WO2022222448A1 - 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用 - Google Patents

一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用 Download PDF

Info

Publication number
WO2022222448A1
WO2022222448A1 PCT/CN2021/130652 CN2021130652W WO2022222448A1 WO 2022222448 A1 WO2022222448 A1 WO 2022222448A1 CN 2021130652 W CN2021130652 W CN 2021130652W WO 2022222448 A1 WO2022222448 A1 WO 2022222448A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
ceramic
printing
base resin
cured
Prior art date
Application number
PCT/CN2021/130652
Other languages
English (en)
French (fr)
Inventor
伍尚华
孙振飞
吕东霖
欧俊
黄生武
王博
杨平
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2022222448A1 publication Critical patent/WO2022222448A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide

Definitions

  • the invention relates to the technical field of ceramic materials, in particular to a photo-cured high-solid content silicon nitride ceramic and a preparation method and application thereof.
  • Silicon nitride ceramics are one of the structural ceramics with the best comprehensive properties and have excellent mechanical properties. With the development of science and technology, the application field of silicon nitride ceramics has been continuously expanded. Conventional ceramic molding methods make ceramic products simple in shape, require complex machining procedures, have high processing costs, and complex preparation processes, which can no longer meet the needs of preparing silicon nitride ceramics with complex shapes and high performance.
  • the photocuring molding technology (DLP) based on digital light processing has the advantages of fast molding speed and high precision, and can prepare ceramic green bodies with complex shapes and structures. Molding high solid content silicon nitride ceramics can increase the green body density of the ceramic green body, reduce the sintering shrinkage of the silicon nitride ceramics, and improve the mechanical properties of the silicon nitride ceramics.
  • DLP photocuring molding technology
  • the technical problems to be solved by the embodiments of the present invention are the problems of low printing success rate and poor molding precision of photocuring molding high solid content silicon nitride ceramics.
  • an embodiment of the present invention provides a method for preparing a photocured high solid content silicon nitride ceramic, which includes:
  • the photosensitive resin prepolymer, diluent, plasticizer, photoinitiator and ceramic dispersant are all mixed with and ultrasonically stirred to obtain a resin premix, wherein the photoinitiator is completely dissolved in the resin premix;
  • the photosensitive resin prepolymer is at least one of PPTTA, BPA2EODMA and BPA10EODMA.
  • the photosensitive resin prepolymer should have good flexibility after photocuring, so that it can be easily removed after printing.
  • diluent is at least one in HDDA, TMPTA and CTFA.
  • the thinner is more important to have a good bonding ability with the printing platform after light curing.
  • the photoinitiator 3 is at least one of Irgacure TPO and Irgacure369, wherein, in step S1 and step S2, the total amount of photoinitiator accounts for the total amount of photosensitive resin prepolymer and diluent. 0.5wt%-1.5wt%.
  • the photoinitiator has high photoinitiating activity and can maintain the curing accuracy of the base resin.
  • the sintering aid is at least two kinds of alumina, magnesia and rare earth oxides;
  • the silicon nitride ceramic powder is a submicron ceramic powder.
  • the submicron ceramic powder has good sintering activity, moderate specific surface area, and low refractive index and absorbance, which can meet the needs of photocuring of high-curing silicon nitride ceramic paste.
  • step S4 the exposure energy of the base resin surface is 120mJ/cm 2 -200mJ/cm 2 , which can reduce the printing time of the base resin, and can fully cure the resin and stably join on the printing platform; single-layer curing
  • the thickness is controlled at 30-60 ⁇ m; the printing thickness of the base resin is greater than 1 mm.
  • the printing thickness of the base resin should make the resin meet a certain strength, which is convenient to use a blade to cut the printing blank after printing. At the same time, the thickness should be greater than the thickness of the subsequent high solid content ceramic slurry after the blade coating, so that the base cured resin can be cured on the platform. The ceramic slurry is expelled under the force of the downward movement.
  • step S5 the coating thickness of the silicon nitride photocured ceramic slurry through the scraper is the silicon nitride monolayer of the silicon nitride photocured ceramic slurry under its solid content. 2-3 times the thickness of the cured film.
  • a further technical solution thereof is that the thickness of the printing layer of the silicon nitride photocurable ceramic paste is 5-10 ⁇ m smaller than the single-layer curing depth of the silicon nitride photocurable ceramic paste under its solid content; the The surface exposure energy of the silicon nitride photocurable ceramic paste is 100mJ/cm 2 -250mJ/cm 2 .
  • the ceramic monolayer cured film and the printed model have high consistency, and there is no obvious overexposure slag in the slurry.
  • the present invention utilizes the photosensitive resin with good affinity with the printing platform material, and the cured resin base layer can be used as the intermediate layer between the printing platform and the ceramic layer.
  • the ceramic layer is stably bonded; on the other hand, the resin base layer and the printing platform are firmly bonded.
  • the resin base layer presses the printing panel down, which can drain the excess ceramic paste and reduce the printing platform and the printing platform.
  • the contact area of the ceramic slurry reduces the downward pulling force of the ceramic slurry on the printing layer and increases the success rate of molding efficiency.
  • FIG. 1 is a schematic diagram of the change of the curing depth of the photocurable silicon nitride ceramic slurry
  • FIG. 2 is a schematic diagram of the change in viscosity of the photocurable silicon nitride ceramic slurry
  • FIG. 3 is an application scenario diagram of a method for preparing a photocured high-solid content silicon nitride ceramic provided in Example 1 of the present invention
  • Fig. 4 is the actual picture of the photocurable high solid content silicon nitride cutter prepared by the embodiment of the present invention.
  • FIG. 5 is a physical diagram of a photocured high solid content complex-shaped porous silicon nitride green body prepared in an embodiment of the present invention.
  • FIG. 3 is an application scenario diagram of a method for preparing a photocured high-solid content silicon nitride ceramic provided in Example 1.
  • the 3D printing device includes a Z-axis 1 , a printing platform 2 and Trough 5.
  • the base resin 3 is bonded on the printing platform 2 , and the ceramic layer 4 is cured on the base resin 3 .
  • the method includes the following steps:
  • Step 1 Weigh BPA10EODMA as the photosensitive resin prepolymer, HDDA as the diluent, add the photoinitiator Irgacure TPO, and ultrasonically stir until the photoinitiator is completely dissolved to obtain the base resin mixture.
  • the mass ratio of photosensitive resin BPA10EODMA to HDDA is 5:1; the mass ratio of Irgacure TPO to photosensitive resin mixed solution is 1:100.
  • BPA10EODMA is selected as the photosensitive resin prepolymer, which has the characteristics of high refractive index, moderate viscosity, fast light curing speed, low curing shrinkage and good flexibility of the cured film.
  • HDDA photosensitive resin diluent
  • Irgacure TPO is selected as the photoinitiator, which has high photoinitiation activity, and can ensure the curing accuracy of the photocurable film and reduce the printing defects of the base resin.
  • Step 2 Select photosensitive resin prepolymer BPA10EODMA, add photosensitive resin diluent HDDA and plasticizer PEG-300, photoinitiator Irgacure TPO and ceramic dispersing agent BYK9077, mix well to obtain resin premix, and photoinitiator is completely dissolved in in resin premix.
  • Step 4 Pour the base resin mixture into the hopper of the light-curing 3D printer, and then print the model according to the preset ceramic body. Under the irradiation of a UV lamp with a certain surface exposure power, the base resin is placed on the printing platform and the printing hopper. It is cured in the gap, and the base resin is tightly bonded to the printing platform after curing.
  • the base resin printing parameters are set to 160mJ/cm 2 -200mJ/cm 2 , and the base resin printing layer thickness is set to 40 ⁇ m-50 ⁇ m to ensure that the base resin is tightly bonded to the printing platform after curing, and at the same time improves the printing success rate and printing accuracy.
  • Step 5 After the base resin is photocured to a thickness of more than 2mm, slowly raise the height of the printing platform, clean the material tank of the photocurable 3D printer, add a sufficient amount of silicon nitride photocurable ceramic slurry, and use a scraper to assist flow nitridation
  • the silicon photocurable ceramic paste enables the silicon nitride photocurable ceramic paste to be uniformly coated on the exposed area of the ultraviolet lamp, and the thickness of the paste is about 30 ⁇ m-80 ⁇ m.
  • Step 6 Slowly reduce the distance of the printing platform, so that the cured base resin on the printing platform just fits the exposure panel.
  • the lowering height of the printing platform should be slightly larger than the lifting height of the printing platform in step 5, about 50 ⁇ m-200 ⁇ m. In order to ensure that the printing model of the base layer is attached to the exposure panel, so that the first layer of ceramic cured film and the base resin cured film are tightly bonded.
  • Step 7 Set the exposure parameters of the silicon nitride photocurable ceramic paste and the thickness of the printing layer, and start the photocuring 3D printing of the ceramic layer.
  • the exposure energy of the silicon nitride photocurable ceramic paste should be controlled within 100mJ/cm 2 -250mJ/cm 2 , so that the ceramic single-layer cured film has sufficient curing depth, so that the layers are connected during the printing process.
  • the overexposure phenomenon during the curing process is reduced, the curing accuracy of the ceramic layer is increased, and the overexposure residue of the slurry is reduced.
  • the thickness of the printing layer should be set at 15-25 ⁇ m, which is about 5-10 ⁇ m less than the solidification depth of the silicon nitride ceramic paste at the solid content, preferably less than 10 ⁇ m.
  • Step 8 After the model is finished printing, remove the print from the printing platform with a blade.
  • the green body is placed in a degreasing furnace for degreasing, so that the solidified base resin and the ceramic layer are separated and decomposed, and a silicon nitride ceramic green body with high green body density is obtained after the degreasing is completed.
  • the use of the degreasing method to separate the base resin from the ceramic layer can ensure that the shape and size of the silicon nitride ceramic green body are complete.
  • step 1 of this example PPTTA is selected as the photosensitive resin prepolymer in the base resin mixed solution, and other materials and proportions remain unchanged.
  • the curing speed of PPTTA is fast and the degree of cross-linking polymerization is high.
  • step 2 of this example PPTTA is selected as the photosensitive resin prepolymer in the resin mixture used in the ceramic slurry, and other materials and their proportions remain unchanged.
  • the purpose of selecting PPTTA is to keep the same as the base resin material in step 1, so as to ensure the best affinity between the base resin layer and the silicon nitride ceramic layer during the photocuring process.
  • the photocurable high solid content silicon nitride cutting tool prepared by Example 1 or 2 is shown in Figure 4; the photocured high solid content complex shape porous silicon nitride blank prepared by Example 1 or 2 is shown in Figure 5 shown.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用,涉及陶瓷材料技术领域。制备方法包括:将配置好的基层树脂混合液置于3D打印机料槽中,并打印基层模型;将配置好的高固相含量氮化硅陶瓷浆料置于3D打印料槽中,在刮刀的辅助流平下,打印模型陶瓷层;成型结束后,利用刀片将固化后的基层树脂和陶瓷层从打印平台上清理掉,并利用陶瓷脱脂工艺将基层树脂去除,得到最终的光固化陶瓷素坯。该打印方法能够有效解决高固相氮化硅陶瓷浆料由于粘度高、固化深度浅导致成型成功率低的问题,同时能够减少光固化高固相氮化硅成型缺陷,提高打印精度。

Description

一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用 技术领域
本发明涉及陶瓷材料技术领域,尤其涉及一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用。
背景技术
氮化硅陶瓷是综合性能最好的结构陶瓷之一,具有优异的力学性能。随着科学技术的发展,氮化硅陶瓷的应用领域不断拓展。常规的陶瓷成型方式使得陶瓷制品形状简单,需要复杂的机加工工序,加工成本高,制备工艺复杂,已经不能满足制备具有复杂形状、且具有高性能的氮化硅陶瓷的需求。而基于数字光处理的光固化成型技术(DLP)具有成型速度快,精度高,能够制备具有复杂形状结构的陶瓷坯体。成型高固相含量氮化硅陶瓷能够增加陶瓷素坯的坯体密度,减少氮化硅陶瓷烧结收缩率,提高氮化硅陶瓷的力学性能。
由于DLP成型原理的限制,打印过程中材料的增材过程是自顶向下的,材料每固化一层,打印平台需向上抬起一层。然而,参见图1-2,高固相含量氮化硅陶瓷浆料往往具有较大的粘度,以及较低的固化深度,因此,在光固化成型过程中,打印平台下降时难以将陶瓷浆料排开,或者由于浆料的粘滞力较大,因此氮化硅陶瓷固化薄膜难以稳定地与打印平台接合,很大程度上降低了打印成功率。常规通过增大曝光能量的方式增加浆料固化深度的同时,也降低了陶瓷固化薄膜的成型精度,降低了打印坯体的质量。
发明内容
本发明实施例所要解决的技术问题是光固化成型高固相含量氮化硅陶瓷打印成功率低,成型精度差的问题。
为了解决上述问题,本发明实施例提出如下技术方案:
第一方面,本发明实施例提出一种光固化成型的高固相含量氮化硅陶瓷的制备方法,其包括:
S1,将光敏树脂预聚物、稀释剂和光引发剂均匀混合,得到基层树脂混合液;
S2,将光敏树脂预聚物、稀释剂、增塑剂、光引发剂和陶瓷分散剂均与混合并超声搅拌,得到树脂预混液,其中,光引发剂完全溶解于树脂预混液中;
S3,将含有烧结助剂的氮化硅陶瓷粉体添加进树脂预混液中,并加入研磨球,在均质机中进行混合,制备得到陶瓷固相含量为35vol%-55vol%的氮化硅光固化陶瓷浆料;
S4,将基层树脂混合液倒入光固化3D打印机料槽中,然后按照预设陶瓷坯体打印模型,在紫外光灯的照射下,使基层树脂混合液在打印平台和打印料槽的间隙中固化为基层树脂,其中,基层树脂紧密粘接在打印平台上;
S5,基层树脂光固化达到预设厚度后,缓慢抬升打印平台高度,将光固化3D打印机的料槽清理干净,并添加足量的所述氮化硅光固化陶瓷浆料;利用刮刀辅助流平所述氮化硅光固化陶瓷浆料,使所述氮化硅光固化陶瓷浆料均匀涂敷在紫外灯曝光区域;
S6,缓慢降低打印平台高度,使得打印平台上固化后的基层树脂刚好与曝光面板贴合;
S7,设置所述氮化硅光固化陶瓷浆料的曝光参数以及打印层厚,开始进行陶瓷层的光固化3D打印,得到打印件;
S8,打印结束后,将打印件从打印平台上取下,将打印件放置在脱脂炉中进行脱脂,使得已固化的基层树脂与陶瓷层脱离、分解,脱脂结束后得到具有高坯体密度的氮化硅陶瓷素坯。
其进一步的技术方案为,所述光敏树脂预聚物为PPTTA、BPA2EODMA以及BPA10EODMA中的至少一种。
光敏树脂预聚物在光固化后应具有较好的柔韧性,方便打印结束后能方便去除。
其进一步的技术方案为,所述稀释剂为HDDA、TMPTA以及CTFA中的至少一 种。
稀释剂除了能够降低基层树脂混合物的粘度,更重要的是光固化后能够和打印平台具有很好的接合能力。
其进一步的技术方案为,所述光引发剂3为Irgacure TPO和Irgacure369中的至少一种,其中,步骤S1和步骤S2中,光引发剂的总量占光敏树脂预聚物和稀释剂总量的0.5wt%-1.5wt%。
光引发剂具有较高的光引发活性,能够保持基层树脂的固化精度。
其进一步的技术方案为,所述烧结助剂为氧化铝、氧化镁以及稀土氧化物中的至少两种;所述氮化硅陶瓷粉体为亚微米级陶瓷粉体。亚微米级陶瓷粉体具有良好的烧结活性且比表面积适中,同时具有较低的折射率和吸光度,能够满足高固化氮化硅陶瓷浆料光固化的需要。
其进一步的技术方案为,步骤S4中,基层树脂面曝光能量为120mJ/cm 2-200mJ/cm 2,能够减少基层树脂打印时间,能够使树脂充分固化,稳定接合在打印平台上;单层固化厚度控制在30-60μm;所述基层树脂的打印厚度大于1mm。
基层树脂的打印厚度应使树脂满足一定的强度,方便打印结束后使用刀片切割打印坯体,同时该厚度应当大于后续高固相含量陶瓷浆料经过刮刀涂膜厚度,使得基层固化树脂能够在平台下移的作用力下排开陶瓷浆料。
其进一步的技术方案为,步骤S5中,所述氮化硅光固化陶瓷浆料经过刮刀的涂敷厚度为所述氮化硅光固化陶瓷浆料在其固相含量下的氮化硅单层固化膜厚度的2-3倍。
其进一步的技术方案为,所述氮化硅光固化陶瓷浆料的打印层厚度比所述氮化硅光固化陶瓷浆料在其固相含量下的单层固化深度小5-10μm;所述氮化硅光固化陶瓷浆料的面曝光能量为100mJ/cm 2-250mJ/cm 2
在该面曝光能量的紫外灯曝光下,陶瓷单层固化膜和打印模型具有较高的一致性,浆料中没有明显的过曝碎渣。
与现有技术相比,本发明实施例所能达到的技术效果包括:
本发明利用和打印平台材料亲和力较好的光敏树脂,其固化后的树脂基层, 可以作为打印平台和陶瓷层的中间层,一方面,树脂基层与陶瓷层具有较高的亲和力,保证树脂基层与陶瓷层稳定接合;另一方面,树脂基层与打印平台粘接牢靠,在打印高固相含量氮化硅浆料时,树脂基层下压打印面板,能够排开多余陶瓷浆料,减少打印平台与陶瓷浆料的接触面积,减少陶瓷浆料的对打印层向下的拉力,增加成型效率成功率。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为光固化氮化硅陶瓷浆料的固化深度的变化示意图;
图2为光固化氮化硅陶瓷浆料的粘度的变化示意图;
图3本发明为实施例1提供的一种光固化成型的高固相含量氮化硅陶瓷的制备方法的应用场景图;
图4为本发明实施例制备得到的光固化高固相含量氮化硅刀具的实物图;
图5为本发明实施例制备得到的光固化高固相含量复杂形状多孔氮化硅坯体的实物图。
具体实施方式
下面将结合本发明实施例中的附图,对实施例中的技术方案进行清楚、完整地描述,附图中类似的组件标号代表类似的组件。显然,以下将描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添 加。
还应当理解,在此本发明实施例说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明实施例。如在本发明实施例说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
参见图3,图3为实施例1提供的一种光固化成型的高固相含量氮化硅陶瓷的制备方法的应用场景图,图3中,3D打印设备包括Z轴1、打印平台2以及料槽5。基层树脂3粘合在打印平台2上,陶瓷层4固化在基层树脂3上。该方法包括如下步骤:
步骤1:分别称取BPA10EODMA作为光敏树脂预聚物,HDDA作为稀释剂,加入光引发剂Irgacure TPO,超声搅拌至光引发剂完全溶解后,得到基层树脂混合液。其中光敏树脂BPA10EODMA与HDDA的质量比为5:1;Irgacure TPO与光敏树脂混合液的质量比为1:100。
需要说明的是,选用BPA10EODMA作为光敏树脂预聚物,其具有折射率高,粘度适中,光固化速度快,固化收缩率低且固化膜柔韧性好的特点。
选用HDDA作为光敏树脂稀释剂,能够很好的保证基层树脂固化后与打印平台有很强的接合能力,且能够降低基层树脂的粘度。
选用Irgacure TPO作为光引发剂,其具有较高的光引发活性,且能够保证光固化膜的固化精度,减少基层树脂打印缺陷。
步骤2:选用光敏树脂预聚物BPA10EODMA、加入光敏树脂稀释剂HDDA和增塑剂PEG-300,光引发剂Irgacure TPO以及陶瓷分散剂BYK9077,混合均匀后得到树脂预混液,光引发剂完全溶解于树脂预混液中。其中,各原料的质量比为BPA10EODMA:HDDA:PEG-300:Irgacure TPO=60:20:20:1。
步骤3:将45vol%氮化硅陶瓷加入预混液中,加入少量直径为10mm碳化钨研磨球。将浆料混合均匀后,得到氮化硅光固化陶瓷浆料。其中,以质量比计,氮化硅:BYK9077=50:1。
步骤4:将基层树脂混合液倒入光固化3D打印机料槽中,然后按照预设陶瓷坯体打印模型,在一定面曝光功率的紫外光灯的照射下,基层树脂在打印平 台和打印料槽的间隙中固化,基层树脂固化后紧密粘接在打印平台上。
需要说明的是,基层树脂打印参数设置为160mJ/cm 2-200mJ/cm 2,基层树脂打印层厚设置为40μm-50μm,以保证基层树脂固化后与打印平台紧密接合,同时提高了打印成功率和打印精度。
步骤5:基层树脂光固化达到2mm以上厚度后,缓慢抬升打印平台高度,将光固化3D打印机的料槽清理干净,并添加足量的氮化硅光固化陶瓷浆料,利用刮刀辅助流氮化硅光固化陶瓷浆料,使氮化硅光固化陶瓷浆料能够均匀涂敷在紫外灯曝光区域,浆料厚度为30μm-80μm左右。
步骤6:缓慢降低打印平台距离,使得打印平台上固化后的基层树脂刚好与曝光面板贴合。
需要说明的是,打印平台应降低高度应略大于步骤5中打印平台抬升高度,约大50μm-200μm。以保证基层打印模型与曝光面板贴合,使得第一层陶瓷固化膜与基层树脂固化膜接合紧密。
步骤7:设置好氮化硅光固化陶瓷浆料的曝光参数,以及打印层厚,开始进行陶瓷层的光固化3D打印。
需要说明的是,氮化硅光固化陶瓷浆料的曝光能量,应控制在100mJ/cm 2-250mJ/cm 2,使得陶瓷单层固化膜具有足够的固化深度,使打印过程中层与层之间接合紧密,同时减少固化过程中过曝现象,增加陶瓷层固化精度,减少浆料的过曝残渣。打印层厚度应设置在15-25μm,小于该固含量下氮化硅陶瓷浆料的固化深度约5-10μm,优选的小10μm以上。
步骤8:模型打印结束后,用刀片将打印件从打印平台上取下。将坯体放置在脱脂炉中进行脱脂,使得已固化的基层树脂与陶瓷层脱离、分解,脱脂结束后得到具有高坯体密度的氮化硅陶瓷素坯。
需要说明的是,利用脱脂方法将基层树脂与陶瓷层分离的方式能够保证氮化硅陶瓷素坯的形状和尺寸完整。
实施例2
与实施例1不同的是,本实施例步骤1中选用PPTTA作为基层树脂混合液中的光敏树脂预聚物,其他材料及配比不变。PPTTA的固化速度较快,交联聚合 程度高。
与实施例1不同的是,本实施例步骤2中选用PPTTA作为陶瓷浆料所用树脂混合液中的光敏树脂预聚物,其他材料及其配比不变。选用PPTTA的目的是为了保持和步骤1中基层树脂材料相同,以保证光固化过程中基层树脂层和氮化硅陶瓷层亲和性保持最佳。
通过实施例1或2制备得到的光固化高固相含量氮化硅刀具如图4所示;通过实施例1或2制备得到的光固化高固相含量复杂形状多孔氮化硅坯体如图5所示。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,尚且本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
以上所述,为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,包括:
    S1,将光敏树脂预聚物、稀释剂和光引发剂均匀混合,得到基层树脂混合液;
    S2,将光敏树脂预聚物、稀释剂、增塑剂、光引发剂和陶瓷分散剂均与混合并超声搅拌,得到树脂预混液,其中,光引发剂完全溶解于树脂预混液中;
    S3,将含有烧结助剂的氮化硅陶瓷粉体添加进树脂预混液中,并加入研磨球,在均质机中进行混合,制备得到陶瓷固相含量为35vol%-55vol%的氮化硅光固化陶瓷浆料;
    S4,将基层树脂混合液倒入光固化3D打印机料槽中,然后按照预设陶瓷坯体打印模型,在紫外光灯的照射下,使基层树脂混合液在打印平台和打印料槽的间隙中固化为基层树脂,其中,基层树脂紧密粘接在打印平台上;
    S5,基层树脂光固化达到预设厚度后,缓慢抬升打印平台高度,将光固化3D打印机的料槽清理干净,并添加足量的所述氮化硅光固化陶瓷浆料;利用刮刀辅助流平所述氮化硅光固化陶瓷浆料,使所述氮化硅光固化陶瓷浆料均匀涂敷在紫外灯曝光区域;
    S6,缓慢降低打印平台高度,使得打印平台上固化后的基层树脂刚好与曝光面板贴合;
    S7,设置所述氮化硅光固化陶瓷浆料的曝光参数以及打印层厚,开始进行陶瓷层的光固化3D打印,得到打印件;
    S8,打印结束后,将打印件从打印平台上取下,将打印件放置在脱脂炉中进行脱脂,使得已固化的基层树脂与陶瓷层脱离、分解,脱脂结束后得到具有高坯体密度的氮化硅陶瓷素坯。
  2. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,所述光敏树脂预聚物为PPTTA、BPA2EODMA以及BPA10EODMA中的至少一种。
  3. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,所述稀释剂为HDDA、TMPTA以及CTFA中的至少一种。
  4. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,所述光引发剂3为Irgacure TPO和Irgacure369中的至少一种,其中,步骤S1和步骤S2中,光引发剂的总量占光敏树脂预聚物和稀释剂总量的0.5wt%-1.5wt%。
  5. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,所述烧结助剂为氧化铝、氧化镁以及稀土氧化物中的至少两种;所述氮化硅陶瓷粉体为亚微米级陶瓷粉体。
  6. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,步骤S4中,基层树脂面曝光能量为120mJ/cm 2-200mJ/cm 2;单层固化厚度控制在30-60μm;所述基层树脂的打印厚度大于1mm。
  7. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,步骤S5中,所述氮化硅光固化陶瓷浆料经过刮刀的涂敷厚度为所述氮化硅光固化陶瓷浆料在其固相含量下的氮化硅单层固化膜厚度的2-3倍。
  8. 根据权利要求1所述的光固化成型的高固相含量氮化硅陶瓷的制备方法,其特征在于,所述氮化硅光固化陶瓷浆料的打印层厚度比所述氮化硅光固化陶瓷浆料在其固相含量下的单层固化深度小5-10μm;所述氮化硅光固化陶瓷浆料的面曝光能量为100mJ/cm 2-250mJ/cm 2
  9. 一种氮化硅陶瓷,其特征在于,由权利要求1-8任一项所述的方法制备得到。
  10. 如权利要求9所述的氮化硅陶瓷在陶瓷刀具中的应用。
PCT/CN2021/130652 2021-04-21 2021-11-15 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用 WO2022222448A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110440243.7 2021-04-21
CN202110440243.7A CN113511901B (zh) 2021-04-21 2021-04-21 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022222448A1 true WO2022222448A1 (zh) 2022-10-27

Family

ID=78061226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130652 WO2022222448A1 (zh) 2021-04-21 2021-11-15 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113511901B (zh)
WO (1) WO2022222448A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113511901B (zh) * 2021-04-21 2022-12-02 广东工业大学 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN113880559A (zh) * 2021-10-29 2022-01-04 华中科技大学 一种基于光固化成形的难固化陶瓷的制备方法及产品
CN117285361A (zh) * 2023-08-07 2023-12-26 武汉理工大学 一种基于多相颗粒级配的光固化3d打印氮化硅陶瓷浆料及其打印方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN109133917A (zh) * 2018-11-02 2019-01-04 华南农业大学 一种dlp增材制造用的陶瓷浆料及其制备方法和采用该浆料制备成品的方法
KR20190068652A (ko) * 2017-12-08 2019-06-19 주식회사 퀀타머티리얼스 인체 경조직 대체를 위한 3차원 프린팅용 원료 및 그 제조방법
CN113511901A (zh) * 2021-04-21 2021-10-19 广东工业大学 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3180720B2 (ja) * 1997-06-16 2001-06-25 松下電器産業株式会社 積層セラミック電子部品の製造方法
JP4929722B2 (ja) * 2006-01-12 2012-05-09 日立化成工業株式会社 光硬化型ナノプリント用レジスト材及びパターン形成法
CN108249930B (zh) * 2017-12-29 2021-10-22 深圳长朗智能科技有限公司 提供光洁轮廓的光固化树脂基陶瓷复合材料及胚体脱脂方法
CN108892515B (zh) * 2018-08-03 2021-05-28 广东工业大学 一种光固化氮化硅陶瓷浆料、氮化硅陶瓷及其制备方法
CN111572016B (zh) * 2019-02-15 2024-04-30 中南大学 一种连续纤维增强构件的3d打印成型方法
CN109896862A (zh) * 2019-02-27 2019-06-18 广东工业大学 一种复杂形状的β-SiAlON陶瓷及其制备方法
CN110240485A (zh) * 2019-06-21 2019-09-17 天津大学 一种基于热固粘接的陶瓷增材制造方法及设备
CN110357643A (zh) * 2019-07-25 2019-10-22 航天特种材料及工艺技术研究所 光固化3d打印用氮化硅陶瓷浆料、制备方法及氮化硅陶瓷
CN111348906A (zh) * 2020-02-10 2020-06-30 中国科学院金属研究所 一种熔模铸造用光固化硅基陶瓷型芯素坯脱脂方法
CN111233443A (zh) * 2020-02-23 2020-06-05 西北工业大学 一种高固相含量3d打印陶瓷型芯浆料及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106810215A (zh) * 2017-01-18 2017-06-09 深圳摩方新材科技有限公司 一种陶瓷浆料的制备及3d打印光固化成型方法
CN106699191A (zh) * 2017-01-20 2017-05-24 广东工业大学 一种基于光固化成型的3d打印制备氮化硅陶瓷的方法
CN107158474A (zh) * 2017-05-26 2017-09-15 山东工业陶瓷研究设计院有限公司 光固化3d打印牙科种植体用浆料及其制备方法和应用
KR20190068652A (ko) * 2017-12-08 2019-06-19 주식회사 퀀타머티리얼스 인체 경조직 대체를 위한 3차원 프린팅용 원료 및 그 제조방법
CN108675798A (zh) * 2018-08-03 2018-10-19 广东工业大学 一种氮化硅陶瓷及其制备方法
CN109133917A (zh) * 2018-11-02 2019-01-04 华南农业大学 一种dlp增材制造用的陶瓷浆料及其制备方法和采用该浆料制备成品的方法
CN113511901A (zh) * 2021-04-21 2021-10-19 广东工业大学 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN113511901A (zh) 2021-10-19
CN113511901B (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2022222448A1 (zh) 一种光固化成型的高固相含量氮化硅陶瓷及其制备方法和应用
CN108083777B (zh) 一种光固化3d打印用铝基陶瓷料浆及陶瓷型芯的制备方法
Griffith et al. Freeform fabrication of ceramics via stereolithography
CN106007723B (zh) 一种SiC陶瓷素坯的制造方法
CN113754430B (zh) 一种3d打印用级配氧化锆膏料及其制备方法和应用
CN110002883B (zh) 一种光固化3d打印的聚硅氮烷陶瓷制品及其制备方法
CN1827256A (zh) 一种在蜡模的窄槽、盲孔中直接制型芯方法
CN112919887A (zh) 一种光固化氧化铝陶瓷膏料及其雾化腔一体化成形方法
CN111348906A (zh) 一种熔模铸造用光固化硅基陶瓷型芯素坯脱脂方法
JPH0985839A (ja) 焼結構造体の製造方法
CN113548897A (zh) 一种高固化能力的陶瓷3d打印膏料及其制备方法
CN105128128B (zh) 一种无模材料成型方法及装置
CN108358642B (zh) 一种陶瓷素坯的连接方法
CN108530028B (zh) 一种用于3d打印洁具的陶瓷粉料及陶瓷洁具生产工艺
Wang et al. Photopolymerization-based three-dimensional ceramic printing technology
WO2021002040A1 (ja) 積層造形用粉末、積層造形用スラリー、3次元積層造形体、焼結体、積層造形用スラリーの製造方法、積層造形方法及び焼結方法
JP4122008B2 (ja) 光硬化樹脂消失モデル用鋳型材料およびそれにより作成した鋳型並びにその鋳型を用いた鋳造方法
Xing et al. Viscoelastic Paste-Based Ceramic vat Photopolymerization: Recent Achievements and Future Developments
CN112277122A (zh) 经由光热路线通过立体光刻法制造陶瓷材料或金属材料的生坯的方法
CN114394848B (zh) 基于光固化3d打印技术制造铸造用陶瓷过滤器的方法
JPH0891940A (ja) セラミックスの光学的成形法
JPS5927749A (ja) 精密鋳造用鋳型の製造方法
CN109676123B (zh) 一种光固化成形金属、合金及陶瓷零件的扫描方法
TWM520421U (zh) 採用3d打印殼模之真空澆鑄裝置
CN112171848A (zh) 一种光固化碳化硅陶瓷浆料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21937670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21937670

Country of ref document: EP

Kind code of ref document: A1