WO2022217920A1 - 液态金属微胶囊、导电浆料及其制备方法、电子器件 - Google Patents

液态金属微胶囊、导电浆料及其制备方法、电子器件 Download PDF

Info

Publication number
WO2022217920A1
WO2022217920A1 PCT/CN2021/132359 CN2021132359W WO2022217920A1 WO 2022217920 A1 WO2022217920 A1 WO 2022217920A1 CN 2021132359 W CN2021132359 W CN 2021132359W WO 2022217920 A1 WO2022217920 A1 WO 2022217920A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid metal
conductive paste
conductive
microcapsules
layer
Prior art date
Application number
PCT/CN2021/132359
Other languages
English (en)
French (fr)
Inventor
任中伟
门振龙
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Priority to US17/790,470 priority Critical patent/US20230317311A1/en
Publication of WO2022217920A1 publication Critical patent/WO2022217920A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys

Definitions

  • the present application relates to the technical field of new materials, in particular to a liquid metal microcapsule, a conductive paste, a preparation method thereof, and an electronic device.
  • conductive materials have gradually developed from single materials such as metal and carbon to composite conductive materials.
  • Composite conductive materials are mostly made of solid conductive medium and carrier material.
  • conductive particles such as silver powder, copper powder, carbon powder, graphene, etc. are combined with epoxy resin, acrylic resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin, Silicone resin, etc.
  • Liquid metal has excellent conductivity and flexibility, and adding liquid metal to conductive paste improves the flexibility of conductive paste.
  • some schemes for adding liquid metal to conductive paste have been proposed, such as directly filling liquid metal and various conductive powders into the resin system to manufacture curable composite conductive materials, but the inventors found that liquid metal
  • the addition of the composite conductive material will seriously reduce the stability of the composite conductive material (during the preparation process, storage process or use process), resulting in agglomeration, flocculation, sedimentation and other phenomena of the conductive powder in the composite conductive material, resulting in a significant decrease in fineness.
  • the conductive material is unevenly distributed, resulting in a significant increase in resistance or even complete non-conductivity.
  • the present application provides a liquid metal microcapsule, a conductive paste, a preparation method thereof, and an electronic device, which can improve the stability of the conductive paste containing the liquid metal.
  • the application provides a liquid metal microcapsule, which adopts the following technical solutions:
  • the liquid metal microcapsules include: a liquid metal core, a connecting layer coated on the outside of the liquid metal core, and a coating layer wrapped on the outside of the connecting layer; the bonding force between the connecting layer and the liquid metal is greater than that of all The bonding force between the cladding layer and the liquid metal, the bonding force between the connecting layer and the cladding layer is greater than the bonding force between the cladding layer and the liquid metal.
  • the connecting material used for making the connecting layer is selected from the material that promotes the dispersion of the liquid metal.
  • the linking material is a copolymer of a low molecular weight unsaturated polybasic acid polymer and a polysiloxane, or a copolymer of a low molecular weight unsaturated polybasic acid polymer and a polyamine, or a low molecular weight unsaturated polybasic acid Copolymers of polymers with alcohol amines, or high molecular block polymers containing pigment affinity groups.
  • the material of the coating layer is one of vinyl chloride-vinyl acetate copolymer resin, polyurethane resin, epoxy resin, and polyester resin.
  • the diameter of the liquid metal microcapsules is 0.01 micrometers to 5 micrometers.
  • the thickness of the connecting layer is 5 nanometers to 30 nanometers, and the thickness of the coating layer is 20 nanometers to 200 nanometers.
  • the present application provides a method for preparing liquid metal microcapsules, for preparing the liquid metal microcapsules described in any of the above, using the following technical solutions:
  • the preparation method of the liquid metal microcapsules includes:
  • Step S11 placing the liquid metal and the connecting material in an airtight container
  • Step S12 filling the container with protective gas or evacuating
  • Step S13 fully dispersing the liquid metal and the connecting material to form a liquid metal core covered with a connecting layer
  • Step S14 dissolving the coating material to form a coating solution
  • step S15 the material obtained in step S14 is added to the material obtained in step S13, and mixed to obtain the liquid metal microcapsules.
  • the liquid metal microcapsules include: a liquid metal core, a connection layer coated on the liquid metal core, A cladding layer covering the connecting layer.
  • the mass ratio of the liquid metal to the connecting material is 1:20 ⁇ 1:2.
  • the mass ratio of the coating solution to the liquid metal is 1:10-1:2.
  • the application provides a conductive paste, which adopts the following technical solutions:
  • the conductive paste includes: conductive powder, film-forming material, solvent, auxiliary agent, and the liquid metal microcapsule described in any one of the above.
  • the conductive paste includes: 45% to 80% of conductive powder; 1% to 10% of film former; 0.01% to 50% of liquid metal microcapsules; 0.1% to 50% of liquid metal microcapsules; 2% auxiliary agent; 2% to 20% solvent.
  • the present application provides a method for preparing a conductive paste, which is used to prepare the conductive paste described in any of the above, using the following technical solutions:
  • the preparation method of the conductive paste includes:
  • Step S21 preparing liquid metal microcapsules
  • Step S22 using a solvent to dissolve the film-forming substance
  • Step S23 adding the auxiliary agent to the material obtained in step S22;
  • Step S24 adding conductive powder to the material obtained in step S23;
  • step S25 the material obtained in step S24 and the material obtained in step S21 are mixed in proportion to obtain a conductive paste.
  • the present application provides an electronic device, the electronic device includes a substrate and a conductive circuit on the substrate, wherein the conductive circuit is printed and cured by the conductive paste described in any one of the above. form.
  • the application provides a liquid metal microcapsule, a conductive paste, a preparation method thereof, and an electronic device, wherein the liquid metal microcapsule includes: a liquid metal core, a connecting layer coated on the outside of the liquid metal core, and a connecting layer coated on the liquid metal core.
  • the outer cladding layer; the bonding force between the junction layer and the liquid metal is greater than that between the cladding layer and the liquid metal, and the bonding force between the junction layer and the cladding layer is greater than that between the cladding layer and the liquid metal. Since in the liquid metal microcapsule, the liquid metal core is covered by the connecting layer and the coating layer, in the process of preparing, storing and using the conductive paste, the liquid metal will not be in contact with the conductive powder. There is also no interaction between the conductive powder and the film-forming material in the prior art, thereby effectively improving the stability of the conductive paste containing the liquid metal.
  • FIG. 1 is a schematic structural diagram of a liquid metal microcapsule in an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of a liquid metal microcapsule in the prior art
  • Fig. 3 is the flow chart of the preparation method of the liquid metal microcapsule provided by the embodiment of the application.
  • FIG. 4 is a flow chart of the preparation method of the conductive paste provided by the embodiment of the present application.
  • the first method is to fill the liquid metal and conductive powder into the resin system at the same time;
  • the conductive powder is added to the resin system, and then the liquid metal is added;
  • the third method is to add the conductive powder to the resin system, add the liquid metal to another solvent system, and then mix.
  • the inventor found that the reasons for the above phenomenon are as follows: Such as stirring, ball milling, sand grinding, three-roll grinding, etc.), the conductive powder has obvious wetting and coating effect.
  • the conductive powder has obvious wetting and coating effect.
  • the liquid metal changes the spreading state of the wetting and dispersing agent in the resin system originally in the solvent and resin, causing the resin to undergo a rapid morphology change and flocculate into units with small surfaces, which cannot provide conductive powder.
  • Physical barrier and stable electric double layer structure cause conductive powder to agglomerate.
  • FIG. 1 is the structure of the liquid metal microcapsule provided by the embodiment of the present application.
  • the liquid metal microcapsule includes: a liquid metal core 1, a connecting layer 2 coated on the outside of the liquid metal core 1, and a coating layer 3 wrapped on the outside of the connecting layer 2; the bonding force between the connecting layer 2 and the liquid metal is greater than that of the coating
  • the bonding force between the cladding layer 3 and the liquid metal, and the bonding force between the connecting layer 2 and the cladding layer 3 are greater than the bonding force between the cladding layer 3 and the liquid metal.
  • the bonding force between the connection layer 2 and the liquid metal core 1 or the coating layer 3 can be embodied in physical ways, such as adsorption, adhesion, etc., or can be embodied in chemical ways, such as ionic bonds, covalent bonds, De Waals bonds and metallic bonds, etc., or a combination of physical and chemical methods.
  • different groups are used in the connecting layer 2 and the cladding layer 3.
  • the group in the connecting layer 2 has strong polarity
  • the group in the cladding layer 3 has medium and strong polarity. polarity, which in turn makes the bonding layer 2 and the liquid metal core 1 have a greater bonding force.
  • the liquid metal core 1 is covered by the connecting layer 2 and the coating layer 3, the liquid metal will not be in contact with the conductive powder during the preparation, storage and use of the conductive paste. Therefore, There is also no interaction between the liquid metal, the conductive powder and the film-forming material in the prior art, thereby effectively improving the stability of the conductive paste containing the liquid metal.
  • the setting of the connecting layer 2 can greatly improve the coating effect of the coating layer 3 on the liquid metal core 1, and greatly improve the difficulty of separating the liquid metal core 1 from the coating layer 3, thereby making the structure of the liquid metal microcapsules more stable. , further improving the stability of the conductive paste containing liquid metal.
  • the liquid metal microcapsules When the conductive circuit is bent, stretched or twisted in an environment higher than the melting point of the liquid metal, the liquid metal microcapsules It will deform and rupture, and release the liquid metal wrapped in it.
  • the liquid metal is in a liquid state, and thus has good fluidity and deformation ability.
  • the liquid metal can fill the conductive path, thereby making the conductive line have better flexibility.
  • the coating layer 3 in the embodiment of the present application has a good coating effect on the liquid metal core 1 , the liquid metal core 1 It is difficult to separate from the cladding layer 3, which can greatly increase the filling amount of the liquid metal in the conductive paste, and further improve the flexibility of the conductive circuit.
  • the liquid metal in the embodiment of the present application is a low melting point metal with a melting point below 300° C., for example, a metal element (mercury element, gallium element, indium element or tin element, etc.) whose melting point is below 300° C. Alloys below 300°C, or a blend of the two.
  • a metal element cury element, gallium element, indium element or tin element, etc.
  • the alloy whose melting point is below 300°C can be gallium indium alloy, gallium indium tin alloy, gallium tin alloy, gallium zinc alloy, gallium indium zinc alloy, gallium tin zinc alloy, gallium indium tin zinc alloy, gallium tin cadmium alloy, gallium zinc cadmium alloy Alloys, bismuth indium alloys, bismuth tin alloys, bismuth indium tin alloys, bismuth indium zinc alloys, bismuth tin zinc alloys, bismuth indium tin zinc alloys, bismuth indium tin lead alloys, bismuth tin cadmium alloys, bismuth lead tin alloys, bismuth tin lead alloys One of cadmium alloy, tin-lead alloy, tin-copper alloy, tin-zinc alloy, tin-zinc-copper alloy and tin-silver-copper alloy.
  • the melting point of the liquid metal is such that the liquid metal is in a liquid state at least when the conductive lines made of the conductive paste containing the liquid metal microcapsules are deformed.
  • the normal use (ie no obvious deformation) temperature T1 of the conductive line is the same as the temperature T2 when it is deformed, then the melting point of the liquid metal should be lower than the above-mentioned temperature T1 or T2, so that in the conductive circuit When the line is deformed, the liquid metal is in a liquid state;
  • the normal use temperature T1 of the conductive line is higher than the temperature T2 when it is deformed, and the melting point of the liquid metal should be lower than the above temperature T2, so that the conductive line is deformed
  • the normal use temperature T1 of the conductive line is lower than the temperature T2 when the conductive line is deformed, then the melting point of the liquid metal should be lower than the above-mentioned temperature T
  • the liquid metal can be in a liquid state or a solid state when the conductive circuit is in normal use.
  • the conductive line is an antenna in a water-washed label
  • its normal use temperature is room temperature. It needs to be deformed when it is industrially washed or washed with a washing machine. The temperature during washing is higher than room temperature. The melting point of the liquid metal only needs to ensure its The liquid metal may be in a liquid state during washing, that is, the melting point of the liquid metal may be lower than the temperature during washing and higher than room temperature, or the melting point of the liquid metal may be lower than room temperature.
  • the liquid metal in the liquid metal microcapsules is a gallium indium alloy, a gallium tin alloy, a gallium element, a gallium indium tin alloy, a gallium indium tin zinc alloy, etc. that are liquid at room temperature.
  • the connecting material used for making the connecting layer in the embodiment of the present application selects a material that promotes the dispersion of liquid metal, so that in the process of making liquid metal microcapsules, the liquid metal In the process of mixing and dispersing the metal and the connecting material, the connecting material can promote the dispersion of the liquid metal, thereby dispersing the liquid metal into smaller droplets.
  • the linking material is a copolymer of a low molecular weight unsaturated polyacid polymer and a polysiloxane, or a copolymer of a low molecular weight unsaturated polyacid polymer and a polyamine, or a low molecular weight unsaturated polyacid polymer Copolymers of homoalcoholamines, or high molecular block polymers containing pigment affinity groups. It should be noted that an appropriate amount of solvent can also be added to the connecting material according to actual needs.
  • the material of the coating layer 3 is polyester resin, melamine resin, vinyl acetate resin, vinyl chloride vinyl acetate resin, silicone resin, gelatin, sodium alginate, polyvinylpyrrolidone, chitosan, polyurethane resin, Polyacrylic resin, epoxy resin, fluorocarbon resin, epoxy acrylic resin, epoxy acrylate resin, polyester acrylate resin, phenolic resin, nitrocellulose, ethyl cellulose, alkyd resin, amino resin, vinyl chloride -One or more of vinyl acetate copolymer resins, hydroxyl-modified vinyl chloride-vinyl acetate copolymer resins, thermoplastic polyurethane resins, styrene-butadiene rubber resins, nitrile-butadiene rubber resins, isocyanates with blocked groups and oligomers thereof .
  • the above-mentioned coating material can exist stably with the liquid metal for a long time, and the pH is close to neutral, without strong alkaline or acidic components, and will not cause significant interaction with the liquid metal.
  • Chemical reaction on the other hand, the above-mentioned coating material has good compatibility with the film-forming material in the conductive paste, which can ensure that the conductive paste has good fusion and no significant phase separation.
  • the coating material has self-filming properties and will not cause defects in the overall performance of the conductive paste.
  • the coating effect of the liquid metal microcapsules can be further improved, thereby improving the stability of the conductive paste.
  • the diameter of the liquid metal microcapsules is 0.01 micrometers to 5 micrometers.
  • the liquid metal microcapsules are easily broken under the bending destructive force, and then the conductive powder formed by the deformation of the external force is filled.
  • the large number of gaps formed between them compensate for the increase in resistance caused by the reduction of the effective contact of the conductive powder.
  • the specific gravity of the liquid metal microcapsules is moderate, and phase separation is not easy to occur, and it is not easy to cause liquid metal microcapsules in advance during the screen printing process. It can ensure the overall adhesion of the conductive paste and avoid the risk of short circuit when printing complex patterns with low line spacing.
  • the thickness of the connecting layer 2 is 5 nanometers to 30 nanometers, and the thickness of the coating layer 3 is 20 nanometers to 200 nanometers, so as to improve the coating effect of the liquid metal microcapsules, thereby improving the conductivity of the conductive paste. stability.
  • the embodiments of the present application also provide a method for preparing liquid metal microcapsules, which is used to prepare the liquid metal microcapsules described in any of the above.
  • FIG. 3 which is an embodiment of the present application
  • Step S11 placing the liquid metal and the connecting material in an airtight container.
  • the mass ratio of the liquid metal to the connecting material is 1:20 to 1:2, such as 1:19, 1:18, 1:17, 1:16, 1:15, 1:14, 1:13, 1:12, 1:11, 1:10, 1:9, 1:8, 1:7, 1:6, 1:5, 1:4 or 1:3, preferably 1:8 to 1:16,
  • the conductive paste containing the liquid metal microcapsules has better stability and conductivity.
  • Step S12 filling the container with protective gas or evacuating.
  • Step S13 fully dispersing the liquid metal and the connecting material to form a liquid metal core covered with a connecting layer.
  • the liquid metal and the connecting material are fully fanned by means of ultrasound, ball milling or high-speed stirring to form a liquid metal core covered with a connecting layer.
  • Step S14 dissolving the coating material to form a coating solution.
  • the mass ratio of the coating solution to the liquid metal is 1:10-1:2, such as 1:9, 1:8, 1:7, 1:6, 1:5, 1:4 or 1:3 , preferably 1:8 to 1:4, so that the thickness of the formed coating layer is moderate, and the conductive paste containing liquid metal microcapsules has both good stability and conductivity.
  • step S15 the material obtained in step S14 is added to the material obtained in step S13, and mixed to obtain liquid metal microcapsules.
  • the liquid metal microcapsules include: a liquid metal core, a connection layer coated on the outside of the liquid metal core, and a connection layer coated on the connection. outer cladding.
  • an embodiment of the present application further provides a conductive paste, specifically, the conductive paste includes: conductive powder, film-forming material, solvent, auxiliary agent, and the liquid metal microcapsule described in any one of the above.
  • the conductive powder can be one of gold powder, silver powder, copper powder, iron powder, nickel powder, aluminum powder, graphene powder, carbon black powder, graphite powder, silver-coated copper powder, etc. or a mixture of at least two of them.
  • the shape of the conductive powder is one of flake, spherical, linear, rod, needle, dendritic, etc., or a mixture of at least two.
  • the size of the conductive powder is 0.1 ⁇ m to 6 ⁇ m.
  • the film-forming material can be one or more of polyurethane resin, polyester resin, vinyl acetate resin, epoxy resin and acrylic resin.
  • Adjuvants may include one or more of antioxidants, softeners, leveling agents, defoaming agents, and viscosity modifiers.
  • Solvents can include butanone, cyclohexanone, methyl isobutyl ketone, diisobutyl ketone, isophorone, toluene, xylene, butyl carbitol, alcohol ester 12, DBE, ethylene glycol butyl ether , one or more of ethylene glycol ethyl ether, dipropylene glycol methyl ether, diethylene glycol ethyl ether acetate and ethylene glycol butyl ether acetate.
  • the conductive paste includes, by weight percentage, 45% to 80% of conductive powder; 1% to 10% of film former; 0.01% to 50% of liquid metal microcapsules ; 0.1% ⁇ 2% auxiliary agent; 2% ⁇ 20% solvent.
  • the conductive paste includes 45%, 50%, 55%, 60%, 65%, 70%, 75% or 80% of the conductive powder; the conductive paste includes 1%, 2%, 3%, 4% %, 5%, 6%, 7%, 8%, 9% or 10% of film formers; conductive pastes include 0.01%, 0.1%, 0.5%, 1%, 2%, 5%, 10%, 15% %, 20%, 25%, 30%, 35%, 40%, 45% or 50% of liquid metal microcapsules; conductive pastes include 0.1%, 0.2%, 0.5%, 1%, 1.5% or 2% Auxiliary agent; the conductive paste includes 2%, 3%, 5%, 10%, 15% or 20% of solvent.
  • the conductive paste in the embodiments of the present application may further include a cross-linking agent, and the weight percentage of the cross-linking agent may be 1% to 15%, such as 1%, 2%, 3%, 4%, 5%, 6%, 7% %, 8%, 9%, 10%, 11%, 12%, 13%, 14% or 15%.
  • the cross-linking agent can react with the coating material and/or with the film-forming material during the curing process of the conductive line made of the conductive paste to form a bulk network structure, thereby improving the flexibility of the conductive line.
  • an embodiment of the present application also provides a method for preparing a conductive paste, which is used to prepare the conductive paste described in any of the above.
  • a method for preparing a conductive paste which is used to prepare the conductive paste described in any of the above.
  • FIG. 4 FIG.
  • the flow chart of the preparation method of the conductive paste, the preparation method of the conductive paste includes:
  • Step S21 preparing liquid metal microcapsules
  • Step S22 using a solvent to dissolve the film-forming material
  • Step S23 adding the auxiliary agent to the material obtained in step S22;
  • Step S24 adding conductive powder to the material obtained in step S23;
  • step S25 the material obtained in step S24 and the material obtained in step S21 are mixed in proportion to obtain a conductive paste.
  • an embodiment of the present application also provides an electronic device, the electronic device includes a substrate and a conductive circuit on the substrate, and the conductive circuit is formed by printing and curing the conductive paste described in any one of the above.
  • the above electronic device can be any electronic device that needs to use conductive lines, such as flexible sensors, wearable devices, flexible electronic labels, FPC circuit boards, etc., and is especially suitable for electronic devices that require flexible conductive lines.
  • the above printing methods can be screen printing, flexographic printing, pad printing, extrusion dispensing, stencil printing and other forming processes.
  • the substrate can be polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA) and other films.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PA polyamide
  • the embodiments of the present application provide several specific embodiments, comparative examples, and performance comparisons.
  • Conductive paste preform Printed circuit square resistance 1 5g 95g 0.0294 ⁇ / ⁇ 2 10g 90g 0.0306 ⁇ / ⁇ 3 20g 80g 0.0476 ⁇ / ⁇ 4 30g 70g 0.0581 ⁇ / ⁇ 5 50g 50g 0.25 ⁇ / ⁇
  • the conductive paste preform After dispersion, the conductive paste turns into a black glue block, the properties change and cannot be printed, and the obtained material is non-conductive after drying.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

本申请提供一种液态金属微胶囊、导电浆料及其制备方法、电子器件,涉及新材料技术领域。本申请提供的液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于所述衔接层外的包覆层;所述衔接层与所述液态金属的结合力大于所述包覆层与所述液态金属的结合力,所述衔接层与所述包覆层的结合力大于所述包覆层与所述液态金属的结合力。本申请的技术方案能够提高包含液态金属的导电浆料的稳定性。

Description

液态金属微胶囊、导电浆料及其制备方法、电子器件
本申请要求于2021年4月16日提交中国专利局,申请号为2021104126598,申请名称为“液态金属微胶囊、导电浆料及其制备方法、电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新材料技术领域,尤其涉及一种液态金属微胶囊、导电浆料及其制备方法、电子器件。
背景技术
近年来,随着电子信息技术的迅猛发展,市场对导电材料的特异性和功能性要求越来越苛刻。为满足上述要求,导电材料逐渐由最初的金属、碳等单一材料发展为复合导电材料。复合导电材料多采用固态导电介质与载体物质共同制成,例如将导电微粒如银粉、铜粉、碳粉、石墨烯等与环氧树脂、丙烯酸树脂、聚氨酯树脂、氯乙烯-醋酸乙烯共聚树脂、有机硅树脂等复合而成。
液态金属具有优异的导电性和柔性,将液态金属添加至导电浆料中提升导电浆料的柔性。现有技术中提出了一些在导电浆料中加入液态金属的方案,如将液态金属与各类导电粉体直接填充到树脂体系中加工制造可固化型复合导电材料,但发明人发现,液态金属的加入,会严重降低复合导电材料的稳定性(在制备过程中、储存过程中或者使用过程中),导致复合导电材料中的导电粉体出现团聚、絮凝、沉降等现象,使得细度显著下降,导电材料分布不均,造成电阻显著上升甚至完全不导电的现象发生。
申请内容
本申请提供一种液态金属微胶囊、导电浆料及其制备方法、电子器件,可以提高包含液态金属的导电浆料的稳定性。
第一方面,本申请提供一种液态金属微胶囊,采用如下技术方案:
所述液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于所述衔接层外的包覆层;所述衔接层与所述液态金属的结合力大于所述包覆层与所述液态金属的结合力,所述衔接层与所述包覆层的结合力大于所述包覆层与所述液态金属的结合力。
可选地,用于制作所述衔接层的衔接物料选用促进液态金属分散的物质。
可选地,所述衔接物料为低分子量不饱和多元酸聚合物同聚硅氧烷共聚物,或者,低分子量不饱和多元酸聚合物同多胺的共聚物,或者,低分子量不饱和多元酸聚合物同醇胺的共聚物,或者,含有颜料亲和基团的高分子嵌段聚合物。
可选地,所述包覆层的材质为氯乙烯-醋酸乙烯共聚树脂,聚氨酯树脂,环氧树脂,聚酯树脂中的一种。
可选地,所述液态金属微胶囊的直径为0.01微米~5微米。
进一步地,所述衔接层的厚度为5纳米~30纳米,所述包覆层的厚度为20纳米~200纳米。
第二方面,本申请提供一种液态金属微胶囊的制备方法,用于制备以上任一项所述的液态金属微胶囊,采用如下技术方案:
所述液态金属微胶囊的制备方法包括:
步骤S11、将液态金属与衔接物料置于密闭容器中;
步骤S12、向容器内充入保护气体或者抽真空;
步骤S13、将液态金属和衔接物料充分分散,形成包覆有衔接层的液态金属核;
步骤S14、将包覆材料溶解形成包覆溶液;
步骤S15、将步骤S14所得物料添加至步骤S13所得物料中,进行混合,得到所述液态金属微胶囊,所述液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于所述衔接层外的包覆层。
可选地,所述液态金属与所述衔接物料的质量比为1:20~1:2。
可选地,所述包覆溶液与所述液态金属的质量比为1:10~1:2。
第三方面,本申请提供一种导电浆料,采用如下技术方案:
所述导电浆料包括:导电粉体、成膜物、溶剂、助剂、以及以上任一项所述的液态金属微胶囊。
可选地,按重量百分比计,所述导电浆料包括:45%~80%的导电粉体;1%~10%的成膜物;0.01%~50%的液态金属微胶囊;0.1%~2%助剂;2%~20%的溶剂。
第四方面,本申请提供一种导电浆料的制备方法,用于制备以上任一项所述的导电浆料,采用如下技术方案:
所述导电浆料的制备方法包括:
步骤S21、制备液态金属微胶囊;
步骤S22、使用溶剂将成膜物溶解;
步骤S23、将助剂加入步骤S22所得物料中;
步骤S24、将导电粉体加入步骤S23所得物料中;
步骤S25、将步骤S24所得物料与步骤S21所得物料按比例混合,得到导电浆料。
第五方面,本申请提供一种电子器件,所述电子器件,包括基材和位于所述基材上的导电线路,所述导电线路由以上任一项所述的导电浆料印制固化后形成。
本申请提供了一种液态金属微胶囊、导电浆料及其制备方法、电子器件,其中,液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于衔接层外的包覆层;衔接层与液态金属的结合力大于包覆层与液态金属的结合力,衔接层与包覆层的结合力大于包覆层与液态金属的结合力。由于在液态金属微胶囊中,液态金属核被衔接层和包覆层包覆,在制备、存储、使用导电浆料的过程中,液态金属均不会与导电粉体接触,因此,液态金属与导电粉体、成膜物之间也不存在现有技术中的相互作用,进而有效提高包含液态金属的导电浆料的稳定性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中的液态金属微胶囊的结构示意图;
图2为现有技术中的液态金属微胶囊的结构示意图;
图3为本申请实施例提供的液态金属微胶囊的制备方法流程图;
图4为本申请实施例提供的导电浆料的制备方法流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
以制备过程为例,现有复合导电材料的制备过程中,采用的是以下三种方法之一:第一种,将液态金属与导电粉体同时填充至树脂体系中;第二种,先在树脂体系中添 加导电粉体,再添加液态金属;第三种,在树脂体系中添加导电粉体,在另一溶剂体系中添加液态金属,再混合。
经过对上述复合导电材料的组分以及制备过程进行大量反复实验及分析,发明人发现,造成上述现象的原因如下:在复合导电材料的制备过程中,液态金属在各类“高能”加工过程(如搅拌、球磨、砂磨、三辊研磨等)中对导电粉体产生明显的润湿包覆作用,导电粉体在高速运动过程中,随着液态金属的润湿包覆作用,相互碰撞后很快融合,和/或,液态金属改变树脂体系中润湿分散剂原本在溶剂和树脂中的铺展状态,使得树脂迅速发生形貌变化,絮凝成表面积极小的单元,无法为导电粉体提供物理阻隔和稳定的双电层结构,造成导电粉体团聚,这种情况发生的概率随着液态金属以及导电粉体的填充量的增加而显著上升,若降低导电粉体和液态金属填充量,可以一定程度避免此类现象发生,但也造成复合导电材料中有效组分含量下降,总体导电性能下降。
为解决液态金属制备导电浆料过程中的问题,本申请实施例提供了一种液态金属微胶囊,具体地,如图1所示,图1为本申请实施例提供的液态金属微胶囊的结构示意图,液态金属微胶囊包括:液态金属核1、包覆于液态金属核1外的衔接层2、包覆于衔接层2外的包覆层3;衔接层2与液态金属的结合力大于包覆层3与液态金属的结合力,衔接层2与包覆层3的结合力大于包覆层3与液态金属的结合力。
其中,衔接层2与液态金属核1或者包覆层3之间的结合力,可以体现为物理方式,如吸附、粘附等,也可以体现为化学方式,如离子键、共价键、范德瓦尔斯键和金属键等,或者物理方式与化学方式的结合。可选地,本申请实施例中通过衔接层2与包覆层3中不同的基团实现,例如,衔接层2中的基团具有强极性,包覆层3中的基团具有中强极性,进而使得衔接层2与液态金属核1之间具有更大的结合力。
由于在液态金属微胶囊中,液态金属核1被衔接层2和包覆层3包覆,在制备、存储、使用导电浆料的过程中,液态金属均不会与导电粉体接触,因此,液态金属与导电粉体、成膜物之间也不存在现有技术中的相互作用,进而有效提高包含液态金属的导电浆料的稳定性。另外,衔接层2的设置可以大大提高包覆层3对液态金属核1的包覆效果,且大大提高液态金属核1与包覆层3脱离的难度,进而使得液态金属微胶囊的结构更稳定,进一步提高包含液态金属的导电浆料的稳定性。
在由含有液态金属微胶囊的导电浆料制成的导电线路的使用过程中,在高于液态金属的熔点的环境下,导电线路发生弯折、拉伸或扭曲等形变时,液态金属微胶囊会发生形变而破裂,将其中包覆的液态金属释放出来,上述液态金属处于液态,进而具 有较好的流动性和变形能力,液态金属可填补导电通路,进而使得导电线路具有较好的柔性。与图2所示的直接用包覆层包覆液态金属核形成的液态金属微胶囊相比,由于本申请实施例中包覆层3对液态金属核1的包覆效果好,液态金属核1与包覆层3脱离的难度高,进而能够大大提高液态金属在导电浆料中的填充量,进一步提升导电线路的柔性。
下面本申请实施例对液态金属微胶囊的各层结构进行详细说明。
可选地,本申请实施例中的液态金属为熔点在300℃以下的低熔点金属,例如,熔点在300℃以下的金属单质(汞单质、镓单质、铟单质或者锡单质等),熔点在300℃以下的合金,或者,二者的共混物。熔点在300℃以下的合金可以为镓铟合金、镓铟锡合金、镓锡合金、镓锌合金、镓铟锌合金、镓锡锌合金、镓铟锡锌合金、镓锡镉合金、镓锌镉合金、铋铟合金、铋锡合金、铋铟锡合金、铋铟锌合金、铋锡锌合金、铋铟锡锌合金、铋铟锡铅合金、铋锡镉合金、铋铅锡合金、铋锡铅镉合金、锡铅合金、锡铜合金、锡锌合金、锡锌铜合金和锡银铜合金中的一种。
可选地,液态金属的熔点满足:至少在由包含液态金属微胶囊的导电浆料制成的导电线路发生形变时,液态金属呈液态。具体包括多种情况:第一种,导电线路的正常使用(即无明显变形)温度T1与其发生形变时的温度T2相同,则液态金属的熔点应低于上述温度T1或T2,以使得在导电线路发生形变时,液态金属呈液态;第二种,导电线路的正常使用温度T1高于其发生形变时的温度T2,则液态金属的熔点应低于上述温度T2,以使得在导电线路发生形变时,液态金属呈液态;第三种,导电线路的正常使用温度T1低于其发生形变时的温度T2,则液态金属的熔点应低于上述温度T2,以使得在导电线路发生形变时,液态金属呈液态,此情况下,在导电线路正常使用时液态金属可以呈液态也可以呈固态。例如,导电线路为水洗唛中的天线,其正常使用温度为室温,在对其进行工业水洗或洗涤龙洗涤时其需要发生形变,洗涤时的温度高于室温,则液态金属的熔点只要保证其在洗涤时液态金属呈液态即可,即液态金属的熔点可以低于洗涤时的温度且高于室温,或者,液态金属的熔点低于室温。
可选地,液态金属微胶囊中的液态金属为室温呈液态的镓铟合金、镓锡合金、镓单质、镓铟锡合金、镓铟锡锌合金等。
可选地,在满足以上结合力要求的前提下,本申请实施例中的用于制作衔接层的衔接物料选用促进液态金属分散的物质,以使得在制作液态金属微胶囊的过程中,将液态金属与衔接物料混合分散过程中,衔接物料能够促进液态金属分散,进而使液态金属分散成尺寸较小的液滴。
可选地,衔接物料为低分子量不饱和多元酸聚合物同聚硅氧烷共聚物,或者,低分子量不饱和多元酸聚合物同多胺的共聚物,或者,低分子量不饱和多元酸聚合物同醇胺的共聚物,或者,含有颜料亲和基团的高分子嵌段聚合物。需要说明的是,根据实际需要衔接物料中也可以加入适量溶剂。
可选地,包覆层3的材质为聚酯树脂、密胺树脂、氯醋树脂、氯乙烯醋酸乙烯树脂、有机硅树脂、明胶、海藻酸钠、聚乙烯吡咯烷酮、壳聚糖、聚氨酯树脂、聚丙烯酸树脂、环氧树脂、氟碳树脂、环氧丙烯酸树脂、环氧丙烯酸酯树脂、聚酯丙烯酸酯树脂、酚醛树脂、硝化纤维素、乙基纤维素、醇酸树脂、氨基树脂、氯乙烯-醋酸乙烯共聚树脂、羟基改性的氯乙烯-醋酸乙烯共聚树脂、热塑性聚氨酯树脂、丁苯橡胶树脂、丁腈橡胶树脂、具有封闭基团的异氰酸酯及其低聚物中的一种或几种。选择上述物质作为包覆层3具有以下优点,一方面上述包覆物质能够与液态金属稳定长时间存在,且PH接近中性,无强碱性或酸性组份,不会与液态金属发生显著的化学反应,另一方面,上述包覆物质与导电浆料中的成膜物具有较好的相容性,可以保证导电浆料具备良好的融合性并且无显著分相,再一方面,上述包覆物质具备自成膜性,不会造成导电浆料总体性能的缺陷。其中,丁苯橡胶树脂、丁腈橡胶树脂与其他材料混合时,可以进一步提高液态金属微胶囊的包覆效果,进而提高导电浆料的稳定性。
可选地,本申请实施例中液态金属微胶囊的直径为0.01微米~5微米,一方面保证在弯折破坏力下,液态金属微胶囊较易破碎,进而填充因外力形变形成的导电粉体之间形成的大量间隙,补偿导电粉体有效接触减少造成的电阻上升,另一方面保证液态金属微胶囊比重适中,不易出现相分离,也不易出现在丝网印刷过程中提前造成液态金属微胶囊的破坏,进而可以保证导电浆料的整体附着力,也能够避免在印刷复杂且线间距较低的图案时的短路风险。
进一步地,本申请实施例中衔接层2的厚度为5纳米~30纳米,包覆层3的厚度为20纳米~200纳米,以提高液态金属微胶囊的包覆效果,进而提高导电浆料的稳定性。
相应地,本申请实施例还提供一种液态金属微胶囊的制备方法,用于制备以上任一项所述的液态金属微胶囊,具体地,如图3所示,图3为本申请实施例提供的液态金属微胶囊的制备方法流程图,该液态金属微胶囊的制备方法包括:
步骤S11、将液态金属与衔接物料置于密闭容器中。
可选地,液态金属与衔接物料的质量比为1:20~1:2,如1:19、1:18、1:17、1:16、1:15、1:14、1:13、1:12、1:11、1:10、1:9、1:8、1:7、1:6、1:5、1:4或者1:3,优选为 1:8~1:16,以使衔接物料包覆液态金属后形成厚度合适的衔接层,使包含液态金属微胶囊的导电浆料兼具较好的稳定性和导电性。
步骤S12、向容器内充入保护气体或者抽真空。
步骤S13、将液态金属和衔接物料充分分散,形成包覆有衔接层的液态金属核。
例如,通过超声,球磨或着高速搅拌等方式将液态金属和衔接物料进行充分风扇,形成包覆有衔接层的液态金属核。
步骤S14、将包覆材料溶解形成包覆溶液。
可选地,包覆溶液与液态金属的质量比为1:10~1:2,如1:9、1:8、1:7、1:6、1:5、1:4或者1:3,优选为1:8~1:4,以使形成的包覆层厚度适中,包含液态金属微胶囊的导电浆料兼具较好的稳定性和导电性。
步骤S15、将步骤S14所得物料添加至步骤S13所得物料中,进行混合,得到液态金属微胶囊,液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于衔接层外的包覆层。
此外,本申请实施例还提供一种导电浆料,具体地,该导电浆料包括:导电粉体、成膜物、溶剂、助剂、以及以上任一项所述的液态金属微胶囊。
其中,导电粉体可以为金粉、银粉、铜粉、铁粉、镍粉、铝粉、石墨烯粉、炭黑粉、石墨粉、银包铜粉等中的一种或者至少两种组成的混合物。导电粉体的形状为片状、球状、线形、棒状、针状、树枝状等中的一种或者至少两种组成的混合物。导电粉体的尺寸为0.1μm~6μm。
成膜物可以为聚氨酯树脂、聚酯树脂、氯醋树脂、环氧树脂、丙烯酸树脂中的一种或几种。
助剂可以包括抗氧化剂、增柔剂,流平剂、消泡剂、粘度调节剂中的一种或几种。
溶剂可以包括丁酮、环己酮、甲基异丁基酮、二异丁基酮、异佛尔酮、甲苯、二甲苯、丁基卡必醇、醇酯12、DBE、乙二醇丁醚、乙二醇乙醚、二丙二醇甲醚、二乙二醇乙醚醋酸酯、乙二醇丁醚醋酸酯中的一种或几种。
可选地,本申请实施例中,按重量百分比计,导电浆料包括:45%~80%的导电粉体;1%~10%的成膜物;0.01%~50%的液态金属微胶囊;0.1%~2%助剂;2%~20%的溶剂。
示例性地,导电浆料包括45%、50%、55%、60%、65%、70%、75%或者80%的导电粉体;导电浆料包括1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%的成膜物;导电浆料包括0.01%、0.1%、0.5%、1%、2%、5%、10%、15%、20%、25%、 30%、35%、40%、45%或者50%的液态金属微胶囊;导电浆料包括0.1%、0.2%、0.5%、1%、1.5%或者2%的助剂;导电浆料包括2%、3%、5%、10%、15%或者20%的溶剂。
本申请实施例中的导电浆料还可以包括交联剂,交联剂的重量百分比可以为1%~15%,如1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%或者15%。交联剂能够在由导电浆料制成的导电线路的固化过程中与包覆材料,和/或,与成膜物发生交联反应生成体型网状结构,进而提高导电线路的柔韧性。
相应地,本申请实施例还提供一种导电浆料的制备方法,用于制备以上任一项所述的导电浆料,具体地,如图4所示,图4为本申请实施例提供的导电浆料的制备方法流程图,导电浆料的制备方法包括:
步骤S21、制备液态金属微胶囊;
步骤S22、使用溶剂将成膜物溶解;
步骤S23、将助剂加入步骤S22所得物料中;
步骤S24、将导电粉体加入步骤S23所得物料中;
步骤S25、将步骤S24所得物料与步骤S21所得物料按比例混合,得到导电浆料。
以上导电浆料中的描述均适用于此制备方法,此处不再进行赘述。
此外,本申请实施例还提供一种电子器件,该电子器件包括基材和位于基材上的导电线路,导电线路由以上任一项所述的导电浆料印制固化后形成。
上述电子器件可以为柔性传感器、可穿戴设备、柔性电子标签、FPC电路板等任何需要使用导电线路的电子器件,尤其适用于需要柔性的导电线路的电子器件。以上印制方式可以为丝网印刷、柔版印刷、移印、挤出式点胶、钢网印刷等成型工艺。
基材可以为聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚酰胺(PA)等薄膜中的一种。
为了便于本领域技术人员理解和实施本申请实施例中的液态金属微胶囊和导电浆料,本申请实施例提供几个具体实施例、对比例,并进行性能对比。
实施例1:
液态金属微胶囊
Figure PCTCN2021132359-appb-000001
Figure PCTCN2021132359-appb-000002
导电浆料预制物
Figure PCTCN2021132359-appb-000003
导电浆料及性能
编号 液态金属微胶囊 导电浆料预制物 印刷电路方阻
1 5g 95g 0.0294Ω/□
2 10g 90g 0.0306Ω/□
3 20g 80g 0.0476Ω/□
4 30g 70g 0.0581Ω/□
5 50g 50g 0.25Ω/□
实施例2:
液态金属微胶囊
Figure PCTCN2021132359-appb-000004
导电浆料预制物
Figure PCTCN2021132359-appb-000005
Figure PCTCN2021132359-appb-000006
导电浆料及性能
编号 液态金属复合材料 导电浆料 印刷电路方阻
6 5g 95g 0.027Ω/□
7 10g 90g 0.029Ω/□
8 20g 80g 0.043Ω/□
9 30g 70g 0.052Ω/□
10 50g 50g 0.23Ω/□
对比例1:
导电浆料预制物
Figure PCTCN2021132359-appb-000007
导电浆料及性能
向导电浆料预制物中加入1%重量比的液态金属,分散后,导电浆料变为黑色胶块,性状发生改变不能印刷,且所得物料烘干后不导电。
对比例2:
液态金属微胶囊
Figure PCTCN2021132359-appb-000008
导电浆料预制物
Figure PCTCN2021132359-appb-000009
导电浆料及性能
向将5g液态金属微胶囊与95g导电浆料预制物混合,分散后,浆料变为黑色胶块,性状发生改变不能印刷,且所得物料烘干后不导电。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种液态金属微胶囊,其特征在于,包括:液态金属核、包覆于液态金属核外的衔接层、包覆于所述衔接层外的包覆层;所述衔接层与所述液态金属的结合力大于所述包覆层与所述液态金属的结合力,所述衔接层与所述包覆层的结合力大于所述包覆层与所述液态金属的结合力。
  2. 根据权利要求1所述的液态金属微胶囊,其特征在于,用于制作所述衔接层的衔接物料选用促进液态金属分散的物质。
  3. 根据权利要求2所述的液态金属微胶囊,其特征在于,所述衔接物料为低分子量不饱和多元酸聚合物同聚硅氧烷共聚物,或者,低分子量不饱和多元酸聚合物同多胺的共聚物,或者,低分子量不饱和多元酸聚合物同醇胺的共聚物,或者,含有颜料亲和基团的高分子嵌段聚合物。
  4. 根据权利要求1~3任一项所述的液态金属微胶囊,其特征在于,所述液态金属微胶囊的直径为0.01微米~5微米。
  5. 根据权利要求4所述的液态金属微胶囊,其特征在于,所述衔接层的厚度为5纳米~30纳米,所述包覆层的厚度为20纳米~200纳米。
  6. 一种液态金属微胶囊的制备方法,用于制备如权利要求1~5任一项所述的液态金属微胶囊,其特征在于,包括:
    步骤S11、将液态金属与衔接物料置于密闭容器中;
    步骤S12、向容器内充入保护气体或者抽真空;
    步骤S13、将液态金属和衔接物料充分分散,形成包覆有衔接层的液态金属核;
    步骤S14、将包覆材料溶解形成包覆溶液;
    步骤S15、将步骤S14所得物料添加至步骤S13所得物料中,进行混合,得到所述液态金属微胶囊,所述液态金属微胶囊包括:液态金属核、包覆于液态金属核外的衔接层、包覆于所述衔接层外的包覆层。
  7. 根据权利要求6所述的液态金属微胶囊的制备方法,其特征在于,所述液态金属与所述衔接物料的质量比为1:20~1:2。
  8. 根据权利要求6或7所述的液态金属微胶囊的制备方法,其特征在于,所述包覆溶液与所述液态金属的质量比为1:10~1:2。
  9. 一种导电浆料,其特征在于,包括:导电粉体、成膜物、溶剂、助剂、以及如权利要求1~5任一项所述的液态金属微胶囊。
  10. 根据权利要求9所述的导电浆料,其特征在于,按重量百分比计,所述导电浆料包括:45%~80%的导电粉体;1%~10%的成膜物;0.01%~50%的液态金属微胶囊;0.1%~2%助剂;2%~20%的溶剂。
  11. 一种导电浆料的制备方法,用于制备如权利要求9或10所述的导电浆料,其特征在于,包括:
    步骤S21、制备液态金属微胶囊;
    步骤S22、使用溶剂将成膜物溶解;
    步骤S23、将助剂加入步骤S22所得物料中;
    步骤S24、将导电粉体加入步骤S23所得物料中;
    步骤S25、将步骤S24所得物料与步骤S21所得物料按比例混合,得到导电浆料。
  12. 一种电子器件,包括基材和位于所述基材上的导电线路,其特征在于,所述导电线路由权利要求9或10所述的导电浆料印制固化后形成。
PCT/CN2021/132359 2021-01-06 2021-11-23 液态金属微胶囊、导电浆料及其制备方法、电子器件 WO2022217920A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,470 US20230317311A1 (en) 2021-01-06 2021-11-23 Liquid metal microcapsule, conductive paste and preparation method thereof, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202110011287 2021-01-06
CN202110412659.8A CN114724741B (zh) 2021-01-06 2021-04-16 液态金属微胶囊、导电浆料及其制备方法、电子器件
CN202110412659.8 2021-04-16

Publications (1)

Publication Number Publication Date
WO2022217920A1 true WO2022217920A1 (zh) 2022-10-20

Family

ID=82234721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132359 WO2022217920A1 (zh) 2021-01-06 2021-11-23 液态金属微胶囊、导电浆料及其制备方法、电子器件

Country Status (3)

Country Link
US (1) US20230317311A1 (zh)
CN (1) CN114724741B (zh)
WO (1) WO2022217920A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008442A (ja) * 2000-06-26 2002-01-11 Tokuriki Honten Co Ltd 熱硬化型低抵抗導電ペースト
CN107938369A (zh) * 2017-11-06 2018-04-20 北京梦之墨科技有限公司 一种导电织物及其制备方法
CN111128440A (zh) * 2020-01-07 2020-05-08 北京梦之墨科技有限公司 一种液态金属导电浆料及其制备方法、电子器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108162B (zh) * 2015-08-21 2017-11-24 中国科学院理化技术研究所 一种将液态金属分散成微纳米颗粒的方法
CN107962180B (zh) * 2016-10-19 2018-10-16 北京梦之墨科技有限公司 一种水溶性荧光液态金属材料及其制备方法
KR20180118030A (ko) * 2017-04-19 2018-10-30 한국전자통신연구원 액체 금속 혼합물 및 이를 이용한 도전 패턴 형성 방법
US10784011B1 (en) * 2017-05-24 2020-09-22 United States Of America As Represented By The Secretary Of The Air Force Residue free electrically conductive material
CN109570515A (zh) * 2018-11-14 2019-04-05 中国科学院理化技术研究所 一种具有核壳结构的液态金属微颗粒及其制备方法与应用
CN110729071B (zh) * 2019-12-19 2020-06-09 北京梦之墨科技有限公司 液态金属导电浆料及电子器件
CN111205409B (zh) * 2020-03-10 2021-04-23 北京化工大学 一种聚合物包覆液态金属的纳米核壳粒子及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002008442A (ja) * 2000-06-26 2002-01-11 Tokuriki Honten Co Ltd 熱硬化型低抵抗導電ペースト
CN107938369A (zh) * 2017-11-06 2018-04-20 北京梦之墨科技有限公司 一种导电织物及其制备方法
CN111128440A (zh) * 2020-01-07 2020-05-08 北京梦之墨科技有限公司 一种液态金属导电浆料及其制备方法、电子器件

Also Published As

Publication number Publication date
CN114724741A (zh) 2022-07-08
CN114724741B (zh) 2022-12-30
US20230317311A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
WO2021121278A1 (zh) 液态金属导电浆料及电子器件
CN106486183B (zh) 各向异性导电材料及包括其的电子装置
CN108538442B (zh) 高电导率低温银浆的制备方法
JP5735716B2 (ja) 導電材料及び接続構造体
US20060145125A1 (en) Conductive paste
KR102028389B1 (ko) 도전성 입자, 회로 접속 재료, 실장체, 및 실장체의 제조 방법
CN109509568B (zh) 一种高性能导电银浆
CN101555393A (zh) 一种单组分耐高温各向同性导电胶及其制备方法
TWI325739B (en) Electroconductive paste, its manufacturing method, circuit board using the same electroconductive paste, and its manufacturing method
JP2015167106A (ja) 異方導電性フィルム及び接続構造体
WO2021023162A1 (zh) 一种导电材料及其制备方法、电子器件
US11776709B2 (en) Flexible conductive paste and flexible electronic device
CN109215828B (zh) 一种可焊接的低温烘干银浆及其制备方法
WO2022183783A1 (zh) 一种导电浆料及电子器件
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
CN104715807A (zh) 导电胶组合物与电极的形成方法
WO2022217920A1 (zh) 液态金属微胶囊、导电浆料及其制备方法、电子器件
JP4993877B2 (ja) 異方導電性接着シート及び微細接続構造体
JP2005194413A (ja) 回路接続用接着フィルム及び回路接続構造体
JP3753470B2 (ja) 異方性導電接着剤
CN113130112B (zh) 导电性能稳定的铜浆制备方法
JP2008308519A (ja) 電極接続用接着剤
CN115699218A (zh) 导电性粒子、导电材料和连接结构体
WO2016052130A1 (ja) 異方性導電フィルム、及び接続方法
KR101764220B1 (ko) 나노 임프린트용 전도성 조성물 및 이의 제조 방법, 그리고 이를 이용하는 터치 패널의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 07/12/2023)