used.
  • Inorganic compounds such as zinc oxide (ZnO) and organic compounds such as polyethyleneimine ethoxylate (PEIE) can be used as the electron-transporting material or the hole-blocking material.
  • the light receiving device may have, for example, a mixed film of PEIE and ZnO.
  • 6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1 ,3-diyl]]polymer (abbreviation: PBDB-T) or a polymer compound such as a PBDB-T derivative can be used.
  • a method of dispersing an acceptor material in PBDB-T or a PBDB-T derivative can be used.
  • three or more kinds of materials may be mixed in the active layer.
  • a third material may be mixed in addition to the n-type semiconductor material and the p-type semiconductor material.
  • the third material may be a low-molecular compound or a high-molecular compound.
  • a display device having a light-emitting device and a light-receiving device in a pixel can detect contact or proximity of an object while displaying an image because the pixel has a light-receiving function. For example, not only can an image be displayed by all the sub-pixels of the display device, but also some sub-pixels can emit light as a light source and the remaining sub-pixels can be used to display an image.
  • light-emitting devices are arranged in matrix in the display portion, and an image can be displayed on the display portion.
  • light receiving devices are arranged in a matrix in the display section, and the display section has one or both of an imaging function and a sensing function in addition to an image display function.
  • the display part can be used for an image sensor or a touch sensor. That is, by detecting light on the display portion, it is possible to capture an image or detect proximity or contact of an object (a finger, hand, pen, or the like).
  • the display device of one embodiment of the present invention can use the light-emitting device as a light source of the sensor. Therefore, it is not necessary to provide a light receiving portion and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light-receiving device when an object reflects (or scatters) light emitted by a light-emitting device included in the display portion, the light-receiving device can detect the reflected light (or scattered light).
  • the reflected light or scattered light.
  • imaging or touch detection is possible.
  • the display device can capture an image using the light receiving device.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to acquire data related to biometric information such as fingerprints and palm prints. That is, the biometric authentication sensor can be incorporated in the display device.
  • the biometric authentication sensor can be incorporated into the display device.
  • the display device can detect proximity or contact of an object using the light receiving device.
  • the pixels shown in FIGS. 23A to 23C have sub-pixels G, sub-pixels B, sub-pixels R, and sub-pixels PS.
  • a stripe arrangement is applied to the pixels shown in FIG. 23A.
  • FIGS. 23B and 23C show an example in which one pixel is provided over 2 rows and 3 columns.
  • Three sub-pixels (sub-pixel G, sub-pixel B, and sub-pixel R) are provided in the upper row (first row).
  • three sub-pixels PS are provided in the lower row (second row).
  • two sub-pixels PS are provided in the lower row (second row).
  • FIG. 23B by arranging the sub-pixels in the upper row and the lower row in the same arrangement, it is possible to efficiently remove dust and the like that may occur in the manufacturing process. Therefore, a display device with high display quality can be provided.
  • the layout of sub-pixels is not limited to the configurations shown in FIGS. 23A to 23C.
  • Sub-pixel R has a light-emitting device that emits red light
  • sub-pixel G has a light-emitting device that emits green light
  • sub-pixel B has a light-emitting device that emits blue light.
  • sub-pixel R, sub-pixel G, and sub-pixel B each have a light-emitting device that emits white light.
  • the sub-pixel R, the sub-pixel G, and the sub-pixel B are superimposed on the light-emitting device. , a corresponding colored layer is provided.
  • the sub-pixel PS has a light receiving device.
  • the wavelength of light detected by the sub-pixel PS is not particularly limited.
  • the light-receiving device included in the sub-pixel PS preferably detects visible light, and preferably detects one or more of colors such as blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. . Also, the light receiving device included in the sub-pixel PS may detect infrared light.
  • the configuration shown in FIG. 23A and the like has a light-emitting device and a light-receiving device in a pixel.
  • the display device of one embodiment of the present invention since pixels have a light-receiving function, contact or proximity of an object can be detected while displaying an image. Further, since the display device of one embodiment of the present invention includes subpixels that emit infrared light, an image can be displayed using the subpixels included in the display device while emitting infrared light as a light source. In other words, the display device of one embodiment of the present invention has a structure that is highly compatible with functions other than the display function (here, the light receiving function).
  • the light-receiving device included in the pixel shown in FIG. 23A and the like may be used as a touch sensor, a non-contact sensor, or the like.
  • the touch sensor or non-contact sensor can detect the proximity or contact of an object (finger, hand, pen, etc.).
  • a touch sensor can detect an object by direct contact between the electronic device and the object.
  • the non-contact sensor can detect the target even if the target does not come into contact with the electronic device.
  • the display device can detect the object when the distance between the display device (or electronic device) and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less.
  • the electronic device can be operated without direct contact with the target object, in other words, the display device can be operated without contact (touchless).
  • the risk of the electronic device being dirty or scratched can be reduced, or the electronic device can be operated without direct contact with dirt (for example, dust or viruses) attached to the electronic device by an object. It becomes possible to
  • the non-contact sensor function can also be called a hover sensor function, a hover touch sensor function, a near touch sensor function, a touchless sensor function, etc.
  • the touch sensor function can also be called a direct touch sensor function.
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 0.01 Hz to 240 Hz) according to the content displayed on the display device.
  • driving that reduces the power consumption of the display device by driving with a reduced refresh rate may be referred to as idling stop (IDS) driving.
  • IDS idling stop
  • the drive frequency of the touch sensor or the near touch sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the near-touch sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near touch sensor can be increased.
  • the display device described in the previous embodiment may have a light receiving element.
  • a display device also referred to as a light receiving and emitting device
  • a light emitting element and a light receiving element
  • the light receiving/emitting unit of the light emitting/receiving device of one embodiment of the present invention includes a light receiving element (also referred to as a light receiving device) and a light emitting element (also referred to as a light emitting device).
  • the light emitting/receiving section has a function of displaying an image using a light emitting element.
  • the light receiving/emitting unit has one or both of an imaging function and a sensing function using the light receiving element. Therefore, the light emitting/receiving device of one embodiment of the present invention can also be expressed as a display device, and the light emitting/receiving portion can also be expressed as a display portion.
  • the light emitting/receiving device of one embodiment of the present invention may include a light emitting/receiving element (also referred to as a light emitting/receiving device) and a light emitting element.
  • a light emitting/receiving element also referred to as a light emitting/receiving device
  • a light emitting element also referred to as a light emitting/receiving device
  • a light receiving/emitting device of one embodiment of the present invention includes a light receiving/emitting element and a light emitting element in a light emitting/receiving portion.
  • light emitting elements are arranged in a matrix in the light emitting/receiving portion, and an image can be displayed by the light emitting/receiving portion.
  • the light receiving/emitting unit has light receiving elements arranged in a matrix, and the light emitting/receiving unit has one or both of an imaging function and a sensing function.
  • the light receiving/emitting unit can be used for image sensors, touch sensors, and the like.
  • the light emitting element can be used as the light source of the sensor. Therefore, it is not necessary to provide a light receiving section and a light source separately from the light receiving and emitting device, and the number of parts of the electronic device can be reduced.
  • the light receiving element when an object reflects (or scatters) light emitted by a light emitting element included in the light emitting/receiving unit, the light receiving element can detect the reflected light (or scattered light). It is possible to capture images and detect touch operations even in dark places.
  • a light-emitting element included in the light-receiving and emitting device of one embodiment of the present invention functions as a display element (also referred to as a display device).
  • an EL element such as OLED and QLED.
  • LEDs, such as micro LED, can also be used as a light emitting element.
  • a light receiving and emitting device of one embodiment of the present invention has a function of detecting light using a light receiving element.
  • the light receiving and emitting device can capture an image using the light receiving element.
  • the light receiving and emitting device can be used as a scanner.
  • An electronic device to which the light emitting/receiving device of one embodiment of the present invention is applied can acquire biometric data such as fingerprints and palm prints by using the function of an image sensor.
  • the biometric authentication sensor can be incorporated in the light emitting/receiving device.
  • the light receiving and emitting device can detect a touch operation on an object using the light receiving element.
  • an organic EL element (also referred to as an organic EL device) is used as the light emitting element, and an organic photodiode is used as the light receiving element.
  • An organic EL element and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL element.
  • the number of film formation processes becomes enormous.
  • the organic photodiode has many layers that can have the same configuration as the organic EL element, the layers that can have the same configuration can be formed at once, thereby suppressing an increase in the number of film forming processes.
  • one of the pair of electrodes can be a layer common to the light receiving element and the light emitting element.
  • at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be a layer common to the light receiving element and the light emitting element. Since the light-receiving element and the light-emitting element have a common layer in this way, the number of film formations and the number of masks can be reduced, and the manufacturing process and manufacturing cost of the light-receiving and emitting device can be reduced.
  • a light receiving and emitting device having a light receiving element can be manufactured using an existing manufacturing apparatus and manufacturing method for display devices.
  • subpixels exhibiting any color have light emitting/receiving elements instead of light emitting elements, and subpixels exhibiting other colors have light emitting elements.
  • the light receiving/emitting element has both a function of emitting light (light emitting function) and a function of receiving light (light receiving function). For example, if a pixel has three sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel, at least one sub-pixel has a light emitting/receiving element and the other sub-pixels have a light emitting element. Configuration. Therefore, the light receiving/emitting portion of the light emitting/receiving device of one embodiment of the present invention has a function of displaying an image using both the light emitting/receiving element and the light emitting element.
  • the pixel By having the light receiving and emitting element serve as both a light emitting element and a light receiving element, the pixel can be given a light receiving function without increasing the number of sub-pixels included in the pixel. As a result, one or both of an imaging function and a sensing function are added to the light emitting/receiving unit of the light emitting/receiving device while maintaining the aperture ratio of the pixel (the aperture ratio of each sub-pixel) and the definition of the light emitting/receiving device. be able to.
  • the aperture ratio of the pixel can be increased and high definition can be easily achieved, compared to the case where the sub-pixel including the light-receiving element is provided separately from the sub-pixel including the light-emitting element. is.
  • the light emitting/receiving element and the light emitting element are arranged in a matrix in the light emitting/receiving portion, and an image can be displayed by the light emitting/receiving portion.
  • the light receiving/emitting unit can be used for an image sensor, a touch sensor, or the like.
  • the light emitting element can be used as the light source of the sensor. Therefore, it is possible to capture images and detect touch operations even in dark places.
  • the light receiving and emitting element can be produced by combining an organic EL element and an organic photodiode.
  • a light emitting/receiving element can be produced by adding an active layer of an organic photodiode to the layered structure of the organic EL element.
  • an increase in the number of film forming processes can be suppressed by collectively forming layers that can have the same configuration as the organic EL element.
  • one of the pair of electrodes can be a layer common to the light receiving and emitting element and the light emitting element.
  • at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be a common layer for the light receiving and emitting device and the light emitting device.
  • the layer included in the light receiving and emitting element may have different functions depending on whether the light receiving or emitting element functions as a light receiving element or as a light emitting element.
  • constituent elements are referred to based on their functions when the light emitting/receiving element functions as a light emitting element.
  • the light emitting/receiving device of the present embodiment has a function of displaying an image using the light emitting element and the light emitting/receiving element.
  • the light emitting element and the light emitting/receiving element function as a display element.
  • the light emitting/receiving device of the present embodiment has a function of detecting light using light emitting/receiving elements.
  • the light emitting/receiving element can detect light having a shorter wavelength than the light emitted by the light emitting/receiving element itself.
  • the light emitting/receiving device of the present embodiment can capture an image using the light emitting/receiving element. Further, when the light emitting/receiving element is used as a touch sensor, the light emitting/receiving device of the present embodiment can detect the touch operation of the object using the light emitting/receiving element.
  • the light receiving and emitting element functions as a photoelectric conversion element.
  • the light emitting/receiving element can be produced by adding an active layer of the light receiving element to the structure of the light emitting element.
  • the active layer of a pn-type or pin-type photodiode can be used for the light receiving and emitting element.
  • organic photodiode having a layer containing an organic compound for the light emitting/receiving element.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so they can be applied to various devices.
  • a display device that is an example of a light receiving and emitting device of one embodiment of the present invention is described below in more detail with reference to drawings.
  • FIG. 24A shows a schematic diagram of the display panel 300.
  • the display panel 300 has a substrate 301, a substrate 302, a light receiving element 312, a light emitting element 311R, a light emitting element 311G, a light emitting element 311B, a functional layer 303, and the like.
  • the light emitting element 311R, the light emitting element 311G, the light emitting element 311B, and the light receiving element 312 are provided between the substrates 301 and 302.
  • the light emitting element 311R, the light emitting element 311G, and the light emitting element 311B emit red (R), green (G), or blue (B) light, respectively.
  • the light emitting element 311R, the light emitting element 311G, and the light emitting element 311B may be referred to as the light emitting element 311 when they are not distinguished from each other.
  • the display panel 300 has a plurality of pixels arranged in a matrix.
  • One pixel has one or more sub-pixels.
  • One sub-pixel has one light-emitting element.
  • a pixel may have a configuration having three sub-pixels (three colors of R, G, and B, or three colors of yellow (Y), cyan (C), and magenta (M)), or a configuration having sub-pixels.
  • a configuration having four pixels four colors of R, G, B, and white (W), or four colors of R, G, B, and Y, etc.
  • the pixel has a light receiving element 312 .
  • the light receiving element 312 may be provided in all the pixels, or may be provided in some of the pixels.
  • one pixel may have a plurality of light receiving elements 312 .
  • FIG. 24A shows how a finger 320 touches the surface of the substrate 302 .
  • Part of the light emitted by the light emitting element 311G is reflected at the contact portion between the substrate 302 and the finger 320.
  • FIG. A part of the reflected light is incident on the light receiving element 312, so that the contact of the finger 320 with the substrate 302 can be detected. That is, the display panel 300 can function as a touch panel.
  • the functional layer 303 has a circuit for driving the light emitting elements 311R, 311G, and 311B, and a circuit for driving the light receiving element 312.
  • a switch, a transistor, a capacitor, a wiring, and the like are provided in the functional layer 303 . Note that when the light-emitting element 311R, the light-emitting element 311G, the light-emitting element 311B, and the light-receiving element 312 are driven by a passive matrix method, a structure in which switches, transistors, and the like are not provided may be employed.
  • the display panel 300 preferably has a function of detecting the fingerprint of the finger 320.
  • FIG. 24B schematically shows an enlarged view of the contact portion when the finger 320 is in contact with the substrate 302 .
  • FIG. 24B shows light emitting elements 311 and light receiving elements 312 arranged alternately.
  • a fingerprint is formed on the finger 320 by concave portions and convex portions. Therefore, the convex portion of the fingerprint touches the substrate 302 as shown in FIG. 24B.
  • Light reflected from a certain surface, interface, etc. includes specular reflection and diffuse reflection.
  • Specularly reflected light is highly directional light whose incident angle and reflected angle are the same, and diffusely reflected light is light with low angle dependence of intensity and low directivity.
  • the light reflected from the surface of the finger 320 is dominated by the diffuse reflection component of the specular reflection and the diffuse reflection.
  • light reflected from the interface between the substrate 302 and the air is predominantly specular.
  • the intensity of the light reflected by the contact surface or the non-contact surface between the finger 320 and the substrate 302 and incident on the light receiving element 312 positioned directly below them is the sum of the regular reflection light and the diffuse reflection light. .
  • the specularly reflected light (indicated by solid line arrows) becomes dominant. indicated by dashed arrows) becomes dominant. Therefore, the intensity of the light received by the light receiving element 312 located directly below the concave portion is higher than that of the light receiving element 312 located directly below the convex portion. Thereby, the fingerprint of the finger 320 can be imaged.
  • a clear fingerprint image can be obtained by setting the arrangement interval of the light receiving elements 312 to be smaller than the distance between two convex portions of the fingerprint, preferably smaller than the distance between adjacent concave portions and convex portions. Since the distance between concave and convex portions of a human fingerprint is approximately 200 ⁇ m, for example, the array interval of the light receiving elements 312 is 400 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less, and even more preferably 100 ⁇ m or less. The thickness is 50 ⁇ m or less, and 1 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • FIG. 24C An example of a fingerprint image captured by the display panel 300 is shown in FIG. 24C.
  • the contour of the finger 320 is indicated by a dashed line and the contour of the contact portion 321 is indicated by a dashed line within the imaging range 323 .
  • a high-contrast fingerprint 322 can be imaged due to the difference in the amount of light incident on the light receiving element 312 in the contact portion 321 .
  • the display panel 300 can also function as a touch panel and a pen tablet.
  • FIG. 24D shows a state in which the tip of the stylus 325 is in contact with the substrate 302 and is slid in the direction of the dashed arrow.
  • the diffusely reflected light diffused by the contact surface of the substrate 302 and the tip of the stylus 325 is incident on the light receiving element 312 located in the portion overlapping with the contact surface, thereby causing the tip of the stylus 325 to Position can be detected with high accuracy.
  • FIG. 24E shows an example of the trajectory 326 of the stylus 325 detected by the display panel 300.
  • the display panel 300 can detect the position of the object to be detected such as the stylus 325 with high positional accuracy, it is possible to perform high-definition drawing in a drawing application or the like.
  • an electromagnetic induction touch pen, or the like it is possible to detect the position of even a highly insulating object to be detected.
  • Various writing utensils for example, brushes, glass pens, quill pens, etc.
  • FIGS. 24F and 24G show examples of pixels applicable to the display panel 300.
  • FIG. 24F and 24G show examples of pixels applicable to the display panel 300.
  • the pixel shown in FIG. 24F has a red (R) light emitting element 311R, a green (G) light emitting element 311G, a blue (B) light emitting element 311B, and a light receiving element 312, respectively.
  • Each pixel has a pixel circuit for driving the light emitting element 311R, the light emitting element 311G, the light emitting element 311B, and the light receiving element 312, respectively.
  • FIG. 24F is an example in which three light-emitting elements are arranged in a row, and one horizontally long light-receiving element 312 is arranged below them.
  • the pixel shown in FIG. 24G is an example having a white (W) light emitting element 311W.
  • W white
  • four light-emitting elements are arranged in a row, and a light-receiving element 312 is arranged below them.
  • the pixel configuration is not limited to the above, and various arrangement methods can be adopted.
  • a display panel 300A shown in FIG. 25A has light emitting elements 311IR in addition to the configuration illustrated in FIG. 24A.
  • the light emitting element 311IR is a light emitting element that emits infrared light IR. Further, at this time, it is preferable to use an element capable of receiving at least the infrared light IR emitted by the light emitting element 311IR as the light receiving element 312 . Further, it is more preferable to use an element capable of receiving both visible light and infrared light as the light receiving element 312 .
  • the infrared light IR emitted from the light emitting element 311IR is reflected by the finger 320, and part of the reflected light enters the light receiving element 312. , the position information of the finger 320 can be obtained.
  • 25B and 25C show examples of pixels applicable to the display panel 300A.
  • FIG. 25B is an example in which three light-emitting elements are arranged in a row, and a light-emitting element 311IR and a light-receiving element 312 are arranged side by side below them.
  • FIG. 25C is an example in which four light emitting elements including the light emitting element 311IR are arranged in a row, and the light receiving element 312 is arranged below them.
  • the positions of the light emitting elements and the light emitting element and the light receiving element are interchangeable.
  • a display panel 300B shown in FIG. 25D has a light emitting element 311B, a light emitting element 311G, and a light emitting/receiving element 313R.
  • the light receiving/emitting element 313R has a function as a light emitting element that emits red (R) light and a function as a photoelectric conversion element that receives visible light.
  • FIG. 25D shows an example in which the light emitting/receiving element 313R receives green (G) light emitted by the light emitting element 311G.
  • the light emitting/receiving element 313R may receive blue (B) light emitted by the light emitting element 311B.
  • the light emitting/receiving element 313R may receive both green light and blue light.
  • the light receiving/emitting element 313R preferably receives light with a shorter wavelength than the light emitted by itself.
  • the light receiving/emitting element 313R may be configured to receive light having a longer wavelength (for example, infrared light) than the light emitted by itself.
  • the light emitting/receiving element 313R may be configured to receive light of the same wavelength as the light emitted by itself, but in that case, the light emitted by itself may also be received, resulting in a decrease in light emission efficiency. Therefore, the light receiving and emitting element 313R is preferably configured such that the peak of the emission spectrum and the peak of the absorption spectrum do not overlap as much as possible.
  • the light emitted by the light receiving and emitting element is not limited to red light. Also, the light emitted by the light emitting element is not limited to the combination of green light and blue light.
  • the light emitting/receiving element can be an element that emits green or blue light and receives light of a wavelength different from the light emitted by itself.
  • the light emitting/receiving element 313R serves as both a light emitting element and a light receiving element, so that the number of elements arranged in one pixel can be reduced. Therefore, high definition, high aperture ratio, high resolution, etc. are facilitated.
  • 25E and 25F show examples of pixels applicable to the display panel 300B.
  • FIG. 25E is an example in which the light emitting/receiving element 313R, the light emitting element 311G, and the light emitting element 311B are arranged in a line.
  • FIG. 25F shows an example in which the light emitting elements 311G and the light emitting elements 311B are arranged alternately in the vertical direction, and the light emitting/receiving elements 313R are arranged horizontally.
  • the upper surface shape of the light emitting element and light receiving/emitting element is not particularly limited, and may be a circle, an ellipse, a polygon, a polygon with rounded corners, or the like. Further, the top surface shape of the light emitting element and the light emitting/receiving element for each color may be different from each other, or may be the same for some or all colors. Also, the sizes of the light-emitting regions (or light-receiving and emitting regions) of the light-emitting elements and the light-receiving and light-receiving elements of each color may be different from each other, or may be the same for some or all colors.
  • the light emitted from the light source is difficult for the user to visually recognize. Since blue light has lower visibility than green light, a light-emitting element that emits blue light is preferably used as a light source. Therefore, it is preferable that the light emitting/receiving element has a function of receiving blue light. It should be noted that the present invention is not limited to this, and a light-emitting element used as a light source can be appropriately selected according to the sensitivity of the light-receiving and emitting element.
  • pixels with various arrangements can be applied to the display device of this embodiment.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • the light emitting device has an EL layer 790 between a pair of electrodes (lower electrode 791, upper electrode 792).
  • EL layer 790 can be composed of multiple layers such as layer 720 , light-emitting layer 711 , and layer 730 .
  • the layer 720 can have, for example, a layer containing a highly electron-injecting substance (electron-injecting layer) and a layer containing a highly electron-transporting substance (electron-transporting layer).
  • the light-emitting layer 711 contains, for example, a light-emitting compound.
  • Layer 730 can have, for example, a layer containing a highly hole-injecting substance (hole-injection layer) and a layer containing a highly hole-transporting substance (hole-transporting layer).
  • a structure having a layer 720, a light-emitting layer 711, and a layer 730 provided between a pair of electrodes can function as a single light-emitting unit, and the structure of FIG. 26A is referred to herein as a single structure.
  • FIG. 26B is a modification of the EL layer 790 included in the light emitting device shown in FIG. 26A.
  • the light-emitting device shown in FIG. It has a top layer 720-1, a layer 720-2 on layer 720-1, and a top electrode 792 on layer 720-2.
  • layer 730-1 functions as a hole injection layer
  • layer 730-2 functions as a hole transport layer
  • layer 720-1 functions as an electron Functioning as a transport layer
  • layer 720-2 functions as an electron injection layer.
  • layer 730-1 functions as an electron-injecting layer
  • layer 730-2 functions as an electron-transporting layer
  • layer 720-1 functions as a hole-transporting layer.
  • a configuration in which a plurality of light-emitting layers (light-emitting layers 711, 712, and 713) are provided between layers 720 and 730 as shown in FIGS. 26C and 26D is also a variation of the single structure.
  • tandem structure a structure in which a plurality of light emitting units (EL layers 790a and 790b) are connected in series via an intermediate layer 740 is referred to herein as a tandem structure.
  • the intermediate layer 740 may be called a charge generation layer.
  • tandem structures the configurations shown in FIGS. 26E and 26F are referred to as tandem structures, but are not limited to this, and for example, the tandem structures may be referred to as stack structures. Note that the tandem structure enables a light-emitting device capable of emitting light with high luminance.
  • light-emitting materials that emit the same light may be used for the light-emitting layer 711, the light-emitting layer 712, and the light-emitting layer 713.
  • FIG. 26D shows an example in which a colored layer 795 functioning as a color filter is provided. A desired color of light can be obtained by passing the white light through the color filter.
  • the same light-emitting material may be used for the light-emitting layer 711 and the light-emitting layer 712 .
  • light-emitting materials that emit different light may be used for the light-emitting layer 711 and the light-emitting layer 712 .
  • white light emission is obtained.
  • FIG. 26F shows an example in which a colored layer 795 is further provided.
  • the layer 720 and the layer 730 may have a laminated structure consisting of two or more layers.
  • the same light-emitting material may be used for the light-emitting layers 711, 712, and 713.
  • the same light-emitting material may be used for light-emitting layer 711 and light-emitting layer 712 .
  • a color conversion layer instead of the coloring layer 795, light of a desired color different from that of the light-emitting material can be obtained.
  • a blue light-emitting material for each light-emitting layer and allowing blue light to pass through the color conversion layer, it is possible to obtain light with a wavelength longer than that of blue (eg, red, green, etc.).
  • a fluorescent material, a phosphorescent material, quantum dots, or the like can be used as the color conversion layer.
  • the emission color of the light-emitting device can be red, green, blue, cyan, magenta, yellow, white, or the like, depending on the material forming the EL layer 790 . Further, the color purity can be further enhanced by providing the light-emitting device with a microcavity structure.
  • a light-emitting device that emits white light preferably has a structure in which two or more types of light-emitting substances are contained in the light-emitting layer.
  • two or more light-emitting substances may be selected so that the light emission of each light-emitting substance has a complementary color relationship.
  • the emission color of the first light-emitting layer and the emission color of the second light-emitting layer have a complementary color relationship, it is possible to obtain a light-emitting device that emits white light as a whole. The same applies to light-emitting devices having three or more light-emitting layers.
  • the light-emitting layer preferably contains two or more light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), and O (orange). Alternatively, it preferably has two or more light-emitting substances, and light emitted from each light-emitting substance includes spectral components of two or more colors among R, G, and B.
  • FIG. 27A shows a schematic cross-sectional view of light emitting device 750R, light emitting device 750G, light emitting device 750B, and light receiving device 760.
  • FIG. Light-emitting device 750R, light-emitting device 750G, light-emitting device 750B, and light-receiving device 760 have top electrode 792 as a common layer.
  • the light-emitting device 750R has a pixel electrode 791R, layers 751, 752, light-emitting layers 753R, layers 754, 755, and an upper electrode 792.
  • the light emitting device 750G has a pixel electrode 791G and a light emitting layer 753G.
  • the light emitting device 750B has a pixel electrode 791B and a light emitting layer 753B.
  • the layer 751 has, for example, a layer containing a highly hole-injecting substance (hole-injection layer).
  • the layer 752 includes, for example, a layer containing a substance with a high hole-transport property (hole-transport layer).
  • the layer 754 includes, for example, a layer containing a highly electron-transporting substance (electron-transporting layer).
  • the layer 755 includes, for example, a layer containing a highly electron-injecting substance (electron-injection layer).
  • the layer 751 may have an electron-injection layer
  • the layer 752 may have an electron-transport layer
  • the layer 754 may have a hole-transport layer
  • the layer 755 may have a hole-injection layer.
  • the present invention is not limited to this.
  • the layer 751 functions as both a hole-injection layer and a hole-transport layer, or when the layer 751 functions as both an electron-injection layer and an electron-transport layer.
  • the layer 752 may be omitted.
  • the light-emitting layer 753R included in the light-emitting device 750R includes a light-emitting substance that emits red light
  • the light-emitting layer 753G included in the light-emitting device 750G includes a light-emitting substance that emits green light
  • the light-emitting layer included in the light-emitting device 750B has a luminescent material that exhibits blue emission.
  • the light-emitting device 750G and the light-emitting device 750B each have a structure in which the light-emitting layer 753R of the light-emitting device 750R is replaced with a light-emitting layer 753G and a light-emitting layer 753B, and other structures are the same as those of the light-emitting device 750R. .
  • the layers 751, 752, 754, and 755 may have the same configuration (material, film thickness, etc.) in the light emitting device of each color, or may have different configurations.
  • the light receiving device 760 has a pixel electrode 791 PD, layers 761 , 762 , 763 and an upper electrode 792 .
  • the light receiving device 760 can be configured without a hole injection layer and an electron injection layer.
  • the layer 762 has an active layer (also called a photoelectric conversion layer).
  • the layer 762 has a function of absorbing light in a specific wavelength band and generating carriers (electrons and holes).
  • the layers 761 and 763 each have, for example, either a hole transport layer or an electron transport layer. If layer 761 has a hole-transporting layer, layer 763 has an electron-transporting layer. On the other hand, if layer 761 has an electron-transporting layer, layer 763 has a hole-transporting layer.
  • the pixel electrode 791PD may be the anode and the upper electrode 792 may be the cathode, or the pixel electrode 791PD may be the cathode and the upper electrode 792 may be the anode.
  • FIG. 27B is a modification of FIG. 27A.
  • FIG. 27B shows an example in which the layer 755 is provided in common between the light-emitting devices and the light-receiving devices, like the upper electrode 792 .
  • layer 755 can be referred to as a common layer.
  • layer 755 functions as an electron injection layer or hole injection layer for light emitting device 750 . At this time, it functions as an electron transport layer or a hole transport layer for the light receiving device 760 . Therefore, the light-receiving device 760 shown in FIG. 27B does not need to be provided with the layer 763 functioning as an electron-transporting layer or a hole-transporting layer.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a metal oxide used for an OS transistor preferably contains at least indium or zinc, and more preferably contains indium and zinc.
  • metal oxides include indium and M (where M is gallium, aluminum, yttrium, tin, silicon, boron, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium). , hafnium, tantalum, tungsten, magnesium, and cobalt) and zinc.
  • M is preferably one or more selected from gallium, aluminum, yttrium and tin, more preferably gallium.
  • the metal oxide can be formed by sputtering, CVD such as MOCVD, or ALD.
  • oxides containing indium (In), gallium (Ga), and zinc (Zn) will be described as examples of metal oxides. Note that an oxide containing indium (In), gallium (Ga), and zinc (Zn) is sometimes called an In--Ga--Zn oxide.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement may be simply referred to as the XRD spectrum.
  • the shape of the peak of the XRD spectrum is almost bilaterally symmetrical.
  • the shape of the peak of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of a film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. For this reason, it is presumed that it cannot be concluded that the In-Ga-Zn oxide deposited at room temperature is in an intermediate state, neither single crystal nor polycrystal, nor amorphous state, and is in an amorphous state. be done.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors.
  • Non-single-crystal oxide semiconductors include, for example, the above CAAC-OS and nc-OS.
  • Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or more microcrystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the maximum diameter of the crystal region may be about several tens of nanometers.
  • the CAAC-OS includes a layer containing indium (In) and oxygen (hereinafter referred to as an In layer) and a layer containing gallium (Ga), zinc (Zn) and oxygen (
  • an In layer a layer containing indium (In) and oxygen
  • Ga gallium
  • Zn zinc
  • oxygen it tends to have a layered crystal structure (also referred to as a layered structure) in which (Ga, Zn) layers are laminated.
  • the (Ga, Zn) layer may contain indium.
  • the In layer may contain gallium.
  • the In layer may contain zinc.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit cell is not always a regular hexagon and may be a non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • CAAC-OS since the crystallinity of an oxide semiconductor may be deteriorated due to contamination of impurities, generation of defects, or the like, CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, a-like OS has lower crystallinity than nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • the CAC-OS can be formed, for example, by sputtering under the condition that the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), oxygen gas, and nitrogen gas is used as the film formation gas. good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is preferably as low as possible.
  • the flow ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the impurities in the oxide semiconductor refer to, for example, substances other than the main components of the oxide semiconductor. For example, an element whose concentration is less than 0.1 atomic percent can be said to be an impurity.
  • the concentration of silicon or carbon in the oxide semiconductor is 2 ⁇ 10 atoms/cm or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration in the oxide semiconductor obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • One embodiment of the present invention is a display panel that can be enlarged by arranging a plurality of display panels so that they partially overlap each other.
  • at least the display panel located on the display surface side (upper side) has a portion that is adjacent to the display section and transmits visible light.
  • the pixels of the display panel arranged on the lower side and the portion transmitting visible light of the display panel arranged on the upper side are provided so as to overlap each other. Accordingly, when the two display panels are viewed from the display surface side (in a plan view), the images displayed on them can be displayed seamlessly and continuously.
  • one aspect of the present invention is a laminated panel having a first display panel and a second display panel.
  • the first display panel has a first region, and the first region has first pixels and second pixels.
  • the second display panel has a second area, a third area, and a fourth area.
  • the second region has a third pixel, the third region has a function of transmitting visible light, and the fourth region has a function of blocking visible light.
  • the second pixel of the first display panel and the third region of the second display panel have regions that overlap each other.
  • the aperture ratio of the second pixel is preferably higher than that of the first pixel.
  • the above-described display device including the light emitting element and the light receiving element can be used.
  • the first pixel, the second pixel, and the third pixel has a light-emitting element and a light-receiving element.
  • FIG. 28A is a schematic top view of a display panel 500 included in a display device of one embodiment of the present invention.
  • the display panel 500 includes a display area 501, an area 510 adjacent to the display area 501 that transmits visible light, and an area 520 that has a portion that blocks visible light.
  • FIG. 28A shows an example in which the display panel 500 is provided with an FPC 512 .
  • an image can be displayed in the display area 501 even if the display panel 500 is a single unit. Furthermore, even if the display panel 500 is a single unit, an image can be captured by the display area 501 .
  • a pair of substrates constituting the display panel 500 and a sealing material for sealing a display element sandwiched between the pair of substrates may be provided.
  • a material that transmits visible light is used for the member provided in the region 510 .
  • the area 520 is provided with wiring electrically connected to the pixels included in the display area 501, for example.
  • a driver circuit for driving pixels a scanning line driver circuit, a signal line driver circuit, etc.
  • a circuit such as a protection circuit, and the like may be provided.
  • the region 520 also includes a region where terminals (also referred to as connection terminals) that are electrically connected to the FPC 512, wirings that are electrically connected to the terminals, and the like are provided.
  • the display panel 500 shows an example of a rectangular shape for the sake of clarity, but may be non-rectangular according to the design of the implementer.
  • FIG. 29A is a schematic top view of a display panel in an unfolded state
  • FIG. 29B is an external view of a display device according to one embodiment of the present invention.
  • a display panel 61 shown in FIG. 29A has a display area 63 and a non-display area 64 .
  • the display region 63 is provided with pixel regions formed in a matrix, and the non-display region 64 is provided with a driving circuit electrically connected to the pixel regions. Note that part of the driver circuit provided in the non-display region 64 may be provided in the pixel region provided in the display region 63 . With such a structure, the area of the non-display region can be reduced.
  • a plurality of pixels arranged in a matrix are manufactured over a flexible substrate.
  • a flexible substrate having a plurality of pixels arranged in a matrix is also called a flexible display.
  • a method in which a transistor or a light-emitting element is formed directly over a flexible substrate may be used, or a transistor or a light-emitting element is formed over a glass substrate or the like and then separated from the glass substrate to increase flexibility.
  • a method of adhering to a substrate having an adhesive layer using an adhesive layer may also be used. There are various types of peeling methods and transposing methods, but they are not particularly limited, and known techniques may be used as appropriate.
  • the 3rd generation (550 mm ⁇ 650 mm), the 3.5th generation (600 mm ⁇ 720 mm, or 620 mm ⁇ 750 mm), the 4th generation (680 mm ⁇ 880 mm, or 730 mm ⁇ 920 mm), the 5th generation ( 1100mm x 1300mm), 6th generation (1500mm x 1850mm), 7th generation (1870mm x 2200mm), 8th generation (2200mm x 2400mm), 9th generation (2400mm x 2800mm, 2450mm x 3050mm), 10th generation (2950mm) ⁇ 3400 mm) or larger glass substrates can be used.
  • a higher heat treatment temperature can be applied than when a transistor or the like is formed directly on a flexible substrate; therefore, the glass substrate is suitable for manufacturing a transistor at a high process temperature.
  • polyester resins such as PET and PEN
  • polyacrylonitrile resins acrylic resins, polyimide resins, polymethyl methacrylate resins, PC resins, PES resins, polyamide resins (nylon, aramid, etc.)
  • poly Examples include siloxane resins, cycloolefin resins, polystyrene resins, polyamideimide resins, polyurethane resins, polyvinyl chloride resins, polyvinylidene chloride resins, polypropylene resins, PTFE resins, and ABS resins.
  • a material with a low coefficient of linear expansion and for example, polyamideimide resin, polyimide resin, polyamide resin, PET, etc. can be preferably used.
  • a substrate obtained by impregnating a fibrous body with a resin, or a substrate obtained by mixing an inorganic filler with a resin to lower the coefficient of linear expansion, or the like can also be used.
  • a metal film can be used as the flexible substrate.
  • Stainless steel, aluminum, or the like can be used as the metal film.
  • the layer using the above materials includes a hard coat layer (for example, a silicon nitride layer) that protects the surface of the device from scratches, etc., a layer of a material that can disperse pressure (for example, aramid resin layer, etc.).
  • a hard coat layer for example, a silicon nitride layer
  • a layer of a material that can disperse pressure for example, aramid resin layer, etc.
  • curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • an adhesive sheet or the like may be used.
  • the flexible substrate is processed or cut into a non-rectangular shape as shown in FIG. 29A.
  • the boundary between the display region 63 and the non-display region 64 is bent and overlapped so that the pixel region faces upward, so that the driver circuit can be arranged under the pixel region. can.
  • This state can also be expressed as that the driving circuit is provided on the back side of the pixel region.
  • a display panel 61 having a spherical surface can be provided without affecting display.
  • the flexible substrate Before assembling the display panel 61, the flexible substrate may be deformed and rounded by heating it against a spherical mold or the like. Depending on the material or thickness of the substrate having flexibility, it may be difficult to have a curved surface. Therefore, it cannot be accurately called a sphere, and in the case of manufacturing the shape of FIG. are referred to herein as roughly spherical.
  • the display panel shown in FIG. 29A is connected at the constricted portion, the entire display panel 61 can be regarded as one surface even when assembled into the shape of FIG. 29B.
  • the drive circuit on the same substrate having flexibility, the number of parts such as the drive IC can be reduced. Furthermore, space saving can also be realized.
  • a skeleton in the hollow of the display device in order to hold or fix the roughly spherical surface.
  • a wire-like thing or a frame made by thinning a material such as plastic, wood, or bamboo can be used.
  • it may be attached to a hollow metal sphere (aluminum or the like).
  • the metal sphere has a mirror surface, it can also be made to emit light efficiently.
  • it may be attached to a paper sphere, such as papier-mâché, fixed with glue.
  • the power supply has a power supply circuit or an electrical storage device. Note that the storage device can store video signals and the like for displaying a full-color video in the display area 63 .
  • a wireless circuit may be provided in the hollow portion of the display device to receive video signals and the like from the outside and store them in a storage device.
  • a full-color display can be realized in the display area 63 by performing signal conversion for displaying the image signal in the display area 63 by the image processing circuit, which is stored in the storage device.
  • the display device has light-emitting elements having pixel regions formed in a matrix, and organic EL elements are used in this embodiment.
  • quantum dots can be used as a color conversion (wavelength conversion) material for organic EL elements.
  • a quantum dot is a semiconductor nanocrystal with a diameter of several nanometers, and is composed of approximately 1 ⁇ 10 3 to 1 ⁇ 10 6 atoms.
  • Quantum dots have discrete energy states as a result of confinement of electrons, holes, and excitons inside them, and energy shifts depending on the size. That is, even quantum dots made of the same material have different emission wavelengths depending on their sizes. Therefore, the emission wavelength can be easily adjusted by changing the size of the quantum dots used.
  • the display area 63 can have a touch panel function. It can also be operable by the user's hand touch, hand hold, or gesture.
  • the display panel 61 has a display area 63 on its entire surface, and when fixing it, a string or metal wire is fixed to a fixed point with a seam, and hung from the ceiling of the vehicle.
  • a part of the display panel 61 may be removed and fixed without arranging the elements and the wiring.
  • the power supply is not arranged inside the display panel 61, and the video signal and the electric power for driving are supplied from the outside through the fixed part.
  • FIGS. 29A and 29B show an example of a display device having a substantially spherical display area 63
  • the present invention is not particularly limited, and a display device having a substantially hemispherical surface or other three-dimensional surface may be used. With such a configuration, it is possible to supply a video signal and power for driving from the outside.
  • the display panel in the unfolded state shown in FIG. 29C it is possible to produce the display portion 61A having a shape in which hemispheres having the same diameter are placed on one plane of a cylinder, as shown in FIG. 29D. Further, for example, by forming the display panel in the unfolded state shown in FIG. 29E, a display portion 61B having a substantially hemispherical surface shown in FIG. 29F can be manufactured.
  • a laminated panel 550 of one aspect of the present invention includes a plurality of display panels 500 described above.
  • FIG. 28B shows a top schematic view of a laminate panel 550 comprising three display panels.
  • a laminated panel 550 shown in FIG. 28B includes a display panel 500a, a display panel 500b, and a display panel 500c.
  • a part of the display panel 500b is arranged to overlap the upper side (display surface side) of the display panel 500a. Specifically, the display area 501a of the display panel 500a and the visible light transmitting area 510b of the display panel 500b overlap each other, and the display area 501a of the display panel 500a and the visible light shielding area 520b of the display panel 500b are overlapped. are arranged so that they do not overlap.
  • the display panel 500c is partially overlapped on the upper side (display surface side) of the display panel 500b. Specifically, the display area 501b of the display panel 500b and the visible light transmitting area 510c of the display panel 500c overlap each other, and the display area 501b of the display panel 500b and the visible light shielding area 520c of the display panel 500c are overlapped. are arranged so that they do not overlap.
  • the display area 551 of the laminated panel 550 can be the area in which the display areas 501 a , 501 b and 501 c are seamlessly arranged.
  • the laminated panel 550 can enlarge the display area 551 by the number of the display panels 500 .
  • a display panel having an imaging function that is, a display panel having pixels each having a light-emitting element and a light-receiving element
  • the entire display region 551 can be used as an imaging region. can.
  • a display panel having an imaging function and a display panel having no imaging function may be combined.
  • a display panel having an imaging function can be applied only to a necessary portion, and a display panel without an imaging function can be applied to other portions.
  • the display panel 500 is shown as a rectangular example for easy understanding, it may be non-rectangular according to the design of the implementer.
  • FIG. 30A is a top view of members 62a, 62b, 62c, 62d, and 62e showing a plurality of display regions 63 before overlapping, here five display regions 63, and FIG. 30B is one embodiment of the present invention.
  • 1 is an external view of a display panel showing .
  • the display area is designed to have the shape shown in FIG. 30A , and after the display area is formed on a rectangular flexible substrate, the flexible rectangular substrate is partially cut out.
  • a display area 63 shown in 30A can be formed.
  • Each of the five display areas 63 has a non-display area 64, and by overlapping and folding the non-display areas 64, a hemispherical display portion 61D shown in FIG. 30B can be configured.
  • FIG. 30A shows an example using five display regions 63, the number is not particularly limited, and the operator may appropriately select according to a desired shape, and the number of display regions 63 is two or more. I wish I had.
  • the display unit 61D can be installed on the inner wall of the vehicle, specifically on the dashboard, ceiling, or wall.
  • the display unit 61D can also be installed on the dial of a wristwatch.
  • a hemispherical display portion 61D is shown, but by combining with other configurations, a spherical configuration, a configuration combining a hemisphere and a cylinder, a configuration in which the curved surface of the concave portion emits light, etc., can also be employed. .
  • defects called point defects or line defects may occur in the display panel for some reason, according to this embodiment, it is possible to extract and assemble good products with good display quality from among a plurality of display panels. . In addition, it is possible to partially replace a part of the display panel in case of failure.
  • FIG. 28B shows a configuration in which a plurality of display panels 500 are stacked in one direction
  • the plurality of display panels 500 may be stacked in two directions, the vertical direction and the horizontal direction.
  • FIG. 31A shows an example of a display panel 500 in which the shape of the area 510 is different from that of FIG. 28A.
  • a display panel 500 shown in FIG. 31A has regions 510 that transmit visible light along two sides of a display region 501 .
  • FIG. 31B shows a schematic perspective view of a laminated panel 550 in which two display panels 500 shown in FIG. 31A are arranged vertically and two horizontally.
  • FIG. 31C is a schematic perspective view of the laminated panel 550 viewed from the side opposite to the display surface side.
  • the area along the short side of the display area 501a of the display panel 500a and the area 510b of the display panel 500b are partially overlapped.
  • a region along the long side of the display region 501a of the display panel 500a and a portion of the region 510c of the display panel 500c are provided so as to overlap each other.
  • a region 510d of the display panel 500d is provided so as to overlap a region along the long side of the display region 501b of the display panel 500b and a region along the short side of the display region 501c of the display panel 500c.
  • the display area 551 of the laminated panel 550 can be an area in which the display areas 501a, 501b, 501c, and 501d are seamlessly arranged.
  • a flexible material be used for the pair of substrates used for the display panel 500 so that the display panel 500 is flexible.
  • 31B and 31C for example, when the FPC 512a and the like are provided on the display surface side, a part of the display panel 500a on the side where the FPC 512a is provided is curved, and the FPC 512a is bent. It can be arranged so as to overlap even the lower side of the display area 501b of the adjacent display panel 500b. As a result, the FPC 512a can be arranged without physically interfering with the rear surface of the display panel 500b.
  • the upper surface of the region 510b of the display panel 500b and the upper surface of the display region 501a of the display panel 500a can be height difference can be reduced. As a result, it is possible to prevent the end of the display panel 500b located on the display area 501a from being seen.
  • the height of the top surface of the display panel 500b in the display region 501b is adjusted to match the height of the top surface of the display panel 500a in the display region 501a. can be gently curved. Therefore, the heights of the respective display regions can be made uniform except for the vicinity of the region where the display panels 500a and 500b overlap each other, and the display quality of an image displayed in the display region 551 of the laminated panel 550 can be improved. .
  • the thickness of the display panel 500 is thin.
  • the thickness of the display panel 500 is preferably 1 mm or less, preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less.
  • a substrate may also be provided to protect the display area 551 of the laminated panel 550 .
  • the substrate may be provided for each display panel, or one substrate may be provided over a plurality of display panels.
  • the outline shape of the display area of the laminated panel can be made into various shapes such as non-rectangular shapes such as circles, ellipses, and polygons.
  • the display panels 500 in a three-dimensional manner, it is possible to realize a laminated panel having a display area having a three-dimensional shape such as a columnar shape, a spherical shape, a hemispherical shape, or the like.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • This embodiment shows an example in which the display device shown in Embodiment 7 is installed inside a vehicle.
  • FIG. 32A illustrates a spherical display panel 61 suspended from the ceiling of the vehicle with wiring cords.
  • the display panel 61 can function not only as an in-vehicle light but also as an interior of the vehicle. Also, the display panel 61 can display a television image. Also, if the wiring cord is made flexible, passengers can pick it up and operate it.
  • An omnidirectional camera can be installed outside the vehicle as an in-vehicle camera, and the images captured by the omnidirectional camera can be displayed on the display panel 61 at once in an easy-to-understand manner for the user.
  • FIG. 32B shows another example.
  • the light emitting/receiving device shown in Embodiment 4 is suitably used for the light emitting/receiving section of the vehicle control device.
  • the shape of the vehicle control device is spherical, half is fitted in a recess for fixing, and the spherical display panel 61 of Embodiment 7 is freely rotated on the recess. .
  • a hemispherical display section 61D may be used to configure the vehicle control device.
  • the hemispherical display portion 61D is preferably fixed on a flat dashboard, for example.
  • FIG. 32B shows an example in which a display section 61A having a shape such that hemispheres having the same diameter are placed on one plane of a cylinder is provided on the rear seat side.
  • the display unit 61A can be configured to supply power or video signals from below.
  • the display section 61A can also be used as an interior light.
  • FIG. 32 shows an example of a vehicle such as an electric vehicle, it is not particularly limited as long as it is a vehicle.
  • Display panels having curved surfaces can be mounted on large ships, submarines, aircraft such as fixed-wing or rotary-wing aircraft, and the like.
  • Transportation vehicles such as buses, airliners, helicopters, and spacecraft can also be equipped with display panels having curved surfaces, typically spherical or hemispherical.
  • a display panel having a curved surface can also be mounted on an electronic device such as a wristwatch or a personal computer.
  • the light emitting/receiving device shown in Embodiment Mode 4 can be provided as a small hemispherical or spherical member at the position of a mouse pad of a notebook computer.
  • FIG. 33A is an example of a wristwatch in which the display portion 61B of Embodiment 7 is made hemispherical and fixed to an electronic member 66 and used as a display panel.
  • the watch has a belt 67 for fixing the electronic member 66 to the arm.
  • the wristwatch may have a spherical shape in the frame.
  • FIG. 33B shows an example of a wristwatch using the display unit 61D of Embodiment 7 as the display panel. Since it is the same as that of FIG. 33A except that the method of assembly is different, detailed description will be omitted here.
  • This embodiment shows an example in which one or more of the display devices shown in Embodiment 7 are installed in a vehicle.
  • FIG. 34 is a diagram illustrating a configuration example of a vehicle.
  • FIG. 34 shows a dashboard 52, a steering wheel 41, a windshield 54, a camera 55, an air outlet 56, a door 58a on the passenger side, and a door 58b on the driver's side, which are arranged around the driver's seat and passenger's seat. showing.
  • the display unit 51 is provided on the left and right sides of the dashboard 52 .
  • the display unit 51 is preferably provided with a touch sensor or a non-contact proximity sensor. Alternatively, it is preferable that a gesture operation using a separately provided camera or the like is possible.
  • the steering wheel 41 has a light emitting/receiving section 20 .
  • the light receiving/emitting unit 20 has a function of emitting light and a function of capturing an image.
  • the light emitting/receiving unit 20 can acquire biometric information such as fingerprints, palm prints, or veins of the driver, and the driver can be authenticated based on the biometric information. Therefore, since the vehicle cannot be started by anyone other than the pre-registered driver, it is possible to realize a vehicle with an extremely high security level.
  • a plurality of cameras 55 may be provided outside the vehicle to capture the situation behind the vehicle.
  • FIG. 34 shows an example in which the camera 55 is installed instead of the side mirror, both the side mirror and the camera may be installed.
  • a CCD camera, a CMOS camera, or the like can be used as the camera 55 .
  • an infrared camera may be used in combination. Since the output level of the infrared camera increases as the temperature of the subject increases, it is possible to detect or extract a living body such as a person or an animal.
  • An image captured by the camera 55 can be output to either one or both of the display unit 51 and the light emitting/receiving unit 20 .
  • the display unit 51 or the light emitting/receiving unit 20 is mainly used to assist driving of the vehicle.
  • the camera 55 captures the rear side situation with a wide angle of view and displays the image on the display part 51 or the light emitting/receiving part 20, so that the blind spot area of the driver can be visually recognized and an accident can be prevented.
  • a distance image sensor may be provided on the roof of the car or the like, and an image obtained by the distance image sensor may be displayed on the display unit 51.
  • an image sensor an image sensor, a lidar (LIDAR: Light Detection and Ranging), or the like can be used.
  • LIDAR Light Detection and Ranging
  • the display unit 51 may have a function of displaying map information, traffic information, television images, DVD images, and the like.
  • the display panel 80a and the display panel 80b can be used as one display screen to display map information in a large size. Note that the number of display panels can be increased according to the images to be displayed.
  • the display unit 51 is provided over the dashboard, the front console, and the left and right pillars.
  • FIG. 34 shows an example in which the display unit 51 is configured by eight display panels (display panels 80a to 80h), but the number of display panels is not limited to this, and may be seven or less. , or nine or more.
  • the display panel 80c and the display panel 80d are provided at positions corresponding to the center console. Although the display panel 80d has a rectangular shape, it shows a non-rectangular combination of the display panel 80c. When the display panel 80c and the display panel 80d are combined into one panel, the panel becomes a non-rectangular panel.
  • the display panel 80e and the display panel 80f are provided on the far side of the dashboard as seen from the driver.
  • the display panel 80g and the display panel 80h are provided along the pillars. One or more of the display panels 80a to 80h are provided along the curved surface.
  • the images displayed on the display panels 80a to 80h can be freely set according to the driver's preference. For example, TV images, DVD images, web videos, etc. are displayed on the left display panel 80a, display panel 80e, etc., map information is displayed on the central display panel 80c, etc., and measurements such as speedometers and tachometers are displayed. It can be displayed on the display panel 80b, the display panel 80f, etc. on the driver side, and the audio can be displayed on the display panel 80d, etc. between the driver's seat and the passenger's seat.
  • the display panel 80g and the display panel 80h provided on the pillars display in real time the external scenery in the line of sight of the driver, thereby making it possible to simulate a pillarless vehicle and reduce blind spots. Therefore, a highly safe vehicle can be realized.
  • a display portion 59a and a display portion 59b are provided along the surface of the front passenger side door 58a and the driver side door 58b, respectively.
  • the display portion 59a and the display portion 59b can each be formed using one or a plurality of display panels.
  • the display portions 59a and 59b are arranged to face each other, and the display portion 51 is provided on the dashboard 52 so as to connect the end portion of the display portion 59a and the end portion of the display portion 59b.
  • the driver and the passenger in the front passenger seat are surrounded in front and on both sides by the display units 51, 59a, and 59b.
  • the display section 59a, the display section 51, and the display section 59b it is possible to give the driver or fellow passenger a high sense of immersion.
  • a plurality of cameras 55 may be provided outside the vehicle to capture the situation behind the vehicle.
  • FIG. 34 shows an example in which the camera 55 is installed instead of the side mirror, both the side mirror and the camera may be installed.
  • a CCD camera, a CMOS camera, or the like can be used as the camera 55 .
  • an infrared camera may be used in combination. Since the output level of the infrared camera increases as the temperature of the subject increases, it is possible to detect or extract a living body such as a person or an animal.
  • the image captured by the camera 55 can be output to one or more of the display panels.
  • the vehicle can mainly assist the driving of the vehicle using the image displayed on the display unit 51 .
  • the camera 55 captures the rear side situation with a wide angle of view and displays the image on one or more of the display panels, thereby enabling the driver to visually recognize the blind spot area and preventing the occurrence of an accident. can.
  • the display unit 59a and the display unit 59b can display an image linked with the scene seen from the car window, which is synthesized from the images acquired by the camera 55 or the like. In other words, for the driver and fellow passengers, an image that can be seen through the doors 58a and 58b can be displayed on the display sections 59a and 59b. This allows the driver and passengers to experience the sensation of floating.
  • a display panel having an imaging function is preferably applied to at least one of the display panels 80a to 80h.
  • a display panel having an imaging function can also be applied to one or more of the display panels provided in the display portion 59a and the display portion 59b.
  • the vehicle when the driver touches the display panel, the vehicle can perform biometric authentication such as fingerprint authentication or palm print authentication.
  • biometric authentication such as fingerprint authentication or palm print authentication.
  • the vehicle may have the ability to personalize the environment if the driver is authenticated by biometrics. For example, seat position adjustment, steering wheel position adjustment, camera 55 direction adjustment, brightness setting, air conditioner setting, wiper speed (frequency) setting, audio volume setting, audio playlist reading, etc. preferably performed after authentication.
  • the vehicle can be put into a drivable state, such as a state in which the engine is running, or a state in which an electric vehicle can be started, eliminating the need for a key that was required in the past. It is preferable because
  • a display unit can also be provided in the rear seat so as to surround the passenger.
  • the display may be provided along the back of the driver or passenger seat, along the side of the rear door, or the like.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • An electronic device of this embodiment includes a display device of one embodiment of the present invention.
  • the display device of one embodiment of the present invention can easily have high definition, high resolution, and large size. Further, since the display device of one embodiment of the present invention has a wide viewing angle, the image quality of display on a curved display surface can be improved. Therefore, the display device of one embodiment of the present invention can be used for display portions of various electronic devices.
  • the display device of one embodiment of the present invention can be manufactured at low cost, the manufacturing cost of electronic devices can be reduced.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, and glasses-type AR devices that can be worn on the head. equipment and the like.
  • Wearable devices also include devices for SR and devices for MR.
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K2K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K4K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 300 ppi or more, more preferably 500 ppi or more, 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, and 5000 ppi or more.
  • the electronic device of this embodiment can be incorporated along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • the electronic device of this embodiment may have an antenna.
  • An image, information, or the like can be displayed on the display portion by receiving a signal with the antenna.
  • the antenna may be used for contactless power transmission.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared sensing, detection or measurement).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • the electronic device shown in FIGS. 35A to 35F includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed). , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays , detection or measurement), a microphone 9008, and the like.
  • the electronic devices shown in FIGS. 35A to 35F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 .
  • FIG. 35A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 35A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone, etc., title of e-mail, SNS, etc., sender name, date and time, remaining battery power, strength of antenna reception, and the like.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 35B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 35C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • Hands-free communication is also possible by allowing the mobile information terminal 9200 to communicate with, for example, a headset capable of wireless communication.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIG. 35D to 35F are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 35D is a state in which the mobile information terminal 9201 is unfolded
  • FIG. 35F is a state in which it is folded
  • FIG. 35E is a perspective view in the middle of changing from one of FIGS. 35D and 35F to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

視野角の広い表示装置を提供する。 表示装置は、基板上に、第1の発光素子と、第2の発光素子と、を有する。第1の発光素子は、第1の画素電極と、第1の有機層と、共通電極と、を有し、第2の発光素子は、第2の画素電極と、第2の有機層と、共通電極と、を有する。基板の上面視において、第1の発光素子は、第1の辺と、第1の辺よりも短い第2の辺と、を有する。正面方向の色度および第1の方向の色度の色度差と、正面方向の色度および第2の方向の色度の色度差との差の絶対値は、0.05以下である。第1の方向の基板への射影は、第1の辺と平行であり、第2の方向の基板への射影は、第2の辺と平行である。第1の方向と、基板表面の法線方向とのなす角は、70度であり、第2の方向と、基板表面の法線方向とのなす角は、70度である。

Description

表示装置
 本発明の一態様は、表示装置に関する。本発明の一態様は、表示装置の作製方法に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、ディスプレイパネルの高精細化が求められている。高精細なディスプレイパネルが要求される機器としては、例えばスマートフォン、タブレット端末、ノート型コンピュータなどがある。また、テレビジョン装置、モニタ装置などの据え置き型のディスプレイ装置においても、高解像度化に伴い高精細化が求められている。
 また、ディスプレイパネルに適用可能な表示装置としては、代表的には液晶表示装置、有機EL(Electro Luminescence)素子、発光ダイオード(LED:Light Emitting Diode)等の発光素子(発光デバイスともいう)を備える発光装置、電気泳動方式などにより表示を行う電子ペーパなどが挙げられる。
 例えば、有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を、挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、液晶表示装置等で必要であったバックライトが不要なため、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。
特開2002−324673号公報
 本発明の一態様は、視野角の広い表示装置を提供することを課題の一とする。本発明の一態様は、色純度の高い表示装置を提供することを課題の一とする。本発明の一態様は、高精細化が容易な表示装置を提供することを課題の一とする。本発明の一態様は、高い表示品位と、高い精細度を兼ね備える表示装置を提供することを課題の一とする。本発明の一態様は、コントラストの高い表示装置を提供することを課題の一とする。本発明の一態様は、信頼性の高い表示装置を提供することを課題の一とする。本発明の一態様は、新規な構成を有する表示装置を提供することを課題の一とする。
 本発明の一態様は、上述した表示装置の作製方法を提供することを課題の一とする。本発明の一態様は、上述した表示装置を歩留まりよく製造する方法を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一を少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、基板上に、第1の発光素子と、第2の発光素子と、を有する表示装置である。第1の発光素子は、第1の画素電極と、第1の有機層と、共通電極と、を有し、第2の発光素子は、第2の画素電極と、第2の有機層と、共通電極と、を有する。基板の上面視において、第1の発光素子は、第1の辺と、第1の辺よりも短い第2の辺と、を有する。正面方向の色度および第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下である。第1の方向の基板への射影は、第1の辺と平行であり、第2の方向の基板への射影は、第2の辺と平行である。第1の方向と、基板表面の法線方向とのなす角は、70°であり、第2の方向と、基板表面の法線方向とのなす角は、70°である。
 本発明の他の一態様は、基板上に、第1の発光素子と、第2の発光素子と、を有する表示装置である。第1の発光素子は、第1の画素電極と、第1の有機層と、共通電極と、を有し、第2の発光素子は、第2の画素電極と、第2の有機層と、共通電極と、を有する。基板の上面視において、第1の発光素子は、第1の辺と、第1の辺よりも短い第2の辺と、を有する。正面方向の色度と、第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と、第2の方向の色度との色度差Δu’v’の比率は、0.5以上1.5以下である。第1の方向の基板への射影は、第1の辺と平行であり、第2の方向の基板への射影は、第2の辺と平行である。第1の方向と、基板表面の法線方向とのなす角は、70°であり、第2の方向と、基板表面の法線方向とのなす角は、70°である。
 上記表示装置において、第1の発光素子の上面視における、第1の画素電極と、共通電極とが、第1の有機層の発光領域を介して重なる領域において、第1の画素電極の、第1の有機層側の表面全面と、共通電極の、第1の有機層側の表面全面とは、平行または概略平行であることが好ましい。
 上記表示装置は、絶縁層をさらに有し、第1の画素電極の端部と、第1の有機層の端部とは、一致又は概略一致し、第2の画素電極の端部と、第2の有機層の端部とは、一致又は概略一致し、絶縁層は、第1の画素電極、第2の画素電極、第1の有機層、及び第2の有機層のそれぞれの側面と接する領域を有することが好ましい。
 上記表示装置は、絶縁層をさらに有し、第1の画素電極の幅は、第1の有機層の幅よりも小さく、第2の画素電極の幅は、第2の有機層の幅よりも小さく、第1の有機層は、第1の画素電極の側面及び上面を覆い、第2の有機層は、第2の画素電極の側面及び上面を覆い、絶縁層は、第1の有機層、及び第2の有機層のそれぞれの上面の一部及び側面と接する領域を有することが好ましい。
 上記表示装置は、絶縁層をさらに有し、第1の画素電極の幅は、第1の有機層の幅よりも大きく、第2の画素電極の幅は、第2の有機層の幅よりも大きく、絶縁層は、第1の画素電極、及び第2の画素電極のそれぞれの上面の一部及び側面、並びに、第1の有機層、及び第2の有機層のそれぞれの側面に接する領域を有することが好ましい。
 上記表示装置は、第1の絶縁層と、第2の絶縁層と、をさらに有し、第1の絶縁層は、第1の画素電極の端部を覆い、第1の有機層は、第1の画素電極上、及び第1の絶縁層上に設けられ、第2の絶縁層は、第1の有機層上、及び第1の絶縁層上に設けられ、第2の絶縁層は、第1の有機層の上面の一部及び側面、並びに、第1の絶縁層の上面の一部に接する領域を有することが好ましい。
 上記表示装置において、第1の絶縁層の端部は、テーパー形状であり、第2の絶縁層は、第1の有機層を介して、第1の絶縁層の端部と重なる領域を有することが好ましい。
 上記表示装置において、第1の発光素子は、第1の有機層と、共通電極との間に、共通層を有し、第2の発光素子は、第2の有機層と、共通電極との間に、共通層を有することが好ましい。
 上記表示装置において、共通層は、電子輸送層、及び電子注入層のいずれか一方又は双方を有することが好ましい。
 上記表示装置において、基板は、可撓性を有し、基板の形状は、非矩形であることが好ましい。
 本発明の一態様によれば、視野角の広い表示装置を提供できる。または、色純度の高い表示装置を提供できる。または、高精細化が容易な表示装置を提供できる。または、高い表示品位と、高い精細度を兼ね備える表示装置を提供できる。または、コントラストの高い表示装置を提供できる。または、信頼性の高い表示装置を提供できる。または、新規な構成を有する表示装置を提供できる。
 また、本発明の一態様によれば、上述した表示装置の作製方法を提供できる。または、上述した表示装置を歩留まりよく製造する方法を提供できる。本発明の一態様によれば、先行技術の問題点の少なくとも一を少なくとも軽減することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1Aは、表示装置の構成例を示す上面概略図である。図1B、及び図1Cは、表示装置の構成例を示す断面概略図である。
図2A乃至図2Cは、表示装置の構成例を示す断面概略図である。
図3は、色度差を算出する際の方向を示す図である。
図4は、表示装置の構成例を示す上面概略図である。
図5A乃至図5Dは、表示装置の構成例を示す断面図である。
図6A乃至図6Cは、表示装置の構成例を示す断面図である。
図7A乃至図7Eは、表示装置の構成例を示す断面図である。
図8A乃至図8Fは、表示装置の構成例を示す断面図である。
図9A乃至図9Fは、表示装置の構成例を示す断面図である。
図10A乃至図10Dは、表示装置の構成例を示す断面図である。
図11A乃至図11Dは、表示装置の作製方法例を示す断面図である。
図12A乃至図12Cは、表示装置の作製方法例を示す断面図である。
図13A乃至図13Dは、表示装置の作製方法例を示す断面図である。
図14A乃至図14Cは、表示装置の作製方法例を示す断面図である。
図15は、表示装置の一例を示す斜視図である。
図16Aは、表示装置の一例を示す断面図である。図16B及び図16Cは、トランジスタの一例を示す断面図である。
図17は、表示装置の一例を示す断面図である。
図18A乃至図18Dは、表示装置の一例を示す断面図である。
図19A乃至図19Dは、画素の一例を示す上面図である。
図20A乃至図20Dは、画素の一例を示す上面図である。
図21A乃至図21Eは、画素の一例を示す上面図である。
図22A乃至図22Cは、画素の一例を示す上面図である。
図23A乃至図23Cは、画素の一例を示す上面図である。
図24A、図24B及び図24Dは、表示装置の例を示す断面図である。図24C、及び図24Eは、画像の例を示す図である。図24F及び図24Gは、画素の例を示す上面図である。
図25A、及び図25Dは、表示装置の構成例を示す断面図である。図25B、図25C、図25E、及び図25Fは、画素の例を示す上面図である。
図26A乃至図26Fは、発光デバイスの構成例を示す図である。
図27A及び図27Bは、発光デバイスおよび受光デバイスの構成例を示す図である。
図28A及び図28Bは、表示装置の構成例を示す図である。
図29A、図29C、及び図29Eは展開時の表示パネルの上面模式図であり、図29B、図29D、及び図29Fは本発明の一態様を示す表示装置の外観図である。
図30Aは重ね合わせる前の複数の表示パネルを示す上面模式図であり、図30Bは本発明の一態様を示す表示装置の外観図である。
図31A乃至図31Cは、表示装置の構成例を示す図である。
図32A及び図32Bは、表示パネルを用いる車の模式図である。
図33A及び図33Bは、表示パネルを用いる電子機器の一例を示す図である。
図34は、車両の構成例を示す図である。
図35A乃至図35Fは、電子機器の一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」または「絶縁層」という用語は、「導電膜」または「絶縁膜」という用語に相互に交換することが可能な場合がある。
 なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
 本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
 また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
 また、本明細書において、上限と下限の数値が規定されている場合は、上限の数値と下限の数値を自由に組み合わせる構成も開示されているものとする。
 なお、本明細書等において、「高さが一致または概略一致」とは、断面視において、基準となる面(例えば、基板表面などの平坦な面)からの高さが等しい構成を示す。例えば、半導体装置の製造プロセスにおいて、平坦化処理(代表的にはCMP処理)を行うことで、単層または複数の層の表面を露出する場合がある。この場合、CMP処理の被処理面は、基準となる面からの高さが等しい構成となる。ただし、CMP処理の際の処理装置、処理方法、または被処理面の材料によって、複数の層の高さが異なる場合がある。本明細書等においては、この場合も「高さが一致または概略一致」として扱う。例えば、基準面に対して、2つの高さを有する層(ここでは第1の層と、第2の層とする)を有する場合、第1の層の上面の高さと、第2の層の上面の高さとの差が、20nm以下である場合も、「高さが一致または概略一致」という。
 なお、本明細書等において、「端部が一致または概略一致」とは、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なることをいう。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重ならず、上層の輪郭が下層の輪郭より内側に位置すること、または、上層の輪郭が下層の輪郭より外側に位置することもあり、この場合も「端部が一致または概略一致」という。
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置について図1乃至図3を用いて説明する。
 本実施の形態の表示装置は、第1の発光素子、及び第2の発光素子を有する。第1の発光素子、及び第2の発光素子は、それぞれ、第1の電極と、第1の電極上の発光層と、発光層上の第2の電極と、を有する。なお、本実施の形態の表示装置は、第3の発光素子をさらに有してもよい。第3の発光素子は、第1の電極と、第1の電極上の発光層と、発光層上の第2の電極と、を有する。
 本実施の形態の表示装置は、第1の電極、第2の電極、及び発光層を有する。さらに、当該第1の電極の、当該発光層の発光領域と重なる上面は平坦であり、当該第2の電極の、当該発光層の発光領域と重なる下面は平坦である。このような構成とすることで、表示装置を斜め方向から観察する場合と、表示装置を正面方向から観察する場合と、で色ずれが生じにくくなる。さらに、表示装置を第1の斜め方向から観察する場合と、表示装置を第2の斜め方向から観察する場合と、で色ずれが生じにくくなる。そのため、視野角の広い表示装置を実現できる。また、色純度の高い表示装置を実現できる。
 例えば、第1の電極の端部を覆うように絶縁層が設けられる場合、当該絶縁層上に位置する発光層から光が発せられる場合がある。さらに、発光層と重なる領域の絶縁層が傾斜を有する場合、当該光は、斜め方向に発せられるため、表示装置の視野角に影響を及ぼす恐れがある。具体的には、表示装置の視野角が狭くなる恐れがある。一方、本発明の一態様の構成では、発光層の発光領域は、平坦となる。これにより、水平(左右)方向および垂直(上下)方向において、視野角を広くすることができる。例えば、水平(左右)方向および垂直(上下)方向において、色度の視野角依存性を小さくすることができる。さらに、水平(左右)方向における色度の視野角依存性と、垂直方向(上下)における色度の視野角依存性を同程度にすることができる。
 CIE1976色度座標において、各発光素子の発光の、正面方向の色度と斜め方向(正面からの傾きの絶対値が0°より大きく90°未満の方向)の色度との色度差Δu’v’は、0.05以下であることが好ましく、0.02以下であることがより好ましい。具体的には、各発光素子の発光の、正面方向の色度と正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた方向の色度との色度差Δu’v’は、0.05以下であることが好ましく、0.02以下であることがより好ましい。
 第1の発光素子、第2の発光素子、及び第3の発光素子を用いて白色の表示を行うとき、CIE1976色度座標における、正面方向の色度と斜め方向(正面からの傾きの絶対値が0°より大きく90°未満の方向)の色度との色度差Δu’v’は、0.05以下であることが好ましく、0.02以下であることがより好ましい。具体的には、正面方向の色度と正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた方向の色度との色度差Δu’v’は、0.05以下であることが好ましく、0.02以下であることがより好ましい。なお、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示を行うのであれば、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示する色は白色以外の色であってもよい。
 なお、上述の色度差Δu’v’は、30°以上80°以下から選ばれる一つの角度に対して算出してもよい。例えば、60°以上80°以下から選ばれる一つの角度、具体的には70°に対して算出するとよい。当該角度に対して、上述の色度差Δu’v’が小さければ、色度の視野角依存性は小さいとみなせる。または、上述の色度差Δu’v’は、30°以上80°以下の一部または全部の範囲で算出された色度差Δu’v’の平均値であってもよい。
 CIE1976色度座標において、各発光素子の発光の、正面方向の色度および第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下であることが好ましく、0.02以下がより好ましい。具体的には、各発光素子の発光の、正面方向の色度および正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下であることが好ましく、0.02以下であることがより好ましい。なお、第1の方向、及び第2の方向については後述する。
 または、CIE1976色度座標において、各発光素子の発光の、正面方向の色度と第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と第2の方向の色度との色度差Δu’v’の比率は、0.5以上1.5以下であることが好ましく、0.6以上1.3以下がより好ましく、0.8以上1.2以下がさらに好ましい。具体的には、各発光素子の発光の、正面方向の色度と正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と第2の方向の色度との色度差Δu’v’の比率は、0.5以上1.5以下であることが好ましく、0.6以上1.3以下であることがより好ましく、0.8以上1.2以下であることがさらに好ましい。なお、第1の方向、及び第2の方向については後述する。
 第1の発光素子、第2の発光素子、及び第3の発光素子を用いて白色の表示を行うとき、CIE1976色度座標における、正面方向の色度および第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下であることが好ましく、0.02以下がより好ましい。具体的には、各発光素子の発光の、正面方向の色度および正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下であることが好ましく、0.02以下であることがより好ましい。なお、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示を行うのであれば、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示する色は白色以外の色であってもよい。
 または、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて白色の表示を行うとき、CIE1976色度座標における、正面方向の色度と第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と第2の方向の色度との色度差Δu’v’の比率は、0.5以上1.5以下であることが好ましく、0.6以上1.3以下であることがより好ましく、0.8以上1.2以下であることがさらに好ましい。具体的には、正面方向の色度と正面から30°以上60°以下(より好ましくは30°以上80°以下)傾いた第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と第2の方向の色度との色度差Δu’v’の比率は、0.5以上1.5以下であることが好ましく、0.6以上1.3以下であることがより好ましく、0.8以上1.2以下であることがさらに好ましい。なお、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示を行うのであれば、第1の発光素子、第2の発光素子、及び第3の発光素子を用いて表示する色は白色以外の色であってもよい。
 なお、上述の差の絶対値、または上述の比率は、30°以上80°以下から選ばれる一つの角度に対して算出してもよい。例えば、60°以上80°以下から選ばれる一つの角度、具体的には70°に対して算出するとよい。当該角度に対して、上述の差の絶対値、または上述の比率が小さければ、水平(左右)方向における色度の視野角依存性と、垂直(上下)方向における色度の視野角依存性を同程度とみなせる。または、上述の差の絶対値、または上述の比率は、それぞれ、30°以上80°以下の一部または全部の範囲で算出された差の絶対値の平均値、または比率の平均値であってもよい。
 本実施の形態の表示装置は、水平(左右)方向および垂直(上下)方向において視野角依存性が小さく、斜め方向から表示装置を観察しても、角度によるコントラストの低下および色度の変化が少ない。そのため、表示装置を正面方向から観察する場合だけでなく、斜め方向から表示装置を観察する場合であっても、高い視認性が得られる。例えば、複数人が同時に様々な角度から本実施の形態の表示装置を観察して、該表示装置に表示されている情報を認識することができる。また、フレキシブルディスプレイを曲げた状態で観察する場合であっても、高い視認性が得られる。本実施の形態の表示装置は、携帯用電子機器の表示部、大画面の表示部、曲面形状の表示部など様々な用途に適用できる。
 表示装置には、R(赤)、G(緑)、B(青)の3色の副画素で1つの色を表現する構成、R、G、B、W(白)の4色の副画素で1つの色を表現する構成、またはR、G、B、Y(黄)の4色の副画素で1つの色を表現する構成等を適用できる。色要素に限定はなく、RGBWY以外の色(例えば、シアンまたはマゼンタ等)を用いてもよい。
 表示装置が本発明の一態様の構成を有するには、第1の電極の端部が絶縁層に覆われないことが好ましい。別言すると、第1の電極及び発光層の間に絶縁層を設けない構成にすることが好ましい。具体的には、第1の電極の端部と、発光層の端部とが一致又は概略一致することが好ましい。または、第1の電極の幅は、発光層の幅よりも小さいことが好ましい。
 または、表示装置が本発明の一態様の構成を有するには、第1の電極の端部が絶縁層に覆われ、当該絶縁層は、発光層の側面と接することが好ましい。具体的には、第1の電極の幅は、発光層の幅よりも大きく、絶縁層は、第1の電極の側面、第1の電極の上面の一部、及び発光層の側面とそれぞれ接することが好ましい。
 または、表示装置が本発明の一態様の構成を有するには、第1の電極の端部が第1の絶縁層に覆われ、当該第1の絶縁層と重畳する発光層の上方に、第2の絶縁層を設ける構成にすることが好ましい。
<表示装置の構成例>
 本発明の一態様の表示装置の構成例を、図1及び図2を用いて説明する。
 図1Aは、表示装置が有する表示領域80の上面概略図である。表示領域80は、赤色を呈する発光素子90R、緑色を呈する発光素子90G、及び青色を呈する発光素子90Bを、それぞれ複数有する。図1Aでは、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
 発光素子90R、発光素子90G、発光素子90Bは、それぞれマトリクス状に配列している。図1Aは、発光素子がストライプ配列を有する構成を示している。なお、発光素子の配列方法はこれに限られず、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
[構成例1]
 図1Bは、図1A中の一点鎖線A1−A2に対応する断面概略図である。図1Bには、発光素子90R、発光素子90G、及び発光素子90Bの断面概略図を示している。
 発光素子90R、発光素子90G、及び発光素子90Bは、トランジスタ(図示せず)を含む層101上に設けられる。また、層101は、基板(図示せず)上に設けられる。または、層101には、基板(図示せず)が含まれる。
 基板は、可撓性を有することが好ましい。また、基板の形状は、非矩形であることが好ましい。当該基板上に発光素子を形成することで、曲面を有する表示面を備えた表示装置を作製できる。
 層101には、例えば複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。層101は、隣り合う発光素子間に凹部を有してもよい。例えば、層101の最表面に位置する絶縁層に凹部が設けられてもよい。層101の構成例は、後述する。
 発光素子90Rは、画素電極111R、有機層112R、及び共通電極113を有する。発光素子90Gは、画素電極111G、有機層112G、及び共通電極113を有する。発光素子90Bは、画素電極111B、有機層112B、及び共通電極113を有する。共通電極113は、発光素子90R、発光素子90G、及び発光素子90Bに共通に設けられる。
 なお、以下では、発光素子90R、発光素子90G、及び発光素子90Bに共通の事項を説明する場合には、符号に付記する記号を省略し、発光素子90と表記して説明する場合がある。また、本明細書等に記載の発光素子90は、発光素子90R、発光素子90G、及び発光素子90Bのいずれか一または複数を指すことがある。
 また、以下では、画素電極111R、画素電極111G、及び画素電極111Bに共通の事項を説明する場合には、符号に付記する記号を省略し、画素電極111と表記して説明する場合がある。また、本明細書等に記載の画素電極111は、画素電極111R、画素電極111G、及び画素電極111Bのいずれか一または複数を指すことがある。
 また、以下では、有機層112R、有機層112G、及び有機層112Bに共通の事項を説明する場合には、符号に付記する記号を省略し、有機層112と表記して説明する場合がある。また、本明細書等に記載の有機層112は、有機層112R、有機層112G、及び有機層112Bのいずれか一または複数を指すことがある。
 画素電極111は、発光素子毎に設けられている。
 有機層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112R、有機層112G、及び有機層112Bは、それぞれEL層とも呼ぶことができる。
 図1Bに示すように、画素電極111Rの端部と、有機層112Rの端部とは、一致又は概略一致している。画素電極111Gの端部と、有機層112Gの端部とは、一致又は概略一致している。画素電極111Bの端部と、有機層112Bの端部とは、一致又は概略一致している。
 図1Bに示すように、異なる色の発光素子間において、2つの有機層の間に隙間が設けられている。このように、有機層112R、有機層112G、及び有機層112Bが、互いに接しないように設けられていることが好ましい。これにより、隣接する2つの有機層を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、色純度を高めることができ、表示品位の高い表示装置を実現できる。
 図1Bに示すように、表示装置は絶縁層119を有し、絶縁層119は上記隙間に設けられている。具体的には、絶縁層119は、画素電極111R、画素電極111G、画素電極111B、有機層112R、有機層112G、及び有機層112Bのそれぞれの側面に接する領域を有する。絶縁層119を設けることで、画素電極111と共通電極113との電気的なショート、及びこれらの間のリーク電流を効果的に抑制できる。
 なお、図1Bでは絶縁層119を単層構造としたが、これに限定されない。例えば、絶縁層119を2層以上の多層構造としてもよい。絶縁層119を2層とする構成を図1Cに示す。図1Cに示す表示装置は、絶縁層119aと、絶縁層119a上の絶縁層119bと、を有する構成であり、その他の構成は図1Bに示す表示装置と同様である。
 例えば、絶縁層119aを、無機材料により形成し、絶縁層119bを有機材料により形成することで、画素電極111と、共通電極113との電気的なショート、及びこれらの間のリーク電流をさらに効果的に抑制できる。
 共通電極113は、各発光素子に共通な一続きの層として設けられている。また、共通電極113は、有機層112R上、有機層112G上、有機層112B上、及び絶縁層119上に設けられている。なお、共通電極113は、発光素子毎に設けられてもよい。このとき、各共通電極の上方に、配線として機能する導電層を設け、当該導電層と各共通電極とを電気的に接続する構成にしてもよい。
 上記構成において、有機層112の発光領域は、図1Bに斜線のハッチングで示す領域となる。つまり、有機層112の発光領域は、有機層112全体となる。
 上記構成にすることで、有機層112を平坦にすることができる。さらに、有機層112の発光領域と重なる共通電極113を平坦にすることができる。別言すると、画素電極111の上面全面と、有機層112の発光領域と重なる、共通電極113の下面全面とは、発光素子90の断面視において平行または概略平行である。また、発光素子90の上面視における、画素電極111および共通電極113が、有機層112の発光領域を介して重なる領域において、画素電極111の、有機層112側の表面全面と、共通電極113の、有機層112側の表面全面とは、発光素子90の断面視において平行または概略平行である。
 なお、図1Bには、画素電極111の端部と、有機層112の端部とが一致又は概略一致する構成を示しているが、本発明の一態様はこれに限られない。上記構成とは異なる表示装置の構成例を、図2A乃至図2Cを用いて説明する。
[構成例2]
 図2Aは、図1A中の一点鎖線A1−A2に対応する断面概略図である。図2Aに示す表示装置は、画素電極111の幅が有機層112の幅よりも大きい点で、図1Bに示す表示装置とは異なる。なお、前述の構成例1と重複する部分については説明を省略し、相違する部分について説明する。
 図2Aに示すように、画素電極111Rの幅は、有機層112Rの幅よりも大きい。画素電極111Gの幅は、有機層112Gの幅よりも大きい。画素電極111Bの幅は、有機層112Bの幅よりも大きい。
 図2Aに示すように、絶縁層119は、画素電極111R、画素電極111G、及び画素電極111Bのそれぞれの上面の一部及び側面、並びに、有機層112R、有機層112G、及び有機層112Bのそれぞれの側面に接する領域を有する。
 上記構成において、有機層112の発光領域は、図2Aに斜線で示す領域となる。つまり、有機層112の発光領域は、有機層112全体となる。
 上記構成にすることで、有機層112を平坦にすることができる。さらに、有機層112の発光領域と重なる共通電極113を平坦にすることができる。別言すると、画素電極111の上面全面と、有機層112の発光領域と重なる、共通電極113の下面全面とは、発光素子90の断面視において平行または概略平行である。また、発光素子90の上面視における、画素電極111および共通電極113が、有機層112の発光領域を介して重なる領域において、画素電極111の、有機層112側の表面全面と、共通電極113の、有機層112側の表面全面とは、発光素子90の断面視において平行または概略平行である。
[構成例3]
 図2Bは、図1A中の一点鎖線A1−A2に対応する断面概略図である。図2Bに示す表示装置は、画素電極111の幅が有機層112の幅よりも小さい点で、図1Bに示す表示装置とは異なる。なお、前述の構成例1と重複する部分については説明を省略し、相違する部分について説明する。
 図2Bに示すように、画素電極111Rの幅は、有機層112Rの幅よりも小さい。画素電極111Gの幅は、有機層112Gの幅よりも小さい。画素電極111Bの幅は、有機層112Bの幅よりも小さい。
 図2Bに示すように、有機層112Rは、画素電極111Rの上面及び側面を覆うように設けられている。有機層112Gは、画素電極111Gの上面及び側面を覆うように設けられている。有機層112Bは、画素電極111Bの上面及び側面を覆うように設けられている。図2Bでは、画素電極111の側面が垂直である例を示しているが、これに限られず、画素電極111の端部は、テーパー形状であってもよい。これにより、有機層112の段差被覆性が向上し、信頼性の高い表示装置とすることができる。
 なお、本明細書等において、対象物の端部がテーパー形状であるとは、その端部の領域において側面(表面)と被形成面(底面)との成す角度が0°より大きく90°未満であり、端部から連続的に厚さが増加するような断面形状を有することをいう。また、テーパー角とは、対象物の端部における、底面(被形成面)と側面(表面)との成す角をいう。
 図2Bに示すように、絶縁層119は、有機層112R、有機層112G、及び有機層112Bのそれぞれの上面の一部及び側面に接する領域を有する。当該構成にすることで、画素電極111と、画素電極111に重ならない領域の共通電極113との間隔が狭まるのを抑制できる。したがって、上面視において、画素電極111と重ならない領域の有機層112が発光するのを抑制できる。つまり、有機層112の画素電極111と重なる領域(図2Bに斜線で示す領域)を、有機層112の発光領域とすることができる。
 上記構成にすることで、有機層112の発光領域を平坦にすることができる。さらに、有機層112の発光領域と重なる共通電極113を平坦にすることができる。別言すると、画素電極111の上面全面と、有機層112の発光領域と重なる、共通電極113の下面全面とは、発光素子90の断面視において平行または概略平行である。また、発光素子90の上面視における、画素電極111及び共通電極113が、有機層112の発光領域を介して重なる領域において、画素電極111の、有機層112側の表面全面と、共通電極113の、有機層112側の表面全面とは、発光素子90の断面視において平行または概略平行である。
[構成例4]
 図2Cは、図1A中の一点鎖線A1−A2に対応する断面概略図である。図2Cに示す表示装置は、画素電極111の端部を覆うように絶縁層118が設けられている点で、図1Bに示す表示装置とは異なる。また、図2Cに示す表示装置は、有機層112の端部を覆うように絶縁層119が設けられている点で、図1Bに示す表示装置とは異なる。なお、前述の構成例1と重複する部分については説明を省略し、相違する部分について説明する。
 図2Cに示すように、絶縁層118は、画素電極111の端部を覆うように、層101上、及び画素電極111上に設けられている。別言すると、絶縁層118は、画素電極111の上面の一部及び側面に接する。絶縁層118の端部は、テーパー形状であることが好ましい。これにより、絶縁層118上に形成される有機層112の被覆性を高めることができる。
 有機層112は、画素電極111上、及び絶縁層118上に設けられている。なお、図2Cには、有機層112の端部と画素電極111の端部とが一致又は概略一致する構成を示しているが、これに限られない。画素電極111の幅が有機層112の幅よりも大きくてもよいし、画素電極111の幅が有機層112の幅よりも小さくてもよい。
 絶縁層119は、有機層112上、及び絶縁層118上に設けられている。また、絶縁層119は、有機層112の上面の一部及び側面、並びに、絶縁層118の上面の一部及び側面の一部に接する領域を有する。なお、絶縁層119が、絶縁層118と接する領域は、有機層112の幅、絶縁層118の形状などによって異なる。例えば、図2Cに示す表示装置では、絶縁層119は、有機層112の上面の一部及び側面、並びに、絶縁層118の上面の一部及び側面に接する領域を有する。また、例えば、絶縁層118が有機樹脂を用いて形成される場合、絶縁層118は、画素電極111と重ならない領域において、凹部を有さない場合がある。このとき、絶縁層119は、有機層112の上面の一部及び側面、並びに、絶縁層118の上面に接する領域を有する。
 絶縁層119は、有機層112の傾斜を有する領域上、または、絶縁層118の端部と重なる領域上に設けられることが好ましく、有機層112の傾斜を有する領域上、または、有機層112を介して絶縁層118の端部と重なる領域上に設けられることがより好ましい。当該構成にすることで、図2Cにおいて矢印で示す領域(有機層112の傾斜を有する領域または絶縁層119が絶縁層118の端部と重なる領域)を介した、画素電極111と共通電極113との間隔を大きくすることができる。したがって、画素電極111と共通電極113との距離が最短となる領域と重なる有機層112の領域(図2Cに斜線で示す領域)を、有機層112の発光領域とすることができる。
 上記構成にすることで、有機層112の発光領域を平坦にすることができる。さらに、有機層112の発光領域と重なる共通電極113を平坦にすることができる。別言すると、画素電極111の上面全面と、有機層112の発光領域と重なる、共通電極113の下面全面とは、発光素子90の断面視において平行または概略平行である。また、発光素子90の上面視における、画素電極111及び共通電極113が、有機層112の発光領域を介して重なる領域において、画素電極111の、有機層112側の表面全面と、共通電極113の、有機層112側の表面全面とは、発光素子90の断面視において平行または概略平行である。
<表示装置の色度範囲について>
 本実施の形態の表示装置は、複数の発光素子を有し、フルカラー表示を実現できる。フルカラー表示における品質の指標としていくつかの規格値が定められている。
 例えば、ディスプレイ、プリンタ、デジタルカメラ、スキャナなどの機器において、機器間の色再現の違いを統一するためにIEC(国際電気標準会議)が定めた国際標準の色空間に関する規格としてsRGB規格が広く定着している。なお、sRGB規格では、CIE(国際照明委員会)が定めるCIE1931色度座標(xy色度座標)における色度(x,y)を、赤(R)(x,y)=(0.640,0.330)、緑(G)(x,y)=(0.300,0.600)、青(B)(x,y)=(0.150,0.060)としている。
 なお、CIE1931色度座標(xy色度座標)における色度(x,y)は、下記の変換式(1)を用いることにより、知覚される色差が空間内の距離にほぼ比例するように意図して定められたCIE1976色度座標(u’v’色度座標)で示すこともできる。
Figure JPOXMLDOC01-appb-M000001
 また、アメリカの国家テレビ標準化委員会(National Television System Committee)が作成したアナログテレビ方式の色域規格であるNTSC規格では、色度(x,y)を、赤(R)(x,y)=(0.670,0.330)、緑(G)(x,y)=(0.210,0.710)、青(B)(x,y)=(0.140,0.080)としている。
 また、デジタル映画(シネマ)を配給する際の国際的な統一規格であるDCI−P3(Digital Cinema Initiatives)規格では、色度(x,y)を、赤(R)(x,y)=(0.680,0.320)、緑(G)(x,y)=(0.265,0.690)、青(B)(x,y)=(0.150,0.060)としている。
 また、NHKが定めた高精細なUHDTV(Ultra High Definition Television、スーパーハイビジョンともいう)で使われる規格、Recommendation ITU−R BT.2020(以下、BT.2020)では、色度(x,y)を、赤色(0.708,0.292)、緑色(0.170,0.797)、青色(0.131,0.046)としている。
 このように画像表示に関する様々な規格が定められている。
 なお、色度の算出においては、色彩輝度計、分光放射輝度計、発光スペクトル測定器のいずれを用いてもよい。
<第1の方向、第2の方向>
 上述した第1の方向および第2の方向について、図3を用いて説明する。ここでは、第1の方向および第2の方向について、球面座標系を用いて、主に説明する。
 図3は、表示装置が有する表示領域80の斜視図である。図3は、3つの発光素子(発光素子90R、発光素子90G、及び発光素子90B)が配列する構成を示している。なお、表示領域80は、基板(図示せず)表面と平行である。よって、以降に記載する表示領域80は、基板と置き換えることができる。
 ここでは、各発光素子の形状は、上面視において矩形であるとして説明を行う。つまり、各発光素子の上面形状は、一対の長辺と一対の短辺からなる矩形であるとする。なお、図3には、発光素子90R、発光素子90G、及び発光素子90Bが上面視において矩形の形状を有する例を示しているが、これに限られない。発光素子90R、発光素子90G、及び発光素子90Bの少なくとも1つが上面視において矩形の形状を有するとよい。また、各発光素子の上面形状は矩形に限られず、円(真円)または正多角形以外の形状であってもよい。例えば、矩形のうち頂点が丸みを帯びた形状、オーバル(卵形、長円形、楕円形など)、異なる辺の長さが2つ以上ある多角形などであってもよい。
 図3に示すように、表示領域80の法線方向をz軸とし、z軸に垂直な方向をx軸とし、z軸及びx軸と直交する方向をy軸とする。別言すると、x軸及びy軸は、表示領域80に対して平行である。以下では、表示領域80に平行な面を、xy平面と表記する場合がある。
 図3には、第1の方向31、および第2の方向32を図示している。第1の方向31は、上述した第1の方向に対応し、第2の方向32は、上述した第2の方向に対応する。
 図3に示すように、第1の方向31とz軸のなす角を角31Aとし、第2の方向32とz軸のなす角を角32Aとする。また、第1の方向31のxy平面への射影とx軸のなす角を角31Bとし、第2の方向32のxy平面への射影とx軸のなす角を角32Bとする。
 上述した、CIE1976色度座標において、各発光素子の発光の、正面方向の色度及び第1の方向の色度の色度差Δu’v’と、正面方向の色度及び第2の方向の色度の色度差Δu’v’との差の絶対値を算出する場合、第1の方向31のxy平面への射影が発光素子の長辺と平行になるよう第1の方向31を設定し、第2の方向32のxy平面への射影が発光素子の短辺と平行になるよう第2の方向32を設定する。別言すると、表示領域80の上面視において、第1の方向31を、発光素子の長辺と平行にし、第2の方向32を、発光素子の短辺と平行にする。なお、発光素子は上面視において矩形の形状を有するため、発光素子の長辺と発光素子の短辺とのなす角は直角であることから、第2の方向32のxy平面への射影は、第1の方向31のxy平面への射影と垂直をなす。
 さらに、表示領域80の上面視において、正面方向(z軸方向に相当)および第1の方向31のなす角と、正面方向および第2の方向32のなす角とが等しく、かつ、第1の方向31のxy平面への射影および第2の方向32のxy平面への射影のなす角が90°または270°となるように、第1の方向31および第2の方向32を設定する。別言すると、角31Aの角度と角32Aの角度が等しく、かつ、角31Bの角度と角32Bの角度の差が90°または270°となるように、第1の方向31および第2の方向32を設定する。
 上記2つの色度差Δu’v’の差の絶対値は、角31Aおよび角32Aのそれぞれの角度を、30°以上80°以下から選ばれる一つの角度、または、30°以上80°以下の一部または全部の範囲に対して算出するとよい。
 なお、第2の方向32は、正面からの傾きの絶対値が第1の方向31と同じであり、表示領域80への射影が第1の方向31の表示領域80への射影に対して垂直な方向とみなすことができる。また、第2の方向32は、第1の方向31を固定した状態で、表示領域80を上面視において90°回転させた場合の第1の方向31とみなすことができる。
 発光素子が矩形以外の上面形状を有する場合、長辺と短辺を定義できないことがある。例えば、発光素子の上面形状が対称軸を有する場合、第1の方向31のxy平面への射影が対称軸と平行になるよう第1の方向31を設定し、第2の方向32のxy平面への射影が対称軸と垂直になるよう第2の方向32を設定してもよい。また、第1の方向31のxy平面への射影が、発光素子が有する形状の重心を通り当該形状の外縁(輪郭)までの距離が最長となる直線と平行になるように第1の方向31を設定し、第2の方向32のxy平面への射影が、当該形状の重心を通り当該形状の外縁までの距離が最短となる直線と平行になるように第2の方向32を設定するとよい。このとき、第1の方向31のxy平面への射影と、第2の方向32のxy平面への射影とのなす角は直角(90°または270°)に限らない。
 なお、上述した、CIE1976色度座標において、各発光素子の発光の、正面方向の色度と第1の方向の色度との色度差Δu’v’に対する、正面方向の色度と第2の方向の色度との色度差Δu’v’の比率を算出する場合も同様である。
 以上のように、本発明の一態様により、視野角の広い表示装置を提供できる。また、色純度の高い表示装置を提供できる。また、水平(左右)方向および垂直(上下)方向において視野角の広い表示装置を提供できる。また、水平(左右)方向および垂直(上下)方向において色純度の高い表示装置を提供できる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置の構成例及び作製方法例について説明する。
 本発明の一態様は、発光素子(発光デバイスともいう)を有する表示装置である。例えば、それぞれ赤色(R)、緑色(G)、又は青色(B)の光を発する3種類の発光素子を有することで、フルカラー表示の表示装置を実現できる。
 本発明の一態様は、島状のEL層同士、及び島状のEL層と活性層とをメタルマスクなどのシャドーマスクを用いることなく、フォトリソグラフィ法により微細なパターンに加工する。これにより、これまで実現が困難であった高い精細度と、大きな開口率を有する表示装置を実現できる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を実現できる。
 なお、本明細書等において、島状とは、同一工程で形成された同一材料を用いた2以上の層が物理的に分離されている状態であることを示す。例えば、島状のEL層とは、当該EL層と、隣接するEL層とが、物理的に分離されている状態であることを示す。
 異なる色のEL層、又はEL層と活性層との間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法であれば、3μm以下、2μm以下、又は、1μm以下にまで狭めることができる。例えばLSI向けの露光装置を用いることで、500nm以下、200nm以下、100nm以下、さらには50nm以下にまで間隔を狭めることもできる。これにより、2つの発光素子間に存在しうる非発光領域の面積を大幅に縮小することができ、開口率を100%に近づけることが可能となる。例えば、開口率は、50%以上、60%以上、70%以上、80%以上、さらには90%以上であって、100%未満を実現することもできる。
 さらに、EL層及び活性層自体のパターンについても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、パターンの中央と端で厚さのばらつきが生じるため、パターン全体の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでパターンを形成するため、パターン内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、上記作製方法であれば、高い精細度と高い開口率を兼ね備えることができる。
 FMM(Fine Metal Mask)を用いて形成された有機膜は、端部に近いほど厚さが薄くなるような、極めてテーパー角の小さな(例えば0°より大きく30°未満)膜となる場合が多い。そのため、FMMを用いて形成された有機膜は、その側面と上面が連続的につながるため、側面を明確に確認することが困難な場合がある。一方、本発明の一態様においては、FMMを用いることなく加工されたEL層を有するため、側面を明確に確認することができる。特に、本発明の一態様は、EL層のテーパー角が、30°以上120°以下、好ましくは60°以上120°以下であることが好ましい。
 本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、FMMを用いて作製されるデバイスをFMM構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。MML構造の表示装置は、メタルマスクを用いずに作製するため、FMM構造、またはMM構造の表示装置よりも画素配置及び画素形状等の設計自由度が高い。
 なお、MML構造の表示装置の作製方法では、島状のEL層は、メタルマスクのパターンによって形成されるのではなく、EL層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現できる。さらに、EL層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。また、EL層上に犠牲層を設けることで、表示装置の作製工程中にEL層が受けるダメージを低減し、発光素子の信頼性を高めることができる。なお、本明細書等において、犠牲層をマスク層と呼称してもよい。
 また、本発明の一態様の表示装置は、画素電極の端部を覆う絶縁物が設けられない構造とすることができる。別言すると、画素電極と、EL層との間に絶縁物が設けられない構成である。当該構成とすることで、EL層からの発光を効率よく取り出すことができるため、視野角依存性を極めて小さくすることができる。例えば、本発明の一態様の表示装置においては、視野角(斜め方向から画面を見たときの、一定のコントラスト比が維持される最大の角度)を100°以上180°未満、好ましくは150°以上170°以下の範囲とすることができる。なお、上記の視野角については、上下方向、及び左右方向のそれぞれに適用することができる。本発明の一態様の表示装置とすることで、視野角依存性が向上し、画像の視認性を高めることが可能となる。
 なお、表示装置をFMMを用いて形成する場合、画素配置の構成などに制限がかかる場合がある。ここで、FMMを用いたEL層の形成について、以下、説明を行う。
 FMMを用いてEL層の形成を行う場合、EL蒸着時において、所望の領域にELが蒸着されるように開口部が設けられた金属のマスク(FMMともいう)を基板に対向してセットする。その後、FMMを介して、EL蒸着を行うことで、所望の領域にEL蒸着を行う。EL蒸着する際の基板サイズが大きくなると、FMMのサイズも大きくなり、その重量も大きくなる。また、EL蒸着時に熱などがFMMに与えられるため、FMMが変形する場合がある。又は、EL蒸着時にFMMに一定のテンションを与えて蒸着する方法などもあるため、FMMの重量、及び強度は、重要なパラメータである。
 そのため、FMM構造の表示装置の画素配置の構成を設計する場合、上記のパラメータなどを考慮する必要があり、一定の制限のもとに検討する必要がある。一方で、本発明の一態様の表示装置においては、MML構造の表示装置であるため、画素配置の構成などFMM構造の表示装置と比較し設計自由度が高いといった、優れた効果を奏する。なお、本構成においては、例えばフレキシブルデバイスなどとも非常に親和性が高く、画素、及び駆動回路のいずれか一または双方ともに、様々な回路配置とすることができる。
 なお、本明細書等において、各色の発光素子(ここでは青(B)、緑(G)、および赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。また、本明細書等において、白色光を発することのできる発光素子を白色発光素子と呼ぶ場合がある。なお、白色発光素子は、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現できる。
 また、発光素子は、シングル構造と、タンデム構造とに大別することができる。シングル構造の素子は、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。2の発光層を用いて白色発光を得る場合、2の発光層の各々の発光色が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光素子全体として白色発光する構成を得ることができる。また、3以上の発光層を用いて白色発光を得る場合、3以上の発光層のそれぞれの発光色が合わさることで、発光素子全体として白色発光することができる構成とすればよい。
 タンデム構造の素子は、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。各発光ユニットにおいて、同じ色の光を発する発光層を用いることで、所定の電流当たりの輝度が高められ、且つ、シングル構造と比較して信頼性の高い発光素子とすることができる。タンデム構造で白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる発光色の組み合わせについては、シングル構造の構成と同様である。なお、タンデム構造の素子において、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
 また、上述の白色発光素子(シングル構造またはタンデム構造)と、SBS構造の発光素子と、を比較した場合、SBS構造の発光素子は、白色発光素子よりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光素子を用いると好適である。一方で、白色発光素子は、製造プロセスがSBS構造の発光素子よりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
 本実施の形態の発光素子の構成に、特に限定はなく、シングル構造であってもタンデム構造であってもよい。
 以下では、より具体的な例について説明する。
[構成例]
 図4に、表示装置100の表示領域およびその周辺の上面概略図を示す。表示装置100の表示領域は、赤色を呈する発光素子90R、緑色を呈する発光素子90G、及び青色を呈する発光素子90Bを、それぞれ複数有する。図4では、各発光素子の区別を簡単にするため、各発光素子の発光領域内にR、G、Bの符号を付している。
 発光素子90R、発光素子90G、発光素子90Bは、それぞれマトリクス状に配列している。図4は、ストライプ配列を有する構成を示している。なお、発光素子の配列方法はこれに限られず、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
 また、図4には、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cは、共通電極113に供給するための電位(例えばアノード電位、又はカソード電位)が与えられる。接続電極111Cは、発光素子90Rなどが配列する表示領域の外に設けられる。また図4には、共通電極113を破線で示している。
 接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状、L字状、コの字状(角括弧状)、又は四角形などとすることができる。
 図5Aは、図4中の一点鎖線A1−A2、及び一点鎖線C1−C2に対応する断面図である。図5Aには、発光素子90R、発光素子90G、発光素子90B、及び接続部140の断面図を示している。発光素子90R、発光素子90G、及び発光素子90Bは、層101上に設けられる。また、層101は、基板(図示せず)上に設けられる。または、層101には、基板(図示せず)が含まれる。
 層101には、例えば複数のトランジスタ(図示せず)が設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。ここで、図5Aでは、層101が、隣接する発光素子間に凹部を有しない例を示しているが、凹部を有してもよい。
 層101には、例えば画素回路、走査線駆動回路(ゲートドライバ)、及び信号線駆動回路(ソースドライバ)等が構成されていることが好ましい。また、上記に加えて演算回路、又は記憶回路等が構成されていてもよい。
 発光素子90Rは、画素電極111R、有機層112R、有機層114、及び共通電極113を有する。発光素子90Gは、画素電極111G、有機層112G、有機層114、及び共通電極113を有する。発光素子90Bは、画素電極111B、有機層112B、有機層114、及び共通電極113を有する。有機層114と共通電極113は、発光素子90R、発光素子90G、及び発光素子90Bに共通に設けられる。有機層114は、共通層ともいうことができる。
 有機層112Rは、少なくとも赤色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112Gは、少なくとも緑色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112Bは、少なくとも青色の波長域に強度を有する光を発する発光性の有機化合物を有する。有機層112R、有機層112G、及び有機層112Bは、それぞれEL層とも呼ぶことができる。
 有機層112R、有機層112G、有機層112Bは、それぞれ電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有していてもよい。有機層114は、発光層を有さない構成とすることができる。例えば、有機層114は、電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有する。
 ここで、有機層112R、有機層112G、及び有機層112Bの積層構造のうち、最も上側に位置する層、すなわち有機層114と接する層は、発光層以外の層とすることが好ましい。例えば、発光層を覆って、電子注入層、電子輸送層、正孔注入層、正孔輸送層、又はこれら以外の層を設け、当該層と、有機層114とが接する構成とすることが好ましい。このように、各発光素子を作製する際に、発光層の上面を他の層で保護した状態とすることで、発光素子の信頼性を向上させることができる。
 画素電極111は、発光素子毎に設けられている。また、共通電極113及び有機層114は、各発光素子に共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
 図5Aに示すように、異なる色の発光素子間において、2つの有機層112の間に隙間が設けられている。このように、有機層112R、有機層112G、及び有機層112Bが、互いに接しないように設けられていることが好ましい。これにより、隣接する2つの有機層112を介して電流が流れ、意図しない発光が生じることを好適に防ぐことができる。そのため、コントラストを高めることができ、表示品位の高い表示装置を実現できる。
 有機層112R、有機層112G、及び有機層112Bは、テーパー角が30°以上であることが好ましい。有機層112R、有機層112G、及び有機層112Bは、端部における側面(表面)と底面(被形成面)との角度が、30°以上120°以下、好ましくは45°以上120°以下、より好ましくは60°以上120°以下であることが好ましい。又は、有機層112R、有機層112G、及び有機層112Bは、テーパー角がそれぞれ90°又はその近傍(例えば80°以上100°以下)であることが好ましい。
 共通電極113上には、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
 保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造又は積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜、酸化窒化物膜、窒化酸化物膜又は窒化物膜が挙げられる。又は、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
 また、保護層121として、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、保護層121の不純物に対するバリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、又はレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
 接続部140では、接続電極111C上に共通電極113が接して設けられ、共通電極113を覆って保護層121が設けられている。
 図5Aは、画素電極111Rの端部と有機層112Rの端部とが一致又は概略一致し、画素電極111Gの端部と有機層112Gの端部とが一致又は概略一致し、画素電極111Bの端部と有機層112Bの端部とが一致又は概略一致している場合の例を示している。
 また、図5Aは、有機層114が、有機層112R、有機層112G、及び有機層112Bの上面及び側面を覆って設けられている。有機層114により、画素電極111と共通電極113とが接し、電気的にショートしてしまうことを防ぐことができる。
 なお、本発明の一態様の表示装置は、図5Aに示す構成に限られない。以下では、図5Aとは一部の構成が異なる表示装置の構成例について説明する。
 図5Bは、表示装置が、有機層112R、有機層112G、及び有機層112B、並びに画素電極111の側面に接して設けられる絶縁層125を有する場合の例を示している。つまり、図5Bに示す表示装置は、絶縁層125を有する点で、図5Aに示す表示装置とは異なる。絶縁層125を設けることで、画素電極111と共通電極113との電気的なショート、及びこれらの間のリーク電流を効果的に抑制できる。
 なお、絶縁層125は、接続電極111Cの側面に接して設けられてもよい。図5Bは、絶縁層125が接続電極111Cの上面の一部及び側面と接する領域を有する場合の例を示している。
 絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特に原子層堆積(ALD:Atomic Layer Deposition)法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、有機層を保護する機能に優れた絶縁層125を形成することができる。
 なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。例えば、酸化窒化アルミニウムと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化アルミニウムと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 図5Cでは、隣接する2つの発光素子間において、対向する2つの画素電極の隙間、及び対向する2つの有機層の隙間を埋めるように、樹脂層126が設けられている。つまり、図5Cに示す表示装置は、樹脂層126を有する点で、図5Aに示す表示装置とは異なる。樹脂層126により、有機層114、共通電極113等の被形成面を平坦化することができるため、隣接する発光素子間の段差における共通電極113の被覆不良により、共通電極113が断線してしまうことを防ぐことができる。
 樹脂層126の上面は、平坦であるほど好ましいが、樹脂層126の被形成面の凹凸形状、樹脂層126の形成条件などによって、樹脂層126の表面が凹状又は凸状の形状になる場合がある。
 なお、樹脂層126は、接続電極111Cの側面に接して設けられてもよい。図5Cは、樹脂層126が接続電極111Cの上面の一部及び側面と接する領域を有する場合の例を示している。
 樹脂層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、樹脂層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、樹脂層126として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、又はアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、樹脂層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、又はネガ型の材料を用いることができる。
 感光性の樹脂を用いることにより、露光及び現像の工程のみで樹脂層126を作製できる。また、ネガ型の感光性樹脂(例えばレジスト材料など)を用いて樹脂層126を形成してもよい。また、樹脂層126として、有機材料を有する絶縁層を用いる場合、可視光を吸収する材料を用いると好適である。樹脂層126に可視光を吸収する材料を用いると、EL層からの発光を樹脂層126により吸収することが可能となり、隣接するEL層に漏れうる光(迷光)を抑制できる。したがって、表示品位の高い表示装置を提供できる。
 また、樹脂層126として、着色された材料(例えば、黒色の顔料を含む材料など)を用いることで、隣接する画素からの迷光を遮断し、混色を抑制する機能を付与してもよい。
 図5Dでは、絶縁層125と、絶縁層125上に樹脂層126が設けられている。つまり、図5Dに示す表示装置は、絶縁層125、及び樹脂層126を有する点で、図5Aに示す表示装置とは異なる。絶縁層125により、有機層112と樹脂層126とが接しないため、樹脂層126に含まれる水分などの不純物が、有機層112に拡散することを防ぐことができ、信頼性の高い表示装置とすることができる。
 また、絶縁層125と、樹脂層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、及びアルミニウムなどの中から選ばれる一又は複数を含む金属膜)を設け、発光層から射出される光を当該反射膜で反射させることで、光取り出し効率を向上させる機構を設けてもよい。
 図6A乃至図6C、並びに、図7A乃至図7Eのそれぞれに示す表示装置は、画素電極111の幅が有機層112の幅と異なる点で、図5Aに示す表示装置とは異なる。
 図6A乃至図6Cは、画素電極111Rの幅が有機層112Rの幅よりも大きく、画素電極111Gの幅が有機層112Gの幅よりも大きく、画素電極111Bの幅が有機層112Bの幅よりも大きい場合の例を示している。有機層112Rは画素電極111Rの端部よりも内側に設けられ、有機層112Gは画素電極111Gの端部よりも内側に設けられ、有機層112Bは画素電極111Bの端部よりも内側に設けられている。
 図6Aは、絶縁層125を有する場合の例を示している。絶縁層125は、発光素子が有する有機層112の側面と、画素電極111の上面の一部及び側面を覆って設けられている。
 図6Bは、樹脂層126を有する場合の例を示している。樹脂層126は、隣接する2つの発光素子間に位置し、有機層112の側面、並びに画素電極111の上面の一部及び側面を覆って設けられている。
 図6Cは、絶縁層125と樹脂層126の両方を有する場合の例を示している。有機層112と樹脂層126との間には、絶縁層125が設けられている。
 図7A乃至図7Eは、画素電極111Rの幅が有機層112Rの幅よりも小さく、画素電極111Gの幅が有機層112Gの幅よりも小さく、画素電極111Bの幅が有機層112Bの幅よりも小さい場合の例を示している。有機層112Rの端部は画素電極111Rの端部よりも外側に位置し、有機層112Gの端部は画素電極111Gの端部よりも外側に位置し、有機層112Bの端部は画素電極111Bの端部よりも外側に位置している。
 図7Bは、絶縁層125を有する例を示している。絶縁層125は、隣接する2つの発光素子の有機層112の側面に接して設けられている。なお、絶縁層125は、有機層112の側面だけでなく、上面の一部を覆って設けられていてもよい。
 図7Cは、樹脂層126を有する例を示している。樹脂層126は、隣接する2つの発光素子の間に位置し、有機層112の側面及び上面の一部を覆って設けられている。なお、樹脂層126は、有機層112の側面に接し、上面を覆わない構成としてもよい。
 図7Dは、絶縁層125と樹脂層126の両方を有する場合の例を示している。有機層112と樹脂層126との間には、絶縁層125が設けられている。
 図7Eは、絶縁層124、絶縁層125、及び樹脂層126を有する場合の例を示している。有機層112と絶縁層125との間には、絶縁層124が設けられている。絶縁層124は、有機層112上に設けられる犠牲層から形成される。当該犠牲層については、後述の[作製方法例]で説明する。
 図7Eに示すように、層101は、隣接する発光素子間に凹部を有してもよい。例えば、層101の最表面に位置する絶縁層に凹部が設けられてもよい。なお、層101は、隣接する発光素子の間に凹部を有さない場合もある。
 図8A乃至図9Fには、発光素子90Rが有する画素電極111Rの端部、発光素子90Gが有する画素電極111Gの端部、及びこれらの近傍の拡大図を示している。
 図8A乃至図8Cでは、樹脂層126の上面が平坦である場合の、樹脂層126及びその近傍の拡大図を示している。図8Aは、画素電極111Rよりも有機層112Rの幅が大きく、画素電極111Gよりも有機層112Gの幅が大きい場合の例を示している。図8Bは、画素電極111Rの幅と有機層112Rの幅とが一致又は概略一致し、画素電極111Gの幅と有機層112Gの幅とが一致又は概略一致している場合の例を示している。図8Cは、画素電極111Rよりも有機層112Rの幅が小さく、画素電極111Gよりも有機層112Gの幅が小さい場合の例を示している。
 図8Aに示すように、有機層112Rが画素電極111Rの端部を覆って設けられ、有機層112Gが画素電極111Gの端部を覆って設けられるため、画素電極111R及び画素電極111Gのそれぞれの端部は、テーパー形状であることが好ましい。これにより、有機層112R及び有機層112Gの段差被覆性が向上し、信頼性の高い表示装置とすることができる。
 図8D乃至図8Fは、樹脂層126の上面が凹状である場合の例を示している。このとき、有機層114、共通電極113、及び保護層121の上面には、樹脂層126の凹状の上面を反映した凹状の部分が形成される。
 図9A乃至図9Cは、樹脂層126の上面が凸状である場合の例を示している。このとき、有機層114、共通電極113、及び保護層121の上面には、樹脂層126の凸状の上面を反映した凸状の部分が形成される。
 図9D乃至図9Fは、樹脂層126の一部が、有機層112Rの側面及び上面の一部、及び有機層112Gの側面及び上面の一部を覆っている場合の例を示している。このとき、樹脂層126と、有機層112R又は有機層112Gの側面及び上面の一部との間には絶縁層125が設けられる。
 また図9D乃至図9Fは、樹脂層126の上面の一部が凹状である場合の例を示している。このとき、有機層114、共通電極113、及び保護層121の上面には、樹脂層126の上面を反映した凹凸状の部分が形成される。
 図10A及び図10Bは、絶縁層118を有する例を示している。
 画素電極111の端部を覆って、絶縁層118が設けられている。絶縁層118の端部は、テーパー形状であることが好ましい。
 また、絶縁層118に有機樹脂を用いることで、その表面を緩やかな曲面とすることができる。そのため、絶縁層118の上に形成される膜の被覆性を高めることができる。
 絶縁層118に用いることのできる材料としては、例えばアクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 又は、絶縁層118として、無機絶縁材料を用いてもよい。絶縁層118に用いることのできる無機絶縁材料としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、又は酸化ハフニウムなどの、酸化物、酸化窒化物、窒化酸化物、又は窒化物を用いることができる。また、酸化イットリウム、酸化ジルコニウム、酸化ガリウム、酸化タンタル、酸化マグネシウム、酸化ランタン、酸化セリウム、及び酸化ネオジム等を用いてもよい。
 図10Aは、絶縁層118、及び樹脂層126を有する例を示している。つまり、図10Aに示す表示装置は、絶縁層118、及び樹脂層126を有する点で、図5Aに示す表示装置とは異なる。
 樹脂層126は、隣接する2つの発光素子間に位置し、有機層112の上面の一部及び側面、並びに、絶縁層118の上面を覆って設けられている。
 図10Bは、絶縁層118、絶縁層125、及び樹脂層126を有する場合の例を示している。つまり、図10Bに示す表示装置は、絶縁層125を有する点で、図10Aに示す表示装置とは異なる。有機層112及び絶縁層118と樹脂層126との間には、絶縁層125が設けられている。なお、図10Bに示す構成において、樹脂層126を設けなくてもよい場合がある。
 なお、図5B、図5Cなどに示す、隣接する2つの発光素子間において、対向する2つの有機層間に設けられる絶縁層125または樹脂層126は、実施の形態1で説明した絶縁層119に対応する。また、図5Dなどに示す、隣接する2つの発光素子間において、対向する2つの有機層間に設けられる絶縁層125及び樹脂層126は、それぞれ、実施の形態1で説明した絶縁層119a及び絶縁層119bに対応する。
[変形例]
 以下では、上記とは一部の構成が異なる例について説明する。なお以下では、上記と重複する部分についてはこれを援用し、説明を省略する。
 図10Cに示す表示装置は、導電層122R、導電層122G、及び導電層122Bを有する点で、図5Cに示す表示装置と主に相違している。導電層122R、導電層122G、及び導電層122Bは、光学調整層として機能する。
 発光素子90Rは、画素電極111Rと有機層112Rとの間に、導電層122Rを有する。発光素子90Gは、画素電極111Gと有機層112Gとの間に、導電層122Gを有する。発光素子90Bは、画素電極111Bと有機層112Bとの間に、導電層122Bを有する。
 さらに、導電層122R、導電層122G、及び導電層122Bは、それぞれ可視光に対して透光性を有する。導電層122R、導電層122G、及び導電層122Bは、それぞれ厚さが異なる。これにより、発光素子毎に光路長を異ならせることができる。
 ここで、画素電極111R、画素電極111G、及び画素電極111Bに、可視光に対して反射性を有する導電膜を用い、共通電極113に、可視光に対して反射性及び透過性を有する導電膜を用いる。これにより、各発光素子は、いわゆるマイクロキャビティ構造(微小共振器構造)が実現され、特定の波長の光が強められる。これにより、色純度が高められた表示装置を実現できる。
 各光学調整層としては、可視光に対して透光性を有する、導電性材料を用いることができる。例えば、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛、シリコンを含むインジウム錫酸化物、シリコンを含むインジウム亜鉛酸化物などの導電性酸化物を用いることができる。
 各光学調整層は、画素電極111R、画素電極111G、及び画素電極111Bを形成した後であって、有機層112となる有機膜を形成する前に、形成することができる。各光学調整層は、それぞれ厚さの異なる導電膜を用いてもよいし、薄いものから順に、単層構造、2層構造、3層構造などとしてもよい。
 なお、光学調整層は、図5Cに示す表示装置に限らず、図5A、図5B、図5D、図6A乃至図6C、図7A乃至図7E、図10A及び図10Bのそれぞれに示す表示装置が有する各発光素子に設けてもよい。
 図10Dに示す表示装置は、光学調整層を有さない点で、図10Cに示す表示装置と主に相違している。図10Dに示す表示装置は、各有機層112の厚さが異なる点で、図5Cに示す表示装置と主に相違している。
 図10Dに示す表示装置では、有機層112R、有機層112G、及び有機層112Bの厚さを異ならせて、マイクロキャビティ構造を実現した例である。このような構成とすることで、光学調整層を別途設ける必要が無いため、工程を簡略化できる。
 例えば、図10Dに示す表示装置では、最も波長の長い光を発する発光素子90Rの有機層112Rが最も厚く、最も波長の短い光を発する発光素子90Bの有機層112Bが最も薄い。なお、これに限られず、各発光素子が発する光の波長、発光素子を構成する層の光学特性、及び発光素子の電気特性などを考慮して、各有機層の厚さを調整することができる。
 なお、図5Cに示す表示装置が有する発光素子に限らず、図5A、図5B、図5D、図6A乃至図6C、図7A乃至図7E、図10A及び図10Bのそれぞれに示す表示装置が有する発光素子に、有機層112の厚さを異ならせることによるマイクロキャビティ構造を付与してもよい。
 発光素子にマイクロキャビティ構造を付与することにより、色純度を高めることができる。
[作製方法例]
 以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、図7Eに示した表示装置100を例に挙げて説明する。
 なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、又は熱CVD法等がある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。さらに、ALD法としては、PEALD法、又は熱ALD法等がある。
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
 また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法等により薄膜を加工してもよい。また、メタルマスク等の遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
 フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、又はこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、又はArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、又はX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線又は電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビーム等のビームを走査することにより露光を行う場合には、フォトマスクは不要である。
 薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法等を用いることができる。
 表示装置100を作製するには、まず、基板(図示せず)上に層101を形成する。前述のように、層101は、例えばトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。
 基板としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることが好ましい。基板として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板等を用いることができる。また、シリコン又は炭化シリコン等を材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板等の半導体基板を用いることができる。
 続いて、層101上に、画素電極111及び接続電極111Cとなる導電膜を成膜する。具体的には、例えば層101の絶縁表面上に、当該導電膜を成膜する。続いて、当該導電膜の一部をエッチングして除去し、層101上に画素電極111R、画素電極111G、画素電極111B、及び接続電極111Cを形成する(図11A)。
 画素電極として可視光に対して反射性を有する導電膜を用いる場合、可視光の波長域全域での反射率ができるだけ高い材料(例えば銀又はアルミニウム等)を適用することが好ましい。これにより、発光素子の光取り出し効率を高められるだけでなく、色再現性を高めることができる。
 続いて、画素電極111R、画素電極111G、画素電極111B上、及び層101上に、後に有機層112Rとなる有機膜112Rfを形成する(図11B)。ここで、有機膜112Rfは、接続電極111Cとは重ならないように設けることが好ましい。例えば、接続電極111Cが含まれる領域をメタルマスクで遮蔽して有機膜112Rfを形成することにより、有機膜112Rfを、接続電極111Cと重ならないように形成することができる。この際に用いるメタルマスクは表示部の画素領域を遮蔽しなくてもよいため、高精細なメタルマスクを用いる必要はない。
 有機膜112Rfは、少なくとも発光性の化合物を含む膜を有する。このほかに、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層として機能する膜のうち、一以上が積層された構成としてもよい。有機膜112Rfは、例えば蒸着法、スパッタリング法、又はインクジェット法等により形成することができる。なおこれに限られず、上述した成膜方法を適宜用いることができる。
 続いて、有機膜112Rf上、接続電極111C上、及び層101上に犠牲膜144Raを形成し、犠牲膜144Ra上に犠牲膜144Rbを形成する(図11B)。つまり、有機膜112Rf上、接続電極111C上、及び層101上に、2層積層構造の犠牲膜を形成する。なお、犠牲膜は1層としてもよいし、3層以上の積層構造としてもよい。以降の工程において犠牲膜を形成する場合も、2層積層構造の犠牲膜を形成するものとするが、1層としてもよいし、3層以上の積層構造としてもよい。なお、本明細書等において、犠牲膜をマスク膜と呼称してもよい。
 犠牲膜144Ra及び犠牲膜144Rbの形成には、例えば、スパッタリング法、CVD法、ALD法、又は真空蒸着法を用いることができる。なお、EL層へのダメージが少ない形成方法が好ましく、有機膜112Rf上に直接形成する犠牲膜144Raには、ALD法、又は真空蒸着法を用いて、犠牲膜144Raを形成すると好適である。
 犠牲膜144Raとして、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜等の無機膜を好適に用いることができる。
 また、犠牲膜144Raとして、酸化物膜を用いることができる。代表的には、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜、酸化窒化ハフニウム膜等の酸化物膜又は酸化窒化物膜を用いることができる。また、犠牲膜144Raとして、例えば窒化物膜を用いることもできる。具体的には、窒化シリコン膜、窒化アルミニウム膜、窒化ハフニウム膜、窒化チタン膜、窒化タンタル膜、窒化タングステン膜、窒化ガリウム膜、窒化ゲルマニウム膜等の窒化物膜を用いることもできる。このような無機絶縁材料は、スパッタリング法、CVD法、又はALD法等の成膜方法を用いて形成することができるが、有機膜112Rf上に直接形成する犠牲膜144Raは、特にALD法を用いて形成することが好ましい。
 また、犠牲膜144Raとして、例えばニッケル、タングステン、クロム、モリブデン、コバルト、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、又は該金属材料を含む合金材料を用いることができる。特に、アルミニウム又は銀等の低融点材料を用いることが好ましい。
 また、犠牲膜144Raとして、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)等の金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)等を用いることができる。又はシリコンを含むインジウムスズ酸化物等を用いることもできる。
 なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一種又は複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、又はイットリウムから選ばれた一種又は複数種とすることが好ましい。
 犠牲膜144Rbとして、上記に挙げた犠牲膜144Raとして用いることができる材料を用いることができる。例えば、上記に挙げた犠牲膜144Raとして用いることができる材料から、犠牲膜144Raとして一を選択し、犠牲膜144Rbとして他の一を選択することができる。また、上記に挙げた犠牲膜144Raとして用いることができる材料のうち、犠牲膜144Raには一又は複数の材料を選択し、犠牲膜144Rbには、犠牲膜144Raとして選択された材料以外から選択された材料を用いることができる。
 具体的には、犠牲膜144Raとして、ALD法を用いて形成された酸化アルミニウムを用い、犠牲膜144Rbとして、スパッタリング法を用いて形成された窒化シリコンを用いると好適である。なお、当該構成の場合、ALD法、及びスパッタリング法で成膜する際の成膜温度としては、室温以上120℃以下、好ましくは室温以上100℃以下とすることで、有機膜112Rfに与える影響を低減できるため好適である。また、犠牲膜144Raと、犠牲膜144Rbとの積層構造の場合、当該積層構造の応力が小さいほうが好ましい。具体的には、積層構造の応力が、−500MPa以上+500MPa以下、より好ましくは、−200MPa以上+200MPa以下とすると、膜剥がれ、及びピーリング等の工程トラブルを抑制できるため好適である。
 犠牲膜144Raは、有機膜112Rf等の各EL膜のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲膜144Raは、各EL膜へのダメージの少ないウェットエッチング法により除去可能な膜を用いることが特に好ましい。
 また、犠牲膜144Raとして、少なくとも有機膜112Rfの最上部に位置する膜に対して、化学的に安定な溶媒に溶解しうる材料を用いてもよい。特に、水又はアルコールに溶解する材料を、犠牲膜144Raに好適に用いることができる。犠牲膜144Raを成膜する際には、水又はアルコール等の溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、有機膜112Rfへの熱的なダメージを低減することができ、好ましい。
 犠牲膜144Raの形成に用いることのできる湿式の成膜方法としては、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等がある。
 犠牲膜144Raとしては、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、又はアルコール可溶性のポリアミド樹脂等の有機材料を用いることができる。
 犠牲膜144Rbには、犠牲膜144Raとの選択比の大きい膜を用いればよい。
 犠牲膜144Raとして、ALD法により形成した酸化アルミニウム、酸化ハフニウム、酸化シリコン等の無機絶縁材料を用い、犠牲膜144Rbとして、スパッタリング法により形成した、ニッケル、タングステン、クロム、モリブデン、コバルト、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタル等の金属材料、又は該金属材料を含む合金材料を用いることが好ましい。特に、犠牲膜144Rbとして、スパッタリング法により形成したタングステンを用いることが好ましい。また、犠牲膜144Rbとして、スパッタリング法により形成した、In−Ga−Zn酸化物等の、インジウムを含む金属酸化物を用いてもよい。さらに、犠牲膜144Rbとして、無機材料を用いてもよい。例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜等の酸化物膜、酸化窒化物膜、窒化酸化物膜又は窒化物膜を用いることができる。
 また、犠牲膜144Rbとして、有機膜112Rf等に用いることのできる有機膜を用いてもよい。例えば、有機膜112Rfに用いる有機膜と同じ膜を、犠牲膜144Rbとして用いることができる。このような有機膜を用いることで、有機膜112Rfと成膜装置を共通に用いることができるため、好ましい。さらに、有機膜112Rfをエッチングする際に、犠牲膜144Rbを同時に除去できるため、工程を簡略化できる。
 続いて、犠牲膜144Rb上の画素電極111R及び接続電極111Cと重なる位置にレジストマスク(図示せず)を形成する。当該レジストマスクは、ポジ型のレジスト材料、又はネガ型のレジスト材料等、感光性の樹脂を含むレジスト材料を用いることができる。
 続いて、犠牲膜144Rb及び犠牲膜144Raの、上記レジストマスクに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Rb及び犠牲層145Raを形成する(図11C)。図11Cに示すように、犠牲層145Rb及び犠牲層145Raは、例えば画素電極111R上と、接続電極111C上と、に形成することができる。
 ここで、上記レジストマスクを用いて犠牲膜144Rbの一部をエッチングにより除去し、犠牲層145Rbを形成した後に上記レジストマスクを除去し、その後に犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングすることが好ましい。この場合、犠牲膜144Rbのエッチングには、犠牲膜144Raとの選択比の高いエッチング条件を用いることが好ましい。ハードマスク形成のエッチングにはウェットエッチング法又はドライエッチング法を用いることができるが、ドライエッチング法を用いることで、パターンの縮小を抑制できる。
 犠牲膜144Ra及び犠牲膜144Rbの加工、並びに上記レジストマスクの除去は、ウェットエッチング法又はドライエッチング法により行うことができる。例えば、犠牲膜144Ra、及び犠牲膜144Rbは、フッ素を含むガス用いたドライエッチング法により加工することができる。また、上記レジストマスクは、酸素を含むガス(酸素ガスともいう)を用いたドライエッチング法(プラズマアッシング法ともいう)により除去することができる。
 犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングする場合、有機膜112Rfが犠牲膜144Raに覆われた状態で上記レジストマスクの除去を行うことができる。例えば、有機膜112Rfが酸素に触れると、発光素子90Rの電気特性に悪影響を及ぼす場合がある。よって、プラズマアッシング等、酸素ガスを用いた方法で上記レジストマスクを除去する場合には、犠牲層145Rbをハードマスクとして犠牲膜144Raをエッチングすることが好ましい。
 続いて、犠牲層145Raに覆われない有機膜112Rfの一部をエッチングにより除去し、島状又は帯状の有機層112Rを形成する(図11D)。
 有機膜112Rfのエッチングに酸素ガスを用いたドライエッチング法を用いると、エッチング速度を高めることができる。そのため、エッチング速度を十分な速さに維持しつつ、低パワーの条件でのエッチングができるため、エッチングによる有機膜112Rfへのダメージを低減できる。さらに、エッチング時に生じる反応生成物の有機層112R等への付着等の不具合を抑制できる。
 一方、酸素を主成分に含まないエッチングガスを用いたドライエッチング法により有機膜112Rfをエッチングすると、有機膜112Rfの変質を抑制し、表示装置100を信頼性の高い表示装置とすることができる。酸素を主成分に含まないエッチングガスとしては、例えば四フッ化炭素(CF)、C、SF、CHF、Cl、HO、BCl等を含むガス、又はHe等の第18族元素を含むガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。なお、有機膜112Rfのエッチングは上記に限られず、他のガスを用いたドライエッチング法により行ってもよいし、ウェットエッチング法により行ってもよい。
 有機膜112Rfのエッチングを行って有機層112Rを形成した際に、有機層112Rの側面に不純物が付着していると、以降の工程において当該不純物が有機層112Rの内部へ侵入する場合がある。これにより、表示装置100の信頼性が低下する場合がある。よって、有機層112Rの形成後に、有機層112Rの表面に付着している不純物を除去すると、表示装置100の信頼性を高めることができ好ましい。
 有機層112Rの表面に付着している不純物の除去は、例えば有機層112Rの表面に不活性ガスを照射することで行うことができる。ここで、有機層112Rを形成した直後は、有機層112Rの表面が露出している。具体的には、有機層112Rの側面が露出している。よって、有機層112Rの形成後に、例えば有機層112Rが形成されている基板を不活性ガス雰囲気下におくと、有機層112Rに付着している不純物を除去することができる。不活性ガスとして、例えば第18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、及びクリプトン等)、及び窒素の中から選ばれるいずれか一又は複数を用いることができる。
 ところで、図11C、及び図11Dに示した工程において、酸素を含むガスを用いて有機膜112Rfのエッチングを行うと、画素電極111G、及び画素電極111Bの表面状態が変化する場合がある。例えば、画素電極111G、及び画素電極111Bの表面が親水性となる場合がある。例えば、画素電極111G、及び画素電極111Bの上表面が、インジウム錫酸化物を含む層である場合、酸素を含むガスを用いて有機膜112Rfのエッチングを行うことにより、当該インジウム錫酸化物を含む層が親水性となる。ここで、後の工程で画素電極111Gと接する領域を有するように形成される有機膜、及び画素電極111Bと接する領域を有するように形成される有機膜は、例えば疎水性である。親水面と疎水面の密着性は、親水面同士の密着性、及び疎水面同士の密着性より低い。以上より、画素電極111G及び画素電極111Bの表面が親水性であると、後の工程で形成される有機膜との密着性が低くなる場合がある。そのため、後の工程において有機膜が、画素電極111Gとの界面、又は画素電極111Bとの界面で剥がれる場合がある。また、酸素を含むガスを用いて有機膜112Rfのエッチングを行うと、上記の表面状態の変化に加え、画素電極111G、及び画素電極111Bの表面の仕事関数が変化する場合がある。
 そこで、画素電極111Gの表面、及び画素電極111Bの表面に対して疎水化処理を行うことで、後の工程で形成される有機膜の膜剥がれを抑制できる。よって、表示装置100を信頼性の高い表示装置とすることができる。また、表示装置100の作製における歩留まりを高め、表示装置100を低価格な表示装置とすることができる。
 疎水化処理は、例えば画素電極111G、及び画素電極111Bへのフッ素修飾により行うことができる。フッ素修飾は例えば、フッ素を含むガスによる処理又は加熱処理、フッ素を含むガス雰囲気中におけるプラズマ処理等により行うことができる。フッ素を含むガスとして、例えばフッ素ガスを用いることができ、例えばフルオロカーボンガスを用いることができる。フルオロカーボンガスとして、例えばCFガス、Cガス、Cガス、Cガス、C等の低級フッ化炭素ガスを用いることができる。また、フッ素を含むガスとして、例えばSFガス、NFガス、CHFガス等を用いることができる。また、これらのガスに、ヘリウムガス、アルゴンガス、又は水素ガス等を適宜添加することができる。
 また、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤を用いた処理を行うことで、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。シリル化剤として、ヘキサメチルジシラザン(HMDS)、トリメチルシリルイミダゾール(TMSI)等を用いることができる。さらに、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シランカップリング剤を用いた処理を行うことでも、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行うことにより、画素電極111Gの表面、及び画素電極111Bの表面に対してダメージを与えることができる。これにより、HMDS等のシリル化剤に含まれるメチル基が、画素電極111Gの表面、及び画素電極111Bの表面に結合しやすくなる。また、シランカップリング剤によるシランカップリングが発生しやすくなる。以上により、画素電極111Gの表面、及び画素電極111Bの表面に対して、アルゴン等の第18族元素を含むガス雰囲気中におけるプラズマ処理を行った後、シリル化剤、又はシランカップリング剤を用いた処理を行うことで、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 シリル化剤、又はシランカップリング剤等を用いた処理は、例えばスピンコート法、又はディップ法等を用いてシリル化剤、又はシランカップリング剤等を塗布することにより行うことができる。また、シリル化剤、又はシランカップリング剤等を用いた処理は、例えば気相法を用いて、画素電極111G上、及び画素電極111B上等にシリル化剤を有する膜、又はシランカップリング剤を有する膜等を形成することにより行うことができる。気相法では、まず、シリル化剤を有する材料、又はシランカップリング剤を有する材料等を揮発させることにより、シリル化剤、又はシランカップリング剤等を雰囲気中に含ませる。続いて、当該雰囲気中に、画素電極111G上、及び画素電極111B等が形成されている基板をおく。これにより、画素電極111G上、及び画素電極111B上等に、シリル化剤、又はシランカップリング剤等を有する膜を形成することができ、画素電極111Gの表面、及び画素電極111Bの表面を疎水化することができる。
 続いて、犠牲層145Rb上、画素電極111G上、画素電極111B上、及び層101上に、後に有機層112Gとなる有機膜112Gfを形成する。犠牲層145Rbの形成後に有機膜112Gfを形成することにより、有機膜112Gfが有機層112Rの上面と接することを防ぐことができる。有機膜112Gfの形成等については、有機膜112Rfの形成等の記載を参照できる。
 次に、有機膜112Gf上、及び犠牲層145Rb上に犠牲膜144Gaを形成し、犠牲膜144Ga上に犠牲膜144Gbを形成する(図12A)。その後、犠牲膜144Gb上の画素電極111Gと重なる位置にレジストマスク(図示せず)を形成する。犠牲膜144Ga、犠牲膜144Gb、及び当該レジストマスクの形成等については、犠牲膜144Ra、犠牲膜144Rb、及び犠牲膜144Rb上に設けるレジストマスクの形成等の記載をそれぞれ参照できる。
 続いて、犠牲膜144Gb及び犠牲膜144Gaの、上記レジストマスクに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Gb及び犠牲層145Gaを形成する。また、上記レジストマスクを除去する(図12B)。ここでは、犠牲層145Gb及び犠牲層145Gaは、画素電極111G上に形成することができる。犠牲層145Gb及び犠牲層145Gaの形成、並びに上記レジストマスクの除去等については、犠牲層145Rb及び犠牲層145Raの形成、並びに犠牲膜144Rb上に設けるレジストマスクの除去等の記載を参照できる。
 続いて、犠牲層145Gaに覆われない有機膜112Gfの一部をエッチングにより除去し、島状又は帯状の有機層112Gを形成する(図12C)。有機層112Gの形成等については、有機層112Rの形成等の記載を参照できる。また、有機層112Rと同様に、有機層112Gの表面に付着している不純物も除去することが好ましい。例えば、有機層112Gの形成後に、有機層112Gが形成されている基板を不活性ガス雰囲気下におくと、有機層112Gに付着している不純物を除去することができる。
 続いて、犠牲層145Rb上、犠牲層145Gb上、画素電極111B上、及び層101上に、後に有機層112Bとなる有機膜112Bfを形成する。犠牲層145Gbの形成後に有機膜112Bfを形成することにより、有機膜112Bfが有機層112Gの上面と接することを防ぐことができる。有機膜112Bfの形成等については、有機膜112Rfの形成等の記載を参照できる。
 次に、有機膜112Bf上、及び犠牲層145Rb上に犠牲膜144Baを形成し、犠牲膜144Ba上に犠牲膜144Bbを形成する(図13A)。その後、犠牲膜144Bb上の画素電極111Bと重なる位置にレジストマスク(図示せず)を形成する。犠牲膜144Ba、犠牲膜144Bb、及び上記レジストマスクの形成等については、犠牲膜144Ra、犠牲膜144Rb、及び犠牲膜144Rb上に設けるレジストマスクの形成等の記載をそれぞれ参照できる。
 続いて、犠牲膜144Bb及び犠牲膜144Baの、上記レジストマスクに覆われない一部をエッチングにより除去し、島状又は帯状の犠牲層145Bb及び犠牲層145Baを形成する。また、上記レジストマスクを除去する(図13B)。ここでは、犠牲層145Bb及び犠牲層145Baは、画素電極111B上に形成することができる。犠牲層145Bb及び犠牲層145Baの形成、並びに上記レジストマスクの除去等については、犠牲層145Rb及び犠牲層145Raの形成、並びに犠牲膜144Rb上に設けるレジストマスクの除去等の記載を参照できる。
 続いて、犠牲層145Baに覆われない有機膜112Bfの一部をエッチングにより除去し、島状又は帯状の有機層112Bを形成する(図13C)。有機層112Bの形成等については、有機層112Rの形成等の記載を参照できる。また、有機層112R及び有機層112Gと同様に、有機層112Bの表面に付着している不純物も除去することが好ましい。例えば、有機層112Bの形成後に、例えば有機層112Bが形成されている基板を不活性ガス雰囲気下におくと、有機層112Bに付着している不純物を除去することができる。
 続いて、犠牲層145Rb、犠牲層145Gb、及び犠牲層145Bbを、エッチング等を用いて除去する(図13D)。犠牲層145Rb、犠牲層145Gb、及び犠牲層145Bbのエッチングには、犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baとの選択比が高い条件を用いることが好ましい。なお、犠牲層145Rb、犠牲層145Gb、及び犠牲層145Bbの除去を行わなくてもよい場合がある。
 続いて、犠牲層145Ra上、犠牲層145Ga上、犠牲層145Ba上、及び層101上に、後に絶縁層125となる絶縁膜125fを形成する(図14A)。
 絶縁膜125fは、例えば被覆性の高い方法で成膜することが好ましい。例えば、絶縁膜125fはALD法で成膜することができる。なお、絶縁膜125fは、スパッタリング法、CVD法、PLD法などで成膜してもよい。
 絶縁膜125fとして、無機絶縁材料を用いることができる。例えば、絶縁膜125fとして、酸化物、酸化窒化物、窒化酸化物又は窒化物を用いることができ、例えば酸化アルミニウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化窒化アルミニウム、酸化ハフニウム等のうち少なくとも1つを含むことができる。
 絶縁膜125fは、例えば膜厚が1nm以上60nm以下となるように成膜することが好ましく、1nm以上40nm以下となるように成膜することがより好ましく、5nm以上20nm以下となるように成膜することがさらに好ましい。
 続いて、絶縁膜125f上に、後に樹脂層126となる絶縁膜を形成する。当該絶縁膜として、有機材料を含む絶縁膜を適用することが好ましく、有機材料としては樹脂を用いることが好ましい。また、当該絶縁膜として、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、又はネガ型の材料を用いることができる。
 上記絶縁膜として感光性の樹脂を用いる場合、上記絶縁膜は、スピンコート法、スプレー法、スクリーン印刷法、又はペイント法等を用いて形成することができる。
 上記絶縁膜は、平坦化されている場合がある。また、被形成面の凹凸を反映した、なだらかな凹凸を有する場合がある。
 続いて、上記絶縁膜を加工することで、樹脂層126を形成する(図14A)。ここで、上記絶縁膜として感光性の樹脂を用いることにより、レジストマスク、ハードマスク等のエッチングマスクを設けることなく、樹脂層126を形成することができる。また、感光性の樹脂は露光及び現像の工程のみで加工が可能であるため、ドライエッチング法等を用いることなく樹脂層126が形成できる。よって、工程の簡略化が可能となる。また、上記絶縁膜のエッチングによる有機層112のダメージを低減することができる。なお、さらに樹脂層126の上部の一部をエッチングし、表面の高さを調整してもよい。
 また、上記絶縁膜の上面に対し、略均一にエッチングを施すことにより、樹脂層126を形成してもよい。このように均一にエッチングして平坦化することをエッチバックともいう。
 樹脂層126の形成において、露光及び現像の工程と、エッチバック工程と、を組み合わせて用いてもよい。
 続いて、犠牲層145Ra、犠牲層145Ga、犠牲層145Ba、及び絶縁膜125fをエッチングすることで、有機層112R、有機層112G、有機層112B、及び接続電極111Cそれぞれの上面の少なくとも一部を露出する(図14B)。このとき、絶縁膜125fから、絶縁層125が形成される。絶縁層125は、樹脂層126の側面と接する領域、及び樹脂層126の下面と接する領域を有するように形成される。
 犠牲層145Ra、犠牲層145Ga、及び犠牲層145Baそれぞれの一部は、有機層112にできるだけダメージを与えない方法で除去することが好ましく、例えばウェットエッチング法を用いることが好ましい。なお、犠牲層145Raの一部が有機層112R上に残存する場合がある。犠牲層145Gaの一部が有機層112G上に残存する場合がある。犠牲層145Baの一部が有機層112B上に残存する場合がある。
 続いて、真空ベーク処理を行い、有機層112Rの表面、有機層112Gの表面、及び有機層112Bの表面に吸着している水等を除去する。真空ベークは、有機層112R、有機層112G、及び有機層112B等に含まれる有機化合物を変質させない温度範囲で行うことが好ましく、例えば70℃以上120℃以下、より好ましくは80℃以上100℃以下で行うことができる。なお、有機層112Rの表面、有機層112Gの表面、及び有機層112Bの表面等に吸着している水等が少なく、表示装置100の信頼性に与える影響が少ない場合等は、真空ベーク処理を行わなくてもよい。
 続いて、有機層112R上、有機層112G上、有機層112B上、及び樹脂層126上に、有機層114を形成する。前述のように、有機層114は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、又は電子注入層のうち少なくとも1つを有し、例えば電子注入層、又は正孔注入層を有する。有機層114は、例えば蒸着法、スパッタリング法、又はインクジェット法等により形成することができる。なお、接続電極111C上に有機層114を設けない構成とする場合には、有機層114の形成において、接続電極111C上を遮蔽するメタルマスクを用いればよい。この際に用いるメタルマスクは表示部の画素領域を遮蔽しなくてもよいため、高精細なメタルマスクを用いる必要がない。
 続いて、有機層114上に共通電極113を形成する。共通電極113は、例えばスパッタリング法、又は真空蒸着法等により形成することができる。以上の工程により、発光素子90R、発光素子90G、及び発光素子90Bを作製できる。
 続いて、共通電極113上に、保護層121を形成する(図14C)。保護層121として無機絶縁膜を用いる場合、例えばスパッタリング法、CVD法、又はALD法を用いて保護層121を形成することが好ましい。また、保護層121として有機絶縁膜を用いる場合、例えばインクジェット法を用いて保護層121を形成すると、所望のエリアに均一な膜を形成できるため好ましい。
 以上の工程により、表示装置100を作製できる。
 以上のように、本発明の一態様の表示装置の作製方法では、メタルマスク等のシャドーマスクを用いず、例えばフォトリソグラフィ法とエッチング法を用いてEL層を作り分ける。これにより、EL層のパターンを微細なパターンとすることができる。よって、本発明の一態様の表示装置の作製方法により、高精細度且つ高開口率の表示装置を作製できる。また、高解像度な表示装置を作製すること、及び大型な表示装置を作製することができる。さらに、EL層を作り分けることができるため、極めて鮮やかで、コントラストが高く、表示品位の高い表示装置を作製できる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様に係る表示装置について図15乃至図23を用いて説明する。
 本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置100A]
 図15に、表示装置100Aの斜視図を示し、図16Aに、表示装置100Aの断面図を示す。
 表示装置100Aは、基板152と基板151とが貼り合わされた構成を有する。図15では、基板152を破線で明示している。
 表示装置100Aは、表示部162、回路164、配線165等を有する。図15では表示装置100AにIC173及びFPC172が実装されている例を示している。そのため、図15に示す構成は、表示装置100A、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
 回路164としては、例えば走査線駆動回路を用いることができる。
 配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC172を介して外部から、またはIC173から配線165に入力される。
 図15では、COG方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100A及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
 図16Aに、表示装置100Aの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
 図16Aに示す表示装置100Aは、基板151と基板152の間に、トランジスタ201、トランジスタ205、発光デバイス130a、発光デバイス130b、発光デバイス130c、及び着色層129a、着色層129b、着色層129c等を有する。
 発光デバイス130aは赤色の光を発し、発光デバイス130bは緑色の光を発し、発光デバイス130cは青色の光を発する。このとき、例えば着色層129aは赤色の光を透過し、着色層129bは緑色の光を透過し、着色層129cは青色の光を透過することが好ましい。これにより、各発光デバイスから発せられる光の色純度を高めることができ、より表示品位の高い表示装置を実現できる。なお、着色層129a、着色層129b、及び着色層129cは、設けなくてもよい。
 または、発光デバイス130a、発光デバイス130b、及び発光デバイス130cは、白色の光を発してもよい。着色層129a、着色層129b及び着色層129cは、互いに異なる色を透過する機能を有する。なお、着色層をカラーフィルタと呼称してもよい。
 白色発光が可能な構造として、シングル構造またはタンデム構造が挙げられる。発光デバイスをタンデム構造とすることで高輝度発光が得られるため好適である。また、白色発光が可能な構造(シングル構造、またはタンデム構造の一方または双方)と、カラーフィルタと、本発明の一態様のMML構造と、を組み合わることで、高いコントラスト比を有する表示装置とすることができる。
 ここで、表示装置の画素が、互いに異なる色を透過する着色層を有する副画素を3種類有する場合、当該3つの副画素としては、赤色(R)、緑色(G)、及び青色(B)の3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、及び白色(W)の4色の副画素、R、G、B、及びYの4色の副画素などが挙げられる。
 本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出する上面射出型(トップエミッション型)、発光デバイスが形成されている基板側に光を射出する下面射出型(ボトムエミッション型)、両面に光を射出する両面射出型(デュアルエミッション型)のいずれであってもよい。
 発光デバイス130a、発光デバイス130b、発光デバイス130cとしては、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)などのELデバイスを用いることが好ましい。ELデバイスが有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。なお、TADF材料としては、一重項励起状態と三重項励起状態間が熱平衡状態にある材料を用いてもよい。このようなTADF材料は発光寿命(励起寿命)が短くなるため、発光デバイスにおける高輝度領域での効率低下を抑制できる。
 発光デバイスは、一対の電極間にEL層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
 発光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。
 発光デバイス130aは、画素電極111aと、画素電極111a上の導電層122aと、導電層122a上の島状の第1の層123aと、島状の第1の層123a上の有機層114と、有機層114上の共通電極113と、を有する。発光デバイス130aにおいて、第1の層123a、及び、有機層114をまとめてEL層と呼ぶことができる。
 発光デバイス130bは、画素電極111bと、画素電極111b上の導電層122bと、導電層122b上の島状の第2の層123bと、島状の第2の層123b上の有機層114と、有機層114上の共通電極113と、を有する。発光デバイス130bにおいて、第2の層123b、及び、有機層114をまとめてEL層と呼ぶことができる。
 発光デバイス130cは、画素電極111cと、画素電極111c上の導電層122cと、導電層122c上の島状の第3の層123cと、島状の第3の層123c上の有機層114と、有機層114上の共通電極113と、を有する。発光デバイス130cにおいて、第3の層123c、及び、有機層114をまとめてEL層と呼ぶことができる。
 各色の発光デバイスにおいて、共通電極として、同一の膜を共有している。各発光デバイスが共通して有する共通電極は、接続部204に設けられた導電層と電気的に接続される。これにより、各発光デバイスが有する共通電極には、同電位が供給される。
 画素電極と共通電極のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
 発光デバイスの一対の電極(画素電極と共通電極)を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、In−W−Zn酸化物、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、及び、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
 発光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。
 透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
 第1の層123a、第2の層123b、及び、第3の層123cは、それぞれ、島状に設けられる。第1の層123a、第2の層123b、及び、第3の層123cは、それぞれ、発光層を有する。第1の層123aは赤色の光を発する発光層を有し、第2の層123bは緑色の光を発する発光層を有し、第3の層123cは青色の光を発する発光層を有することが好ましい。
 または、第1の層123a、第2の層123b、及び、第3の層123cは、白色の光を発する発光層を有してもよい。ここで、島状の第1の層123aと、島状の第2の層123bと、島状の第3の層123cとは、同一の材料を有することが好ましい。つまり、島状の第1の層123a、島状の第2の層123b、及び島状の第3の層123cは、同じ工程で成膜された膜をパターニングして形成されることが好ましい。
 発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
 発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
 蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
 燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
 発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
 発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
 第1の層123a、第2の層123b、及び、第3の層123cは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック材料、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 発光デバイスには低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 例えば、第1の層123a、第2の層123b、及び、第3の層123cは、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有していてもよい。
 EL層のうち、各発光デバイスに共通して形成される層としては、正孔注入層、正孔輸送層、正孔ブロック層(正孔抑止層と呼ぶ場合がある。)、電子ブロック層(電子抑止層と呼ぶ場合がある。)、電子輸送層、及び電子注入層のうち一つ以上を適用することができる。例えば、有機層114として、キャリア注入層(正孔注入層または電子注入層)を形成してもよい。なお、EL層の全ての層を色ごとに作り分けてもよい。つまり、EL層は、各色に共通して形成される層を有していなくてもよい。
 第1の層123a、第2の層123b、及び、第3の層123cは、それぞれ、発光層と、発光層上のキャリア輸送層を有することが好ましい。これにより、表示装置100の作製工程中に、発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減できる。これにより、発光デバイスの信頼性を高めることができる。
 正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
 正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
 また、電子輸送層は、積層構造を有していても良く、また、陽極側から発光層を通過して陰極側に移動するホールをブロックするための正孔ブロック層を発光層に接して有していても良い。
 電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 電子注入層としては、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF、Xは任意数)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層としては、2以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを用いる構成とすることができる。
 または、電子注入層としては、電子輸送性材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有する化合物を用いることができる。
 なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
 例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ジ(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移温度(Tg)を備え、耐熱性に優れる。
 また、タンデム構造の発光デバイスを作製する場合、2つの発光ユニットとの間に、中間層を設ける。中間層は、一対の電極間に電圧を印加したときに、2つの発光ユニットの一方に電子を注入し、他方に正孔を注入する機能を有する。
 中間層としては、例えば、リチウムなどの電子注入層に適用可能な材料を好適に用いることができる。また、中間層としては、例えば、正孔注入層に適用可能な材料を好適に用いることができる。また、中間層には、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む層を用いることができる。また、中間層には、電子輸送性材料とドナー性材料とを含む層を用いることができる。このような層を有する中間層を形成することにより、発光ユニットが積層された場合における駆動電圧の上昇を抑制できる。
 導電層122a、導電層122b、および導電層122cは、光学調整層として機能する。なお、導電層122a、導電層122b、および導電層122cは設けなくてもよい場合がある。
 画素電極111a、画素電極111b、画素電極111c、導電層122a、導電層122b、導電層122c、第1の層123a、第2の層123b、及び、第3の層123cのそれぞれの側面は、絶縁層125、絶縁層127によって覆われている。これにより、有機層114(または共通電極113)が、画素電極111a、画素電極111b、画素電極111c、第1の層123a、第2の層123b、及び、第3の層123cのいずれかの側面と接することを抑制し、発光デバイスのショートを抑制できる。絶縁層127は、実施の形態1などで説明した樹脂層126に対応する。
 絶縁層125は、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特に、酸化アルミニウム膜は、エッチングにおいて、EL層との選択比が高く、後述する絶縁層127の形成において、EL層を保護する機能を有するため、好ましい。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。
 絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
 絶縁層125上に設けられる絶縁層127は、隣接する発光デバイス間に形成された絶縁層125の凹部を平坦化する機能を有する。換言すると、絶縁層127を有することで共通電極113の形成面の平坦性を向上させる効果を奏する。絶縁層127としては、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層127として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、絶縁層127として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、絶縁層127として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
 絶縁層127の上面の高さと、第1の層123a、第2の層123b、及び、第3の層123cのいずれかの上面の高さとの差が、例えば、絶縁層127の厚さの0.5倍以下が好ましく、0.3倍以下がより好ましい。また例えば、第1の層123a、第2の層123b、及び、第3の層123cのいずれかの上面が絶縁層127の上面よりも高くなるように、絶縁層127を設けてもよい。また、例えば、絶縁層127の上面が、第1の層123a、第2の層123b、または、第3の層123cが有する発光層の上面よりも高くなるように、絶縁層127を設けてもよい。
 第1の層123a、第2の層123b、第3の層123c、絶縁層125、及び絶縁層127上に、有機層114が設けられ、有機層114上に共通電極113が設けられている。また、発光デバイス130a、発光デバイス130b、発光デバイス130c上にはそれぞれ、保護層131が設けられている。保護層131上には保護層132が設けられている。保護層131、保護層132を設けることで、発光デバイスの信頼性を高めることができる。
 保護層131、保護層132の導電性は問わない。保護層131、保護層132としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。
 保護層131、保護層132が無機膜を有することで、共通電極113の酸化を防止する、発光デバイス130a、発光デバイス130b、発光デバイス130cに不純物(水分、酸素など)が入り込むことを抑制する、など、発光デバイスの劣化を抑制し、表示装置の信頼性を高めることができる。
 保護層131、保護層132には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。
 保護層131、保護層132は、それぞれ、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。
 また、保護層131、保護層132には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)などを含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極113よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。
 発光デバイスの発光を、保護層131、保護層132を介して取り出す場合、保護層131、保護層132は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。
 保護層131、保護層132としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造などを用いることができる。当該積層構造を用いることで、EL層側に入り込む不純物(水、酸素など)を抑制できる。
 さらに、保護層131、保護層132は、有機膜を有していてもよい。例えば、保護層132は、有機膜と無機膜の双方を有していてもよい。
 保護層131と保護層132とで異なる成膜方法を用いてもよい。具体的には、ALD法を用いて保護層131を形成し、スパッタリング法を用いて保護層132を形成してもよい。
 保護層131上には、着色層(着色層129a、着色層129b、及び着色層129c)が設けられる。着色層129aは発光デバイス130aと重なる領域を有し、着色層129bは発光デバイス130bと重なる領域を有し、着色層129cは発光デバイス130cと重なる領域を有する。着色層129aは少なくとも発光デバイス130aが有する発光層と重なる領域を有し、着色層129bは少なくとも発光デバイス130bが有する発光層と重なる領域を有し、着色層129cは少なくとも発光デバイス130cが有する発光層と重なる領域を有する。
 着色層129a、着色層129b、及び着色層129cは、互いに異なる色の光を透過する機能を有する。例えば、着色層129aは赤色の光を透過する機能を有し、着色層129bは緑色の光を透過する機能を有し、着色層129cは青色の光を透過する機能を有する。これにより、表示装置100は、フルカラー表示を行うことができる。なお、着色層129a、着色層129b、及び着色層129cは、シアン、マゼンタ、及び黄色の光のいずれかを透過する機能を有してもよい。
 保護層132と基板152は接着層142を介して接着されている。発光デバイスの封止には、固体封止構造または中空封止構造などが適用できる。図16Aでは、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光デバイスと重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。
 画素電極111a、画素電極111b、画素電極111cは、それぞれ、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。
 画素電極111a、画素電極111b、画素電極111cには、絶縁層214に設けられた開口を覆うように凹部が形成される。当該凹部には、層128が埋め込まれていることが好ましい。そして、画素電極111a及び層128上に導電層122aを形成し、画素電極111b及び層128上に導電層122bを形成し、画素電極111c及び層128上に導電層122cを形成することが好ましい。導電層122a、導電層122b、導電層122cは、画素電極と呼ぶこともできる。
 層128は、画素電極111a、画素電極111b、画素電極111cの凹部を平坦化する機能を有する。層128を設けることで、EL層の被形成面の凹凸を低減し、被覆性を向上することができる。また、画素電極111a上及び層128上に、画素電極111aと電気的に接続される導電層122aを設け、画素電極111b上及び層128上に、画素電極111bと電気的に接続される導電層122bを設け、画素電極111c上及び層128上に、画素電極111cと電気的に接続される導電層122cを設けることで、画素電極111a、画素電極111b、画素電極111cの凹部と重なる領域も発光領域として使用できる場合がある。これにより、画素の開口率を高めることができる。
 層128は、絶縁層であってもよく、導電層であってもよい。層128には、各種無機絶縁材料、有機絶縁材料、及び導電材料を適宜用いることができる。特に、層128は、絶縁材料を用いて形成されることが好ましい。
 層128としては、有機材料を有する絶縁層を好適に用いることができる。例えば、層128として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、層128として、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
 感光性の樹脂を用いることにより、露光及び現像の工程のみで層128を作製することができ、ドライエッチング、あるいはウェットエッチング等による画素電極111a、画素電極111b、画素電極111cの表面への影響を低減できる。また、ネガ型の感光性樹脂を用いて層128を形成することにより、絶縁層214の開口の形成に用いるフォトマスク(露光マスク)と同一のフォトマスクを用いて、層128を形成できる場合がある。
 導電層122aは、画素電極111a上及び層128上に設けられる。導電層122aは、画素電極111aの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111aの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
 同様に、導電層122bは、画素電極111b上及び層128上に設けられる。導電層122bは、画素電極111bの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111bの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
 導電層122cは、画素電極111c上及び層128上に設けられる。導電層122cは、画素電極111cの上面に接する第1領域と、層128の上面に接する第2領域と、を有する。第1領域と接する画素電極111cの上面の高さと、第2領域と接する層128の上面の高さは、一致または概略一致することが好ましい。
 画素電極は可視光を反射する材料を含み、対向電極は可視光を透過する材料を含む。
 表示装置100Aは、トップエミッション型である。発光デバイスが発する光は、基板152側に射出される。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。
 層101には、基板151から絶縁層214までの積層構造が含まれる。
 トランジスタ201及びトランジスタ205は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製できる。
 基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
 ここで、有機絶縁膜は、無機絶縁膜に比べて不純物に対するバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置100Aの端部近傍に開口を有することが好ましい。これにより、表示装置100Aの端部から有機絶縁膜を介して不純物が入り込むことを抑制できる。または、有機絶縁膜の端部が表示装置100Aの端部よりも内側にくるように有機絶縁膜を形成し、表示装置100Aの端部に有機絶縁膜が露出しないようにしてもよい。
 平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁層214を、有機絶縁膜と、無機絶縁膜との積層構造にしてもよい。絶縁層214の最表層は、エッチング保護膜としての機能を有することが好ましい。これにより、画素電極111aまたは導電層122aなどの加工時に、絶縁層214に凹部が形成されることを抑制できる。または、絶縁層214には、画素電極111aまたは導電層122aなどの加工時に、凹部が設けられてもよい。
 図16Aに示す領域228では、絶縁層214に開口が形成されている。これにより、絶縁層214に有機絶縁膜を用いる場合であっても、絶縁層214を介して外部から表示部162に不純物が入り込むことを抑制できる。従って、表示装置100Aの信頼性を高めることができる。
 トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
 トランジスタの半導体層に用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。
 本明細書等において、金属酸化物(metal oxide)とは、広い意味での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductor又は単にOSともいう)等に分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、OSトランジスタと記載する場合においては、金属酸化物又は酸化物半導体を有するトランジスタと換言することができる。
 トランジスタの半導体層に用いる金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、OSトランジスタのオフ電流を低減できる。
 金属酸化物は、少なくともインジウムまたは亜鉛を有することが好ましく、インジウム及び亜鉛を有することがより好ましい。例えば、金属酸化物は、インジウムと、M(Mは、ガリウム、アルミニウム、イットリウム、スズ、シリコン、ホウ素、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、及びコバルトから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、ガリウム、アルミニウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましく、ガリウムがより好ましい。なお、インジウムと、Mと、亜鉛とを有する金属酸化物を、以降ではIn−M−Zn酸化物と呼ぶ場合がある。
 特に、トランジスタの半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。又は、トランジスタの半導体層としては、インジウム(In)、アルミニウム(Al)、及び亜鉛(Zn)を含む酸化物(IAZOとも記す)を用いてもよい。又は、半導体層としては、インジウム(In)、アルミニウム(Al)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IAGZO)を用いてもよい。
 金属酸化物がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。金属酸化物中のインジウムの原子数比を大きくすることで、トランジスタのオン電流、または電界効果移動度などを高めることができる。
 例えば、原子数比がIn:M:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Mが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:M:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Mが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:M:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Mが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
 また、In−M−Zn酸化物におけるInの原子数比はMの原子数比未満であってもよい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:3:2またはその近傍の組成、In:M:Zn=1:3:3またはその近傍の組成、In:M:Zn=1:3:4またはその近傍の組成、等が挙げられる。金属酸化物中のMの原子数比を大きくすることで、In−M−Zn酸化物のバンドギャップをより大きくし、光負バイアスストレス試験に対する耐性を高めることが可能となる。具体的には、トランジスタのNBTIS(Negative Bias Temperature Illumination Stress)試験で測定される、しきい値電圧の変化量またはシフト電圧(Vsh)の変化量を小さくすることができる。なお、シフト電圧(Vsh)は、トランジスタのドレイン電流(Id)−ゲート電圧(Vg)カーブにおいて、カーブ上の傾きが最大である点における接線が、Id=1pAの直線と交差するVgで定義される。
 または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
 または、トランジスタの半導体層は、半導体として機能する層状物質を有してもよい。層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス力のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供できる。
 上記層状物質として、例えば、グラフェン、シリセン、カルコゲン化物などが挙げられる。カルコゲン化物は、カルコゲン(第16族に属する元素)を含む化合物である。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。トランジスタの半導体層として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
 回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。導電層166は、画素電極111a、画素電極111b、画素電極111cと同一の導電膜を加工して得られた導電膜と、導電層122a、導電層122b、導電層122cと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
 基板152の基板151側の面には、遮光層117を設けることが好ましい。また、基板152の基板151側の面に、着色層129a、着色層129b、着色層129cを設けてもよい。図16Aでは、基板151を介して基板152をみたときに、着色層129a、着色層129b、着色層129cが遮光層117の一部を覆うように設けられている。
 また、基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
 発光デバイスを覆う保護層131及び保護層132を設けることで、発光デバイスに水などの不純物が入り込むことを抑制し、発光デバイスの信頼性を高めることができる。
 表示装置100Aの端部近傍の領域228において、絶縁層214の開口を介して、絶縁層215と保護層131または保護層132とが互いに接することが好ましい。特に、無機絶縁膜同士が接することが好ましい。これにより、有機絶縁膜を介して外部から表示部162に不純物が入り込むことを抑制できる。従って、表示装置100Aの信頼性を高めることができる。
 基板151及び基板152には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板151または基板152として偏光板を用いてもよい。
 基板151及び基板152としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板151及び基板152の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
 光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
 光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
 また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
 接着層142としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
 接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
 また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光デバイスが有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
 図16B及び図16Cに、トランジスタの他の構成例を示す。
 トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、少なくとも導電層223とチャネル形成領域231iとの間に位置する。さらに、トランジスタを覆う絶縁層218を設けてもよい。
 図16Bに示すトランジスタ209では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 一方、図16Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図16Cに示す構造を作製できる。図16Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。
 また、発光デバイスを駆動する画素回路に含まれるトランジスタの全てに、チャネルが形成される半導体層にシリコンを有するトランジスタ(以下、Siトランジスタともいう)を用いてもよい。Siトランジスタに用いる材料としては、単結晶シリコン、多結晶シリコン、非晶質シリコン等が挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることができる。LTPSトランジスタは、電界効果移動度が高く、周波数特性が良好である。
 LTPSトランジスタ等のSiトランジスタを適用することで、高周波数で駆動する必要のある回路(例えばソースドライバ回路)を表示部と同一基板上に作り込むことができる。これにより、表示装置に実装される外部回路を簡略化でき、部品コスト、及び実装コストを削減できる。
 また、画素回路に含まれるトランジスタの少なくとも一に、OSトランジスタを用いることが好ましい。OSトランジスタは、非晶質シリコンを用いたトランジスタと比較して電界効果移動度が極めて高い。また、OSトランジスタは、オフ状態におけるソース−ドレイン間のリーク電流(以下、オフ電流ともいう)が著しく小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを適用することで、表示装置の消費電力を低減できる。
 また、室温下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、又は1yA(1×10−24A)以下とすることができる。なお、室温下における、チャネル幅1μmあたりのSiトランジスタのオフ電流値は、1fA(1×10−15A)以上1pA(1×10−12A)以下である。したがって、OSトランジスタのオフ電流は、Siトランジスタのオフ電流よりも10桁程度小さいともいえる。
 画素回路に含まれるトランジスタの一部に、LTPSトランジスタを用い、他の一部にOSトランジスタを用いることで、消費電力が低く、駆動能力の高い表示装置を実現できる。また、LTPSトランジスタと、OSトランジスタとを、組み合わせる構成をLTPOという場合がある。なお、より好適な例としては、配線間の導通、非導通を制御するためのスイッチとして機能するトランジスタ等にOSトランジスタを適用し、電流を制御するトランジスタ等にLTPSトランジスタを適用することが好ましい。
 例えば、画素回路に設けられるトランジスタの一は、発光デバイスに流れる電流を制御するためのトランジスタとして機能し、駆動トランジスタということができる。駆動トランジスタのソース及びドレインの一方は、発光デバイスの画素電極と電気的に接続される。当該駆動トランジスタには、LTPSトランジスタを用いることが好ましい。これにより、画素回路において発光デバイスに流れる電流を大きくできる。
 一方、画素回路に設けられるトランジスタの他の一は、画素の選択、非選択を制御するためのスイッチとして機能し、選択トランジスタということができる。選択トランジスタのゲートはゲート線と電気的に接続され、ソース及びドレインの一方は、ソース線(信号線)と電気的に接続される。選択トランジスタには、OSトランジスタを適用することが好ましい。これにより、フレーム周波数を著しく小さく(例えば1fps以下)しても、画素の階調を維持できるため、静止画を表示する際にドライバを停止することで、消費電力を低減できる。
 このように本発明の一態様は、高い開口率と、高い精細度と、高い表示品位と、低い消費電力と、を兼ね備えた表示装置を実現できる。
 なお、本発明の一態様の表示装置は、OSトランジスタを有し、且つMML(メタルマスクレス)構造の発光デバイスを有する構成である。当該構成とすることで、トランジスタに流れうるリーク電流、及び隣接する発光デバイス間に流れうるリーク電流(横リーク電流、サイドリーク電流等ともいう)を、極めて小さくすることができる。また、上記構成とすることで、表示装置に画像を表示した場合に、観察者が画像のきれ、画像のするどさ、高い彩度、及び高いコントラスト比のいずれか一又は複数を観測できる。なお、トランジスタに流れうるリーク電流、及び発光デバイス間の横リーク電流が極めて小さい構成とすることで、黒表示時に生じうる光漏れ(いわゆる白浮き)等が限りなく少ない表示(真黒表示ともいう)とすることができる。
 特に、MML構造の発光デバイスの中でも、先に示すSBS構造を適用することで、発光デバイスの間に設けられる層(例えば、発光デバイスの間で共通して用いる有機層、共通層ともいう)が分断された構成となるため、サイドリークがない、またはサイドリークが極めて少ない表示とすることができる。
 また、画素回路に含まれる発光デバイスの発光輝度を高くする場合、発光デバイスに流す電流量を大きくする必要がある。そのためには、画素回路に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、Siトランジスタと比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。これにより、画素回路に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
 また、トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化を小さくすることができる。このため、画素回路に含まれる駆動トランジスタとしてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光デバイスに流れる電流量を制御できる。このため、画素回路における階調を大きくすることができる。
 また、トランジスタが飽和領域で動作するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタを駆動トランジスタとして用いることで、例えば、EL材料が含まれる発光デバイスの電流−電圧特性にばらつきが生じた場合においても、発光デバイスに安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で動作する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光デバイスの発光輝度を安定させることができる。
 上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスのばらつきの抑制」などを図ることができる。
[表示装置100B]
 図17に示す表示装置100Bは、ボトムエミッション型である点で、表示装置100Aと主に相違する。なお、表示装置100Aと同様の部分については説明を省略する。なお、図17では、第1の層123aを含む副画素と、第2の層123bを含む副画素を示しているが、図16Aと同様に3種類以上の副画素を設けることができる。
 発光デバイスが発する光は、基板151側に射出される。基板151には、可視光に対する透過性が高い材料を用いることが好ましい。一方、基板152に用いる材料の透光性は問わない。
 また、表示装置100Bは、画素電極111a、画素電極111b、及び導電層122a、導電層122bが可視光を透過する材料を含み、共通電極113が可視光を反射する材料を含む。ここで、画素電極111a、画素電極111b、及び導電層122a、導電層122bと同一の導電膜を加工して得られる、導電層166も可視光を透過する材料を含む。
 基板151とトランジスタ201との間、基板151とトランジスタ205との間には、遮光層117を形成することが好ましい。図17では、基板151上に遮光層117が設けられ、遮光層117上に絶縁層153が設けられ、絶縁層153上にトランジスタ201、トランジスタ205などが設けられている例を示す。
 さらに、表示装置100Bでは、着色層129a、着色層129bが、絶縁層215と絶縁層214の間に設けられている。着色層129a、着色層129bは、端部が遮光層117と重畳することが好ましい。
 ここで、表示装置100A及び表示装置100Bについて、図18A乃至図18Dに、画素電極111a及び層128とその周辺を含む領域138の断面構造を示す。なお、図18A乃至図18Dに係る記載については、発光デバイス130b及び発光デバイス130cについても同様のことがいえる。
 図16Aおよび図17では、層128の上面と画素電極111aの上面が概略一致する例について示したが、本発明はこれに限られるものではない。例えば、図18Aに示すように、層128の上面が画素電極111aの上面より高くなる場合がある。このとき、層128の上面は中心に向かって凸状に、なだらかに膨らんだ形状を有する。
 また、図18Bに示すように、層128の上面が画素電極111aの上面より低くなる場合がある。このとき、層128の上面は中心に向かって凹状に、なだらかに窪んだ形状を有する。
 また、図18Cに示すように、層128の上面が画素電極111aの上面より高くなる場合、画素電極111aに形成された凹部より、層128の上部が広がって形成される場合がある。このとき、層128の一部が、画素電極111aの概略平坦な領域の一部を覆って形成される場合がある。
 また、図18Dに示すように、図18Cに示す構造において、さらに層128の上面の一部に凹部が形成される場合がある。当該凹部は、中心に向かってなだらかに窪んだ形状を有する。
[画素のレイアウト]
 次に、画素レイアウトについて説明する。副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
 また、副画素の上面形状としては、例えば、三角形、四角形(長方形、台形などを含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここで、副画素の上面形状は、発光デバイスの発光領域の上面形状に相当する。
 図19Aに示す画素110には、ストライプ配列が適用されている。図19Aに示す画素110は、副画素110a、副画素110b、副画素110cの、3つの副画素から構成される。例えば、図20Aに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとしてもよい。
 図19Bに示す画素110には、Sストライプ配列が適用されている。図19Bに示す画素110は、副画素110a、副画素110b、副画素110cの、3つの副画素から構成される。例えば、図20Bに示すように、副画素110aを青色の副画素Bとし、副画素110bを赤色の副画素Rとし、副画素110cを緑色の副画素Gとしてもよい。
 図19Cは、各色の副画素がジグザグに配置されている例である。具体的には、上面視において、列方向に並ぶ2つの副画素(例えば、副画素110aと副画素110b、または、副画素110bと副画素110c)の上辺の位置がずれている。例えば、図20Cに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとしてもよい。
 図19Dに示す画素110は、角が丸い略台形の上面形状を有する副画素110aと、角が丸い略三角形の上面形状を有する副画素110bと、角が丸い略四角形または略六角形の上面形状を有する副画素110cと、を有する。また、副画素110aは、副画素110bよりも発光面積が広い。このように、各副画素の形状及びサイズはそれぞれ独立に決定することができる。例えば、信頼性の高い発光デバイスを有する副画素ほど、サイズを小さくすることができる。例えば、図20Dに示すように、副画素110aを緑色の副画素Gとし、副画素110bを赤色の副画素Rとし、副画素110cを青色の副画素Bとしてもよい。
 フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
 さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
 なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
 図21A乃至図21Cに示す画素110は、ストライプ配列が適用されている。
 図21Aは、各副画素が、長方形の上面形状を有する例であり、図21Bは、各副画素が、2つの半円と長方形をつなげた上面形状(長円形状ともいう)を有する例であり、図21Cは、各副画素が、楕円形の上面形状を有する例である。
 図21A乃至図21Cに示す画素110は、副画素110a、副画素110b、副画素110c、副画素110dの、4つの副画素から構成される。副画素110a、副画素110b、副画素110c、副画素110dは、それぞれ異なる色の光を発する。例えば、副画素110a、副画素110b、副画素110c、副画素110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。例えば、図22Aに示すように、副画素110a、副画素110b、副画素110c、副画素110dは、それぞれ、赤色、緑色、青色、白色の副画素とすることができる。または、副画素110a、副画素110b、副画素110c、副画素110dは、それぞれ、赤色、緑色、青色、赤外発光の副画素とすることができる。
 副画素110dは、発光デバイスを有する。当該発光デバイスは、画素電極と、当該画素電極の島状の第4の層と、当該島状の第4の層上の有機層114と、有機層114上の共通電極113と、を有する。当該発光デバイスにおいて、上記第4の層、及び、有機層114をまとめてEL層と呼ぶことができる。なお、上記画素電極は、画素電極111a、画素電極111b、画素電極111cと同様の材料を用いればよい。また、上記第4の層は、第1の層123a、第2の層123b、及び第3の層123cと同様の材料を用いればよい。
 図21Dでは、1つの画素110が2行3列で構成されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、副画素110b、副画素110c)を有し、下の行(2行目)に、3つの副画素110dを有する。言い換えると、画素110は、左の列(1列目)に、副画素110a及び副画素110dを有し、中央の列(2列目)に副画素110b及び副画素110dを有し、右の列(3列目)に副画素110c及び副画素110dを有する。図21Dに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供できる。
 図21Eでは、1つの画素110が、2行3列で構成されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、副画素110b、副画素110c)を有し、下の行(2行目)に、1つの副画素(副画素110d)を有する。言い換えると、画素110は、左の列(1列目)に、副画素110aを有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、この3列にわたって、副画素110dを有する。
 なお、図21D及び図21Eに示す画素110において、例えば、図22B及び図22Cに示すように、副画素110aを赤色の副画素Rとし、副画素110bを緑色の副画素Gとし、副画素110cを青色の副画素Bとし、副画素110dを白色の副画素Wとすることができる。
 本発明の一態様の表示装置は、画素に、受光デバイス(受光素子ともいう)を有していてもよい。
 図21D又は図21Eに示す画素110が有する4つの副画素のうち、3つを、発光デバイスを有する構成とし、残りの1つを、受光デバイスを有する構成としてもよい。
 受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイスは、受光デバイスに入射する光を検出し電荷を発生させる光電変換デバイス(光電変換素子ともいう)として機能する。受光デバイスに入射する光量に基づき、受光デバイスから発生する電荷量が決まる。
 特に、受光デバイスとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
 本発明の一態様では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
 受光デバイスは、一対の電極間に少なくとも光電変換層として機能する活性層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
 例えば、副画素110a、副画素110b、副画素110cが、R、G、Bの3色の副画素であり、副画素110dが、受光デバイスを有する副画素であってもよい。このとき、第4の層は、少なくとも活性層を有する。
 受光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。受光デバイスは、画素電極と共通電極との間に逆バイアスをかけて駆動することで、受光デバイスに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。または、画素電極が陰極として機能し、共通電極が陽極として機能してもよい。
 受光デバイスについても、発光デバイスと同様の作製方法を適用することができる。受光デバイスが有する島状の活性層(光電変換層ともいう)は、メタルマスクのパターンによって形成されるのではなく、活性層となる膜を一面に成膜した後に加工することで形成されるため、島状の活性層を均一の厚さで形成することができる。また、活性層上に犠牲層を設けることで、表示装置の作製工程中に活性層が受けるダメージを低減し、受光デバイスの信頼性を高めることができる。
 ここで、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが異なる場合がある。本明細書中では、発光デバイスにおける機能に基づいて構成要素を呼称することがある。例えば、正孔注入層は、発光デバイスにおいて正孔注入層として機能し、受光デバイスにおいて正孔輸送層として機能する。同様に、電子注入層は、発光デバイスにおいて電子注入層として機能し、受光デバイスにおいて電子輸送層として機能する。また、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが同一である場合もある。例えば、正孔輸送層は、発光デバイス及び受光デバイスのいずれにおいても、正孔輸送層として機能し、電子輸送層は、発光デバイス及び受光デバイスのいずれにおいても、電子輸送層として機能する。
 受光デバイスが有する活性層は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層と、活性層と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
 活性層が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位及びLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子共役が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光デバイスとして有益である。C60、C70ともに可視光領域に広い吸収帯を有しており、特にC70はC60に比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。そのほか、フラーレン誘導体としては、[6,6]−Phenyl−C71−butyric acid methyl ester(略称:PC70BM)、[6,6]−Phenyl−C61−butyric acid methyl ester(略称:PC60BM)、1’,1’’,4’,4’’−Tetrahydro−di[1,4]methanonaphthaleno[1,2:2’,3’,56,60:2’’,3’’][5,6]fullerene−C60(略称:ICBA)などが挙げられる。
 また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
 活性層が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II)phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズフタロシアニン(SnPc)、キナクリドン等の電子供与性の有機半導体材料が挙げられる。
 また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
 電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
 電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
 例えば、活性層は、n型半導体とp型半導体と共蒸着して形成することが好ましい。または、活性層は、n型半導体とp型半導体とを積層して形成してもよい。
 受光デバイスは、活性層以外の層として、正孔輸送性の高い物質、電子輸送性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。また、上記に限られず、正孔注入性の高い物質、正孔ブロック材料、電子注入性の高い材料、電子ブロック材料などを含む層をさらに有していてもよい。
 受光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。受光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 例えば、正孔輸送性材料又は電子ブロック材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)などの高分子化合物、及び、モリブデン酸化物、ヨウ化銅(CuI)などの無機化合物を用いることができる。また、電子輸送性材料又は正孔ブロック材料として、酸化亜鉛(ZnO)などの無機化合物、ポリエチレンイミンエトキシレート(PEIE)などの有機化合物を用いることができる。受光デバイスは、例えば、PEIEとZnOとの混合膜を有していてもよい。
 また、活性層に、ドナーとして機能するPoly[[4,8−bis[5−(2−ethylhexyl)−2−thienyl]benzo[1,2−b:4,5−b’]dithiophene−2,6−diyl]−2,5−thiophenediyl[5,7−bis(2−ethylhexyl)−4,8−dioxo−4H,8H−benzo[1,2−c:4,5−c’]dithiophene−1,3−diyl]]polymer(略称:PBDB−T)、または、PBDB−T誘導体などの高分子化合物を用いることができる。例えば、PBDB−TまたはPBDB−T誘導体にアクセプター材料を分散させる方法などが使用できる。
 また、活性層には3種類以上の材料を混合させてもよい。例えば、波長域を拡大する目的で、n型半導体の材料と、p型半導体の材料と、に加えて、第3の材料を混合してもよい。このとき、第3の材料は、低分子化合物でも高分子化合物でもよい。
 画素に、発光デバイス及び受光デバイスを有する表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出できる。例えば、表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、残りの副画素で画像を表示することもできる。
 本発明の一態様の表示装置は、表示部に、発光デバイスがマトリクス状に配置されており、当該表示部で画像を表示できる。また、当該表示部には、受光デバイスがマトリクス状に配置されており、表示部は、画像表示機能に加えて、撮像機能及びセンシング機能の一方または双方を有する。表示部は、イメージセンサまたはタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像すること、または、対象物(指、手、またはペンなど)の近接もしくは接触を検出できる。さらに、本発明の一態様の表示装置は、発光デバイスをセンサの光源として利用できる。したがって、表示装置と別に受光部及び光源を設けなくてもよく、電子機器の部品点数を削減できる。
 本発明の一態様の表示装置では、表示部が有する発光デバイスが発した光を対象物が反射(または散乱)した際、受光デバイスがその反射光(または散乱光)を検出できるため、暗い場所でも、撮像またはタッチ検出が可能である。
 受光デバイスをイメージセンサに用いる場合、表示装置は、受光デバイスを用いて、画像を撮像できる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
 例えば、イメージセンサを用いて、指紋、掌紋などの生体情報に係るデータを取得できる。つまり、表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
 また、受光デバイスをタッチセンサに用いる場合、表示装置は、受光デバイスを用いて、対象物の近接または接触を検出できる。
 図23A乃至図23Cに示す画素は、副画素G、副画素B、副画素R、及び、副画素PSを有する。
 図23Aに示す画素には、ストライプ配列が適用されている。
 図23B及び図23Cでは、1つの画素が、2行3列にわたって設けられている例を示す。上の行(1行目)には、3つの副画素(副画素G、副画素B、副画素R)が設けられている。図23Bでは、下の行(2行目)には、3つの副画素PSが設けられている。一方、図23Cでは、下の行(2行目)に、2つの副画素PSが設けられている。図23Bに示すように、上の行と下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供できる。なお、副画素のレイアウトは図23A乃至図23Cの構成に限られない。
 副画素Rは赤色の光を発する発光デバイスを有し、副画素Gは緑色の光を発する発光デバイスを有し、副画素Bは青色の光を発する発光デバイスを有している。または、副画素R、副画素G、及び副画素Bは、それぞれ、白色光を発する発光デバイスを有している。副画素R、副画素G、及び副画素Bは、それぞれ、白色光を発する発光デバイスを有している場合、副画素R、副画素G、及び副画素Bでは、当該発光デバイスに重畳して、対応する着色層が設けられる。
 副画素PSは、受光デバイスを有する。副画素PSが検出する光の波長は特に限定されない。
 副画素PSが有する受光デバイスは、可視光を検出することが好ましく、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの色のうち一つまたは複数を検出することが好ましい。また、副画素PSが有する受光デバイスは、赤外光を検出してもよい。
 なお、図23Aなどに示す構成は、画素に発光デバイスと、受光デバイスと、を有する。本発明の一態様の表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出できる。また、本発明の一態様の表示装置は、赤外光を呈する副画素を有するため、表示装置が有する副画素を用いて、光源として赤外光を呈しながら、画像を表示することもできる。別言すると、本発明の一態様の表示装置は、表示機能以外の機能(ここでは受光機能)との親和性が高い構成である。
 なお、図23Aなどに示す画素が有する受光デバイスを、タッチセンサ、または非接触センサなどに用いてもよい。
 ここで、タッチセンサまたは非接触センサは、対象物(指、手、またはペンなど)の近接もしくは接触を検出できる。タッチセンサは、電子機器と、対象物とが、直接接することで、対象物を検出できる。また、非接触センサは、対象物が電子機器に接触しなくても、当該対象物を検出できる。例えば、表示装置(または電子機器)と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、電子機器に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、電子機器に汚れ、または傷がつくリスクを低減できる、または対象物が電子機器に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、電子機器を操作することが可能となる。
 なお、非接触センサ機能は、ホバーセンサ機能、ホバータッチセンサ機能、ニアタッチセンサ機能、タッチレスセンサ機能などということもできる。また、タッチセンサ機能は、ダイレクトタッチセンサ機能などということもできる。
 また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、0.01Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減する駆動をアイドリングストップ(IDS)駆動と呼称してもよい。
 また、上記のリフレッシュレートに応じて、タッチセンサ、またはニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、またはニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、またはニアタッチセンサの応答速度を高めることが可能となる。
 本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
 先の実施の形態で説明した表示装置は、受光素子を有してもよい。本実施の形態では、発光素子と受光素子を有する表示装置(受発光装置ともいう)について説明する。
 本発明の一態様の受発光装置の受発光部は、受光素子(受光デバイスともいう)と発光素子(発光デバイスともいう)を有する。受発光部は、発光素子を用いて画像を表示する機能を有する。さらに、当該受発光部は、受光素子を用いて撮像する機能及びセンシングする機能の一方又は双方を有する。そのため、本発明の一態様の受発光装置は、表示装置とも表現することができ、受発光部は表示部とも表現することができる。
 又は、本発明の一態様の受発光装置は、受発光素子(受発光デバイスともいう)と発光素子とを有する構成としてもよい。
 まず、受光素子と発光素子とを有する受発光装置について説明する。
 本発明の一態様の受発光装置は、受発光部に、受光素子と発光素子とを有する。本発明の一態様の受発光装置は、受発光部に、発光素子がマトリクス状に配置されており、当該受発光部で画像を表示できる。また、当該受発光部には、受光素子がマトリクス状に配置されており、受発光部は、撮像機能及びセンシング機能の一方又は双方も有する。受発光部は、イメージセンサ、タッチセンサなどに用いることができる。つまり、受発光部で光を検出することで、画像を撮像すること、対象物(指、ペンなど)のタッチ操作を検出できる。さらに、本発明の一態様の受発光装置は、発光素子をセンサの光源として利用できる。したがって、受発光装置と別に受光部及び光源を設けなくてよく、電子機器の部品点数を削減できる。
 本発明の一態様の受発光装置では、受発光部が有する発光素子が発した光を対象物が反射(又は散乱)した際、受光素子がその反射光(又は散乱光)を検出できるため、暗い場所でも、撮像、タッチ操作の検出などが可能である。
 本発明の一態様の受発光装置が有する発光素子は、表示素子(表示デバイスともいう)として機能する。
 発光素子としては、OLED、QLEDなどのEL素子(ELデバイスともいう)を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、無機化合物(量子ドット材料など)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(TADF)材料)などが挙げられる。また、発光素子として、マイクロLEDなどのLEDを用いることもできる。
 本発明の一態様の受発光装置は、受光素子を用いて、光を検出する機能を有する。
 受光素子をイメージセンサに用いる場合、受発光装置は、受光素子を用いて、画像を撮像できる。例えば、受発光装置は、スキャナとして用いることができる。
 本発明の一態様の受発光装置が適用された電子機器は、イメージセンサとしての機能を用いて、指紋、掌紋などの生体情報に係るデータを取得できる。つまり、受発光装置に、生体認証用センサを内蔵させることができる。受発光装置が生体認証用センサを内蔵することで、受発光装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
 また、受光素子をタッチセンサに用いる場合、受発光装置は、受光素子を用いて、対象物のタッチ操作を検出できる。
 受光素子の構成等については、実施の形態3で説明した受光デバイスの構成等の記載を参照できる。
 本発明の一態様では、発光素子として有機EL素子(有機ELデバイスともいう)を用い、受光素子として有機フォトダイオードを用いる。有機EL素子及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機EL素子を用いた表示装置に有機フォトダイオードを内蔵することができる。
 有機EL素子及び有機フォトダイオードを構成する全ての層を作り分ける場合、成膜工程数が膨大になってしまう。しかしながら有機フォトダイオードは、有機EL素子と共通の構成にできる層が多いため、共通の構成にできる層は一括で成膜することで、成膜工程の増加を抑制できる。
 例えば、一対の電極のうち一方(共通電極)を、受光素子及び発光素子で共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受光素子及び発光素子で共通の層としてもよい。このように、受光素子及び発光素子が共通の層を有することで、成膜回数及びマスクの数を減らすことができ、受発光装置の作製工程及び作製コストを削減できる。また、表示装置の既存の製造装置及び製造方法を用いて、受光素子を有する受発光装置を作製できる。
 次に、受発光素子と発光素子を有する受発光装置について説明する。なお、上記と同様の機能、作用、効果等については、説明を省略することがある。
 本発明の一態様の受発光装置において、いずれかの色を呈する副画素は、発光素子の代わりに受発光素子を有し、その他の色を呈する副画素は、発光素子を有する。受発光素子は、光を発する機能(発光機能)と、受光する機能(受光機能)と、の双方を有する。例えば、画素が、赤色の副画素、緑色の副画素、青色の副画素の3つの副画素を有する場合、少なくとも1つの副画素が受発光素子を有し、他の副画素は発光素子を有する構成とする。したがって、本発明の一態様の受発光装置の受発光部は、受発光素子と発光素子との双方を用いて画像を表示する機能を有する。
 受発光素子が、発光素子と受光素子を兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。これにより、画素の開口率(各副画素の開口率)、及び、受発光装置の精細度を維持したまま、受発光装置の受発光部に、撮像機能及びセンシング機能の一方又は双方を付加することができる。したがって、本発明の一態様の受発光装置は、発光素子を有する副画素とは別に、受光素子を有する副画素を設ける場合に比べ、画素の開口率を高くでき、また、高精細化が容易である。
 本発明の一態様の受発光装置は、受発光部に、受発光素子と発光素子がマトリクス状に配置されており、当該受発光部で画像を表示できる。また、受発光部は、イメージセンサ、タッチセンサなどに用いることができる。本発明の一態様の受発光装置は、発光素子をセンサの光源として利用できる。そのため暗い場所でも、撮像、タッチ操作の検出などが可能である。
 受発光素子は、有機EL素子と有機フォトダイオードを組み合わせて作製できる。例えば、有機EL素子の積層構造に、有機フォトダイオードの活性層を追加することで、受発光素子を作製できる。さらに、有機EL素子と有機フォトダイオードを組み合わせて作製する受発光素子は、有機EL素子と共通の構成にできる層を一括で成膜することで、成膜工程の増加を抑制できる。
 例えば、一対の電極のうち一方(共通電極)を、受発光素子及び発光素子で共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受発光素子及び発光素子で共通の層としてもよい。
 なお、受発光素子が有する層は、受発光素子が、受光素子として機能する場合と、発光素子として機能する場合と、で、機能が異なることがある。本明細書中では、受発光素子が発光素子として機能する場合における機能に基づいて構成要素を呼称する。
 本実施の形態の受発光装置は、発光素子及び受発光素子を用いて、画像を表示する機能を有する。つまり、発光素子及び受発光素子は、表示素子として機能する。
 本実施の形態の受発光装置は、受発光素子を用いて、光を検出する機能を有する。受発光素子は、受発光素子自身が発する光よりも短波長の光を検出できる。
 受発光素子をイメージセンサに用いる場合、本実施の形態の受発光装置は、受発光素子を用いて、画像を撮像できる。また、受発光素子をタッチセンサに用いる場合、本実施の形態の受発光装置は、受発光素子を用いて、対象物のタッチ操作を検出できる。
 受発光素子は、光電変換素子として機能する。受発光素子は、上記発光素子の構成に、受光素子の活性層を追加することで作製できる。受発光素子には、例えば、pn型又はpin型のフォトダイオードの活性層を用いることができる。
 特に、受発光素子には、有機化合物を含む層を有する有機フォトダイオードの活性層を用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な装置に適用できる。
 以下では、本発明の一態様の受発光装置の一例である表示装置について、図面を用いてより具体的に説明する。
[表示装置の構成例]
〔構成例1〕
 図24Aに、表示パネル300の模式図を示す。表示パネル300は、基板301、基板302、受光素子312、発光素子311R、発光素子311G、発光素子311B、機能層303等を有する。
 発光素子311R、発光素子311G、発光素子311B、及び受光素子312は、基板301と基板302の間に設けられている。発光素子311R、発光素子311G、発光素子311Bは、それぞれ赤色(R)、緑色(G)、又は青色(B)の光を発する。なお以下では、発光素子311R、発光素子311G及び発光素子311Bを区別しない場合に、発光素子311と表記する場合がある。
 表示パネル300は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの発光素子を有する。例えば、画素には、副画素を3つ有する構成(R、G、及びBの3色、又は、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、又は、副画素を4つ有する構成(R、G、B、及び白色(W)の4色、又は、R、G、B、及びYの4色など)を適用できる。さらに、画素は、受光素子312を有する。受光素子312は、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受光素子312を有していてもよい。
 図24Aには、基板302の表面に指320が触れる様子を示している。発光素子311Gが発する光の一部は、基板302と指320との接触部で反射される。そして、反射光の一部が、受光素子312に入射されることにより、指320が基板302に接触したことを検出できる。すなわち、表示パネル300はタッチパネルとして機能することができる。
 機能層303は、発光素子311R、発光素子311G、発光素子311Bを駆動する回路、及び、受光素子312を駆動する回路を有する。機能層303には、スイッチ、トランジスタ、容量、配線などが設けられる。なお、発光素子311R、発光素子311G、発光素子311B、及び受光素子312をパッシブマトリクス方式で駆動させる場合には、スイッチ、トランジスタなどを設けない構成としてもよい。
 表示パネル300は、指320の指紋を検出する機能を有することが好ましい。図24Bには、基板302に指320が触れている状態における接触部の拡大図を模式的に示している。また、図24Bには、交互に配列した発光素子311と受光素子312を示している。
 指320は凹部及び凸部により指紋が形成されている。そのため、図24Bに示すように指紋の凸部が基板302に触れている。
 ある表面、界面などから反射される光には、正反射と拡散反射とがある。正反射光は入射角と反射角が一致する、指向性の高い光であり、拡散反射光は、強度の角度依存性が低い、指向性の低い光である。指320の表面から反射される光は、正反射と拡散反射のうち拡散反射の成分が支配的となる。一方、基板302と大気との界面から反射される光は、正反射の成分が支配的となる。
 指320と基板302との接触面又は非接触面で反射され、これらの直下に位置する受光素子312に入射される光の強度は、正反射光と拡散反射光とを足し合わせたものとなる。上述のように指320の凹部では基板302と指320が接触しないため、正反射光(実線矢印で示す)が支配的となり、凸部ではこれらが接触するため、指320からの拡散反射光(破線矢印で示す)が支配的となる。したがって、凹部の直下に位置する受光素子312で受光する光の強度は、凸部の直下に位置する受光素子312よりも高くなる。これにより、指320の指紋を撮像できる。
 受光素子312の配列間隔は、指紋の2つの凸部間の距離、好ましくは隣接する凹部と凸部間の距離よりも小さい間隔とすることで、鮮明な指紋の画像を取得できる。人の指紋の凹部と凸部の間隔は概ね200μmであることから、例えば受光素子312の配列間隔は、400μm以下、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、さらに好ましくは50μm以下であって、1μm以上、好ましくは10μm以上、より好ましくは20μm以上とする。
 表示パネル300で撮像した指紋の画像の例を図24Cに示す。図24Cには、撮像範囲323内に、指320の輪郭を破線で、接触部321の輪郭を一点鎖線で示している。接触部321内において、受光素子312に入射する光量の違いによって、コントラストの高い指紋322を撮像できる。
 表示パネル300は、タッチパネル、ペンタブレットとしても機能させることができる。図24Dには、スタイラス325の先端を基板302に接触させた状態で、破線矢印の方向に滑らせている様子を示している。
 図24Dに示すように、スタイラス325の先端と、基板302の接触面で拡散される拡散反射光が、当該接触面と重なる部分に位置する受光素子312に入射することで、スタイラス325の先端の位置を高精度に検出できる。
 図24Eは、表示パネル300で検出したスタイラス325の軌跡326の例を示している。表示パネル300は、高い位置精度でスタイラス325等の被検出体の位置検出が可能であるため、描画アプリケーション等において、高精細な描画を行うことも可能である。また、静電容量式のタッチセンサ、電磁誘導型のタッチペン等を用いた場合とは異なり、絶縁性の高い被検出体であっても位置検出が可能であるため、スタイラス325の先端部の材料は問われず、様々な筆記用具(例えば筆、ガラスペン、羽ペンなど)を用いることもできる。
 ここで、図24F及び図24Gに、表示パネル300に適用可能な画素の一例を示す。
 図24Fに示す画素は、それぞれ赤色(R)の発光素子311R、緑色(G)の発光素子311G、青色(B)の発光素子311Bと、受光素子312を有する。画素は、それぞれ発光素子311R、発光素子311G、発光素子311B、及び受光素子312を駆動するための画素回路を有する。
 図24Fは、3つの発光素子が一列に配列し、その下側に、横長の1つの受光素子312が配置されている例である。
 図24Gに示す画素は、白色(W)の発光素子311Wを有する例である。ここでは、4つの発光素子が一列に配置され、その下側に受光素子312が配置されている。
 なお、画素の構成は上記に限られず、様々な配置方法を採用することができる。
〔構成例2〕
 以下では、可視光を呈する発光素子と、赤外光を呈する発光素子と、受光素子と、を備える構成の例について説明する。
 図25Aに示す表示パネル300Aは、図24Aで例示した構成に加えて、発光素子311IRを有する。発光素子311IRは、赤外光IRを発する発光素子である。またこのとき、受光素子312には、少なくとも発光素子311IRが発する赤外光IRを受光することのできる素子を用いることが好ましい。また、受光素子312として、可視光と赤外光の両方を受光することのできる素子を用いることがより好ましい。
 図25Aに示すように、基板302に指320が触れると、発光素子311IRから発せられた赤外光IRが指320により反射され、当該反射光の一部が受光素子312に入射されることにより、指320の位置情報を取得できる。
 図25B及び図25Cに、表示パネル300Aに適用可能な画素の一例を示す。
 図25Bは、3つの発光素子が一列に配列し、その下側に、発光素子311IRと、受光素子312とが横に並んで配置されている例である。また、図25Cは、発光素子311IRを含む4つの発光素子が一列に配列し、その下側に、受光素子312が配置されている例である。
 なお、図25B及び図25Cに示す画素において、発光素子同士、及び発光素子と受光素子とは、それぞれの位置を交換可能である。
〔構成例3〕
 以下では、可視光を呈する発光素子と、可視光を呈し、且つ可視光を受光する受発光素子と、を備える構成の例について説明する。
 図25Dに示す表示パネル300Bは、発光素子311B、発光素子311G、及び受発光素子313Rを有する。受発光素子313Rは、赤色(R)の光を発する発光素子としての機能と、可視光を受光する光電変換素子としての機能と、を有する。図25Dでは、受発光素子313Rが、発光素子311Gが発する緑色(G)の光を受光する例を示している。なお、受発光素子313Rは、発光素子311Bが発する青色(B)の光を受光してもよい。また、受発光素子313Rは、緑色の光と青色の光の両方を受光してもよい。
 例えば、受発光素子313Rは、自身が発する光よりも短波長の光を受光することが好ましい。又は、受発光素子313Rは、自身が発する光よりも長波長の光(例えば赤外光)を受光する構成としてもよい。受発光素子313Rは、自身が発する光と同程度の波長を受光する構成としてもよいが、その場合は自身が発する光をも受光してしまい、発光効率が低下してしまう恐れがある。そのため、受発光素子313Rは、発光スペクトルのピークと、吸収スペクトルのピークとができるだけ重ならないように構成されることが好ましい。
 また、ここでは受発光素子が発する光は、赤色の光に限られない。また、発光素子が発する光も、緑色の光と青色の光の組み合わせに限定されない。例えば受発光素子として、緑色又は青色の光を発し、且つ、自身が発する光とは異なる波長の光を受光する素子とすることができる。
 このように、受発光素子313Rが、発光素子と受光素子とを兼ねることにより、一画素に配置する素子の数を減らすことができる。そのため、高精細化、高開口率化、高解像度化などが容易となる。
 図25E及び図25Fに、表示パネル300Bに適用可能な画素の一例を示す。
 図25Eは、受発光素子313R、発光素子311G、及び発光素子311Bが一列に配列されている例である。図25Fは、発光素子311Gと発光素子311Bが縦方向に交互に配列し、これらの横に受発光素子313Rが配置されている例である。
 発光素子及び受発光素子の上面形状は特に限定されず、円、楕円、多角形、角の丸い多角形等とすることができる。また、各色の発光素子及び受発光素子の上面形状は、互いに異なっていてもよく、一部又は全ての色で同じであってもよい。また、各色の発光素子及び受発光素子の発光領域(又は受発光領域)のサイズは、互いに異なっていてもよく、一部又は全ての色で同じであってもよい。
 例えば、受発光素子を用いて、タッチ操作の検出を行う場合、光源からの発光がユーザーに視認されにくいことが好ましい。青色の光は、緑色の光よりも視認性が低いため、青色の光を発する発光素子を光源とすることが好ましい。したがって、受発光素子は、青色の光を受光する機能を有することが好ましい。なお、これに限られず、受発光素子の感度に応じて、光源とする発光素子を適宜選択することができる。
 以上のように、本実施の形態の表示装置には、様々な配列の画素を適用することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態5)
 本実施の形態では、本発明の一態様である受発光装置に用いることができる発光デバイス(発光素子ともいう)、及び受光デバイス(受光素子ともいう)について説明する。
[発光デバイス]
 図26Aに示すように、発光デバイスは、一対の電極(下部電極791、上部電極792)の間に、EL層790を有する。EL層790は、層720、発光層711、層730などの複数の層で構成することができる。層720は、例えば電子注入性の高い物質を含む層(電子注入層)および電子輸送性の高い物質を含む層(電子輸送層)などを有することができる。発光層711は、例えば発光性の化合物を有する。層730は、例えば正孔注入性の高い物質を含む層(正孔注入層)および正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
 一対の電極間に設けられた層720、発光層711および層730を有する構成は単一の発光ユニットとして機能することができ、本明細書では図26Aの構成をシングル構造と呼ぶ。
 また、図26Bは、図26Aに示す発光デバイスが有するEL層790の変形例である。具体的には、図26Bに示す発光デバイスは、下部電極791上の層730−1と、層730−1上の層730−2と、層730−2上の発光層711と、発光層711上の層720−1と、層720−1上の層720−2と、層720−2上の上部電極792と、を有する。例えば、下部電極791を陽極とし、上部電極792を陰極とした場合、層730−1が正孔注入層として機能し、層730−2が正孔輸送層として機能し、層720−1が電子輸送層として機能し、層720−2が電子注入層として機能する。又は、下部電極791を陰極とし、上部電極792を陽極とした場合、層730−1が電子注入層として機能し、層730−2が電子輸送層として機能し、層720−1が正孔輸送層として機能し、層720−2が正孔注入層として機能する。このような層構造とすることで、発光層711に効率よくキャリアを注入し、発光層711内におけるキャリアの再結合の効率を高めることが可能となる。
 なお、図26C、図26Dに示すように層720と層730との間に複数の発光層(発光層711、712、713)が設けられる構成もシングル構造のバリエーションである。
 また、図26E、図26Fに示すように、複数の発光ユニット(EL層790a、EL層790b)が中間層740を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、中間層740を電荷発生層と呼ぶ場合がある。また、本明細書等においては、図26E、図26Fに示すような構成をタンデム構造として呼称するが、これに限定されず、例えば、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。
 図26Cにおいて、発光層711、発光層712、及び発光層713に、同じ光を発する発光材料を用いてもよい。
 また、発光層711、発光層712、及び発光層713に、異なる発光材料を用いてもよい。発光層711、発光層712、及び発光層713がそれぞれ発する光が補色の関係である場合、白色発光が得られる。図26Dでは、カラーフィルタとして機能する着色層795を設ける例を示している。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。
 また、図26Eにおいて、発光層711と、発光層712とに、同じ発光材料を用いてもよい。又は、発光層711と、発光層712とに、異なる光を発する発光材料を用いてもよい。発光層711が発する光と、発光層712が発する光が補色の関係である場合、白色発光が得られる。図26Fには、さらに着色層795を設ける例を示している。
 なお、図26C、図26D、図26E、図26Fにおいても、図26Bに示すように、層720と、層730とは、2層以上の層からなる積層構造としてもよい。
 また、図26Dにおいて、発光層711、発光層712、及び発光層713に同じ発光材料を用いてもよい。同様に、図26Fにおいて、発光層711と、発光層712とに、同じ発光材料を用いてもよい。このとき、着色層795に代えて色変換層を適用することで、発光材料とは異なる色の所望の色の光を得ることができる。例えば、各発光層に青色の発光材料を用い、青色光が色変換層を透過することで、青色よりも波長の長い光(例えば赤色、緑色など)の光を得ることができる。色変換層としては、蛍光材料、燐光材料、又は量子ドットなどを用いることができる。
 発光デバイスの発光色は、EL層790を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄又は白などとすることができる。また、発光デバイスにマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
 白色の光を発する発光デバイスは、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する発光デバイスを得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
 発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を2以上含むことが好ましい。又は、発光物質を2以上有し、それぞれの発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
[受光デバイス]
 図27Aに、発光デバイス750R、発光デバイス750G、発光デバイス750B、及び受光デバイス760の断面概略図を示す。発光デバイス750R、発光デバイス750G、発光デバイス750B、及び受光デバイス760は、共通の層として上部電極792を有する。
 発光デバイス750Rは、画素電極791R、層751、層752、発光層753R、層754、層755、及び上部電極792を有する。発光デバイス750Gは、画素電極791G、発光層753Gを有する。発光デバイス750Bは、画素電極791B、発光層753Bを有する。
 層751は、例えば正孔注入性の高い物質を含む層(正孔注入層)等を有する。層752は、例えば正孔輸送性の高い物質を含む層(正孔輸送層)等を有する。層754は、例えば電子輸送性の高い物質を含む層(電子輸送層)等を有する。層755は、例えば電子注入性の高い物質を含む層(電子注入層)等を有する。
 又は、層751が電子注入層を有し、層752が電子輸送層を有し、層754が正孔輸送層を有し、層755が正孔注入層を有する構成としてもよい。
 なお、図27Aにおいては、層751と、層752と、を分けて明示したがこれに限定されない。例えば、層751が正孔注入層と、正孔輸送層との双方の機能を有する構成とする場合、あるいは層751が電子注入層と、電子輸送層との双方の機能を有する構成とする場合においては、層752を省略してもよい。
 なお、発光デバイス750Rが有する発光層753Rは、赤色の発光を示す発光物質を有し、発光デバイス750Gが有する発光層753Gは緑色の発光を示す発光物質を有し、発光デバイス750Bが有する発光層753Bは、青色の発光を示す発光物質を有する。なお、発光デバイス750G、発光デバイス750Bは、それぞれ、発光デバイス750Rが有する発光層753Rを、発光層753G、発光層753Bに置き換えた構成を有し、そのほかの構成は、発光デバイス750Rと同様である。
 なお、層751、層752、層754、層755は、各色の発光デバイスで同一の構成(材料、膜厚等)を有していてもよく、互いに異なる構成を有していてもよい。
 受光デバイス760は、画素電極791PD、層761、層762、層763、及び上部電極792を有する。受光デバイス760は、正孔注入層、及び電子注入層を有さない構成とすることができる。
 層762は、活性層(光電変換層とも呼ぶ)を有する。層762は、特定の波長帯の光を吸収し、キャリア(電子とホール)を生成する機能を有する。
 層761と層763は、例えばそれぞれ正孔輸送層又は電子輸送層のいずれか一方を有する。層761が正孔輸送層を有する場合、層763は電子輸送層を有する。一方、層761が電子輸送層を有する場合、層763は正孔輸送層を有する。
 また受光デバイス760は、画素電極791PDがアノード、上部電極792がカソードであってもよいし、画素電極791PDがカソード、上部電極792がアノードであってもよい。
 図27Bは、図27Aの変形例である。図27Bでは、層755を、上部電極792と同様に、各発光デバイス間、及び各受光デバイス間で共通に設けた場合の例である。このとき、層755を共通層と呼ぶことができる。このように、各発光デバイス間、及び各受光デバイス間に1以上の共通層を設けることで、作製工程を簡略化できるため、製造コストを低減できる。
 ここで、層755は、発光デバイス750にとっては、電子注入層又は正孔注入層として機能する。このとき、受光デバイス760にとっては、電子輸送層又は正孔輸送層として機能する。そのため、図27Bに示す受光デバイス760には、電子輸送層又は正孔輸送層として機能する層763を設けなくてもよい。
 以上が受光デバイスの説明である。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
 OSトランジスタに用いる金属酸化物は、少なくともインジウムまたは亜鉛を有することが好ましく、インジウム及び亜鉛を有することがより好ましい。例えば、金属酸化物は、インジウムと、M(Mは、ガリウム、アルミニウム、イットリウム、スズ、シリコン、ホウ素、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、及びコバルトから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、ガリウム、アルミニウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましく、ガリウムがより好ましい。
 金属酸化物は、スパッタリング法、MOCVD法などのCVD法、または、ALD法などにより形成することができる。
 以降では、金属酸化物の一例として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物について説明する。なお、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物を、In−Ga−Zn酸化物と呼ぶ場合がある。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、および多結晶(poly crystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価できる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価できる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。また、以下では、GIXD測定で得られるXRDスペクトルを、単に、XRDスペクトルと記す場合がある。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIn−Ga−Zn酸化物膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価できる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIn−Ga−Zn酸化物膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIn−Ga−Zn酸化物は、単結晶または多結晶でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、およびnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、およびa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の最大径は、数十nm程度となる場合がある。
 また、In−Ga−Zn酸化物において、CAAC−OSは、インジウム(In)、および酸素を有する層(以下、In層)と、ガリウム(Ga)、亜鉛(Zn)、および酸素を有する層(以下、(Ga,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムとガリウムは、互いに置換可能である。よって、(Ga,Zn)層にはインジウムが含まれる場合がある。また、In層にはガリウムが含まれる場合がある。なお、In層には亜鉛が含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、およびIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物および欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OSおよびCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制できる。
 従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現できる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現できる。また、信頼性の高いトランジスタを実現できる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体中のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、SIMSにより得られる酸化物半導体中の水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
 本実施の形態では、大型化が容易な表示パネルの一態様である積層パネルの構成例と、その応用例について、図面を参照して説明する。
 本発明の一態様は、複数の表示パネルを一部が重なるように配置することにより大型化が可能な表示パネルである。また、重ねた2つの表示パネルのうち、少なくとも表示面側(上側)に位置する表示パネルは、表示部と隣接して可視光を透過する部分を備える。下側に配置される表示パネルの画素と、上側に配置される表示パネルの可視光を透過する部分とを重ねて設ける。これにより、2つの表示パネルを表示面側から見たときに(平面視において)、これらに表示される画像を、継ぎ目なく連続して表示することが可能となる。
 例えば、本発明の一態様は、第1の表示パネルと、第2の表示パネルと、を有する積層パネルである。第1の表示パネルは、第1の領域を有し、第1の領域は、第1の画素と、第2の画素と、を有する。第2の表示パネルは、第2の領域と、第3の領域と、第4の領域と、を有する。第2の領域は、第3の画素を有し、第3の領域は、可視光を透過する機能を有し、第4の領域は、可視光を遮光する機能を有する。また第1の表示パネルの第2の画素と、第2の表示パネルの第3の領域とは、互いに重なる領域を有する。また第2の画素の開口率は、第1の画素の開口率よりも大きいことが好ましい。
 上記第1の表示パネル及び第2の表示パネルの一方、又は双方には、上記で例示した、発光素子と受光素子とを備える表示装置を用いることができる。言い換えると、上記第1の画素、第2の画素、及び第3の画素の少なくとも一は、発光素子と受光素子とを有する、ともいうことができる。
 より具体的には、例えば以下のような構成とすることができる。
[構成例1]
〔表示パネル〕
 図28Aは、本発明の一態様の表示装置に含まれる表示パネル500の上面概略図である。
 表示パネル500は、表示領域501と、表示領域501に隣接して、可視光を透過する領域510と、可視光を遮光する部分を有する領域520と、を備える。図28Aでは、表示パネル500にFPC512が設けられている例を示す。
 ここで、表示パネル500は単体であっても表示領域501に画像を表示できる。さらに、表示パネル500は単体であっても、表示領域501により画像を撮像できる。
 領域510には、例えば表示パネル500を構成する一対の基板、及び当該一対の基板に挟持された表示素子を封止するための封止材などが設けられていてもよい。このとき、領域510に設けられる部材には、可視光に対して透光性を有する材料を用いる。
 領域520には、例えば表示領域501に含まれる画素に電気的に接続する配線が設けられている。また、このような配線に加え、画素を駆動するための駆動回路(走査線駆動回路、信号線駆動回路等)、保護回路等の回路が設けられていてもよい。また、領域520は、FPC512と電気的に接続する端子(接続端子ともいう)、当該端子と電気的に接続する配線等が設けられている領域も含む。
 表示パネルの断面構成例等の詳細な説明については、他の実施の形態を援用できる。
 なお、図28Aでは、表示パネル500はわかりやすくするために矩形状の例を示しているが、実施者の設計により、非矩形状としてもよい。
 図29Aは展開時の表示パネルの上面模式図であり、図29Bは本発明の一態様を示す表示装置の外観図である。
 図29Aに示す表示パネル61は、表示領域63と、非表示領域64とを有する。表示領域63にはマトリクス状に形成された画素領域が設けられ、非表示領域64には画素領域に電気的に接続された駆動回路が設けられる。なお、非表示領域64に設けられる駆動回路の一部を表示領域63に設けられる画素領域内に設けてもよい。このような構成とすることで非表示領域の面積を小さくすることができる。
 以下に表示装置の作製方法の一例を示す。可撓性を有する基板上にマトリクス状に配置された複数の画素を作製する。マトリクス状に配置された複数の画素を有する可撓性を有する基板をフレキシブルディスプレイとも呼ぶ。なお、可撓性を有する基板上に直接トランジスタ又は発光素子を形成する方法を用いてもよいし、ガラス基板などにトランジスタ又は発光素子を形成した後、ガラス基板から剥離を行って可撓性を有する基板に接着層を用いて接着させる方法を用いてもよい。剥離法又は転置法は様々な種類があるが特に限定されず、公知の技術を適宜用いればよい。
 ガラス基板を用いる場合は、第3世代(550mm×650mm)、第3.5世代(600mm×720mm、又は620mm×750mm)、第4世代(680mm×880mm、又は730mm×920mm)、第5世代(1100mm×1300mm)、第6世代(1500mm×1850mm)、第7世代(1870mm×2200mm)、第8世代(2200mm×2400mm)、第9世代(2400mm×2800mm、2450mm×3050mm)、第10世代(2950mm×3400mm)等のガラス基板、又はこれよりも大型のガラス基板を用いることができる。ガラス基板を用いる場合には、可撓性を有する基板に直接、トランジスタなどを形成するよりも高い熱処理温度をかけられるため、トランジスタの作製プロセス温度が高い場合に適している。
 可撓性を有する基板としては、例えば、PET、PEN等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、PC樹脂、PES樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、PTFE樹脂、ABS樹脂等が挙げられる。特に、線膨張係数の低い材料を用いることが好ましく、例えば、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂、PET等を好適に用いることができる。また、繊維体に樹脂を含浸した基板、及び、無機フィラーを樹脂に混ぜて線膨張係数を下げた基板等を使用することもできる。
 又は可撓性を有する基板として金属フィルムを用いることもできる。金属フィルムとしてはステンレス、アルミニウムなどを用いることができる。
 可撓性を有する基板としては、上記材料を用いた層が、装置の表面を傷などから保護するハードコート層(例えば、窒化シリコン層など)、押圧を分散可能な材質の層(例えば、アラミド樹脂層など)等の少なくとも一と積層されて構成されていてもよい。
 接着層には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。また、接着シート等を用いてもよい。
 そして、可撓性を有する基板を図29Aに示す非矩形状に加工、又は切断する。
 非矩形状の概略45°の角を有する8個の先端を1箇所に集め、一方の半球を構成し、もう一方の半球も概略45°の角を有する8個の先端を1箇所に集め、一つの概略球形の表示装置を構成する。
 8個の先端を1箇所に集める際に、表示領域63と非表示領域64の境界を折り曲げて、画素領域が上になるように重ねることで、画素領域の下に駆動回路を配置することができる。この様子を駆動回路が画素領域の裏側に設けられると表現することもできる。このような構成とすることで図29Bに示すように、表示に影響を及ぼすことなく球面を有する表示パネル61を提供できる。なお、非表示領域64と表示領域63を重ねて、理想的には継ぎ目の幅が極力ないように組み立てることが好ましい。
 表示パネル61を組み立てる前に、球体の型などにあてて加熱して可撓性を有する基板を変形させて丸みを持たせてもよい。可撓性を有する基板の材質又は厚さによっては曲面を持たせにくい場合があるため、正確には球形とは呼べず、図29Bの形状を作製する場合には8面体とも呼べる形状になる場合もあるが、本明細書では概略球形と呼ぶ。又は、図29Aに示す表示パネルは、くびれている部分でつながっているため、組み立てて図29Bの形状にした場合にも表示パネル61の全体を一つの面とみなすこともできる。
 又は駆動回路を同一の可撓性を有する基板上に設けることで、駆動ICなどの部品数を低減できる。さらには、省スペース化も実現できる。
 概略球面を保持又は固定するために表示装置の中空に骨格を有する構成とすることが好ましい。骨格としては金属のほか、プラスチック、木材、又は竹などの材料を細くしたワイヤー状のもの又は枠を用いることができる。また、中空である金属球体(アルミニウムなど)に貼り付ける構成としてもよい。金属球体が鏡面を有している場合には効率よく発光させることもできる。また、糊で固定した張り子のような紙の球体に貼り付ける構成としてもよい。表示装置の中空部分には表示領域63に設けられているトランジスタ又はEL素子に電気的に接続する駆動回路及び記憶装置及び電源などを配置することができる。電源は電源回路又は蓄電装置を有する。なお、記憶装置には、表示領域63にフルカラー映像を表示するための映像信号などを保存しておくことができる。
 又は、表示装置の中空部に無線回路を備え、外部から映像信号などを受信し、記憶装置に保存する構成としてもよい。記憶装置に保存された画像信号を画像処理回路によって表示領域63に表示するための信号変換を行って、表示領域63にフルカラー表示を実現することもできる。
 表示装置は、マトリクス状に形成された画素領域を有する発光素子を有し、本実施の形態では、有機EL素子を用いる。
 又は、有機EL素子の色変換(波長変換)材料として量子ドットを用いることもできる。量子ドットは、直径数nmの半導体ナノ結晶であり、1×10個から1×10個程度の原子から構成されている。量子ドットは、電子又は正孔、励起子がその内部に閉じ込められた結果、それらのエネルギー状態が離散的となり、また、サイズに依存してエネルギーシフトする。すなわち、同じ物質から構成される量子ドットであっても、サイズによって発光波長が異なるため、用いる量子ドットのサイズを変更することによって容易に発光波長を調整することができる。
 また、表示領域63にタッチパネルの機能を持たせることもできる。使用者の手が触れる、手をかざす又はジェスチャーによって操作可能とすることもできる。
 表示パネル61は、全表面が表示領域63となっており、固定する際には、継ぎ目のある定点に紐または金属線などを固定し、車内の天井に吊り下げる。又は、表示パネル61の一部に素子及び配線などを配置せず、その部分を除去して固定してもよいが、その場合には全表面が表示領域63とはならない構成となる。表示パネル61の一部を除去して固定する場合には電源を表示パネル61の内部に配置しなくとも、固定する部分を介して外部から映像信号、及び駆動のための電力などを供給する構成とすることができる。
 また、図29A、図29Bでは概略球面の表示領域63を備えた表示装置の例を示したが特に限定されず、概略半球面、その他の立体形状面を有する表示装置としてもよい。このような構成とすることで、外部から映像信号、及び駆動のための電力などを供給する構成とすることができる。
 例えば、図29Cに示す展開時の表示パネルを形成することで、図29Dに示す、円柱の一方の平面に直径の同じ半球を載せたような形状の表示部61Aを作製できる。また、例えば、図29Eに示す展開時の表示パネルを形成することで、図29Fに示す、概略半球面の表示部61Bを作製できる。
〔積層パネル〕
 本発明の一態様の積層パネル550は、上述した表示パネル500を複数備える。図28Bでは、3つの表示パネルを備える積層パネル550の上面概略図を示す。
 なお、以降では各々の表示パネル同士、各々の表示パネルに含まれる構成要素同士、又は各々の表示パネルに関連する構成要素同士を区別して説明する場合、これらの符号の後にアルファベットを付記する。また特に説明のない場合には、一部が互いに重ねて設けられた複数の表示パネルのうち、最も下側(表示面とは反対側)に配置される表示パネル及びその構成要素等に対して「a」の符号を付記し、その上側に順に配置される一以上の表示パネル及びその構成要素等に対しては、符号の後にアルファベットをアルファベット順に付記することとする。また、特に説明のない限り、複数の表示パネルを備える構成を説明する場合であっても、各々の表示パネル又は構成要素等に共通する事項を説明する場合には、アルファベットを省略して説明する。
 図28Bに示す積層パネル550は、表示パネル500a、表示パネル500b、及び表示パネル500cを備える。
 表示パネル500bは、その一部が表示パネル500aの上側(表示面側)に重ねて配置されている。具体的には、表示パネル500aの表示領域501aと表示パネル500bの可視光を透過する領域510bとが重畳し、且つ、表示パネル500aの表示領域501aと表示パネル500bの可視光を遮光する領域520bとが重畳しないように配置されている。
 また、表示パネル500cは、その一部が表示パネル500bの上側(表示面側)に重ねて配置されている。具体的には、表示パネル500bの表示領域501bと表示パネル500cの可視光を透過する領域510cとが重畳し、且つ、表示パネル500bの表示領域501bと表示パネル500cの可視光を遮光する領域520cとが重畳しないように配置されている。
 表示領域501a上には可視光を透過する領域510bが重畳するため、表示領域501aの全体を表示面側から視認することが可能となる。同様に、表示領域501bも領域510cが重畳することでその全体を表示面側から視認することができる。したがって、表示領域501a、表示領域501bおよび表示領域501cが継ぎ目なく配置された領域を積層パネル550の表示領域551とすることが可能となる。
 積層パネル550は、表示パネル500の数だけ、表示領域551を拡大することができる。このとき、全ての表示パネル500に、撮像機能を有する表示パネル(すなわち、発光素子と受光素子とを有する画素を有する表示パネル)を用いることで、表示領域551の全域を撮像領域とすることができる。
 なお、これに限られず、撮像機能を有する表示パネルと、撮像機能を有さない(例えば受光素子を有さない)表示パネルとを組み合わせてもよい。例えば、必要な部分にのみ撮像機能を有する表示パネルを適用し、それ以外には撮像機能を有さない表示パネルを適用することもできる。
 なお、表示パネル500はわかりやすくするために矩形状の例を示しているが、実施者の設計により、非矩形状としてもよい。
 図30Aは重ね合わせる前の複数の表示領域63、ここでは5つの表示領域63を示す部材62a、部材62b、部材62c、部材62d、部材62eの上面図であり、図30Bは本発明の一態様を示す表示パネルの外観図である。
 例えば、表示領域を図30Aに示す形状に設計し、矩形の可撓性を有する基板上に表示領域を作製した後、矩形の可撓性を有する基板を部分的に切断して切り出すことで図30Aに示す表示領域63を形成することができる。
 5つの表示領域63にはそれぞれ非表示領域64を有しており、非表示領域64を重ねて折り曲げることで図30Bに示す半球状の表示部61Dを構成することができる。また、図30Aでは5つの表示領域63を用いる例を示したが、特に数は限定されず、実施者が適宜、所望の形状に合わせて選択すればよく、表示領域63の数は2以上であればよい。
 表示部61Dは車の内壁、具体的にはダッシュボード又は天井又は壁に設置することができる。また、表示部61Dは腕時計の文字盤にも設置することができる。
 ここでは、半球状の表示部61Dとする例を示したが、他の構成と組み合わせることで、球状の構成、半球と円柱を組み合わせた構成、凹部の曲面を発光させる構成などにすることもできる。
 何らかの原因で表示パネルに点欠陥または線欠陥と呼ばれる不良が生じる恐れがあるため、本実施の形態とすることで、複数の表示パネルの中から表示品質のよい良品を抽出して組み立てることができる。また故障した場合に部分的に表示パネルの一部を交換することもできる。
[構成例2]
 図28Bでは一方向に複数の表示パネル500を重ねて配置する構成を示したが、縦方向および横方向の二方向に複数の表示パネル500を重ねて配置してもよい。
 図31Aは、図28Aとは領域510の形状が異なる表示パネル500の例を示している。図31Aに示す表示パネル500は、表示領域501の2辺に沿って可視光を透過する領域510が配置されている。
 図31Bに図31Aに示した表示パネル500を縦2つ、横2つ配置した積層パネル550の斜視概略図を示している。また図31Cは、積層パネル550の表示面側とは反対側から見たときの斜視概略図である。
 図31B、図31Cにおいて、表示パネル500aの表示領域501aの短辺に沿った領域と、表示パネル500bの領域510bの一部が重畳して設けられている。また表示パネル500aの表示領域501aの長辺に沿った領域と、表示パネル500cの領域510cの一部が重畳して設けられている。また表示パネル500dの領域510dは、表示パネル500bの表示領域501bの長辺に沿った領域、及び表示パネル500cの表示領域501cの短辺に沿った領域に重畳して設けられている。
 したがって、図31Bに示すように、表示領域501a、表示領域501b、表示領域501cおよび表示領域501dが継ぎ目なく配置された領域を積層パネル550の表示領域551とすることが可能となる。
 ここで、表示パネル500に用いる一対の基板に可撓性を有する材料を用い、表示パネル500が可撓性を有していることが好ましい。こうすることで、例えば図31B、図31C中の表示パネル500aに示すように、FPC512a等が表示面側に設けられる場合にFPC512aが設けられる側の表示パネル500aの一部を湾曲させ、FPC512aを隣接する表示パネル500bの表示領域501bの下側にまで重畳するように配置することができる。その結果、FPC512aを表示パネル500bの裏面と物理的に干渉することなく配置することができる。また、表示パネル500aと表示パネル500bとを重ねて接着する際に、FPC512aの厚さを考慮する必要がないため、表示パネル500bの領域510bの上面と、表示パネル500aの表示領域501aの上面との高さの差を低減できる。その結果、表示領域501a上に位置する表示パネル500bの端部が視認されてしまうことを抑制できる。
 さらに、各表示パネル500に可撓性を持たせることで、表示パネル500bの表示領域501bにおける上面の高さを、表示パネル500aの表示領域501aにおける上面の高さと一致するように、表示パネル500bを緩やかに湾曲させることができる。そのため、表示パネル500aと表示パネル500bとが重畳する領域近傍を除き、各表示領域の高さを揃えることが可能で、積層パネル550の表示領域551に表示する画像の表示品位を高めることができる。
 上記では、表示パネル500aと表示パネル500bの関係を例に説明したが、隣接する2つの表示パネル間でも同様である。
 また、隣接する2つの表示パネル500間の段差を軽減するため、表示パネル500の厚さは薄いほうが好ましい。例えば表示パネル500の厚さを1mm以下、好ましくは300μm以下、より好ましくは100μm以下とすることが好ましい。
 また、積層パネル550の表示領域551を保護するための基板を設けてもよい。このとき、当該基板は、表示パネルごとに設けられてもよいが、複数の表示パネルに亘って一つの基板が設けられていてもよい。
 なお、ここでは矩形状の表示パネル500を4つ積層する構成を示したが、表示パネル500の数を増やすことにより、極めて大型の積層パネルとすることが可能となる。また、複数の表示パネル500の配置方法を変えることで、積層パネルの表示領域の輪郭形状を非矩形状、例えば、円、楕円、多角形など、様々な形状にすることができる。また、表示パネル500を立体的に配置することで、3次元の立体形状、例えば円柱状、球形、半球形などを有する表示領域を備える積層パネルを実現できる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態8)
 本実施の形態では、本発明の一態様の表示パネルを用いる電子機器について、図32及び図33を用いて説明する。
 本実施の形態では、実施の形態7に示した表示装置を車内に設置する例を示す。
 図32Aは、車内の天井から配線コードで吊り下げた球形の表示パネル61を図示している。表示パネル61は車内灯だけでなく、車内のインテリアとしても機能させることができる。また、表示パネル61にはテレビ画像を表示することもできる。また配線コードを伸縮自在にすれば、乗客が手に取って操作を行うこともできる。
 車載カメラとして全方位カメラを車外に設置し、全方位カメラの撮像映像を使用者にわかりやすく、表示パネル61へ一度に表示することもできる。
 また、図32Bは他の例を示している。実施の形態4に示した受発光装置を車両制御装置の受発光部に好適に用いている。また、車両制御装置の形状は球形であるが、半分は固定するための凹部にはめ込められており、その凹部上に実施の形態7の球形の表示パネル61を自由に回転させる構成となっている。
 また、実施の形態7の球形の表示パネル61に代えて、半球状の表示部61Dを用いて車両制御装置を構成してもよい。このとき、半球状の表示部61Dは、例えば、平坦なダッシュボード上に固定されるとよい。
 また、図32Bにおいては後部座席側に円柱の一方の平面に直径の同じ半球を載せたような形状の表示部61Aを設ける例が示されている。表示部61Aは下方から電力供給又は映像信号を提供する構成とすることができる。また、表示部61Aは室内灯としても用いることができる。
 なお、図32では電気自動車などの車両の例を示しているが、乗物であれば特に限定されず、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機又は回転翼機等の航空機などに曲面、代表的には球形又は半球形を有する表示パネルを搭載することができる。また、バス、旅客機、ヘリコプター、宇宙船などの輸送用車両にも曲面、代表的には球形又は半球形を有する表示パネルを搭載することができる。
 また、腕時計又はパーソナルコンピュータなどの電子機器に曲面、代表的には球形又は半球形を有する表示パネルを搭載することもできる。例えば、実施の形態4に示した受発光装置をノート型コンピュータのマウスパッドの位置に小型の半球形又は球形の部材として設けることもできる。
 図33Aは実施の形態7の表示部61Bを半球形として電子部材66に固定し、表示盤に用いた腕時計の例である。腕時計は電子部材66を腕に固定するためのベルト67を有している。また、半球形ではなく球形を枠にはめたものを腕時計としてもよい。表示パネルにタッチセンサ又はニアタッチセンサを搭載することで、対象物(指、手、又はペンなど)の近接もしくは接触を検出し、表示を操作できる。
 腕時計の表示盤を半球形とすることで、わざわざ腕を動かすことなく時刻を確認できるように時間を表示することもできる。
 球形の表示パネルであれば、一部は使用者の腕に触れるため、センサを搭載することで生体情報を取得することもできる。
 図33Bは実施の形態7の表示部61Dを表示盤に用いた腕時計の例を示している。図33Aとは組み立て方が異なる以外は同一であるためここでは詳細な説明は省略することとする。
 また、本実施の形態は、他の実施の形態と自由に組み合わせることができる。
(実施の形態9)
 本実施の形態では、本発明の一態様の表示パネルを用いる車両について、図34を用いて説明する。
 本実施の形態では、実施の形態7に示した表示装置を一つまたは複数組み合わせて車内に設置する例を示す。
 図34は、車両の構成例を説明する図である。図34には、運転席と助手席の周辺に配置されるダッシュボード52、ステアリングホイール41、フロントガラス54、カメラ55、送風口56、助手席側のドア58a、運転席側のドア58bなどを示している。表示部51は、ダッシュボード52の左右にわたって設けられている。
 表示部51は、タッチセンサ、又は非接触の近接センサが設けられていることが好ましい。又は、別途設けられたカメラなどを用いたジェスチャー操作が可能であることが好ましい。
 ステアリングホイール41は、受発光部20を有する。受発光部20は、光を発する機能と、撮像する機能と、を有する。受発光部20により、ドライバーの指紋、掌紋、又は静脈などの生体情報を取得することができ、その生体情報をもとに、ドライバーを認証できる。そのため、あらかじめ登録されたドライバー以外は、車両を起動することができないため、極めてセキュリティレベルの高い車両を実現できる。
 また、後側方の状況を撮影するカメラ55を車外に複数設けてもよい。図34においてはサイドミラーの代わりにカメラ55を設置する例を示しているが、サイドミラーとカメラの両方を設置してもよい。カメラ55としては、CCDカメラ、CMOSカメラなどを用いることができる。また、これらのカメラに加えて、赤外線カメラを組み合わせて用いてもよい。赤外線カメラは、被写体の温度が高いほど出力レベルが高くなるため、人、動物等の生体を検知又は抽出できる。
 カメラ55で撮像された画像は、表示部51又は受発光部20のいずれか一方又は双方に出力できる。この表示部51又は受発光部20を用いて主に車両の運転を支援する。カメラ55によって後側方の状況を幅広い画角で撮影し、その画像を表示部51又は受発光部20に表示することで、ドライバーの死角領域の視認が可能となり、事故の発生を防止できる。
 また、車のルーフ上などに距離画像センサを設け、距離画像センサによって得られた画像を表示部51に表示してもよい。距離画像センサとしては、イメージセンサ、ライダー(LIDAR:Light Detection and Ranging)などを用いることができる。イメージセンサによって得られた画像と、距離画像センサによって得られた画像とを表示部51に表示することにより、より多くの情報をドライバーに提供し、運転を支援することができる。
 また、表示部51は、地図情報、交通情報、テレビ映像、DVD映像などを表示する機能を有していてもよい。例えば、表示パネル80aと表示パネル80bを1つの表示画面として、地図情報を大きく表示できる。なお、表示パネルの数は、表示される映像に応じて増やすことができる。
 また、図34では、ダッシュボード、フロントコンソール、及び左右のピラーにわたって表示部51が設けられる。図34では、表示部51が、8つの表示パネル(表示パネル80a乃至表示パネル80h)により構成されている例を示しているが、表示パネルの数はこれに限られず、7枚以下であってもよいし、9枚以上であってもよい。表示パネル80c及び表示パネル80dは、センターコンソールに当たる位置に設けられる。表示パネル80dは矩形状であるが、表示パネル80cの非矩形状の組み合わせを示しており、これらの表示パネル80cと表示パネル80dを一つのパネルとする場合には非矩形状パネルとなる。表示パネル80e及び表示パネル80fは、ドライバーから見てダッシュボードの奥側に設けられる。表示パネル80g及び表示パネル80hは、ピラーに沿って設けられる。表示パネル80a乃至表示パネル80hうち、一以上は曲面に沿って設けられる。
 表示パネル80a乃至表示パネル80hに表示される映像は、ドライバーの好みによって自由に設定することができる。例えば、テレビ映像、DVD映像、ウェブ動画などを左側の表示パネル80a、表示パネル80eなどに表示し、地図情報を中央部の表示パネル80cなどに表示し、速度計、回転計などの計測類をドライバー側の表示パネル80b、表示パネル80fなどに表示することができ、オーディオ類を運転席と助手席の間の表示パネル80dなどに表示できる。また、ピラーに設けられる表示パネル80g及び表示パネル80hには、ドライバーの視線上にある外部の景色をリアルタイムで表示することにより、疑似的にピラーレスの車両とすることができ、死角を減らすことができるため安全性の高い車両を実現できる。
 また、図34には、助手席側のドア58a、運転席側のドア58bの表面に沿って、それぞれ表示部59a、表示部59bが設けられている。表示部59a及び表示部59bは、それぞれ一つ又は複数の表示パネルを用いて形成することができる。
 表示部59aと表示部59bとは、向かい合うように配置され、さらに表示部51が、表示部59aの端部と表示部59bの端部とをつなぐように、ダッシュボード52に設けられている。これにより、ドライバー及び助手席の同乗者は、前方及び両側を、表示部51、表示部59a、及び表示部59bによって囲まれる状況となる。例えば、表示部59a、表示部51、及び表示部59bに一続きの画像を表示することにより、ドライバー又は同乗者に高い没入感を与えることができる。
 また、後側方の状況を撮影するカメラ55を車外に複数設けてもよい。図34においてはサイドミラーの代わりにカメラ55を設置する例を示しているが、サイドミラーとカメラの両方を設置してもよい。
 カメラ55としては、CCDカメラ又はCMOSカメラなどを用いることができる。また、これらのカメラに加えて、赤外線カメラを組み合わせて用いてもよい。赤外線カメラは、被写体の温度が高いほど出力レベルが高くなるため、人、動物等の生体を検知又は抽出できる。
 カメラ55で撮像された画像は、表示パネルのいずれか一又は複数に出力できる。車両は、この表示部51に表示される画像を用いて主に車両の運転を支援することができる。例えば、カメラ55によって後側方の状況を幅広い画角で撮影し、その画像を表示パネルのいずれか一又は複数に表示することで、ドライバーの死角領域の視認が可能となり、事故の発生を防止できる。
 また、表示部59a及び表示部59bに、カメラ55等で取得した画像から合成される、車窓から見える光景と連動した映像を表示できる。すなわち、ドライバー及び同乗者にとって、ドア58a及びドア58bが透過して見える映像を、表示部59a及び表示部59bに表示することもできる。これにより、ドライバー及び同乗者は、まるで浮遊しているかのような感覚を体験できる。
 また、表示パネル80a乃至表示パネル80hの少なくとも一つに、撮像機能を有する表示パネルが適用されることが好ましい。また、表示部59a及び表示部59bに設けられる表示パネルのうちの一以上にも、撮像機能を有する表示パネルを適用することもできる。
 例えば、ドライバーが当該表示パネルに触れることで、車両は指紋認証又は掌紋認証などの生体認証を行うことができる。車両は、生体認証によってドライバーが認証された場合に、個人の好みの環境を整える機能を有していてもよい。例えば、シート位置の調整、ハンドル位置の調整、カメラ55の向きの調整、明るさの設定、エアコンの設定、ワイパーの速度(頻度)の設定、オーディオの音量の設定、オーディオの再生リストの読出しなどの一以上を、認証後に実行することが好ましい。
 また、生体認証によってドライバーが認証された場合に、自動車を運転可能な状態、例えばエンジンがかかった状態、又は電気自動車で始動可能な状態とすることもでき、従来必要であった鍵が不要となるため好ましい。
 なお、ここでは運転席及び助手席を囲う表示装置について説明したが、後部座席においても、搭乗者を囲うように表示部を設けることができる。例えば、運転席又は助手席の背面、後部ドアの側面などに沿って、表示部を設けることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態10)
 本実施の形態では、本発明の一態様の電子機器について図35を用いて説明する。
 本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、大型化のそれぞれが容易である。また、本発明の一態様の表示装置は視野角が広いため、湾曲した表示面に沿った表示の画質を高めることができる。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
 また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減できる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、SR向け機器、及び、MR向け機器も挙げられる。
 本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度または高い精細度を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。
 本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
 本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図35A乃至図35Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図35A乃至図35Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 表示部9001に、本発明の一態様の表示装置を適用することができる。
 図35A乃至図35Fに示す電子機器の詳細について、以下説明を行う。
 図35Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図35Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メール、SNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図35Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図35Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図35D乃至図35Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図35Dは携帯情報端末9201を展開した状態、図35Fは折り畳んだ状態、図35Eは図35Dと図35Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
20:受発光部、31:第1の方向、31A:角、31B:角、32:第2の方向、32A:角、32B:角、41:ステアリングホイール、51:表示部、52:ダッシュボード、54:フロントガラス、55:カメラ、56:送風口、58a:ドア、58b:ドア、59a:表示部、59b:表示部、61:表示パネル、61A:表示部、61B:表示部、61D:表示部、62a:部材、62b:部材、62c:部材、62d:部材、62e:部材、63:表示領域、64:非表示領域、66:電子部材、67:ベルト、80:表示領域、80a:表示パネル、80b:表示パネル、80c:表示パネル、80d:表示パネル、80e:表示パネル、80f:表示パネル、80g:表示パネル、80h:表示パネル、90:発光素子、90B:発光素子、90G:発光素子、90R:発光素子、100:表示装置、100A:表示装置、100B:表示装置、101:層、110:画素、110a:副画素、110b:副画素、110c:副画素、110d:副画素、111:画素電極、111a:画素電極、111b:画素電極、111B:画素電極、111c:画素電極、111C:接続電極、111G:画素電極、111R:画素電極、112:有機層、112B:有機層、112Bf:有機膜、112G:有機層、112Gf:有機膜、112R:有機層、112Rf:有機膜、113:共通電極、114:有機層、117:遮光層、118:絶縁層、119:絶縁層、119a:絶縁層、119b:絶縁層、121:保護層、122a:導電層、122b:導電層、122c:導電層、122B:導電層、122G:導電層、122R:導電層、123a:層、123b:層、123c:層、124:絶縁層、125:絶縁層、125f:絶縁膜、126:樹脂層、127:絶縁層、128:層、129a:着色層、129b:着色層、129c:着色層、130a:発光デバイス、130b:発光デバイス、130c:発光デバイス、131:保護層、132:保護層、138:領域、140:接続部、142:接着層、144Ba:犠牲膜、144Bb:犠牲膜、144Ga:犠牲膜、144Gb:犠牲膜、144Ra:犠牲膜、144Rb:犠牲膜、145Ba:犠牲層、145Bb:犠牲層、145Ga:犠牲層、145Gb:犠牲層、145Ra:犠牲層、145Rb:犠牲層、151:基板、152:基板、153:絶縁層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、228:領域、231:半導体層、231i:チャネル形成領域、231n:低抵抗領域、242:接続層、300:表示パネル、300A:表示パネル、300B:表示パネル、301:基板、302:基板、303:機能層、311:発光素子、311B:発光素子、311G:発光素子、311IR:発光素子、311R:発光素子、311W:発光素子、312:受光素子、313R:受発光素子、320:指、321:接触部、322:指紋、323:撮像範囲、325:スタイラス、326:軌跡、500:表示パネル、500a:表示パネル、500b:表示パネル、500c:表示パネル、500d:表示パネル、501:表示領域、501a:表示領域、501b:表示領域、501c:表示領域、501d:表示領域、510:領域、510b:領域、510c:領域、510d:領域、512:FPC、512a:FPC、520:領域、520b:領域、520c:領域、550:積層パネル、551:表示領域、711:発光層、712:発光層、713:発光層、720:層、720−1:層、720−2:層、730:層、730−1:層、730−2:層、740:中間層、750:発光デバイス、750B:発光デバイス、750G:発光デバイス、750R:発光デバイス、751:層、752:層、753B:発光層、753G:発光層、753R:発光層、754:層、755:層、760:受光デバイス、761:層、762:層、763:層、790:EL層、790a:EL層、790b:EL層、791:下部電極、791B:画素電極、791G:画素電極、791PD:画素電極、791R:画素電極、792:上部電極、795:着色層、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (10)

  1.  基板上に、第1の発光素子と、第2の発光素子と、を有し、
     前記第1の発光素子は、第1の画素電極と、第1の有機層と、共通電極と、を有し、
     前記第2の発光素子は、第2の画素電極と、第2の有機層と、前記共通電極と、を有し、
     前記基板の上面視において、前記第1の発光素子は、第1の辺と、前記第1の辺よりも短い第2の辺と、を有し、
     正面方向の色度および第1の方向の色度の色度差Δu’v’と、正面方向の色度および第2の方向の色度の色度差Δu’v’との差の絶対値は、0.05以下であり、
     前記第1の方向の前記基板への射影は、前記第1の辺と平行であり、
     前記第2の方向の前記基板への射影は、前記第2の辺と平行であり、
     前記第1の方向と、前記基板表面の法線方向とのなす角は、70°であり、
     前記第2の方向と、前記基板表面の法線方向とのなす角は、70°である、
     表示装置。
  2.  請求項1において、
     前記第1の発光素子の上面視における、前記第1の画素電極と、前記共通電極とが、前記第1の有機層の発光領域を介して重なる領域において、前記第1の画素電極の、前記第1の有機層側の表面全面と、前記共通電極の、前記第1の有機層側の表面全面とは、平行または概略平行である、
     表示装置。
  3.  請求項1または請求項2において、
     絶縁層をさらに有し、
     前記第1の画素電極の端部と、前記第1の有機層の端部とは、一致又は概略一致し、
     前記第2の画素電極の端部と、前記第2の有機層の端部とは、一致又は概略一致し、
     前記絶縁層は、前記第1の画素電極、前記第2の画素電極、前記第1の有機層、及び前記第2の有機層のそれぞれの側面と接する領域を有する、
     表示装置。
  4.  請求項1または請求項2において、
     絶縁層をさらに有し、
     前記第1の画素電極の幅は、前記第1の有機層の幅よりも小さく、
     前記第2の画素電極の幅は、前記第2の有機層の幅よりも小さく、
     前記第1の有機層は、前記第1の画素電極の側面及び上面を覆い、
     前記第2の有機層は、前記第2の画素電極の側面及び上面を覆い、
     前記絶縁層は、前記第1の有機層、及び前記第2の有機層のそれぞれの上面の一部及び側面と接する領域を有する、
     表示装置。
  5.  請求項1または請求項2において、
     絶縁層をさらに有し、
     前記第1の画素電極の幅は、前記第1の有機層の幅よりも大きく、
     前記第2の画素電極の幅は、前記第2の有機層の幅よりも大きく、
     前記絶縁層は、前記第1の画素電極、及び前記第2の画素電極のそれぞれの上面の一部及び側面、並びに、前記第1の有機層、及び前記第2の有機層のそれぞれの側面に接する領域を有する、
     表示装置。
  6.  請求項1または請求項2において、
     第1の絶縁層と、第2の絶縁層と、をさらに有し、
     前記第1の絶縁層は、前記第1の画素電極の端部を覆い、
     前記第1の有機層は、前記第1の画素電極上、及び前記第1の絶縁層上に設けられ、
     前記第2の絶縁層は、前記第1の有機層上、及び前記第1の絶縁層上に設けられ、
     前記第2の絶縁層は、前記第1の有機層の上面の一部及び側面、並びに、前記第1の絶縁層の上面の一部に接する領域を有する、
     表示装置。
  7.  請求項6において、
     前記第1の絶縁層の端部は、テーパー形状であり、
     前記第2の絶縁層は、前記第1の有機層を介して、前記第1の絶縁層の端部と重なる領域を有する、
     表示装置。
  8.  請求項1乃至請求項7のいずれか一項において、
     前記第1の発光素子は、前記第1の有機層と、前記共通電極との間に、共通層を有し、
     前記第2の発光素子は、前記第2の有機層と、前記共通電極との間に、前記共通層を有する、
     表示装置。
  9.  請求項8において、
     前記共通層は、電子輸送層、及び電子注入層のいずれか一方又は双方を有する、
     表示装置。
  10.  請求項1乃至請求項9のいずれか一項において、
     前記基板は、可撓性を有し、
     前記基板の形状は、非矩形である、
     表示装置。
PCT/IB2022/053452 2021-04-22 2022-04-13 表示装置 WO2022224085A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/287,339 US20240196657A1 (en) 2021-04-22 2022-04-13 Display Apparatus
CN202280028291.8A CN117157695A (zh) 2021-04-22 2022-04-13 显示装置
JP2023515415A JPWO2022224085A1 (ja) 2021-04-22 2022-04-13
KR1020237036425A KR20230169178A (ko) 2021-04-22 2022-04-13 표시 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-072688 2021-04-22
JP2021072688 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022224085A1 true WO2022224085A1 (ja) 2022-10-27

Family

ID=83722008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/053452 WO2022224085A1 (ja) 2021-04-22 2022-04-13 表示装置

Country Status (5)

Country Link
US (1) US20240196657A1 (ja)
JP (1) JPWO2022224085A1 (ja)
KR (1) KR20230169178A (ja)
CN (1) CN117157695A (ja)
WO (1) WO2022224085A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031251A (ja) * 2003-07-09 2005-02-03 Hitachi Ltd 発光型表示装置
JP2013175433A (ja) * 2012-01-24 2013-09-05 Canon Inc 表示装置
JP2014017239A (ja) * 2012-05-30 2014-01-30 Rohm Co Ltd 有機el発光装置およびその製造方法、および積層カラーフィルタ
JP2019067525A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 表示装置、電子機器、及び表示装置の製造方法
US20200027932A1 (en) * 2018-07-20 2020-01-23 Lg Display Co., Ltd. Head mounted display device and display panel included therein
US20200168133A1 (en) * 2018-04-08 2020-05-28 Shenzhen China Star Optoelectronics Semicondutor Display Technology Co., Ltd. Oled display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG118118A1 (en) 2001-02-22 2006-01-27 Semiconductor Energy Lab Organic light emitting device and display using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005031251A (ja) * 2003-07-09 2005-02-03 Hitachi Ltd 発光型表示装置
JP2013175433A (ja) * 2012-01-24 2013-09-05 Canon Inc 表示装置
JP2014017239A (ja) * 2012-05-30 2014-01-30 Rohm Co Ltd 有機el発光装置およびその製造方法、および積層カラーフィルタ
JP2019067525A (ja) * 2017-09-28 2019-04-25 キヤノン株式会社 表示装置、電子機器、及び表示装置の製造方法
US20200168133A1 (en) * 2018-04-08 2020-05-28 Shenzhen China Star Optoelectronics Semicondutor Display Technology Co., Ltd. Oled display device
US20200027932A1 (en) * 2018-07-20 2020-01-23 Lg Display Co., Ltd. Head mounted display device and display panel included therein

Also Published As

Publication number Publication date
JPWO2022224085A1 (ja) 2022-10-27
CN117157695A (zh) 2023-12-01
KR20230169178A (ko) 2023-12-15
US20240196657A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
WO2022162501A1 (ja) 表示装置
WO2022248984A1 (ja) 表示装置
WO2022224085A1 (ja) 表示装置
WO2022269408A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022189916A1 (ja) 表示装置、及び表示装置の作製方法
WO2022214904A1 (ja) 表示装置
WO2022248973A1 (ja) 表示装置
WO2022189908A1 (ja) 表示装置
WO2022224073A1 (ja) 表示装置、及び表示装置の作製方法
WO2022248971A1 (ja) 表示装置、及び表示装置の作製方法
WO2022238799A1 (ja) 電子機器
WO2022224070A1 (ja) 表示装置、及び表示装置の作製方法
WO2022200916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022214916A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、電子機器
WO2022162492A1 (ja) 表示装置
WO2022238808A1 (ja) 表示装置、及び表示装置の作製方法
WO2022214911A1 (ja) 表示装置
WO2022224091A1 (ja) 表示装置
WO2022175789A1 (ja) 表示装置
WO2022238805A1 (ja) 半導体装置、表示装置、及び半導体装置の作製方法
WO2023002280A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
WO2022162485A1 (ja) 表示装置
WO2022175774A1 (ja) 表示装置および表示装置の作製方法
WO2022189881A1 (ja) 表示装置、表示モジュール及び電子機器
WO2022162491A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515415

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18287339

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237036425

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791202

Country of ref document: EP

Kind code of ref document: A1