WO2022183783A1 - 一种导电浆料及电子器件 - Google Patents

一种导电浆料及电子器件 Download PDF

Info

Publication number
WO2022183783A1
WO2022183783A1 PCT/CN2021/132383 CN2021132383W WO2022183783A1 WO 2022183783 A1 WO2022183783 A1 WO 2022183783A1 CN 2021132383 W CN2021132383 W CN 2021132383W WO 2022183783 A1 WO2022183783 A1 WO 2022183783A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
conductive
blocked
polyurethane
epoxy resin
Prior art date
Application number
PCT/CN2021/132383
Other languages
English (en)
French (fr)
Inventor
任中伟
亢佳萌
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Priority to US17/790,468 priority Critical patent/US20230170108A1/en
Publication of WO2022183783A1 publication Critical patent/WO2022183783A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components

Definitions

  • the present application relates to the technical field of functional materials, and in particular, to a conductive paste and an electronic device.
  • the copper layer on the top layer of the traditional printed circuit board is easily oxidized to inhibit the wetting effect of the solder paste. This phenomenon makes the copper layer unable to produce reliable solder joints and increases the risk of electronic component assembly falling off.
  • the disadvantage of the copper layer being easily oxidized can be improved by electroplating or electroless plating with nickel or gold layer, the welding reliability is improved, but the process is complicated and pollutes the environment.
  • the present application provides a conductive paste and an electronic device, which can be soldered directly by solder paste and have better flexibility.
  • the present application provides a conductive paste, which adopts the following technical solutions:
  • the conductive paste includes: a base resin, a solvent, a conductive filler, a curing agent and an auxiliary agent, wherein the base resin is a mixture of epoxy resin and polyurethane, and the weight percentage of the epoxy resin in the base resin More than or equal to 50%, in the structure formed by the curing of the base resin, the epoxy resin confines the polyurethane.
  • the conductive paste further comprises a low molecular weight polyol
  • the curing agent is a blocked polyisocyanate
  • the polyurethane, the low molecular weight polyol and the blocked polyisocyanate react during the heating and curing process. , forming a flexible three-dimensional network structure.
  • the epoxy resin has a softening point higher than 100° C., an epoxy equivalent weight higher than 5,000, and a molecular weight higher than 10,000.
  • the elongation of the polyurethane is higher than 200%, and the Kohler melting point is higher than 70°C.
  • the conductive filler is spherical silver powder with a particle size of 400-600 nm.
  • the low molecular weight polyol is one or both of polyethylene glycol and polypropylene glycol.
  • the blocked isocyanate is blocked toluene diisocyanate, blocked hexamethylene diisocyanate, blocked diphenylmethane diisocyanate, blocked isophorone diisocyanate, blocked xylylene diisocyanate.
  • the conductive paste comprises: base resin 3%-15%, solvent 5%-20%, conductive filler 60%-85%, low molecular weight polyol 3%-15%, sealing Type isocyanate 3% ⁇ 10%, auxiliary 0.2% ⁇ 10%.
  • the application provides an electronic device, which adopts the following technical solutions:
  • the electronic device includes a substrate and a conductive circuit on the substrate, and the conductive circuit is formed by printing the conductive paste described in any one of the above and heating and curing.
  • the electronic device further includes electronic components soldered on the conductive lines by solder paste.
  • the present application provides a conductive paste and an electronic device. Since the base resin in the conductive paste is a mixture of epoxy resin and polyurethane, and the weight percentage of epoxy resin in the base resin is greater than or equal to 50%, the base resin is cured. In the formed structure, the epoxy resin confines the polyurethane, so that in the process of using the solder paste to solder the conductive lines made of the conductive paste, it has the following advantages: 1.
  • the epoxy resin has good acid and alkali resistance and corrosion resistance, It can withstand the erosion or corrosion of the flux components in the solder paste.
  • the epoxy resin has a good temperature resistance effect and can withstand the temperature of the solder paste soldering; 2The conductive line has a good wetting effect on the solder paste.
  • the adhesion between the materials is good and the stability is good; 3
  • the conductive circuit structure is dense, and there is no tin intrusion and falling off; 4
  • the polyurethane in the cured base resin is restricted by the epoxy resin, even if the polyurethane is softened to a certain extent, It will not affect the welding effect; 5Polyurethane has elasticity, which can buffer the stress generated between the base material and the conductive paste during the welding process, and can increase the flexibility of the conductive line.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a welding effect diagram of Embodiment 1 provided by the embodiment of the present application.
  • FIG. 3 is a welding effect diagram of Comparative Example 1 provided by the embodiment of the present application.
  • FIG. 4 is a welding effect diagram of Comparative Example 3 provided by the embodiment of the present application.
  • the conductive paste includes: a base resin, a solvent, a conductive filler, a curing agent and an auxiliary agent, wherein the base resin is a mixture of epoxy resin and polyurethane, and the base resin
  • the weight percentage of the epoxy resin is greater than or equal to 50%, and in the structure formed by curing the base resin, the epoxy resin limits the polyurethane.
  • the conductive paste in the embodiments of the present application can be suitable for forming processes such as screen printing, flexographic printing, pad printing, extrusion dispensing, stencil printing, etc. After forming, the conductive paste can be cured by heating.
  • the epoxy resin has good acid and alkali resistance and corrosion resistance, and can withstand the erosion or corrosion of the flux components in the solder paste. Corrosion, epoxy resin has good temperature resistance effect, and can withstand the temperature of solder paste welding; 2The conductive line has a good wetting effect on the solder paste, and the adhesion between the materials after welding is good, and the stability is good; 3Conductive conduction The circuit structure is dense, and there is no tin intrusion and falling off; 4The polyurethane in the cured base resin is restricted by the epoxy resin, even if the polyurethane is softened to a certain extent, it will not affect the welding effect; 5The polyurethane is elastic and can buffer The stress generated between the substrate and the conductive paste during the soldering process can increase the flexibility of the conductive line.
  • the preparation method of the conductive paste in the embodiment of the present application may include the following steps:
  • Step S1 preparing an organic carrier: heating and dissolving epoxy resin, polyurethane, solvent and curing agent to obtain an organic carrier;
  • heating can be performed by means of an oil bath, and stirring is performed while heating.
  • the temperature of the oil bath can be selected from 70° C. to 120° C.
  • the stirring speed can be selected from 300 rpm to 800 rpm.
  • Step S2 preparing conductive paste: after stirring and dispersing the conductive filler and the organic carrier, three-roll rolling is performed to obtain the conductive paste.
  • the stirring speed can be selected from 500rpm to 2500rpm; after stirring and dispersing, it can be placed for a certain period of time, such as half an hour (which can enhance the wetting effect of the organic carrier on the conductive filler and improve the subsequent rolling effect), and then carry out three-roll rolling. system.
  • the viscosity of the finally obtained conductive paste may range from 10 Pa ⁇ s to 40 Pa ⁇ s.
  • the weight percentage of epoxy resin in the base resin may be 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90% or 95%.
  • the more epoxy resin in the base resin the better the welding performance of the conductive paste, the more polyurethane, the better the flexibility of the conductive paste, and those skilled in the art can choose according to actual needs.
  • the weight ratio of epoxy resin and polyurethane is 1:1-2:1, so that the conductive paste has better solder resistance and flexibility at the same time.
  • the epoxy resin has a softening point higher than 100° C., an epoxy equivalent weight higher than 5,000, and a molecular weight higher than 10,000.
  • the softening point of the epoxy resin is higher than 100°C and/or the molecular weight of the epoxy resin is higher than 10,000, the epoxy resin has better heat resistance, which can make the conductive circuit made can withstand higher temperature.
  • the welding process is more widely used and more convenient; when the epoxy equivalent of the epoxy resin is higher than 5000, its reactive groups are less, which helps to improve the flexibility of the conductive circuit.
  • the elongation of the polyurethane is higher than 200%, and the Kofler Melting Point is higher than 70° C., so that the polyurethane has better elasticity, and the effect of improving the flexibility of the conductive line is better, and has a better performance. of temperature resistance.
  • the conductive filler is one or a mixture of at least two of gold, silver, copper, iron, nickel, aluminum, graphene, carbon black, graphite, silver-coated copper powder, and the like.
  • the shape of the conductive filler is one of flake, spherical, linear, rod, needle, dendritic, etc., or a mixture of at least two.
  • the size of the conductive filler is 0.1 ⁇ m to 6 ⁇ m.
  • the conductive filler is selected to be spherical silver powder with a particle size of 400 nm to 600 nm.
  • the particle size of the conductive filler is between When the thickness is 400nm to 600nm, it is impossible to achieve soldering, but in the present application, the soldering can be successfully performed, and the conductive paste in the present application can have both good electrical conductivity and excellent soldering performance at the same time.
  • the solvent can be selected from ethanol, isopropanol, n-propanol, ethylene glycol, propylene glycol, glycerol, n-butanol, ethylene glycol propyl ether, ethylene glycol butyl ether, and diethylene glycol Diethyl ether, diethylene glycol propyl ether, diethylene glycol butyl ether, propylene glycol propyl ether, propylene glycol butyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, ethylene glycol propyl ether acetate, ethylene glycol butyl Ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propylene glycol propyl ether acetate, propylene glycol ether acetate,
  • the curing agent may be an isocyanate-based curing agent, an acid anhydride-based curing agent, a dicyandiamide or polycyanamide-based curing agent, an imidazole-based curing agent, a polyethersulfone-based curing agent, and the like.
  • the blocked isocyanate can be selected from blocked toluene diisocyanate, blocked hexamethylene diisocyanate, blocked diphenylmethane diisocyanate, blocked isophorone diisocyanate, and blocked xylylene diisocyanate , one or a mixture of at least two of the blocked polyphenylmethane polyisocyanates.
  • the auxiliary agents may include one or two of defoaming agents, adhesion promoters, wetting and dispersing agents, substrate wetting agents, coupling agents, leveling agents, antioxidants, and the like.
  • the defoaming agent may be one of polysiloxane defoaming agent, silicone defoaming agent, and polyether defoaming agent, or a mixture consisting of at least two of them.
  • the adhesion promoter may be a silane coupling agent type adhesion promoter.
  • the conductive paste in the embodiments of the present application further includes a low molecular weight polyol, and the low molecular weight polyol and the polyurethane can further react to improve the flexibility of the conductive circuit.
  • the curing agent is further selected as blocked polyisocyanate, so that the polyurethane, low molecular weight polyol and blocked polyisocyanate react during the heating and curing process to form a flexible three-dimensional network structure. No reaction will occur during molding, etc., and will not cause adverse effects.
  • the low molecular weight polyol refers to a polyol having a molecular weight of 600 or less.
  • the reaction between polyurethane, low molecular weight polyol and blocked isocyanate may include various situations, such as the active group of polyurethane and the active group of low molecular weight polyol React with reactive groups of blocked isocyanates, respectively, or, reactive groups of low molecular weight polyols and reactive groups of blocked isocyanates, respectively, react with reactive groups of polyurethanes, or, reactive groups of polyurethanes and blocked isocyanates, respectively.
  • a flexible three-dimensional network structure can be formed after the reaction of polyurethane, low molecular weight polyol and blocked isocyanate.
  • the low-molecular-weight polyol selected in the examples of this application is one or both of polyethylene glycol and polypropylene glycol, preferably polyethylene glycol that is liquid or viscous at room temperature.
  • the conductive paste can be easily mixed with other materials and participate in the reaction in the subsequent heating and curing process without additional dissolution.
  • the conductive paste in the embodiment of the present application includes: 3%-15% of base resin, 5%-20% of solvent, 60%-85% of conductive filler, and 3%- of low molecular weight polyol 15%, blocked isocyanate 3% ⁇ 10%, auxiliary agent 0.2% ⁇ 10%.
  • the weight percentage of the base resin is 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13% or 14%;
  • the weight percentage of solvent is 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18% or 19% ;
  • the weight percentage of conductive filler is 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75% %, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83% or 84%;
  • the weight percentage of low molecular weight polyol is 4%, 5%, 6%, 7%, 8 %, 9%, 10%, 11%, 12%, 13% or 14%;
  • the weight percentage of blocked isocyanate is 4%, 5%, 6%, 7%,
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes a substrate 1 and a conductive circuit located on the substrate 1 . 2.
  • the conductive line 2 is formed by printing the conductive paste described in any one of the above and heating and curing.
  • the conductive paste is printed on the substrate by screen printing, and then it is heated and sintered in a blast drying oven.
  • the heating and sintering temperature of the conductive paste is 120°C to 200°C, and the sintering time is 10min to 80min.
  • the conductive lines in the embodiments of the present application have good welding performance, flexibility, and electrical performance at the same time, and can also have good flexibility even under high film thickness (eg, above 30 ⁇ m). After testing, the resistance change rate of the conductive line is lower than 40% after 10,000 times of bending. The square resistance of the flexible conductive line is 5-12m ⁇ /sq/mil.
  • the thickness of the conductive lines may be 10 ⁇ m ⁇ 60 ⁇ m, such as 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m.
  • the substrate can be a flexible substrate or a rigid substrate, and the flexible substrate can be polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA) and other films.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PI polyimide
  • PA polyamide
  • the electronic device further includes electronic components 4 soldered on the conductive lines by solder paste 3 .
  • the electronic components may be switches, power supplies, light-emitting devices, sensors, chips, etc., which are not limited in the embodiments of the present application.
  • the conductive paste includes the following components: epoxy resin 3%, polyurethane 3%, diethylene glycol ethyl ether acetate 14%, spherical silver powder 70%, polyethylene glycol 3.5%, hexamethylene Diisocyanate 5%, defoamer 0.5%, adhesion promoter 1%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating, stirring and dissolving epoxy resin, polyurethane, diethylene glycol ethyl ether acetate, polyethylene glycol, hexamethylene diisocyanate, defoamer, and adhesion promoter;
  • the spherical silver powder and the organic carrier are stirred and dispersed, and then placed for half an hour, and then three-roll rolling is performed to finally obtain a conductive paste.
  • the conductive paste is printed on the PI film flexible substrate by a screen printing machine, and then sintered and cured in a blast drying oven to obtain a conductive circuit.
  • the conductive paste includes the following components: epoxy resin 7%, polyurethane 3%, diethylene glycol ethyl ether acetate 14%, spherical silver powder 55%, flake silver powder 15%, hexamethylene diethyl ether Isocyanate 4%, defoamer 1%, adhesion promoter 1%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating, stirring and dissolving epoxy resin, polyurethane, diethylene glycol ethyl ether acetate, hexamethylene diisocyanate, defoamer and adhesion promoter;
  • the spherical silver powder, the flake silver powder and the organic carrier are stirred and dispersed, and then placed for half an hour, and then three-roll rolling is performed to finally obtain a conductive paste.
  • the conductive paste is printed on the PI film flexible substrate by a screen printing machine, and then sintered and cured in a blast drying oven to obtain a conductive circuit.
  • the conductive paste includes the following components: epoxy resin 4%, polyurethane 2%, diethylene glycol ethyl ether acetate 14%, flake silver powder 70%, polyethylene glycol 4%, hexamethylene base diisocyanate 4%, defoamer 1%, adhesion promoter 1%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating, stirring and dissolving epoxy resin, polyurethane, diethylene glycol ethyl ether acetate, polyethylene glycol, hexamethylene diisocyanate, defoamer, and adhesion promoter;
  • the flake silver powder and the organic carrier are stirred and dispersed, and then placed for half an hour, and then three-roll rolling is performed to finally obtain a conductive paste.
  • the conductive paste is printed on the PI film flexible substrate by a screen printing machine, and then sintered and cured in a blast drying oven to obtain a conductive circuit.
  • the conductive paste includes the following components: epoxy resin 5%, polyurethane 5%, diethylene glycol ethyl ether acetate 13%, spherical silver powder 60%, silver-coated copper powder 10%, hexamethylene Diisocyanate 5%, defoamer 1%, adhesion promoter 1%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating, stirring and dissolving epoxy resin, polyurethane, diethylene glycol ethyl ether acetate, hexamethylene diisocyanate, defoamer and adhesion promoter;
  • the spherical silver powder, the silver-coated copper powder and the organic carrier are stirred and dispersed, and then placed for half an hour, and then three-roll rolling is performed to finally obtain a conductive paste.
  • the conductive paste is printed on the PET film flexible substrate by a screen printing machine, and then sintered and cured in a blast drying oven to obtain a conductive circuit.
  • the conductive paste includes the following components: 7% of polyurethane, 15% of diethylene glycol ethyl ether acetate, 60% of spherical silver powder, 10% of silver-coated copper powder, 2% of polyethylene glycol, hexamethylene Diisocyanate 4%, defoamer 0.5%, adhesion promoter 1.5%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating and dissolving polyurethane, diethylene glycol ethyl ether acetate, polyethylene glycol, hexamethylene diisocyanate, defoamer, and adhesion promoter;
  • the spherical silver powder, the silver-coated copper powder and the organic carrier are stirred and dispersed, and then placed for half an hour, and then three-roll rolling is performed to finally obtain a conductive paste.
  • the conductive paste is printed on the PI flexible substrate by a screen printing machine, and then sintered and cured in a blast drying oven to obtain a conductive circuit.
  • the conductive paste includes the following components: epoxy resin 7%, diethylene glycol ethyl ether acetate 13%, flake silver powder 72%, polyethylene glycol 2%, hexamethylene diisocyanate 4% , 1% defoamer, 1% adhesion promoter.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating and dissolving epoxy resin, polyester resin, diethylene glycol ethyl ether acetate, polyethylene glycol, hexamethylene diisocyanate, defoamer, and adhesion promoter in an oil bath at 80°C with stirring;
  • the flake silver powder and the organic carrier are stirred and dispersed in a stirring tank at 2000 rpm, then placed for half an hour, and then subjected to three-roll rolling to finally obtain a conductive paste with a viscosity range of 20-30 Pa ⁇ s.
  • the conductive paste was printed on the PI flexible substrate by a screen printing machine, and then placed in a blast drying oven and heated at 200° C. to be sintered and cured to obtain a conductive circuit.
  • the conductive paste includes the following components: epoxy resin 1%, polyurethane 4%, polyimide resin 1%, diethylene glycol ethyl ether acetate 13%, flake silver powder 74%, polyethylene glycol Alcohol 1%, hexamethylene diisocyanate 4%, defoamer 1%, adhesion promoter 1%.
  • the preparation method of the conductive paste includes:
  • the organic carrier is obtained by heating and stirring epoxy resin, polyurethane, diethylene glycol ethyl ether acetate, polyethylene glycol, hexamethylene diisocyanate, defoaming agent, and adhesion promoter in an oil bath at 80°C with stirring;
  • the flake silver powder and the organic carrier are stirred and dispersed in a stirring tank at 2000 rpm, then placed for half an hour, and then subjected to three-roll rolling to finally obtain a conductive paste with a viscosity range of 20-30 Pa ⁇ s.
  • the conductive paste was printed on the PI flexible substrate by a screen printing machine, and then placed in a blast drying oven and heated at 200° C. to be sintered and cured to obtain a conductive circuit.
  • the bending test method is: after 180° folded in half, use a 2kg weight to press for 1 minute and record it as one fold in half.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)

Abstract

本申请提供一种导电浆料及电子器件,涉及功能材料技术领域。本申请提供的导电浆料包括:基础树脂、溶剂、导电填料、固化剂和助剂,其中,所述基础树脂为环氧树脂和聚氨酯的混合物,且所述基础树脂中所述环氧树脂的重量百分比大于50%,所述基础树脂固化形成的结构中,所述环氧树脂限制所述聚氨酯。本申请的技术方案能够直接通过焊锡膏进行焊接,且具有较好的柔性。

Description

一种导电浆料及电子器件
本申请要求于2021年3月4日提交中国专利局,申请号为2021102405500,申请名称为“一种导电浆料及电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及功能材料技术领域,尤其涉及一种导电浆料及电子器件。
背景技术
传统的印刷电路板顶层的铜层很容易被氧化抑制焊锡膏的润湿效果,这种现象使得该铜层不能产生可靠的焊点,增加电子元件组装脱落的风险。虽然铜层易被氧化的缺点可以通过电镀或化学镀方法镀镍或金层可改善焊接可靠性,但工艺复杂,对环境产生污染。
现有技术中也有使用低温固化导电浆料替代铜制作印刷电路板的技术方案,但现有低温固化导电浆料也无法实现焊锡膏直接焊接,所以研发一种可直接通过焊锡膏进行焊接的导电浆料是令人期待的。
申请内容
本申请提供一种导电浆料及电子器件,可以直接通过焊锡膏进行焊接,且具有较好的柔性。
第一方面,本申请提供一种导电浆料,采用如下技术方案:
所述导电浆料包括:基础树脂、溶剂、导电填料、固化剂和助剂,其中,所述基础树脂为环氧树脂和聚氨酯的混合物,且所述基础树脂中所述环氧树脂的重量百分比大于或等于50%,所述基础树脂固化形成的结构中,所述环氧树脂限制所述聚氨酯。
可选地,所述导电浆料还包括低分子量多元醇,所述固化剂为封闭型多异氰酸酯,所述聚氨酯、所述低分子量多元醇和所述封闭型多异氰酸酯在加热固化的过程中发生反应,形成柔性的立体网状结构。
可选地,所述环氧树脂的软化点高于100℃,环氧当量高于5000,分子量高于10000。
可选地,所述聚氨酯伸长率高于200%,科勒熔点高于70℃。
可选地,所述导电填料为粒径400~600nm的球状银粉。
可选地,所述低分子量多元醇为聚乙二醇、聚丙二醇中的一种或两种。
可选地,所述封闭型异氰酸酯为封闭型甲苯二异氰酸酯、封闭型六亚甲基二异氰酸酯、封闭型二苯基甲烷二异氰酸酯、封闭型异佛尔酮二异氰酸酯、封闭型苯二亚甲基异氰酸酯、封闭型多苯基甲烷多异氰酸酯中的一种或者至少两种组成的混合物。
可选地,按重量百分比计,所述导电浆料包括:基础树脂3%~15%、溶剂5%~20%、导电填料60%~85%、低分子量多元醇3%~15%、封闭型异氰酸酯3%~10%、助剂0.2%~10%。
第二方面,本申请提供一种电子器件,采用如下技术方案:
所述电子器件包括基底和位于所述基底上的导电线路,所述导电线路由以上任一项所述的导电浆料印制并加热固化后形成。
可选地,所述电子器件还包括通过焊锡膏焊接于所述导电线路上的电子元件。
本申请提供了一种导电浆料和电子器件,由于该导电浆料中的基础树脂为环氧树脂和聚氨酯的混合物,且基础树脂中环氧树脂的重量百分比大于或等于50%,基础树脂固化形成的结构中,环氧树脂限制聚氨酯,从而使得在对上述导电浆料制成的导电线路使用焊锡膏进行焊接的过程中,具有以下优势:①环氧树脂的耐酸碱耐腐蚀特性好,可以耐受焊锡膏中的助焊成分的侵蚀或腐蚀,环氧树脂的耐温效果好,可耐受焊锡膏焊接时的温度;②导电线路对焊锡膏有很好的润湿效果,焊接后材料之间的附着力,稳定性好;③导电线路结构致密,不会发生侵锡、脱落现象;④固化后的基础树脂中聚氨酯被环氧树脂限制住,即使聚氨酯有一定程度的软化,也不会影响焊接效果;⑤聚氨酯具有弹性,可以缓冲焊接过程中基材和导电浆料之间产生的应力,能够增加导电线路的柔韧性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子器件的结构示意图;
图2为本申请实施例提供的实施例1的焊接效果图;
图3为本申请实施例提供的对比例1的焊接效果图;
图4为本申请实施例提供的对比例3的焊接效果图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
本申请实施例提供一种导电浆料,具体地,该导电浆料包括:基础树脂、溶剂、导电填料、固化剂和助剂,其中,基础树脂为环氧树脂和聚氨酯的混合物,且基础树脂中环氧树脂的重量百分比大于或等于50%,基础树脂固化形成的结构中,环氧树脂限制聚氨酯。
本申请实施例中的导电浆料可以适用于丝网印刷、柔版印刷、移印、挤出式点胶、钢网印刷等成型工艺,成型后加热即可固化得到导电线路。
在对上述导电浆料制成的导电线路使用焊锡膏进行焊接的过程中,具有以下优势:①环氧树脂的耐酸碱耐腐蚀特性好,可以耐受焊锡膏中的助焊成分的侵蚀或腐蚀,环氧树脂的耐温效果好,可耐受焊锡膏焊接时的温度;②导电线路对焊锡膏有很好的润湿效果,焊接后材料之间的附着力,稳定性好;③导电线路结构致密,不会发生侵锡、脱落现象;④固化后的基础树脂中聚氨酯被环氧树脂限制住,即使聚氨酯有一定程度的软化,也不会影响焊接效果;⑤聚氨酯具有弹性,可以缓冲焊接过程中基材和导电浆料之间产生的应力,能够增加导电线路的柔韧性。
可选地,本申请实施例中导电浆料的制备方法可包括以下步骤:
步骤S1、制备有机载体:将环氧树脂、聚氨酯、溶剂、固化剂加热溶解,得到有机载体;
在此过程中,可以通过油浴的方式加热,并在加热的同时进行搅拌,油浴温度可选为70℃~120℃,搅拌速度可选为300rpm~800rpm。
步骤S2、制备导电浆料:将导电填料和有机载体搅拌分散后,进行三辊轧制,得到导电浆料。
在此过程中,搅拌速度可选为500rpm~2500rpm;搅拌分散后可放置一定时间,如半小时(可增强有机载体对导电填料的润湿效果,提高后续辊轧效果),再进行三辊轧制。最终获得的导电浆料的粘度范围可以为10Pa·s~40Pa·s。
下面本申请实施例对导电浆料中的各物料进行详细的举例说明。
基础树脂
基础树脂中环氧树脂的重量百分比可以为50%、55%、60%、65%、70%、75%、80%、85%、90%或者95%。其中,基础树脂中环氧树脂越多,导电浆料的焊接性能越好,聚氨酯越多,导电浆料的柔韧性越好,本领域技术人员可以根据实际需要进行选择。可选地,本申请实施例中,环氧树脂和聚氨酯的重量比为1:1~2:1,以使导电浆料同时兼具较佳的耐焊性和柔韧性。
可选地,环氧树脂的软化点高于100℃,环氧当量高于5000,分子量高于10000。其中,环氧树脂的软化点高于100℃和/或环氧树脂的分子量高于10000时,环氧树脂具有较好的耐热性,能够使得制成的导电线路能够耐受较高温度的焊接工艺,应用更广泛、更方便;环氧树脂的环氧当量高于5000时,其反应基团较少,有助于提高导电线路的柔性。
可选地,聚氨酯伸长率高于200%,科勒熔点(Kofler Melting Point)高于70℃,以使聚氨酯具有较好的弹性,对导电线路的柔韧性的提升效果较好,且具有较好的耐温性。
导电填料
本申请实施例中,导电填料为金、银、铜、铁、镍、铝、石墨烯、炭黑、石墨、银包铜粉等中的一种或者至少两种组成的混合物。导电填料的形状为片状、球状、线形、棒状、针状、树枝状等中的一种或者至少两种组成的混合物。导电填料的尺寸为0.1μm~6μm。
示例性地,本申请实施例中选择导电填料为粒径400nm~600nm的球状银粉。在本领域技术人员的常规认知下,导电填料的粒径越大,导电性差,粒径越小,活性越高,耐焊性差,在现有技术的常规配方中,导电填料的粒径在400nm~600nm时,是无法实现焊接的,而在本申请中可以成功焊接,进而本申请中的导电浆料能够同时兼具良好的导电性和优异的焊接性能。
溶剂
本申请实施例中,溶剂可选为乙醇、异丙醇、正丙醇、乙二醇、丙二醇、丙三醇、正丁醇、乙二醇丙醚、乙二醇丁醚、二乙二醇乙醚、二乙二醇丙醚、二乙二醇丁醚、丙二醇丙醚、丙二醇丁醚、二丙二醇乙醚、二丙二醇丙醚、二丙二醇丁醚、乙二醇丙醚醋酸酯、乙二醇丁醚醋酸酯、二乙二醇乙醚醋酸酯、二乙二醇丙醚醋酸酯、二乙二醇丁醚醋酸酯、丙二醇丙醚醋酸酯、丙二醇丁醚醋酸酯、二丙二醇乙醚醋酸酯、二丙 二醇丙醚醋酸酯、二丙二醇丁醚醋酸酯、异佛尔酮和松油醇中的一种或者至少两种组成的混合物。
固化剂
本申请实施例中,固化剂可为异氰酸酯类固化剂,酸酐类固化剂,双氰胺或多氰胺类固化剂,咪唑类固化剂,聚醚砜类固化剂等。
具体地,封闭型异氰酸酯可选为封闭型甲苯二异氰酸酯、封闭型六亚甲基二异氰酸酯、封闭型二苯基甲烷二异氰酸酯、封闭型异佛尔酮二异氰酸酯、封闭型苯二亚甲基异氰酸酯、封闭型多苯基甲烷多异氰酸酯中的一种或者至少两种组成的混合物。
助剂
本申请实施例中,助剂可以包括消泡剂、附着力促进剂、润湿分散剂、基材润湿剂、偶联剂、流平剂、抗氧剂等中的一种或两种。其中,消泡剂可以为聚硅氧烷消泡剂、有机硅消泡剂、聚醚类消泡剂中的一种或者至少两种组成的混合物。附着力促进剂可以为硅烷偶联剂类附着力促进剂。
可选地,本申请实施例中的导电浆料还包括低分子量多元醇,低分子量多元醇与聚氨酯可进一步发生反应,提升导电线路的柔性。在此基础上,进一步选择固化剂为封闭型多异氰酸酯,以使得聚氨酯、低分子量多元醇和封闭型多异氰酸酯在加热固化的过程中发生反应,形成柔性的立体网状结构,在制备、存储、印刷成型等过程中不会发生反应,不会造成不良影响。低分子量多元醇指的是分子量600以下的多元醇。
需要说明的是,在导电浆料加热固化的过程中,聚氨酯、低分子量多元醇与封闭型异氰酸酯发生反应,可以包括多种情况,如,聚氨酯的活性基团和低分子量多元醇的活性基团分别与封闭型异氰酸酯的活性基团发生反应,或者,低分子量多元醇的活性基团和封闭型异氰酸酯的活性基团分别与聚氨酯的活性基团发生反应,或者,聚氨酯的活性基团和封闭型异氰酸酯的活性基团分别与低分子量多元醇的活性基团发生反应,或者,聚氨酯的活性基团、低分子量多元醇的活性基团、封闭型异氰酸酯的活性基团之间均可以发生反应。在上述各种情况中,聚氨酯、低分子量多元醇与封闭型异氰酸酯发生反应后,均可以形成柔性的立体网状结构。
可选地,本申请实施例中选用的低分子量多元醇为聚乙二醇、聚丙二醇中的一种或两种,优选为在室温下呈液态或粘稠状的聚乙二醇,在制备导电浆料的过程中无需额外溶解,即可较容易的与其他物料混合,以及在后续加热固化过程中参与反应。
可选地,按重量百分比计,本申请实施例中的导电浆料包括:基础树脂3%~15%、溶剂5%~20%、导电填料60%~85%、低分子量多元醇3%~15%、封闭型异氰酸酯3%~10%、助剂0.2%~10%。
示例性地,本申请实施例中的导电浆料中,基础树脂的重量百分比为4%、5%、6%、7%、8%、9%、10%、11%、12%、13%或者14%;溶剂的重量百分比为6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%或者19%;导电填料的重量百分比为61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%或者84%;低分子量多元醇的重量百分比为4%、5%、6%、7%、8%、9%、10%、11%、12%、13%或者14%;封闭型异氰酸酯的重量百分比为4%、5%、6%、7%、8%或者9%;助剂的重量百分比为0.5%、1%、2%、3%、4%、5%、6%、7%、8%、9%或者10%。
此外,本申请实施例提供一种电子器件,具体地,如图1所示,图1为本申请实施例提供的电子器件的结构示意图,该电子器件包括基底1和位于基底1上的导电线路2,导电线路2由以上任一项所述的导电浆料印制并加热固化后形成。
例如,将导电浆料通过丝网印刷的方式印刷在基底上,然后将其置于鼓风干燥箱中加热烧结固化。导电浆料的加热烧结温度为120℃~200℃,烧结时间为10min~80min。
本申请实施例中的导电线路同时兼具较好的焊接性能、柔性、电学性能,甚至在高膜厚(如30μm以上)下也能具备较好的柔性。经测试,导电线路弯折10000次电阻变化率低于40%。柔性导电线路的方阻为5~12mΩ/sq/mil。
导电线路的厚度可以为10μm~60μm,如20μm、30μm、40μm或者50μm。
基底可以为柔性基底,也可以为硬质基底,柔性基底可以为聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚酰亚胺(PI)、聚酰胺(PA)等薄膜中的一种。
可选地,如图1所示,电子器件还包括通过焊锡膏3焊接于导电线路上的电子元件4。根据实际需要,电子元件可以为开关、电源、发光器件、传感器、芯片等,本申请实施例对此不进行限定。
下面本申请实施例以多个具体实施例和对比例对导电浆料的优势进行说明。
实施例1
以重量百分比计,该导电浆料包括以下组分:环氧树脂3%、聚氨酯3%、二乙二醇乙醚醋酸酯14%、球状银粉70%、聚乙二醇3.5%、六亚甲基二异氰酸酯5%、消泡剂0.5%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚氨酯、二乙二醇乙醚醋酸酯、聚乙二醇、六亚甲基二异氰酸酯、消泡剂、附着力促进剂加热搅拌溶解得到有机载体;
将球状银粉和有机载体搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得导电浆料。
将导电浆料通过丝网印刷机印刷在PI膜柔性基底上,置于鼓风干燥箱中烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果参见图2。
实施例2
以重量百分比计,该导电浆料包括以下组分:环氧树脂7%、聚氨酯3%、二乙二醇乙醚醋酸酯14%、球状银粉55%、片状银粉15%、六亚甲基二异氰酸酯4%、消泡剂1%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚氨酯、二乙二醇乙醚醋酸酯、六亚甲基二异氰酸酯、消泡剂、附着力促进剂加热搅拌溶解得到有机载体;
将球状银粉、片状银粉和有机载体搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得导电浆料。
将导电浆料通过丝网印刷机印刷在PI膜柔性基底上,置于鼓风干燥箱中烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果与图2相同。
实施例3
以重量百分比计,该导电浆料包括以下组分:环氧树脂4%、聚氨酯2%、二乙二醇乙醚醋酸酯14%、片状银粉70%、聚乙二醇4%、六亚甲基二异氰酸酯4%、消泡剂1%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚氨酯、二乙二醇乙醚醋酸酯、聚乙二醇、六亚甲基二异氰酸酯、消泡剂、附着力促进剂加热搅拌溶解得到有机载体;
将片状银粉和有机载体搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得导电浆料。
将导电浆料通过丝网印刷机印刷在PI膜柔性基底上,置于鼓风干燥箱中烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果与图2相同。
实施例4
以重量百分比计,该导电浆料包括以下组分:环氧树脂5%、聚氨酯5%、二乙二醇乙醚醋酸酯13%、球状银粉60%、银包铜粉10%、六亚甲基二异氰酸酯5%、消泡剂1%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚氨酯、二乙二醇乙醚醋酸酯、六亚甲基二异氰酸酯、消泡剂、附着力促进剂加热搅拌溶解得到有机载体;
将球状银粉、银包铜粉和有机载体搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得导电浆料。
将导电浆料通过丝网印刷机印刷在PET膜柔性基底上,置于鼓风干燥箱中烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果与图2相同。
对比例1
以重量百分比计,导电浆料包括以下组分:聚氨酯7%、二乙二醇乙醚醋酸酯15%、球状银粉60%、银包铜粉10%、聚乙二醇2%、六亚甲基二异氰酸酯4%、消泡剂0.5%、附着力促进剂1.5%。
导电浆料的制备方法包括:
将聚氨酯、二乙二醇乙醚醋酸酯、聚乙二醇、六亚甲基二异氰酸酯、消泡剂、附着力促进剂加热搅拌溶解得到有机载体;
将球状银粉、银包铜粉和有机载体搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得导电浆料。
将导电浆料通过丝网印刷机印刷在PI柔性基底上,置于鼓风干燥箱中烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果见图3。
对比例2
以重量百分比计,导电浆料包括以下组分:环氧树脂7%、二乙二醇乙醚醋酸酯13%、片状银粉72%、聚乙二醇2%、六亚甲基二异氰酸酯4%、消泡剂1%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚酯树脂、二乙二醇乙醚醋酸酯、聚乙二醇、六亚甲基二异氰酸酯、消泡剂、附着力促进剂于油浴中80℃加热搅拌溶解得到有机载体;
将片状银粉和有机载体于搅拌罐中2000rpm搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得粘度范围为20-30Pa·s的导电浆料。
将导电浆料通过丝网印刷机印刷在PI柔性基底上,置于鼓风干燥箱中加热200℃烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。
对比例3
以重量百分比计,导电浆料包括以下组分:环氧树脂1%、聚氨酯4%、聚酰亚胺树脂1%、二乙二醇乙醚醋酸酯13%、片状银粉74%、聚乙二醇1%、六亚甲基二异氰酸酯4%、消泡剂1%、附着力促进剂1%。
导电浆料的制备方法包括:
将环氧树脂、聚氨酯、二乙二醇乙醚醋酸酯、聚乙二醇、六亚甲基二异氰酸酯、消泡剂、附着力促进剂于油浴中80℃加热搅拌溶解得到有机载体;
将片状银粉和有机载体于搅拌罐中2000rpm搅拌分散,然后放置半小时,而后进行三辊轧制,最终获得粘度范围为20-30Pa·s的导电浆料。
将导电浆料通过丝网印刷机印刷在PI柔性基底上,置于鼓风干燥箱中加热200℃烧结固化,得到导电线路。
使用无铅焊锡膏对导电线路进行手动升温SMT模拟焊接测试和弯折测试。焊接完成后焊接效果见图4。
其中,弯折测试方法为:180°对折后使用2kg砝码压1分钟记为对折一次。
性能对比
Figure PCTCN2021132383-appb-000001
Figure PCTCN2021132383-appb-000002
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种导电浆料,其特征在于,包括:基础树脂、溶剂、导电填料、固化剂和助剂,其中,所述基础树脂为环氧树脂和聚氨酯的混合物,且所述基础树脂中所述环氧树脂的重量百分比大于或等于50%,所述基础树脂固化形成的结构中,所述环氧树脂限制所述聚氨酯。
  2. 根据权利要求1所述的导电浆料,其特征在于,还包括低分子量多元醇,所述固化剂为封闭型多异氰酸酯,所述聚氨酯、所述低分子量多元醇和所述封闭型多异氰酸酯在加热固化的过程中发生反应,形成柔性的立体网状结构。
  3. 根据权利要求1或2所述的导电浆料,其特征在于,所述环氧树脂的软化点高于100℃,环氧当量高于5000,分子量高于10000。
  4. 根据权利要求1或2所述的导电浆料,其特征在于,所述聚氨酯伸长率高于200%,科勒熔点高于70℃。
  5. 根据权利要求1或2所述的导电浆料,其特征在于,所述导电填料为粒径400nm~600nm的球状银粉。
  6. 根据权利要求2所述的导电浆料,其特征在于,所述低分子量多元醇为聚乙二醇、聚丙二醇中的一种或两种。
  7. 根据权利要求2所述的导电浆料,其特征在于,所述封闭型异氰酸酯为封闭型甲苯二异氰酸酯、封闭型六亚甲基二异氰酸酯、封闭型二苯基甲烷二异氰酸酯、封闭型异佛尔酮二异氰酸酯、封闭型苯二亚甲基异氰酸酯、封闭型多苯基甲烷多异氰酸酯中的一种或者至少两种组成的混合物。
  8. 根据权利要求2所述的导电浆料,其特征在于,按重量百分比计,所述导电浆料包括:基础树脂3%~15%、溶剂5%~20%、导电填料60%~85%、低分子量多元醇3%~15%、封闭型异氰酸酯3%~10%、助剂0.2%~10%。
  9. 一种电子器件,其特征在于,包括基底和位于所述基底上的导电线路,其特征在于,所述导电线路由权利要求1~8任一项所述的导电浆料印制并加热固化后形成。
  10. 根据权利要求9所述的电子器件,其特征在于,还包括通过焊锡膏焊接于所述导电线路上的电子元件。
PCT/CN2021/132383 2021-03-04 2021-11-23 一种导电浆料及电子器件 WO2022183783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/790,468 US20230170108A1 (en) 2021-03-04 2021-11-23 Conductive paste and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110240550.0A CN112927837A (zh) 2021-03-04 2021-03-04 一种导电浆料及电子器件
CN202110240550.0 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022183783A1 true WO2022183783A1 (zh) 2022-09-09

Family

ID=76173327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132383 WO2022183783A1 (zh) 2021-03-04 2021-11-23 一种导电浆料及电子器件

Country Status (3)

Country Link
US (1) US20230170108A1 (zh)
CN (1) CN112927837A (zh)
WO (1) WO2022183783A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927837A (zh) * 2021-03-04 2021-06-08 北京梦之墨科技有限公司 一种导电浆料及电子器件
CN116417178A (zh) * 2021-12-30 2023-07-11 北京梦之墨科技有限公司 一种低温固化导电浆料及电子器件
CN116419478A (zh) * 2021-12-31 2023-07-11 北京梦之墨科技有限公司 一种导电油墨及电子器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291807A (ja) * 1990-04-09 1991-12-24 Sumitomo Bakelite Co Ltd 異方導電ペースト
CN101544742A (zh) * 2009-04-15 2009-09-30 北京科聚化工新材料有限公司 一种部分封闭型聚氨酯固化剂及其制备方法
CN111370159A (zh) * 2020-03-11 2020-07-03 中国人民解放军国防科技大学 一种导电浆料及其制备方法和应用
CN112927837A (zh) * 2021-03-04 2021-06-08 北京梦之墨科技有限公司 一种导电浆料及电子器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489305B2 (ja) * 2012-06-27 2014-05-14 石原ケミカル株式会社 回路基板及び導電膜形成方法
WO2015103362A1 (en) * 2013-12-31 2015-07-09 Alpha Metals, Inc. Rosin-free thermosetting flux formulations
CN106318114A (zh) * 2016-08-19 2017-01-11 浩力森涂料(上海)有限公司 阳离子电沉积涂料
JP7013444B2 (ja) * 2017-03-14 2022-01-31 三井金属鉱業株式会社 樹脂組成物、樹脂付銅箔、誘電体層、銅張積層板、キャパシタ素子及びキャパシタ内蔵プリント配線板
CN108447587A (zh) * 2017-04-13 2018-08-24 贵研铂业股份有限公司 一种新型快速固化低温导电银浆及其制备方法
CN110272677B (zh) * 2019-07-17 2020-08-11 中国科学院过程工程研究所 一种热转印粉末涂料及其制备方法和应用
CN111243778B (zh) * 2020-01-20 2021-11-09 常州烯奇新材料有限公司 一种丝网印刷用低温导电银胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291807A (ja) * 1990-04-09 1991-12-24 Sumitomo Bakelite Co Ltd 異方導電ペースト
CN101544742A (zh) * 2009-04-15 2009-09-30 北京科聚化工新材料有限公司 一种部分封闭型聚氨酯固化剂及其制备方法
CN111370159A (zh) * 2020-03-11 2020-07-03 中国人民解放军国防科技大学 一种导电浆料及其制备方法和应用
CN112927837A (zh) * 2021-03-04 2021-06-08 北京梦之墨科技有限公司 一种导电浆料及电子器件

Also Published As

Publication number Publication date
CN112927837A (zh) 2021-06-08
US20230170108A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
WO2022183783A1 (zh) 一种导电浆料及电子器件
TWI796404B (zh) 焊錫膏及實裝構造體
US7718090B2 (en) Conductive paste
CN108538442B (zh) 高电导率低温银浆的制备方法
TWI508105B (zh) Anisotropic conductive material and a connecting structure
WO2022199083A1 (zh) 一种导电浆料及电子器件
CN103923585A (zh) 一种导电粘接剂组合物和导电粘接膜
WO2022227517A1 (zh) 一种增强型导电浆料及电子器件
CN113831876B (zh) 一种导电胶、固态导电胶膜及其制备方法和应用
CN110838383A (zh) 一种片式元器件柔性外电极及其制作方法
CN111243778B (zh) 一种丝网印刷用低温导电银胶及其制备方法
CN114189983B (zh) 一种柔性导电浆料及柔性电路板
KR20120080313A (ko) 도전성 페이스트 및 그 제조방법
CN115083657B (zh) 一种低温固化导电银浆及其制备方法和用途
CN111849250A (zh) 一种导电墨水及电子器件
CN110423573B (zh) 一种导电银胶及其制备方法和应用
US20210243893A1 (en) Printed circuit board and method of manufacturing printed circuit board
CN114974651A (zh) 一种环氧树脂基导电浆料及其制备方法与应用
CN211671066U (zh) 一种超柔性电子线路
WO2023124283A1 (zh) 一种导电油墨及电子器件
JPH1021741A (ja) 異方導電性組成物及びフィルム
CN113498267A (zh) 一种超柔性电子线路及其制作方法
WO2023124282A1 (zh) 一种低温固化导电浆料及电子器件
WO2023123665A1 (zh) 一种可直焊的金属复合油墨、制备方法及电子器件
TWI410189B (zh) 電路板基板及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 25.10.2023)