WO2022218353A1 - 聚合物多孔材料及其制备方法与应用 - Google Patents

聚合物多孔材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022218353A1
WO2022218353A1 PCT/CN2022/086664 CN2022086664W WO2022218353A1 WO 2022218353 A1 WO2022218353 A1 WO 2022218353A1 CN 2022086664 W CN2022086664 W CN 2022086664W WO 2022218353 A1 WO2022218353 A1 WO 2022218353A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
porous material
emulsifier
monomer
polymer
Prior art date
Application number
PCT/CN2022/086664
Other languages
English (en)
French (fr)
Inventor
柏浩
李德文
高微微
张子倍
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022218353A1 publication Critical patent/WO2022218353A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to the field of preparation of polymer porous materials, in particular to several preparation methods, products and applications of polymer porous materials.
  • Porous polymer materials are an important class of polymer materials. Compared with non-porous polymer materials, porous polymer materials have many advantages, such as low density, good thermal insulation performance, high specific strength, and good sound insulation performance. It plays an important role in many fields such as water and land transportation, national defense and military, and civil engineering. According to the statistics of the "2021-2027 Foam Plastic Market Survey and Analysis and Investment Strategy Analysis and Forecast Report" released by China Gold Enterprise Credit International Consulting, my country's foam plastic products in 2019. The cumulative output has reached 2.5819 million tons, with a wide variety of products and a gradually increasing market share, playing a very important role in the national economy.
  • porous polymer materials mainly include traditional foaming method, high internal emulsion method, salting-out method, 3D printing method and freezing casting method.
  • Porous polymer materials are prepared through the process of gas dissolution, nucleation, growth and cell shaping.
  • the preparation process is relatively simple, but the control methods for the pore structure are limited, and some foaming agents will remain; Salt particles of a certain size are mixed with resin powder, and the salt particles are washed away after melting and cooling.
  • this method is limited by the degree of dispersion of the salt particles, and it is difficult to prepare porous materials with ultra-high porosity, and some salt particles will remain.
  • the high internal emulsion method is to obtain polymer porous materials by polymerizing the continuous phase monomers in the emulsion and then drying them, but there will be emulsifier residues, and there is a lack of more abundant pore morphology control methods; 3D printing methods can be used in advance.
  • the material structure is designed, but high-precision printing requires a very long printing time, which limits its large-scale application.
  • the ice template method is a typical method for preparing porous materials.
  • many different porous materials, especially aerogel materials with very high porosity have been successfully prepared by freezing methods.
  • the application of the ice template method is extremely dependent on the water solubility of the raw material or its dispersibility in water.
  • hydrophobic materials, especially hydrophobic polymers the main possible route at present is to imitate the preparation process of porous ceramics, first prepare polymer emulsion, make pores through ice template, and then heat treatment to melt and connect the pore wall microspheres.
  • the process of this route is cumbersome, and the post-treatment pore wall defects are large, and the self-supporting polymer porous material with high porosity cannot be obtained due to the collapse of the pore wall. Therefore, it is of great significance and value to find a method to obtain self-supporting polymeric porous materials with high porosity.
  • the object of the present invention is to provide a method for preparing a high-porosity polymer porous material in view of the deficiencies of the prior art. Specifically, at least include:
  • the present invention overcomes the technical prejudice and applies the ice-template method to the hydrophobic polymer system; on the other hand, the present invention selects active pre-crosslinked emulsion, and combines the expansion extrusion of the ice-template method to produce extrusion up to hundreds of megapascals stress to obtain polymer porous materials with extremely high porosity.
  • This further reactive reactive pre-crosslinked emulsion possesses both a ready-made polymer network to be highly oriented and extended under the extrusion of ice crystals, and an unreacted portion to react at low temperature to fix the highly oriented and extended pores wall structure.
  • the ice crystals grown at low temperature will produce a violent extrusion fusion process on the pre-crosslinked emulsion particles, so that the polymer particles can be demulsified and fused into a uniform structure.
  • the huge extrusion stress induced a certain orientation of the polymer network, thinner, denser and more uniform pore walls were formed.
  • a polymeric porous material with high porosity (up to 99.0% and density as low as 0.013 g/cm 3 ) that is self-supporting after drying, has excellent elasticity, and is highly elastic.
  • the porosity of the product can be effectively controlled by adjusting the oil phase concentration of the pre-crosslinked emulsion, and the lower the concentration, the higher the porosity.
  • the cross-linking degree of the pre-crosslinked emulsion is 10-90%, so as to ensure that the emulsion can be smoothly broken and fused, and at the same time, it has sufficient strength to support the pore wall without collapsing after drying;
  • the freezing described in the present invention is to allow the water in the emulsion to form ice crystals, which is generally achieved at a temperature lower than 0°C, and can also be higher than 0°C in some special environments.
  • the drying method of the present invention can be freeze drying or room temperature drying.
  • the porous material obtained after drying is further processed to enhance its properties or impart functional characteristics, including but not limited to heat treatment, chemical modification, and the like.
  • the thermal conductivity is further reduced by means of multi-stage freezing.
  • the multi-stage freezing method is: adding active polymer emulsion to the freeze-dried sample and freezing again.
  • the present invention also relates to the polymer porous material prepared by the above preparation method, the porosity is up to 99.0%, and the density is as low as 0.013 g/cm 3 .
  • the present invention also relates to its application in thermal insulation materials, sound-absorbing materials, and shock-absorbing materials.
  • pre-crosslinked emulsions include, but are not limited to, pre-crosslinked polysiloxane emulsions, pre-crosslinked polyepoxy resin emulsions, pre-crosslinked polyurethane emulsions, and pre-crosslinked polyacrylate emulsions.
  • the raw materials of the pre-cross-linked polysiloxane emulsion include siloxane monomer, emulsifier, cross-linking agent, catalyst and water; by controlling the ratio of each component and reaction conditions, the cross-linking degree is 10-90%. It is common knowledge in the field.
  • the siloxane monomer can be octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, decamethylcyclopentasiloxane, hexamethylcyclooctasiloxane, dodecamethylcyclopentasiloxane Cyclohexasiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane, tetramethyltetravinylcyclotetrasiloxane or octaphenylcyclotetrasiloxane, methyltrimethoxy One of silane, methyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, vinylmethyldiethoxysilane, vinyltriethoxysilane or Several; the emulsifier can be dimethyl dihexadecyl ammonium chloride, dimethyl dioctadecyl ammonium chloride, do
  • the raw materials of the pre-crosslinked polyepoxy resin emulsion include epoxy resin monomer, emulsifier, crosslinking agent, catalyst and water. It is common knowledge in the art to achieve the crosslinking degree of 10-90% by controlling the ratio of each component and the reaction conditions.
  • the epoxy resin monomer can be one or more of bisphenol A-type epoxy resin monomers (E51, E54, E44, E29), bisphenol F-type epoxy resin monomers, and epoxy-based silicone resins.
  • the emulsifier can be dodecylbenzenesulfonic acid, Tween-80, sodium dodecylbenzenesulfonate, triton, sodium 3-allyloxy-2 hydroxy-1-propane sulfonate One or more of salt and ethoxylated alkyl ether ammonium sulfate;
  • the crosslinking agent can be trifunctional epoxy resin triglycidyl m-aminophenol, 2,4,6-tris(dimethylamino) One or more of methyl) phenol, diisocyanate, ethylenediamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, diethylaminopropylamine, maleic anhydride, phthalic anhydride;
  • the catalyst may be one or more of potassium persulfate, tertiary amine, imidazole, and boron trifluoride complex.
  • the raw materials of the pre-crosslinked polyurethane emulsion can be isocyanate monomers, oligomeric polyols or small molecular polyols, hydrophilic chain extenders, crosslinking agents, catalysts and water. It is common knowledge in the art to achieve the crosslinking degree of 10-90% by controlling the ratio of each component and the reaction conditions.
  • the isocyanate monomer can be toluene diisocyanate, diphenylmethane-4,4'-diisocyanate, hexamethylene diisocyanate, methylcyclohexyl diisocyanate, isophorone diisocyanate, naphthalene-1,5 -One or more kinds of diisocyanates; oligomeric polyols and small molecular polyols can be polyethylene glycol, polypropylene glycol, polyester polyol, acrylic polyol, polycarbonate polyol, ethylene glycol, 1,4 One or more of -butanediol; the hydrophilic chain extender can be among N-methyldiethanolamine, bismethylolpropionic acid, bismethylolbutyric acid, sodium ethylenediamine ethanesulfonate one or more; the cross-linking agent can be ethylene glycol diglycidyl ether, sorbitol polyglycidyl ether,
  • the raw materials of the pre-crosslinked polyacrylate emulsion include main monomer, functional crosslinking monomer, emulsifier, initiator and water. It is common knowledge in the art to achieve the crosslinking degree of 10-90% by controlling the ratio of each component and the reaction conditions.
  • the main monomer can be one or more of methyl acrylate, methyl methacrylate, butyl acrylate, and ethyl acrylate;
  • the functional cross-linking monomer can be ethylene glycol dimethacrylate, One or more of hydroxyethyl methacrylate, diallyl phthalate, trimethylolpropane triacrylate, and acetoacetoxyethyl methacrylate;
  • the emulsifier can be dodecane One or more of sodium alkyl sulfate, ER-10 emulsifier, disodium hydrogen phosphate dodecahydrate, OP-10 emulsifier;
  • the initiator can be ammonium persulfate, potassium persulfate, azodiiso One or more of butyronitrile and N,N-dimethylaniline.
  • the present invention overcomes the technical prejudice, applies the ice template method to the hydrophobic polymer system, selects active pre-crosslinked emulsion, and combines the expansion extrusion of the ice template method to generate an extrusion stress as high as several hundred megapascals , to obtain polymer porous materials with extremely high porosity.
  • This reactive polymer emulsion possesses both a ready-made polymer network to be highly oriented and extended under the extrusion of ice crystals, and an unreacted portion to react at low temperature to fix the highly oriented and extended pore wall structure, bringing An unexpected technical effect is achieved: the high porosity of the porous material skeleton can reach up to 99.0%, and the density is as low as 0.013g/cm 3 , which can realize self-support and excellent elasticity.
  • the silicone rubber porous material obtained by the preparation method of the present invention has lower thermal conductivity (minimum 18.7 mW/m ⁇ K) and better thermal insulation performance than the silicone rubber porous material prepared by the traditional method due to high porosity.
  • the preparation method of the present invention uses water or ice as the pore-forming agent, and is more environmentally friendly.
  • the preparation method of the present invention can prepare polymer porous materials with different pore sizes and different structures by adjusting the temperature field of freezing, and can be applied to other specific fields.
  • Figure 1 is a picture of the extrusion fusion and extension orientation of the ice crystals to the emulsion particles during the preparation of the polymer emulsion ice template.
  • Figure 2 is a picture of the effect of ice crystals on particles during the preparation of the ice template of the monomer emulsion of the comparative example.
  • Figure 3 is a finished product of the silicone rubber porous material.
  • Figure 4 is a comparison chart of thermal stability of silicone rubber porous material and commercial polystyrene foam.
  • Figure 5 is a graph comparing the surface temperature of silicone rubber porous material and commercial polystyrene foam.
  • FIG. 6 is a SEM picture of the cross section of the silicone rubber porous material.
  • Example 1 Preparation process of pre-crosslinked emulsion ice template method:
  • Comparative Example 1 Different from Example 1, after the monomers methyl methacrylate, butyl acrylate and the crosslinking agent trimethylolpropane triacrylate were mixed uniformly, the initiator ammonium persulfate was added, and the After water emulsification of the same proportion of emulsifier, it was directly frozen in liquid nitrogen without pre-reaction. After freezing, it was placed in a -15 °C refrigerator for 24 hours for reaction, and then freeze-dried to obtain porous materials. Heating in medium for 1-4h to complete the reaction. At the same emulsion concentration, ie 2.86% (v/v%), the porous material obtained after monomer freezing could not support itself after freeze-drying and collapsed, and the final porosity was only 47.51%.
  • Figure 1 shows the assembly extrusion extension image of the pre-crosslinked emulsion ice template.
  • Figure 2 shows the freezing process of the monomer emulsion ice template method. Comparing Figure 1 and Figure 2, it can be seen that for the ice template of the pre-crosslinked emulsion In terms of method, the emulsion particles undergo a process of demulsification and fusion and extrusion orientation under the extrusion of ice crystals, while the ice template freezing of the monomer emulsion only fixes the position and morphology of the emulsion, and there is no extrusion orientation process. , so the mechanical properties are poor and cannot support higher porosity.
  • cyclic monomers such as octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, decamethylcyclopentasiloxane, Decamethylcyclopentasiloxane, hexadecamethylcyclooctasiloxane, dodecamethylcyclohexasiloxane, etc. cannot form a sol system due to their poor solubility in water, and it is difficult to undergo a hydrolysis ring-opening reaction.
  • the use of traditional sol-gel methods to prepare high-porosity silicone rubber aerogels limits the application of this class of inexpensive and readily available materials, and also makes these materials more expensive.
  • the above-mentioned monomers with poor solubility in water that cannot form a sol system can be used to obtain high-porosity silicone rubber aerogels.
  • siloxane monomer emulsion is heated and stirred at 80° C. for 1-9 hours to obtain a polysiloxane emulsion.
  • step (4) Take 10ml of the emulsion after step (4), add 90ml of deionized water to dilute and stir evenly.
  • the dried silicone rubber porous material is placed in an oven at 80° C. and heated for 1 to 6 hours to obtain the silicone rubber porous material, as shown in FIG. 3 .
  • the average sound absorption coefficient of the 15mm thick silicone rubber porous material is 0.34 to 0.36.
  • siloxane monomer emulsion is heated and stirred at 80° C. for 1-9 hours to obtain a polysiloxane emulsion.
  • step (4) Take 10 ml of the emulsion after step (4), add 25 ml of deionized water, and stir evenly.
  • the dried silicone rubber porous material is placed in an oven at 80° C. and heated for 1-6 hours.
  • the average sound absorption coefficient of the 15mm thick silicone rubber porous material is 0.35 to 0.37.
  • siloxane monomer emulsion is heated and stirred at 80° C. for 1-9 hours to obtain a polysiloxane emulsion.
  • step (4) Take 10 ml of the emulsion after step (4), add 25 ml of deionized water, and stir evenly.
  • the dried silicone rubber porous material is placed in an oven at 80° C. and heated for 1-6 hours.
  • the average sound absorption coefficient of the 15mm thick silicone rubber porous material is 0.34 to 0.36.
  • step (4) Take 10 ml of the emulsion after step (4), add 25 ml of deionized water, and stir evenly.
  • Resin porosity (1-porous material density/bulk density) is about 98.25-98.35%.
  • the average sound absorption coefficient of the 15mm thick epoxy resin porous material is 0.42 to 0.47.
  • siloxane monomer emulsion is heated and stirred at 80° C. for 1-9 hours to obtain a polysiloxane emulsion.
  • step (4) Take 10 ml of the emulsion after step (4), add 40 ml of deionized water, and stir evenly.
  • step (8) Take 10ml of the emulsion of step (4), add 90ml of deionized water, and stir evenly.
  • step (9) Put the freeze-dried sample into the mold again, add the emulsion in step (8) to the mold, and place it in liquid nitrogen for freezing, and after freezing, vacuum dry for 36 hours.
  • step (4) Take 10 ml of the emulsion after step (4), add 25 ml of deionized water, and stir evenly.
  • the density is 30.2-33.6 mg/cm 3
  • the emulsion is dried to obtain a transparent film
  • the calculated film density (polyurethane bulk density) is 1164 mg/cm 3
  • the pores of the polyurethane porous material are obtained
  • the ratio (1-porous material density/bulk density) is about 97.11-97.41%.
  • the average sound absorption coefficient of the 15mm thick epoxy resin porous material is 0.37 to 0.39.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供聚合物多孔材料的制备方法,该方法基于活性预交联乳液既拥有现成的聚合物网络,在冰晶的挤压下高度取向和延展,又具有未反应部分,以在低温下反应固定高度取向和延展后的孔壁结构的特点,结合冰模板法的优势来获得高孔隙率(最高可达99.0%,密度低至0.013g/cm 3)的聚合物多孔材料。由于孔隙率高,相比传统方法制备的聚合物多孔材料,热导率更低(最低达18.7mW/m·K),隔热性能更好,可作为高性能的隔热/隔音/减震材料。

Description

聚合物多孔材料及其制备方法与应用 技术领域
本发明涉及聚合物多孔材料的制备领域,具体涉及几种聚合物多孔材料的制备方法及产品和应用。
背景技术
高分子多孔材料是一类重要的高分子材料,和无孔高分子材料相比,高分子多孔材料具有密度低、隔热性能好、比强度高、隔音性能好等诸多优点,在航空航天、水陆交通、国防军事、民用工程等诸多领域中发挥重大作用,据中金企信国际咨询公布的《2021-2027年泡沫塑料市场调查分析与投资战略分析预测报告》统计数据显示,2019年我国泡沫塑料制品累计产量已达到258.19万吨,产品种类繁多,市场占比逐渐增加,在国民经济中占据非常重要的作用。
现如今制备聚合物多孔材料的方法主要包括传统发泡法、高内向乳液法、盐析法、3D打印法和冷冻铸造法等,传统发泡法采用物理或者化学发泡剂作为制孔模板,通过气体的溶解、成核、生长与泡孔定型过程制备聚合物多孔材料,其制备过程相对简单,但对于孔结构的调控方法有限,且会造成一定发泡剂的残留;盐析法是将一定大小的盐颗粒与树脂粉末进行混合,熔融冷却后将盐颗粒洗去,但这种方法受限于盐颗粒的分散程度,难以制备超高孔隙率的多孔材料,且盐颗粒会有部分残留在多孔材料中;高内向乳液法是通过将乳液中连续相单体聚合后干燥得到高分子多孔材料,但会存在乳化剂残留,且缺乏更丰富的孔形貌调控手段;3D打印法可事先设计材料结构,但高精度的打印需要十分漫长的打印时间,限制其大规模应用。
冰模板法是制备多孔材料的典型方法。近年来,人们利用冷冻法成功制备了许多不同的多孔材料,特别是孔隙率非常高的气凝胶材料。冰模板法的应用极度依赖于原材料的水溶性或其在水中的分散性。对于疏水性材料,特别是疏水性聚合物,目前可能的主要路线是仿造多孔陶瓷的制备过程,先制备聚合物乳液,通过冰模板制孔后,进行热处理使孔壁微球发生熔融连接。该路线过程繁琐,且后处理孔壁缺陷大,因孔壁塌陷无法得到较高孔隙率自支撑的聚合物多孔材料。因此寻找一种能够得到高孔隙率自支撑的聚合物多孔材料的方法具有重要的意义和价值。
发明内容
本发明的目的在于针对现有技术的不足,提供一种高孔隙率的聚合物多孔材料的制 备方法。具体的,至少包括:
(1)对活性预交联乳液进行冰冻,乳液中的乳液颗粒在冰冻条件下进一步相互反应;在冰冻阶段形成的冰晶对所述活性预交联乳液中的聚合物网络进行挤压融合;所述活性聚合物乳液的交联度为10-90%;
以及,(2)冰冻后进行干燥,得到聚合物多孔材料。
一方面,本发明克服技术偏见,将冰模板法应用于疏水聚合物体系,另一方面,本发明选用活性预交联乳液,结合冰模板法的膨胀挤压产生高达数百兆帕的挤压应力,来获得极高孔隙率的聚合物多孔材料。这种可进一步反应的活性预交联乳液既拥有现成的聚合物网络,以在冰晶的挤压下高度取向和延展,又具有未反应部分,以在低温下反应固定高度取向和延展后的孔壁结构。具体的,在活性预交联乳液的冷冻铸造过程中,低温生长的冰晶会对预交联乳液颗粒产生剧烈的挤压融合过程,使得聚合物颗粒之间能够破乳融合成均匀的结构,更重要的是:由于巨大的挤压应力诱导聚合物网络产生一定的取向作用,形成更薄、更致密且均匀的孔壁。由于选用的预交联乳液具有反应活性,在破乳融合后进一步发生链间反应形成强大的化学键,将取向及孔壁结构固定下来,从而产生薄而坚韧的孔壁结构,得到在解冻及冷冻干燥后都能自支撑、弹性优异且具有高孔隙率(最高可达99.0%,密度低至0.013g/cm 3)的聚合物多孔材料。
基于本发明,通过调节预交联乳液的油相浓度可以有效控制产品的孔隙率,浓度越低,孔隙率越高。
优选的,预交联乳液交联度在10-90%,以保证乳液能够顺利破乳融合的同时,在干燥过后又具有足够的强度以支撑孔壁不会塌缩;
本发明所述的冰冻是让乳液中的水分形成冰晶,一般情况下,在低于0℃的条件下实现,在某些特殊环境下也可以高于0℃。
本发明所述的干燥方式,可以为冷冻干燥或室温干燥。
在某些实施例中,对干燥后得到的多孔材料进一步处理,以提升其性能或赋予其功能性特征,这种处理包括但不限于热处理、化学修饰等。
在某些实施例中,采用多级冷冻的方式进一步降低热导率,多级冷冻方式为:向冷冻干燥后的样品中加入活性聚合物乳液,再次冷冻。
本发明还涉及上述制备方法制备得到的聚合物多孔材料,孔隙率最高可达99.0%,密度低至0.013g/cm 3
基于上述聚合物多孔材料的高孔隙率,本发明还涉及其在隔热保温材料、吸音材料、 减震材料的应用。
具体的,以上所述的预交联乳液包括但不限于预交联聚硅氧烷乳液,预交联聚环氧树脂乳液,预交联聚氨酯乳液,预交联聚丙烯酸酯乳液。
所述预交联聚硅氧烷乳液的原料包括硅氧烷单体、乳化剂、交联剂、催化剂和水;通过控制各个成分的比例及反应条件以达到其交联度在10-90%为本领域公知常识。所述硅氧烷单体可以为八甲基环四硅氧烷、六甲基环三硅氧烷、十甲基环五硅氧烷、十六甲基环辛硅氧烷、十二甲基环六硅氧烷、2,4,6,8-四甲基环四硅氧烷、四甲基四乙烯基环四硅氧烷或八苯基环四硅氧烷中、甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、乙烯基甲基二乙氧基硅烷、乙烯基三乙氧基硅烷中的一种或几种;所述乳化剂可以为二甲基双十六烷基氯化铵、二甲基双十八烷基氯化铵、十二烷基苯磺酸、十二烷基苯磺酸钠或十二烷基硫酸钠中的一种或几种;所述交联剂可以为正硅酸乙酯、甲基含氢硅油、过氧化二苯甲酰或过氧化二异丙苯中的一种或几种;所述催化剂可以为十二烷基苯磺酸、盐酸、硫酸、氢氧化钠、四甲基氢氧化钠、氨水、二月桂酸二辛基锡、二月桂酸二丁基锡、多烷氧基钛酸酯或氯铂酸或铂-乙烯基硅氧烷络合物中的一种或几种。
所述预交联聚环氧树脂乳液的原料包括环氧树脂单体、乳化剂、交联剂、催化剂和水。通过控制各个成分的比例及反应条件以达到其交联度在10-90%为本领域公知常识。所述环氧树脂单体可以为双酚A型环氧树脂单体(E51、E54、E44、E29)、双酚F型环氧树脂单体、环氧基有机硅树脂中的一种或几种;所述乳化剂可以为十二烷基苯磺酸、吐温-80、十二烷基苯磺酸钠、曲拉通、3-烯丙氧基-2羟基-1-丙烷磺酸钠盐、乙氧基化烷基醚硫酸铵中的一种或几种;所述交联剂可以为三官能团环氧树脂三缩水甘油基间氨基苯酚、2,4,6-三(二甲氨基甲基)苯酚、二异氰酸酯、乙二胺、己二胺、二乙烯三胺、三乙烯四胺、二乙氨基丙胺、顺丁烯二酸酐、邻苯二甲酸酐中的一种或者几种;所述催化剂可以为过硫酸钾、叔胺、咪唑、三氟化硼络合物中的一种或者几种。
所述预交联聚氨酯乳液的原料可以为异氰酸酯单体、低聚多元醇或小分子多元醇、亲水性扩链剂、交联剂、催化剂和水。通过控制各个成分的比例及反应条件以达到其交联度在10-90%为本领域公知常识。所述异氰酸酯单体可以为甲苯二异氰酸酯、二苯基甲烷-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、甲基环己基二异氰酸酯、异佛尔酮二异氰酸酯、萘-1,5-二异氰酸酯的一种或者几种;低聚多元醇和小分子多元醇可以为聚乙二醇、聚丙二醇、聚酯多元醇、丙烯酸多元醇、聚碳酸酯多元醇、乙二醇、1,4-丁二醇中的一种或者几种;亲水性扩链剂可以为N-甲基二乙醇胺、双羟甲基丙酸、双羟甲基丁酸、乙二胺基乙磺酸钠中 的一种或者几种;交联剂可以为乙二醇二缩水甘油醚、山梨醇多缩水甘油醚、甘油多缩水甘油醚、三羟甲基丙烷多缩水甘油醚、乙二胺、多亚乙基多胺、哌嗪、三羟甲基三聚氰胺、多异氰酸酯类交联剂(Desmodur DA、Desmodur XP-7007、Desmodur XO-671、Desmodur XO-672、PBA 2236LX CR-60N)中的一种或者几种;催化剂可以为1,4-二氮杂二环[2,2,2]辛烷、二月桂酸二丁基锡中的一种或者几种。
所述预交联聚丙烯酸酯乳液的原料包括主单体、功能性交联单体、乳化剂、引发剂和水。通过控制各个成分的比例及反应条件以达到其交联度在10-90%为本领域公知常识。所述主单体可以为丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸乙酯中的一种或几种;所述功能性交联单体可以为二甲基丙烯酸乙二醇酯、甲基丙烯酸羟乙酯、邻苯二甲酸二烯丙酯、三羟甲基丙烷三丙烯酸酯、甲基丙烯酸乙酰乙酰氧基乙酯中的一种或者几种;所述乳化剂可以为十二烷基硫酸钠、ER-10乳化剂、十二水合磷酸氢二钠、OP-10乳化剂中的一种或者几种;所述引发剂可以为过硫酸铵、过硫酸钾、偶氮二异丁腈、N,N-二甲基苯胺中的一种或者几种。
本发明的有益效果在于:本发明克服技术偏见,将冰模板法应用于疏水聚合物体系,并选用活性预交联乳液,结合冰模板法的膨胀挤压产生高达数百兆帕的挤压应力,来获得极高孔隙率的聚合物多孔材料。这种活性聚合物乳液既拥有现成的聚合物网络,以在冰晶的挤压下高度取向和延展,又具有未反应部分,以在低温下反应固定高度取向和延展后的孔壁结构,带来了意想不到的技术效果:多孔材料骨架高孔隙率最高可达99.0%,密度低至0.013g/cm 3,可实现自支撑,且弹性优异。
本发明的制备方法得到的硅橡胶多孔材料,由于孔隙率高,相比传统方法制备的硅橡胶多孔材料,热导率更低(最低达18.7mW/m·K),隔热性能更好。
本发明的制备方法相比传统化学发泡过程,使用水或冰为致孔剂,更环保。
本发明的制备方法,通过调节冷冻的温度场,可以制备得到不同孔径、不同结构的聚合物多孔材料,并应用其它特定的领域。
附图说明
图1为聚合物乳液冰模板制备过程中冰晶对乳液颗粒的挤压融合和延展取向图片。
图2为对比例单体乳液冰模板制备过程中冰晶对颗粒的作用图片。
图3为硅橡胶多孔材料成品图。
图4为硅橡胶多孔材料和商业聚苯乙烯泡沫热稳定性对比图。
图5为硅橡胶多孔材料和商业聚苯乙烯泡沫表面温度对比图。
图6为硅橡胶多孔材料截面的SEM图片。
具体实施方式
实施例1:预交联乳液冰模板法的制备流程:
(1)将1~2g ER-10乳化剂、2~5g十二烷基硫磺酸钠和0.4g十二水合硫酸氢二钠溶于180ml去离子水中。
(2)将10ml甲基丙烯酸甲酯单体和10ml丙烯酸丁酯单体和1~5ml功能交联单体三羟甲基丙烷三丙烯酸酯混合均匀后加入上述溶液,超声分散15min得到丙烯酸单体预乳液。
(3)在预乳液中加入1g过硫酸铵引发反应,在85℃下反应1~4h,冷却至室温。测得其交联度为54%。
(4)将稀释后的乳液倒入模具,并置于液氮中进行冷冻,冷冻后,真空干燥36h。
(5)计算聚丙烯酸酯多孔材料密度及孔隙率,密度为26.4-27.2mg/cm 3,将乳液烘干,得到透明薄膜,计算薄膜密度(本体密度)为1178mg/cm 3,得到多孔材料孔隙率(1-多孔材料密度/本体密度)约为97.69-97.76%。
(6)将干燥后的多孔材料置于90℃烘箱加热1-4h。
(7)采用稳态平板法对聚丙烯酸酯多孔材料进行热导率测试,室温下热导率为24.6-25.3mW/(m*K)。
对比例1:和实施例1不同的是,将单体甲基丙烯酸甲酯、丙烯酸丁酯和交联剂三羟甲基丙烷三丙烯酸酯混合均匀后,加入引发剂过硫酸铵,和加有同样比例乳化剂的水乳化后,不进行预反应直接在液氮中进行冷冻,冷冻后在-15℃冰箱里放置24h以进行反应,后经冷冻干燥得到多孔材料,干燥完成后在90℃烘箱中加热1-4h以反应完全。在同样的乳液浓度下即2.86%(v/v%),单体冰冻后得到的多孔材料在冷冻干燥后无法支撑自身,出现塌缩现象,最终孔隙率只有47.51%。
如图1所示为预交联乳液冰模板的组装挤压延展图像,图2位单体乳液冰模板法的冷冻过程,对比图1、图2可以看出,对于预交联乳液的冰模板法而言,乳液颗粒在冰晶的挤压作用下发生了破乳融合、挤压延展取向的过程,而单体乳液冰模板冷冻仅固定了乳液的位置形貌,无挤压延展取向的过程存在,因此力学性能较差,无法支撑较高的孔隙率。
在广泛使用的溶胶-凝胶法制备硅橡胶气凝胶体系中,环状单体如八甲基环四硅氧烷、六甲基环三硅氧烷、十甲基环五硅氧烷、十甲基环戊硅氧烷、十六甲基环辛硅氧烷、十二甲基环六硅氧烷等由于在水中溶解性较差不能形成溶胶体系,较难发生水解开环反应,无法使 用传统的溶胶-凝胶法制备高孔隙率的硅橡胶气凝胶,限制了这一类低价易得材料的应用,也使得这类材料造价更高。而通过本发明,可以利用上述在水中溶解性较差不能形成溶胶体系的单体获得高孔隙率的硅橡胶气凝胶,下面以八甲基环四硅氧烷单体为例展开说明:
实施例2
(1)0.1~1g十二烷基苯磺酸、0.1~1g十八烷与10g八甲基环四硅氧烷混合,并加热至60~90℃搅拌均匀。
(2)向其中加入90ml去离子水,混合均匀后超声分散5min,得到硅氧烷单体乳液。
(3)将硅氧烷单体乳液于80℃加热搅拌反应1~9h,得到聚硅氧烷乳液。
(4)向其中加入1~5ml正硅酸乙酯,继续80℃加热搅拌1~8h。测得其交联度为64%。
(5)取10ml步骤(4)后的乳液,加入90ml去离子水稀释并搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮进行冷冻,冰晶生长对预交联乳液的挤压作用如图1所示,冷冻后,真空干燥36h。
(7)将干燥后的硅橡胶多孔材料置于80℃烘箱,加热1~6h,得到硅橡胶多孔材料,如图3所示。
(8)计算硅橡胶多孔材料密度,密度为13.0~15.2mg/cm 3;将乳液烘干,得到透明薄膜,计算薄膜密度(硅橡胶本体密度)为1221mg/cm 3,得到硅橡胶孔隙率(1-多孔材料密度/本体密度)约为98.8~99.0%。
(9)采用稳态平板法对硅橡胶多孔材料进行热导率测试,室温下热导率为26.6~28.2mW/(m*K)。
(10)将硅橡胶多孔材料与传统商用PS泡沫进行隔热性能对比,如图4所示,图5为各表面的温度变化曲线,硅橡胶多孔材料表现出比传统商用PS泡沫更好的隔热性能。
(11)采用驻波管法进行吸音系数测试,15mm厚度硅橡胶多孔材料的平均吸音系数为0.34~0.36。
(12)采用动态热机械分析仪(DMA)测量室温下的阻尼减震性能,测得阻尼因子为0.32~0.35。
实施例3
(1)0.1~1g十二烷基苯磺酸、0.1~1g十八烷与10g八甲基环四硅氧烷混合,并加热至80℃搅拌均匀。
(2)向其中加入90ml去离子水,混合均匀后超声分散5min,得到硅氧烷单体乳液。
(3)将硅氧烷单体乳液于80℃加热搅拌反应1~9h,得到聚硅氧烷乳液。
(4)向其中加入1~5ml正硅酸乙酯,继续80℃加热搅拌1~8h。测得其交联度为10%。
(5)取10ml步骤(4)后的乳液,加入25ml去离子水,搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮进行冷冻,冷冻后,真空干燥36h。
(7)将干燥后的硅橡胶多孔材料置于80℃烘箱,加热1~6h。
(8)计算硅橡胶多孔材料密度及孔隙率,密度为45.3~47.2mg/cm 3,孔隙率约为96%。
(9)采用稳态平板法对硅橡胶多孔材料进行热导率测试,室温下热导率为29.1~31.1mW/(m*K)。
(10)采用扫描电镜(SEM)对硅橡胶多孔材料进行微结构观察,如图6为硅橡胶多孔材料SEM图。
(11)采用驻波管法进行吸音系数测试,15mm厚度硅橡胶多孔材料的平均吸音系数为0.35~0.37。
(12)采用动态热机械分析仪(DMA)测量室温下的阻尼减震性能,测得阻尼因子为0.29~0.31。
实施例4
(1)0.1~1g十二烷基苯磺酸、0.1~1g十八烷与10g四甲基四乙烯基环四硅氧烷混合,并加热至80℃搅拌均匀。
(2)向其中加入90ml去离子水,混合均匀后超声分散5min,得到硅氧烷单体乳液。
(3)将硅氧烷单体乳液于80℃加热搅拌反应1~9h,得到聚硅氧烷乳液。
(4)向其中加入1~5ml正硅酸乙酯,继续80℃加热搅拌1~6h。测得其交联度为90%。
(5)取10ml步骤(4)后的乳液,加入25ml去离子水,搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮进行冷冻,冷冻后,真空干燥36h。
(7)将干燥后的硅橡胶多孔材料置于80℃烘箱,加热1~6h。
(8)计算硅橡胶多孔材料密度及孔隙率,密度为42.2~44.2mg/cm 3,孔隙率为97%。
(9)采用稳态平板法对硅橡胶多孔材料进行热导率测试,室温下热导率为30.1~32.2 mW/(m*K)。
(10)采用驻波管法进行吸音系数测试,15mm厚度硅橡胶多孔材料的平均吸音系数为0.34~0.36。
(11)采用动态热机械分析仪(DMA)测量室温下的阻尼减震性能,测得阻尼因子为0.33~0.35。
实施例5
(1)0.1~1g十二烷基苯磺酸钠、0.1~1g吐温-80与10g双酚A型环氧树脂(E51)混合,搅拌均匀。
(2)向其中加入90ml去离子水,均匀混合后超声分散15min,得到环氧树脂乳液。
(3)向单体乳液中加入少量过硫酸钾引发剂,搅拌均匀。
(4)向其中加入0.5~5ml的二乙烯三胺,继续60℃加热搅拌10min。测得其交联度为34%。
(5)取10ml步骤(4)后的乳液,加入25ml去离子水,搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮中进行冷冻,冷冻后,真空干燥36h。
(7)将干燥后的环氧多孔材料置于60℃烘箱,加热1~2h。
(8)计算环氧多孔材料密度及孔隙率,密度为29.6-31.4mg/cm 3,将乳液烘干,得到透明薄膜,计算薄膜密度(环氧本体密度)为1798mg/cm 3,得到环氧树脂孔隙率(1-多孔材料密度/本体密度)约为98.25-98.35%。
(9)采用稳态平板法对环氧树脂多孔材料进行热导率测试,室温下热导率为27.6-28.4mW/(m*K)。
(10)采用驻波管法进行吸音系数测试,15mm厚度环氧树脂多孔材料的平均吸音系数为0.42~0.47。
实施例6
(1)0.1~1g十二烷基苯磺酸、0.1~1g十八烷与10g八甲基环四硅氧烷混合,并加热至80℃搅拌均匀。
(2)向其中加入90ml去离子水,混合均匀后超声分散5min,得到硅氧烷单体乳液。
(3)将硅氧烷单体乳液于80℃加热搅拌反应1~9h,得到聚硅氧烷乳液。
(4)向其中加入1~5ml正硅酸乙酯,继续80℃加热搅拌1~8h。测得其交联度为62%。
(5)取10ml步骤(4)后的乳液,加入40ml去离子水,搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮进行冷冻,冷冻后,真空干燥36h。
(7)计算硅橡胶多孔材料密度及孔隙率,密度为31.4-33.5mg/cm3,孔隙率约为97.4%。
(8)取10ml步骤(4)的乳液,加入90ml去离子水,搅拌均匀。
(9)将冷冻干燥后的样品重新放入模具中,加入步骤(8)中的乳液至模具中,并置于液氮中进行冷冻,冷冻后,真空干燥36h。
(10)将干燥后的硅橡胶多孔材料置于80℃烘箱,加热1~6h。
(11)计算硅橡胶多孔材料密度及孔隙率,密度为68.5-73.3mg/cm3,孔隙率约为94.1%。
(12)采用稳态平板法对硅橡胶多孔材料进行热导率测试,室温下热导率为18.7-20.6mW/(m*K)。
实施例7
(1)在烧瓶中加入经脱水10~20g分子量为1000的聚丙二醇、1~2g的1,4-丁二醇和1~2g亲水性扩链剂二羟甲基丁酸,在氮气气氛下加入少量二月桂酸二丁基锡。
(2)在80℃下将15~30g异佛尔酮二异氰酸酯加入体系中,在80℃下反应2-4h。
(3)取5ml预聚物,反应完成后将预聚物冷却至30℃,加入少量三乙胺中合,并添加一定量的丙酮以降低粘度,加入45ml去离子水,蒸馏除去丙酮后均匀混合后使用超声分散15min,得到水性聚氨酯预聚体乳液。
(4)向其中加入1~5g交联剂三乙烯二胺,在80℃下反应1~2h。测得其交联度为79%。
(5)取10ml步骤(4)后的乳液,加入25ml去离子水,搅拌均匀。
(6)将稀释后的乳液倒入模具,并置于液氮中进行冷冻,冷冻后,真空干燥36h。
(7)计算聚氨酯多孔材料密度及孔隙率,密度为30.2-33.6mg/cm 3,将乳液烘干,得到透明薄膜,计算薄膜密度(聚氨酯本体密度)为1164mg/cm 3,得到聚氨酯多孔材料孔隙率(1-多孔材料密度/本体密度)约为97.11-97.41%。
(8)将得到的多孔材料放置于80℃烘箱后加热1-4h。
(9)采用稳态平板法对环氧树脂多孔材料进行热导率测试,室温下热导率为16.7-18.3mW/(m*K)。
(10)采用驻波管法进行吸音系数测试,15mm厚度环氧树脂多孔材料的平均吸音 系数为0.37~0.39。
(11)采用动态热机械分析仪(DMA)测量室温下的阻尼减震性能,测得阻尼因子为0.37~0.38。

Claims (12)

  1. 一种聚合物多孔材料的制备方法,其特征在于,至少包括:(1)对活性预交联乳液进行冰冻,乳液中的乳液颗粒在冰冻条件下进一步相互反应;在冰冻阶段形成的冰晶对所述活性预交联乳液中的聚合物网络进行挤压融合;所述活性聚合物乳液的交联度为10-90%;
    以及,(2)冰冻后进行干燥,得到聚合物多孔材料。
  2. 根据权利要求1所述的方法,其特征在于,所述预交联乳液为预交联聚硅氧烷乳液,预交联聚环氧树脂乳液,预交联聚氨酯乳液,预交联聚丙烯酸酯乳液。
  3. 根据权利要求2所述的方法,其特征在于,所述预交联聚硅氧烷乳液的原料包括硅氧烷单体、乳化剂、交联剂、催化剂和水;所述硅氧烷单体选自八甲基环四硅氧烷、六甲基环三硅氧烷、十甲基环五硅氧烷、十六甲基环辛硅氧烷、十二甲基环六硅氧烷、2,4,6,8-四甲基环四硅氧烷、四甲基四乙烯基环四硅氧烷或八苯基环四硅氧烷、甲基三甲氧基硅烷、甲基三乙氧基硅烷、二甲基二甲氧基硅烷、二甲基二乙氧基硅烷、乙烯基甲基二乙氧基硅烷、乙烯基三乙氧基硅烷中的一种或几种;所述乳化剂选自二甲基双十六烷基氯化铵、二甲基双十八烷基氯化铵、十二烷基苯磺酸、十二烷基苯磺酸钠或十二烷基硫酸钠中的一种或几种;所述交联剂选自正硅酸乙酯、甲基含氢硅油、过氧化二苯甲酰或过氧化二异丙苯中的一种或几种;所述催化剂选自十二烷基苯磺酸、盐酸、硫酸、氢氧化钠、四甲基氢氧化钠、氨水、二月桂酸二辛基锡、二月桂酸二丁基锡、多烷氧基钛酸酯或氯铂酸或铂-乙烯基硅氧烷络合物中的一种或几种。
  4. 根据权利要求2所述的方法,其特征在于,所述预交联聚环氧树脂乳液的原料包括环氧树脂单体、乳化剂、交联剂、催化剂和水;所述环氧树脂单体包括双酚A型环氧树脂单体、双酚F型环氧树脂单体、环氧基有机硅树脂中的一种或几种;所述乳化剂包括十二烷基苯磺酸、吐温-80、十二烷基苯磺酸钠、曲拉通、3-烯丙氧基-2羟基-1-丙烷磺酸钠盐、乙氧基化烷基醚硫酸铵中的一种或几种;所述交联剂包括三官能团环氧树脂三缩水甘油基间氨基苯酚、2,4,6-三(二甲氨基甲基)苯酚、二异氰酸酯、乙二胺、己二胺、二乙烯三胺、三乙烯四胺、二乙氨基丙胺、顺丁烯二酸酐、邻苯二甲酸酐中的一种或者几种;所述催化剂包括过硫酸钾、叔胺、咪唑、三氟化硼络合物中的一种或者几种。
  5. 根据权利要求2所述的方法,其特征在于,所述预交联聚氨酯乳液的原料包括异氰酸酯单体、低聚多元醇或小分子多元醇、亲水性扩链剂、交联剂、催化剂和水;所述异氰酸酯单体包括甲苯二异氰酸酯、二苯基甲烷-4,4’-二异氰酸酯、六亚甲基二异氰酸酯、甲基环己基二异氰酸酯、异佛尔酮二异氰酸酯、萘-1,5-二异氰酸酯的一种或者几种;低聚多元醇和小分子多元醇包括聚乙二醇、聚丙二醇、聚酯多元醇、丙烯酸多元醇、聚碳酸酯多元醇、乙二醇、 1,4-丁二醇中的一种或者几种;亲水性扩链剂包括N-甲基二乙醇胺、双羟甲基丙酸、双羟甲基丁酸、乙二胺基乙磺酸钠中的一种或者几种;交联剂包括乙二醇二缩水甘油醚、山梨醇多缩水甘油醚、甘油多缩水甘油醚、三羟甲基丙烷多缩水甘油醚、乙二胺、多亚乙基多胺、哌嗪、三羟甲基三聚氰胺、多异氰酸酯类交联剂(Desmodur DA、Desmodur XP-7007、Desmodur XO-671、Desmodur XO-672、PBA 2236LX CR-60N)中的一种或者几种;催化剂包括1,4-二氮杂二环[2,2,2]辛烷、二月桂酸二丁基锡中的一种或者几种。
  6. 根据权利要求2所述的方法,其特征在于,所述预交联聚丙烯酸酯乳液的原料包括主单体、功能性交联单体、乳化剂、引发剂和水;所述主单体包括丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸丁酯、丙烯酸乙酯中的一种或几种;所述功能性交联单体包括二甲基丙烯酸乙二醇酯、甲基丙烯酸羟乙酯、邻苯二甲酸二烯丙酯、三羟甲基丙烷三丙烯酸酯、甲基丙烯酸乙酰乙酰氧基乙酯中的一种或者几种;所述乳化剂包括十二烷基硫酸钠、ER-10乳化剂、十二水合磷酸氢二钠、OP-10乳化剂中的一种或者几种;所述引发剂包括过硫酸铵、过硫酸钾、偶氮二异丁腈、N,N-二甲基苯胺中的一种或者几种。
  7. 根据权利要求1~6任一项所述的聚合物多孔材料的制备方法,其特征在于,所述低温场温度为低于0℃。
  8. 根据权利要求1所述的聚合物多孔材料的制备方法,其特征在于,所述步骤2)中的干燥为冷冻干燥或室温干燥。
  9. 根据权利要求1~8任一项所述的聚合物多孔材料的制备方法,其特征在于,所述制备方法还包括:3)对步骤2)得到的多孔材料进一步热处理。
  10. 根据权利要求1~8任一项所述的聚合物多孔材料的制备方法,其特征在于,所述制备方法还包括:3)向冷冻干燥后的样品中加入活性聚合物乳液,再次冷冻。
  11. 如权利要求1~10任一项所述的制备方法制备得到的聚合物多孔材料。
  12. 如权利要求11所述的聚合物多孔材料作为隔热保温材料、吸音材料或减震材料的应用。
PCT/CN2022/086664 2021-04-15 2022-04-13 聚合物多孔材料及其制备方法与应用 WO2022218353A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110406488 2021-04-15
CN202110406488.8 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022218353A1 true WO2022218353A1 (zh) 2022-10-20

Family

ID=82564955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086664 WO2022218353A1 (zh) 2021-04-15 2022-04-13 聚合物多孔材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN114835941A (zh)
WO (1) WO2022218353A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147055A (en) * 1974-10-21 1976-04-22 Toray Industries Takoseihoriuretanno seiho
EP0522585A1 (en) * 1991-07-11 1993-01-13 Lignyte Co., Ltd. Process of fabricating porous silicone product
US20070298239A1 (en) * 2004-01-28 2007-12-27 Cooper Andrew I Porous Materials And Method Of Production Thereof
CN111423615A (zh) * 2020-05-13 2020-07-17 浙江大学杭州国际科创中心 一种乳液冰冻破乳制备聚合物通孔材料的方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5362761A (en) * 1991-07-11 1994-11-08 Lignyte Co., Ltd. Process for fabricating porous silicone product
CN105085773B (zh) * 2015-08-14 2017-10-24 武汉理工大学 一种互穿网络结构聚丙烯酸酯多元共聚物及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147055A (en) * 1974-10-21 1976-04-22 Toray Industries Takoseihoriuretanno seiho
EP0522585A1 (en) * 1991-07-11 1993-01-13 Lignyte Co., Ltd. Process of fabricating porous silicone product
US20070298239A1 (en) * 2004-01-28 2007-12-27 Cooper Andrew I Porous Materials And Method Of Production Thereof
CN111423615A (zh) * 2020-05-13 2020-07-17 浙江大学杭州国际科创中心 一种乳液冰冻破乳制备聚合物通孔材料的方法及其应用

Also Published As

Publication number Publication date
CN114835941A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
Silverstein Emulsion-templated polymers: Contemporary contemplations
WO2022016713A1 (zh) 一种可自愈合气凝胶
CN106433139B (zh) 低密度高孔隙硅橡胶泡沫材料及其制备方法
CN108383968B (zh) 高导热聚氨酯固-固相变材料及其制备方法
CN110305360B (zh) 一种可变形气凝胶材料及其制备方法
CN109705313A (zh) 一种热适性形状记忆聚合物及其应用方法
CN108659194A (zh) 一种聚氨酯硬质泡沫塑料复合材料及其制备方法和用途
US7879922B2 (en) Rigid, closed-cell, graft-polymer foam; rigid flexible cellular foam; rigid flexible cellular foam mixtures; and method for manufacturing a rigid, closed-cell, graft-polymer foam
WO2022218353A1 (zh) 聚合物多孔材料及其制备方法与应用
CN111073028A (zh) 一种无机材料修饰的微胶囊及其制备方法和应用
Long et al. Polyurethane foaming with engineered CO2-releasing nanoparticles: from the thickening effect to the industrial applications of the blowing agents
CN103613737A (zh) 一种耐高温聚氨酯泡沫及其制备方法
KR960703148A (ko) 미세 기포 폴리우레탄 물질(Microvoid Polyurethane Material)
CN106565198A (zh) 一种常压干燥制备柔性二氧化硅气凝胶的方法
CN112125569B (zh) 一种响应型混凝土抗冻剂及其制备方法与应用
CN101942198A (zh) 多孔硅水凝胶互穿网络(ipn)膜的制备方法
CN113214775A (zh) 密封胶组合物、聚氨酯密封胶以及聚氨酯密封胶制备方法
CN113087960B (zh) 一种多孔晶胶及其制备方法
CN116656002A (zh) 一种低密度高孔隙率聚氨酯泡沫材料及其制备方法
JPH1180723A (ja) 蓄熱剤およびその製造方法並びに蓄熱材の製造方法
CN115537026B (zh) 一种聚酰亚胺气凝胶及其制备方法
CN116199990A (zh) 高密度硬质交联聚氯乙烯泡沫及其制备方法
CN1935271A (zh) 壳聚糖或/和明胶-聚乳酸共混物三维多孔支架的制备方法
CN110357604A (zh) 一种轻质泡沫白榴石陶瓷复合材料的制备方法
CN111635551B (zh) 一步法制备聚酰亚胺开孔泡沫的方法及产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787575

Country of ref document: EP

Kind code of ref document: A1