WO2022220303A1 - スタンパブルシート及びそれを用いた成形体 - Google Patents

スタンパブルシート及びそれを用いた成形体 Download PDF

Info

Publication number
WO2022220303A1
WO2022220303A1 PCT/JP2022/018080 JP2022018080W WO2022220303A1 WO 2022220303 A1 WO2022220303 A1 WO 2022220303A1 JP 2022018080 W JP2022018080 W JP 2022018080W WO 2022220303 A1 WO2022220303 A1 WO 2022220303A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
fiber
flame retardant
stampable sheet
fibers
Prior art date
Application number
PCT/JP2022/018080
Other languages
English (en)
French (fr)
Inventor
信暁 ▲高▼田
晃啓 矢野
英之 志楽
一憲 河原
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280028685.3A priority Critical patent/CN117203268A/zh
Priority to KR1020237035077A priority patent/KR20230174221A/ko
Priority to JP2023514690A priority patent/JPWO2022220303A1/ja
Priority to US18/286,674 priority patent/US20240194984A1/en
Priority to EP22788226.3A priority patent/EP4324869A1/en
Publication of WO2022220303A1 publication Critical patent/WO2022220303A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/122Composite material consisting of a mixture of organic and inorganic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/041Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with metal fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/5205Salts of P-acids with N-bases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a stun bubble sheet and a molded article using the same.
  • thermosetting materials have high flame retardancy and are commonly used as composite materials, but thermoplastic resin materials are advantageous in terms of recyclability.
  • Patent Document 1 proposes a product obtained by adding a brominated flame retardant or an antimony oxide compound to a carbon fiber reinforced polypropylene resin.
  • the additives used here have biopersistence problems.
  • Patent Document 2 discloses a flame-retardant polyolefin composition in which a polyolefin resin contains a (poly)phosphate compound. things are proposed.
  • the resin composition described there has a problem that the dispersibility of the phosphorus-based flame retardant is poor.
  • Patent Document 3 proposes a flame-retardant resin composition containing long glass fibers and a phosphate compound in polypropylene resin. There is a problem with the dispersibility of phosphorus-based flame retardants.
  • the conventional techniques have many inadequacies with respect to resinification, which has the potential to achieve both weight reduction and flame-retardant properties for high-energy-density batteries.
  • the additive used has a problem of biopersistence, and the carbon fiber length shown in the patent document is sufficient after stamp molding. There is a problem that strength and rigidity cannot be obtained.
  • the resin composition disclosed in Patent Document 2 has poor dispersibility of the phosphorus-based flame retardant, and flame retardancy can be obtained by adding a large amount of the phosphorus-based flame retardant, but the strength of the polypropylene-based resin is large. There are problems that lead to degradation.
  • the flame-retardant resin composition disclosed in Patent Document 3 must contain a large amount of a phosphorus-based flame retardant, as in Patent Document 2. There is a problem of not being able to maintain sex.
  • a first aspect of the present invention was made to solve the above problems, and provides a stampable sheet that achieves both high flame barrier properties and the workability and rigidity required for a stampable sheet.
  • the task is to
  • a second aspect of the present invention is a fiber-reinforced resin battery that can delay the spread of fire to automobile interior members when thermal runaway of the battery occurs and flames occur, and has excellent flame shielding properties. It is an object of the present invention to provide a battery housing of
  • the present inventors have found that a stampable sheet made of a composition of a polypropylene-based resin containing a flame retardant and a dispersant in a specific ratio in a specific polypropylene-based resin and an inorganic fiber is provided as described above.
  • the present inventors have found that the above problems can be solved, and based on these findings, have completed the first aspect of the present invention.
  • the present inventors have found that a battery housing using a fiber-reinforced resin containing at least inorganic fibers can solve the above problems, and based on these findings, have completed one aspect of the present invention. That is, the first aspect of the present invention provides the following [A1] to [A28].
  • a stampable sheet containing (A) a thermoplastic resin, (B) a flame retardant, (C) a dispersant, and (D) an inorganic fiber, wherein the content of the (D) inorganic fiber is is 1 to 80% by mass, and the content of (C) the dispersant is more than 0 and 25 parts by mass or less with respect to 100 parts by mass of the flame retardant (B).
  • the dispersant (C) is a copolymer of an ⁇ -olefin and an unsaturated carboxylic acid.
  • [A3] The stampable sheet according to [A1] or [A2], wherein the flame retardant (B) is a phosphorus flame retardant.
  • [A4] The stampable sheet according to any one of [A1] to [A3], wherein the flame retardant (B) is an intumescent flame retardant.
  • [A5] The stampable sheet according to any one of [A1] to [A4], wherein the (D) inorganic fibers have an average fiber length of 0.1 mm or more.
  • [A6] The stampable sheet according to any one of [A1] to [A5], wherein the (D) inorganic fiber is at least one selected from glass fiber, ceramic fiber, metal fiber and metal oxide fiber. .
  • [A18] The above [A13] obtained by impregnating the (D) mat made of inorganic fibers with the resin composition containing the (A-1) polypropylene resin, (B) the flame retardant, and (C) the dispersant.
  • [A19] The stampable sheet according to [A18], wherein the mat is a swirl mat of continuous glass or inorganic fiber manufactured by needle punching.
  • [A20] A molded product obtained by stamping the stampable sheet according to any one of [A13] to [A19].
  • [A21] A battery housing comprising the molded article according to [A20].
  • a stampable sheet wherein the content of (D) inorganic fibers is 1 to 80% by mass with respect to the total weight, and the content of component (C) is more than 0 and 25 mass parts with respect to 100 parts by mass of component (B) A stampable sheet that is less than or equal to part.
  • stampable sheet according to [A22] or [A23] above, wherein the (D) inorganic fiber is at least one selected from glass fiber, ceramic fiber, metal fiber and metal oxide fiber.
  • the resin composition containing (A) the polypropylene resin, (B) a salt of (poly)phosphoric acid and a nitrogen compound, and (C) a copolymer of an ⁇ -olefin and an unsaturated carboxylic acid.
  • D The stampable sheet according to any one of [A22] to [A24], which is obtained by impregnating a mat made of inorganic fibers.
  • a second aspect of the present invention provides the following [B1] to [B12].
  • [B1] A battery housing made of a fiber-reinforced resin, the fiber-reinforced resin containing a flame retardant and a dispersant, and containing at least inorganic fibers as the fibers.
  • [B2] A battery housing made of a fiber-reinforced resin, the fiber-reinforced resin containing a flame retardant and a dispersant, and containing at least inorganic fibers having a melting temperature of over 1000°C as the fibers.
  • [B3] The battery housing according to [B1] or [B2], wherein the fibers include two or more inorganic fibers having different melting temperatures.
  • [B4] The battery according to any one of [B1] to [B3], wherein the content of inorganic fibers having a melting temperature of over 1000° C. is 1 part by mass or more with respect to 100 parts by mass of the fiber-reinforced resin. housing.
  • [B5] The battery housing according to any one of [B1] to [B4], wherein the fiber-reinforced resin contains glass fiber.
  • [B6] The battery housing according to any one of [B1] to [B5], wherein the resin in the fiber-reinforced resin is a thermoplastic resin.
  • [B7] The battery housing according to any one of [B1] to [B6], wherein the resin in the fiber-reinforced resin is a thermosetting resin.
  • the fiber reinforced resin contains 20 to 80% by mass of thermoplastic resin or thermosetting resin, 3 to 60% by mass of inorganic fiber, 1 to 30% by mass of flame retardant, and a dispersant for 100 parts by mass of flame retardant.
  • the battery housing according to any one of [B1] to [B9] which is formed by molding a stampable sheet made of the fiber-reinforced resin.
  • [B11] A structure having the battery housing and battery cells according to any one of [B1] to [B10].
  • a stampable sheet that is excellent in strength, rigidity, and flame-shielding properties, and is also excellent in workability such as stamping molding.
  • a battery housing that can delay the spread of fire to automotive interior members when thermal runaway of the battery occurs and fire occurs, and has more excellent flame-shielding properties. be able to.
  • FIG. 3 is a schematic diagram showing a laminate of Example 1-1.
  • FIG. 4 is a schematic diagram showing a laminate of Example 1-2. It is a conceptual diagram explaining a battery housing.
  • FIG. 4 is a schematic diagram showing a stampable sheet of Example 2-1;
  • stampable sheet A first aspect of the present invention relates to a stampable sheet.
  • the stampable sheet of the present invention contains (A) a thermoplastic resin, (B) a flame retardant, (C) a dispersant, and (D) inorganic fibers.
  • the stampable sheet contains (D) inorganic fibers at a high concentration, is strong in any direction due to lack of orientation, and has a flexural modulus of about 4 to 10 GPa.
  • the stampable sheet of the present invention has high impact resistance and is less likely to undergo permanent deformation due to external input unlike metal.
  • the stampable sheet of the present invention can be stamped (pressed).
  • stampable sheet refers to a sheet-shaped fiber-reinforced resin composite that contains a thermoplastic resin and fibers and can be stamped (press) molded.
  • stampable sheet refers to a sheet-shaped fiber-reinforced resin composite that contains a thermoplastic resin and fibers and can be stamped (press) molded.
  • thermoplastic resin used for the stampable sheet of the present invention is not particularly limited, and includes polyolefin resin, polycarbonate resin, polyester resin, acrylonitrile styrene resin, ABS resin, polyamide resin, modified polyphenylene oxide, and the like. In addition, these may use 1 type, and may use 2 or more types.
  • the thermoplastic resin (A) may be a composite resin of two or more of the above thermoplastic resins.
  • the polyolefin resin is not particularly limited, and includes resins described later.
  • the polyester resin is not particularly limited, and examples thereof include polybutylene terephthalate.
  • the polyamide resin is not particularly limited, and examples thereof include nylon 66 and nylon 6.
  • the present invention is particularly useful when at least a polyolefin resin is included as the thermoplastic resin (A).
  • polyolefin resin means a resin in which the ratio of olefin units or cycloolefin units is 90 mol% or more with respect to 100 mol% of all structural units constituting the resin.
  • the ratio of olefin units or cycloolefin units to 100 mol % of all structural units constituting the polyolefin resin is preferably 95 mol % or more, particularly preferably 98 mol % or more.
  • polyolefin resins examples include ⁇ -olefins such as polyethylene, polypropylene, polybutene, poly(3-methyl-1-butene), poly(3-methyl-1-pentene), and poly(4-methyl-1-pentene).
  • Olefin copolymer; cycloolefin polymers such as polycyclohexene and polycyclopentene.
  • polyethylene examples include low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and the like.
  • polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene, stereoblock polypropylene, and the like.
  • ⁇ -olefin-propylene block or random copolymer having 4 or more carbon atoms ⁇ -olefins having 4 or more carbon atoms include butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4 -methyl-1-pentene and the like. These polyolefin resins may be used alone or in combination of two or more.
  • MFR total melt flow rate (hereinafter sometimes abbreviated as MFR) (230° C., 2.16 kg load) of the (A) thermoplastic resin used in the present invention is preferably 40 to 500 g/10 minutes. .
  • MFR is preferably 50 to 400 g/10 minutes, more preferably 60 to 400 g/10 minutes, and more preferably 70 to 300 g/10 minutes.
  • the thermoplastic resin can be adjusted in MFR, for example, by controlling the hydrogen concentration during polymerization.
  • MFR is the value measured based on JISK7210.
  • thermoplastic resin The content of (A) thermoplastic resin in the stampable sheet of the present invention is not particularly limited, but is preferably 15 to 80% by mass. When the content of the thermoplastic resin is 15% by mass or more, the molding workability is particularly good, and molding of the stampable sheet is facilitated. On the other hand, when the amount is 80% by mass or less, sufficient amounts of the flame retardant, dispersant and inorganic fiber can be contained, and good flame shielding properties can be obtained. From the above viewpoints, the thermoplastic resin content in the stampable sheet is preferably 35 to 70% by mass, more preferably 40 to 60% by mass.
  • the (A) thermoplastic resin used in the stampable sheet of the present invention preferably contains a polypropylene-based resin.
  • polypropylene-based resins include propylene homopolymers and propylene- ⁇ -olefin copolymers.
  • the propylene- ⁇ -olefin copolymer may be either a random copolymer or a block copolymer.
  • ⁇ -olefins constituting the copolymer examples include ethylene, 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1 -hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl -1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, 1-octene and the like.
  • One of these may be used for copolymerization with propylene, or two or more thereof may be used for copolymerization with propylene.
  • ethylene or 1-butene is preferable, and ethylene is most preferable, since the effect thereof is large from the viewpoint of improving the impact resistance strength of the stampable sheet.
  • (Propylene-ethylene random copolymer) In the case of a random copolymer of propylene and ethylene, preferably 90 to 99.5% by mass of propylene units, more preferably 92 to 99% by mass, preferably 0.5 to 10% by mass of ethylene units, more preferably 1 ⁇ 8% by mass. If the ethylene unit is at least the above lower limit, the stampable sheet will have sufficient impact resistance strength, and if it is at most the above upper limit, sufficient rigidity will be maintained.
  • the content of propylene units and ethylene units in the random copolymer of propylene and ethylene can be adjusted by controlling the compositional ratio of propylene and ethylene during polymerization of the random copolymer of propylene and ethylene.
  • the propylene content of the random copolymer of propylene and ethylene is a value measured using a cross fractionator, FT-IR, etc., and the measurement conditions etc. are described in, for example, JP-A-2008-189893. You should use the method provided.
  • MFR Melt flow rate
  • the overall melt flow rate (hereinafter sometimes abbreviated as MFR) (230° C., 2.16 kg load) of the (A) polypropylene resin used in the present invention is preferably 40 to 500 g/10 minutes. .
  • MFR is preferably 50 to 400 g/10 minutes, more preferably 60 to 400 g/10 minutes, more preferably 70 to 300 g/10 minutes.
  • A-1) The MFR of the polypropylene resin (propylene homopolymer) can be adjusted by controlling the hydrogen concentration during polymerization.
  • MFR is the value measured based on JISK7210.
  • the content of (A-1) polypropylene-based resin in the stampable sheet of the present invention is not particularly limited, but is preferably 15 to 80% by mass. If the content of the polypropylene-based resin is less than 15% by mass, the moldability may become insufficient, and molding of the stampable sheet may become difficult. On the other hand, if it exceeds 80% by mass, the contents of the flame retardant, dispersant and inorganic fiber become insufficient, and there is a risk that sufficient flame barrier properties cannot be obtained. From the above viewpoints, the content of the polypropylene-based resin in the stampable sheet is more preferably 35 to 70% by mass, and even more preferably 40 to 60% by mass.
  • the stampable sheet of the present invention can further contain a modified polyolefin resin in addition to the polypropylene resin.
  • modified polyolefin-based resins include acid-modified polyolefin-based resins and hydroxy-modified polyolefin-based resins, and these may be used alone or in combination.
  • the types of the acid-modified polyolefin-based resin and the hydroxy-modified polyolefin-based resin used as the modified polyolefin-based resin are not particularly limited, and conventionally known ones may be used.
  • Acid-modified polyolefin resins include, for example, polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, ethylene- ⁇ -olefin-nonconjugated diene compound copolymer (EPDM etc.), ethylene-aromatic monovinyl compound-conjugated diene.
  • a polyolefin such as a compound copolymer elastomer is graft-copolymerized with an unsaturated carboxylic acid such as maleic acid or maleic anhydride and then chemically modified.
  • This graft copolymerization is carried out, for example, by reacting the polyolefin with an unsaturated carboxylic acid in a suitable solvent using a radical generator such as benzoyl peroxide.
  • a radical generator such as benzoyl peroxide.
  • the unsaturated carboxylic acid or its derivative component can also be introduced into the polymer chain by random or block copolymerization with a polyolefin monomer.
  • unsaturated carboxylic acids used for modification include carboxyl groups such as maleic acid, fumaric acid, itaconic acid, acrylic acid and methacrylic acid, and optionally functional groups such as hydroxyl groups and amino groups. Compounds having introduced polymerizable double bonds are included. Derivatives of unsaturated carboxylic acids include these acid anhydrides, esters, amides, imides and metal salts. Specific examples thereof include maleic anhydride, itaconic anhydride, methyl acrylate and ethyl acrylate. , butyl acrylate, and methyl methacrylate. Among these, maleic anhydride is preferred.
  • Preferred acid-modified polyolefin-based resins include those obtained by graft-polymerizing an olefin-based polymer having ethylene and/or propylene as the main polymer structural unit with maleic anhydride, and olefins mainly composed of ethylene and/or propylene. and modified by copolymerizing maleic anhydride.
  • Specific examples include a combination of polyethylene/maleic anhydride-grafted ethylene-butene-1 copolymer, a combination of polypropylene/maleic anhydride-grafted polypropylene, and the like.
  • a hydroxy-modified polyolefin resin is a modified polyolefin resin containing a hydroxyl group.
  • the hydroxy-modified polyolefin resin may have a hydroxyl group at an appropriate site, for example, at the end of the main chain or side chain.
  • Olefin-based resins constituting hydroxy-modified polyolefin-based resins include, for example, homopolymers or copolymers of ⁇ -olefins such as ethylene, propylene, butene, 4-methylpentene-1, hexene, octene, nonene, decene, and dodecene; A copolymer of the ⁇ -olefin and a copolymerizable monomer can be exemplified.
  • Preferred hydroxy-modified polyolefin resins include, for example, low-, medium- or high-density polyethylene, linear low-density polyethylene, ultra-high molecular weight polyethylene, ethylene-(meth)acrylic acid ester copolymer, ethylene-vinyl acetate copolymer, Hydroxy-modified polyethylene resins such as polymers, e.g., polypropylene homopolymers such as isotactic polypropylene, random copolymers of propylene and ⁇ -olefins (e.g., ethylene, butene, hexane, etc.), propylene- ⁇ -olefin blocks Hydroxy-modified polypropylene resins such as hydroxy-modified poly(4-methylpentene-1) such as copolymers can be exemplified.
  • Hydroxy-modified polyethylene resins such as polymers, e.g., polypropylene homopolymers such as isotactic poly
  • the stampable sheet of the present invention contains (B) a flame retardant.
  • the flame retardant is not particularly limited, and examples thereof include phosphorus-based flame retardants, bromine-based flame retardants, antimony-based flame retardants, and the like. Of these, phosphorus-based flame retardants are preferred from the viewpoint of improving flame-shielding properties. Further, in the classification focused on the mechanism of action of the flame retardant, (B) the flame retardant is preferably an intumescent flame retardant from the viewpoint of improving the flame-shielding property.
  • Phosphorus flame retardant are phosphorus compounds, ie compounds containing a phosphorus atom in the molecule.
  • a phosphorus-based flame retardant exhibits a flame retardant effect by forming char when the resin composition is burned.
  • the phosphorus-based flame retardant may be a known one, and examples thereof include (poly)phosphates, (poly)phosphate esters, and the like.
  • (poly)phosphate” indicates phosphate or polyphosphate
  • (poly)phosphate” indicates phosphate or polyphosphate.
  • the phosphorus flame retardant is preferably solid at 80°C.
  • a (poly)phosphate is preferable from the viewpoint of flame retardancy.
  • (Poly)phosphates include, for example, ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, piperazine orthophosphate, melamine pyrophosphate, piperazine pyrophosphate, melamine polyphosphate, and melamine orthophosphate. , calcium phosphate, magnesium phosphate and the like. Compounds in which melamine or piperazine is replaced with other nitrogen compounds in the above examples can also be used.
  • nitrogen compounds include, for example, N,N,N',N'-tetramethyldiaminomethane, ethylenediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N-dimethylethylenediamine, N , N-diethylethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-diethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine, tetramethylenediamine , pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, trans-2,5-dimethylpiperazine, 1,4- bis(2-aminoethyl)piperazine, 1,4-bis(
  • the phosphorus-based flame retardant is preferably a salt of (poly)phosphoric acid and a nitrogen compound (hereinafter also referred to as "compound (B1)").
  • the compound (B1) is an intumescent flame retardant, and forms a surface expanded layer (intumescent) of foamed char when the resin composition is burned. By forming the surface expansion layer, diffusion of decomposition products and heat transfer are suppressed, and excellent flame retardancy is exhibited.
  • nitrogen compounds in compound (B1) include ammonia, melamine, piperazine, and other nitrogen compounds described above.
  • phosphorus-based flame retardants include ADEKA STAB FP-2100J, FP-2200, and FP-2500S (manufactured by ADEKA Corporation).
  • brominated flame retardant examples include decabromodiphenyl ether, tetrabromobisphenol A, tetrabromobisphenol S, 1,2-bis(2′,3′,4′,5′,6′-pentabromophenyl)ethane, 1,2-bis(2,4,6-tribromophenoxy)ethane, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, 2,6-dibromo Phenol, 2,4-dibromophenol, brominated polystyrene, ethylenebistetrabromophthalimide, hexabromocyclododecane, hexabromobenzene, pentabromobenzyl acrylate, 2,2-bis[4'(2'',3''- dibromopropoxy)-3′,5′-dibromophenyl]-propane, bis[
  • antimony flame retardant examples include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium pyroantimonate, antimony trichloride, antimony trisulfide, antimony oxychloride, antimony dichloride perchloropentane and potassium antimonate. Antimony trioxide and antimony pentoxide are particularly preferred.
  • Intumescent flame retardants are flame retardants that suppress the combustion of materials by forming an intumescent layer that prevents radiant heat from the combustion source and the diffusion of combustion gas and smoke from the combusted material to the outside. be.
  • intumescent flame retardants include salts of (poly)phosphoric acid and nitrogen compounds. Specific examples include ammonium salts and amine salts of (poly)phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, ammonium pyrophosphate, melamine pyrophosphate and piperazine pyrophosphate.
  • phosphorus-based flame retardants are preferable because they do not persist in the body and have excellent flame retardancy, and non-halogen flame retardants are preferable from the environmental point of view.
  • Intumescent flame retardants are preferred from the viewpoint of improving the flame-shielding properties of the resulting stampable sheet.
  • the said flame retardant can be used individually by 1 type, or can also use 2 or more types together.
  • the content of the flame retardant in the stunable sheet of the present invention is not particularly limited, it is preferably in the range of 1 to 30% by mass.
  • the stampable sheet can be imparted with good flame retardancy, and good flame shielding properties can be obtained.
  • the content of the flame retardant is 30% by mass or less, the thermoplastic resin can be included at a sufficient content ratio, so that the moldability is further improved.
  • the content of the flame retardant in the stun bubble sheet is more preferably in the range of 1 to 25% by mass, more preferably in the range of 3 to 20% by mass.
  • Dispersant is not particularly limited as long as it can disperse (B) flame retardant in (A) thermoplastic resin.
  • a dispersant can be preferably used.
  • the flame retardant (B) can be dispersed in the polypropylene resin (A-1).
  • the polymeric dispersant a polymeric dispersant having a functional group is preferable.
  • a carboxyl group, a phosphoric acid group, a sulfonic acid group, a primary, secondary or tertiary amino group, a quaternary ammonium base Polymeric dispersants having functional groups such as groups derived from nitrogen-containing heterocycles such as pyridine, pyrimidine and pyrazine are preferred.
  • a polymeric dispersant having a carboxyl group is preferred, and a copolymer of an ⁇ -olefin and an unsaturated carboxylic acid is particularly preferred when a phosphorus-based flame retardant suitable as a flame retardant is used.
  • the ⁇ -olefin unit and the unsaturated carboxylic acid unit are It is preferable that the proportion of the ⁇ -olefin units in the total 100 mol % is 20 mol % or more and 80 mol % or less.
  • the ratio of the ⁇ -olefin units to the total amount of the ⁇ -olefin units and the unsaturated carboxylic acid units is more preferably 30 mol% or more, while it is preferably 70 mol% or less. more preferred. If the ratio of the ⁇ -olefin is at least the lower limit, the compatibility with (A) the polyolefin resin is more excellent, and if it is at the upper limit or less, the compatibility with (B) the flame retardant is higher. be excellent.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 5 or more carbon atoms, more preferably an ⁇ -olefin having 10 or more and 80 or less carbon atoms. If the number of carbon atoms in the ⁇ -olefin is 5 or more, compatibility with the thermoplastic resin (A) tends to be better, and if it is 80 or less, it is advantageous in terms of raw material cost. From the above viewpoints, the number of carbon atoms in the ⁇ -olefin is more preferably 12 or more and 70 or less, and particularly preferably 18 or more and 60 or less.
  • Examples of unsaturated carboxylic acids in the copolymer (C1) include (meth)acrylic acid, maleic acid, methylmaleic acid, fumaric acid, methylfumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, and crotonic acid. , isocrotonic acid, glutaconic acid, norbornane-5-ene-2,3-dicarboxylic acid, and esters, anhydrides and imides of these unsaturated carboxylic acids.
  • “(Meth)acrylic acid” indicates acrylic acid or methacrylic acid.
  • unsaturated carboxylic acid esters, anhydrides or imides include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, ( (Meth)acrylic acid esters such as glycidyl methacrylate; maleic anhydride, itaconic anhydride, citraconic anhydride, dicarboxylic acid anhydrides such as 5-norbornene-2,3-dicarboxylic anhydride; maleimide, N-ethyl Examples include maleimide compounds such as maleimide and N-phenylmaleimide. These may be used individually by 1 type, and may use 2 or more types together.
  • esters and dicarboxylic acid anhydrides are preferred from the viewpoint of copolymerization reactivity.
  • dicarboxylic acid anhydrides are preferred, and maleic anhydride is particularly preferred, from the viewpoint of compatibility with phosphorus-based flame retardants suitable as flame retardants.
  • the weight average molecular weight of the copolymer (C1) is preferably 2,000 or more, more preferably 3,000 or more, while it is preferably 50,000 or less, more preferably 30,000 or less. If the weight average molecular weight of the copolymer (C1) is within the above range, the dispersibility of the flame retardant (B) will be more excellent.
  • the weight average molecular weight of the copolymer (C1) is a standard polystyrene-equivalent value measured by gel permeation chromatography after dissolving the copolymer (C1) in tetrahydrofuran (THF).
  • copolymer (C1) Commercially available products of the copolymer (C1) include Recolb CE2 (manufactured by Clariant Japan Co., Ltd.) and Diacarna 30M (manufactured by Mitsubishi Chemical Corporation).
  • the content of the (C) dispersant with respect to 100 parts by mass of the (B) flame retardant in the present stampable sheet is greater than 0 and in the range of 25 parts by mass or less, preferably in the range of 0.01 to 10 parts by mass. be.
  • the flame retardant is uniformly dispersed in the inorganic fibers constituting the stampable sheet using a thermoplastic resin as a matrix resin. can improve.
  • the present inventors presume as follows. That is, when the flame retardant is uniformly dispersed in the resin between the inorganic fibers, the char formed by the flame retardant coming into contact with the flame is fixed in the gaps between the inorganic fibers.
  • the size of the char that expands and forms when the flame contacts the flame is restricted by the gaps between the inorganic fibers, so that the size of the formed char becomes uniform. It is believed that the combination of the effect of fixing the char by the inorganic fibers and the uniformity of the size of the char results in the formation of a dense char, which significantly improves the flame-shielding properties of the stampable sheet. Based on these findings, the present inventors controlled the content ratio of the dispersant to the flame retardant to a specific range so that the flame retardant was uniformly present in the resin between the inorganic fibers, It has been found that the flame-shielding property of the stampable sheet can be significantly improved.
  • the content of (C) the dispersant is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, still more preferably 1 part by mass or more, and particularly preferably 2 parts by mass or more.
  • the upper limit is more preferably 20 parts by mass or less, more preferably 15 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, and particularly preferably 3 parts by mass or less.
  • the ratio of (C) dispersant to a total of 100 parts by mass of (A) thermoplastic resin and (B) flame retardant is preferably 0.01 parts by mass or more, and is 0.05 parts by mass or more. is more preferable, and 0.1 parts by mass or more is even more preferable. On the other hand, it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and 1.0 parts by mass.
  • the proportion of (C) the dispersant is at least the above lower limit, the (B) flame retardant will be better dispersed, and the resulting stampable sheet will have better flame-shielding properties and physical properties, as well as better appearance of the resulting molded product. Become. If the ratio of (C) the dispersant is equal to or less than the above upper limit, the influence of the (C) dispersant on the flame-shielding properties of the stampable sheet can be further suppressed.
  • the ratio of (C) the dispersant to the total 100 parts by mass of the polyolefin resin and (B) the flame retardant is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more.
  • preferably 0.1 parts by mass or more it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and 1.0 parts by mass. More preferably:
  • the ratio of (C) dispersant to 100 parts by mass of (D) inorganic fibers is preferably 0.01 parts by mass or more, and 0.05 parts by mass. It is more preferably at least 0.1 part by mass, and even more preferably at least 0.1 part by mass. On the other hand, it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, and even more preferably 2.0 parts by mass or less. If the ratio of (C) the dispersant is at least the above lower limit, the obtained stampable sheet will have better flame barrier properties and physical properties, and the obtained molding will have better appearance. If the ratio of (C) the dispersant is equal to or less than the above upper limit, the influence of the (C) dispersant on the flame-shielding properties of the stampable sheet can be further suppressed.
  • the stampable sheet of the present invention contains (D) inorganic fibers.
  • various fibers can be used, for example, glass fiber, rock wool, alumina fiber, metal oxide fiber such as silica alumina fiber, potassium titanate fiber, calcium silicate (wollastonite ) fibers, ceramic fibers such as ceramic fibers, carbon fibers, metal fibers, and the like.
  • These inorganic fibers may be used singly or in combination of two or more.
  • at least one selected from glass fibers and alumina fibers is preferable from the viewpoint of flame-shielding properties and workability.
  • Inorganic fibers may include two or more inorganic fibers having different melting temperatures.
  • a combination of two or more inorganic fibers having different melting temperatures at least one is glass fiber, and the other one or more is alumina fiber, silica fiber, alkaline earth silicate fiber (biosoluble), and carbon fiber.
  • a combination of one or more inorganic fibers selected from the group consisting of By containing two or more kinds of inorganic fibers having different melting temperatures, it is possible to effectively prevent deterioration of the flame barrier function.
  • the inorganic fibers used in the present invention may be used in combination with a sizing agent or a surface treatment agent. Examples of such a sizing agent or surface treatment agent include compounds having functional groups such as epoxy compounds, silane compounds, and titanate compounds.
  • the average fiber diameter of inorganic fibers is preferably 3 to 25 ⁇ m.
  • the average fiber length is preferably 0.1 mm or longer, more preferably 1 mm or longer, and even more preferably 5 mm or longer.
  • the fiber diameter can be measured using a scanning electron microscope or the like, and the average fiber diameter can be obtained by, for example, randomly measuring the fiber diameter of 10 fibers and calculating the average value.
  • the fiber length can be measured using a ruler, vernier caliper, or the like from an image magnified with a microscope or the like, if necessary. It can be obtained by calculating the value.
  • the content of inorganic fibers in the stun bubble sheet of the present invention is 1 to 80% by mass. If the inorganic fiber content is less than 1% by mass, the strength, rigidity, and impact resistance of the stampable sheet may be reduced. may become On the other hand, if the content of the inorganic fibers exceeds 80% by mass, the specific gravity of the stampable sheet is increased, so that the effect of weight reduction as a metal substitute is reduced, which is not preferable. From the above viewpoints, the content of (D) inorganic fibers in the stampable sheet is more preferably 3 to 60% by mass, further preferably 10 to 50% by mass, and 30 to 45% by mass. is particularly preferred.
  • the glass fiber may be, for example, a long fiber with an average fiber length of 30 mm or more, or a fiber with a short average fiber length (chopped strand). From these points of view, it is preferable to use glass fibers having a long average fiber length. More specifically, the average fiber length is preferably 5 mm or more. When the average fiber length is 5 mm or more, the stampable sheet has good strength and impact resistance. From the above viewpoints, the average fiber length of the glass fibers is preferably 5 mm or longer, more preferably 30 mm or longer. The upper limit of the average fiber length of the glass fiber is not particularly limited.
  • the length of the pellets Since it becomes long, it becomes about 20 mm at maximum.
  • the length of the glass fibers in the roving used for manufacturing is the maximum fiber length, so it is about 17,000 m (17 km), but it is adjusted to the size of the stampable sheet. In the case of cutting, the cut length becomes the maximum fiber length.
  • the average fiber diameter of the glass fibers is preferably in the range of 9 to 25 ⁇ m.
  • the stampable sheet has sufficient rigidity and impact resistance.
  • the average fiber diameter is 25 ⁇ m or less, the stampable sheet has good strength. From the above viewpoints, it is more preferable that the average fiber diameter of the glass fibers is in the range of 10 to 15 ⁇ m.
  • the average fiber diameter and average fiber length of glass fibers can be measured by the above methods.
  • the material of the glass fiber used in the present invention is not particularly limited, and may be any of non-alkali glass, low-alkali glass, and alkali-containing glass. can be used.
  • alumina fiber One of (D) inorganic fibers suitable for the stampable sheet of the present invention is alumina fiber.
  • Alumina fibers are usually fibers made of alumina and silica.
  • the alumina/silica composition ratio (mass ratio) of the alumina fibers is 65/35 to 98/2 mullite composition, or high It is preferably in the range called alumina composition, more preferably in the range of 70/30 to 95/5, particularly preferably in the range of 70/30 to 74/26.
  • the average fiber diameter of the alumina fibers is preferably in the range of 3 to 25 ⁇ m, and preferably does not substantially contain fibers with a fiber diameter of 3 ⁇ m or less.
  • substantially free of fibers with a fiber diameter of 3 ⁇ m or less means that fibers with a fiber diameter of 3 ⁇ m or less account for 0.1% by mass or less of the total mass of inorganic fibers.
  • the average fiber diameter of alumina fibers is more preferably 5 to 8 ⁇ m. If the average fiber diameter of the inorganic fibers is too large, the repulsive force and toughness of the mat-like inorganic fiber aggregate layer will decrease. of inorganic fibers is higher.
  • Alumina fibers preferably have an average fiber length of 5 mm or longer, more preferably 30 mm or longer, and still more preferably 50 mm or longer. Also, the fibers are preferably 3.0 ⁇ 103 mm or less, more preferably 1.0 ⁇ 103 mm or less. If the average fiber length and average fiber diameter of the alumina fibers are within this range, the strength and impact resistance of the stampable sheet will be good.
  • Carbon fiber The preferred range of carbon fiber is the same as that of glass fiber.
  • stampable sheet of the present invention in addition to the above components, optional additions are made for the purpose of imparting other effects such as further improving the effects of the present invention within the range that does not significantly impair the effects of the present invention.
  • Ingredients can be blended.
  • colorants such as pigments, light stabilizers such as hindered amines, UV absorbers such as benzotriazole, nucleating agents such as sorbitol, antioxidants such as phenols and phosphorus, and nonionic Antistatic agents such as surfactants, neutralizers such as inorganic compounds, antibacterial and antifungal agents such as thiazoles, flame retardants and auxiliary flame retardants such as halogen compounds and lignophenol, plasticizers, organic metal salts, etc.
  • UV absorbers such as benzotriazole
  • nucleating agents such as sorbitol
  • antioxidants such as phenols and phosphorus
  • nonionic Antistatic agents such as surfactants, neutralizers such as inorganic compounds, antibacterial and antifungal agents such as thiazoles, flame retardants and auxiliary flame retardants such as halogen compounds and lignophenol, plasticizers, organic metal salts, etc.
  • nonionic Antistatic agents such as surfactants, neutralizers such as in
  • dispersants such as fatty acid amides
  • metal deactivators such as nitrogen compounds
  • polyolefin resins other than the polypropylene resins thermoplastic resins such as polyamide resins and polyester resins
  • elastomers such as olefin elastomers and styrene elastomers (rubber component) and the like.
  • inorganic or organic pigments are used to impart or improve the colored appearance, appearance, texture, commercial value, weather resistance, durability, etc. of the polypropylene resin composition and its molded product. It is valid.
  • specific examples of inorganic pigments include carbon black such as furnace carbon and ketjen carbon; titanium oxide; iron oxide (red iron oxide, etc.); chromic acid (white lead, etc.);
  • organic pigments include sparingly soluble azo lakes, soluble azo lakes, insoluble azo chelates; condensable azo chelates; azo pigments such as other azo chelates; phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; threne-based pigments such as thioindigo; dye lakes; quinacridone-based; dioxazine-based;
  • aluminum flakes and pearl pigments can be incorporated to give a metallic tone or a pearly tone.
  • a dye can also be contained.
  • Hindered amine compounds, benzotriazole-based, benzophenone-based, and salicylate-based light stabilizers and UV absorbers are effective in imparting and improving the weather resistance and durability of polypropylene resin compositions and their moldings. , is effective in further improving weather discoloration resistance.
  • hindered amine compounds include condensation products of dimethyl succinate and 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine; poly[[6-(1, 1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]hexamethylene[(2 , 2,6,6-tetramethyl-4-piperidyl)imino]]; tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate; tetrakis( 1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate; bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate; bis -2,2,6,6-tetramethyl-4-piperidyl)
  • salicylates examples include 4-t-butylphenyl salicylate; 2,4-di-t-butylphenyl 3′,5′-di-t -Butyl-4'-hydroxybenzoate and the like.
  • the method of using the light stabilizer and the ultraviolet absorber in combination is preferable because it has a large effect of improving the weather resistance, durability, weather discoloration resistance, and the like.
  • antioxidants for example, phenol-based, phosphorus-based, and sulfur-based antioxidants provide and improve heat resistance stability, processing stability, heat aging resistance, etc. of polypropylene resin compositions and molded articles thereof.
  • effective for As antistatic agents for example, nonionic antistatic agents and cationic antistatic agents are effective in imparting and improving antistatic properties to polypropylene resin compositions and moldings thereof.
  • olefinic elastomers examples include ethylene/propylene copolymer elastomer (EPR), ethylene/butene copolymer elastomer (EBR), ethylene/hexene copolymer elastomer (EHR), ethylene/octene copolymer elastomer (EOR ) and other ethylene/ ⁇ -olefin copolymer elastomers; Examples thereof include original copolymer elastomers, styrene/butadiene/styrene triblock copolymer elastomers (SBS), and the like.
  • EPR ethylene/propylene copolymer elastomer
  • EBR ethylene/butene copolymer elastomer
  • EHR ethylene/hexene copolymer elastomer
  • EOR ethylene/octene copolymer
  • SBS styrene/butadiene/sty
  • styrene-based elastomers examples include styrene/isoprene/styrene triblock copolymer elastomer (SIS), styrene-ethylene/butylene copolymer elastomer (SEB), and styrene-ethylene/propylene copolymer elastomer (SEP).
  • SIS styrene/isoprene/styrene triblock copolymer elastomer
  • SEB styrene-ethylene/butylene copolymer elastomer
  • SEP styrene-ethylene/propylene copolymer elastomer
  • styrene-ethylene-butylene-styrene copolymer elastomer SEBS
  • SEBC styrene-ethylene-butylene-ethylene copolymer elastomer
  • HBR hydrogenated styrene-butadiene elastomer
  • SEPS styrene-ethylene-propylene-styrene copolymer
  • SEEPS styrene-butadiene/butylene-styrene copolymer
  • SBBS partially hydrogenated styrene-isoprene-styrene copolymer elastomer , partially hydrogenated styrene-isoprene-butadiene-styrene copolymer elastomers, and hydrogenated
  • the polypropylene-based resin composition of the present invention and its molded article can be imparted with appropriate flexibility. It is preferable from the viewpoint that it is easy to apply and tends to have excellent impact resistance.
  • the thermoplastic resin composition according to the present invention is a resin composition for producing the stampable sheet of the present invention, comprising (A) a thermoplastic resin, a modified polyolefin resin added as necessary, and (B) It contains a flame retardant and (C) a dispersant. Further, optional additive components may be blended.
  • a thermoplastic resin composition when (A) the thermoplastic resin is (A-1) a polypropylene resin, it is sometimes referred to as a polypropylene resin composition (hereinafter referred to as "PP composition”. ).
  • the PP resin composition is a resin composition for producing the stampable sheet of the present invention, comprising (A-1) a polypropylene resin, a modified polyolefin resin added as necessary, (B) a flame retardant, (C) It contains a dispersant. Further, optional additive components may be blended.
  • a conventionally known method can be used as a method for producing the thermoplastic resin composition or the PP composition, and the composition can be produced by blending, mixing, and melt-kneading the above components. Mixing is performed using a mixer such as a tumbler, V blender, ribbon blender, etc.
  • Melt kneading is performed using equipment such as a single screw extruder, a twin screw extruder, a Banbury mixer, a roll mixer, a Brabender plastograph, a kneader, etc. , melt-kneaded and granulated.
  • the production method of the stampable sheet of the present invention is not particularly limited. It is preferable to manufacture by impregnating the material or PP composition. Impregnation methods include a method of applying a thermoplastic composition or a PP composition to an inorganic fiber mat, a method of applying a thermoplastic resin composition or a PP composition sheet (hereinafter referred to as a "thermoplastic resin sheet” or "PP sheet”). ) is prepared, the thermoplastic resin sheet or PP sheet is laminated on an inorganic fiber mat, and the inorganic fiber mat is heated and melted to be impregnated.
  • Impregnation methods include a method of applying a thermoplastic composition or a PP composition to an inorganic fiber mat, a method of applying a thermoplastic resin composition or a PP composition sheet (hereinafter referred to as a "thermoplastic resin sheet" or "PP sheet”). ) is prepared, the thermoplastic resin sheet or PP sheet is laminated on an inorganic fiber mat, and the inorgan
  • a method of laminating a thermoplastic resin sheet or a PP sheet on an inorganic fiber mat and heating and melting the sheet is preferred from the viewpoint of impregnation of the fibers of the resin of the stampable sheet.
  • it can be obtained by laminating an inorganic fiber mat between two thermoplastic resin sheets or PP sheets, then heating and pressurizing the laminate, and then cooling and solidifying it.
  • the thickness of the thermoplastic resin sheet or PP sheet is not particularly limited as long as the fiber mat can be well impregnated.
  • the form of the inorganic fibers used in the stampable sheet manufacturing method is not particularly limited, and various forms can be used, but those in the form of a mat or sheet are preferred. More specifically, mats formed of glass fibers (hereinafter referred to as “glass fiber mats”), mats formed of metal oxide fibers typified by alumina fibers (hereinafter referred to as “metal oxide mats ” is preferred.
  • the basis weight (mass per unit area) of the inorganic fiber mat is not particularly limited and is appropriately determined according to the application. It is preferably above 1500 g/m 2 .
  • the basis weight of the inorganic fiber mat is not particularly limited, but is preferably 5,000 g/m 2 or less, more preferably 4,500 g/m 2 or less, still more preferably 4,000 g/m 2 or less, and particularly preferably 3,500 g/m 2 or less. 2 or less.
  • the basis weight (basis weight) per unit area of the inorganic fiber mat can be adjusted within the above range by adjusting the amount of fiber per unit area when the inorganic fiber aggregates constituting the inorganic fiber mat are laminated using a folding device.
  • the inorganic fiber mat of the present invention may have a structure in which a plurality of inorganic fiber mats are bonded together or a single structure. configuration is preferred.
  • glass fiber mat The forms of the glass fiber mat used in the present invention include felt and blanket processed with short glass fiber, chopped strand mat processed with continuous glass fiber, swirl mat of continuous glass fiber, and unidirectional aligned mat. etc. Among these, a glass fiber mat obtained by needle-punching a swirl mat of continuous glass fibers is particularly preferable because the strength and impact resistance of the stampable sheet are excellent.
  • the metal oxide fiber mat according to the present invention is a mat made of metal oxide fibers such as alumina fibers and subjected to needling treatment.
  • the heating temperature is preferably 170 to 300°C.
  • the heating temperature is 170° C. or higher, the polypropylene-based resin has sufficient fluidity, the inorganic fiber mat can be sufficiently impregnated with the PP composition, and a suitable stampable sheet can be obtained.
  • the heating temperature is 300° C. or lower, the thermoplastic resin composition or PP composition is not deteriorated.
  • the applied pressure is preferably 0.1 to 1 MPa.
  • the inorganic fiber mat can be sufficiently impregnated with the thermoplastic resin composition or the PP composition, and a suitable stampable sheet can be obtained.
  • the pressure is 1 MPa or less, the thermoplastic resin composition or PP composition will flow and burrs will not occur.
  • the cooling temperature is not particularly limited as long as it is below the freezing point of the thermoplastic resin composition or the thermoplastic resin in the PP composition. It does not deform when the sheet is taken out. From the above point of view, the cooling temperature is preferably room temperature to 80°C.
  • Methods for obtaining a stampable sheet by heating, pressurizing, and cooling the laminate include a method of press-molding the laminate in a mold equipped with a heating device, and a method of press-molding the laminate in a mold equipped with a heating device.
  • lamination processing in which heat and pressure are applied between two pairs of rollers, and in particular, lamination processing is preferable because it can be continuously produced, resulting in good productivity.
  • the thickness of the stampable sheet of the present invention is usually 1-10 mm, preferably 2-5 mm. When the thickness of the stampable sheet is 1 mm or more, it is easy to manufacture the stampable sheet. Good moldability can be obtained without the need for long preheating.
  • the stampable sheet of the present invention can be formed into a desired shape by stamping according to a conventional method to obtain a molded body made of the stampable sheet.
  • stampable sheet of the present invention includes, for example, various industrial parts such as automobile parts and electrical and electronic equipment parts. In particular, it is excellent in strength, rigidity, conductivity, and workability, so it is suitable for applications that require a high degree of balance with these performances, such as various housings and cases such as battery cases. can be used.
  • FIG. 3 is a conceptual diagram showing a structure such as a battery including a battery housing.
  • a structure 100 such as a battery includes, for example, a battery module 110 that is an assembly of battery cells (battery units), a battery pack 120 that is an assembly of battery modules, and a battery housing for housing battery members such as a battery pack. 130.
  • the battery housing of the present invention is made of a fiber-reinforced resin, the fiber-reinforced resin contains a flame retardant and a dispersant, and the fibers include at least inorganic fibers.
  • the battery housing is made of fiber-reinforced resin and contains at least inorganic fibers having a melting temperature of over 1000° C. as fibers.
  • the fibers in the fiber-reinforced resin according to the present invention may be organic fibers or inorganic fibers, but inorganic fibers are preferable from the viewpoint of heat resistance.
  • These inorganic fibers may be used singly or in combination of two or more.
  • the fibers may include inorganic fibers having a melting temperature of over 1000° C. or inorganic fibers having a burn-out temperature of over 1000° C. (hereinafter sometimes referred to as “highly heat-resistant fibers”).
  • high heat resistant fibers examples include alumina fibers, potassium titanate fibers, silica alumina fibers, alkaline earth silicate fibers (biosoluble), basalt fibers, silica fibers, etc.
  • alumina fibers, silica fibers and alkali One or more highly heat-resistant fibers selected from the group consisting of earth silicate fibers (biosoluble) are preferred.
  • the melting temperature is preferably the melting temperature in an air atmosphere.
  • High heat-resistant fibers can be used singly or in combination of two or more.
  • the fibers include two or more kinds of inorganic fibers having different melting temperatures.
  • At least one of these inorganic fibers is preferably the above-described high heat-resistant fiber, and at least one other type is a high-heat-resistant fiber, an inorganic fiber having a melting temperature of 1000 ° C. or less, or a burn-off temperature of 1000 ° C.
  • the following inorganic fibers or organic fibers may be used. By including two or more types of fibers having different melting temperatures, it is possible to prevent the high heat-resistant fibers from breaking and to prevent functional deterioration of the high-heat-resistant fibers.
  • the combination of two or more inorganic fibers having different melting temperatures at least one is glass fiber, and the other one or more is alumina fiber, silica fiber, alkaline earth silicate fiber (biosoluble), and A combination of one or more inorganic fibers selected from the group consisting of carbon fibers is also preferred.
  • the content of the high-heat-resistant fibers is preferably 1 part by mass or more, more preferably 3 parts by mass or more, with respect to 100 parts by mass of the fiber reinforced resin. More preferably, it is at least 1 part by mass.
  • the upper limit is preferably 20 parts by mass or less, more preferably 15 parts by mass or less, and even more preferably 10 parts by mass or less. When it is at least the above lower limit, sufficient flame-shielding properties and rigidity can be obtained, and when it is at most the above upper limit, workability is ensured.
  • the fibers of the present invention may contain high heat-resistant fibers as described above, but may contain other fibers.
  • it may be a fiber having a melting temperature of 1000° C. or less, or it may be an inorganic fiber, an organic fiber, or a carbon fiber.
  • glass fibers are suitable as other fibers, and the fibers in the present invention preferably include high heat resistant fibers and glass fibers, alumina fibers, alkaline earth silicate fibers (biosoluble) and It is particularly preferable to contain one or more selected from the group consisting of silica fibers and glass fibers. If high heat resistant fibers (e.g. alumina fibers, alkaline earth silicate fibers (biosoluble), silica fibers) and other fibers (e.g. glass fibers) are included, the mass ratio (other than high heat resistant fibers) to high heat resistant fibers (fiber/high heat resistant fiber) is preferably in the range of 0.5 to 10, more preferably in the range of 1 to 8.
  • high heat resistant fibers e.g. alumina fibers, alkaline earth silicate fibers (biosoluble), silica fibers
  • other fibers e.g. glass fibers
  • the mass ratio (other than high heat resistant fibers) to high heat resistant fibers (fiber/high heat resistant fiber) is preferably
  • high heat-resistant fibers particularly one or more selected from the group consisting of alumina fibers, alkaline earth silicate fibers (biologically soluble) and silica fibers, and glass fibers may be contained in the fiber-reinforced resin, which will be described in detail later.
  • a sheet-like product obtained by laminating a mat of high heat-resistant fiber and a mat of glass fiber and impregnating this with a resin may also be used.
  • the fibers used in the present invention may be used in combination with a sizing agent or surface treatment agent.
  • a sizing agent or surface treatment agent include compounds having functional groups such as epoxy compounds, silane compounds, and titanate compounds.
  • At least one kind of fibers preferably has an average fiber diameter of 3 to 25 ⁇ m.
  • the average fiber length of at least one type of fiber is preferably 0.1 mm or longer, more preferably 1 mm or longer, and even more preferably 5 mm or longer.
  • the average fiber diameter of at least one type of fiber is preferably 3 to 25 ⁇ m, and the average fiber length is 5 mm or more. is preferred.
  • the average fiber diameter and the average fiber length since the preferred ranges differ depending on the type of material constituting the fibers, specific preferred ranges will be described later.
  • the fiber diameter can be measured using an optical microscope or the like, and the average fiber diameter can be obtained by, for example, randomly measuring the fiber diameters of 10 fibers and calculating the average value.
  • the fiber length can be measured using a ruler, vernier caliper, or the like from an image magnified with a microscope or the like, if necessary. It can be obtained by calculating the value.
  • the fiber content in the fiber-reinforced resin of the present invention is preferably 3 to 60% by mass.
  • the content is 3% by mass or more, the strength, rigidity, and impact resistance of the battery housing can be ensured.
  • the content is 60% by mass or less, the battery housing can be easily manufactured and processed.
  • the specific gravity becomes light, and there is an advantage that the weight reduction effect as a metal substitute is large.
  • the content of fibers in the fiber-reinforced resin is more preferably 10 to 50% by mass, and even more preferably 30 to 45% by mass.
  • the resin constituting the fiber-reinforced resin of the present invention is not particularly limited, but may be a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and includes polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polystyrene, polyvinyl acetate, polyurethane, and the like. In addition, these may use 1 type, and may use 2 or more types.
  • the thermoplastic resin constituting the fiber-reinforced resin may be a composite resin of two or more of the above thermoplastic resins. Among these resins, polyolefin resins are preferable, and polypropylene resins are particularly preferable, from the viewpoint of resin physical properties, versatility, cost, and the like.
  • polyolefin resin means a resin in which the proportion of olefin units or cycloolefin units is 90 mol% or more with respect to 100 mol% of all structural units constituting the resin.
  • the ratio of olefin units or cycloolefin units to 100 mol % of all structural units constituting the polyolefin resin is preferably 95 mol % or more, particularly preferably 98 mol % or more.
  • polyolefin resins examples include ⁇ -olefins such as polyethylene, polypropylene, polybutene, poly(3-methyl-1-butene), poly(3-methyl-1-pentene), and poly(4-methyl-1-pentene).
  • Olefin copolymer; cycloolefin polymers such as polycyclohexene and polycyclopentene.
  • polyethylene examples include low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and the like.
  • polypropylene examples include isotactic polypropylene, syndiotactic polypropylene, hemiisotactic polypropylene, stereoblock polypropylene, and the like.
  • ⁇ -olefin-propylene block or random copolymer having 4 or more carbon atoms ⁇ -olefins having 4 or more carbon atoms include butene, 3-methyl-1-butene, 3-methyl-1-pentene, 4 -methyl-1-pentene and the like. These polyolefin resins may be used alone or in combination of two or more.
  • polypropylene resin examples include propylene homopolymers and propylene- ⁇ -olefin copolymers.
  • the propylene- ⁇ -olefin copolymer may be either a random copolymer or a block copolymer.
  • ⁇ -olefins constituting the copolymer examples include ethylene, 1-butene, 2-methyl-1-propene, 1-pentene, 2-methyl-1-butene, 3-methyl-1-butene, 1 -hexene, 2-ethyl-1-butene, 2,3-dimethyl-1-butene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 3,3-dimethyl -1-butene, 1-heptene, methyl-1-hexene, dimethyl-1-pentene, ethyl-1-pentene, trimethyl-1-butene, 1-octene and the like.
  • One of these may be used for copolymerization with propylene, or two or more thereof may be used for copolymerization with propylene.
  • ethylene or 1-butene is preferable, and ethylene is most preferable, since the effect thereof is large from the viewpoint of improving the impact resistance strength of the stampable sheet.
  • (Propylene-ethylene random copolymer) In the case of a random copolymer of propylene and ethylene, preferably 90 to 99.5% by mass of propylene units, more preferably 92 to 99% by mass, preferably 0.5 to 10% by mass of ethylene units, more preferably 1 ⁇ 8% by mass. If the ethylene unit is at least the above lower limit, the stampable sheet will have sufficient impact resistance strength, and if it is at most the above upper limit, sufficient rigidity will be maintained.
  • the content of propylene units and ethylene units in the random copolymer of propylene and ethylene can be adjusted by controlling the compositional ratio of propylene and ethylene during polymerization of the random copolymer of propylene and ethylene.
  • the propylene content of the random copolymer of propylene and ethylene is a value measured using a cross fractionator, FT-IR, etc., and the measurement conditions etc. are described in, for example, JP-A-2008-189893. You should use the method provided.
  • MFR Melt flow rate
  • MFR total melt flow rate (hereinafter sometimes abbreviated as MFR) (230° C., 2.16 kg load) of the thermoplastic resin used in the present invention is preferably 40 to 500 g/10 minutes.
  • MFR is preferably 50 to 400 g/10 minutes, more preferably 60 to 400 g/10 minutes, and more preferably 70 to 300 g/10 minutes.
  • the MFR of the thermoplastic resin can be adjusted, for example, by controlling the hydrogen concentration during polymerization.
  • MFR is the value measured based on JISK7210.
  • the content of the thermoplastic resin in the battery housing of the present invention is preferably 20-80% by mass.
  • the content of the thermoplastic resin is 20% by mass or more, the moldability is sufficient, and the molding of the battery housing becomes easy.
  • the content of the flame retardant, the dispersant and the inorganic fiber become sufficient, and sufficient flame shielding properties can be obtained.
  • the content of the thermoplastic resin in the battery housing is preferably 35-70% by mass, more preferably 40-60% by mass.
  • the battery housing of the present invention preferably contains a flame retardant.
  • the flame retardant is not particularly limited, and examples thereof include phosphorus-based flame retardants, bromine-based flame retardants, antimony-based flame retardants, and the like. Among them, phosphorus-based flame retardants are preferable from the viewpoint of improving flame-shielding properties. Further, in the classification focused on the mechanism of action of the flame retardant, (B) the flame retardant is preferably an intumescent flame retardant from the viewpoint of improving the flame-shielding property.
  • Phosphorus flame retardant are phosphorus compounds, ie compounds containing a phosphorus atom in the molecule.
  • a phosphorus-based flame retardant exhibits a flame retardant effect by forming char when the resin composition is burned.
  • the phosphorus-based flame retardant may be a known one, and examples thereof include (poly)phosphates, (poly)phosphate esters, and the like.
  • (poly)phosphate” indicates phosphate or polyphosphate
  • (poly)phosphate” indicates phosphate or polyphosphate.
  • the phosphorus flame retardant is preferably solid at 80°C.
  • a (poly)phosphate is preferable from the viewpoint of flame retardancy.
  • (Poly)phosphates include, for example, ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, piperazine orthophosphate, melamine pyrophosphate, piperazine pyrophosphate, melamine polyphosphate, and melamine orthophosphate. , calcium phosphate, magnesium phosphate and the like. Compounds in which melamine or piperazine is replaced with other nitrogen compounds in the above examples can also be used.
  • nitrogen compounds include, for example, N,N,N',N'-tetramethyldiaminomethane, ethylenediamine, N,N'-dimethylethylenediamine, N,N'-diethylethylenediamine, N,N-dimethylethylenediamine, N , N-diethylethylenediamine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-diethylethylenediamine, 1,2-propanediamine, 1,3-propanediamine, tetramethylenediamine , pentamethylenediamine, hexamethylenediamine, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, trans-2,5-dimethylpiperazine, 1,4- bis(2-aminoethyl)piperazine, 1,4-bis(
  • salts of (poly)phosphoric acid and nitrogen compounds are preferable as the phosphorus-based flame retardant.
  • the salt is an intumescent flame retardant, and forms a surface expanded layer (intumescent) of foamed char when the resin composition is burned. By forming the surface expansion layer, diffusion of decomposition products and heat transfer are suppressed, and excellent flame retardancy is exhibited.
  • Nitrogen compounds used here include ammonia, melamine, piperazine, and other nitrogen compounds described above.
  • phosphorus-based flame retardants include ADEKA STAB FP-2100J, FP-2200, and FP-2500S (manufactured by ADEKA Corporation).
  • brominated flame retardant examples include decabromodiphenyl ether, tetrabromobisphenol A, tetrabromobisphenol S, 1,2-bis(2′,3′,4′,5′,6′-pentabromophenyl)ethane, 1,2-bis(2,4,6-tribromophenoxy)ethane, 2,4,6-tris(2,4,6-tribromophenoxy)-1,3,5-triazine, 2,6-dibromo Phenol, 2,4-dibromophenol, brominated polystyrene, ethylenebistetrabromophthalimide, hexabromocyclododecane, hexabromobenzene, pentabromobenzyl acrylate, 2,2-bis[4'(2'',3''- dibromopropoxy)-3′,5′-dibromophenyl]-propane, bis[
  • antimony flame retardant examples include antimony trioxide, antimony tetroxide, antimony pentoxide, sodium pyroantimonate, antimony trichloride, antimony trisulfide, antimony oxychloride, antimony dichloride perchloropentane and potassium antimonate. Antimony trioxide and antimony pentoxide are particularly preferred.
  • phosphorus-based flame retardants are preferable because they have no bioresistence and excellent flame retardancy, and non-halogen flame retardants are preferable from the environmental point of view.
  • Intumescent flame retardants are flame retardants that suppress the combustion of materials by forming an intumescent layer that prevents radiant heat from the combustion source and the diffusion of combustion gas and smoke from the combusted material to the outside. be.
  • intumescent flame retardants include salts of (poly)phosphoric acid and nitrogen compounds. Specific examples include ammonium salts and amine salts of (poly)phosphoric acid such as ammonium polyphosphate, melamine polyphosphate, piperazine polyphosphate, ammonium pyrophosphate, melamine pyrophosphate and piperazine pyrophosphate.
  • the said flame retardant can be used individually by 1 type, or can also use 2 or more types together.
  • the content of the flame retardant in the battery housing of the present invention is not particularly limited, it is preferably in the range of 1 to 30% by mass. When the amount is 1% by mass or more, the flame retardancy of the battery housing is sufficient, and sufficient flame shielding properties are obtained. On the other hand, when the content of the flame retardant is 30% by mass or less, the content of the thermoplastic resin becomes relatively large, and the moldability becomes sufficient. From the above viewpoints, the content of the flame retardant in the battery housing is more preferably in the range of 5 to 25% by mass, more preferably in the range of 10 to 20% by mass.
  • the dispersant is not particularly limited as long as it can disperse the flame retardant in the thermoplastic resin, but in terms of compatibility with the thermoplastic resin, a polymer dispersant can be preferably used.
  • a flame retardant that can be dispersed in a polypropylene resin can be used.
  • the polymeric dispersant a polymeric dispersant having a functional group is preferable.
  • a carboxyl group, a phosphoric acid group, a sulfonic acid group, a primary, secondary or tertiary amino group, a quaternary ammonium base Polymeric dispersants having functional groups such as groups derived from nitrogen-containing heterocycles such as pyridine, pyrimidine and pyrazine are preferred.
  • a polymeric dispersant having a carboxyl group is preferred, and a copolymer of an ⁇ -olefin and an unsaturated carboxylic acid is particularly preferred when a phosphorus-based flame retardant suitable as a flame retardant is used.
  • the ⁇ -olefin unit and the unsaturated carboxylic acid unit are the total The proportion of ⁇ -olefin units in 100 mol % is preferably 20 mol % or more and 80 mol % or less. In the copolymer, the ratio of ⁇ -olefin units to the total amount of ⁇ -olefin units and unsaturated carboxylic acid units is more preferably 30 mol% or more, and more preferably 70 mol% or less. . If the proportion of the ⁇ -olefin is at least the above lower limit, the compatibility with the polyolefin resin will be more excellent, and if it is below the above upper limit, the compatibility with the flame retardant will be more excellent.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 5 or more carbon atoms, more preferably an ⁇ -olefin having 10 or more and 80 or less carbon atoms. If the number of carbon atoms in the ⁇ -olefin is 5 or more, the compatibility with the polyolefin resin tends to be better, and if it is 80 or less, it is advantageous in terms of raw material cost. From the above viewpoints, the number of carbon atoms in the ⁇ -olefin is more preferably 12 or more and 70 or less, and particularly preferably 18 or more and 60 or less.
  • Examples of unsaturated carboxylic acids in the copolymer include (meth)acrylic acid, maleic acid, methylmaleic acid, fumaric acid, methylfumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, and isocrotone. acid, glutaconic acid, norbornan-5-ene-2,3-dicarboxylic acid, and esters, anhydrides, imides and the like of these unsaturated carboxylic acids.
  • (Meth)acrylic acid indicates acrylic acid or methacrylic acid.
  • unsaturated carboxylic acid esters, anhydrides or imides include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, ( (Meth)acrylic acid esters such as glycidyl methacrylate; maleic anhydride, itaconic anhydride, citraconic anhydride, dicarboxylic acid anhydrides such as 5-norbornene-2,3-dicarboxylic anhydride; maleimide, N-ethyl Examples include maleimide compounds such as maleimide and N-phenylmaleimide. These may be used individually by 1 type, and may use 2 or more types together.
  • esters and dicarboxylic acid anhydrides are preferred from the viewpoint of copolymerization reactivity.
  • dicarboxylic acid anhydrides are preferred, and maleic anhydride is particularly preferred, from the viewpoint of compatibility with phosphorus-based flame retardants suitable as flame retardants.
  • the weight average molecular weight of the copolymer is preferably 2,000 or more, more preferably 3,000 or more, while it is preferably 50,000 or less, more preferably 30,000 or less. If the weight average molecular weight of the copolymer is within the above range, the dispersibility of the flame retardant will be more excellent.
  • the weight-average molecular weight of the copolymer is a standard polystyrene-equivalent value measured by gel permeation chromatography after dissolving the copolymer in tetrahydrofuran (THF).
  • copolymers include Rekolb CE2 (manufactured by Clariant Japan Co., Ltd.) and Diacarna 30M (manufactured by Mitsubishi Chemical Corporation).
  • the content of the dispersant in the battery housing of the present invention is not particularly limited, but it is preferably in the range of more than 0 and 25 parts by mass or less with respect to 100 parts by mass of the flame retardant, and 0.1 to 20 parts by mass. is more preferably in the range of According to studies by the present inventors, in the fiber-reinforced resin that constitutes the battery housing, the presence of the flame retardant uniformly dispersed in the inorganic fibers can significantly improve the flame-shielding properties of the battery housing. Although the detailed mechanism is unknown, the present inventors presume as follows.
  • the flame retardant is uniformly dispersed in the thermoplastic resin as the matrix resin, the flame-shielding property of the battery housing can be remarkably improved.
  • the present inventors presume as follows. That is, when the flame retardant is uniformly dispersed in the resin between the inorganic fibers, the char formed by the flame retardant coming into contact with the flame is fixed in the gaps between the inorganic fibers. Furthermore, the size of the char that expands and forms when the flame contacts the flame is restricted by the gaps between the inorganic fibers, so that the size of the formed char becomes uniform.
  • the present inventors controlled the content ratio of the dispersant to the flame retardant to a specific range so that the flame retardant was uniformly present in the resin between the inorganic fibers, It has been found that the flameproof properties of the battery housing can be significantly improved. For the above reasons, when the content of the dispersant exceeds 0 parts by mass, the dispersibility of the flame retardant is improved, and the flame retardancy of the battery housing is improved.
  • the content of the dispersant is more preferably in the range of 1 to 15 parts by mass, particularly preferably in the range of 2 to 10 parts by mass, with respect to 100 parts by mass of the flame retardant.
  • the proportion of the dispersant to 100 parts by mass of the total mass of the thermoplastic resin and the flame retardant is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and 0.1 parts by mass. More preferably, it is at least 1 part. On the other hand, it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 2.0 parts by mass or less, more preferably 1.5 parts by mass or less, and 1.0 parts by mass. More preferably: When the proportion of the dispersant is at least the above lower limit, the flame retardant is better dispersed, and the flame retardancy and physical properties of the resin composition and the appearance of the resulting molded product are better.
  • the ratio of the dispersant to a total of 100 parts by mass of the polyolefin resin and the flame retardant is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and 0.1 parts by mass. It is more preferable that it is above. On the other hand, it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, even more preferably 2.0 parts by mass or less, even more preferably 1.5 parts by mass or less, and 1.0 parts by mass. Part or less is particularly preferred.
  • the ratio of the dispersant to 100 parts by mass of the inorganic fibers is preferably 0.01 parts by mass or more, more preferably 0.05 parts by mass or more, and even more preferably 0.1 parts by mass or more. On the other hand, it is preferably 10 parts by mass or less, more preferably 5.0 parts by mass or less, and even more preferably 2.0 parts by mass or less. If the proportion of the dispersant is at least the above lower limit, the obtained battery housing will have better flame-shielding properties, physical properties, and appearance. If the proportion of the dispersant is equal to or less than the above upper limit, the influence of the dispersant on the flameproof properties of the battery housing can be further suppressed.
  • colorants such as pigments, light stabilizers such as hindered amines, UV absorbers such as benzotriazole, nucleating agents such as sorbitol, antioxidants such as phenols and phosphorus, and nonionic Antistatic agents such as surfactants, neutralizing agents such as inorganic compounds, antibacterial/antifungal agents such as thiazoles, flame retardants such as halogen compounds, plasticizers, dispersants such as organic metal salts, fatty acid amides, etc.
  • UV absorbers such as benzotriazole
  • nucleating agents such as sorbitol
  • antioxidants such as phenols and phosphorus
  • nonionic Antistatic agents such as surfactants, neutralizing agents such as inorganic compounds, antibacterial/antifungal agents such as thiazoles, flame retardants such as halogen compounds, plasticizers, dispersants such as organic metal salts, fatty acid amides, etc.
  • nonionic Antistatic agents such as surfactants, neutralizing agents such as in
  • lubricants such as metal deactivators such as nitrogen compounds, polyolefin resins other than the polypropylene resins, thermoplastic resins such as polyamide resins and polyester resins, elastomers (rubber components) such as olefin elastomers and styrene elastomers, etc. can be done.
  • metal deactivators such as nitrogen compounds
  • polyolefin resins other than the polypropylene resins such as polyamide resins and polyester resins
  • elastomers rubber components
  • olefin elastomers and styrene elastomers, etc. can be done.
  • rubber components such as olefin elastomers and styrene elastomers, etc.
  • inorganic or organic pigments are used to impart or improve the colored appearance, appearance, texture, commercial value, weather resistance, durability, etc. of the polypropylene resin composition and its molded product. It is valid.
  • specific examples of inorganic pigments include carbon black such as furnace carbon and ketjen carbon; titanium oxide; iron oxide (red iron oxide, etc.); chromic acid (chrome, etc.);
  • organic pigments include sparingly soluble azo lakes, soluble azo lakes, insoluble azo chelates; condensable azo chelates; azo pigments such as other azo chelates; phthalocyanine pigments such as phthalocyanine blue and phthalocyanine green; threne-based pigments such as thioindigo; dye lakes; quinacridone-based; dioxazine-based;
  • aluminum flakes and pearl pigments can be incorporated to give a metallic tone or a pearly tone.
  • a dye can also be contained.
  • Hindered amine compounds, benzotriazole-based, benzophenone-based, and salicylate-based light stabilizers and UV absorbers are effective in imparting and improving the weather resistance and durability of polypropylene resin compositions and their moldings. , is effective in further improving weather discoloration resistance.
  • hindered amine compounds include condensation products of dimethyl succinate and 1-(2-hydroxyethyl)-4-hydroxy-2,2,6,6-tetramethylpiperidine; poly[[6-(1, 1,3,3-tetramethylbutyl)imino-1,3,5-triazine-2,4-diyl][(2,2,6,6-tetramethyl-4-piperidyl)imino]hexamethylene[(2 , 2,6,6-tetramethyl-4-piperidyl)imino]]; tetrakis(2,2,6,6-tetramethyl-4-piperidyl) 1,2,3,4-butanetetracarboxylate; tetrakis( 1,2,2,6,6-pentamethyl-4-piperidyl) 1,2,3,4-butane tetracarboxylate; bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate; bis -2,2,6,6-tetramethyl-4-piperidyl)
  • salicylates examples include 4-t-butylphenyl salicylate; 2,4-di-t-butylphenyl 3′,5′-di-t -Butyl-4'-hydroxybenzoate and the like.
  • the method of using the light stabilizer and the ultraviolet absorber in combination is preferable because it has a large effect of improving weather resistance, durability, weather discoloration resistance, and the like.
  • antioxidants for example, phenol-based, phosphorus-based, and sulfur-based antioxidants provide and improve heat resistance stability, processing stability, heat aging resistance, etc. of polypropylene resin compositions and molded articles thereof.
  • effective for As antistatic agents for example, nonionic and cationic antistatic agents are effective in imparting and improving antistatic properties to polypropylene resin compositions and molded articles thereof.
  • olefinic elastomers examples include ethylene/propylene copolymer elastomer (EPR), ethylene/butene copolymer elastomer (EBR), ethylene/hexene copolymer elastomer (EHR), ethylene/octene copolymer elastomer (EOR ) and other ethylene/ ⁇ -olefin copolymer elastomers; Examples thereof include original copolymer elastomers, styrene/butadiene/styrene triblock copolymer elastomers (SBS), and the like.
  • EPR ethylene/propylene copolymer elastomer
  • EBR ethylene/butene copolymer elastomer
  • EHR ethylene/hexene copolymer elastomer
  • EOR ethylene/octene copolymer
  • SBS styrene/butadiene/sty
  • styrene-based elastomers examples include styrene/isoprene/styrene triblock copolymer elastomer (SIS), styrene-ethylene/butylene copolymer elastomer (SEB), and styrene-ethylene/propylene copolymer elastomer (SEP).
  • SIS styrene/isoprene/styrene triblock copolymer elastomer
  • SEB styrene-ethylene/butylene copolymer elastomer
  • SEP styrene-ethylene/propylene copolymer elastomer
  • styrene-ethylene-butylene-styrene copolymer elastomer SEBS
  • SEBC styrene-ethylene-butylene-ethylene copolymer elastomer
  • HBR hydrogenated styrene-butadiene elastomer
  • SEPS styrene-ethylene-propylene-styrene copolymer
  • SEEPS styrene-butadiene/butylene-styrene copolymer
  • SBBS partially hydrogenated styrene-isoprene-styrene copolymer elastomer , partially hydrogenated styrene-isoprene-butadiene-styrene copolymer elastomers, and hydrogenated
  • the polypropylene-based resin composition of the present invention and its molded article can be imparted with appropriate flexibility. It is preferable from the viewpoint that it is easy to apply and tends to have excellent impact resistance.
  • the thickness of the battery housing of the present invention is not particularly limited, but is preferably 0.5 mm or more, more preferably 1.0 mm or more, and even more preferably 2.0 mm or more. When it is at least the above lower limit, it is preferable from the points of formability, mechanical strength, and flame-shielding properties. Also, the thickness of the battery housing is preferably 10 mm or less, more preferably 8 mm or less, and particularly preferably 6 mm or less. It is preferable from the viewpoint of ease of adapting to the size of the space in which it is installed, weight reduction, and moldability when it is equal to or less than the above upper limit.
  • ⁇ Manufacturing method of battery housing> Various methods can be used as the method for manufacturing the battery housing of the present invention, but press molding is preferable from the viewpoint of productivity.
  • press molding it is preferable to prepare a stampable sheet made of the fiber-reinforced resin of the present invention, stack a plurality of sheets, and press mold. It is preferable that the stampable sheet containing the highly heat-resistant fibers is sandwiched between other stampable sheets from both sides so that the highly heat-resistant fibers can easily flow over the entire sheet.
  • stampable sheet containing the highly heat-resistant fibers is sandwiched between other stampable sheets from both sides so that the highly heat-resistant fibers can easily flow over the entire sheet.
  • stampable sheet containing the highly heat-resistant fibers it is preferable to stack them in the center as much as possible.
  • the stampable sheet is preferably produced by impregnating a fiber mat with a thermoplastic resin composition.
  • a method of impregnation a method of applying the thermoplastic resin composition to a fiber mat such as an inorganic fiber mat, a method of preparing a sheet of the thermoplastic resin composition, laminating the sheet on the fiber mat, heating and melting.
  • a method of impregnating with from the viewpoint of surface smoothness of the stampable sheet, a method of laminating a thermoplastic resin sheet on a fiber mat and heating and melting is preferred. In particular, it can be obtained by laminating a fiber mat between two thermoplastic resin sheets, then heating and pressurizing the laminate, and then cooling and solidifying it.
  • the thermoplastic resin composition contains a thermoplastic resin, a flame retardant, a dispersant, optional additives, and the like, excluding the fibers.
  • a manufacturing method a conventionally known method can be used, and the composition can be manufactured by blending, mixing, and melt-kneading the above components.
  • Mixing is performed using a mixer such as a tumbler, V blender, ribbon blender, etc.
  • Melt kneading is performed using equipment such as a single screw extruder, a twin screw extruder, a Banbury mixer, a roll mixer, a Brabender plastograph, a kneader, etc. , melt-kneaded and granulated.
  • the form of the fibers used in the stampable sheet manufacturing method is not particularly limited, and various forms can be used, but those formed in a mat-like or sheet-like form are preferred. More specifically, in the present invention, it is preferable to use a mat formed of highly heat-resistant fibers typified by alumina fibers (hereinafter referred to as “highly heat-resistant fiber mat”). , a mat formed of glass fiber (hereinafter referred to as “glass fiber mat”) is preferably used.
  • the basis weight (mass per unit area) of the fiber mat is not particularly limited and is appropriately determined depending on the application, but is preferably 300 g/m 2 or more, more preferably more than 500 g/m 2 , and more preferably more than 500 g/m 2 . is greater than 700 g/m 2 , more preferably greater than 900 g/m 2 and particularly preferably greater than 1000 g/m 2 .
  • the basis weight of the fiber mat is not particularly limited, but is preferably 5,000 g/m 2 or less, more preferably 4,500 g/m 2 or less, still more preferably 4,000 g/m 2 or less, and particularly preferably 3,500 g/m 2 . It is below.
  • the thickness of the fiber mat according to the present invention is not particularly limited, it is preferably 4 mm or more, more preferably 5 mm or more, and even more preferably 6 mm or more. Also, the thickness of the fiber mat is preferably 40 mm or less, more preferably 35 mm or less, and particularly preferably 30 mm or less.
  • the basis weight and thickness per unit area of the fiber mat can be adjusted to the above range by adjusting the amount of fiber per unit area when stacking the fiber assembly constituting the fiber mat with a folding device.
  • the fiber mat in the present invention may have a structure in which a plurality of fiber mats are bonded together or a single structure. Preferably.
  • glass fiber mat The forms of the glass fiber mat used in the present invention include felt and blanket processed with short glass fiber, chopped strand mat processed with continuous glass fiber, swirl mat of continuous glass fiber, and unidirectional aligned mat. etc. Among these, a glass fiber mat obtained by needle-punching a swirl mat of continuous glass fibers is particularly preferable because the strength and impact resistance of the stampable sheet are excellent.
  • thermoplastic resin sheet on a fiber mat In the method of laminating a thermoplastic resin sheet on a fiber mat and heating and melting, appropriate conditions may be selected according to the type of thermoplastic resin. Preferred conditions when polypropylene is used are described below.
  • the heating temperature is preferably 170-300°C. When the heating temperature is 170° C. or higher, the polypropylene resin has sufficient fluidity, the fiber mat can be sufficiently impregnated with the polypropylene composition, and a suitable stampable sheet can be obtained. On the other hand, when the heating temperature is 300° C. or lower, the polypropylene composition does not deteriorate. Further, the applied pressure is preferably 0.1 to 1 MPa.
  • the fiber mat When the applied pressure is 0.1 MPa or more, the fiber mat can be sufficiently impregnated with the polypropylene composition, and a suitable stampable sheet can be obtained. On the other hand, if the pressure is 1 MPa or less, the polypropylene composition will flow and burrs will not occur.
  • the cooling temperature is not particularly limited as long as it is lower than the freezing point of the thermoplastic resin in the polypropylene composition. I have nothing to do. From the above point of view, the cooling temperature is preferably room temperature to 80°C.
  • Methods for obtaining a stampable sheet by heating, pressurizing, and cooling the laminate include a method of press-molding the laminate in a mold equipped with a heating device, and a method of press-molding the laminate in a mold equipped with a heating device.
  • lamination processing in which heat and pressure are applied between two pairs of rollers, and in particular, lamination processing is preferable because it can be continuously produced, resulting in good productivity.
  • the thickness of the stampable sheet of the present invention is usually 1-10 mm, preferably 2-5 mm. When the thickness of the stampable sheet is 1 mm or more, it is easy to manufacture the stampable sheet. Good moldability can be obtained without the need for long preheating.
  • the resin constituting the fiber-reinforced resin of the present invention is not particularly limited, but may be a thermosetting resin.
  • the thermosetting resin is not particularly limited and includes vinyl urethane resin, unsaturated polyester resin, acrylic resin, epoxy resin, phenol resin, melamine resin, furan resin and the like. Moreover, these thermosetting resins can be used alone or in combination of two or more. Among these resins, vinyl urethane resins, epoxy resins, and phenol resins are preferred from the viewpoint of resin physical properties, versatility, cost, and the like.
  • the thermosetting resin and the fiber can be composited and used as a fiber-reinforced composite material.
  • the fiber-reinforced composite material includes a prepreg in which a reinforcing fiber base material containing continuous fibers is impregnated with a thermosetting resin composition, and a sheet molding in which a reinforcing fiber base material containing short fibers is impregnated with a thermosetting resin composition.
  • a compound (SMC) or the like is used. Compression molding of fiber-reinforced composite materials is widely used as a method for producing fiber-reinforced composite material molded articles.
  • the content of the thermosetting resin in the battery housing of the present invention is preferably 20-80% by mass.
  • the content of the thermosetting resin is 20% by mass or more, the moldability becomes sufficient, and the molding of the battery housing becomes easy.
  • the content of the thermosetting resin in the battery housing is preferably 35 to 70% by mass, more preferably 40 to 60% by mass.
  • thermosetting resin a method for manufacturing the battery housing of the present invention using a thermosetting resin
  • press molding is preferable from the viewpoint of productivity.
  • a compound (SMC) or the like is used.
  • the structure of the invention has a battery housing and a battery cell.
  • the battery housing of the present invention is as described in detail above.
  • a battery is preferable as the structure in the present invention, and the battery is not particularly limited. Examples thereof include secondary batteries such as lithium ion batteries, nickel-hydrogen batteries, lithium-sulfur batteries, nickel-cadmium batteries, nickel-iron batteries, nickel-zinc batteries, sodium-sulfur batteries, lead-acid batteries, and air batteries.
  • the lithium ion battery is preferred, and the battery housing of the present invention is particularly suitable for suppressing thermal runaway of the lithium ion battery. That is, the battery housing of the present invention is preferably a battery housing for lithium ion batteries.
  • the electric mobility in the present invention refers to transportation equipment such as vehicles, ships, and airplanes that operate using electricity as an energy source.
  • Vehicles include not only electric vehicles (EV) but also hybrid vehicles.
  • a structure such as a battery having a battery housing and a battery cell according to the present invention described above is highly safe and is very useful for electric mobility using a battery module with high energy density in order to extend the driving distance. is.
  • stampable sheet evaluation method
  • Rigidity evaluation flexural modulus and bending stress
  • the flexural modulus and flexural stress of the stampable sheet were measured by cutting a 3.0 mm thick, 10 mm wide sheet from a press-molded product obtained by stacking three stampable sheets used in the "workability" test described later.
  • a test piece having a length of 0 mm and a length of 80 mm, it was measured at a measurement atmosphere temperature of 23° C. (unit: MPa) in accordance with JIS K7171.
  • the stampable sheets prepared in Examples and Comparative Examples were exposed to a burner flame of 1200°C from one surface, and evaluated by whether or not the flame penetrated after 10 minutes. Evaluation criteria are as follows.
  • the evaluation of the flame-shielding property of the stampable sheet was performed by cutting from a molded article obtained by press-molding three stacked stampable sheets used in the workability test described later, and cutting the sheet into a sheet having a thickness of 3.0 mm. A test piece having a width of 200 mm and a length of 200 mm was used. Comparative examples and Examples 3 to 5 were carried out using test pieces having a thickness of 3.8 mm, a width of 200 mm and a length of 200 mm.
  • Flame retardant (B component) Phosphorus-based flame retardant composition manufactured by ADEKA Co., Ltd., Adekastab FP-2200, based on the total weight of the phosphorus-based flame retardant composition, 50 to 60% by mass of piverazine pyrophosphate, 35 to 45% by mass of melamine pyrophosphate, 3 to 6% by mass of zinc oxide)
  • Dispersant (component C) ⁇ -olefin/maleic anhydride copolymer (manufactured by Mitsubishi Chemical Corporation, Diacalna 30M, weight average molecular weight 7,800).
  • Glass fiber mat (component D) A glass fiber mat was used which was needle-punched from a swirl mat (basis weight 890 g/m 2 ) made from roving continuous glass fibers (fiber diameter 23 ⁇ m).
  • Alumina fiber mat (component D) An alumina fiber mat obtained by needle-punching a mat (basis weight: 900 g/m 2 ) manufactured from commercially available crystalline alumina fiber ("MAFTEC” (registered trademark) manufactured by Mitsubishi Chemical Corporation) was used.
  • Preparation Example 1-1 (Preparation of PP composition) The A component, the B component, and the C component were melt-kneaded (230° C.) in the proportions shown in Table 1 to prepare pellets of a polypropylene-based resin composition (PP composition) 1.
  • Example 1-1 The pellets of the PP composition 1 granulated in Preparation Example 1-1 are put into an extruder, melted, and then extruded into a sheet shape, and the extruded sheet-like PP11, glass fiber mat 12 or alumina fiber mat are laminated by supplying PP11 as the outermost layer and supplying the glass fiber mat 12 or the alumina fiber mat 23 between them so that the mass ratio in Table 1 is obtained, and then applying a pressure of 0.3 MPa using a laminator. , 230° C. for 4 minutes, followed by cooling and solidification to obtain a stampable sheet (thickness: 3.8 mm) (see FIG. 1). The PP sheet was impregnated with glass mat fibers to obtain an integrated stampable sheet. Table 1 shows the results of evaluation by the above method. In each of Examples 1 to 5 and Comparative Example 1, in addition to the components shown in Table 1, arbitrary additive components were added so that the total was 100% by mass.
  • Example 1-2 A stampable sheet was obtained in the same manner as in Example 1-1, except that one of the glass fiber mats arranged on both sides of the extruded sheet-like PP was an alumina fiber mat.
  • FIG. 2 shows the layer structure.
  • Table 1 shows the results of evaluation by the above method. In the evaluation of the flame shielding property, the flame was applied from the side of the alumina fiber mat.
  • Example 1-3 In Example 1-1, except that one of the glass fiber mats arranged on both sides of the extruded sheet-like PP was an alumina fiber mat, and the amount of the flame retardant was 3.2% by mass. A stampable sheet was obtained in the same manner as above. Table 1 shows the results of evaluation by the above method. In the evaluation of the flame shielding property, the flame was applied from the side of the alumina fiber mat.
  • Examples 1-4 A stampable sheet was obtained in the same manner as in Example 1-1, except that the amount of the flame retardant was changed to 8.8% by mass and the amount of the dispersant was changed to 0.5% by mass.
  • Examples 1-5 A stampable sheet was obtained in the same manner as in Example 1-1, except that the amount of the flame retardant was changed to 5.8% by mass and the amount of the dispersant was changed to 0.5% by mass.
  • Example 1-1 instead of the PP composition 1 pellets granulated in Preparation Example 1-1, only the A component was melted (230 ° C.) and granulated PP was used. A stampable sheet was obtained in the same manner as in Example 1-1. Table 1 shows the results of evaluation by the above method.
  • Comparative Example 1-2 A stampable sheet was obtained in the same manner as in Example 1-2, except that no dispersant was added and the composition of the resin composition was changed to that shown in Table 1. Table 1 shows the results of evaluation by the above method.
  • Comparative Example 1-3 A stampable sheet was obtained in the same manner as in Example 1-2 except that the composition of the resin composition in Example 1-2 was changed to that shown in Table 1. Table 1 shows the results of evaluation by the above method.
  • Comparative Example 1-4 A stampable sheet was obtained in the same manner as in Example 1-2 except that the composition of the resin composition in Example 1-2 was changed to that shown in Table 1. Table 1 shows the results of evaluation by the above method.
  • the stampable sheet of the present invention had excellent flame-shielding properties, and the flame was blocked even after 600 seconds (10 minutes) had passed, and the flame did not spread to the back surface. .
  • the rear surface temperature reached between 345°C and 440°C.
  • the flame penetrated the back surface in about 120 seconds.
  • Comparative Examples 1-2 to 1-4 the flame penetrated the back surface.
  • the stampable sheet of the present invention is excellent in rigidity and workability in spite of containing the phosphorus-based flame retardant.
  • Battery housing evaluation method Evaluation of flame-shielding properties
  • the battery housings prepared in each of the examples and comparative examples are fixed in an exposed state of 150 mm x 150 mm so that the flame can be applied to the same place.
  • an acetylene torch burner manufactured by Sakaguchi Seisakusho: WT-01
  • oxygen is adjusted to 0.15 MPa
  • acetylene to 0.001 MPa
  • the distance between the sample and the burner is adjusted to 145 mm so that the sample surface temperature is 1200 ° C. and set it on fire.
  • a flame was applied for 5 minutes, and the presence or absence of penetration was visually confirmed to evaluate the flame-shielding performance. Evaluation criteria are as follows.
  • the battery housing prepared by combining different types of stampable sheets the other surface was also evaluated for flame-shielding performance in the same manner as above. The evaluation criteria are also the same. Since both sides of the battery housing prepared from one type of stampable sheet are the same, only the result of the evaluation of the flame barrier property was performed on one side.
  • Dispersant ⁇ -olefin/maleic anhydride copolymer manufactured by Mitsubishi Chemical Corporation, Diacalna 30M, weight average molecular weight 7,800. 4.
  • Glass fiber mat A glass fiber mat was used which was needle-punched from a swirl mat (basis weight 880 g/m 2 ) made from roving continuous glass fibers (fiber diameter 23 ⁇ m).
  • Alumina Fiber Mat A mat (weight per unit area: 900 g/m 2 ) manufactured from commercially available crystalline alumina fibers (“MAFTEC” (registered trademark) manufactured by Mitsubishi Chemical Corporation) was used. 6.
  • Silica fiber mat A commercially available silica fiber mat (“KSM700-6” manufactured by Kowa Co., Ltd., weight per unit area: 700 g/m 2 ) was used. 7.
  • Alkaline Earth Silicate Fiber Mat A commercially available alkaline earth silicate fiber mat (manufactured by Sowa Kogyo Co., Ltd., biosoluble fiber blanket “S-4200H”, thickness 12.5 mm, density 128 kg/m 3 ) was used.
  • Preparation Example 2-1 (Preparation of polypropylene resin composition)
  • the polypropylene resin, flame retardant, and dispersant are melt-kneaded (230° C.) in the proportions shown in Table 2 to prepare pellets of a polypropylene resin composition (hereinafter referred to as “PP composition 2”). did.
  • Example 2-1 Description will be made below with reference to FIG.
  • the pellets of the PP composition 2 granulated in Preparation Example 2-1 are placed in an extruder, melted, and then extruded into a sheet shape, and the extruded sheet-like PP (210, 210' and 210''), the glass fiber mat 230, and the alumina fiber mat 220, respectively, with PP as the outermost layer so that the mass ratio of a and b in Table 1 is obtained, and the glass fiber mat 230 and the alumina fiber mat 220 are supplied between them. It was laminated, then heated and pressed at 230° C. for 4 minutes while applying a pressure of 0.3 MPa using a laminator, and then solidified by cooling to obtain a stampable sheet (thickness: 3.8 mm). .
  • stampable sheets a and one stampable sheet b obtained above b is sandwiched from both sides by a, far infrared heating furnace (set temperature 270-300 ° C.) for 4 minutes to a material temperature of 210°C. Then, a pressure of 150 kg/cm 2 was applied by a pressing machine equipped with a mold and held for 30 seconds, followed by cooling and solidification to obtain a box-shaped compact (thickness: 3.0 mm).
  • Table 3 shows the results of evaluation by the above method.
  • the stampable sheets a to f, Examples 2-1 to 2-3, and Comparative Example 2-1 all added optional additive components in addition to the components shown in Tables 2 and 3, and the total was 100% by mass. It was made to be
  • Example 2-2 In the method for producing a stampable sheet of Example 2-1, the contents of the polypropylene resin, flame retardant, and dispersant in the resin composition were changed as c and d shown in Table 2, and d was c.
  • a molded body (thickness: 3.0 mm) was obtained in the same manner as in Example 2-1, except that the housing cover was molded by stacking it from both sides and changing the mass ratio as shown in Table 2. rice field.
  • Table 3 shows the results of evaluation by the above method.
  • Example 2-3 In the method for producing a stampable sheet of Example 2-1, the contents of the polypropylene resin, flame retardant, and dispersant in the resin composition were changed as k and g shown in Table 2, and g is k.
  • a molded body (thickness: 3.0 mm) was obtained in the same manner as in Example 2-1, except that the housing cover was molded by stacking it from both sides and changing the mass ratio as shown in Table 3. rice field.
  • Table 3 shows the results of evaluation by the above method.
  • Example 2-4 In the method for producing a stampable sheet of Example 2-1, the contents of the polypropylene resin, flame retardant, and dispersant in the resin composition were changed as k and h shown in Table 2, and h was k.
  • a molded body (thickness: 3.0 mm) was obtained in the same manner as in Example 2-1, except that the housing cover was molded by stacking it from both sides and changing the mass ratio as shown in Table 3. rice field.
  • Table 3 shows the results of evaluation by the above method.
  • Example 2-5 In the method for producing a stampable sheet of Example 2-1, the contents of the polypropylene resin, the flame retardant, and the dispersant in the resin composition were changed to i listed in Table 2, i was stacked three times, A molded body (thickness: 3.0 mm) was obtained in the same manner as in Example 2-1 except that the mass ratio was changed as shown in Table 3 and the housing cover was molded. Table 3 shows the results of evaluation by the above method.
  • Example 2-1 Comparative Example 2-1
  • pellets and chopped carbon fibers were kneaded in a kneader at the ratio f in Table 2, and the resulting compound was used to form a sheet, and an alumina fiber mat was used.
  • a stampable sheet was obtained in the same manner as in Example 2-1, except that there was no After that, three sheets of f were stacked, the mass ratio was changed as shown in Table 3, and a molded body (thickness: 3.0 mm) was obtained in the same manner as in Example 2-1 except that the housing cover was molded.
  • Table 3 shows the results of evaluation by the above method.
  • the dispersant ratio is the content (parts by mass) of the dispersant with respect to 100 parts by mass of the flame retardant.
  • the battery housing of the present invention containing highly heat-resistant fibers has excellent flame-shielding properties.
  • flame retardancy is further improved when appropriate amounts of flame retardant and dispersant are contained.
  • the battery housing of the present invention is lightweight because the main component is resin.
  • the stampable sheet of the present invention is excellent in rigidity, flame resistance, heat insulation, and processability, and therefore is required to be highly safe for aircraft, ships, automobile parts, electrical and electronic equipment parts, and building materials. It is useful as a material for various industrial parts. In particular, it can be suitably used for various types of battery housings and casings, which have traditionally been made of metal, and is expected to contribute to the safety of automobiles, improve energy efficiency through weight reduction, and reduce CO2 emissions. be.
  • the battery housing of the present invention is excellent in flame-shielding properties, and is excellent in workability because it is mainly composed of resin. Moreover, since it is lightweight, the structure using the battery housing of the present invention is useful for electric mobility.
  • Laminate 11 PP sheet 12 Glass fiber mat 13 PP sheet 20
  • Laminate 21 PP sheet 22
  • Glass fiber mat 23 Alumina fiber mat 24 PP sheet
  • battery module 100 structure (battery) 110 battery module 120 battery pack 130 battery housing 200 stampable sheet 210 polypropylene sheet 210' polypropylene sheet 210'' polypropylene sheet 220 alumina fiber mat 230 glass fiber mat

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

(A)熱可塑性樹脂、(B)難燃剤、(C)分散剤、及び(D)無機繊維を含むスタンパブルシートであって、(D)無機繊維の含有量が全重量に対して1~80質量%であり、(B)難燃剤100質量部に対する(C)分散剤の含有量が0を超え25質量部以下である、スタンパブルシートである。 本発明によれば、強度、剛性、遮炎性に優れるとともにスタンピング成形などの加工性にも優れるスタンパブルシートを提供することができる。

Description

[規則37.2に基づきISAが決定した発明の名称] スタンパブルシート及びそれを用いた成形体
 本発明は、スタンバブルシート及びそれを用いた成形体に関する。
 近年、環境対策の一環として電気自動車やハイブリット自動車の研究開発が進められており、航続距離の向上を目指した高エネルギー密度のバッテリー開発と軽量化が盛んに進められている。このような高エネルギー密度のバッテリーは不慮の事故により発火する恐れがあり、乗客への安全対策としてそのハウジング材は高い遮炎性が必要なため、鉄などの金属材料と耐火材が併用されている場合が多い。
 しかしながら、金属材料は重くなる欠点があり、耐火材を併用する場合には加工性や部品点数増加によるコスト増が課題となっている。そこで、軽量化と遮炎性を両立する可能性を有する樹脂化が試みられている。現在、持続可能な社会に向け、二酸化炭素の抑制やリサイクル性が重要視されてきている。熱硬化系の材料は高い難燃性を有するものが多く、複合材としては一般的であるが、リサイクル性の面では熱可塑性の樹脂素材が有利となる。
 また、中国ではGB 38031-2020《電動自動車動力用バッテリーの安全要求》という安全規格が発表され、バッテリーの熱暴走の5分前に警告を発することが義務付けられているが、これは、バッテリーの発火後5分以上遮炎するハウジング材によっても達成できると考えられている。
 これらの課題に対し、例えば特許文献1では、炭素繊維強化ポリプロピレン樹脂に臭素系難燃剤や酸化アンチモン化合物を添加したものなどが提案されている。しかしながら、ここで使用される添加剤は生体残留性に問題がある。
 これに対し、生体残留性に配慮して、ポリプロピレン系樹脂を難燃化する技術として、特許文献2には、ポリオレフィン系樹脂に(ポリ)リン酸塩化合物を含有させた難燃性ポリオレフィン系組成物が提案されている。しかしながら、そこに記載される樹脂組成物はリン系難燃剤の分散性が悪いという問題がある。
 また、特許文献3には、ポリプロピレン樹脂にガラス長繊維とリン酸塩化合物を含有した難燃性樹脂組成物が提案されているが、特許文献2と同様に、リン系難燃剤を多量に含有する必要があり、リン系難燃剤の分散性に問題がある。
特開2014-62189号公報 特開2013-119575号公報 特開2011-88970号公報
 上述のように、高エネルギー密度のバッテリーの軽量化と遮炎性を両立する可能性を有する樹脂化に対して、従来の技術では、不十分な点が多い。具体的には、特許文献1に開示される炭素繊維強化ポリプロピレン樹脂組成物では、使用される添加剤が生体残留性の問題があり、かつ同特許文献が示す炭素繊維長ではスタンプ成形後に十分な強度や剛性が得られないという問題がある。
 また、特許文献2に開示される樹脂組成物は、リン系難燃剤の分散性が悪く、多量のリン系難燃剤を添加することで難燃性は得られるものの、ポリプロピレン系樹脂の大幅な強度低下をもたらす問題がある。また、スタンパブルシート材に多量の難燃剤を含有させると、スタンプ成形時の成形不良(未充填成形)が生じやすくなる問題がある。
 さらに、特許文献3に開示される難燃性樹脂組成物は、特許文献2と同様に、リン系難燃剤を多量に含有する必要があり、スタンパブルシートとしての機械特性とスタンプ成形時の流動性を保持できないという問題がある。
 本発明の第一の態様は、上記のような問題点を解決するためになされたものであり、高い遮炎性とスタンパブルシートに求められる加工性と剛性とを両立したスタンパブルシートを提供することを課題とする。また、本発明の第二の態様は、電池の熱暴走が起こり、火炎が生じた際に、自動車内装部材への延焼を遅らせることを可能とする、より遮炎性に優れる、繊維強化樹脂製のバッテリーハウジングを提供することを課題とする。
 本発明者らは、上記課題を解決するため、特定のポリプロピレン系樹脂に難燃剤と分散剤を特定の割合で含有してなるポリプロピレン系樹脂と無機繊維の組成物からなるスタンパブルシートが、上記の課題を解決できることを見出し、これらの知見に基づき、本発明の第一の態様を完成するに至った。また、本発明者らは、無機繊維を少なくとも含む繊維強化樹脂を用いたバッテリーハウジングが、上記の課題を解決できることを見出し、これらの知見に基づき、本発明の一態様を完成するに至った。
 すなわち、本発明の第一の態様は、以下の[A1]~[A28]を提供する。
[A1](A)熱可塑性樹脂、(B)難燃剤、(C)分散剤、及び(D)無機繊維を含むスタンパブルシートであって、(D)無機繊維の含有量が全重量に対して1~80質量%であり、(B)難燃剤100質量部に対する(C)分散剤の含有量が0を超え25質量部以下である、スタンパブルシート。
[A2]前記(C)分散剤がα-オレフィンと不飽和カルボン酸との共重合体である前記[A1]に記載のスタンパブルシート。
[A3]前記(B)難燃剤がリン系難燃剤である前記[A1]又は[A2]に記載のスタンパブルシート。
[A4]前記(B)難燃剤がイントメッセント系難燃剤である前記[A1]~[A3]のいずれか1つに記載のスタンパブルシート。
[A5]前記(D)無機繊維の平均繊維長が0.1mm以上である、前記[A1]~[A4]のいずれか1つに記載のスタンパブルシート。
[A6]前記(D)無機繊維がガラス繊維、セラミック繊維、金属繊維及び金属酸化物繊維から選ばれる少なくとも1種である前記[A1]~[A5]のいずれか1つに記載のスタンパブルシート。
[A7]前記(A)熱可塑性樹脂が、(A-1)ポリプロピレン系樹脂であり、ポリプロピレン系樹脂の含有量が全重量に対して15~80質量%である、前記[A1]~[A6]のいずれか1つに記載のスタンパブルシート。
[A8](B)難燃剤の含有量が全重量に対して1~30質量%である、前記[A1]~[A7]のいずれか1つに記載のスタンパブルシート。
[A9]前記(A)熱可塑性樹脂、(B)難燃剤、及び(C)分散剤を含有する樹脂組成物を前記(D)無機繊維からなるマットに含浸してなる前記[A1]~[A8]のいずれか1つに記載のスタンパブルシート。
[A10]前記マットは、連続ガラスまたは無機繊維のスワール(渦巻状)マットをニードルパンチにて製造されてなる前記[A9]に記載のスタンパブルシート。
[A11]前記[A1]~[A10]のいずれか1に記載のスタンパブルシートをスタンピング成形してなる成形体。
[A12]前記[A11]に記載の成形体からなるバッテリーハウジング。
[A13](A-1)ポリプロピレン系樹脂、(B)難燃剤、(C)分散剤及び(D)無機繊維を含むスタンパブルシートであって、(A-1)ポリプロピレン系樹脂の含有量が15~80質量%、(B)難燃剤の含有量が1~30質量%、(D)無機繊維の含有量が3~60質量%であり、(B)難燃剤100質量部に対する(C)分散剤の含有量が0.01~10質量部であるスタンパブルシート。
[A14]前記(B)難燃剤がリン系難燃剤である前記[A13]に記載のスタンパブルシート。
[A15]前記(B)難燃剤がイントメッセント系難燃剤である前記[A13]又は[A14]に記載のスタンパブルシート。
[A16]前記(D)無機繊維の平均繊維長が0.1mm以上である、前記[A13]~[A15]のいずれか1に記載のスタンパブルシート。
[A17]前記(D)無機繊維がガラス繊維、セラミック繊維、金属繊維及び金属酸化物繊維から選ばれる少なくとも1種である前記[A13]~[A16]のいずれか1に記載のスタンパブルシート。
[A18]前記(A-1)ポリプロピレン系樹脂、(B)難燃剤、及び(C)分散剤を含有する樹脂組成物を前記(D)無機繊維からなるマットに含浸してなる前記[A13]~[A17]のいずれか1に記載のスタンパブルシート。
[A19]前記マットは、連続ガラスまたは無機繊維のスワール(渦巻状)マットをニードルパンチにて製造されてなる前記[A18]に記載のスタンパブルシート。
[A20]前記[A13]~[A19]のいずれか1に記載のスタンパブルシートをスタンピング成形してなる成形体。
[A21]前記[A20]に記載の成形体からなるバッテリーハウジング。
[A22](A)ポリプロピレン系樹脂、(B)(ポリ)リン酸と窒素化合物との塩、(C)α-オレフィンと不飽和カルボン酸との共重合体、及び(D)無機繊維を含むスタンパブルシートであって、(D)無機繊維の含有量が全重量に対して1~80質量%であり、(B)成分100質量部に対する(C)成分の含有量が0を超え25質量部以下である、スタンパブルシート。
[A23]前記(D)無機繊維の平均繊維長が0.1mm以上である、前記[A22]に記載のスタンパブルシート。
[A24]前記(D)無機繊維がガラス繊維、セラミック繊維、金属繊維及び金属酸化物繊維から選ばれる少なくとも1種である前記[A22]又は[A23]に記載のスタンパブルシート。
[A25]前記(A)ポリプロピレン系樹脂、(B)(ポリ)リン酸と窒素化合物との塩、(C)α-オレフィンと不飽和カルボン酸との共重合体を含有する樹脂組成物を前記(D)無機繊維からなるマットに含浸してなる前記[A22]~[A24]のいずれか1に記載のスタンパブルシート。
[A26]前記マットは、連続ガラスまたは無機繊維のスワール(渦巻状)マットをニードルパンチにて製造されてなる前記[A25]に記載のスタンパブルシート。
[A27]前記[A22]~[A26]のいずれか1に記載のスタンパブルシートをスタンピング成形してなる成形体。
[A28]前記[A27]に記載の成形体からなるバッテリーハウジング。
 また、本発明の第二の態様は、以下の[B1]~[B12]を提供する。
[B1]繊維強化樹脂により構成されるバッテリーハウジングであって、該繊維強化樹脂が難燃剤及び分散剤を含有し、該繊維として、無機繊維を少なくとも含むバッテリーハウジング。
[B2]繊維強化樹脂により構成されるバッテリーハウジングであって、該繊維強化樹脂が難燃剤及び分散剤を含有し、該繊維として、溶融温度が1000℃を超える無機繊維を少なくとも含むバッテリーハウジング。
[B3]前記繊維が、溶融温度の異なる2種以上の無機繊維を含む[B1]又は[B2]に記載のバッテリーハウジング。
[B4]前記繊維強化樹脂100質量部に対して、前記溶融温度が1000℃を超える無機繊維の含有量が1質量部以上である前記[B1]~[B3]のいずれか1に記載のバッテリーハウジング。
[B5]前記繊維強化樹脂がガラス繊維を含む前記[B1]~[B4]のいずれか1に記載のバッテリーハウジング。
[B6]前記繊維強化樹脂における樹脂が熱可塑性樹脂である前記[B1]~[B5]のいずれか1に記載のバッテリーハウジング。
[B7]前記繊維強化樹脂における樹脂が熱硬化性樹脂である前記[B1]~[B6]のいずれか1に記載のバッテリーハウジング。
[B8]前記繊維強化樹脂が、難燃剤100質量部に対して分散剤を0を超え25質量部以下含む前記[B1]~[B7]のいずれか1に記載のバッテリーハウジング。
[B9]前記繊維強化樹脂が、熱可塑性樹脂又は熱硬化性樹脂20~80質量%、無機繊維3~60質量%、難燃剤1~30質量%、及び難燃剤100質量部に対して分散剤を0.1~20質量部含む前記[B1]~[B8]のいずれか1に記載のバッテリーハウジング。
[B10]前記繊維強化樹脂により構成されるスタンパブルシートを成形してなる前記[B1]~[B9]のいずれか1に記載のバッテリーハウジング。
[B11]前記[B1]~[B10]のいずれか1に記載のバッテリーハウジング、及びバッテリーセルを有する構造体。
[B12]前記[B11]に記載の構造体を備える電動モビリティ。
 本発明の第一の態様によれば、強度、剛性、遮炎性に優れるとともにスタンピング成形などの加工性にも優れるスタンパブルシートを提供することができる。本発明の第二の態様によれば、電池の熱暴走が起こり、火炎が生じた際に、自動車内装部材への延焼を遅らせることを可能とする、より遮炎性に優れるバッテリーハウジングを提供することができる。
実施例1-1の積層体を示す模式図である。 実施例1-2の積層体を示す模式図である。 バッテリーハウジングを説明する概念図である。 実施例2-1のスタンパブルシートを示す模式図である。
 以下、本発明の実施の形態について詳細に説明するが、以下の説明は、本発明の実施態様の一例であり、本発明はこれらの内容に何ら限定されない。
[スタンパブルシート]
 本発明の第一の態様は、スタンパブルシートに関する。本発明のスタンパブルシートは、(A)熱可塑性樹脂、(B)難燃剤、(C)分散剤、及び(D)無機繊維を含有する。好ましい形態の一例では、スタンパブルシートは(D)無機繊維を高濃度で含有し、配向性がないためどの方向に対しても強く、曲げ弾性率は4-10GPa程度である。本発明のスタンパブルシートは耐衝撃性が高く金属のように外部入力による永久変形が発生しにくい。本発明のスタンパブルシートはスタンプ(プレス)成形が可能である。すなわち、本明細書において、「スタンパブルシート」は、熱可塑性樹脂と繊維を含み、スタンプ(プレス)成形が可能なシート形状の繊維強化樹脂複合体をいう。
 以下、本発明において用いられる各成分、得られるスタンパブルシートについて、詳細に説明する。
<(A)熱可塑性樹脂>
 本発明のスタンパブルシートに用いられる熱可塑性樹脂としては、特段の制限はないが、ポリオレフィン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、アクリロニトリルスチレン樹脂、ABS樹脂、ポリアミド樹脂、変性ポリフェニレンオキサイド等が挙げられる。なお、これらは1種を使用してもよいし、2種以上を使用してもよい。例えば熱可塑性樹脂(A)が、上記のうち2種以上の熱可塑性樹脂の複合樹脂であってもよい。
 ポリオレフィン樹脂としては、特段の制限はなく、後述の樹脂が挙げられる。ポリエステル樹脂としては、特段の制限はなく、例えば、ポリブチレンテレフタレートが挙げられる。ポリアミド樹脂としては、特段の制限はなく、例えば、ナイロン66、ナイロン6が挙げられる。
 なかでも、本発明は特に、熱可塑性樹脂(A)として少なくともポリオレフィン樹脂を含む場合に特に有用である。なお、本発明において「ポリオレフィン樹脂」とは、樹脂を構成する全ての構成単位100mol%に対し、オレフィン単位又はシクロオレフィン単位が占める割合が90mol%以上である樹脂を意味する。
 ポリオレフィン樹脂を構成する全ての構成単位100mol%に対し、オレフィン単位又はシクロオレフィン単位が占める割合は、95mol%以上が好ましく、98mol%以上が特に好ましい。
 ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリ(3-メチル-1-ブテン)、ポリ(3-メチル-1-ペンテン)、ポリ(4-メチル-1-ペンテン)等のα-オレフィン重合体;エチレン-プロピレンブロック又はランダム共重合体、炭素原子数4以上のα-オレフィン-プロピレンブロック又はランダム共重合体、エチレン-メチルメタクリレート共重合体、エチレン-酢酸ビニル共重合体等のα-オレフィン共重合体;ポリシクロヘキセン、ポリシクロペンテン等のシクロオレフィン重合体等が挙げられる。ポリエチレンとしては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等が挙げられる。ポリプロピレンとしては、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ステレオブロックポリプロピレン等が挙げられる。炭素原子数4以上のα-オレフィン-プロピレンブロック又はランダム共重合体において、炭素原子数4以上のα-オレフィンとしては、ブテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等が挙げられる。これらのポリオレフィン樹脂は1種を単独で用いてもよく2種以上を併用してもよい。
(メルトフローレート(MFR))
 本発明に用いられる(A)熱可塑性樹脂の全体のメルトフローレート(以下、MFRと略記することがある)(230℃、2.16kg荷重)は、40~500g/10分であることが好ましい。MFRが40g/10分以上であると、スタンパブルシートのスタンピング成形した際に欠損が生じず、加工性が低下することがない。また、500g/10分以下であると、スタンパブルシートの製造において、バリを生じることがない。以上の観点から、MFRは、好ましくは50~400g/10分、より好ましくは60~400g/10分、より好ましくは70~300g/10分である。
 (A)熱可塑性樹脂は、例えば、重合時の水素濃度等を制御することにより、MFRを調整することができる。
 なお、MFRは、JIS K7210に準拠して測定した値である。
((A)熱可塑性樹脂の含有量)
 本発明のスタンパブルシートにおける(A)熱可塑性樹脂の含有量は、特に限定されないが、好ましくは、15~80質量%である。熱可塑性樹脂の含有量が15質量%以上であると成形加工性が特に良好となり、スタンパブルシートの成形が容易となる。一方、80質量%以下であると、難燃剤、分散剤及び無機繊維を十分な量含有でき、良好な遮炎性を得ることができる。以上の観点から、スタンパブルシートにおける熱可塑性樹脂の含有量は35~70質量%であることが好ましく、40~60質量%であることがより好ましい。
<(A-1)ポリプロピレン系樹脂>
 本発明のスタンパブルシートに用いられる(A)熱可塑性樹脂として、ポリプロピレン系樹脂を含むことも好ましい。ポリプロピレン系樹脂としては、プロピレン単独重合体、又はプロピレン-α-オレフィン共重合体が挙げられる。ここでプロピレン-α-オレフィン共重合体は、ランダム共重合体及びブロック共重合体のいずれであってもよい。
(α-オレフィン)
 上記共重合体を構成するα-オレフィンとしては、例えば、エチレン、1-ブテン、2-メチル-1-プロペン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、1-オクテン等を挙げることができる。これらは、1種を用いてプロピレンと共重合してもよく、また、2種以上を用いてプロピレンと共重合してもよい。中でも、スタンパブルシートの耐衝撃強度の向上という観点からは、その効果が大きいエチレン又は1-ブテンであるのが好ましく、最も好ましいのはエチレンである。
(プロピレン-エチレンランダム共重合体)
 プロピレンとエチレンのランダム共重合体の場合、好ましくはプロピレン単位を90~99.5質量%、さらに好ましくは92~99質量%、エチレン単位を好ましくは0.5~10質量%、さらに好ましくは1~8質量%含んでなるものである。エチレン単位が上記下限値以上であると、スタンパブルシートの十分な耐衝撃強度が得られ、また、上記上限値以下であると、十分な剛性が維持される。
 プロピレンとエチレンのランダム共重合体におけるプロピレン単位とエチレン単位の含量は、プロピレンとエチレンのランダム共重合体の重合時のプロピレンとエチレンの組成比を、制御することにより、調整することができる。
 また、プロピレンとエチレンのランダム共重合体のプロピレン含量は、クロス分別装置やFT-IR等を用いて測定される値であり、その測定条件等は、例えば、特開2008-189893号公報に記載されている方法を使用すればよい。
(メルトフローレート(MFR))
 本発明に用いられる(A)ポリプロピレン系樹脂の全体のメルトフローレート(以下、MFRと略記することがある)(230℃、2.16kg荷重)は、40~500g/10分であることが好ましい。MFRが40g/10分以上であると、スタンパブルシートのスタンピング成形した際に欠損が生じず、加工性が低下することがない。また、500g/10分以下であると、スタンパブルシートの製造において、バリを生じることがない。以上の観点から、MFRは、好ましくは50~400g/10分、より好ましくは60~400g/10分、より好ましくは70~300g/10分である。
 (A-1)ポリプロピレン系樹脂(プロピレン単独重合体)は、重合時の水素濃度等を制御することにより、MFRを調整することができる。
 なお、MFRは、JIS K7210に準拠して測定した値である。
((A-1)ポリプロピレン系樹脂の含有量)
 本発明のスタンパブルシートにおける(A-1)ポリプロピレン系樹脂の含有量は、特に限定されないが、好ましくは、15~80質量%である。ポリプロピレン系樹脂の含有量が15質量%未満であると成形加工性が不十分となる場合があり、スタンパブルシートの成形が困難となるおそれがある。一方、80質量%を超えると、難燃剤、分散剤及び無機繊維の含有量が不十分となり、十分な遮炎性を得ることができないおそれがある。以上の観点から、スタンパブルシートにおけるポリプロピレン系樹脂の含有量は35~70質量%であることがより好ましく、40~60質量%であることがさらにより好ましい。
<変性ポリオレフィン系樹脂>
 本発明のスタンパブルシートは、上記ポリプロピレン系樹脂に加えて、さらに変性ポリオレフィン系樹脂を含むことができる。変性ポリオレフィン系樹脂としては、具体的には、酸変性ポリオレフィン系樹脂及びヒドロキシ変性ポリオレフィン系樹脂が挙げられ、これらはそれぞれ単独で、又は両者を併用することもできる。
 なお、変性ポリオレフィン系樹脂として用いる、酸変性ポリオレフィン系樹脂及びヒドロキシ変性ポリオレフィン系樹脂の種類としては、特に制限はなく、従来公知のものであってもよい。
(酸変性ポリオレフィン系樹脂)
 酸変性ポリオレフィン系樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、エチレン-α-オレフィン-非共役ジエン化合物共重合体(EPDMなど)、エチレン-芳香族モノビニル化合物-共役ジエン化合物共重合エラストマーなどのポリオレフィンを、マレイン酸又は無水マレイン酸等の不飽和カルボン酸を用いてグラフト共重合し、化学変性したものが挙げられる。
 このグラフト共重合は、例えば、上記ポリオレフィンを適当な溶媒中で、ベンゾイルパーオキシドなどのラジカル発生剤を用いて、不飽和カルボン酸と反応させることにより行われる。また、不飽和カルボン酸又はその誘導体の成分は、ポリオレフィン用モノマーとのランダム又はブロック共重合によりポリマー鎖中に導入することもできる。
 変性のために使用される不飽和カルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸、アクリル酸、メタクリル酸等のカルボキシル基、及び必要に応じてヒドロキシル基やアミノ基などの官能基が導入された重合性二重結合を有する化合物が挙げられる。
 また、不飽和カルボン酸の誘導体としては、これらの酸無水物、エステル、アミド、イミド、金属塩等があり、その具体例としては、無水マレイン酸、無水イタコン酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、メタクリル酸メチル等を挙げることができる。これらのうち、好ましくは無水マレイン酸である。
 好ましい酸変性ポリオレフィン系樹脂としては、エチレン及び/又はプロピレンを主たるポリマー構成単位とするオレフィン系重合体に、無水マレイン酸をグラフト重合することにより変性したもの、エチレン及び/又はプロピレンを主体とするオレフィンと無水マレイン酸とを共重合することにより変性したものなどが挙げられる。具体的には、ポリエチレン/無水マレイン酸グラフトエチレン・ブテン-1共重合体の組み合わせ、又はポリプロピレン/無水マレイン酸グラフトポリプロピレンの組み合わせなどが挙げられる。
(ヒドロキシ変性ポリオレフィン系樹脂)
 ヒドロキシ変性ポリオレフィン系樹脂は、ヒドロキシル基を含有する変性ポリオレフィン系樹脂である。ヒドロキシ変性ポリオレフィン系樹脂は、ヒドロキシル基を適当な部位、例えば、主鎖の末端や側鎖に有していてもよい。
 ヒドロキシ変性ポリオレフィン系樹脂を構成するオレフィン系樹脂としては、例えば、エチレン、プロピレン、ブテン、4-メチルペンテン-1、ヘキセン、オクテン、ノネン、デセン、ドデセンなどのα-オレフィンの単独又は共重合体、前記α-オレフィンと共重合性単量体との共重合体などが例示できる。
 好ましいヒドロキシ変性ポリオレフィン系樹脂としては、例えば、低密度、中密度又は高密度ポリエチレン、直鎖状低密度ポリエチレン、超高分子量ポリエチレン、エチレン-(メタ)アクリル酸エステル共重合体、エチレン-酢酸ビニル共重合体などのヒドロキシ変性ポリエチレン系樹脂、例えば、アイソタクチックポリプロピレンなどのポリプロピレンホモポリマー、プロピレンとα-オレフィン(例えば、エチレン、ブテン、ヘキサンなど)とのランダム共重合体、プロピレン-α-オレフィンブロック共重合体など、ヒドロキシ変性ポリ(4-メチルペンテン-1)などのヒドロキシ変性ポリプロピレン系樹脂が例示できる。
<(B)難燃剤>
 本発明のスタンパブルシートは(B)難燃剤を含有する。(B)難燃剤としては、とくに限定されず、例えば、リン系難燃剤、臭素系難燃剤、アンチモン系難燃剤等が挙げられる。なかでも、遮炎性向上の観点からは、リン系難燃剤が好ましい。また、難燃剤の作用機構に着目した分類では、(B)難燃剤は、イントメッセント系難燃剤であることが遮炎性向上の観点からは好ましい。
(リン系難燃剤)
 リン系難燃剤は、リン化合物、すなわち分子中にリン原子を含む化合物である。リン系難燃剤は、樹脂組成物の燃焼時にチャーを形成させることで難燃効果を発揮する。
 リン系難燃剤としては、公知のものであってよく、例えば(ポリ)リン酸塩、(ポリ)リン酸エステル等が挙げられる。ここで、「(ポリ)リン酸塩」は、リン酸塩又はポリリン酸塩を示し、「(ポリ)リン酸エステル」は、リン酸エステル又はポリリン酸エステルを示す。
 なお、リン系難燃剤は、80℃において固体であることが好ましい。
 リン系難燃剤としては、難燃性の点で、(ポリ)リン酸塩が好ましい。
 (ポリ)リン酸塩としては、例えば、ポリリン酸アンモニウム塩、ポリリン酸メラミン塩、ポリリン酸ピペラジン塩、オルトリン酸ピペラジン塩、ピロリン酸メラミン塩、ピロリン酸ピペラジン塩、ポリリン酸メラミン塩、オルトリン酸メラミン塩、リン酸カルシウム、リン酸マグネシウム等が挙げられる。
 また、上記例示において、メラミン又はピペラジンを他の窒素化合物に置き換えた化合物も同様に使用できる。他の窒素化合物としては、例えば、N,N,N’,N’-テトラメチルジアミノメタン、エチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-ジエチルエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7-ジアミノへプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレ-ト、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。これらの(ポリ)リン酸塩は1種を単独で用いてもよく2種以上を併用してもよい。
 リン系難燃剤としては、上記の中でも、(ポリ)リン酸と窒素化合物との塩(以下、「化合物(B1)」とも記す。)が好ましい。化合物(B1)は、イントメッセント系難燃剤であり、樹脂組成物の燃焼時に、発泡したチャーである表面膨張層(イントメッセント)を形成させる。表面膨張層が形成されることで、分解生成物の拡散や伝熱が抑制され、優れた難燃性が発現する。
 化合物(B1)における窒素化合物としては、アンモニア、メラミン、ピペラジン、前記した他の窒素化合物等が挙げられる。
 リン系難燃剤の市販品としては、アデカスタブFP-2100J、FP-2200、FP-2500S((株)ADEKA製)等が挙げられる。
(臭素系難燃剤)
 臭素系難燃剤としては、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノールS、1,2-ビス(2’,3’,4’,5’,6’-ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-ジブロモフェノール、2,4-ジブロモフェノール、臭素化ポリスチレン、エチレンビステトラブロモフタルイミド、ヘキサブロモシクロドデカン、ヘキサブロモベンゼン、ペンタブロモベンジルアクリレート、2,2-ビス[4’(2’’,3’’-ジブロモプロポキシ)-3’,5’-ジブロモフェニル]-プロパン、ビス[3,5-ジブロモ-4-(2,3-ジブロモプロポキシ)フェニル]スルホン、トリス(2,3-ジブロモプロピル)イソシアヌレートなどが挙げられる。
(アンチモン系難燃剤)
 アンチモン系難燃剤としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ナトリウム、三塩化アンチモン、三硫化アンチモン、オキシ塩化アンチモン、二塩化アンチモンパークロロペンタン及びアンチモン酸カリウム等を挙げることができ、特に三酸化アンチモン、五酸化アンチモンが好ましい。
(イントメッセント系難燃剤)
 イントメッセント系難燃剤は、燃焼源からの輻射熱や、燃焼物から外部へ燃焼ガスや煙などの拡散を防ぐ表面膨張層(Intumescent)を形成することにより、材料の燃焼を抑制させる難燃剤である。イントメッセント系難燃剤としては、(ポリ)リン酸と窒素化合物との塩が挙げられる。具体的には、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸アンモニウム、ピロリン酸メラミン、ピロリン酸ピペラジン等の、(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 上記難燃剤のうち、生体残留性がなく、優れた難燃性を有する点から、リン系難燃剤が好ましく、また環境性の点から、ノンハロゲン系難燃剤が好ましい。また、得られるスタンパブルシートの遮炎性向上の観点からイントメッセント系難燃剤が好ましい。
 なお、上記難燃剤は、1種を単独で使用することができ、又は2種以上を併用することもできる。
((B)難燃剤の含有量)
 本発明のスタンバブルシートにおける難燃剤の含有量は特に限定されないが、好ましくは1~30質量%の範囲である。1質量%以上であると、スタンパブルシートに良好な難燃性を付与でき、良好な遮炎性が得られる。一方、難燃剤が30質量%以下であると、熱可塑性樹脂を十分な含有比で含むことができるので、成形加工性がより良好となる。以上の観点から、スタンバブルシート中の難燃剤の含有量は1~25質量%の範囲がより好ましく、3~20質量%の範囲がさらに好ましい。
<(C)分散剤>
 (C)分散剤としては、(B)難燃剤を(A)熱可塑性樹脂中に分散させることができればよく、特に限定されないが、(A)熱可塑性樹脂との相溶性の点で、高分子分散剤を好適に使用することができる。好ましくは、(B)難燃剤を(A-1)ポリプロピレン系樹脂中に分散させることができるものを用いることができる。高分子分散剤としては、官能基を有する高分子分散剤が好ましく、分散安定性の面からカルボキシル基、リン酸基、スルホン酸基、一級、二級又は三級アミノ基、四級アンモニウム塩基、ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基、等の官能基を有する高分子分散剤が好ましい。
 本発明においては、カルボキシル基を有する高分子分散剤が好ましく、特に、難燃剤として好適なリン系難燃剤を用いる場合には、α-オレフィンと不飽和カルボン酸との共重合体が好ましい。当該分散剤を用いることで、リン系難燃剤の分散性を向上させることができ、難燃剤の含有量を低減させることができる。
(α-オレフィンと不飽和カルボン酸との共重合体)
 本発明に係る「α-オレフィンと不飽和カルボン酸との共重合体」(以下、「共重合体(C1)」と記載する。)における、α-オレフィン単位と不飽和カルボン酸単位は、その合計100mol%のうちα-オレフィン単位の割合が20mol%以上80mol%以下であることが好ましい。
 共重合体(C1)において、α-オレフィン単位と不飽和カルボン酸単位との合計量に対するα-オレフィン単位の割合は、30mol%以上であることがより好ましく、一方、70mol%以下であることがより好ましい。α-オレフィンの割合が前記下限値以上であれば、(A)ポリオレフィン系樹脂との相溶性がより優れたものとなり、前記上限値以下であれば、(B)難燃剤との相溶性がより優れたものとなる。
 共重合体(C1)において、α-オレフィンとしては、炭素原子数5以上のα-オレフィンが好ましく、炭素原子数10以上80以下のα-オレフィンがより好ましい。α-オレフィンの炭素原子数が5以上であれば、熱可塑性樹脂(A)との相溶性がより良好となる傾向があり、80以下であれば、原料コストの点で有利である。以上の観点から、α-オレフィンの炭素原子数は12以上70以下であることがさらにより好ましく、18以上60以下であることが特に好ましい。
 また、共重合体(C1)において、不飽和カルボン酸としては、例えば、(メタ)アクリル酸、マレイン酸、メチルマレイン酸、フマル酸、メチルフマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、グルタコン酸、ノルボルナン-5-エン-2,3-ジカルボン酸、及びこれらの不飽和カルボン酸のエステル、無水物、イミド等が挙げられる。なお、「(メタ)アクリル酸」はアクリル酸又はメタクリル酸を示すものである。
 不飽和カルボン酸のエステル、無水物又はイミドの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物等のジカルボン酸無水物;マレイミド、N-エチルマレイミド、N-フェニルマレイミド等のマレイミド化合物等が挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 上記の中では、共重合反応性の点から、エステルやジカルボン酸無水物が好ましい。中でも、難燃剤として好適なリン系難燃剤との相溶性の点から、ジカルボン酸無水物が好ましく、無水マレイン酸が特に好ましい。
 共重合体(C1)の重量平均分子量は、2,000以上が好ましく、3,000以上がより好ましく、一方、50,000以下が好ましく、30,000以下がより好ましい。共重合体(C1)の重量平均分子量が上記範囲内であれば、(B)難燃剤の分散性がより優れたものとなる。
 なお、共重合体(C1)の重量平均分子量は、共重合体(C1)をテトラヒドロフラン(THF)に溶解し、ゲルパーミエーションクロマトグラフィにより測定される標準ポリスチレン換算の値である。
 共重合体(C1)の市販品としては、リコルブCE2(クラリアントジャパン(株)製)、ダイヤカルナ30M(三菱ケミカル(株)製)が挙げられる。
 本スタンパブルシートの(B)難燃剤100質量部に対する(C)分散剤の含有量は、0を超え、25質量部以下の範囲であり、好適には0.01~10質量部の範囲である。
 本発明者らの検討によれば、スタンパブルシートを構成する無機繊維中に熱可塑性樹脂をマトリクス樹脂として難燃剤が均一に分散して存在することで、スタンパブルシートの遮炎性が顕著に向上しうる。詳細なメカニズムは不明だが、本発明者らは以下のように推測している。すなわち、無機繊維間の樹脂に難燃剤が均一に分散されている場合、難燃剤が接炎することにより形成されるチャーが無機繊維の間隙に固定される。さらに、無機繊維の間隙により、接炎時に膨張して形成されるチャーの大きさが制限されることで、形成されるチャーの大きさが均一になる。無機繊維によるチャーの固定効果とチャーの大きさの均一化が組み合わされることにより、緻密なチャーが形成され、スタンパブルシートの遮炎性が著しく向上するものと考えている。本発明者らは、これらの知見に基づき、難燃剤に対する分散剤の含有量の比を特定の範囲とすることで、無機繊維間の樹脂中に難燃剤が均一に存在するように制御し、スタンパブルシートの遮炎性を顕著に向上しうることを見出した。
 以上の理由から、(C)分散剤の含有量が0であると、(B)難燃剤の分散性が不十分となり、スタンパブルシートに十分な遮炎性を付与することができない。一方、25質量部を超えるとスタンパブルシートの物性が不十分となる。同様の観点から、(C)分散剤の含有量は、0.01質量部以上が好ましく、0.1質量部以上がより好ましく、1質量部以上がさらに好ましく、2質量部以上が特に好ましい。一方、上限値については、20質量部以下がより好ましく、15質量部以下がさらに好ましく、10質量部以下がさらにより好ましく、5質量部以下がさらに好ましく、3質量部以下が特に好ましい。
 また、(A)熱可塑性樹脂及び(B)難燃剤の合計100質量部に対する(C)分散剤の割合は、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることがさらに好ましい。(C)分散剤の割合が前記下限値以上であれば、(B)難燃剤がより良好に分散し、得られるスタンパブルシートの遮炎性や物性、得られる成形体の外観がより良好となる。(C)分散剤の割合が前記上限値以下であれば、(C)分散剤によるスタンパブルシートの遮炎性への影響をより抑制できる。特に、ポリオレフィン系樹脂及び(B)難燃剤の合計100質量部に対する(C)分散剤の割合は、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることがさらに好ましい。
 また、以下に詳述する(D)無機繊維に対しては、(D)無機繊維100質量部に対する(C)分散剤の割合が、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましい。(C)分散剤の割合が前記下限値以上であれば、得られるスタンパブルシートの遮炎性や物性、得られる成形体の外観がより良好となる。(C)分散剤の割合が前記上限値以下であれば、(C)分散剤によるスタンパブルシートの遮炎性への影響をより抑制できる。
<(D)無機繊維>
 本発明のスタンパブルシートは、(D)無機繊維を含有する。(D)無機繊維としては、種々の繊維を用いることができ、例えば、ガラス繊維、ロックウール、アルミナ繊維、シリカアルミナ繊維等の金属酸化物繊維、チタン酸カリウム繊維、ケイ酸カルシウム(ワラストナイト)繊維、セラミックファイバー等のセラミック繊維、炭素繊維、金属繊維等が挙げられる。これらの無機繊維は、1種単独でも2種以上を組み合わせて使用してもよい。
 上記無機繊維のうち、遮炎性、加工性の観点から、ガラス繊維及びアルミナ繊維から選ばれる少なくとも1種が好ましい。
 (D)無機繊維として、溶融温度の異なる2種以上の無機繊維を含むことができる。溶融温度の異なる2種以上の無機繊維の組合せとしては、少なくとも1種はガラス繊維であり、他の1種以上は、アルミナ繊維、シリカ繊維、アルカリアースシリケート繊維(生体溶解性)、及び炭素繊維からなる群より選ばれる1種以上の無機繊維の組合せであることが好ましい。溶融温度の異なる2種以上の無機繊維を含むことで、遮炎性の機能低下を効果的に防ぐことができる。
 また、本発明で使用する無機繊維は、収束剤又は表面処理剤と組み合わせて使用してもよい。このような収束剤又は表面処理剤としては、例えば、エポキシ系化合物、シラン系化合物、チタネート系化合物等の官能基を有する化合物が挙げられる。
 無機繊維の平均繊維径としては、3~25μmであることが好ましい。また、平均繊維長としては、0.1mm以上であることが好ましく、1mm以上であることがより好ましく、5mm以上であることがさらに好ましい。
 なお、平均繊維径及び平均繊維長については、無機繊維を構成する無機材料の種類によって、好適範囲が異なるため、具体的な好適範囲については、後述する。
 また、繊維径は走査型電子顕微鏡などを用いて測定することができ、平均繊維径は、例えばランダムに10本の繊維の繊維径を測定し、平均値を計算することにより得ることができる。また、繊維長は必要に応じて顕微鏡等で拡大した画像から、定規、ノギス等を用いて測定することができ、平均繊維長は、例えばランダムに10本の繊維の繊維長を測定し、平均値を計算することにより得ることができる。
 本発明のスタンバブルシートにおける無機繊維の含有量は、1~80質量%である。無機繊維の含有量が1質量%未満であると、スタンパブルシートの強度、剛性、及び耐衝撃性が低下する場合があり、80質量%を超えると、スタンパブルシートの製造や加工が著しく困難になるおそれがある。また、無機繊維の含有量が80質量%を超えるとスタンパブルシートの比重が重くなるため、金属代替としての軽量化効果が小さくなり、好ましくない。
 以上の観点から、スタンパブルシートにおける(D)無機繊維の含有量は3~60質量%であることがより好ましく、10~50質量%であることがさらに好ましく、30~45質量%であることが特に好ましい。
(ガラス繊維)
 本発明のスタンパブルシートに好適な(D)無機繊維の一つとして、ガラス繊維が挙げられる。ガラス繊維としては、例えば、平均繊維長が30mm以上の長い繊維であってもよいし、平均繊維長が短かい繊維(チョップドストランド)であってもよいが、遮炎性、剛性、耐衝撃性等の観点から、平均繊維長が長いガラス繊維を用いることが好ましい。
 より具体的には、平均繊維長としては、5mm以上であることが好ましい。平均繊維長が5mm以上であると、スタンパブルシートの強度及び耐衝撃性が良好となる。以上の観点から、ガラス繊維の平均繊維長は5mm以上であることが好ましく、30mm以上であることがさらに好ましい。
 なお、ガラス繊維の平均繊維長の上限には、特に制限はなく、例えば、ガラス繊維を用いてプルトリュージョン法によって製造したペレットを使用する場合には、そのペレットの長さがガラス繊維の繊維長となるので、最大で20mm程度となる。また、ガラス長繊維を使用したスワールマット系では、製造に使用したロービングにおけるガラス繊維の長さが最大繊維長となるので、17000m(17km)程度にもなるが、スタンパブルシートの大きさに合わせて、カットした場合は、カットした長さが最大繊維長となる。
 また、ガラス繊維の平均繊維径は、9~25μmの範囲であることが好ましい。平均繊維径が9μm以上であると、スタンパブルシートの剛性及び耐衝撃性が十分となり、一方、平均繊維径が25μm以下であると、スタンパブルシートの強度が良好となる。以上の観点から、ガラス繊維の平均繊維径は、10~15μmの範囲であることがさらに好ましい。
 なお、ガラス繊維の平均繊維径及び平均繊維長については、上記方法により、測定することができる。
 本発明に用いられるガラス繊維の材質については、特別な制限はなく、無アルカリガラス、低アルカリガラス、含アルカリガラスのいずれでもよく、従来からガラス繊維として、使用されている各種の組成のものを使用することができる。
(アルミナ繊維)
 本発明のスタンパブルシートに好適な(D)無機繊維の一つとしてアルミナ繊維が挙げられる。アルミナ繊維は、通常アルミナとシリカからなる繊維であり、本発明のスタンパブルシートにおいては、アルミナ繊維のアルミナ/シリカの組成比(質量比)は65/35~98/2のムライト組成、又はハイアルミナ組成と呼ばれる範囲にあることが好ましく、さらに好ましくは70/30~95/5、特に好ましくは70/30~74/26の範囲である。
 アルミナ繊維の平均繊維径としては、3~25μmの範囲が好ましく、繊維径3μm以下の繊維を実質的に含まないものが好ましい。ここで繊維径3μm以下の繊維を実質的に含まないとは、繊維径3μm以下の繊維が、全無機繊維質量の0.1質量%以下であることを表す。
 また、アルミナ繊維の平均繊維径は、5~8μmであることがより好ましい。無機繊維の平均繊維径が太すぎると、マット状無機繊維集合体層の反発力や靭性が低下し、逆に細すぎても空気中に浮遊する発塵量が多くなり、また繊維径3μm以下の無機繊維が含有される確率が高くなる。
 アルミナ繊維は、平均繊維長が好ましくは5mm以上、より好ましくは30mm以上、更に好ましくは50mm以上の繊維である。また、好ましくは3.0×103mm以下、より好ましくは1.0×103mm以下の繊維である。アルミナ繊維の平均繊維長及び平均繊維径がこの範囲であれば、スタンパブルシートの強度及び耐衝撃性が良好となる。
(炭素繊維)
 炭素繊維もガラス繊維と好適な範囲は同等である。
<任意添加成分>
 本発明のスタンパブルシートには、上記成分に加えて、本発明の効果を著しく損なわない範囲で、発明の効果を一層向上させるなど、他の効果を付与する等の目的のため、任意の添加成分を配合することができる。
 具体的には、顔料などの着色剤、ヒンダードアミン系などの光安定剤、ベンゾトリアゾール系などの紫外線吸収剤、ソルビトール系などの造核剤、フェノール系、リン系などの酸化防止剤、非イオン系界面活性剤などの帯電防止剤、無機化合物などの中和剤、チアゾール系などの抗菌・防黴剤、ハロゲン化合物やリグノフェノールなどの難燃剤・難燃助剤、可塑剤、有機金属塩系などの分散剤、脂肪酸アミド系などの滑剤、窒素化合物などの金属不活性剤、前記ポリプロピレン系樹脂以外のポリオレフィン樹脂、ポリアミド樹脂やポリエステル樹脂などの熱可塑性樹脂、オレフィン系エラストマー及びスチレン系エラストマーなどのエラストマー(ゴム成分)等を挙げることができる。
 これらの任意添加成分は、2種以上を併用してもよい。
 着色剤として、例えば、無機系や有機系の顔料などは、ポリプロピレン系樹脂組成物及びその成形体の、着色外観、見映え、風合い、商品価値、耐候性や耐久性などの付与、向上などに有効である。
 具体例として、無機系顔料としては、ファーネスカーボン、ケッチェンカーボンなどのカーボンブラック;酸化チタン;酸化鉄(ベンガラ等);クロム酸(黄鉛など); モリブデン酸;硫化セレン化物;フェロシアン化物などが挙げられ、有機系顔料としては、難溶性アゾレーキ、可溶性アゾレーキ、不溶性アゾキレート;縮合性アゾキレート;その他のアゾキレートなどのアゾ系顔料;フタロシアニンブルー、フタロシアニングリーンなどのフタロシアニン系顔料;アントラキノン、ペリノン、ペリレン、チオインジゴなどのスレン系顔料;染料レーキ;キナクリドン系;ジオキサジン系;イソインドリノン系などが挙げられる。また、メタリック調やパール調にするには、アルミフレーク;パール顔料を含有させることができる。また、染料を含有させることもできる。
 光安定剤や紫外線吸収剤として、例えば、ヒンダードアミン化合物、ベンゾトリアゾール系、ベンゾフェノン系やサリシレート系などは、ポリプロピレン系樹脂組成物及びその成形体の耐候性や耐久性などの付与、向上に有効であり、耐候変色性の一層の向上に有効である。
 具体例としては、ヒンダードアミン化合物として、コハク酸ジメチルと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンとの縮合物;ポリ〔〔6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕;テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート;テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート;ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート;ビス-2,2,6,6-テトラメチル-4-ピペリジルセバケートなどが挙げられ、ベンゾトリアゾール系としては、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール;2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾールなどが挙げられ、ベンゾフェノン系としては、2-ヒドロキシ-4-メトキシベンゾフェノン;2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどが挙げられ、サリシレート系としては、4-t-ブチルフェニルサリシレート;2,4-ジ-t-ブチルフェニル3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエートなどが挙げられる。
 ここで、前記光安定剤と紫外線吸収剤とを併用する方法は、耐候性、耐久性、耐候変色性などの向上効果が大きく好ましい。
 酸化防止剤として、例えば、フェノール系、リン系やイオウ系の酸化防止剤などは、ポリプロピレン系樹脂組成物及びその成形体の、耐熱安定性、加工安定性、耐熱老化性などの付与、向上などに有効である。
 また、帯電防止剤として、例えば、非イオン系やカチオン系などの帯電防止剤は、ポリプロピレン系樹脂組成物及びその成形体の帯電防止性の付与、向上に有効である。
 オレフィン系エラストマーとしては、例えば、エチレン・プロピレン共重合体エラストマー(EPR)、エチレン・ブテン共重合体エラストマー(EBR)、エチレン・ヘキセン共重合体エラストマー(EHR)、エチレン・オクテン共重合体エラストマー(EOR)などのエチレン・α-オレフィン共重合体エラストマー;エチレン・プロピレン・エチリデンノルボルネン共重合体、エチレン・プロピレン・ブタジエン共重合体、エチレン・プロピレン・イソプレン共重合体などのエチレン・α-オレフィン・ジエン三元共重合体エラストマー、スチレン・ブタジエン・スチレントリブロック共重合体エラストマー(SBS)などを挙げることができる。
 また、スチレン系エラストマーとしては、例えば、スチレン・イソプレン・スチレントリブロック共重合体エラストマー(SIS)、スチレン- エチレン・ブチレン共重合体エラストマー(SEB)、スチレン-エチレン・プロピレン共重合体エラストマー(SEP)、スチレン-エチレン・ブチレン-スチレン共重合体エラストマー(SEBS)、スチレン-エチレン・ブチレン-エチレン共重合体エラストマー(SEBC)、水添スチレン・ブタジエンエラストマー(HSBR)、スチレン-エチレン・プロピレン-スチレン共重合体エラストマー(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレン共重合体エラストマー(SEEPS)、スチレン-ブタジエン・ブチレン-スチレン共重合体エラストマー(SBBS)、部分水添スチレン-イソプレン-スチレン共重合体エラストマー、部分水添スチレン-イソプレン・ブタジエン-スチレン共重合体エラストマーなどのスチレン系エラストマー、さらにエチレン-エチレン・ブチレン-エチレン共重合体エラストマー(CEBC)などの水添ポリマー系エラストマーなどを挙げることができる。
 中でも、エチレン・オクテン共重合体エラストマー(EOR)及び/又はエチレン・ブテン共重合体エラストマー(EBR)を使用すると、本発明のポリプロピレン系樹脂組成物やその成形体において、適度の柔軟性などが付与し易く、耐衝撃性が優れる傾向にあるなどの点から好ましい。
<熱可塑性樹脂組成物>
 本発明に係る熱可塑性樹脂組成物は、本発明のスタンパブルシートを製造するための樹脂組成物であって、(A)熱可塑性樹脂、必要に応じて加えられる変性ポリオレフィン系樹脂、(B)難燃剤、(C)分散剤を含有するものである。また、さらに任意添加成分が配合されていてもよい。前記の熱可塑性樹脂組成物において、(A)熱可塑性樹脂が(A-1)ポリプロピレン系樹脂である場合には、特にポリプロピレン系樹脂組成物(以下「PP組成物」と記載することがある。)と呼称する場合がある。PP樹脂組成物は、本発明のスタンパブルシートを製造するための樹脂組成物であって、(A-1)ポリプロピレン系樹脂、必要に応じて加えられる変性ポリオレフィン系樹脂、(B)難燃剤、(C)分散剤を含有するものである。また、さらに任意添加成分が配合されていてもよい。
 熱可塑性樹脂組成物、又はPP組成物の製造方法としては、従来公知の方法を用いることができ、上記成分を配合して混合、溶融混練することにより製造することができる。
 混合は、タンブラー、Vブレンダー、リボンブレンダー等の混合器を用いて行われ、溶融混練は、一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、ニーダー等の機器を用い、溶融混練され、造粒される。
<スタンパブルシートの製造方法>
 本発明のスタンパブルシートは、その製造方法は特に限定されないが、好適には、(D)無機繊維からなるマット(以下「無機繊維マット」と記載することがある。)に上記熱可塑性樹脂組成物又はPP組成物を含浸させて製造することが好ましい。含浸の方法としては、無機繊維マットに熱可塑性組成物又はPP組成物を塗布する方法、熱可塑性樹脂組成物又はPP組成物のシート(以下「熱可塑性樹脂シート」又は「PPシート」と記載することがある。)を作製しておき、該熱可塑性樹脂シート又はPPシートを無機繊維マットに積層し、加熱、溶融させて含浸させる方法等がある。
 本発明では、スタンパブルシートの樹脂の繊維への含浸性の観点から、熱可塑性樹脂シート又はPPシートを無機繊維マットに積層し、加熱、溶融させる方法が好ましい。特に、無機繊維マットが2つの熱可塑性樹脂シート又はPPシートの間になるように積層し、その後、該積層体を加熱及び加圧し、ついで冷却固化することで得ることができる。
 ここで熱可塑性樹脂シート又はPPシートの厚みとしては、繊維マットへの含浸が良好に行える範囲であれば特に制限はない。
(無機繊維マット)
 スタンパブルシートの製造方法において用いられる無機繊維の形態としては、特に制限はなく、様々な形態のものを使用することができるが、マット状ないしはシート状に形成しているものが好ましい。
 より具体的には、ガラス繊維により形成されるマット(以下、「ガラス繊維マット」と記載する。)、アルミナ繊維に代表される金属酸化物繊維により形成されるマット(以下、「金属酸化物マット」と記載する。)が好ましい。
 当該無機繊維マットの坪量(単位面積当りの質量)は、特段の制限はなく、用途に応じて適宜決定されるが、好ましくは300g/m以上、より好ましくは800g/m超、より好ましくは1500g/m超である。また、当該無機繊維マットの坪量は、特段の制限はないが、好ましくは5000g/m以下、より好ましくは4500g/m以下、さらに好ましくは4000g/m以下、特に好ましくは3500g/m以下である。
 無機繊維マットの単位面積当りの坪量(目付)は、該無機繊維マットを構成する無機繊維集積体を折り畳み装置にて積層する際、単位面積当りの繊維量を調整することによって、上記の範囲とすることができる。また、本発明の無機繊維マットは、複数の無機繊維マットを接着した構成であっても、単一の構成であってもよいが、ハンドリング性や接着界面における剥離強度の点から、単一の構成であることが好ましい。
(ガラス繊維マット)
 本発明に用いられるガラス繊維マットの形態としては、短繊維ガラス綿で加工したフェルト及びブランケット、連続ガラス繊維を加工したチョップドストランドマット、連続ガラス繊維のスワール(渦巻状)マット、一方向引き揃えマットなどが挙げられる。これらの中でも、特に連続ガラス繊維のスワール(渦巻状)マットをニードルパンチしたガラス繊維マットを使用すると、スタンパブルシートの強度、および、耐衝撃性が優れており、好ましい。
(金属酸化物繊維マット)
 本発明に係る金属酸化物繊維マットは、アルミナ繊維等の金属酸化物繊維で構成され、かつニードリング処理が施されたマットである。
 熱可塑性樹脂シート又はPPシートを無機繊維マットに積層し、加熱、溶融させる方法において、加熱温度は170~300℃であることが好ましい。加熱温度が170℃以上であると、ポリプロピレン系樹脂の流動性が十分であり、無機繊維マットにPP組成物を十分に含浸させることができ、好適なスタンパブルシートが得られる。一方、加熱温度が300℃以下であると、熱可塑性樹脂組成物又はPP組成物が劣化することがない。
 さらに、加圧圧力としては0.1~1MPaであることが好ましい。加圧圧力が0.1MPa以上であると、無機繊維マットに熱可塑性樹脂組成物又はPP組成物を十分に含浸させることができ、好適なスタンパブルシートが得られる。一方、1MPa以下とすることで、熱可塑性樹脂組成物又はPP組成物が流動し、バリが生じることがない。
 また、冷却時の温度としては、熱可塑性樹脂組成物又はPP組成物中の熱可塑性樹脂の凝固点以下であれば、特に制限されないが、冷却温度が80℃以下であると、得られたスタンパブルシートを取り出す際に変形することがない。以上の観点から、冷却温度は、室温~80℃であることが好ましい。
 上記の積層体を加熱及び加圧、冷却して、スタンパブルシートを得る方法としては、加熱装置の付いた金型内で積層体をプレス成形する方法、および、積層体を加熱装置の付いた2対のローラーの間を通して加熱と加圧を行うラミネート加工などがあり、特に、ラミネート加工は、連続生産が行えるため、生産性が良く、好ましい。
<スタンパブルシートの厚み>
 本発明のスタンパブルシートの厚みは、通常1~10mm、好ましくは2~5mmである。このスタンパブルシートの厚みが1mm以上であると、スタンパブルシートの製造が容易であり、一方、スタンパブルシートの厚みが10mm以下であれば、スタンパブルシートをスタンピング成形などで加工する際に、長時間の予備加熱が必要とならず、良好な成形加工性が得られる。
<成形体>
 本発明のスタンパブルシートは、常法に従いスタンピング成形することで、所望の形状に成形することにより、スタンパブルシートからなる成形体を得ることができる。
(用途)
 本発明のスタンパブルシートの用途としては、例えば、自動車部品や電気電子機器部品などの工業分野の各種部品等が挙げられる。とりわけ強度と剛性、導電性に優れ、かつ、加工性にも優れるため、これらの性能をバランスよく、より高度に必要とされる用途、例えば、バッテリーケースなどの各種ハウジングや筐体に、好適に用いることができる。
[バッテリーハウジング]
 本発明の第二の態様は、バッテリーハウジングに関する。
 図3は、バッテリーハウジングを含むバッテリー等の構造体を示す概念図である。バッテリー等の構造体100は、例えば、バッテリーセル(電池単体)の集合体であるバッテリーモジュール110、バッテリーモジュールの集合体であるバッテリーパック120、及びバッテリーパック等の電池部材を収納するためのバッテリーハウジング130を備える。
 本発明のバッテリーハウジングは、繊維強化樹脂により構成され、繊維強化樹脂が難燃剤及び分散剤を含有し、繊維として、無機繊維を少なくとも含むことが特徴である。好適な一態様では、バッテリーハウジングは、繊維強化樹脂により構成され、繊維として、溶融温度が1000℃を超える無機繊維を少なくとも含む。
<繊維>
 本発明に係る繊維強化樹脂における繊維としては、有機繊維でも無機繊維でもよいが、耐熱性の点から無機繊維が好ましく、例えば、ガラス繊維、ロックウール、バサルト繊維、アルミナ繊維、シリカアルミナ繊維、チタン酸カリウム繊維、ケイ酸カルシウム(ワラストナイト)繊維、アルカリアースシリケート繊維(生体溶解性)、シリカ繊維、炭素繊維等が挙げられる。これらの無機繊維は、1種単独でも2種以上を組み合わせて使用してもよい。
 本発明では、繊維として、溶融温度が1000℃を超える無機繊維又は焼失温度が1000℃を超える無機繊維(以下「高耐熱繊維」ということがある。)を含むことができる。高耐熱繊維としては、アルミナ繊維、チタン酸カリウム繊維、シリカアルミナ繊維、アルカリアースシリケート繊維(生体溶解性)、バサルト繊維、シリカ繊維等が挙げられ、これらのうち、特にアルミナ繊維、シリカ繊維及びアルカリアースシリケート繊維(生体溶解性)からなる群より選ばれる1種以上の高耐熱繊維が好ましい。溶融温度は、大気雰囲気における溶融温度であることが好ましい。
 高耐熱繊維は1種を単独で、又は2種以上を組み合わせて使用することができる。
 また、繊維としては、溶融温度の異なる2種以上の無機繊維を含むことが好ましい。これらの無機繊維のうち、少なくとも1種は上述の高耐熱繊維であることが好ましく、他の1種以上は、高耐熱繊維でも、あるいは溶融温度が1000℃以下の無機繊維または焼失温度が1000℃以下の無機繊維または有機繊維であってもよい。溶融温度の異なる2種以上の繊維を含むことで、高耐熱繊維が折れることを防止し、高耐熱繊維の機能低下を防ぐことができる。
 また、溶融温度の異なる2種以上の無機繊維の組合せとしては、少なくとも1種はガラス繊維であり、他の1種以上は、アルミナ繊維、シリカ繊維、アルカリアースシリケート繊維(生体溶解性)、及び炭素繊維からなる群より選ばれる1種以上の無機繊維である組合せであることも好ましい。溶融温度の異なる2種以上の無機繊維を含むことで、遮炎性の機能低下を効果的に防ぐことができる。
 バッテリーハウジングが高耐熱繊維を含有する場合の高耐熱繊維の含有量は、繊維強化樹脂100質量部に対して1質量部以上であることが好ましく、3質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。上限については、20質量部以下が好ましく、15質量部以下がより好ましく、10質量部以下がさらに好ましい。上記下限値以上であると、十分な遮炎性、及び剛性が得られ、上記上限値以下であると加工性が担保される。
 本発明の繊維としては、上述のように高耐熱繊維を含むことができるが、それ以外の繊維を含んでいてもよい。例えば、溶融温度が1000℃以下の繊維であってもよく、また、無機繊維であっても、有機繊維であっても、また炭素繊維であってもよい。
 高耐熱繊維に他の繊維を混合することで、高耐熱繊維が折れることを防止し、高耐熱繊維の機能低下を防ぐことができる。以上の観点から、他の繊維としては、ガラス繊維が好適であり、本発明における繊維としては、高耐熱繊維とガラス繊維を含むことが好ましく、アルミナ繊維、アルカリアースシリケート繊維(生体溶解性)及びシリカ繊維からなる群より選ばれる1種以上と、ガラス繊維とを含むことが特に好ましい。
 高耐熱繊維(例えばアルミナ繊維、アルカリアースシリケート繊維(生体溶解性)、シリカ繊維)とそれ以外の繊維(例えばガラス繊維)を含む場合に、高耐熱繊維に対してその質量比(高耐熱繊維以外の繊維/高耐熱繊維)としては、0.5~10の範囲であることが好ましく、1~8の範囲であることがさらに好ましい。
 また、高耐熱繊維、特にアルミナ繊維、アルカリアースシリケート繊維(生体溶解性)及びシリカ繊維からなる群より選ばれる1種以上とガラス繊維は繊維強化樹脂中に含まれていてもよいし、後に詳述する高耐熱繊維のマットとガラス繊維のマットを積層し、これに樹脂を含浸したシート状物であってもよい。
 なお、本発明で使用する繊維は、収束剤又は表面処理剤と組み合わせて使用してもよい。このような収束剤又は表面処理剤としては、例えば、エポキシ系化合物、シラン系化合物、チタネート系化合物等の官能基を有する化合物が挙げられる。
 本発明の繊維は、少なくとも1種類の繊維の平均繊維径が、3~25μmであることが好ましい。また、少なくとも1種類の繊維の平均繊維長が、0.1mm以上であることが好ましく、1mm以上であることがより好ましく、5mm以上であることがさらに好ましい。
 本発明の繊維が高耐熱繊維、及びその他の繊維を含む場合には、少なくとも1種類の繊維の平均繊維径が、3~25μmであることが好ましく、平均繊維長としては、5mm以上であることが好ましい。
 なお、平均繊維径及び平均繊維長については、繊維を構成する材料の種類によって、好適範囲が異なるため、具体的な好適範囲については、後述する。
 また、繊維径は光学顕微鏡などを用いて測定することができ、平均繊維径は、例えばランダムに10本の繊維の繊維径を測定し、平均値を計算することにより得ることができる。また、繊維長は必要に応じて顕微鏡等で拡大した画像から、定規、ノギス等を用いて測定することができ、平均繊維長は、例えばランダムに10本の繊維の繊維長を測定し、平均値を計算することにより得ることができる。
 本発明の繊維強化樹脂における繊維の含有量は3~60質量%であることが好ましい。繊維の含有量が3質量%以上であると、バッテリーハウジングの強度、剛性、及び耐衝撃性が担保できる。一方、60質量%以下であると、バッテリーハウジングの製造や加工が容易に行える。また、繊維の含有量が60質量%以下であることで比重が軽くなり、金属代替としての軽量化効果が大きいというメリットがある。
 以上の観点から、繊維強化樹脂における繊維の含有量は10~50質量%であることがより好ましく、30~45質量%であることがさらに好ましい。
<熱可塑性樹脂>
 本発明の繊維強化樹脂を構成する樹脂は、特に限定されないが、熱可塑性樹脂とすることができる。熱可塑性樹脂としては、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリ塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン等が挙げられる。なお、これらは1種を使用してもよいし、2種以上を使用してもよい。例えば繊維強化樹脂を構成する熱可塑性樹脂が、上記のうち2種以上の熱可塑性樹脂の複合樹脂であってもよい。
 これらのうち、樹脂の物性、汎用性、コスト等の点から、ポリオレフィン樹脂が好ましく、特にポリプロピレン系樹脂であることが好ましい。
 本発明は特に、熱可塑性樹脂(A)として少なくともポリオレフィン樹脂を含む場合に特に有用である。なお、本発明において「ポリオレフィン樹脂」とは、樹脂を構成する全ての構成単位100mol%に対し、オレフィン単位又はシクロオレフィン単位が占める割合が90mol%以上である樹脂を意味する。
 ポリオレフィン樹脂を構成する全ての構成単位100mol%に対し、オレフィン単位又はシクロオレフィン単位が占める割合は、95mol%以上が好ましく、98mol%以上が特に好ましい。
 ポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、ポリ(3-メチル-1-ブテン)、ポリ(3-メチル-1-ペンテン)、ポリ(4-メチル-1-ペンテン)等のα-オレフィン重合体;エチレン-プロピレンブロック又はランダム共重合体、炭素原子数4以上のα-オレフィン-プロピレンブロック又はランダム共重合体、エチレン-メチルメタクリレート共重合体、エチレン-酢酸ビニル共重合体等のα-オレフィン共重合体;ポリシクロヘキセン、ポリシクロペンテン等のシクロオレフィン重合体等が挙げられる。ポリエチレンとしては、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン等が挙げられる。ポリプロピレンとしては、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、ヘミアイソタクチックポリプロピレン、ステレオブロックポリプロピレン等が挙げられる。炭素原子数4以上のα-オレフィン-プロピレンブロック又はランダム共重合体において、炭素原子数4以上のα-オレフィンとしては、ブテン、3-メチル-1-ブテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン等が挙げられる。これらのポリオレフィン樹脂は1種を単独で用いてもよく2種以上を併用してもよい。
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂としては、プロピレン単独重合体、又はプロピレン-α-オレフィン共重合体が挙げられる。ここでプロピレン-α-オレフィン共重合体は、ランダム共重合体及びブロック共重合体のいずれであってもよい。
(α-オレフィン)
 上記共重合体を構成するα-オレフィンとしては、例えば、エチレン、1-ブテン、2-メチル-1-プロペン、1-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、1-オクテン等を挙げることができる。これらは、1種を用いてプロピレンと共重合してもよく、また、2種以上を用いてプロピレンと共重合してもよい。中でも、スタンパブルシートの耐衝撃強度の向上という観点からは、その効果が大きいエチレン又は1-ブテンであるのが好ましく、最も好ましいのはエチレンである。
(プロピレン-エチレンランダム共重合体)
 プロピレンとエチレンのランダム共重合体の場合、好ましくはプロピレン単位を90~99.5質量%、さらに好ましくは92~99質量%、エチレン単位を好ましくは0.5~10質量%、さらに好ましくは1~8質量%含んでなるものである。エチレン単位が上記下限値以上であると、スタンパブルシートの十分な耐衝撃強度が得られ、また、上記上限値以下であると、十分な剛性が維持される。
 プロピレンとエチレンのランダム共重合体におけるプロピレン単位とエチレン単位の含量は、プロピレンとエチレンのランダム共重合体の重合時のプロピレンとエチレンの組成比を、制御することにより、調整することができる。
 また、プロピレンとエチレンのランダム共重合体のプロピレン含量は、クロス分別装置やFT-IR等を用いて測定される値であり、その測定条件等は、例えば、特開2008-189893号公報に記載されている方法を使用すればよい。
(メルトフローレート(MFR))
 本発明に用いられる熱可塑性樹脂の全体のメルトフローレート(以下、MFRと略記することがある)(230℃、2.16kg荷重)は、40~500g/10分であることが好ましい。MFRが40g/10分以上であると、バッテリーハウジングを製造する際の加工性が低下することがない。また、500g/10分以下であると、バッテリーハウジングの製造において、バリを生じることがない。以上の観点から、MFRは、好ましくは50~400g/10分、より好ましくは60~400g/10分、より好ましくは70~300g/10分である。
 熱可塑性樹脂は、例えば、重合時の水素濃度等を制御することにより、MFRを調整することができる。
 なお、MFRは、JIS K7210に準拠して測定した値である。
<<熱可塑性樹脂の含有量>>
 本発明のバッテリーハウジングにおける熱可塑性樹脂の含有量は、20~80質量%であることが好ましい。熱可塑性樹脂の含有量が20質量%以上であると成形加工性が十分となり、バッテリーハウジングの成形が容易となる。一方、80質量%以下であると、難燃剤、分散剤及び無機繊維の含有量が十分となり、十分な遮炎性を得ることができる。以上の観点から、バッテリーハウジングにおける熱可塑性樹脂の含有量は35~70質量%であることが好ましく、40~60質量%であることがより好ましい。
<難燃剤>
 本発明のバッテリーハウジングは難燃剤を含有することが好ましい。難燃剤としては、とくに限定されず、例えば、リン系難燃剤、臭素系難燃剤、アンチモン系難燃剤等が挙げられる。なかでも、遮炎性向上の観点からは、リン系難燃剤が好ましい。また、難燃剤の作用機構に着目した分類では、(B)難燃剤は、イントメッセント系難燃剤であることが遮炎性向上の観点からは好ましい。
(リン系難燃剤)
 リン系難燃剤は、リン化合物、すなわち分子中にリン原子を含む化合物である。リン系難燃剤は、樹脂組成物の燃焼時にチャーを形成させることで難燃効果を発揮する。
 リン系難燃剤としては、公知のものであってよく、例えば(ポリ)リン酸塩、(ポリ)リン酸エステル等が挙げられる。ここで、「(ポリ)リン酸塩」は、リン酸塩又はポリリン酸塩を示し、「(ポリ)リン酸エステル」は、リン酸エステル又はポリリン酸エステルを示す。
 なお、リン系難燃剤は、80℃において固体であることが好ましい。
 リン系難燃剤としては、難燃性の点で、(ポリ)リン酸塩が好ましい。
 (ポリ)リン酸塩としては、例えば、ポリリン酸アンモニウム塩、ポリリン酸メラミン塩、ポリリン酸ピペラジン塩、オルトリン酸ピペラジン塩、ピロリン酸メラミン塩、ピロリン酸ピペラジン塩、ポリリン酸メラミン塩、オルトリン酸メラミン塩、リン酸カルシウム、リン酸マグネシウム等が挙げられる。
 また、上記例示において、メラミン又はピペラジンを他の窒素化合物に置き換えた化合物も同様に使用できる。他の窒素化合物としては、例えば、N,N,N’,N’-テトラメチルジアミノメタン、エチレンジアミン、N,N’-ジメチルエチレンジアミン、N,N’-ジエチルエチレンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-ジエチルエチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、1,7-ジアミノへプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、trans-2,5-ジメチルピペラジン、1,4-ビス(2-アミノエチル)ピペラジン、1,4-ビス(3-アミノプロピル)ピペラジン、アセトグアナミン、ベンゾグアナミン、アクリルグアナミン、2,4-ジアミノ-6-ノニル-1,3,5-トリアジン、2,4-ジアミノ-6-ハイドロキシ-1,3,5-トリアジン、2-アミノ-4,6-ジハイドロキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-エトキシ-1,3,5-トリアジン、2,4-ジアミノ-6-プロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-イソプロポキシ-1,3,5-トリアジン、2,4-ジアミノ-6-メルカプト-1,3,5-トリアジン、2-アミノ-4,6-ジメルカプト-1,3,5-トリアジン、アンメリン、ベンズグアナミン、アセトグアナミン、フタロジグアナミン、メラミンシアヌレ-ト、ピロリン酸メラミン、ブチレンジグアナミン、ノルボルネンジグアナミン、メチレンジグアナミン、エチレンジメラミン、トリメチレンジメラミン、テトラメチレンジメラミン、ヘキサメチレンジメラミン、1,3-ヘキシレンジメラミン等が挙げられる。これらの(ポリ)リン酸塩は1種を単独で用いてもよく2種以上を併用してもよい。
 リン系難燃剤としては、上記の中でも、(ポリ)リン酸と窒素化合物との塩が好ましい。当該塩は、イントメッセント系難燃剤であり、樹脂組成物の燃焼時に、発泡したチャーである表面膨張層(イントメッセント)を形成させる。表面膨張層が形成されることで、分解生成物の拡散や伝熱が抑制され、優れた難燃性が発現する。
 ここで用いられる窒素化合物としては、アンモニア、メラミン、ピペラジン、前記した他の窒素化合物等が挙げられる。
 リン系難燃剤の市販品としては、アデカスタブFP-2100J、FP-2200、FP-2500S((株)ADEKA製)等が挙げられる。
(臭素系難燃剤)
 臭素系難燃剤としては、例えば、デカブロモジフェニルエーテル、テトラブロモビスフェノールA、テトラブロモビスフェノールS、1,2-ビス(2’,3’,4’,5’,6’-ペンタブロモフェニル)エタン、1,2-ビス(2,4,6-トリブロモフェノキシ)エタン、2,4,6-トリス(2,4,6-トリブロモフェノキシ)-1,3,5-トリアジン、2,6-ジブロモフェノール、2,4-ジブロモフェノール、臭素化ポリスチレン、エチレンビステトラブロモフタルイミド、ヘキサブロモシクロドデカン、ヘキサブロモベンゼン、ペンタブロモベンジルアクリレート、2,2-ビス[4’(2’’,3’’-ジブロモプロポキシ)-3’,5’-ジブロモフェニル]-プロパン、ビス[3,5-ジブロモ-4-(2,3-ジブロモプロポキシ)フェニル]スルホン、トリス(2,3-ジブロモプロピル)イソシアヌレートなどが挙げられる。
(アンチモン系難燃剤)
 アンチモン系難燃剤としては、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン、ピロアンチモン酸ナトリウム、三塩化アンチモン、三硫化アンチモン、オキシ塩化アンチモン、二塩化アンチモンパークロロペンタン及びアンチモン酸カリウム等を挙げることができ、特に三酸化アンチモン、五酸化アンチモンが好ましい。
 上記難燃剤のうち、生体残留性がなく、優れた難燃性を有する点から、リン系難燃剤が好ましく、また環境性の点から、ノンハロゲン系難燃剤が好ましい。
(イントメッセント系難燃剤)
 イントメッセント系難燃剤は、燃焼源からの輻射熱や、燃焼物から外部へ燃焼ガスや煙などの拡散を防ぐ表面膨張層(Intumescent)を形成することにより、材料の燃焼を抑制させる難燃剤である。イントメッセント系難燃剤としては、(ポリ)リン酸と窒素化合物との塩が挙げられる。具体的には、ポリリン酸アンモニウム、ポリリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸アンモニウム、ピロリン酸メラミン、ピロリン酸ピペラジン等の、(ポリ)リン酸のアンモニウム塩やアミン塩が挙げられる。
 なお、上記難燃剤は、1種を単独で使用することができ、又は2種以上を併用することもできる。
(難燃剤の含有量)
 本発明のバッテリーハウジングにおける難燃剤の含有量は特に限定されないが、好ましくは1~30質量%の範囲であることが好ましい。1質量%以上であると、バッテリーハウジングの難燃性が十分となり、十分な遮炎性が得られる。一方、難燃剤が30質量%以下であると、熱可塑性樹脂の含有量が相対的に大きくなるため、成形加工性が十分となる。以上の観点から、バッテリーハウジング中の難燃剤の含有量は5~25質量%の範囲がより好ましく、10~20質量%の範囲がさらに好ましい。
<分散剤>
 分散剤としては、難燃剤を熱可塑性樹脂中に分散させることができればよく、特に限定されないが、熱可塑性樹脂との相溶性の点で、高分子分散剤を好適に使用することができる。好ましくは、難燃剤をポリプロピレン系樹脂中に分散させることができるものを用いることができる。高分子分散剤としては、官能基を有する高分子分散剤が好ましく、分散安定性の面からカルボキシル基、リン酸基、スルホン酸基、一級、二級又は三級アミノ基、四級アンモニウム塩基、ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基、等の官能基を有する高分子分散剤が好ましい。
 本発明においては、カルボキシル基を有する高分子分散剤が好ましく、特に、難燃剤として好適なリン系難燃剤を用いる場合には、α-オレフィンと不飽和カルボン酸との共重合体が好ましい。当該分散剤を用いることで、リン系難燃剤の分散性を向上させることができ、難燃剤の含有量を低減させることができる。
<<α-オレフィンと不飽和カルボン酸との共重合体>>
 本発明に係る「α-オレフィンと不飽和カルボン酸との共重合体」(以下、単に「共重合体」ということがある。)における、α-オレフィン単位と不飽和カルボン酸単位は、その合計100mol%のうちα-オレフィン単位の割合が20mol%以上80mol%以下であることが好ましい。
 該共重合体において、α-オレフィン単位と不飽和カルボン酸単位との合計量に対するα-オレフィン単位の割合は、30mol%以上であることがより好ましく、一方、70mol%以下であることがより好ましい。α-オレフィンの割合が前記下限値以上であれば、ポリオレフィン系樹脂との相溶性がより優れたものとなり、前記上限値以下であれば、難燃剤との相溶性がより優れたものとなる。
 該共重合体において、α-オレフィンとしては、炭素原子数5以上のα-オレフィンが好ましく、炭素原子数10以上80以下のα-オレフィンがより好ましい。α-オレフィンの炭素原子数が5以上であれば、ポリオレフィン樹脂との相溶性がより良好となる傾向があり、80以下であれば、原料コストの点で有利である。以上の観点から、α-オレフィンの炭素原子数は12以上70以下であることがさらにより好ましく、18以上60以下であることが特に好ましい。
 また、該共重合体において、不飽和カルボン酸としては、例えば、(メタ)アクリル酸、マレイン酸、メチルマレイン酸、フマル酸、メチルフマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、グルタコン酸、ノルボルナン-5-エン-2,3-ジカルボン酸、及びこれらの不飽和カルボン酸のエステル、無水物、イミド等が挙げられる。なお、「(メタ)アクリル酸」はアクリル酸又はメタクリル酸を示すものである。
 不飽和カルボン酸のエステル、無水物又はイミドの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸グリシジル等の(メタ)アクリル酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物等のジカルボン酸無水物;マレイミド、N-エチルマレイミド、N-フェニルマレイミド等のマレイミド化合物等が挙げられる。これらは1種を単独で用いてもよく2種以上を併用してもよい。
 上記の中では、共重合反応性の点から、エステルやジカルボン酸無水物が好ましい。中でも、難燃剤として好適なリン系難燃剤との相溶性の点から、ジカルボン酸無水物が好ましく、無水マレイン酸が特に好ましい。
 該共重合体の重量平均分子量は、2,000以上が好ましく、3,000以上がより好ましく、一方、50,000以下が好ましく、30,000以下がより好ましい。共重合体の重量平均分子量が上記範囲内であれば、難燃剤の分散性がより優れたものとなる。
 なお、共重合体の重量平均分子量は、共重合体をテトラヒドロフラン(THF)に溶解し、ゲルパーミエーションクロマトグラフィにより測定される標準ポリスチレン換算の値である。
 共重合体の市販品としては、リコルブCE2(クラリアントジャパン(株)製)、ダイヤカルナ30M(三菱ケミカル(株)製)が挙げられる。
(分散剤の含有量)
 本発明のバッテリーハウジングにおける分散剤の含有量は、特に制限されないが、難燃剤100質量部に対して、0を超え、25質量部以下の範囲であることが好ましく、0.1~20質量部の範囲であることがより好ましい。本発明者らの検討によれば、バッテリーハウジングを構成する繊維強化樹脂において、無機繊維中に難燃剤が均一に分散して存在することで、バッテリーハウジングの遮炎性が顕著に向上しうる。詳細なメカニズムは不明だが、本発明者らは以下のように推測している。すなわち、熱可塑性樹脂をマトリクス樹脂として難燃剤が均一に分散して存在することで、バッテリーハウジングの遮炎性が顕著に向上しうる。詳細なメカニズムは不明だが、本発明者らは以下のように推測している。すなわち、無機繊維間の樹脂に難燃剤が均一に分散されている場合、難燃剤が接炎することにより形成されるチャーが無機繊維の間隙に固定される。さらに、無機繊維の間隙により、接炎時に膨張して形成されるチャーの大きさが制限されることで、形成されるチャーの大きさが均一になる。無機繊維によるチャーの固定効果とチャーの大きさの均一化が組み合わされることにより、緻密なチャーが形成され、バッテリーハウジングの遮炎性が著しく向上するものと考えている。本発明者らは、これらの知見に基づき、難燃剤に対する分散剤の含有量の比を特定の範囲とすることで、無機繊維間の樹脂中に難燃剤が均一に存在するように制御し、バッテリーハウジングの遮炎性を顕著に向上できることを見出した。以上の理由から、分散剤の含有量が0質量部を超えていると、難燃剤の分散性が良好となり、バッテリーハウジングの難燃性が良好となる。一方、25質量部以下であると、成形性が良好となり、かつ外観も良好となる。以上の観点から、分散剤の含有量は、難燃剤100質量部に対して、1~15質量部の範囲であることがさらにより好ましく、2~10質量部の範囲であることが特に好ましい。
 また、熱可塑性樹脂及び難燃剤の合計質量100質量部に対する分散剤の割合は、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましく、1.5質量部以下であることがより好ましく、1.0質量部以下であることがさらに好ましい。分散剤の割合が前記下限値以上であれば、難燃剤がより良好に分散し、樹脂組成物の難燃性や物性、得られる成形体の外観がより良好となる。分散剤の割合が前記上限値以下であれば、分散剤による樹脂組成物の難燃性への影響をより抑制できる。
 特に、ポリオレフィン系樹脂及び難燃剤の合計100質量部に対する分散剤の割合は、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましく、1.5質量部以下であることがさらにより好ましく、1.0質量部以下であることが特に好ましい。
 無機繊維100質量部に対する分散剤の割合は、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。一方、10質量部以下が好ましく、5.0質量部以下がより好ましく、2.0質量部以下であることがさらに好ましい。分散剤の割合が前記下限値以上であれば、得られるバッテリーハウジングの遮炎性や物性、外観がより良好となる。分散剤の割合が前記上限値以下であれば、分散剤によるバッテリーハウジングの遮炎性への影響をより抑制できる。
<任意添加成分>
 本発明のバッテリーハウジングには、上記成分に加えて、本発明の効果を著しく損なわない範囲で、発明の効果を一層向上させるなど、他の効果を付与する等の目的のため、任意の添加成分を配合することができる。
 具体的には、顔料などの着色剤、ヒンダードアミン系などの光安定剤、ベンゾトリアゾール系などの紫外線吸収剤、ソルビトール系などの造核剤、フェノール系、リン系などの酸化防止剤、非イオン系界面活性剤などの帯電防止剤、無機化合物などの中和剤、チアゾール系などの抗菌・防黴剤、ハロゲン化合物などの難燃剤、可塑剤、有機金属塩系などの分散剤、脂肪酸アミド系などの滑剤、窒素化合物などの金属不活性剤、前記ポリプロピレン系樹脂以外のポリオレフィン樹脂、ポリアミド樹脂やポリエステル樹脂などの熱可塑性樹脂、オレフィン系エラストマー及びスチレン系エラストマーなどのエラストマー(ゴム成分)等を挙げることができる。
 これらの任意添加成分は、2種以上を併用してもよい。
 着色剤として、例えば、無機系や有機系の顔料などは、ポリプロピレン系樹脂組成物及びその成形体の、着色外観、見映え、風合い、商品価値、耐候性や耐久性などの付与、向上などに有効である。
 具体例として、無機系顔料としては、ファーネスカーボン、ケッチェンカーボンなどのカーボンブラック;酸化チタン;酸化鉄(ベンガラ等);クロム酸(黄鉛など);モリブデン酸;硫化セレン化物;フェロシアン化物などが挙げられ、有機系顔料としては、難溶性アゾレーキ、可溶性アゾレーキ、不溶性アゾキレート;縮合性アゾキレート;その他のアゾキレートなどのアゾ系顔料;フタロシアニンブルー、フタロシアニングリーンなどのフタロシアニン系顔料;アントラキノン、ペリノン、ペリレン、チオインジゴなどのスレン系顔料;染料レーキ;キナクリドン系;ジオキサジン系;イソインドリノン系などが挙げられる。また、メタリック調やパール調にするには、アルミフレーク;パール顔料を含有させることができる。また、染料を含有させることもできる。
 光安定剤や紫外線吸収剤として、例えば、ヒンダードアミン化合物、ベンゾトリアゾール系、ベンゾフェノン系やサリシレート系などは、ポリプロピレン系樹脂組成物及びその成形体の耐候性や耐久性などの付与、向上に有効であり、耐候変色性の一層の向上に有効である。
 具体例としては、ヒンダードアミン化合物として、コハク酸ジメチルと1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジンとの縮合物;ポリ〔〔6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕;テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート;テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)1,2,3,4-ブタンテトラカルボキシレート;ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート;ビス-2,2,6,6-テトラメチル-4-ピペリジルセバケートなどが挙げられ、ベンゾトリアゾール系としては、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)-5-クロロベンゾトリアゾール;2-(2’-ヒドロキシ-3’-t-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾールなどが挙げられ、ベンゾフェノン系としては、2-ヒドロキシ-4-メトキシベンゾフェノン;2-ヒドロキシ-4-n-オクトキシベンゾフェノンなどが挙げられ、サリシレート系としては、4-t-ブチルフェニルサリシレート;2,4-ジ-t-ブチルフェニル3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエートなどが挙げられる。
 ここで、前記光安定剤と紫外線吸収剤とを併用する方法は、耐候性、耐久性、耐候変色性などの向上効果が大きく好ましい。
 酸化防止剤として、例えば、フェノール系、リン系やイオウ系の酸化防止剤などは、ポリプロピレン系樹脂組成物及びその成形体の、耐熱安定性、加工安定性、耐熱老化性などの付与、向上などに有効である。
 また、帯電防止剤として、例えば、非イオン系やカチオン系などの帯電防止剤は、ポリプロピレン系樹脂組成物及びその成形体の帯電防止性の付与、向上に有効である。
 オレフィン系エラストマーとしては、例えば、エチレン・プロピレン共重合体エラストマー(EPR)、エチレン・ブテン共重合体エラストマー(EBR)、エチレン・ヘキセン共重合体エラストマー(EHR)、エチレン・オクテン共重合体エラストマー(EOR)などのエチレン・α-オレフィン共重合体エラストマー;エチレン・プロピレン・エチリデンノルボルネン共重合体、エチレン・プロピレン・ブタジエン共重合体、エチレン・プロピレン・イソプレン共重合体などのエチレン・α-オレフィン・ジエン三元共重合体エラストマー、スチレン・ブタジエン・スチレントリブロック共重合体エラストマー(SBS)などを挙げることができる。
 また、スチレン系エラストマーとしては、例えば、スチレン・イソプレン・スチレントリブロック共重合体エラストマー(SIS)、スチレン- エチレン・ブチレン共重合体エラストマー(SEB)、スチレン-エチレン・プロピレン共重合体エラストマー(SEP)、スチレン-エチレン・ブチレン-スチレン共重合体エラストマー(SEBS)、スチレン-エチレン・ブチレン-エチレン共重合体エラストマー(SEBC)、水添スチレン・ブタジエンエラストマー(HSBR)、スチレン-エチレン・プロピレン-スチレン共重合体エラストマー(SEPS)、スチレン-エチレン・エチレン・プロピレン-スチレン共重合体エラストマー(SEEPS)、スチレン-ブタジエン・ブチレン-スチレン共重合体エラストマー(SBBS)、部分水添スチレン-イソプレン-スチレン共重合体エラストマー、部分水添スチレン-イソプレン・ブタジエン-スチレン共重合体エラストマーなどのスチレン系エラストマー、さらにエチレン-エチレン・ブチレン-エチレン共重合体エラストマー(CEBC)などの水添ポリマー系エラストマーなどを挙げることができる。
 中でも、エチレン・オクテン共重合体エラストマー(EOR)及び/又はエチレン・ブテン共重合体エラストマー(EBR)を使用すると、本発明のポリプロピレン系樹脂組成物やその成形体において、適度の柔軟性などが付与し易く、耐衝撃性が優れる傾向にあるなどの点から好ましい。
<バッテリーハウジングの構造>
 本発明のバッテリーハウジングの厚みは、特段の制限はないが、好ましくは0.5mm以上、より好ましくは1.0mm以上、さらに好ましくは2.0mm以上である。上記下限値以上であると成形性、機械強度、遮炎性の点から好ましい。また、当該バッテリーハウジングの厚みは、好ましくは10mm以下、さらに好ましくは8mm以下、特に好ましくは6mm以下である。上記上限値以下であると設置される空間の大きさに応じやすいことや軽量化、成形性の点から好ましい。
<バッテリーハウジングの製造方法>
 本発明のバッテリーハウジングの製造方法としては、種々の方法を用いることができるが、生産性の点から、プレス成型が好ましい。プレス成型に際しては、本発明の繊維強化樹脂からなるスタンパブルシートを作製しておき、複数枚を重ね、プレス成型することが好ましい。高耐熱繊維がシート全体に流動しやすいよう、高耐熱繊維を含むスタンパブルシートが他のスタンパブルシートに両側から挟まれていることが好ましい。高耐熱繊維を含むスタンパブルシートを複数枚重ねる場合は、できる限り中心になるように重ねることが好ましい。
(スタンパブルシートの製造)
 スタンパブルシートは、好適には、繊維からなるマットに熱可塑性樹脂組成物を含浸させて製造することが好ましい。含浸の方法としては、無機繊維マット等の繊維マットに熱可塑性樹脂組成物を塗布する方法、熱可塑性樹脂組成物のシートを作製しておき、該シートを繊維マットに積層し、加熱、溶融させて含浸させる方法等がある。
 本発明では、スタンパブルシートの表面平滑性の観点から、熱可塑性樹脂シートを繊維マットに積層し、加熱、溶融させる方法が好ましい。特に、繊維マットが2つの熱可塑性樹脂シートの間になるように積層し、その後、該積層体を加熱及び加圧し、ついで冷却固化することで得ることができる。
<<熱可塑性樹脂組成物>>
 熱可塑性樹脂組成物としては、前記繊維を除く、熱可塑性樹脂、難燃剤、分散剤、任意の添加剤等を含むものである。製造方法としては、従来公知の方法を用いることができ、上記成分を配合して混合、溶融混練することにより製造することができる。
 混合は、タンブラー、Vブレンダー、リボンブレンダー等の混合器を用いて行われ、溶融混練は、一軸押出機、二軸押出機、バンバリーミキサー、ロールミキサー、ブラベンダープラストグラフ、ニーダー等の機器を用い、溶融混練され、造粒される。
(繊維マット)
 スタンパブルシートの製造方法において用いられる繊維の形態としては、特に制限はなく、様々な形態のものを使用することができるが、マット状ないしはシート状に形成しているものが好ましい。
 より具体的には、本発明では、アルミナ繊維に代表される高耐熱性繊維により形成されるマット(以下、「高耐熱性繊維マット」と記載する。)を用いることが好ましく、これに加えて、ガラス繊維により形成されるマット(以下、「ガラス繊維マット」と記載する。)を用いることが好ましい。
 当該繊維マットの坪量(単位面積当りの質量)は、特段の制限はなく、用途に応じて適宜決定されるが、好ましくは300g/m以上、より好ましくは500g/m超、より好ましくは700g/m超、更に好ましくは900g/m超、特に好ましくは1000g/m超である。また、当該繊維マットの坪量は、特段の制限はないが、好ましくは5000g/m以下、より好ましくは4500g/m以下、さらに好ましくは4000g/m以下、特に好ましくは3500g/m以下である。
 本発明に係る繊維マットの厚みは、特段の制限はないが、好ましくは4mm以上、より好ましくは5mm以上、さらに好ましくは6mm以上である。また、当該繊維マットの厚みは、好ましくは40mm以下、さらに好ましくは35mm以下、特に好ましくは30mm以下である。
 繊維マットの単位面積当りの坪量や厚みは、該繊維マットを構成する繊維集積体を折り畳み装置にて積層する際、単位面積当りの繊維量を調整することによって、上記の範囲とすることができる。また、本発明における繊維マットは、複数の繊維マットを接着した構成であっても、単一の構成であってもよいが、ハンドリング性や接着界面における剥離強度の点から、単一の構成であることが好ましい。
(ガラス繊維マット)
 本発明に用いられるガラス繊維マットの形態としては、短繊維ガラス綿で加工したフェルト及びブランケット、連続ガラス繊維を加工したチョップドストランドマット、連続ガラス繊維のスワール(渦巻状)マット、一方向引き揃えマットなどが挙げられる。これらの中でも、特に連続ガラス繊維のスワール(渦巻状)マットをニードルパンチしたガラス繊維マットを使用すると、スタンパブルシートの強度、および、耐衝撃性が優れており、好ましい。
 熱可塑性樹脂シートを繊維マットに積層し、加熱、溶融させる方法において、熱可塑性樹脂の種類に応じて、適切な条件を選定すればよい。以下、ポリプロピレンを用いた場合の好適な条件について記載する。
 加熱温度は170~300℃であることが好ましい。加熱温度が170℃以上であると、ポリプロピレン系樹脂の流動性が十分であり、繊維マットにポリプロピレン組成物を十分に含浸させることができ、好適なスタンパブルシートが得られる。一方、加熱温度が300℃以下であると、ポリプロピレン組成物が劣化することがない。
 さらに、加圧圧力としては0.1~1MPaであることが好ましい。加圧圧力が0.1MPa以上であると、繊維マットにポリプロピレン組成物を十分に含浸させることができ、好適なスタンパブルシートが得られる。一方、1MPa以下とすることで、ポリプロピレン組成物が流動し、バリが生じることがない。
 また、冷却時の温度としては、ポリプロピレン組成物中の熱可塑性樹脂の凝固点以下であれば、特に制限されないが、冷却温度が80℃以下であると、得られたスタンパブルシートを取り出す際に変形することがない。以上の観点から、冷却温度は、室温~80℃であることが好ましい。
 上記の積層体を加熱及び加圧、冷却して、スタンパブルシートを得る方法としては、加熱装置の付いた金型内で積層体をプレス成形する方法、および、積層体を加熱装置の付いた2対のローラーの間を通して加熱と加圧を行うラミネート加工などがあり、特に、ラミネート加工は、連続生産が行えるため、生産性が良く、好ましい。
<スタンパブルシートの厚み>
 本発明のスタンパブルシートの厚みは、通常1~10mm、好ましくは2~5mmである。このスタンパブルシートの厚みが1mm以上であると、スタンパブルシートの製造が容易であり、一方、スタンパブルシートの厚みが10mm以下であれば、スタンパブルシートをスタンピング成形などで加工する際に、長時間の予備加熱が必要とならず、良好な成形加工性が得られる。
<熱硬化性樹脂>
 本発明の繊維強化樹脂を構成する樹脂は、特に限定されないが、熱硬化性樹脂とすることができる。熱硬化性樹脂としては、特に制限はなく、ビニルウレタン樹脂、不飽和ポリエステル樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等が挙げられる。また、これらの熱硬化性樹脂は、単独で用いることも2種以上併用することもできる。これらのうち、樹脂の物性、汎用性、コスト等の点から、ビニルウレタン樹脂、エポキシ樹脂、フェノール樹脂であることが好ましい。
 本発明では、上記熱硬化性樹脂と前記繊維を複合化して、繊維強化複合材料として用いることができる。繊維強化複合材料としては、連続繊維を含む強化繊維基材に熱硬化性樹脂組成物が含浸されたプリプレグや、短繊維を含む強化繊維基材に熱硬化性樹脂組成物が含浸されたシートモールディングコンパウンド(SMC)等が用いられる。
 繊維強化複合材料成形品の製造方法としては、繊維強化複合材料を圧縮成形する方法が広く用いられている。
<<熱硬化性樹脂の含有量>>
 本発明のバッテリーハウジングにおける熱硬化性樹脂の含有量は、20~80質量%であることが好ましい。熱硬化性樹脂の含有量が20質量%以上であると成形加工性が十分となり、バッテリーハウジングの成形が容易となる。一方、80質量%以下であると、難燃剤、分散剤及び無機繊維の含有量が十分となり、十分な遮炎性を得ることができる。以上の観点から、バッテリーハウジングにおける熱硬化性樹脂の含有量は35~70質量%であることが好ましく、40~60質量%であることがより好ましい。
<熱硬化性樹脂によるバッテリーハウジングの製造方法>
 熱硬化性樹脂を用いる本発明のバッテリーハウジングの製造方法としては、種々の方法を用いることができるが、生産性の点から、プレス成型が好ましい。プレス成型に際しては、上述した連続繊維を含む強化繊維基材に熱硬化性樹脂組成物が含浸されたプリプレグや、短繊維を含む強化繊維基材に熱硬化性樹脂組成物が含浸されたシートモールディングコンパウンド(SMC)等が用いられる。
[構造体]
 本発明の構造体は、バッテリーハウジング、及びバッテリーセルを有する。本発明のバッテリーハウジングについては、上記で詳述した通りである。
 本発明における構造体としては、バッテリーが好ましく、バッテリーとしては、特に限定されない。例えば、リチウムイオンバッテリー、ニッケル・水素電池、リチウム・硫黄電池、ニッケル・カドミウム電池、ニッケル・鉄電池、ニッケル・亜鉛電池、ナトリウム・硫黄電池、鉛蓄電池、空気電池等の二次電池が挙げられる。これらの中では、リチウムイオンバッテリーであることが好ましく、特には、本発明のバッテリーハウジングは、リチウムイオン電池の熱暴走を抑制するために好適に用いられる。すなわち、本発明のバッテリーハウジングは、リチウムイオン電池のバッテリーハウジングであることが好ましい。
[電動モビリティ]
 本発明における電動モビリティとは、電気をエネルギー源として稼働する車両や船舶、飛行機等の輸送機器をさす。なお、車両については、電動自動車(EV)に加えて、ハイブリッドカーも含まれる。
 上述した本発明のバッテリーハウジング、及びバッテリーセルを有するバッテリー等の構造体は、安全性が高く、走行距離を伸ばすために、エネルギー密度を高くしたバッテリーモジュールを用いた電動モビリティ用として、非常に有用である。
 以下、実施例を用いて本発明の第一の態様を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(1)スタンパブルシート
(評価方法)
1.剛性の評価(曲げ弾性率および曲げ応力)
 スタンパブルシートの曲げ弾性率および曲げ応力の測定は、後記の「加工性」試験に用いたスタンパブルシート3枚を重ねてプレス成形した成形品から切削した、厚さ3.0mm、幅10.0mm、長さ80mmの試験片を用い、JIS K7171に準拠し、測定雰囲気温度23℃にて測定した(単位はMPa)。
2.遮炎性の評価
 各実施例及び比較例にて調製したスタンパブルシートについて、一方の表面から、1200℃のバーナーの炎をあて、10分間の後に炎が貫通するか否かで評価した。評価基準は以下の通りである。なお、スタンパブルシートの遮炎性の評価は、実施例1及び2は後述する加工性試験に用いたスタンパブルシート3枚を重ねてプレス成形した成形品から切削した、厚さ3.0mm、幅200mm、長さ200mmの試験片を用いて行った。比較例及び実施例3~5は厚さ3.8mm、幅200mm、長さ200mmの試験片を用いて行った。
 A(◎):炎が貫通せず、かつ実験後も露出している繊維の外観が良好。
 B(〇):炎が貫通しなかったが、実験後に露出している繊維に泡立ちがみられる。
 C:炎が貫通しなかったが、実験後に露出している繊維の大部分が溶解した。
 D(×):炎が貫通した。
3.断熱性の評価
 各実施例及び比較例にて調製したスタンパブルシートについて、一方の表面から、1200℃のバーナーの炎をあて、裏面側の温度を測定した。表1には、10分経過後の温度を記載した。なお、断熱性の評価は上記遮炎性の評価と同時に行うことができ、使用したスタンパブルシートは上記と同様の形態のものを用いた。
4.加工性
 加工性については、下記要領にて実施した。
 先ず、120mm×230mm×3.8mmのスタンパブルシートを3枚重ねて、赤外線ヒーターにて230℃に加熱し、金型温度45℃、成形圧力50kg/cm2の条件でプレス成形して、300mm×180mm×3mm×65mmの箱型成形品に加工した後、下記評価基準に従い、目視にて評価した。
 A(○):成形品の末端までポリプロピレン系樹脂組成物が充填されている。
 B(×):成形品の末端までポリプロピレン系樹脂組成物が充填されていない。
(使用した材料)
1.ポリプロピレン系樹脂(A成分)
 日本ポリプロ(株)製、「ノバテックPP」(メルトフローレート:60g/10分)を用いた。
2.難燃剤(B成分)
 リン系難燃剤組成物((株)ADEKA製、アデカスタブFP-2200、リン系難燃剤組成物の総質量に対し、ピロリン酸ピベラジンを50~60質量%、ピロリン酸メラミンを35~45質量%、酸化亜鉛を3~6質量%含有)
3.分散剤(C成分)
 α-オレフィン・無水マレイン酸共重合体(三菱ケミカル(株)製、ダイヤカルナ30M、重量平均分子量7,800)。
4.ガラス繊維マット(D成分)
 ロービングの連続したガラス繊維(繊維径23μm)から製造されたスワール(渦巻状)マット(坪量890g/m)をニードルパンチしたガラス繊維マットを使用した。
5.アルミナ繊維マット(D成分)
 市販の結晶質アルミナ繊維(三菱ケミカル(株)製「MAFTEC」(登録商標))から製造されたマット(坪量900g/m)をニードルパンチしたアルミナ繊維マットを使用した。
調製例1-1(PP組成物の調製)
 上記A成分、B成分、及びC成分を表1に示す割合で溶融混練(230℃)して、ポリプロピレン系樹脂組成物(PP組成物)1のペレットを調製した。
実施例1-1
 調製例1-1にて造粒したPP組成物1のペレットを押出機に入れて、溶融した後、シート状に押出し成形するとともに、押出されたシート状PP11、ガラス繊維マット12またはアルミナ繊維マットを、それぞれ、表1の質量比になるようPP11を最外層とし、間にガラス繊維マット12またはアルミナ繊維マット23を供給して積層し、次いで、ラミネーターを用いて0.3MPaの圧力をかけながら、230℃で4分間、加熱及び加圧し、次いで、冷却固化させることで、スタンパブルシート(厚み;3.8mm)を得た(図1参照)。PPシートはガラスマット繊維に含浸され、一体化したスタンパブルシートが得られた。上記方法により評価した結果を表1に示す。なお、実施例1~5、及び比較例1はいずれも表1に示す成分の他、任意の添加成分を加えて合計が100質量%となるように作製した。
実施例1-2
 実施例1-1において、押出されたシート状PPの両面に配されたガラス繊維マットの一方をアルミナ繊維マットとしたこと以外は実施例1-1と同様にしてスタンパブルシートを得た。図2に層構成を示す。また、上記方法により評価した結果を表1に示す。なお、遮炎性の評価において、炎はアルミナ繊維マット側からあてた。
実施例1-3
 実施例1-1において、押出されたシート状PPの両面に配されたガラス繊維マットの一方をアルミナ繊維マットとし、難燃剤の量を3.2質量%としたこと以外は実施例1-1と同様にしてスタンパブルシートを得た。また、上記方法により評価した結果を表1に示す。なお、遮炎性の評価において、炎はアルミナ繊維マット側からあてた。
実施例1-4
 実施例1-1において、難燃剤の量を8.8質量%とし、分散剤を0.5質量%とした以外は実施例1-1と同様にしてスタンパブルシートを得た。
実施例1-5
 実施例1-1において、難燃剤の量を5.8質量%とし、分散剤を0.5質量%とした以外は実施例1-1と同様にしてスタンパブルシートを得た。
比較例1-1
 実施例1-1において、調製例1-1にて造粒したPP組成物1のペレットに代えて、上記A成分のみを溶融(230℃)して、造粒したPPを用いたこと以外は実施例1-1同様にして、スタンパブルシートを得た。上記方法により評価した結果を表1に示す。
比較例1-2
 実施例1-2において、分散剤を添加しなかったこと、樹脂組成物の組成を表1に記載のものにしたこと以外は実施例1-2と同様にしてスタンパブルシートを得た。上記方法により評価した結果を表1に示す。
比較例1-3
 実施例1-2において、樹脂組成物の組成を表1に記載のものにしたこと以外は実施例1-2と同様にしてスタンパブルシートを得た。上記方法により評価した結果を表1に示す。
比較例1-4
 実施例1-2において、樹脂組成物の組成を表1に記載のものにしたこと以外は実施例1-2と同様にしてスタンパブルシートを得た。上記方法により評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1-1~1-5に示されるように、本発明のスタンパブルシートは遮炎性に優れ、600秒(10分)経過時点でも炎が遮断され、裏面に燃え広がることがなかった。なお、断熱性に関して、裏面温度はそれぞれ345℃から440℃の間に到達した。
 これらに対し、比較例1-1では120秒ほどで火炎が裏面に貫通した。比較例1-2~1-4でも同様に、火炎が裏面に貫通した。
 また、本発明のスタンパブルシートはリン系難燃剤を含有するのにも関わらず、剛性及び加工性に優れることがわかる。
2.バッテリーハウジング
(評価方法)
遮炎性の評価
 各実施例及び比較例にて調製したバッテリーハウジングについて、火炎を同一カ所に当てられるようバッテリーハウジング150mm×150mm露出した状態で固定する。φ1.2mmのアセチレントーチバーナー(阪口製作所製:WT-01)を用いて、試料表面温度が1200℃になるように、酸素0.15MPa、アセチレン0.001MPa、試料とバーナーの距離を145mmに調整し、火炎を当てた。火炎を5分間当て、貫通の有無を目視で確認し遮炎性能について評価した。評価基準は以下である。
 A(◎):炎が貫通せず、炎接触面の背面温度が350℃未満。
 B(○):炎が貫通しなかったが、炎接触面の背面温度が350℃以上。
 C(×):炎が貫通した。貫通までに要する時間が1分以上だった
 D(×):炎が貫通した。貫通までに要する時間が1分未満だった
 異種のスタンパブルシートを組合せて調製したバッテリーハウジングについては、もう一方の面についても、上記と同様に、遮炎性能の評価を実施した。評価基準も同様である。
なお、1種類のスタンパブルシートから調製したバッテリーハウジングは、両面同一のため、片面について実施した遮炎性評価の結果のみ実施した。
(使用した材料)
1.ポリプロピレン系樹脂(A成分)
 日本ポリプロ(株)製、「ノバテックPP」(メルトフローレート:60g/10分)
2.難燃剤
 リン系難燃剤組成物((株)ADEKA製、アデカスタブFP-2200、リン系難燃剤組成物の総質量に対し、ピロリン酸ピベラジンを50~60質量%、ピロリン酸メラミンを35~45質量%、酸化亜鉛を3~6質量%含有)
3.分散剤
 α-オレフィン・無水マレイン酸共重合体(三菱ケミカル(株)製、ダイヤカルナ30M、重量平均分子量7,800)。
4.ガラス繊維マット
 ロービングの連続したガラス繊維(繊維径23μm)から製造されたスワール(渦巻状)マット(坪量880g/m)をニードルパンチしたガラス繊維マットを使用した。
5.アルミナ繊維マット
 市販の結晶質アルミナ繊維(三菱ケミカル(株)製「MAFTEC」(登録商標))から製造されたマット(目付900g/m)を使用した。
6.シリカ繊維マット
 市販のシリカ繊維マット((株)光和製「KSM700-6」、目付700g/m)を使用した。
7.アルカリアースシリケート繊維マット
 市販のアルカリアースシリケート繊維マット(ソーワ工業(株)製 生体溶解性繊維ブランケット「S-4200H」、厚み12.5mm、密度128kg/m)を使用した。
調製例2-1(ポリプロピレン系樹脂組成物の調製)
 上記ポリプロピレン系樹脂、難燃剤、及び分散剤を表2に示す割合で溶融混練(230℃)して、ポリプロピレン系樹脂組成物(以下、「PP組成物2」と記載する。)のペレットを調製した。
実施例2-1
 以下、図4を参照しつつ、説明する。
 調製例2-1にて造粒したPP組成物2のペレットを押出機に入れて、溶融した後、シート状に押出し成形するとともに、押出されたシート状PP(図4の210、210’及び210’’)とガラス繊維マット230とアルミナ繊維マット220をそれぞれ、表1のa、bの質量比になるようPPを最外層とし、間にガラス繊維マット230及びアルミナ繊維マット220を供給して積層し、次いで、ラミネーターを用いて0.3MPaの圧力をかけながら、230℃で4分間、加熱及び加圧し、次いで、冷却固化させることで、スタンパブルシート(厚み;3.8mm)を得た。
ハウジングカバーの成形
 前記で得られたスタンパブルシートaを2枚、スタンパブルシートbを1枚使用し、bをaで両側から挟むように重ね、遠赤加熱炉(設定温度270-300℃)で4分間、材料温度210℃になるように予備加熱する。
 次いで金型を設置したプレス機にて150kg/cmの圧力をかけながら30秒保持し、冷却固化することで箱状の成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。なお、スタンパブルシートa~f、実施例2-1~2-3、及び比較例2-1はいずれも表2及び3に示す成分の他、任意の添加成分を加えて合計が100質量%となるように作製した。
実施例2-2
 実施例2-1のスタンパブルシートの作製方法において、樹脂組成物中のポリプロピレン樹脂、難燃剤、及び分散剤の含有量を表2に記載のc、dの通りに変更し、dをcで両側から挟むように重ね、表2に記載の通りの質量比に変更して、ハウジングカバーを成形したこと以外は、実施例2-1と同様にして成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。
実施例2-3
 実施例2-1のスタンパブルシートの作製方法において、樹脂組成物中のポリプロピレン樹脂、難燃剤、及び分散剤の含有量を表2に記載のk、gの通りに変更し、gをkで両側から挟むように重ね、表3に記載の通りの質量比に変更して、ハウジングカバーを成形したこと以外は、実施例2-1と同様にして成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。
実施例2-4
 実施例2-1のスタンパブルシートの作製方法において、樹脂組成物中のポリプロピレン樹脂、難燃剤、及び分散剤の含有量を表2に記載のk、hの通りに変更し、hをkで両側から挟むように重ね、表3に記載の通りの質量比に変更して、ハウジングカバーを成形したこと以外は、実施例2-1と同様にして成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。
実施例2-5
 実施例2-1のスタンパブルシートの作製方法において、樹脂組成物中のポリプロピレン樹脂、難燃剤、及び分散剤の含有量を表2に記載のiの通りに変更し、iを3枚重ね、表3に記載の通りの質量比に変更して、ハウジングカバーを成形したこと以外は、実施例2-1と同様にして成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。
比較例2-1
 実施例2-1において、混錬機にペレットとチョップド炭素繊維を表2のfの割合で混錬し、得られたコンパウンドを使用してシート状としたことに加え、アルミナ繊維マットを使用しなかったこと以外、実施例2-1と同様にしてスタンパブルシートを得た。その後、fを3枚重ね、表3に記載した通りの質量比に変更し、ハウジングカバーを成形したこと以外は実施例2-1と同様にして成形体(厚み;3.0mm)を得た。上記方法により評価した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003

*分散剤比率は、難燃剤100質量部に対する分散剤の含有量(質量部)である。
 このように、高耐熱繊維を含む本発明のバッテリーハウジングは遮炎性に優れることがわかる。特に、実施例2-1に示すように、難燃剤及び分散剤を適量含有する場合、さらに遮炎性に優れることがわかる。また、本発明のバッテリーハウジングは、主成分が樹脂であるために軽量である
 本発明のスタンパブルシートは、上述のように、剛性、遮炎性、断熱性、加工性に優れることから、航空機、船舶、自動車部品や電気電子機器部品、建築材など高い安全性が求められる各種工業部品の材料として有用である。とりわけ従来から金属が使用されていたバッテリーの各種ハウジングや筐体に、好適に用いることができ、自動車の安全性に貢献すると共に軽量化によるエネルギー効率の向上やCO排出量削減などが期待される。
 また、本発明のバッテリーハウジングは遮炎性に優れ、かつ樹脂が主成分であることから、加工性に優れる。しかも軽量であるため、本発明のバッテリーハウジングを用いた構造体は、電動モビリティとして有用である。
10 積層体
11 PPシート
12 ガラス繊維マット
13 PPシート
20 積層体
21 PPシート
22 ガラス繊維マット
23 アルミナ繊維マット
24 PPシート
100 構造体(バッテリー)
110 バッテリーモジュール
120 バッテリーパック
130 バッテリーハウジング
200 スタンパブルシート
210 ポリプロピレンシート
210’ ポリプロピレンシート
210’’ ポリプロピレンシート
220 アルミナ繊維マット
230 ガラス繊維マット

Claims (13)

  1.  (A)熱可塑性樹脂、(B)難燃剤、(C)分散剤、及び(D)無機繊維を含むスタンパブルシートであって、(D)無機繊維の含有量が全重量に対して1~80質量%であり、(B)難燃剤100質量部に対する(C)分散剤の含有量が0を超え25質量部以下である、スタンパブルシート。
  2.  前記(C)分散剤がα-オレフィンと不飽和カルボン酸との共重合体である請求項1に記載のスタンパブルシート。
  3.  前記(B)難燃剤がリン系難燃剤である請求項1又は2に記載のスタンパブルシート。
  4.  前記(B)難燃剤がイントメッセント系難燃剤である請求項1~3のいずれか1項に記載のスタンパブルシート。
  5.  前記(D)無機繊維の平均繊維長が0.1mm以上である、請求項1~4のいずれか1項に記載のスタンパブルシート。
  6.  前記(D)無機繊維がガラス繊維、セラミック繊維、金属繊維及び金属酸化物繊維から選ばれる少なくとも1種である請求項1~5のいずれか1項に記載のスタンパブルシート。
  7.  前記(A)熱可塑性樹脂が、(A-1)ポリプロピレン系樹脂であり、ポリプロピレン系樹脂の含有量が全重量に対して15~80質量%である、請求項1~6のいずれか1項に記載のスタンパブルシート。
  8.  (B)難燃剤の含有量が全重量に対して1~30質量%である、請求項1~7のいずれか1項に記載のスタンパブルシート。
  9.  前記(A)熱可塑性樹脂、(B)難燃剤、及び(C)分散剤を含有する樹脂組成物を前記(D)無機繊維からなるマットに含浸してなる請求項1~8のいずれか1項に記載のスタンパブルシート。
  10.  前記マットは、連続ガラスまたは無機繊維のスワール(渦巻状)マットをニードルパンチにて製造されてなる請求項9に記載のスタンパブルシート。
  11.  請求項1~10のいずれか1項に記載のスタンパブルシートをスタンピング成形してなる成形体。
  12.  請求項11記載の成形体からなるバッテリーハウジング。
  13.  (A-1)ポリプロピレン系樹脂、(B)難燃剤、(C)分散剤及び(D)無機繊維を含むスタンパブルシートであって、(A)ポリプロピレン系樹脂の含有量が15~80質量%、(B)難燃剤の含有量が1~30質量%、(D)無機繊維の含有量が3~60質量%であり、(B)難燃剤100質量部に対する(C)分散剤の含有量が0.01~10質量部であるスタンパブルシート。
PCT/JP2022/018080 2021-04-16 2022-04-18 スタンパブルシート及びそれを用いた成形体 WO2022220303A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280028685.3A CN117203268A (zh) 2021-04-16 2022-04-18 可冲压片材及使用其的成形体
KR1020237035077A KR20230174221A (ko) 2021-04-16 2022-04-18 스탬퍼블 시트 및 그것을 사용한 성형체
JP2023514690A JPWO2022220303A1 (ja) 2021-04-16 2022-04-18
US18/286,674 US20240194984A1 (en) 2021-04-16 2022-04-18 Stampable Sheet and Molded Body Using Same
EP22788226.3A EP4324869A1 (en) 2021-04-16 2022-04-18 Stampable sheet and molded body using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021069976 2021-04-16
JP2021-069976 2021-04-16
JP2021-069978 2021-04-16
JP2021069978 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022220303A1 true WO2022220303A1 (ja) 2022-10-20

Family

ID=83640747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018080 WO2022220303A1 (ja) 2021-04-16 2022-04-18 スタンパブルシート及びそれを用いた成形体

Country Status (5)

Country Link
US (1) US20240194984A1 (ja)
EP (1) EP4324869A1 (ja)
JP (1) JPWO2022220303A1 (ja)
KR (1) KR20230174221A (ja)
WO (1) WO2022220303A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105196A (ja) * 1997-10-03 1999-04-20 Kawasaki Steel Corp 抄造法スタンパブルシート、その製造方法およびスタンパブルシート成形品
JP2007321024A (ja) * 2006-05-31 2007-12-13 Sanyo Chem Ind Ltd 難燃性樹脂組成物
JP2008189893A (ja) 2007-02-08 2008-08-21 Japan Polypropylene Corp プロピレン/エチレン−αオレフィン系ブロック共重合体の製造方法
JP2014062189A (ja) * 2012-09-21 2014-04-10 Mitsubishi Motors Corp 車輌用バッテリーケース
JP2016120662A (ja) * 2014-12-25 2016-07-07 日本ポリプロ株式会社 炭素繊維を含有するポリプロピレン系樹脂層とガラス繊維マット層とを有するスタンパブルシート及びそれを成形してなる成形体
JP2021021004A (ja) * 2019-07-26 2021-02-18 大塚化学株式会社 樹脂用分散剤、樹脂組成物及びその成形体
KR102297444B1 (ko) * 2020-04-13 2021-09-02 한화솔루션 주식회사 난연성 및 충격 흡수성 복합 소재 및 이를 포함하는 전기차 배터리 케이스용 하부 보호 커버
CN113603962A (zh) * 2021-07-16 2021-11-05 中广核俊尔(浙江)新材料有限公司 一种高韧性v0级阻燃蓄电池外壳用聚丙烯复合材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462584B2 (ja) 2009-10-21 2014-04-02 出光ライオンコンポジット株式会社 ガラス長繊維含有難燃性樹脂組成物及び成形品
JP5793068B2 (ja) 2011-12-06 2015-10-14 株式会社Adeka 難燃性ポリオレフィン系樹脂組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11105196A (ja) * 1997-10-03 1999-04-20 Kawasaki Steel Corp 抄造法スタンパブルシート、その製造方法およびスタンパブルシート成形品
JP2007321024A (ja) * 2006-05-31 2007-12-13 Sanyo Chem Ind Ltd 難燃性樹脂組成物
JP2008189893A (ja) 2007-02-08 2008-08-21 Japan Polypropylene Corp プロピレン/エチレン−αオレフィン系ブロック共重合体の製造方法
JP2014062189A (ja) * 2012-09-21 2014-04-10 Mitsubishi Motors Corp 車輌用バッテリーケース
JP2016120662A (ja) * 2014-12-25 2016-07-07 日本ポリプロ株式会社 炭素繊維を含有するポリプロピレン系樹脂層とガラス繊維マット層とを有するスタンパブルシート及びそれを成形してなる成形体
JP2021021004A (ja) * 2019-07-26 2021-02-18 大塚化学株式会社 樹脂用分散剤、樹脂組成物及びその成形体
KR102297444B1 (ko) * 2020-04-13 2021-09-02 한화솔루션 주식회사 난연성 및 충격 흡수성 복합 소재 및 이를 포함하는 전기차 배터리 케이스용 하부 보호 커버
CN113603962A (zh) * 2021-07-16 2021-11-05 中广核俊尔(浙江)新材料有限公司 一种高韧性v0级阻燃蓄电池外壳用聚丙烯复合材料及其制备方法

Also Published As

Publication number Publication date
KR20230174221A (ko) 2023-12-27
EP4324869A1 (en) 2024-02-21
JPWO2022220303A1 (ja) 2022-10-20
US20240194984A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
WO2010008182A2 (ko) 불연성 알루미늄 복합판넬 심재용 조성물
JP2603884B2 (ja) 難燃性樹脂組成物
US20240002638A1 (en) Fiber-reinforced resin composition and molded article
JP7329528B2 (ja) 自己消火性樹脂成形体
WO2022220303A1 (ja) スタンパブルシート及びそれを用いた成形体
JP2013194077A (ja) ポリプロピレン系樹脂組成物およびそれからなる難燃性ブロー成形体
JP7324678B2 (ja) 樹脂成形体
WO2024085232A1 (ja) 繊維強化樹脂複合材料及びそれを用いた成形体
WO2024085231A1 (ja) 複合シート、複合シートの製造方法及び成形体
WO2024058221A1 (ja) 積層体及びその製造方法
JP2024060541A (ja) スタンパブルシート及びそれを用いた成形体
JP2024060542A (ja) スタンパブルシート及びそれを用いた成形体
JP2024060487A (ja) 成形体
WO2024085233A1 (ja) 積層体
JP2024060486A (ja) 積層体及びそれを用いた成形体
JP2024041073A (ja) バッテリーハウジング
JP2024060540A (ja) 一体成形体及びそれを用いたバッテリーパック
JP2024041072A (ja) 積層体及びその製造方法
CN117203268A (zh) 可冲压片材及使用其的成形体
JP2024060545A (ja) 成形体
JP2024041074A (ja) 積層体及びその製造方法
JP7455752B2 (ja) 樹脂成形体
KR101025518B1 (ko) 비할로겐계 연질내열성 난연조성물 및 이로부터 제조된 전기통신자동차용 케이블
KR20100027316A (ko) 강성이 우수한 비할로겐계 난연 폴리프로필렌 수지 조성물
JP2022080888A (ja) 樹脂組成物およびその成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22788226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023514690

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18286674

Country of ref document: US

Ref document number: 2301006723

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280028685.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022788226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022788226

Country of ref document: EP

Effective date: 20231116