WO2022218016A1 - 一种电极化粒子及其制备方法、电极化变色光学膜 - Google Patents

一种电极化粒子及其制备方法、电极化变色光学膜 Download PDF

Info

Publication number
WO2022218016A1
WO2022218016A1 PCT/CN2022/075889 CN2022075889W WO2022218016A1 WO 2022218016 A1 WO2022218016 A1 WO 2022218016A1 CN 2022075889 W CN2022075889 W CN 2022075889W WO 2022218016 A1 WO2022218016 A1 WO 2022218016A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically polarized
conductive film
optical film
particles
polarized particles
Prior art date
Application number
PCT/CN2022/075889
Other languages
English (en)
French (fr)
Inventor
王鹏飞
Original Assignee
绍兴迪飞新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绍兴迪飞新材料有限公司 filed Critical 绍兴迪飞新材料有限公司
Priority to KR1020237007974A priority Critical patent/KR20230087446A/ko
Priority to JP2022538465A priority patent/JP7393832B2/ja
Priority to US17/878,158 priority patent/US20220380570A1/en
Publication of WO2022218016A1 publication Critical patent/WO2022218016A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/14Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof
    • C07C227/18Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton from compounds containing already amino and carboxyl groups or derivatives thereof by reactions involving amino or carboxyl groups, e.g. hydrolysis of esters or amides, by formation of halides, salts or esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/175Amines; Quaternary ammonium compounds containing COOH-groups; Esters or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/162Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/166Magnesium halide, e.g. magnesium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups

Definitions

  • the present application relates to the field of electrochromic optical thin film devices, in particular to an electropolarized particle and a preparation method thereof, and an electrochromic optical film.
  • Electrochromic glass is widely used in smart home, office partition, construction, automobile, high-speed rail and other fields due to its functions of shading, heat insulation, energy saving, privacy, etc. It has great social significance and commercial value. Electrochromic technology has been in development for a long time and is extremely challenging.
  • the smart glass based on electrochromic technology on the market mainly includes two types of smart glass based on polymer dispersed liquid crystal (PDLC) and smart glass based on conductive polymer electrochromic (EC).
  • PDLC polymer dispersed liquid crystal
  • EC conductive polymer electrochromic
  • Polymer-dispersed liquid crystal (PDLC) technology is to disperse micron-sized liquid crystal small molecule droplets in an organic solid polymer matrix. By adjusting the voltage, the adjustment from the foggy opaque state to the transparent state can be achieved.
  • PDLC smart glass does not have light-shielding properties, the visible light transmittance varies in a narrow range, and the energy-saving effect is not ideal, and the application scenarios are limited.
  • conductive polymer electrochromic (EC) technology can achieve a wider range of transmittance variation, and has good light-shielding and energy-saving effects, but its processing technology is complex, the color change speed is slow, and the life is short. The cost is higher, the price is expensive, and it is only used on a few devices such as high-end sports cars, Boeing aircraft, etc.
  • Electropolarized particles are organic-inorganic hybrid particles with a certain shape. Such organic-inorganic hybrid particles are anisotropic, and can be polarized and then deflected under the action of an electric field (magnetic field). Discoloration function. Devices made of electrically polarized particles have the characteristics of wide adjustable range of transmittance and fast discoloration speed, and have broad application prospects, but there are few reports in China.
  • the present application provides an electropolarized particle and a preparation method thereof, and an electrochromic optical film.
  • the present application provides a kind of electric polarized particle, which adopts the following technical scheme:
  • An electric polarized particle the raw materials mainly include metal iodide, carboxylic acid nitrogen-containing organic molecules, iodine element and cellulose suspending agent;
  • the electrically polarized particles have a rod-like structure, the length of the electrically polarized particles is 100-2000 nm, and the width of the electrically polarized particles is 10-200 nm.
  • the application provides a preparation method of electric polarized particles, which adopts the following technical scheme:
  • a preparation method of electrically polarized particles comprising the following steps:
  • step 2) The product obtained in step 1) is washed by centrifugation, and the precipitate is dispersed in ethyl acetate to obtain a dispersion liquid of electrically polarized particles.
  • the cellulose-based suspending agent is one or more of ethyl cellulose, cellulose acetate, cyanoethyl cellulose, and nitrocellulose.
  • the carboxylic acid nitrogen-containing organic molecules are one or more of the following structures:
  • the metal iodide is one or more of copper iodide, calcium iodide, magnesium iodide, and barium iodide.
  • the fatty alcohol is one or more of methanol, ethanol, isopropanol, n-butanol, n-heptanol, and n-octanol.
  • the dosage ratio of the iodine element, carboxylic acid nitrogen-containing organic molecules, metal iodide, cellulose suspending agent, fatty alcohol, deionized water and ethyl acetate is 2.0-4.5g: 3.0 ⁇ 5.3g: 1.2 ⁇ 4.5g: 3.0 ⁇ 5.0g: 3.6 ⁇ 8.4mL: 0.2 ⁇ 1.5g: 45 ⁇ 70mL.
  • the carboxylic acid nitrogen-containing organic molecule is imidazo[1,2-A]pyrazine-2-carboxylic acid.
  • the metal iodide is calcium iodide.
  • the cellulose suspending agent is cyanoethyl cellulose.
  • the fatty alcohol is n-butanol.
  • the dosage ratio of iodine element, imidazo[1,2-A]pyrazine-2-carboxylic acid, calcium iodide, cyanoethylcellulose, n-butanol, deionized water and ethyl acetate is 3.8g: 3.26g: 2.93g: 2.93g: 5mL: 0.2g: 65mL.
  • step 1) the reaction is continued at 40-80° C. for 1-16 h.
  • step 1) the reaction is continued at 58° C. for 8 hours.
  • step 2) in the dispersion liquid of the electrically polarized particles, the concentration of the electrically polarized particles is 15% to 30% by weight.
  • the concentration of the electrically polarized particles is 20 wt %.
  • the application provides a preparation method of electrically polarized particles, which adopts the following technical scheme:
  • a preparation method of electrically polarized particles comprising the following steps:
  • step 2) Perform centrifugal washing on the product obtained in step 1), and disperse the precipitate into the solvent to obtain a dispersion liquid of electrically polarized particles.
  • the present application provides an electrochromic optical film, which adopts the following technical solutions:
  • An electrochromic optical film comprising the above-mentioned electro-polarized particles or the above-mentioned electro-polarized particles prepared by the above-mentioned preparation method of the electro-polarized particles.
  • the electrochromic optical film includes a substrate and a first conductive film, an electrochromic film, and a second conductive film sequentially arranged on the substrate; the electrochromic film includes the electropolarized particles.
  • the substrate is one or a combination of a glass substrate, a polyethylene terephthalate (PET) substrate, and a polymethyl methacrylate (PMMA) substrate.
  • PET polyethylene terephthalate
  • PMMA polymethyl methacrylate
  • the first conductive film is one of an indium tin oxide conductive film, a silver nanowire conductive film, a copper nanowire conductive film, and a ZnO conductive film;
  • the second conductive film is an indium tin oxide conductive film, a silver nanowire conductive film, and a ZnO conductive film.
  • the preparation process of the electrochromic optical film includes the following process steps:
  • the oligomer is one or both of polyiso-octyl methacrylate and polyheptyl methacrylate.
  • the viscosity of the poly isooctyl methacrylate and the polydecyl methacrylate is 500-10000 cps.
  • the viscosity of the poly isooctyl methacrylate and the polydecyl methacrylate is 3000-5000 cps.
  • the mass ratio of the electrically polarized particles to the oligomers in the electrically polarized particle dispersion liquid is 1:(2-50).
  • the mass ratio of the electrically polarized particles to the oligomers in the electrically polarized particle dispersion liquid is 1:30.
  • the polymer to be cured by UV crosslinking is one or both of polyacrylate-polystyrene copolymer and polyacrylate-polysiloxane copolymer.
  • the viscosity of the polyacrylate-polystyrene copolymer and the polyacrylate-polysiloxane copolymer is 2000-20000 cps.
  • the viscosity of the polyacrylate-polystyrene copolymer and the polyacrylate-polysiloxane copolymer is 4000-12000 cps.
  • the photocuring initiator is 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • the added amount of the photocuring initiator is 0.1% to 3% of the mass of the polymer cured by UV crosslinking.
  • the added amount of the photocuring initiator is 1% of the mass of the polymer cured by UV crosslinking.
  • step c) the mixed emulsion A and the liquid B are blended in a mass ratio of 1:(1-10).
  • step c) the mixed emulsion A and the liquid B are blended in a mass ratio of 1:5.
  • the organic solvent is one or more of tetrahydrofuran, ethyl acetate, dichloromethane, acetone and dioxane.
  • the electrochromic optical film can be processed into a film by means of roll-to-roll, printing, lamination, extrusion and the like.
  • the thickness of the coating film of the electrochromic film is 50-150 ⁇ m.
  • the thickness of the coating film of the electrochromic film is 95 ⁇ m.
  • the present application includes at least one of the following beneficial technical effects:
  • Electro-polarized particles with specific sizes made from specific raw materials in this application have fast response speed, wide discoloration range, low haze, are easy to process in large areas, and are more suitable for large-scale practical applications;
  • the electro-discoloration process of the electro-polarized particles of limited size obtained from the raw materials in the application is a pure physical process, and thus has better stability and is more conducive to practical application;
  • the preparation process of the electrically polarized particles in this application can be formed only by a simple coordination reaction, the operation process is simple, the experiment repeatability is good, and it is suitable for large-scale preparation;
  • the electro-polarized particles prepared in this application are used in the preparation of electro-electrochromic optical films, and the obtained electro-electrochromic optical films have the advantages of wide transmittance and color-changing range, low haze, and fast response speed under voltage driving. .
  • FIG. 1 is a scanning electron microscope image of the electrically polarized particle nanorods in Example 8 of the present application.
  • FIG. 2 is a schematic structural diagram of the electro-electrochromic optical film according to an embodiment of the present application.
  • Fig. 3 is the molecular weight and distribution diagram of polyiso-octyl methacrylate in the examples of the present application.
  • Fig. 4 is the molecular weight and distribution diagram of polydecyl methacrylate in the examples of the present application.
  • Fig. 5 is the molecular weight and distribution diagram of the polyacrylate-polystyrene copolymer in the examples of the present application.
  • Fig. 6 is the molecular weight and distribution diagram of the polyacrylate-polysiloxane copolymer in the examples of the present application.
  • the concrete preparation method of ester-polysiloxane copolymer is as follows:
  • the preparation method of poly(iso-octyl methacrylate) 19.8 g of isooctyl methacrylate (purchased from Hubei Jusheng Technology Co., Ltd.) and 100 mL of ethyl acetate were added to a 250 mL three-necked bottle, and after nitrogen was introduced for 15 min to remove air, 2.6 mL of 1-octanethiol was added, the temperature was rapidly raised to 65° C., 246 mg/30 mL of azobisisobutyronitrile (AIBN) in ethyl acetate was slowly added, and the reaction was stopped after 10 h.
  • AIBN azobisisobutyronitrile
  • poly(iso-octyl methacrylate) After extraction, washing, rotary evaporation and vacuum distillation to remove low-boiling fractions, poly(iso-octyl methacrylate) is obtained. Its viscosity was measured to be 4700 cps using a rotational viscometer. The molecular weight and distribution of the obtained polyiso-octyl methacrylate are shown in Figure 3.
  • the preparation method of polydecyl methacrylate 22.6g of decyl methacrylate (purchased from Hubei Jinleda Chemical Co., Ltd.) and 100mL of ethyl acetate were added to a 250mL there-neck flask, and after nitrogen was introduced for 15min to remove oxygen, the 4.2 mL of 1-hexanethiol was rapidly increased to 65° C., and 328 mg/10 mL of ethyl acetate solution of azobisisobutyronitrile (AIBN) was slowly added, and the reaction was stopped after 12 h of reaction.
  • decyl methacrylate purchased from Hubei Jinleda Chemical Co., Ltd.
  • polydecyl methacrylate After extraction, washing, rotary evaporation and vacuum distillation to remove low-boiling fractions, polydecyl methacrylate is obtained. Its viscosity was measured to be 4100 cps using a rotational viscometer. The molecular weight and distribution of the obtained polydecyl methacrylate are shown in Figure 4.
  • the preparation method of polyacrylate-polystyrene copolymer 156g styrene (purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.), 130g 3-methacryloyloxypropylmethyldiethoxysilane (purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.) (Beijing Huawei Ruike Chemical Co., Ltd.) and 400 mL of ethyl acetate were added to a 2L three-necked flask, after nitrogen was introduced to remove oxygen, the temperature was rapidly raised to the reflux of the solution, and then 3.28g/50mL of azobisisobutylene was slowly added dropwise.
  • the preparation method of polyacrylate-polysiloxane copolymer 128g of butyl acrylate (purchased from Shanghai Aladdin Biochemical Technology Co., Ltd.), 117g of 3-methacryloyloxypropyltrimethoxysilane (purchased from Hubei Giant Sheng Technology Co., Ltd.) was added to 1250 mL of ethyl acetate, then 2.05 g of azobisisobutyronitrile (AIBN) was added, and after nitrogen was introduced to remove oxygen, the solution was heated to reflux and reacted for 4 h. Then, the temperature was lowered to 60° C.
  • AIBN azobisisobutyronitrile
  • the polyacrylate-polysiloxane copolymer is obtained after the low-boiling fractions are removed by extraction, washing, rotary evaporation and vacuum distillation. Its viscosity was measured to be 10500 cps using a rotational viscometer. The molecular weight and distribution of the obtained polyacrylate-polysiloxane copolymer are shown in Figure 6.
  • the electrochromic optical film includes a substrate 7 , a first conductive film 6 , an electrochromic film, a second conductive film 2 and a protective film 1 arranged in sequence.
  • the substrate 7 selects a PET film
  • the first conductive film 6 selects an indium tin oxide (ITO) conductive film
  • the electro-polarized color-changing film includes electro-polarized particles 5, oligomers 4 and a polymer 3 cured by UV cross-linking
  • the second conductive film 2 Indium tin oxide (ITO) conductive film is selected
  • PET film is selected as the protective film 1.
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electro-polarized particles 5 and the oligomer 4 polyiso-octyl methacrylate in the dispersion liquid of the electro-polarized particles 5 are prepared in a mass ratio of 1:25, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electro-polarized particles 5 and the mixed emulsion A of isooctyl methacrylate.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 90 s, an electrochromic optical film with an electrochromic film thickness of 105 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electro-polarized particles 5 and the oligomer 4 polyiso-octyl methacrylate in the dispersion liquid of the electro-polarized particles 5 are prepared in a mass ratio of 1:30, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electro-polarized particles Mixed emulsion A of 5 and oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 90s, an electrochromic optical film with an electrochromic film thickness of 98 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electro-polarized particles 5 and the oligomer 4 polydecyl methacrylate in the dispersion liquid of the electro-polarized particles 5 are prepared in a mass ratio of 1:30, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electro-polarized particles 5 Mixed emulsion A with oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120 s, an electrochromic optical film with an electrochromic film thickness of 98 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electrodeposited particles 5 and the oligomer 4 polydecyl methacrylate in the dispersion liquid of the electrodeposited particles 5 are prepared in a mass ratio of 1:35, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electrodeposited particles 5 Mixed emulsion A with oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120 s, an electrochromic optical film with an electrochromic film thickness of 101 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electrodeposited particles 5 and the oligomer 4 polydecyl methacrylate in the dispersion liquid of the electrodeposited particles 5 are prepared in a mass ratio of 1:40, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electrodeposited particles 5 Mixed emulsion A with oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120s, an electrochromic optical film with an electrochromic film thickness of 100 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electro-polarized particles 5 and the oligomer 4 polydecyl methacrylate in the dispersion liquid of the electro-polarized particles 5 are prepared in a mass ratio of 1:30, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electro-polarized particles 5 Mixed emulsion A with oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120s, an electrochromic optical film with an electrochromic film thickness of 95 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • This embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electro-polarized particles 5 and the oligomer 4 polydecyl methacrylate in the dispersion liquid of the electro-polarized particles 5 are prepared in a mass ratio of 1:30, and after ultrasonically mixed uniformly, the solvent is spin-dried to obtain the electro-polarized particles 5 Mixed emulsion A with oligomer 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120 s, an electrochromic optical film with an electrochromic film thickness of 93 ⁇ m was prepared.
  • ITO indium tin oxide
  • This embodiment first discloses a preparation method of electric polarized particles, and the preparation method of electric polarized particles includes the following process steps:
  • the present embodiment further discloses an electrochromic optical film, and the preparation process of the electrochromic optical film includes the following process steps:
  • the electropolarized particles 5 and the oligomers 4 in the dispersion liquid of the electropolarized particles 5 are prepared in a mass ratio of 1:30. After ultrasonically mixing evenly, the solvent is spin-dried to obtain the electropolarized particles 5 and the oligomers 4.
  • the coating slurry is coated and pasted between two indium tin oxide (ITO) conductive films by means of roll-to-roll coating, and the thickness is adjusted by controlling the distance between the two rolls, and cured in UV light. After curing under the lamp for 120s, an electrochromic optical film with an electrochromic film thickness of 95 ⁇ m was prepared. The properties of the optical film were then tested after contacting the electrodes.
  • ITO indium tin oxide
  • the visible light transmittance and haze performance of the electrochromic optical film in the power-on state and power-off state were measured using a TH-100 transmittance haze meter (Hangzhou Caipu Technology Co., Ltd.), with a test range of 400nm to 700nm.
  • An AC power supply with a frequency of 50 Hz and an adjustable voltage in the range of 0-220 V was used to drive the electrodeposited optical films.
  • the performance test results of the optical films prepared in Examples 1 to 8 are shown in Table 1.
  • Example 8 when elemental iodine, imidazo[1,2-A]pyrazine-2-carboxylic acid, calcium iodide, cyanoethylcellulose, n-butanol, deionized water and ethyl acetate
  • the dosage ratio is 3.8g: 3.26g: 2.93g: 2.93g: 5mL: 0.2g: 65mL
  • 2000r-10000r is used for particle size classification of the electropolarized particles
  • the prepared electropolarized particles are formulated into slurry coating
  • the obtained electrochromic optical film has the best transmittance performance (2.52%-60.5%), and the lowest haze performance (2.87%) in bright state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Paints Or Removers (AREA)

Abstract

本申请涉及一种电极化粒子及其制备方法、电极化变色光学膜,属于电极化变色光学薄膜器件的技术领域。本申请首先公开了一种电极化粒子,原料主要包括金属碘化物、羧酸类含氮有机分子、碘单质和纤维素类助悬剂;所述电极化粒子为棒状结构,所述电极化粒子的长度为100~2000nm;所述电极化粒子的宽度为10~200nm。本申请进一步公开了一种电极化粒子的制备方法,本申请还进一步公开了包含上述电极化粒子的电极化变色光学膜。本申请制得的电极化变色光学膜具有响应速度快、变色范围广、雾度低,易于大面积加工,更适于大规模的实际应用的效果。

Description

一种电极化粒子及其制备方法、电极化变色光学膜 技术领域
本申请涉及电极化变色光学薄膜器件的领域,尤其是涉及一种电极化粒子及其制备方法、电极化变色光学膜。
背景技术
电致变色玻璃(膜)由于具有遮光、隔热、节能、隐私等诸多功能,因而被广泛应用于智能家居、办公隔断、建筑、汽车、高铁等领域,极具社会意义和商业价值。电致变色技术的开发久远,并且极具挑战。
目前市面上基于电致变色技术的智能玻璃主要有基于聚合物分散液晶(PDLC)的智能玻璃和基于导电聚合物电致变色(EC)智能玻璃两种。聚合物分散液晶(PDLC)技术是将微米量级的液晶小分子微滴分散在有机固态聚合物基体内,通过调节电压,可以实现由雾化不透明状态到透明状态的调节。但PDLC智能玻璃不具有遮光性,可见光透过率变化范围窄,并且节能效果不够理想,应用场景有限。相比于PDLC,导电聚合物电致变色(EC)技术可以实现更宽泛的透过率变化范围,并且具有良好的遮光性和节能效果,但是其加工工艺复杂,变色速度慢,寿命短,并且成本较高,价格昂贵,仅仅在高端跑车,波音飞机等少数设备上使用。
电极化粒子是具有一定形状的有机-无机杂化粒子,这种有机-无机杂化粒子具有各向异性,在电场(磁场)的作用下能够发生极化作用进而发生偏转,制成器件后呈现出变色功能。由电极化粒子制成的器件具有透过率可调范围广,变色速度快等特点,具有广泛的应用前景,但在国内很少有报道。
发明内容
为了获得透过率调节范围广、变色速度快的电极化变色光学薄膜器件,本申请提供一种电极化粒子及其制备方法、电极化变色光学膜。
第一方面,本申请提供一种电极化粒子,采用如下的技术方案:
一种电极化粒子,原料主要包括金属碘化物、羧酸类含氮有机分子、碘单质和纤维素类助悬剂;
所述电极化粒子为棒状结构,所述电极化粒子的长度为100~2000nm;所述电极化粒子的宽度为10~200nm。
第二方面,本申请提供一种电极化粒子的制备方法,采用如下的技术方案:
一种电极化粒子的制备方法,包括以下步骤:
1)将纤维素助悬剂加入到乙酸乙酯中,搅拌至纤维素助悬剂完全溶解,将反应温度升高到25~80℃,然后依次加入碘单质、羧酸类含氮有机分子、金属碘化物以及脂肪醇和去离子水,继续 在25~80℃反应1~20h;
2)将步骤1)所得到的产物进行离心洗涤,将沉淀分散至乙酸乙酯中,得到电极化粒子的分散液。
优选的,所述纤维素类助悬剂为乙基纤维素、乙酸纤维素、氰乙基纤维素、硝化纤维素中的一种或多种。
优选的,所述羧酸类含氮有机分子为以下结构中的一种或多种:
Figure PCTCN2022075889-appb-000001
优选的,所述金属碘化物为碘化铜、碘化钙、碘化镁、碘化钡中的一种或多种。
优选的,所述脂肪醇为甲醇、乙醇、异丙醇、正丁醇、正庚醇、正辛醇中的一种或多种。
优选的,步骤1)中,所述碘单质、羧酸类含氮有机分子、金属碘化物、纤维素助悬剂、脂肪醇、去离子水和乙酸乙酯的用量比为2.0~4.5g:3.0~5.3g:1.2~4.5g:3.0~5.0g:3.6~8.4mL:0.2~1.5g:45~70mL。
优选的,所述羧酸类含氮有机分子为咪唑并[1,2-A]吡嗪-2-甲酸。
优选的,所述金属碘化物为碘化钙。
优选的,所述纤维素助悬剂为氰乙基纤维素。
优选的,所述脂肪醇为正丁醇。
优选的,碘单质、咪唑并[1,2-A]吡嗪-2-甲酸、碘化钙、氰乙基纤维素、正丁醇、去离子水和乙酸乙酯的用量比为3.8g:3.26g:2.93g:2.93g:5mL:0.2g:65mL。
优选的,步骤1)中,继续在40~80℃条件下反应1~16h。
优选的,步骤1)中,继续在58℃的条件下反应8h。
优选的,步骤2)中,所述电极化粒子的分散液中,电极化粒子的浓度为15%~30wt%。
优选的,步骤2)中,所述电极化粒子的分散液中,电极化粒子的浓度为20wt%。
第三方面,本申请提供一种电极化粒子的制备方法,采用如下的技术方案:
一种电极化粒子的制备方法,包括以下步骤:
1)将纤维素助悬剂加入到溶剂中,搅拌至纤维素助悬剂完全溶解,将反应温度升高到25~80℃,然后依次加入碘单质、羧酸类含氮有机分子、金属碘化物以及脂肪醇和去离子水,继续在25~80℃反应1~20h;
2)将步骤1)所得到的产物进行离心洗涤,将沉淀分散至所述溶剂中,得到电极化粒子的分散液。
第四方面,本申请提供一种电极化变色光学膜,采用如下的技术方案:
一种电极化变色光学膜,包含上述的电极化粒子或上述的电极化粒子的制备方法制得的电极化粒子。
优选的,所述电极化变色光学膜包括基底以及依次设置于所述基底上的第一导电膜、电极化变色膜、第二导电膜;所述电极化变色膜包含所述电极化粒子。
优选的,所述基底为玻璃基底、聚对苯二甲酸乙二醇酯(PET)基底、聚甲基丙烯酸甲酯(PMMA)基底中的一种或两种组合。
优选的,所述第一导电膜为氧化铟锡导电膜、银纳米线导电膜、铜纳米线导电膜、ZnO导电膜中的一种;所述第二导电膜为氧化铟锡导电膜、银纳米线导电膜、铜纳米线导电膜、ZnO导电膜中的一种。
优选的,所述电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子分散液中的电极化粒子与低聚物进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子和低聚物的混合乳液A;
b)在紫外交联固化的聚合物中加入光固化引发剂,并加入有机溶剂,搅拌均匀后,放置于旋转蒸发仪中旋去有机溶剂,得到液体B;
c)将混合乳液A和液体B进行共混,搅拌均匀并进行真空脱泡,制得涂膜浆料;
d)将涂膜浆料涂覆在带有第一导电膜的基底上,贴合在第一导电膜和第二导电膜之间,然后进行光固化,制得电极化变色光学膜。
优选的,步骤a)中,所述低聚物为聚甲基丙烯酸异辛酯、聚甲基丙烯酸庚酯中的一种或两种。
优选的,所述聚甲基丙烯酸异辛酯、聚甲基丙烯酸癸酯的粘度为500~10000cps。
优选的,所述聚甲基丙烯酸异辛酯、聚甲基丙烯酸癸酯的粘度为3000~5000cps。
优选的,所述混合乳液A中,电极化粒子分散液中的电极化粒子与低聚物的质量比为1:(2~50)。
优选的,所述混合乳液A中,电极化粒子分散液中的电极化粒子与低聚物的质量比为1:30。
优选的,步骤b)中,所述紫外交联固化的聚合物为聚丙烯酸酯-聚苯乙烯共聚物、聚丙烯酸酯-聚硅氧烷共聚物中的一种或两种。
优选的,所述聚丙烯酸酯-聚苯乙烯共聚物、聚丙烯酸酯-聚硅氧烷共聚物的粘度为2000~20000cps。
优选的,所述聚丙烯酸酯-聚苯乙烯共聚物、聚丙烯酸酯-聚硅氧烷共聚物的粘度为4000~12000cps。
优选的,所述光固化引发剂为2,4,6-三甲基苯甲酰基二苯基氧化膦。
优选的,所述光固化引发剂的加入量为紫外交联固化的聚合物质量的0.1%~3%。
优选的,所述光固化引发剂的加入量为紫外交联固化的聚合物质量的1%。
优选的,步骤c)中,混合乳液A和液体B按质量比1:(1~10)进行共混。
优选的,步骤c)中,混合乳液A和液体B按质量比1:5进行共混。
优选的,所述有机溶剂为四氢呋喃、乙酸乙酯、二氯甲烷、丙酮和二氧六环中的一种或多种。
优选的,所述电极化变色光学膜可以采用对辊、印刷、贴合、挤出等方式加工成膜。
优选的,所述电极化变色膜的涂膜厚度为50~150μm。
优选的,所述电极化变色膜的涂膜厚度95μm。
综上所述,本申请包括以下至少一种有益技术效果:
1.本申请中特定原料制得的、尺寸特定的电极化粒子响应速度快、变色范围广、雾度低,易于大面积加工,更适于大规模的实际应用;
2.相较于EC的氧化还原变色原理,以本申请中的原料制得的、限定尺寸的电极化粒子通电变色过程是纯物理过程,因而具有更好的稳定性,更利于实际应用;
3.本申请中的电极化粒子制备工艺只需通过简单的配位反应即可形成,操作过程简单、实验重复性好、适于大规模制备;
4.以本申请中制备得到的电极化粒子应用于制备电极化变色光学膜,所得到的电极化变色光学膜在电压驱动下具有透过率变色范围广、雾度低、响应速度快等优点。
附图说明
图1是本申请实施例8中电极化粒子纳米棒的扫描电镜图。
图2是本申请实施例电极化变色光学膜的结构示意图。
图3是本申请实施例中聚甲基丙烯酸异辛酯的分子量及其分布图。
图4是本申请实施例中聚甲基丙烯酸癸酯的分子量及其分布图。
图5是本申请实施例中聚丙烯酸酯-聚苯乙烯共聚物的分子量及其分布图。
图6是本申请实施例中聚丙烯酸酯-聚硅氧烷共聚物的分子量及其分布图。
附图标记说明:1、保护膜;2、第二导电膜;3、紫外交联固化的聚合物;4、低聚物;5、电极化粒子;6、第一导电膜;7、基底。
具体实施方式
以下结合附图1-6和各实施例对本申请作进一步详细说明。
本申请各实施例中采用的低聚物4(聚甲基丙烯酸异辛酯和聚甲基丙烯酸癸酯)和紫外交联固化的聚合物3(聚丙烯酸酯-聚苯乙烯共聚物和聚丙烯酸酯-聚硅氧烷共聚物)的具体制备方法如下:
聚甲基丙烯酸异辛酯的制备方法:将19.8g甲基丙烯酸异辛酯(购于湖北巨胜科技有限公司)和100mL乙酸乙酯加入到250mL三口瓶中,通入氮气15min除去空气后,加入2.6mL1-辛硫醇,将温度迅速升高至65℃,缓慢加入246mg/30mL偶氮二异丁腈(AIBN)的乙酸乙酯溶液,并反应10h后停止反应。经萃取、洗涤、旋蒸、减压蒸馏除去低沸点馏分后,得到聚甲基丙烯酸异辛酯。使用旋转粘度计测试其粘度为4700cps。制得聚甲基丙烯酸异辛酯的分子量及其分布见图3。
聚甲基丙烯酸癸酯的制备方法:将22.6g甲基丙烯酸癸酯(购于湖北津乐达化工有限公司)和100mL乙酸乙酯加入到250mL三口瓶中,通入氮气15min除去氧气后,加入4.2mL1-己硫醇,将温度迅速升高至65℃,缓慢加入328mg/10mL偶氮二异丁腈(AIBN)的乙酸乙酯溶液,并反应12h后停止反应。经萃取、洗涤、旋蒸、减压蒸馏除去低沸点馏分后,得到聚甲基丙烯酸癸酯。使用旋转粘度计测试其粘度为4100cps。制得聚甲基丙烯酸癸酯的分子量及其分布见图4。
聚丙烯酸酯-聚苯乙烯共聚物的制备方法:将156g苯乙烯(购于上海阿拉丁生化科技股份有限公司)、130g 3-甲基丙烯酰氧基丙基甲基二乙氧基硅烷(购于北京华威锐科化工有限公司)和400mL乙酸乙酯加入到2L三口瓶中,通入氮气除氧后,将温度迅速升高至溶液回流,然后缓慢滴加3.28g/50mL偶氮二异丁腈(AIBN)的乙酸乙酯溶液,反应8h后停止反应。经萃取、洗涤、旋蒸、减压蒸馏除去低沸点馏分后,得到聚丙烯酸酯-聚苯乙烯共聚物。使用旋转粘度计测试其粘度为12000cps。制得聚丙烯酸酯-聚苯乙烯共聚物的分子量及其分布见图5。
聚丙烯酸酯-聚硅氧烷共聚物的制备方法:将128g丙烯酸丁酯(购于上海阿拉丁生化科技股份有限公司),117g3-甲基丙烯酰氧丙基三甲氧基硅烷(购于湖北巨胜科技有限公司)加入到1250mL乙酸乙酯中,然后加入2.05g偶氮二异丁腈(AIBN),通入氮气除氧后,升温至溶液回流并反应4h。然后降温至60℃加入5.7g三乙二醇二甲基丙烯酸酯(购于上海麦克林生化科技有限公司)进行封端反应1h。经萃取、洗涤、旋蒸、减压蒸馏除去低沸点馏分后,得到聚丙烯酸酯-聚硅氧烷共聚物。使用旋转粘度计测试其粘度为10500cps。制得聚丙烯酸酯-聚硅氧烷共聚物的分子量及其分布见图 6。
由于本申请各实施例中的电极化变色光学膜的结构完全相同,故首先对电极化变色光学膜的结构进行说明。
参照图2,电极化变色光学膜包括依次设置的基底7、第一导电膜6、电极化变色膜、第二导电膜2和保护膜1。基底7选用PET膜,第一导电膜6选用氧化铟锡(ITO)导电膜,电极化变色膜包括电极化粒子5、低聚物4和紫外交联固化的聚合物3,第二导电膜2选用氧化铟锡(ITO)导电膜,保护膜1选用PET膜。
实施例1
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入1.8g乙基纤维素和50mL乙酸乙酯,充分搅拌,使乙基纤维素完全溶解在乙酸乙酯中。将反应温度升高至60℃,然后依次加入3.8g碘单质、2.92g乙二胺四乙酸(结构式如下图所示,购于上海阿拉丁生化科技股份有限公司)、1.9g无水碘化铜、4mL的甲醇和0.1g去离子水,并在60℃下反应16h后停止反应。
2)将所得到的产物在12000r下离心60min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5的浓度为20wt%。
Figure PCTCN2022075889-appb-000002
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸异辛酯按质量比例1:25进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和甲基丙烯酸异辛酯的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚苯乙烯共聚物中加入0.8%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂(购于上海麦克林生化科技有限公司),加入四氢呋喃超声均匀,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:6进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化90s后制得电极化变色膜厚度为105μm的电极化变色光学膜。
实施例2
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入1.62g乙酸纤维素和60mL乙酸乙酯,充分搅拌,使乙酸纤维素完全溶解在乙酸乙酯中。将反应温度升高至65℃,然后依次加入2.54g碘单质、1.9g氨三乙酸(结构式如下图所述,购于南京邦诺生物科技有限公司)、1.9g无水碘化铜、5mL的乙醇和0.2g去离子水。并在65℃下反应12h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为25wt%。
Figure PCTCN2022075889-appb-000003
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸异辛酯按质量比例1:30进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚苯乙烯共聚物中加入1%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:6进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化90s后制得电极化变色膜厚度为98μm的电极化变色光学膜。
实施例3
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.16g氰乙基纤维素和60mL乙酸乙酯,充分搅拌,使氰乙基纤维素完全溶解在乙酸乙酯中。将反应温度升高至65℃,然后依次加入3.8g碘单质、3.02g氮苯基甘氨酸(结构式如下图所示,购于北京百灵威科技有限公司)、3.91g无水碘化钡、5mL的乙醇和0.2g去离子水。并在65℃下反应12h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为22wt%。
Figure PCTCN2022075889-appb-000004
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸癸酯按质量比例1:30进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚苯乙烯共聚物中加入0.9%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:6进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为98μm的电极化变色光学膜。
实施例4
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.43g乙基纤维素和60mL乙酸乙酯,充分搅拌,使乙基纤维素完全溶解在乙酸乙酯中。将反应温度升高至65℃,然后依次加入3.8g碘单质、2.45g吲哚[1,2-A]吡嗪-8-羧酸(结构式如下图所示,购于上海皓鸿生物医药科技有限公司)、2.78g无水碘化镁、5mL的正丁醇和0.3g去离子水。并在65℃下反应12h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为22wt%。
Figure PCTCN2022075889-appb-000005
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸癸酯按质量比例1:35进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚硅氧烷共聚物中加入1%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体。
c)将混合乳液A和液体B按质量比1:5进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为101μm的电极化变色光学膜。
实施例5
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.93g硝化纤维素和65mL乙酸乙酯,充分搅拌,使硝化纤维素完全溶解在乙酸乙酯中。将反应温度升高至58℃,然后依次加入4.75g碘单质、3.26g咪唑并[1,2-A]吡嗪-2-甲酸(结构式如下图所示,购于上海毕得医药科技有限公司)、2.2g无水碘化钙、4.5mL的正丁醇和0.3g去离子水,并在58℃下反应11h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为25wt%。
Figure PCTCN2022075889-appb-000006
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸癸酯按质量比例1:40进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚硅氧烷共聚物中加入1.1%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:5进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为100μm的电极化变色光学膜。
实施例6
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.93g氰乙基纤维素和65mL乙酸乙酯,充分搅拌,使氰乙基纤维素完全溶解在乙酸乙酯中。将反应温度升高至68℃,然后依次加入3.8g碘单质、2.64g苯并咪唑-1-乙酸(结构式如下图所示,购于上海皓鸿生物医药科技有限公司)、2.93g无水碘化钙、4.5mL异丙醇和0.2g去离子水,并在68℃下反应10h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再继续离心处理。以上离心、洗涤的操作重复3遍。最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为25wt%。
Figure PCTCN2022075889-appb-000007
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸癸酯按质量比例1:30进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚硅氧烷共聚物中加入0.9%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:6进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为95μm的电极化变色光学膜。
实施例7
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.71g氰乙基纤维素和60mL乙酸乙酯,充分搅拌,使氰乙 基纤维素完全溶解在乙酸乙酯中。将反应温度升高至58℃,然后依次加入3.8g碘单质、3.26g咪唑并[1,2-A]吡嗪-2-甲酸。充分搅拌2h后,再加入2.2g无水碘化钙、4.5mL的正丁醇和0.1g去离子水。并在58℃下继续反应8h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再在1000r下离心40min。将得到的上层液体再在10000r下离心1h后,倒去上层液体,最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为20wt%。
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4聚甲基丙烯酸癸酯按质量比例1:30进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚硅氧烷共聚物中加入1%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:5进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为93μm的电极化变色光学膜。
实施例8
本实施例首先公开了一种电极化粒子的制备方法,电极化粒子的制备方法包括以下工艺步骤:
1)往100mL三口烧瓶中依次加入2.93g氰乙基纤维素和65mL乙酸乙酯,充分搅拌,使氰乙基纤维素完全溶解在乙酸乙酯中。将反应温度升高至58℃,然后依次加入3.8g碘单质、2.93无水碘化钙、5mL的正丁醇。充分搅拌2h后,加入3.26g咪唑并[1,2-A]吡嗪-2-甲酸和0.2g去离子水,并在58℃下反应8h后停止反应。
2)将所得到的产物在12000r下离心40min,倒去上层液体。并使用乙酸乙酯将离心瓶底部的固体洗涤至玻璃瓶中,超声分散后,再在2000r下离心40min。将得到的上层液体再在10000r下离心1h后,倒去上层液体,最后将沉淀洗涤并超声分散至乙酸乙酯中,得到电极化粒子5的分散液,电极化粒子5浓度为20wt%。
本实施例进一步公开了一种电极化变色光学膜,电极化变色光学膜的制备工艺包括以下工艺步 骤:
a)将电极化粒子5分散液中的电极化粒子5与低聚物4按质量比例1:30进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子5和低聚物4聚甲基丙烯酸癸酯的混合乳液A。
b)往紫外交联固化的聚合物3聚丙烯酸酯-聚硅氧烷共聚物中加入1%质量分数的2,4,6-三甲基苯甲酰基二苯基氧化膦紫外光固化引发剂,加入四氢呋喃超声均匀溶解后,放置于旋转蒸发仪中旋去有机溶剂后,得到液体B。
c)将混合乳液A和液体B按质量比1:5进行共混,充分搅拌均匀并进行真空脱泡后,制得涂膜浆料。
d)采用辊对辊的涂膜方式将涂膜浆料涂布、贴合在两张氧化铟锡(ITO)导电膜之间,通过控制两辊之间的间距进行厚度调节,并在紫外固化灯下固化120s后制得电极化变色膜厚度为95μm的电极化变色光学膜。然后将光学薄膜接触电极后,测试其性能。
性能测试方法和检测数据
电极化变色光学膜在通电状态和断电状态下的可见光透过率和雾度性能采用TH-100透光率雾度仪(杭州彩谱科技有限公司),测试范围为400nm至700nm。采用频率为50Hz,电压为0-220V范围可调的交流电源对电极化光学薄膜进行驱动,实施例1~8制备的光学薄膜的性能测试结果如表1所示。
表1 电极化变色光学膜的性能测试结果
Figure PCTCN2022075889-appb-000008
结论
从测试结果可以看出,通过改变电极化粒子的制备工艺及后处理方法能够实现不同透过率及雾度性能的电极化变色调光膜。如实施例1-6,当改变反应物的种类、加入的比例和加入的顺序,能够得到不同透过率性能的变色调光膜;当改变电极化粒子的离心处理方式,能够得到开态下具有更低雾度的变色调光膜。如实施例8中所述,当碘单质、咪唑并[1,2-A]吡嗪-2-甲酸、碘化钙、氰乙基纤维素、正丁醇、去离子水和乙酸乙酯的用量比为3.8g:3.26g:2.93g:2.93g:5mL:0.2g:65mL, 且使用2000r-10000r对电极化粒子进行粒径分级处理时,制得的电极化粒子配成浆料涂覆得到的电极化变色光学膜具有最佳的透过率性能(2.52%~60.5%),和亮态下最低的雾度性能(2.87%)。
以上所述,仅是本发明的较佳实施方式,并非对本发明作任何形式上的限制,凡是依据本发明的技术原理对以上实施例所做的任何简单修改、等同变化或修饰,仍属于本发明技术方案的范围内。

Claims (13)

  1. 一种电极化粒子,其特征在于:原料主要包括金属碘化物、羧酸类含氮有机分子、碘单质和纤维素类助悬剂;
    所述电极化粒子为棒状结构,所述电极化粒子的长度为100~2000nm;所述电极化粒子的宽度为10~200nm。
  2. 一种电极化粒子的制备方法,其特征在于:包括以下步骤:
    1)将纤维素助悬剂加入到乙酸乙酯中,搅拌至纤维素助悬剂完全溶解,将反应温度升高到25~80℃,然后依次加入碘单质、羧酸类含氮有机分子、金属碘化物以及脂肪醇和去离子水,继续在25~80℃反应1~20h;
    2)将步骤1)所得到的产物进行离心洗涤,将沉淀分散至乙酸乙酯中,得到电极化粒子的分散液。
  3. 根据权利要求2所述的电极化粒子的制备方法,其特征在于:所述纤维素类助悬剂为乙基纤维素、乙酸纤维素、氰乙基纤维素、硝化纤维素中的一种或多种;
    所述羧酸类含氮有机分子为以下结构中的一种或多种:
    Figure PCTCN2022075889-appb-100001
    所述金属碘化物为碘化铜、碘化钙、碘化镁、碘化钡中的一种或多种;
    所述脂肪醇为甲醇、乙醇、异丙醇、正丁醇、正庚醇、正辛醇中的一种或多种。
  4. 根据权利要求2所述的电极化粒子的制备方法,其特征在于:步骤1)中,所述碘单质、羧酸类含氮有机分子、金属碘化物、纤维素助悬剂、脂肪醇、去离子水和乙酸乙酯的用量比为2.0~4.5g:3.0~5.3g:1.2~4.5g:3.0~5.0g:3.6~8.4mL:0.2~1.5g:45~70mL。
  5. 根据权利要求2所述的电极化粒子的制备方法,其特征在于:步骤1)中,继续在40~80℃条件下反应1~16h。
  6. 一种电极化粒子的制备方法,其特征在于:包括以下步骤:
    1)将纤维素助悬剂加入到溶剂中,搅拌至纤维素助悬剂完全溶解,将反应温度升高到25~80℃,然后依次加入碘单质、羧酸类含氮有机分子、金属碘化物以及脂肪醇和去离子水,继续在25~80℃反应1~20h;
    2)将步骤1)所得到的产物进行离心洗涤,将沉淀分散至所述溶剂中,得到电极化粒子的分散液。
  7. 一种电极化变色光学膜,其特征在于,包含权利要求1所述的电极化粒子或由权利要求2-6中任一项所述的电极化粒子的制备方法制得的电极化粒子。
  8. 根据权利要求7所述的电极化变色光学膜,其特征在于,所述电极化变色光学膜包括基底以及依次设置于所述基底上的第一导电膜、电极化变色膜、第二导电膜;所述电极化变色膜包含所述电极化粒子。
  9. 根据权利要求8所述的电极化变色光学膜,其特征在于:所述第一导电膜为氧化铟锡导电膜、银纳米线导电膜、铜纳米线导电膜、ZnO导电膜中的一种;所述第二导电膜为氧化铟锡导电膜、银纳米线导电膜、铜纳米线导电膜、ZnO导电膜中的一种。
  10. 根据权利要求9所述的电极化变色光学膜,其特征在于:所述电极化变色光学膜的制备工艺包括以下工艺步骤:
    a)将电极化粒子分散液中的电极化粒子与低聚物进行配样,超声混合均匀后,旋干溶剂,得到电极化粒子和低聚物的混合乳液A;
    b)在紫外交联固化的聚合物中加入光固化引发剂,并加入有机溶剂,搅拌均匀后,放置于旋转蒸发仪中旋去有机溶剂,得到液体B;
    c)将混合乳液A和液体B进行共混,搅拌均匀并进行真空脱泡,制得涂膜浆料;
    d)将涂膜浆料涂覆在带有第一导电膜的基底上,贴合在第一导电膜和第二导电膜之间,然后进行光固化,制得电极化变色光学膜。
  11. 根据权利要求10所述的电极化变色光学膜,其特征在于:步骤a)中,所述低聚物为聚甲基丙烯酸异辛酯、聚甲基丙烯酸庚酯中的一种或两种;
    所述聚甲基丙烯酸异辛酯、聚甲基丙烯酸癸酯的粘度为500~10000cps;
    和/或,
    所述混合乳液A中,电极化粒子分散液中的电极化粒子与低聚物的质量比为1:(2~50)。
  12. 根据权利要求10所述的电极化变色光学膜,其特征在于:步骤b)中,所述紫外交联固化的聚合物为聚丙烯酸酯-聚苯乙烯共聚物、聚丙烯酸酯-聚硅氧烷共聚物中的一种或两种;
    所述聚丙烯酸酯-聚苯乙烯共聚物、聚丙烯酸酯-聚硅氧烷共聚物的粘度为2000~20000cps;
    所述光固化引发剂为2,4,6-三甲基苯甲酰基二苯基氧化膦;
    所述光固化引发剂的加入量为紫外交联固化的聚合物质量的0.1%~3%。
  13. 根据权利要求10所述的电极化变色光学膜,其特征在于:步骤c)中,混合乳液A和液体B按质量比1:(1~10)进行共混;
    所述有机溶剂为四氢呋喃、乙酸乙酯、二氯甲烷、丙酮和二氧六环中的一种或多种。
PCT/CN2022/075889 2021-04-13 2022-02-10 一种电极化粒子及其制备方法、电极化变色光学膜 WO2022218016A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237007974A KR20230087446A (ko) 2021-04-13 2022-02-10 전기 분극 입자 및 이의 제조 방법, 전기 분극 변색 광학 필름
JP2022538465A JP7393832B2 (ja) 2021-04-13 2022-02-10 電気分極粒子及びその製造方法、電気分極変色光学フィルム
US17/878,158 US20220380570A1 (en) 2021-04-13 2022-08-01 Electro-polarizable particle, preparation method thereof, and electro-polarizable allochroic optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110395672.7 2021-04-13
CN202110395672.7A CN113105351B (zh) 2021-04-13 2021-04-13 一种电极化粒子及其制备方法和在电极化变色光学膜上的应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/878,158 Continuation US20220380570A1 (en) 2021-04-13 2022-08-01 Electro-polarizable particle, preparation method thereof, and electro-polarizable allochroic optical film

Publications (1)

Publication Number Publication Date
WO2022218016A1 true WO2022218016A1 (zh) 2022-10-20

Family

ID=76716426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075889 WO2022218016A1 (zh) 2021-04-13 2022-02-10 一种电极化粒子及其制备方法、电极化变色光学膜

Country Status (5)

Country Link
US (1) US20220380570A1 (zh)
JP (1) JP7393832B2 (zh)
KR (1) KR20230087446A (zh)
CN (1) CN113105351B (zh)
WO (1) WO2022218016A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113105351B (zh) * 2021-04-13 2023-02-28 绍兴迪飞新材料有限公司 一种电极化粒子及其制备方法和在电极化变色光学膜上的应用
CN115073387B (zh) * 2022-07-14 2023-08-11 绍兴迪飞新材料有限公司 一种电极化粒子的制备方法及其在电极化变色光学膜上的应用
CN114989379B (zh) * 2022-07-14 2023-07-14 绍兴迪飞新材料有限公司 一种低聚度聚氨酯及其制备方法和在电极化变色光学膜上的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132549A1 (ja) * 2010-04-23 2011-10-27 コニカミノルタホールディングス株式会社 表示素子及び表示素子の製造方法
CN109491174A (zh) * 2018-11-19 2019-03-19 浙江精新材料科技有限公司 一种无机-有机杂化核壳型纳米棒及带有该纳米棒的光阀
CN110824802A (zh) * 2019-10-28 2020-02-21 惠州市华星光电技术有限公司 显示面板及显示装置
CN111323980A (zh) * 2020-02-28 2020-06-23 浙江工业大学 一种二氧化钛/聚三[2-(4-噻吩)苯]胺复合薄膜的制备方法和应用
CN111679455A (zh) * 2020-06-29 2020-09-18 绍兴迪飞新材料有限公司 一种多色变色薄膜器件及其制备方法
CN111718450A (zh) * 2020-06-29 2020-09-29 绍兴迪飞新材料有限公司 一种有机-无机电极化粒子及其制备方法和应用
CN111752013A (zh) * 2020-06-29 2020-10-09 绍兴迪飞新材料有限公司 一种多孔聚合物光学薄膜器件及其制备方法
CN113105351A (zh) * 2021-04-13 2021-07-13 绍兴迪飞新材料有限公司 一种电极化粒子及其制备方法和在电极化变色光学膜上的应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132549A1 (ja) * 2010-04-23 2011-10-27 コニカミノルタホールディングス株式会社 表示素子及び表示素子の製造方法
CN109491174A (zh) * 2018-11-19 2019-03-19 浙江精新材料科技有限公司 一种无机-有机杂化核壳型纳米棒及带有该纳米棒的光阀
CN110824802A (zh) * 2019-10-28 2020-02-21 惠州市华星光电技术有限公司 显示面板及显示装置
CN111323980A (zh) * 2020-02-28 2020-06-23 浙江工业大学 一种二氧化钛/聚三[2-(4-噻吩)苯]胺复合薄膜的制备方法和应用
CN111679455A (zh) * 2020-06-29 2020-09-18 绍兴迪飞新材料有限公司 一种多色变色薄膜器件及其制备方法
CN111718450A (zh) * 2020-06-29 2020-09-29 绍兴迪飞新材料有限公司 一种有机-无机电极化粒子及其制备方法和应用
CN111752013A (zh) * 2020-06-29 2020-10-09 绍兴迪飞新材料有限公司 一种多孔聚合物光学薄膜器件及其制备方法
CN113105351A (zh) * 2021-04-13 2021-07-13 绍兴迪飞新材料有限公司 一种电极化粒子及其制备方法和在电极化变色光学膜上的应用

Also Published As

Publication number Publication date
CN113105351B (zh) 2023-02-28
JP7393832B2 (ja) 2023-12-07
US20220380570A1 (en) 2022-12-01
KR20230087446A (ko) 2023-06-16
CN113105351A (zh) 2021-07-13
JP2023524331A (ja) 2023-06-12

Similar Documents

Publication Publication Date Title
WO2022218016A1 (zh) 一种电极化粒子及其制备方法、电极化变色光学膜
CN108010637B (zh) 一种柔性透明电极的制备方法
CN106009015B (zh) 导电聚合物薄膜及其制作方法与液晶显示面板
CN111718450B (zh) 一种有机-无机电极化粒子及其制备方法和应用
JPWO2010095648A1 (ja) 複合導電性ポリマー組成物、その製造方法、当該組成物を含有する溶液、および当該組成物の用途
TW201026803A (en) Self-adhesive base polymer for electroluminescence material
TW201313786A (zh) 矽系液晶配向劑、液晶配向膜及液晶顯示元件
CN103733128A (zh) 液晶显示装置
CN1540679A (zh) 一种氧化铟锡专用银浆料及其制造方法
CN111752013B (zh) 一种多孔聚合物光学薄膜器件及其制备方法
CN109897644B (zh) 一种高对比度、低电压驱动及快速响应电控液晶调光膜及其制备方法
CN109116640B (zh) 一种石墨烯调光膜及其制备方法
WO2014201727A1 (zh) 用于液晶显示器边框的高分子液晶材料、边框和制造方法
TWI515234B (zh) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
CN111983844A (zh) 一种基于液晶物理凝胶的聚合物分散液晶薄膜及其制备方法
CN109346242B (zh) 一种基于银纳米线的透明电极及其制备方法
JP2005300962A (ja) 調光材料、調光フィルムおよび調光ガラスならびにその製造方法
CN113773498B (zh) 一种超支化聚合物及其制备方法和在制备电极化变色薄膜中的应用
CN113917757B (zh) 含有非线性结构液体聚合物的光阀装置、非线性结构液体聚合物及其制备方法
JP2006064832A (ja) 調光材料、調光フィルムおよびその製造方法
CN111607113B (zh) 聚合物纳米森林结构薄膜的制备方法
Tang et al. All-in-one electrochromic gel consist of benzylboronic acid viologen with superior long-term stability and self-healing property
CN216359832U (zh) 一种电极化变色光学薄膜器件
CN110681553A (zh) 一种基于AgNWs柔性透明加热器及其制备方法
CN111799034A (zh) 一种聚乙烯二氧噻吩基纳米银线透明薄膜的制备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022538465

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787246

Country of ref document: EP

Kind code of ref document: A1