WO2022217883A1 - 量子点发光器件及显示装置 - Google Patents

量子点发光器件及显示装置 Download PDF

Info

Publication number
WO2022217883A1
WO2022217883A1 PCT/CN2021/126049 CN2021126049W WO2022217883A1 WO 2022217883 A1 WO2022217883 A1 WO 2022217883A1 CN 2021126049 W CN2021126049 W CN 2021126049W WO 2022217883 A1 WO2022217883 A1 WO 2022217883A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
quantum dot
thermally conductive
spacer
dot light
Prior art date
Application number
PCT/CN2021/126049
Other languages
English (en)
French (fr)
Inventor
梅文海
张渊明
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2022217883A1 publication Critical patent/WO2022217883A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present application relates to the field of display technology, and in particular, to a quantum dot light-emitting device and a display device.
  • QD (Quantum dot, quantum dot) light-emitting devices have the advantages of high luminous intensity, good monochromaticity, high color saturation and good stability. Therefore, quantum dot light-emitting devices have good application prospects in the display field.
  • the quantum dot light-emitting device will generate heat when it emits light, and the generated heat will increase the temperature of the quantum dot light-emitting device, thereby affecting the lifespan and stability of the quantum dot light-emitting device.
  • a quantum dot light-emitting device comprising:
  • a first electrode located on the substrate
  • the pixel defining layer comprising a pixel opening exposing the first electrode and a first pixel spacer surrounding the pixel opening;
  • a light-emitting functional layer located in the pixel opening
  • the material of the first pixel separator includes a thermally conductive material
  • the thermally conductive material is an insulating material
  • the thermal conductivity of the thermally conductive material is greater than 25W/(m ⁇ K).
  • the material of the first pixel separator includes a pixel separator material and the thermally conductive material, the thermally conductive material is doped in the pixel separator, and the thermal conductivity of the thermally conductive material is greater than that of the pixel separator. the thermal conductivity of the material; or,
  • the material of the first pixel spacer includes only the thermally conductive material.
  • the first pixel spacer includes a first spacer and a second spacer arranged in layers, and the second spacer is located on a side of the first spacer away from the substrate;
  • the thermal conductivity of the first partition portion is smaller than the thermal conductivity of the second partition portion.
  • the materials of the first separation part and the second separation part both include the pixel separation material and the thermally conductive material;
  • the thermally conductive material in the first partition is the same as the thermally conductive material in the second partition, and the mass percentage of the thermally conductive material in the first partition is smaller than that in the second partition. The mass percentage of the thermally conductive material.
  • the thermally conductive material included in the first partition is different from the thermally conductive material included in the second partition, and the thermal conductivity of the thermally conductive material included in the first partition is smaller than the thermal conductivity of the thermally conductive material included in the second partition.
  • the thermal conductivity of the material is different from the thermally conductive material included in the second partition, and the thermal conductivity of the thermally conductive material included in the first partition is smaller than the thermal conductivity of the thermally conductive material included in the second partition.
  • the materials of the first separation part and the second separation part both include the pixel separation material and the thermally conductive material;
  • the mass percentage of the thermally conductive material in the first partition is equal to or less than the mass percentage of the thermally conductive material in the second partition.
  • the first partition part and the second partition part located at the first side surface of the light-emitting functional layer include a rectangle in the shape of the cross-section perpendicular to the plane where the substrate is located; the first partition The side surface is any surface of the light-emitting functional layer that is perpendicular to the plane where the substrate is located.
  • the light-emitting functional layer includes a first functional layer, a quantum dot light-emitting layer, and a second functional layer that are stacked in layers, and the first functional layer, the quantum dot light-emitting layer, and the second functional layer are sequentially away from each other.
  • the first electrode is provided;
  • the distance from the surface of the quantum dot light-emitting layer on the side close to the substrate to the substrate is greater than the distance from the surface of the second partition part on the side close to the substrate to the substrate.
  • the light-emitting functional layer includes a first functional layer, a quantum dot light-emitting layer, and a second functional layer that are stacked in layers, and the first functional layer, the quantum dot light-emitting layer, and the second functional layer are sequentially away from each other.
  • the first electrode is provided;
  • the area of the part in contact with the second functional layer and the quantum dot light-emitting layer along the cross-section parallel to the plane where the substrate is located is larger than that in contact with the first functional layer The area of the site along the cross-section parallel to the plane of the substrate.
  • the first pixel separator located at the second side of the light-emitting functional layer is along a cross section perpendicular to the plane where the substrate is located.
  • Shapes include inverted trapezoids.
  • the pixel defining layer further includes a second pixel spacer, the second pixel spacer is located on a side of the first pixel spacer away from the light-emitting functional layer, and the second pixel spacer is The thermal conductivity of is less than the thermal conductivity of the first pixel separator.
  • the second pixel spacer and the first pixel spacer are of equal thickness.
  • the pixel defining layer further includes a third pixel spacer, the third pixel spacer is located on a side of the first pixel spacer away from the substrate, and the thermal conductivity of the third pixel spacer is greater than or equal to the thermal conductivity of the first pixel spacer, and the third pixel spacer further extends to the surface of the second pixel spacer away from the substrate.
  • the quantum dot light-emitting device further includes a heat-conducting layer, and the heat-conducting layer is located on a side of the second electrode away from the substrate.
  • the quantum dot light-emitting device further includes a packaging structure
  • the thermally conductive layer is located between the packaging structure and the second electrode, and the material of the thermally conductive layer is an insulating material; or, the thermally conductive layer is located on a side of the packaging structure away from the second electrode.
  • the thermally conductive material includes at least one of boron nitride, aluminum nitride, and beryllium oxide.
  • a display device comprising a plurality of the above quantum dot light-emitting devices, and two adjacent quantum dot light-emitting devices share the same first pixel separator.
  • a display device comprising a plurality of the above quantum dot light-emitting devices, and two adjacent quantum dot light-emitting devices share the same second pixel separator.
  • FIG. 1 shows a schematic structural diagram of a first quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 2 shows a schematic structural diagram of a second quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a third quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a fourth quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a fifth quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a sixth quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 7 shows a flowchart of a method for manufacturing a quantum dot light-emitting device according to an embodiment of the present application
  • FIG. 8 shows a schematic view of the structure after forming the first electrode on the substrate
  • Fig. 9 shows the structure schematic diagram after forming the first separation film and the second separation film on the structure shown in Fig. 8;
  • FIG. 10 shows a schematic view of the structure after the patterned first photoresist is formed on the structure shown in FIG. 9;
  • FIG. 11 shows a schematic view of the structure after etching the first separation film and the second separation film in the structure shown in FIG. 10 to form the first separation portion and the second separation portion;
  • FIG. 12 shows a schematic view of the structure after forming a patterned second photoresist on the structure shown in FIG. 11;
  • FIG. 13 shows a schematic structural diagram of a second pixel spacer formed after a second pixel spacer film is formed on the structure shown in FIG. 12 and the second photoresist is removed;
  • FIG. 14 shows a schematic view of the structure after forming a patterned third photoresist on the structure shown in FIG. 8;
  • FIG. 15 shows a schematic structural diagram of the first pixel spacer formed after the first pixel spacer film is formed on the structure shown in FIG. 14 and the third photoresist is removed;
  • FIG. 16 shows a schematic view of the structure after a patterned fourth photoresist is formed on the structure shown in FIG. 15;
  • FIG. 17 shows a schematic structural diagram of a second pixel spacer formed after a second pixel spacer film is formed on the structure shown in FIG. 16 and the fourth photoresist is removed;
  • FIG. 18 shows a schematic plan view of a pixel defining layer corresponding to a plurality of quantum dot light-emitting devices in a display device according to an embodiment of the present application
  • FIG. 19 is a schematic plan view of a pixel defining layer corresponding to a plurality of quantum dot light-emitting devices in another display device according to an embodiment of the present application.
  • FIG. 1 a schematic structural diagram of a first quantum dot light-emitting device according to an embodiment of the present application is shown.
  • An embodiment of the present application discloses a quantum dot light-emitting device, comprising: a first electrode 12 on a substrate 11; a pixel defining layer on the substrate 11, the pixel defining layer including a pixel opening 131 exposing the first electrode 12 and a surrounding
  • the first pixel spacer 132 forming the pixel opening 131 is set; the light-emitting functional layer 14 is located in the pixel opening 131; the second electrode 15 covers the light-emitting functional layer 14; wherein, the material of the first pixel spacer 132 includes a thermally conductive material 133,
  • the thermally conductive material 133 is an insulating material, and the thermal conductivity of the thermally conductive material 133 is greater than 25 W/(m ⁇ K).
  • the substrate 11 is actually a driving backplane, which includes a substrate and thin film transistors disposed on the substrate.
  • the thin film transistor includes a gate electrode disposed on a substrate, a gate insulating layer covering the gate electrode and the substrate, an active layer disposed on the gate insulating layer, and a gate insulating layer disposed on the gate insulating layer and covering part of the active layer.
  • a first electrode 12 is provided on the substrate 11 , and the first electrode 12 is connected to the drain of the thin film transistor in the substrate 11 .
  • the first electrode 12 is connected to the drain electrode of the thin film transistor through a via hole penetrating the passivation layer.
  • a pixel defining layer is further provided on the substrate 11 .
  • the pixel defining layer includes a pixel opening 131 and a first pixel spacer 132 .
  • the pixel opening 131 exposes the first electrode 12 disposed on the substrate 11
  • the first pixel spacer 132 surrounds the pixel opening 131 .
  • the pixel opening 131 is formed.
  • the first pixel spacer 132 covers part of the first electrode 12 , that is, the orthographic projection of the pixel opening 131 on the substrate 11 is located within the orthographic projection of the first electrode 12 on the substrate 11 .
  • the material of the first pixel spacer 132 includes a thermally conductive material 133 .
  • the material of the first pixel spacer 132 includes a pixel spacer material and a heat-conducting material 133, the heat-conducting material 133 is doped in the pixel spacer material, and the heat-conducting coefficient of the heat-conducting material 133 is greater than that of the pixel spacer material; or, the first The material of the pixel spacer 132 includes only the thermally conductive material 133 .
  • the material of the first pixel spacer 132 is composed of two parts, that is, the material of the first pixel spacer 132 includes the pixel spacer material and the thermally conductive material 133 .
  • the conventional first pixel spacer material only includes pixel spacer material, and the pixel spacer material can be an organic material, and its thermal conductivity is generally below 1W/(m ⁇ K), and the pixel spacer material can also be an inorganic material, such as Silicon oxide, the thermal conductivity of silicon oxide is generally 25W/(m ⁇ K).
  • the thermal conductivity of the thermally conductive material 133 is doped into the pixel separation material, and the thermal conductivity of the thermally conductive material 133 is greater than that of the pixel separation material, that is, the thermal conductivity of the thermally conductive material 133 is greater than 25W/(m ⁇ K).
  • the thermal conductivity of the first pixel spacer 132 in the present application can be made greater than that when the first pixel spacer only includes the pixel spacer material, thereby improving the thermal conductivity of the first pixel spacer 132 .
  • the material of the first pixel spacer 132 only consists of the thermally conductive material 133 , that is, the material of the first pixel spacer 132 only includes the thermally conductive material 133 , while the material of the conventional first pixel spacer only includes the pixels Separation material, when the pixel separation material is an inorganic material, its thermal conductivity is generally 25W/(m ⁇ K), and when the pixel separation material is an organic material, its thermal conductivity is generally below 1W/(m ⁇ K).
  • the present application adopts the thermal conductivity material 133 with a thermal conductivity greater than 25W/(m ⁇ K) as the material of the first pixel separator 132 , so that the thermal conductivity when the material of the first pixel separator 132 only includes the thermal conductivity material 133 is greater than
  • the thermal conductivity of the first pixel spacer 132 can be improved only when the first pixel spacer includes the thermal conductivity of the pixel spacer material.
  • the thermal conductivity of the thermally conductive material 133 in the first pixel spacer 132 is greater than 25 W/(m ⁇ K).
  • the thermal conductivity of the thermally conductive material 133 may also be greater than 100 W/(m ⁇ K).
  • the thermally conductive material 133 The thermal conductivity is 125W/(m ⁇ K), 150W/(m ⁇ K), etc.
  • the thermally conductive material 133 also needs to be an insulating material, so as to prevent the first pixel separator 132 from affecting the potential difference between the first electrode 12 and the second electrode 15, or to prevent the first pixel separator 132 from The electrode 12 is electrically connected to the second electrode 15 to cause a short circuit of the quantum dot light-emitting device.
  • the quantum dot light-emitting device further includes a light-emitting functional layer 14 disposed in the pixel opening 131 , and a second electrode 15 covering the light-emitting functional layer 14 , and the second electrode 15 may actually cover the first pixel separator 132 .
  • the thickness of the first pixel spacer 132 is greater than the total thickness of the light emitting functional layer 14 and the first electrode 12 along the direction perpendicular to the substrate 11, so that the second electrode 15 has a thickness at the pixel opening 131.
  • the protruding structure facing the direction of the substrate 11 is in contact with the light-emitting functional layer 14 .
  • the light-emitting functional layer 14 includes a first functional layer, a quantum dot light-emitting layer 143 and a second functional layer arranged in layers, and the first functional layer, the quantum dot light-emitting layer 143 and the second functional layer are sequentially away from the first electrode 12 set up.
  • the first electrode 12 is an anode
  • the second electrode 15 is a cathode
  • the first functional layer includes a stacked hole injection layer 141 and a hole transport layer 142
  • the hole transport layer 142 is located at a distance from the hole injection layer 141.
  • One side of the electrode 12, the second functional layer is the electron transport layer 144; or, the first electrode 12 is the cathode, the second electrode 15 is the anode, the first functional layer is the electron transport layer, and the second functional layer A hole injection layer and a hole transport layer, the hole transport layer is located on the side of the hole injection layer away from the second electrode 15 .
  • the material of the quantum dot light-emitting layer 143 is a quantum dot material, such as CdSe/ZnS quantum dots, perovskite quantum dots or InP quantum dots, etc.
  • the material of the hole injection layer 141 is PEDOT, namely EDOT (3,4-ethylene Dioxythiophene monomer)
  • the material of the hole transport layer 142 is TFB
  • TFB refers to poly(9,9-dioctylfluorene-copolymer-N-(4-butylphenyl)diphenylamine)
  • the material of the electron transport layer 144 is zinc oxide nanoparticles
  • the material of the anode can be ITO (Indium Tin Oxides, indium tin oxide)
  • the material of the cathode can be aluminum.
  • the material of the first pixel spacer 132 in the quantum dot light-emitting device only includes the pixel spacer material, when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer 14 will cause the temperature of the quantum dot light-emitting device to rise, making the empty space
  • the hole injection layer 141 , the hole transport layer 142 and the electron transport layer 144 are decomposed and the ligands in the quantum dot light emitting layer 143 fall off, thereby affecting the life and stability of the quantum dot light emitting device.
  • a material including the thermally conductive material 133 is used as the material of the first pixel separator 132, and when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer 14 will be conducted as shown by the arrow in FIG. 1 . to the inside of the first pixel spacer 132, and then conduct heat to the external environment through the first pixel spacer 132, so as to avoid heat accumulation and cause the temperature of the quantum dot light-emitting device to rise, thereby avoiding the hole injection layer 141 and the hole transport layer 142. And the problem of the decomposition of the electron transport layer 144 and the detachment of the ligands in the quantum dot light-emitting layer 143, thereby improving the lifespan and stability of the quantum dot light-emitting device.
  • the thermally conductive material 133 includes at least one of boron nitride, aluminum nitride, and beryllium oxide.
  • the thermal conductivity of boron nitride can be 125W/(m ⁇ K), that of aluminum nitride can be 150W/(m ⁇ K), that of beryllium oxide can be 270W/(m ⁇ K), and that of nitrogen
  • the thermal conductivity of boronide, aluminum nitride, and beryllium oxide is much greater than when the first pixel spacer includes only organic materials or silicon oxide. Therefore, by using at least one of boron nitride, aluminum nitride, and beryllium oxide as the thermally conductive material 133 in the first pixel spacer 132 , the heat generated by the light-emitting functional layer 14 can be effectively conducted to the first pixel spacer 132 internal.
  • the thermally conductive material 133 is not limited to the above-mentioned boron nitride, aluminum nitride and beryllium oxide, and can also be other insulating materials with high thermal conductivity, as long as the thermal conductivity is greater than 25W/(m ⁇ K) of insulating materials can be.
  • the first pixel spacer 132 includes a first spacer 1321 and a second spacer 1322 arranged in layers, and the second spacer 1322 is located in the first spacer 1321 away from the substrate. 11 ; wherein, the thermal conductivity of the first partition portion 1321 is smaller than that of the second partition portion 1322 .
  • the materials of the first separation portion 1321 and the second separation portion 1322 may both include a pixel separation material and a thermally conductive material 133 , and the thermal conductivity of the thermally conductive material 133 is greater than that of the pixel separation material.
  • the thermal conductivity of the first partition portion 1321 refers to the sum of the product of the thermal conductivity of the pixel partition material and the first weight and the product of the thermal conductivity of the thermal conductive material 133 and the second weight, and the first weight is the first partition
  • the second weight refers to the mass percentage of the thermally conductive material 133 in the first partition 1321;
  • the thermal conductivity of the second partition 1322 refers to: The product of the thermal conductivity and the third weight and the sum of the product of the thermal conductivity of the thermally conductive material 133 and the fourth weight, the third weight is the mass percentage of the pixel separation material in the second partition 1322, and the fourth weight refers to the second weight.
  • the mass percentage of the thermally conductive material 133 in the partition 1322 refers to the sum of the product of the thermal conductivity of the pixel partition material and the first weight and the product of the thermal conductivity of the thermal conductive material 133 and the second weight
  • the first weight is the first partition
  • the second weight refers to the mass
  • the materials of the first partition part 1321 and the second partition part 1322 may both include only the thermally conductive material 133 .
  • the thermal conductivity of the first partition portion 1321 refers to the thermal conductivity of the thermally conductive material 133 used in the first partition portion 1321
  • the thermal conductivity of the second partition portion 1322 refers to the thermal conductivity of the thermally conductive material used in the second partition portion 1322 .
  • the thermal conductivity of the first partition part 1321 is smaller than that of the second partition part 1322
  • the thermal conductivity of the second partition part 1322 far from the substrate 11 can be made stronger than that of the first partition part 1321 close to the substrate 11.
  • the first pixel spacer 132 can not only induce the heat generated by the light emitting functional layer 14 to conduct to the first pixel spacer 132, but also induce the heat in the first partition part 1321 to conduct to the second partition part 1322, thereby avoiding the second partition part 1322.
  • the heat of a partition 1321 is conducted to the direction of the substrate 11 to affect the performance of the thin film transistor.
  • the materials of the first separation portion 1321 and the second separation portion 1322 both include pixel separation material and thermally conductive material 133 ; the thermally conductive material 133 in the first separation portion 1321 is the same as the thermally conductive material 133 in the second separation portion 1322 , and the mass percentage of the thermally conductive material 133 in the first partition portion 1321 is smaller than the mass percentage of the thermally conductive material 133 in the second partition portion 1322 .
  • the first pixel spacer 132 is formed by stacking the first spacer 1321 and the second spacer 1322, and the thermally conductive material 133 doped in the first partition 1321 is the same as the thermally conductive material 133 doped in the second partition 1322, And the mass percentage of the thermally conductive material 133 doped in the first partition portion 1321 is controlled to be smaller than the mass percentage of the thermally conductive material 133 doped in the second partition portion 1322 , so that the thermal conductivity of the second partition portion 1322 away from the substrate 11 is stronger than that in the vicinity of the substrate 11 .
  • the thermal conductivity of the first separation portion 1321 of the substrate 11 is to prevent the heat of the first separation portion 1321 from being conducted to the direction of the substrate 11 and affecting the performance of the thin film transistor.
  • the material of the first partition 1321 includes silicon oxide and boron nitride, and the mass ratio of boron nitride to silicon oxide in the first partition 1321 is 1:9
  • the material of the second partition 1322 also includes oxide Silicon and boron nitride, and the mass ratio of boron nitride to silicon oxide in the second partition 1322 is 3:7, so that the mass percentage of the thermally conductive material 133 in the first partition 1321 is smaller than that in the second partition 1322.
  • the thermally conductive material 133 included in the first partition 1321 is different from the thermally conductive material 133 included in the second partition 1322 , and the thermal conductivity of the thermally conductive material 133 included in the first partition 1321 is smaller than that of the thermally conductive material 133 included in the second partition 1322 Thermal conductivity of the thermally conductive material 133 .
  • the thermal conductivity of the thermally conductive material 133 in the first partition part 1321 is smaller than that in the second partition part 1322.
  • the thermal conductivity of the first partition portion 1321 can be made smaller than the thermal conductivity of the second partition portion 1322 .
  • the material of the first separation portion 1321 is boron nitride
  • the material of the second separation portion 1322 is beryllium oxide.
  • the thermal conductivity of the thermally conductive material 133 doped in the first partition portion 1321 can also be controlled to be smaller than that of the second partition portion.
  • the thermal conductivity of the thermally conductive material 133 doped in the 1322 is controlled to control the thermal conductivity of the first partition portion 1321 to be smaller than that of the second partition portion 1322 .
  • the materials of the first partition part 1321 and the second partition part 1322 both include the pixel partition material and the thermally conductive material 133, it is also necessary to ensure that the mass percentage of the thermally conductive material 133 in the first partition part 1321 is equal to or less than that of the second partition.
  • the mass percentage of the thermally conductive material 133 in the portion 1322 is further controlled to further control the thermal conductivity of the first partition portion 1321 to be smaller than that of the second partition portion 1322 .
  • the material of the first partition 1321 includes silicon oxide and boron nitride, and the mass ratio of boron nitride to silicon oxide in the first partition 1321 is 1:9
  • the material of the second partition 1322 includes silicon oxide and beryllium oxide, and the mass ratio of beryllium oxide to silicon oxide in the second partition part 1322 is 3:7
  • the thermal conductivity of the first partition part 1321 is 35W/(m ⁇ K)
  • the second partition part 1322 The thermal conductivity of the Thermal conductivity of the partition 1322 .
  • the first partition 1321 and the second partition 1322 located at the first side of the light-emitting functional layer 14 have a rectangular shape along the cross-section perpendicular to the plane where the substrate 11 is located; the first side is the light-emitting functional layer Any surface of 14 that is perpendicular to the plane where the substrate 11 is located.
  • the shape of the light-emitting functional layer 14 is a rectangular parallelepiped or a cube, and the light-emitting functional layer 14 includes a first surface in contact with the first electrode 12, a second surface in contact with the second electrode 15, and a second surface disposed on the first surface and the second surface. There are four sides between the two surfaces that are connected end to end, and the areas of the first surface and the second surface are equal. These four sides are all perpendicular to the plane where the substrate 11 is located, and any one of the four sides is called the first surface.
  • first partition 1321 and a second partition 1322 are provided at each first side of the light-emitting functional layer 14 , and the first and second partitions 1321 and 1322 are located at each first side of the light-emitting functional layer 14
  • the shape of the partition portion 1322 may be a rectangular parallelepiped or a cube.
  • the first partition part 1321 and the second partition part 1322 located at the first side surface of the light emitting functional layer 14 include a rectangle in the shape along the cross section perpendicular to the plane where the substrate 11 is located.
  • the shape of the cross section is a rectangle as shown in FIG. 2 .
  • first partition 1321 and the second partition 1322 located on the first side of the light-emitting functional layer 14 along the cross-section parallel to the plane of the substrate 11 are the same, and are located on the first side of the light-emitting functional layer 14
  • the shapes of the first partition portion 1321 and the second partition portion 1322 along the cross section parallel to the plane where the substrate 11 is located are also rectangular.
  • the light-emitting functional layer 14 includes a first functional layer, a quantum dot light-emitting layer 143 and a second functional layer that are stacked in layers, and the first functional layer, the quantum dot light-emitting layer 143 and the second functional layer are sequentially away from the first electrode.
  • the distance d1 from the surface of the quantum dot light-emitting layer 143 close to the substrate 11 to the substrate 11 is greater than the distance d2 from the surface of the second partition 1322 close to the substrate 11 to the substrate 11 .
  • the second partition 1322 is in contact with the side surface of the quantum dot light-emitting layer 143. Since the quantum dot light-emitting layer 143 mainly generates heat in the light-emitting functional layer 14, the quantum dot light-emitting layer 143 is close to the substrate 11 by placing the quantum dot light-emitting layer 143.
  • the distance d1 from the surface to the substrate 11 is set to be greater than the distance d2 from the surface of the second partition 1322 on the side close to the substrate 11 to the substrate 11, so that the quantum dot light-emitting layer 143 is in contact with the second partition 1322 and passes through the second partition 1322 induces more heat to be exported from the quantum dot light-emitting layer 143, thereby improving the thermal conductivity of the quantum dot light-emitting device.
  • the thickness of the first partition 1321 is reasonably set so that the distance d1 from the surface of the quantum dot light-emitting layer 143 close to the substrate 11 to the substrate 11 is greater than The distance d2 from the surface of the second partition portion 1322 close to the substrate 11 to the substrate 11 .
  • the thicknesses of the first partition portion 1321 and the second partition portion 1322 may or may not be equal.
  • the light-emitting functional layer 14 includes a first functional layer, a quantum dot light-emitting layer 143 and a second functional layer arranged in layers.
  • the first functional layer and the quantum dot light-emitting layer 143 and the second functional layer are disposed away from the first electrode 12 in turn; in the first pixel separator 132, the area of the part in contact with the second functional layer and the quantum dot light-emitting layer 143 along the cross-sectional area parallel to the plane where the substrate 11 is located is greater than The area of the part in contact with the first functional layer along the cross-section parallel to the plane where the substrate 11 is located.
  • the area of the first pixel separator 132 close to the substrate 11 along the cross-section parallel to the plane of the substrate 11 is smaller than the area of the part far from the substrate 11 along the cross-section parallel to the plane of the substrate 11, when When the cross-sectional area of the portion of the first pixel spacer 132 that is far away from the substrate 11 is large, most of the heat generated by the light-emitting functional layer 14 will be conducted to the portion of the first pixel spacer 132 that is far away from the substrate 11 , so that the light-emitting function is improved. Most of the heat generated by the layer 14 is conducted away from the substrate 11 to prevent the heat generated by the light-emitting functional layer 14 from being conducted to the substrate 11 and affecting the performance of the thin film transistor.
  • the area of the part in contact with the second functional layer along the cross-section parallel to the plane of the substrate 11 may be greater than the area of the part in contact with the quantum dot light-emitting layer 143 along the plane parallel to the plane of the substrate 11 .
  • the area of the cross-section may also be equal to the area of the cross-section of the portion in contact with the quantum dot light-emitting layer 143 along the cross-section parallel to the plane where the substrate 11 is located.
  • the area of the part in contact with the first electrode 12 along the cross section parallel to the plane where the substrate 11 is located may be smaller than the area of the part in contact with the first functional layer along the plane parallel to the plane where the substrate 11 is located.
  • the area of the cross section can also be equal to the area of the cross section of the part in contact with the first functional layer along the plane parallel to the plane of the substrate 11; and the area of the part in contact with the second electrode 15 along the cross section of the plane parallel to the plane of the substrate 11 , may be greater than the area of the cross section of the part in contact with the second functional layer along the plane parallel to the substrate 11 , or equal to the area of the part in contact with the second functional layer along the cross section of the plane parallel to the substrate 11 .
  • the first pixel spacer 132 located at the second side of the light-emitting functional layer 14 has a shape along a cross-section perpendicular to the plane where the substrate 11 is located, including inverted Trapezoid; the second side is any surface of the light-emitting functional layer 14 that is not parallel to the plane where the substrate 11 is located.
  • the shape of the light-emitting functional layer 14 is an upright trapezoid, and the light-emitting functional layer 14 includes a first surface in contact with the first electrode 12 , and a first surface in contact with the second electrode 15 .
  • the second surface in contact, and the 4 side surfaces arranged between the first surface and the second surface and connected end to end, and the area of the first surface is larger than the area of the second surface, and these 4 side surfaces are not in the plane where the substrate 11 is located
  • any one of the four sides is referred to as the second side; a first pixel separator 132 is provided at each second side of the light-emitting functional layer 14, and is directed from the substrate 11 to the second electrode 15.
  • the shape of the first pixel spacers 132 located at each of the second side surfaces of the light emitting functional layer 14 may be an inverted trapezoid.
  • the shape of the first pixel spacer 132 located at the second side of the light-emitting functional layer 14 along the cross section perpendicular to the plane of the substrate 11 includes an inverted trapezoid, which may be an isosceles trapezoid or a non-isosceles trapezoid.
  • the cross section of the cross section is The shape is an inverted trapezoid as shown in Figure 3.
  • the area of any part of the first pixel separator 132 along the cross-section parallel to the plane where the substrate 11 is located is positively correlated with the distance between the part and the substrate 11, that is, in the first pixel separator 132,
  • the part closer to the base 11 has a smaller area along the cross section parallel to the plane where the base 11 is located, and the part farther away from the base 11 has a larger area along the cross section parallel to the plane where the base 11 is located. That is to say, in the first pixel separator 132 , the area of the portion in contact with the second electrode 15 along the cross-sectional area parallel to the plane where the substrate 11 is located, and the portion in contact with the second functional layer along the area parallel to the plane where the substrate 11 is located.
  • the area of the cross section, the area of the cross section of the part in contact with the quantum dot light-emitting layer 143 along the plane parallel to the plane of the substrate 11, the area of the part in contact with the first functional layer along the cross section of the plane parallel to the plane of the substrate 11, and the The area of the contact portion of the first electrode 12 along the cross-section parallel to the plane where the substrate 11 is located has a decreasing trend.
  • the pixel defining layer further includes a second pixel spacer 134 , and the second pixel spacer 134 is located on the side of the first pixel spacer 132 away from the light-emitting functional layer 14 , And the thermal conductivity of the second pixel spacer 134 is smaller than that of the first pixel spacer 132 .
  • the material of the second pixel spacer 134 includes only the pixel spacer material, so that the thermal conductivity of the second pixel spacer 134 is smaller than that of the first pixel spacer 132, the pixel spacer material included in the second pixel spacer 134 It may be an inorganic material, such as silicon oxide, and the pixel separation material included in the second pixel spacer 134 may also be an organic material, such as resin.
  • each sub-pixel in the display device corresponds to a quantum dot light-emitting device, and in each quantum dot light-emitting device, a second pixel spacer 134 is provided on the side of the first pixel spacer 132 away from the light-emitting functional layer 14 .
  • the thermal conductivity of the second pixel separator 134 is smaller than the thermal conductivity of the first pixel separator 132, therefore, the heat generated by the light-emitting functional layer 14 in the quantum dot light-emitting device corresponding to each sub-pixel is conducted to the After the first pixel spacer 132, heat is not easily conducted from the first pixel spacer 132 to the second pixel spacer 134, so as to prevent the first pixel spacer 132 from conducting heat into the quantum dot light-emitting devices corresponding to adjacent pixels. , and affect the lifetime and stability of the quantum dot light-emitting devices corresponding to adjacent pixels.
  • the thickness of the second pixel spacer 134 and the first pixel spacer 132 equal.
  • the shape of the first pixel spacer 132 at the first side of the light-emitting functional layer 14 is a rectangular parallelepiped or a cube
  • the first pixel spacer 132 at the first side is incompatible with the first pixel spacer 132 at the first side.
  • the shape of the second pixel spacer 134 contacted by 132 is also a rectangular parallelepiped or a cube. As shown in FIG. 2 , FIG. 4 and FIG. 5 , when the shape of the first pixel spacer 132 at the first side of the light-emitting functional layer 14 is a rectangular parallelepiped or a cube, the first pixel spacer 132 at the first side is incompatible with the first pixel spacer 132 at the first side.
  • the shape of the second pixel spacer 134 contacted by 132 is also a rectangular parallelepiped or a cube. As shown in FIG.
  • the second pixel spacer 132 in contact with the first pixel spacer 132 at the second side of the light-emitting functional layer 14 is an inverted trapezoid
  • the second pixel spacer 132 in contact with the first pixel spacer 132 at the second side The shape of the pixel spacer 134 is an upright trapezoid; and, the angle between the surface of the first pixel spacer 132 in contact with the second pixel spacer 134 and the surface of the first pixel spacer 132 away from the substrate 11 is The first angle, the angle between the surface of the second pixel spacer 134 in contact with the first pixel spacer 132 and the surface of the second pixel spacer 134 away from the substrate 11 is the second angle, the first angle and The second angle is complementary; the angle between the surface of the first pixel divider 132 in contact with the second pixel divider 134 and the surface of the first pixel divider 132 close to the substrate 11 is the third angle, and the second pixel divides The angle between the surface of the body
  • the second pixel spacer 134 By setting the shape of the second pixel spacer 134 to match the shape of the first pixel spacer 132 on the first side or the second side of the light-emitting functional layer 14 , the second pixel spacer 134 can be connected to the first pixel spacer 134 . There is no gap between the separators 132 , thereby improving the space utilization rate of each quantum dot light-emitting device in the display device and avoiding space waste caused by the gap between the second pixel separator 134 and the first pixel separator 132 .
  • the thicknesses of the second pixel spacers 134 and the first pixel spacers 132 are equal, and the thicknesses of the second pixel spacers 134 and the first pixel spacers 132 are both 50 nm to 50 nm. 500 nm, for example, the thicknesses of the second pixel spacer 134 and the first pixel spacer 132 may both be 100 nm, 300 nm, or the like.
  • the difference between FIG. 2 and FIG. 4 is that the first pixel spacer 132 in FIG. 2 includes a first spacer 1321 and a second spacer 1322 arranged in layers, and the thermal conductivity of the first spacer 1321 is less than The thermal conductivity of the second partition 1322, while the first pixel partition 132 in FIG. 4 is an integral structure, and the thermal conductivity in each part is the same;
  • the difference between FIG. 3 and FIG. 4 is that in FIG.
  • the shapes of the cross sections of the first pixel spacer 132 and the second pixel spacer 134 at the second side of the The shapes of the cross sections of the second pixel spacers 134 are all rectangular.
  • the pixel defining layer further includes a third pixel spacer 135 , the third pixel spacer 135 is located on the side of the first pixel spacer 132 away from the substrate 11 , and the thermal conductivity of the third pixel spacer 135 is greater than or equal to The thermal conductivity of the first pixel spacer 132 and the third pixel spacer 135 also extend to the surface of the second pixel spacer 134 away from the substrate 11 .
  • the third pixel spacer 135 By adding the third pixel spacer 135 on the side of the first pixel spacer 132 away from the substrate 11, since the thermal conductivity of the third pixel spacer 135 is greater than or equal to that of the first pixel spacer 132, and the third pixel spacer The body 135 also extends to the surface of the second pixel spacer 134 away from the substrate 11 , so that the contact area between the third pixel spacer 135 and the second electrode 15 is increased, thereby further improving the thermal conductivity of the quantum dot light emitting device.
  • the material of the third pixel spacer 135 may include the pixel spacer material and the thermally conductive material 133, or may only include the thermally conductive material 133, and by controlling the material type of the thermally conductive material 133 in the third pixel spacer 135, or the third pixel
  • the mass percentage of the pixel separation material and the thermally conductive material 133 in the spacer 135 is such that the thermal conductivity of the third pixel spacer 135 is greater than or equal to that of the first pixel spacer 132 .
  • the quantum dot light-emitting device further includes a thermally conductive layer 17 , and the thermally conductive layer 17 is located on the side of the second electrode 15 away from the substrate 11 .
  • the thermal conductivity of the thermally conductive layer 17 may also be greater than 25 W/(m ⁇ K).
  • the thermal conductivity of the thermally conductive layer 17 may also be greater than or equal to the thermal conductivity of the first pixel separator 132 .
  • the thermally conductive layer 17 with high thermal conductivity By disposing the thermally conductive layer 17 with high thermal conductivity on the side of the second electrode 15 away from the substrate 11 , when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer 14 will be conducted to the inside of the first pixel separator 132 , and then pass through The first pixel separator 132 conducts heat into the thermally conductive layer 17, and the thermally conductive layer 17 finally conducts the heat to the external environment. Based on the thermally conductive layer 17, the thermal conductivity of the quantum dot light-emitting device is further improved, thereby further improving the life and stability of the quantum dot light-emitting device. sex.
  • the quantum dot light-emitting device further includes an encapsulation structure 16; the thermally conductive layer 17 is located between the encapsulation structure 16 and the second electrode 15, and the material of the thermally conductive layer 17 is an insulating material; or, the thermally conductive layer 17 is located in the encapsulation structure 16 away from the second electrode 15 side.
  • the thermal conductive layer 17 is located on the surface of the second electrode 15 away from the substrate 11
  • the package structure 16 is located on the surface of the thermal conductive layer 17 away from the second electrode 15 .
  • an insulating material needs to be used as the thermal conductive layer.
  • the material of 17, for example, the material of the thermal conductive layer 17 is aluminum nitride, beryllium oxide, boron nitride and other materials. If a conductive material is used as the material of the heat-conducting layer 17, it will affect the work function of the second electrode 15, thereby affecting the carrier transport of the quantum dot light-emitting device. Therefore, using an insulating material as the material of the heat-conducting layer 17 does not It will affect the carrier transport of quantum dot light-emitting devices.
  • the encapsulation structure 16 is located on the surface of the second electrode 15 away from the substrate 11
  • the thermal conductive layer 17 is located on the surface of the encapsulation structure 16 away from the second electrode 15 .
  • the material of the thermal conductive layer 17 can be It is an insulating material or a conductive material.
  • the material of the thermally conductive layer 17 is at least one of graphene, aluminum nitride, beryllium oxide, boron nitride, gold, silver, copper and aluminum.
  • the encapsulation structure 16 can be an organic film layer, an inorganic film layer, or a laminated structure of an organic film layer and an inorganic film layer, and the encapsulation structure 16 can also be an encapsulation cover plate, such as cover glass.
  • the thickness of the thermal conductive layer 17 is 10 nm to 1 ⁇ m.
  • the thickness of the thermal conductive layer 17 can be controlled to be 10nm to 20nm.
  • the difference between FIG. 6 and FIG. 1 is that the quantum dot light-emitting device shown in FIG. 6 includes the encapsulation structure 16 and the thermally conductive layer 17 , while the encapsulation structure 16 and the thermally conductive layer 17 are not provided in FIG. 1 .
  • the quantum dot light-emitting device when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer will be conducted to the inside of the first pixel spacer, and then The heat is conducted to the external environment through the first pixel spacer, so that the first pixel spacer including the thermally conductive material can effectively dissipate the heat generated by the light-emitting functional layer, so as to avoid the temperature increase of the quantum dot light-emitting device caused by heat accumulation, thereby The lifetime and stability of the quantum dot light-emitting device are improved.
  • FIG. 7 a flowchart of a method for fabricating a quantum dot light-emitting device according to an embodiment of the present application is shown, which may specifically include the following steps:
  • Step 701 forming a first electrode on a substrate.
  • a substrate 11 is provided, and then a patterning process is used to form the first electrode 12 on the substrate 11 .
  • Step 702 forming a pixel definition layer on the substrate; the pixel definition layer includes a pixel opening exposing the first electrode and a first pixel spacer surrounding the pixel opening, the first pixel spacer
  • the material of the body includes a thermally conductive material, the thermally conductive material is an insulating material, and the thermal conductivity of the thermally conductive material is greater than 25W/(m ⁇ K).
  • a pixel defining layer is formed on the substrate 11, and the pixel defining layer includes a pixel opening 131 and a first pixel spacer 132, and the pixel opening 131 is exposed and disposed on the substrate.
  • the first electrode 12 on 11, the first pixel spacer 132 surrounds the pixel opening 131, and the material of the first pixel spacer 132 includes a thermally conductive material 133, the thermally conductive material 133 is an insulating material, and the thermal conductivity of the thermally conductive material 133 Greater than 25W/(m ⁇ K).
  • the first pixel spacer 132 located on either side of the pixel opening 131 may have an integrated structure, the thermal conductivity in each part is consistent, and the shape may be a trapezoid, a rectangular parallelepiped or a cube, etc.;
  • the first pixel spacer 132 on either side may further include a first spacer 1321 and a second spacer 1322 arranged in layers, and the thermal conductivity of the first spacer 1321 is smaller than that of the second spacer 1322 .
  • the first pixel spacer 132 includes a first spacer 1321 and a second spacer 1322 arranged in layers, and the second spacer 1322 is located on a side of the first spacer 1321 away from the substrate 11, and The thermal conductivity of the first partition portion 1321 is smaller than that of the second partition portion 1322 .
  • the materials of the first separation part 1321 and the second separation part 1322 include pixel separation material and thermal conductive material 133;
  • the mass percentage of the thermally conductive material 133 in the first partition portion 1321 is smaller than the mass percentage of the thermally conductive material 133 in the second partition portion 1322 as an example to illustrate the specific formation process of the first pixel partition body 132:
  • the first separation film 21 and the second separation film 22 , and the first separation film 21 and the second separation film 22 can be formed in sequence on the substrate 11 on which the first electrode 12 is formed.
  • the material includes the pixel separation material and the thermally conductive material 133 , and the mass percentage of the thermally conductive material 133 in the first separation film 21 is smaller than the mass percentage of the thermally conductive material 133 in the second separation film 22 .
  • the pixel separation material in the first separation film 21 and the second separation film 22 is an inorganic material
  • a CVD (Chemical Vapor Deposition, chemical vapor deposition) process can be used to deposit the first separation film 21 and the second separation film 22 in sequence.
  • the inorganic material is silicon oxide
  • the thermally conductive material 133 is boron nitride.
  • the thermally conductive material 133 and the organic material are mixed in a first ratio and then spin-coated on the substrate 11 on which the first electrode 12 is formed. , to form the first separation film 21 , and then the thermally conductive material 133 and the organic material are mixed according to the second ratio and then spin-coated on the first separation film 21 to form the second separation film 22 .
  • the thermally conductive material 133 is boron nitride
  • the boron nitride nanosheets and the organic material are mixed in a mass ratio of 1:9 and then spin-coated on the substrate 11 on which the first electrode 12 is formed, and then the boron nitride nanosheets and the organic material are mixed
  • the materials are mixed in a mass ratio of 3:7 and then spin-coated on the first separation film 21 .
  • a first photoresist 31 is coated on the second separation film 22 , and the first photoresist 31 is exposed and developed to obtain The patterned first photoresist 31 .
  • dry etching is performed on the first separation film 21 and the second separation film 22 in the region where the first photoresist 31 is removed, that is, the first separation film 21 in the region where the first pixel spacer 132 does not need to be formed is performed.
  • the first separation film 21 and the second separation film 22 are etched, and after the etching is completed, the remaining first photoresist 31 is peeled off to obtain the first separation portion 1321 and the second separation portion 1322 .
  • the light-emitting functional layer 14 includes a first functional layer, a quantum dot light-emitting layer 143 and a second functional layer arranged in layers, and the first functional layer, the quantum dot light-emitting layer 143 and the second functional layer are in sequence.
  • the area of the part in contact with the second functional layer and the quantum dot light-emitting layer 143 along the cross-section parallel to the plane where the substrate 11 is located is larger than that in contact with the first functional layer.
  • a third photoresist 33 can be spin-coated on the substrate 11 formed with the first electrode 12, and after the third photoresist 33 is exposed and developed, a patterned first photoresist can be obtained.
  • Three photoresists 33, and the patterned third photoresists 33 are upright trapezoids.
  • a first pixel separation film covering the third photoresist 33 and the substrate 11 is formed, and then the first pixel separation film is removed.
  • the first pixel spacer 132 includes a pixel spacer material and a thermally conductive material 133
  • the pixel spacer material is an inorganic material
  • a CVD process may be used to deposit the first pixel spacer film.
  • the inorganic material is silicon oxide
  • the thermally conductive material 133 is boron nitride.
  • the first pixel spacer 132 includes a pixel spacer material and a thermally conductive material 133, and the pixel spacer material is an organic material
  • spin-coating is performed on the patterned third lithography material.
  • a first pixel separation film is formed on the glue 33 and the substrate 11 of the first electrode 12 .
  • the thermally conductive material 133 is boron nitride, and the boron nitride nanosheets and the organic material are mixed in a mass ratio of 3:7 before coating.
  • step 702 includes: forming a first pixel spacer on the substrate; forming a second pixel spacer on a side of the first pixel spacer away from the light-emitting functional layer; the second pixel spacer
  • the thermal conductivity of is less than the thermal conductivity of the first pixel separator.
  • the pixel defining layer may also include a second pixel spacer 134 on the side of the first pixel spacer 132 away from the pixel opening 131 .
  • a second pixel spacer 134 needs to be formed on the side of the first pixel spacer 132 away from the pixel opening 131, and the second pixel spacer 134 only includes the pixel spacer material, that is, The second pixel spacer 134 is not doped with the thermally conductive material 133 , so that the thermal conductivity of the second pixel spacer 134 is smaller than that of the first pixel spacer 132 .
  • the substrate 11 After forming the first spacer 1321 and the second spacer 1322 , as shown in FIG. 12 , spin the substrate 11 , the second spacer 1322 and the first electrode 12 .
  • a second photoresist 32 is applied, and after the second photoresist 32 is exposed and developed, a patterned second photoresist 32 is obtained. At this time, the patterned second photoresist 32 is only located on the second separation portion 1322 and the first electrode 12 .
  • a second pixel separation film covering the substrate 11 and the second photoresist 32 is formed, and then the second photoresist 32 is removed, The second pixel separation film on the second photoresist 32 is also removed to form the second pixel separation body 134 .
  • the patterned fourth photoresist 34 is obtained. At this time, the patterned fourth photoresist 34 is only located on the first pixel spacer 132 and the first electrode 12 .
  • a second pixel separation film covering the substrate 11 and the fourth photoresist 34 is formed, and then the fourth photoresist 34 is removed, The second pixel spacer film on the fourth photoresist 34 is also removed, thereby forming the second pixel spacer 134 .
  • the pixel separation material included in the second pixel separation film may be an inorganic material, which may be formed by a CVD process; the pixel separation material included in the second pixel separation film may also be an organic material, which may be formed by a spin coating process.
  • Step 703 forming a light-emitting functional layer in the pixel opening.
  • the light-emitting functional layer 14 is formed in the pixel opening 131 .
  • the light-emitting functional layer 14 includes a stacked first functional layer, a quantum dot light-emitting layer 143 and a second functional layer.
  • the specific formation process of the light-emitting functional layer 14 is described below by taking the first functional layer including the stacked hole injection layer 141 and the hole transport layer 142 and the second functional layer as the electron transport layer 144 as an example.
  • the hole injection layer 141 is formed on the first electrode 12 in the pixel opening 131 .
  • the material of the hole injection layer 141 is a PEDOT solution.
  • a first spin coating process can be used to spin-coat the PEDOT solution on the first electrode 12 in the pixel opening 131, and a first annealing treatment is performed to form the hole injection layer 141.
  • the spin coating speed of the first spin coating process is 4000 rpm
  • the spin coating time of the first spin coating process is 30 s
  • the annealing temperature of the first annealing process is 200° C.
  • the annealing time of the first annealing process is 5 minutes.
  • the hole transport layer 142 is formed on the hole injection layer 141 .
  • the material of the hole transport layer 142 is TFB, and TFB is dispersed in a chlorobenzene solvent (10 mg/ml) to form a precursor solution of the hole transport layer 142, and the second spin coating process is used to spin the hole injection layer 141.
  • the precursor solution of the hole transport layer 142 is subjected to a second annealing treatment to remove the chlorobenzene solvent in the precursor solution of the hole transport layer 142 to form the hole transport layer 142 .
  • the spin coating speed of the second spin coating process is 3000 rpm
  • the spin coating time of the second spin coating process is 30 s
  • the annealing temperature of the second annealing process is 180° C.
  • the annealing time of the second annealing process is 15 minutes.
  • the quantum dot light-emitting layer 143 is formed on the hole transport layer 142 .
  • the material of the quantum dot light-emitting layer 143 is CdSe/ZnS quantum dots, and the CdSe/ZnS quantum dots are dispersed in an octane solvent (15 mg/ml) to form a precursor solution of the quantum dot light-emitting layer 143, and the third spin coating process is used in the solution.
  • the precursor solution of the quantum dot light-emitting layer 143 is spin-coated on the hole transport layer 142 , and a third annealing treatment is performed to remove the octane solvent in the precursor solution of the quantum dot light-emitting layer 143 to form the quantum dot light-emitting layer 143 .
  • the spin coating speed of the third spin coating process is 2500 rpm
  • the spin coating time of the third spin coating process is 30 s
  • the annealing temperature of the third annealing process is 120° C.
  • the annealing time of the third annealing process is 20 minutes.
  • the electron transport layer 144 is formed on the quantum dot light-emitting layer 143 .
  • the material of the electron transport layer 144 is zinc oxide nanoparticles, and the zinc oxide nanoparticles are dispersed in an ethanol solvent (30 mg/ml) to form a precursor solution of the electron transport layer 144, and the fourth spin coating process is used in the quantum dot light-emitting layer 143
  • the precursor solution of the electron transport layer 144 is spin-coated, and a fourth annealing process is performed to remove the ethanol solvent in the precursor solution of the electron transport layer 144 to form the electron transport layer 144 .
  • the spin coating speed of the fourth spin coating process is 2500 rpm, the spin coating time of the fourth spin coating process is 30 s, the annealing temperature of the fourth annealing process is 120° C., and the annealing time of the fourth annealing process is 20 minutes.
  • Step 704 forming a second electrode covering the light-emitting functional layer.
  • a vacuum evaporation process is used to form the second electrode 15 covering the light-emitting functional layer 14 , and the second electrode 15 may also cover the first pixel separator 132 , or cover the first pixel spacer 132 and the second pixel spacer 134 .
  • the method further includes: forming an encapsulation structure on a side of the second electrode away from the substrate; and forming a heat conduction layer on a side of the encapsulation structure away from the second electrode.
  • the encapsulation structure 16 is formed on the side of the second electrode 15 away from the substrate 11 .
  • the packaging structure 16 can be an inorganic film layer, an organic film layer, or a laminated structure of an organic film layer and an inorganic film layer.
  • the inorganic film layer can be formed by a CVD process, and the organic film layer can be formed by a coating process; the packaging structure 16 can also be a package cover plate, and a bonding process can be used to form the package structure 16 on the side of the second electrode 15 away from the substrate 11 .
  • a thermal conductive layer 17 may be formed on the side of the encapsulation structure 16 away from the second electrode 15 by a sputtering process, so as to further improve the thermal conductivity of the quantum dot light-emitting device. .
  • the quantum dot light-emitting device shown in FIG. 2 can be obtained.
  • the quantum dot light-emitting device as shown in FIG. 3 can be obtained.
  • the quantum dot light-emitting device when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer will be conducted to the inside of the first pixel spacer, and then The heat is conducted to the external environment through the first pixel spacer, so that the first pixel spacer including the thermally conductive material can effectively dissipate the heat generated by the light-emitting functional layer, so as to avoid the temperature increase of the quantum dot light-emitting device caused by heat accumulation, thereby The lifetime and stability of the quantum dot light-emitting device are improved.
  • the embodiment of the present application also provides a display device, including a plurality of the above quantum dot light-emitting devices as shown in FIG. 1 or FIG. 6 , the plurality of quantum dot light-emitting devices are distributed in an array, and two adjacent quantum dot light-emitting devices are The same first pixel separator 132 is shared.
  • 10 denotes the structure of a pixel defining layer in a quantum dot light emitting device, and the pixel defining layer in each quantum dot light emitting device includes a pixel opening 131 and a first pixel spacer 132 surrounding the pixel opening 131 .
  • the pixel defining layer does not include the second pixel spacer 134 , and two adjacent quantum dot light-emitting devices share the same first pixel spacer 132 .
  • the cross-sectional view taken along the section A-A' in FIG. 18 is the structure of the pixel defining layer in the quantum dot light-emitting device shown in FIG. 1 or FIG. 6 .
  • the first pixel spacers 132 shared by two adjacent rows of quantum dot light-emitting devices are connected to each other, and the first pixel spacers 132 shared by two adjacent columns of quantum dot light-emitting devices are also connected to each other.
  • the embodiments of the present application further provide a display device, including a plurality of the above quantum dot light-emitting devices as shown in FIG. 2 to FIG. 5 , the plurality of quantum dot light-emitting devices are distributed in an array, and two adjacent quantum dot light-emitting devices are The same second pixel separator 134 is shared.
  • 10 denotes the structure of a pixel defining layer in a quantum dot light emitting device
  • the pixel defining layer in each quantum dot light emitting device includes a pixel opening 131 and a first pixel spacer 132 surrounding the pixel opening 131 .
  • a second pixel spacer 134 located on the side of the first pixel spacer 132 away from the pixel opening 131 , and two adjacent quantum dot light-emitting devices share the same second pixel spacer 134 .
  • the space occupied by the second pixel spacers 134 is reduced.
  • the cross-sectional view taken along the section B-B' in FIG. 19 is the structure of the pixel defining layer in the quantum dot light-emitting device shown in FIG. 2 to FIG. 5 .
  • the second pixel spacers 134 shared by two adjacent rows of quantum dot light-emitting devices are connected to each other, and the second pixel spacers 134 shared by two adjacent columns of quantum dot light-emitting devices are also connected to each other.
  • the second electrode 15 in the display device is a surface electrode, that is, the second electrodes 15 in each quantum dot light-emitting device are connected to each other and cover the light-emitting functional layer 14 and the first pixel separator 132 of each quantum dot light-emitting device, or The light-emitting functional layer 14 , the first pixel spacer 132 and the second pixel spacer 134 of each quantum dot light-emitting device are covered.
  • the encapsulation structure 16 and the heat conduction layer 17 in the display device are also integrated, that is, the encapsulation structures 16 in each quantum dot light emitting device are connected to each other, and the heat conduction layer 17 in each quantum dot light emitting device is also connected to each other.
  • the above-mentioned display device may be any product or component with display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, and a navigator.
  • the quantum dot light-emitting device when the quantum dot light-emitting device emits light, the heat generated by the light-emitting functional layer will be conducted to the inside of the first pixel spacer, and then The heat is conducted to the external environment through the first pixel spacer, so that the first pixel spacer including the thermally conductive material can effectively dissipate the heat generated by the light-emitting functional layer, so as to avoid the temperature increase of the quantum dot light-emitting device caused by heat accumulation, thereby The lifetime and stability of the quantum dot light-emitting device are improved.
  • any reference signs placed between parentheses shall not be construed as limiting the claim.
  • the word “comprising” does not exclude the presence of elements or steps not listed in a claim.
  • the word “a” or “an” preceding an element does not exclude the presence of a plurality of such elements.
  • the present disclosure may be implemented by means of hardware comprising several different elements and by means of a suitably programmed computer. In a unit claim enumerating several means, several of these means may be embodied by one and the same item of hardware.
  • the use of the words first, second, and third, etc. do not denote any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种量子点发光器件及显示装置,涉及显示技术领域。本申请通过在基底上设置第一电极和像素界定层,像素界定层包括像素开口以及围设形成像素开口的第一像素分隔体,在像素开口内设置有发光功能层,第二电极覆盖发光功能层,且第一像素分隔体的材料包括导热材料,导热材料为绝缘材料,且导热材料的导热系数大于25W/(m·K)。通过采用包括导热材料的材料作为第一像素分隔体的材料,则量子点发光器件在发光时,发光功能层产生的热量会传导至第一像素分隔体内部,再通过第一像素分隔体将热量传导至外界环境,避免热量聚集导致量子点发光器件的温度升高,从而提高量子点发光器件的寿命和稳定性。

Description

量子点发光器件及显示装置
相关申请的交叉引用
本申请要求在2021年04月16日提交中国专利局、申请号为202110414619.7、名称为“量子点发光器件及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,特别是涉及一种量子点发光器件及显示装置。
背景技术
QD(Quantum dot,量子点)发光器件具有发光强度高、单色性好、色彩饱和度高和稳定性好等优点,因此,量子点发光器件在显示领域有良好的应用前景。
但是,量子点发光器件在发光时会产生热量,产生的热量会导致量子点发光器件的温度升高,从而影响量子点发光器件的寿命和稳定性。
发明内容
本申请一些实施例提供了如下技术方案:
第一方面,提供了一种量子点发光器件,包括:
第一电极,位于基底上;
像素界定层,位于所述基底上,所述像素界定层包括暴露出所述第一电极的像素开口以及围设形成所述像素开口的第一像素分隔体;
发光功能层,位于所述像素开口内;
第二电极,覆盖所述发光功能层;
其中,所述第一像素分隔体的材料包括导热材料,所述导热材料为绝缘材料,且所述导热材料的导热系数大于25W/(m·K)。
可选的,所述第一像素分隔体的材料包括像素分隔材料和所述导热材料,所述导热材料掺杂在所述像素分隔材料内,且所述导热材料的导热系数大于所述像素分隔材料的导热系数;或者,
所述第一像素分隔体的材料仅包括所述导热材料。
可选的,所述第一像素分隔体包括层叠设置的第一分隔部和第二分隔部,所述第二分隔部位于所述第一分隔部远离所述基底的一侧;
其中,所述第一分隔部的导热系数小于所述第二分隔部的导热系数。
可选的,所述第一分隔部和所述第二分隔部的材料均包括所述像素分隔材料和所述导热材料;
所述第一分隔部内的所述导热材料与所述第二分隔部内的所述导热材料相同,且所述第一分隔部内的所述导热材料的质量百分比,小于所述第二分隔部内的所述导热材料的质量百分比。
可选的,所述第一分隔部包括的导热材料与所述第二分隔部包括的导热材料不同,所述第一分隔部包括的导热材料的导热系数小于所述第二分隔部包括的导热材料的导热系数。
可选的,所述第一分隔部和所述第二分隔部的材料均包括所述像素分隔材料和所述导热材料;
所述第一分隔部内的导热材料的质量百分比,等于或小于所述第二分隔部内的导热材料的质量百分比。
可选的,位于所述发光功能层的第一侧面处的所述第一分隔部和所述第二分隔部,沿垂直于所述基底所在平面的横截面的形状包括矩形;所述第一侧面为所述发光功能层中与所述基底所在平面垂直的任意一个表面。
可选的,所述发光功能层包括层叠设置的第一功能层、量子点发光层和第二功能层,所述第一功能层、所述量子点发光层和所述第二功能层依次远离所述第一电极设置;
所述量子点发光层靠近所述基底一侧的表面到所述基底的距离,大于所述第二分隔部靠近所述基底一侧的表面到所述基底的距离。
可选的,所述发光功能层包括层叠设置的第一功能层、量子点发光层和第二功能层,所述第一功能层、所述量子点发光层和所述第二功能层依次远离所述第一电极设置;
在所述第一像素分隔体中,与所述第二功能层和所述量子点发光层接触的部位沿平行于所述基底所在平面的横截面的面积,大于与所述第一功能层接触的部位沿平行于所述基底所在平面的横截面的面积。
可选的,从所述基底指向所述第二电极的方向上,位于所述发光功能层的第二侧面处的所述第一像素分隔体,沿垂直于所述基底所在平面的横截面的形状包括倒梯形。
可选的,所述像素界定层还包括第二像素分隔体,所述第二像素分隔体位于所述第一像素分隔体远离所述发光功能层的一侧,且所述第二像素分隔体的导热系数小于所述第一像素分隔体的导热系数。
可选的,所述第二像素分隔体与所述第一像素分隔体之间不存在间隙,且在沿着垂直于所述基底的方向上,所述第二像素分隔体与所述第一像素分隔体的厚度相等。
可选的,所述像素界定层还包括第三像素分隔体,所述第三像素分隔体位于所述第一像素分隔体远离所述基底的一侧,所述第三像素分隔体的导热系数大于或等于所述第一像素分隔体的导热系数,且所述第三像素分隔体还延伸至所述第二像素分隔体远离所述基底的表面。
可选的,所述量子点发光器件还包括导热层,所述导热层位于所述第二电极远离所述基底的一侧。
可选的,所述量子点发光器件还包括封装结构;
所述导热层位于所述封装结构与所述第二电极之间,且所述导热层的材料为绝缘材料;或者,所述导热层位于所述封装结构远离所述第二电极的一侧。
可选的,所述导热材料包括氮化硼、氮化铝、氧化铍中的至少一者。
第二方面,提供了一种显示装置,包括多个上述的量子点发光器件,且相邻两个所述量子点发光器件共用同一第一像素分隔体。
第三方面,还提供了一种显示装置,包括多个上述的量子点发光器件,且相邻两个所述量子点发光器件共用同一第二像素分隔体。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
图1示出了本申请实施例的第一种量子点发光器件的结构示意图;
图2示出了本申请实施例的第二种量子点发光器件的结构示意图;
图3示出了本申请实施例的第三种量子点发光器件的结构示意图;
图4示出了本申请实施例的第四种量子点发光器件的结构示意图;
图5示出了本申请实施例的第五种量子点发光器件的结构示意图;
图6示出了本申请实施例的第六种量子点发光器件的结构示意图;
图7示出了本申请实施例的一种量子点发光器件的制作方法的流程图;
图8示出了在基底上形成第一电极后的结构示意图;
图9示出了在图8所示的结构上形成第一分隔薄膜和第二分隔薄膜后 的结构示意图;
图10示出了在图9所示的结构上形成图案化的第一光刻胶后的结构示意图;
图11示出了对图10所示的结构中的第一分隔薄膜和第二分隔薄膜进行刻蚀,形成第一分隔部和第二分隔部后的结构示意图;
图12示出了在图11所示的结构上形成图案化的第二光刻胶后的结构示意图;
图13示出了在图12所示的结构上形成第二像素分隔薄膜并去除第二光刻胶后,形成的第二像素分隔体的结构示意图;
图14示出了在图8所示的结构上形成图案化的第三光刻胶后的结构示意图;
图15示出了在图14所示的结构上形成第一像素分隔薄膜并去除第三光刻胶后,形成的第一像素分隔体的结构示意图;
图16示出了在图15所示的结构上形成图案化的第四光刻胶后的结构示意图;
图17示出了在图16所示的结构上形成第二像素分隔薄膜并去除第四光刻胶后,形成的第二像素分隔体的结构示意图;
图18示出了本申请实施例的一种显示装置中多个量子点发光器件对应的像素界定层的平面示意图;
图19示出了本申请实施例的另一种显示装置中多个量子点发光器件对应的像素界定层的平面示意图。
具体实施例
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
参照图1,示出了本申请实施例的第一种量子点发光器件的结构示意图。
本申请实施例公开了一种量子点发光器件,包括:第一电极12,位于基底11上;像素界定层,位于基底11上,像素界定层包括暴露出第一电极12的像素开口131以及围设形成像素开口131的第一像素分隔体132;发光功能层14,位于像素开口131内;第二电极15,覆盖发光功能层14;其中,第一像素分隔体132的材料包括导热材料133,导热材料133为绝缘材料,且导热材料133的导热系数大于25W/(m·K)。
在实际产品中,基底11实际上为驱动背板,其包括衬底和设置在衬底 上的薄膜晶体管。例如,该薄膜晶体管包括设置在衬底上的栅极、覆盖栅极和衬底的栅绝缘层、设置在栅绝缘层上的有源层、设置在栅绝缘层上且覆盖部分有源层的源极和漏极,以及覆盖栅绝缘层、有源层、源极和漏极的钝化层。
在基底11上设置有第一电极12,且第一电极12与基底11中的薄膜晶体管的漏极连接。例如,第一电极12通过贯穿钝化层的过孔与薄膜晶体管的漏极连接。
在基底11上还设置有像素界定层,像素界定层包括像素开口131和第一像素分隔体132,像素开口131暴露出设置在基底11上的第一电极12,第一像素分隔体132围设形成该像素开口131。实际上,第一像素分隔体132会覆盖部分的第一电极12,也就是说,像素开口131在基底11上的正投影是位于第一电极12在基底11上的正投影内的。
其中,第一像素分隔体132的材料包括导热材料133。具体的,第一像素分隔体132的材料包括像素分隔材料和导热材料133,导热材料133掺杂在像素分隔材料内,且导热材料133的导热系数大于像素分隔材料的导热系数;或者,第一像素分隔体132的材料仅包括导热材料133。
在一些实施例中,第一像素分隔体132的材料由两部分组成,即第一像素分隔体132的材料包括像素分隔材料和导热材料133。而常规的第一像素分隔体的材料仅包括像素分隔材料,该像素分隔材料可以为有机材料,其导热系数一般在1W/(m·K)以下,该像素分隔材料还可以为无机材料,如氧化硅,氧化硅的导热系数一般为25W/(m·K)。因此,本申请通过在将导热材料133掺杂在像素分隔材料内,且导热材料133的导热系数大于像素分隔材料的导热系数,即导热材料133的导热系数大于25W/(m·K),才可使得本申请中的第一像素分隔体132的导热系数,大于第一像素分隔体仅包括像素分隔材料时的导热系数,从而提高第一像素分隔体132的导热效果。
在另一些实施例中,第一像素分隔体132的材料仅由导热材料133组成,即第一像素分隔体132的材料仅包括导热材料133,而常规的第一像素分隔体的材料仅包括像素分隔材料,该像素分隔材料为无机材料时其导热系数一般为25W/(m·K),该像素分隔材料为有机材料时其导热系数一般在1W/(m·K)以下。因此,本申请通过采用导热系数大于25W/(m·K)的导热材料133作为第一像素分隔体132的材料,使得第一像素分隔体132的材料仅包括导热材料133时的导热系数,大于第一像素分隔体仅包括像素分隔材料 时的导热系数,才可提高第一像素分隔体132的导热效果。
因此,第一像素分隔体132中的导热材料133的导热系数大于25W/(m·K),可选的,导热材料133的导热系数还可以大于100W/(m·K),如导热材料133的导热系数为125W/(m·K)、150W/(m·K)等。
需要说明的是,导热材料133还需要为绝缘材料,以避免第一像素分隔体132对第一电极12与第二电极15之间的电势差造成影响,或者避免第一像素分隔体132将第一电极12与第二电极15导通而导致量子点发光器件短路。
此外,量子点发光器件还包括设置在像素开口131内的发光功能层14,以及覆盖发光功能层14的第二电极15,第二电极15实际上还可以覆盖第一像素分隔体132。
值的注意的是,在沿着垂直于基底11的方向上,第一像素分隔体132的厚度大于发光功能层14和第一电极12的总厚度,使得第二电极15在像素开口131处具有朝向基底11方向的凸起结构,该凸起结构与发光功能层14接触。通过将第一像素分隔体132的厚度设置成大于发光功能层14和第一电极12的总厚度,使得在形成发光功能层14中的各个膜层时,其采用的液体材料不会从像素开口131内流出。
在实际产品中,发光功能层14包括层叠设置的第一功能层、量子点发光层143和第二功能层,第一功能层、量子点发光层143和第二功能层依次远离第一电极12设置。
具体的,第一电极12为阳极,第二电极15为阴极,第一功能层包括层叠设置的空穴注入层141和空穴传输层142,空穴传输层142位于空穴注入层141远离第一电极12的一侧,第二功能层为电子传输层144;或者,第一电极12为阴极,第二电极15为阳极,第一功能层为电子传输层,第二功能层包括层叠设置的空穴注入层和空穴传输层,空穴传输层位于空穴注入层远离第二电极15的一侧。
其中,量子点发光层143的材料为量子点材料,如CdSe/ZnS量子点、钙钛矿量子点或InP量子点等,空穴注入层141的材料为PEDOT,即EDOT(3,4-乙烯二氧噻吩单体)的聚合物,空穴传输层142的材料为TFB,TFB指的是聚(9,9-二辛基芴-共聚-N-(4-丁基苯基)二苯胺),电子传输层144的材料为氧化锌纳米粒子,阳极的材料可以为ITO(Indium Tin Oxides,氧化铟锡),阴极的材料可以为铝。
若量子点发光器件中的第一像素分隔体132的材料仅包括像素分隔材料,则量子点发光器件在发光时,发光功能层14产生的热量会导致量子点发光器件的温度升高,使得空穴注入层141、空穴传输层142和电子传输层144分解以及量子点发光层143内的配体脱落,从而影响量子点发光器件的寿命和稳定性。因此,本申请实施例采用包括导热材料133的材料作为第一像素分隔体132的材料,则量子点发光器件在发光时,如图1中的箭头所示,发光功能层14产生的热量会传导至第一像素分隔体132内部,再通过第一像素分隔体132将热量传导至外界环境,避免热量聚集导致量子点发光器件的温度升高,进而避免空穴注入层141、空穴传输层142和电子传输层144的分解以及量子点发光层143内的配体脱落的问题,从而提高了量子点发光器件的寿命和稳定性。
在本申请实施例中,导热材料133包括氮化硼、氮化铝、氧化铍中的至少一者。
例如,氮化硼的导热系数可以为125W/(m·K),氮化铝的导热系数可以为150W/(m·K),氧化铍的导热系数可以为270W/(m·K),氮化硼、氮化铝和氧化铍的导热系数远大于第一像素分隔体仅包括有机材料或氧化硅时的导热系数。因此,通过采用氮化硼、氮化铝、氧化铍中的至少一者作为第一像素分隔体132中的导热材料133,能够有效将发光功能层14产生的热量传导至第一像素分隔体132内部。
需要说明的是,导热材料133不局限于上述的氮化硼、氮化铝和氧化铍,其还可以为其他高导热系数的绝缘材料,只要导热系数大于25W/(m·K)的绝缘材料均可。
一种可选的实施方式中,如图2所示,第一像素分隔体132包括层叠设置的第一分隔部1321和第二分隔部1322,第二分隔部1322位于第一分隔部1321远离基底11的一侧;其中,第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
其中,第一分隔部1321和第二分隔部1322的材料可以都包括像素分隔材料和导热材料133,导热材料133的导热系数大于像素分隔材料的导热系数。此时,第一分隔部1321的导热系数指的是:像素分隔材料的导热系数与第一权重的乘积以及导热材料133的导热系数与第二权重的乘积之和,第一权重为第一分隔部1321内的像素分隔材料的质量百分比,第二权重指的是第一分隔部1321内的导热材料133的质量百分比;相应的,第二分隔部 1322的导热系数指的是:像素分隔材料的导热系数与第三权重的乘积以及导热材料133的导热系数与第四权重的乘积之和,第三权重为第二分隔部1322内的像素分隔材料的质量百分比,第四权重指的是第二分隔部1322内的导热材料133的质量百分比。
或者,第一分隔部1321和第二分隔部1322的材料可以都仅包括导热材料133。此时,第一分隔部1321的导热系数指的是第一分隔部1321所采用的导热材料133的导热系数,第二分隔部1322的导热系数指的是第二分隔部1322所采用的导热材料133的导热系数。
当第一分隔部1321的导热系数小于第二分隔部1322的导热系数时,可使得远离基底11的第二分隔部1322的导热能力强于靠近基底11的第一分隔部1321的导热能力,此时,第一像素分隔体132除了能诱导发光功能层14产生的热量向第一像素分隔体132进行传导,还能够诱导第一分隔部1321中的热量向第二分隔部1322传导,从而避免第一分隔部1321的热量向基底11方向传导而影响薄膜晶体管的性能。
一些实施例中,第一分隔部1321和第二分隔部1322的材料均包括像素分隔材料和导热材料133;第一分隔部1321内的导热材料133与第二分隔部1322内的导热材料133相同,且第一分隔部1321内的导热材料133的质量百分比,小于第二分隔部1322内的导热材料133的质量百分比。
通过层叠设置的第一分隔部1321和第二分隔部1322形成第一像素分隔体132,第一分隔部1321内掺杂的导热材料133与第二分隔部1322内掺杂的导热材料133相同,且控制第一分隔部1321内掺杂的导热材料133的质量百分比小于第二分隔部1322内掺杂的导热材料133的质量百分比,使得远离基底11的第二分隔部1322的导热能力强于靠近基底11的第一分隔部1321的导热能力,以避免第一分隔部1321的热量向基底11方向传导而影响薄膜晶体管的性能。
例如,第一分隔部1321的材料包括氧化硅和氮化硼,且第一分隔部1321中的氮化硼与氧化硅的质量比为1:9,而第二分隔部1322的材料也包括氧化硅和氮化硼,且第二分隔部1322中的氮化硼与氧化硅的质量比为3:7,使得第一分隔部1321内的导热材料133的质量百分比小于第二分隔部1322内的导热材料133的质量百分比,此时,第一分隔部1321的导热系数为25W/(m·K)×90%+125W/(m·K)×10%=35W/(m·K),第二分隔部1322的导热系数为25W/(m·K)×70%+125W/(m·K)×30%=55W/(m·K),可以看出,第一分 隔部1321的导热系数小于第二分隔部1322的导热系数。
另一些实施例中,第一分隔部1321包括的导热材料133与第二分隔部1322包括的导热材料133不同,第一分隔部1321包括的导热材料133的导热系数小于第二分隔部1322包括的导热材料133的导热系数。
当第一分隔部1321和第二分隔部1322的材料仅包括导热材料133时,通过控制第一分隔部1321内的导热材料133的导热系数,小于第二分隔部1322内的导热材料133的导热系数,可使得第一分隔部1321的导热系数小于第二分隔部1322的导热系数。例如,第一分隔部1321的材料为氮化硼,第二分隔部1322的材料为氧化铍。
而当第一分隔部1321和第二分隔部1322的材料均包括像素分隔材料和导热材料133时,也可以控制第一分隔部1321内掺杂的导热材料133的导热系数,小于第二分隔部1322内掺杂的导热材料133的导热系数,以控制第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
并且,当第一分隔部1321和第二分隔部1322的材料均包括像素分隔材料和导热材料133时,还需要保证第一分隔部1321内的导热材料133的质量百分比,等于或小于第二分隔部1322内的导热材料133的质量百分比,以进一步控制第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
例如,第一分隔部1321的材料包括氧化硅和氮化硼,且第一分隔部1321中的氮化硼与氧化硅的质量比为1:9,而第二分隔部1322的材料包括氧化硅和氧化铍,且第二分隔部1322中的氧化铍与氧化硅的质量比为3:7,此时,第一分隔部1321的导热系数为35W/(m·K),第二分隔部1322的导热系数为25W/(m·K)×70%+270W/(m·K)×30%=98.5W/(m·K),可以看出,第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
在实际产品中,位于发光功能层14的第一侧面处的第一分隔部1321和第二分隔部1322,沿垂直于基底11所在平面的横截面的形状包括矩形;第一侧面为发光功能层14中与基底11所在平面垂直的任意一个表面。
此时,发光功能层14的形状为长方体或正方体,则发光功能层14包括与第一电极12接触的第一表面、与第二电极15接触的第二表面,以及设置在第一表面与第二表面之间且首尾连接的4个侧面,且第一表面和第二表面的面积相等,这4个侧面均垂直于基底11所在平面,将这4个侧面中的任意一个表面称为第一侧面;在发光功能层14的每个第一侧面处均设置有第 一分隔部1321和第二分隔部1322,位于发光功能层14的每个第一侧面处的第一分隔部1321和第二分隔部1322的形状均可以为长方体或正方体。
位于发光功能层14的第一侧面处的第一分隔部1321和第二分隔部1322,沿垂直于基底11所在平面的横截面的形状包括矩形。例如,当该横截面还垂直于第一侧面时,其横截面的形状为如图2所示的矩形。
并且,位于发光功能层14第一侧面处的第一分隔部1321和第二分隔部1322沿平行于基底11所在平面上的横截面的形状和面积均相同,且位于发光功能层14第一侧面处的第一分隔部1321和第二分隔部1322沿平行于基底11所在平面上的横截面的形状也为矩形。
如图2所示,发光功能层14包括层叠设置的第一功能层、量子点发光层143和第二功能层,第一功能层、量子点发光层143和第二功能层依次远离第一电极12设置;量子点发光层143靠近基底11一侧的表面到基底11的距离d1,大于第二分隔部1322靠近基底11一侧的表面到基底11的距离d2。
此时,与量子点发光层143的侧面接触的是第二分隔部1322,由于发光功能层14中主要是量子点发光层143产生热量,因此,通过将量子点发光层143靠近基底11一侧的表面到基底11的距离d1,设置成大于第二分隔部1322靠近基底11一侧的表面到基底11的距离d2,使得量子点发光层143与第二分隔部1322接触,通过第二分隔部1322诱导更多的热量从量子点发光层143导出,从而提高量子点发光器件的导热效果。
需要说明的是,根据第一电极12和第一功能层的厚度和,合理设置第一分隔部1321的厚度,使得量子点发光层143靠近基底11一侧的表面到基底11的距离d1,大于第二分隔部1322靠近基底11一侧的表面到基底11的距离d2,此时,第一分隔部1321与第二分隔部1322的厚度可以相等,也可以不相等。
另一种可选的实施方式中,如图3所示,发光功能层14包括层叠设置的第一功能层、量子点发光层143和第二功能层,第一功能层、量子点发光层143和第二功能层依次远离第一电极12设置;在第一像素分隔体132中,与第二功能层和量子点发光层143接触的部位沿平行于基底11所在平面的横截面的面积,大于与第一功能层接触的部位沿平行于基底11所在平面的横截面的面积。
通过将第一像素分隔体132中,靠近基底11的部位沿平行于基底11所 在平面的横截面的面积,设置成小于远离基底11的部位沿平行于基底11所在平面的横截面的面积,当第一像素分隔体132中远离基底11的部位的横截面的面积较大时,发光功能层14产生的大部分热量会传导至第一像素分隔体132中远离基底11的部位,从而使得发光功能层14产生的大部分热量从远离基底11的方向导出,避免发光功能层14产生的热量向基底11方向传导而影响薄膜晶体管的性能。
而在第一像素分隔体132中,与第二功能层接触的部位沿平行于基底11所在平面的横截面的面积,可以大于与量子点发光层143接触的部位沿平行于基底11所在平面的横截面的面积,也可以等于与量子点发光层143接触的部位沿平行于基底11所在平面的横截面的面积。
并且,在第一像素分隔体132中,与第一电极12接触的部位沿平行于基底11所在平面的横截面的面积,可以小于与第一功能层接触的部位沿平行于基底11所在平面的横截面的面积,也可以等于与第一功能层接触的部位沿平行于基底11所在平面的横截面的面积;而与第二电极15接触的部位沿平行于基底11所在平面的横截面的面积,可以大于与第二功能层接触的部位沿平行于基底11所在平面的横截面的面积,也可以等于与第二功能层接触的部位沿平行于基底11所在平面的横截面的面积。
如图3所示,从基底11指向第二电极15的方向上,位于发光功能层14的第二侧面处的第一像素分隔体132,沿垂直于基底11所在平面的横截面的形状包括倒梯形;第二侧面为发光功能层14中不与基底11所在平面平行的任意一个表面。
此时,从基底11指向第二电极15的方向上,发光功能层14的形状为正置的梯形体,则发光功能层14包括与第一电极12接触的第一表面、与第二电极15接触的第二表面,以及设置在第一表面与第二表面之间且首尾连接的4个侧面,且第一表面的面积大于第二表面的面积,这4个侧面均不与基底11所在平面平行,将这4个侧面中的任意一个表面称为第二侧面;在发光功能层14的每个第二侧面处均设置有第一像素分隔体132,且从基底11指向第二电极15的方向上,位于发光功能层14的每个第二侧面处的第一像素分隔体132的形状可以为倒置的梯形体。
位于发光功能层14的第二侧面处的第一像素分隔体132,沿垂直于基底11所在平面的横截面的形状包括倒梯形,该倒梯形可以是等腰梯形也可以是非等腰梯形。例如,当该横截面还垂直于第二侧面处的第一像素分隔体 132与发光功能层14的第二表面的接触边缘沿垂直于基底11方向延伸后所形成的平面时,其横截面的形状为如图3所示的倒梯形。
此时,第一像素分隔体132中的任一部位沿平行于基底11所在平面的横截面的面积,与该部位与基底11之间的间距呈正相关,即在第一像素分隔体132中,越靠近基底11的部位沿平行于基底11所在平面的横截面的面积越小,越远离基底11的部位沿平行于基底11所在平面的横截面的面积越大。也就是说,在第一像素分隔体132中,与第二电极15接触的部位沿平行于基底11所在平面的横截面的面积、与第二功能层接触的部位沿平行于基底11所在平面的横截面的面积、与量子点发光层143接触的部位沿平行于基底11所在平面的横截面的面积、与第一功能层接触的部位沿平行于基底11所在平面的横截面的面积,以及与第一电极12接触的部位沿平行于基底11所在平面的横截面的面积,是呈逐渐减小的趋势的。
在本申请实施例中,如图2至图5所示,像素界定层还包括第二像素分隔体134,第二像素分隔体134位于第一像素分隔体132远离发光功能层14的一侧,且第二像素分隔体134的导热系数小于第一像素分隔体132的导热系数。
例如,第二像素分隔体134的材料仅包括像素分隔材料,以使得第二像素分隔体134的导热系数小于第一像素分隔体132的导热系数,该第二像素分隔体134包括的像素分隔材料可以为无机材料,如氧化硅等,第二像素分隔体134包括的像素分隔材料也可以为有机材料,如树脂等。
在实际产品中,显示装置内的每个子像素对应一个量子点发光器件,在每个量子点发光器件中,在第一像素分隔体132远离发光功能层14的一侧设置第二像素分隔体134,且该第二像素分隔体134的导热系数小于第一像素分隔体132的导热系数,因此,每个子像素对应的量子点发光器件中的发光功能层14产生的热量,在传导至与其接触的第一像素分隔体132内之后,热量不易从第一像素分隔体132传导至第二像素分隔体134内,从而避免第一像素分隔体132将热量传导至相邻像素对应的量子点发光器件内,而影响相邻像素对应的量子点发光器件的寿命和稳定性。
可选的,第二像素分隔体134与第一像素分隔体132之间不存在间隙,且在沿着垂直于基底11的方向上,第二像素分隔体134与第一像素分隔体132的厚度相等。
如图2、图4和图5所示,当位于发光功能层14的第一侧面处的第一 像素分隔体132的形状为长方体或正方体时,与该第一侧面处的第一像素分隔体132接触的第二像素分隔体134的形状也为长方体或正方体。如图3所示,当位于发光功能层14的第二侧面处的第一像素分隔体132的形状为倒置的梯形体时,与该第二侧面处的第一像素分隔体132接触的第二像素分隔体134的形状为正置的梯形体;并且,第一像素分隔体132中与第二像素分隔体134接触的表面和第一像素分隔体132远离基底11的表面之间的夹角为第一夹角,第二像素分隔体134中与第一像素分隔体132接触的表面与第二像素分隔体134远离基底11的表面之间的夹角为第二夹角,第一夹角和第二夹角互补;第一像素分隔体132中与第二像素分隔体134接触的表面和第一像素分隔体132靠近基底11的表面之间的夹角为第三夹角,第二像素分隔体134中与第一像素分隔体132接触的表面与第二像素分隔体134靠近基底11的表面之间的夹角为第四夹角,第三夹角和第四夹角也互补。
通过在发光功能层14的第一侧面或第二侧面,将第二像素分隔体134的形状设置成与第一像素分隔体132的形状相匹配,可使得第二像素分隔体134与第一像素分隔体132之间不存在间隙,从而提高显示装置内的各个量子点发光器件的空间利用率,避免第二像素分隔体134与第一像素分隔体132存在间隙导致的空间浪费。
并且,在沿着垂直于基底11的方向上,第二像素分隔体134与第一像素分隔体132的厚度相等,且第二像素分隔体134与第一像素分隔体132的厚度均为50nm至500nm,如第二像素分隔体134与第一像素分隔体132的厚度可以均为100nm、300nm等。
需要说明的是,图2与图4的区别在于,图2中的第一像素分隔体132包括层叠设置的第一分隔部1321和第二分隔部1322,且第一分隔部1321的导热系数小于第二分隔部1322的导热系数,而图4中的第一像素分隔体132为一体结构,其各个部位内的导热系数一致;图3与图4的区别在于,图3中位于发光功能层14的第二侧面处的第一像素分隔体132和第二像素分隔体134的横截面的形状均为梯形,而图4中位于发光功能层14的第一侧面处的第一像素分隔体132和第二像素分隔体134的横截面的形状均为矩形。
如图5所示,像素界定层还包括第三像素分隔体135,第三像素分隔体135位于第一像素分隔体132远离基底11的一侧,第三像素分隔体135的导热系数大于或等于第一像素分隔体132的导热系数,且第三像素分隔体135还延伸至第二像素分隔体134远离基底11的表面。
通过在第一像素分隔体132远离基底11的一侧增加第三像素分隔体135,由于第三像素分隔体135的导热系数大于或等于第一像素分隔体132的导热系数,且第三像素分隔体135还延伸至第二像素分隔体134远离基底11的表面,使得第三像素分隔体135与第二电极15的接触面积增大,从而进一步提高量子点发光器件的导热效果。
其中,第三像素分隔体135的材料可以包括像素分隔材料和导热材料133,也可以仅包括导热材料133,且通过控制第三像素分隔体135内的导热材料133的材料种类,或者第三像素分隔体135内的像素分隔材料和导热材料133的质量百分比,使得第三像素分隔体135的导热系数大于或等于第一像素分隔体132的导热系数。
需要说明的是,在相邻两个量子点发光器件中,第三像素分隔体135之间存在间隙,以避免第三像素分隔体135将热量传递至相邻的量子点发光器件内。
在本申请实施例中,如图2至图6所示,量子点发光器件还包括导热层17,导热层17位于第二电极15远离基底11的一侧。
其中,导热层17的导热系数也可以大于25W/(m·K),可选的,导热层17的导热系数还可以大于或等于第一像素分隔体132的导热系数。
通过在第二电极15远离基底11的一侧设置高导热系数的导热层17,则量子点发光器件在发光时,发光功能层14产生的热量会传导至第一像素分隔体132内部,再通过第一像素分隔体132将热量传导至导热层17内,导热层17最后将热量传导至外界环境,基于导热层17进一步提高量子点发光器件的导热效果,从而进一步量子点发光器件的寿命和稳定性。
此外,量子点发光器件还包括封装结构16;导热层17位于封装结构16与第二电极15之间,且导热层17的材料为绝缘材料;或者,导热层17位于封装结构16远离第二电极15的一侧。
在一些实施例中,导热层17位于第二电极15远离基底11一侧的表面,而封装结构16位于导热层17远离第二电极15一侧的表面,此时,需要采用绝缘材料作为导热层17的材料,如导热层17的材料为氮化铝、氧化铍、氮化硼等材料。若采用导电材料作为导热层17的材料时其会对第二电极15的功函数造成影响,从而影响量子点发光器件的载流子传输,因此,采用绝缘材料作为导热层17的材料,其不会对影响量子点发光器件的载流子传输造成影响。
在另一些实施例中,封装结构16位于第二电极15远离基底11一侧的表面,而导热层17位于封装结构16远离第二电极15一侧的表面,此时,导热层17的材料可以为绝缘材料,也可以为导电材料,如导热层17的材料为石墨烯、氮化铝、氧化铍、氮化硼、金、银、铜和铝中的至少一者。
在实际产品中,该封装结构16可以为有机膜层、无机膜层或有机膜层与无机膜层的叠层结构,该封装结构16还可以为封装盖板,如盖板玻璃等。
其中,在沿着垂直于基底11的方向上,导热层17的厚度为10nm至1μm,可选的,当量子点发光器件的光线从第二电极15侧出射,且导热层17的材料为金、银、铜或铝等金属材料时,由于金属材料的光线透过率较低,因此,为了保证光线的透过率,可控制导热层17的厚度为10nm至20nm。
需要说明的是,图6与图1的区别在于,图6所示的量子点发光器件包括位于封装结构16和导热层17,而图1中不设置封装结构16和导热层17。
在本申请实施例中,通过采用包括导热材料的材料作为第一像素分隔体的材料,因此,量子点发光器件在发光时,发光功能层产生的热量会传导至第一像素分隔体内部,再通过第一像素分隔体将热量传导至外界环境,使得包括导热材料的第一像素分隔体可实现将发光功能层产生的热量进行有效导出,避免热量聚集导致量子点发光器件的温度升高,从而提高了量子点发光器件的寿命和稳定性。
参照图7,示出了本申请实施例的一种量子点发光器件的制作方法的流程图,具体可以包括如下步骤:
步骤701,在基底上形成第一电极。
在本申请实施例中,如图8所示,首先,提供一基底11,然后在基底11上采用构图工艺形成第一电极12。
步骤702,在所述基底上形成像素界定层;所述像素界定层包括暴露出所述第一电极的像素开口以及围设形成所述像素开口的第一像素分隔体,所述第一像素分隔体的材料包括导热材料,所述导热材料为绝缘材料,且所述导热材料的导热系数大于25W/(m·K)。
在本申请实施例中,在基底11上形成第一电极12之后,在基底11上形成像素界定层,像素界定层包括像素开口131和第一像素分隔体132,像素开口131暴露出设置在基底11上的第一电极12,第一像素分隔体132围设形成该像素开口131,并且第一像素分隔体132的材料包括导热材料133,导热材料133为绝缘材料,且导热材料133的导热系数大于25W/(m·K)。
在实际产品中,位于像素开口131任一侧面的第一像素分隔体132,可以为一体结构,其各个部位内的导热系数一致,且形状可以为梯形体、长方体或正方体等;位于像素开口131任一侧面的第一像素分隔体132还可以包括层叠设置的第一分隔部1321和第二分隔部1322,且第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
一种可选的实施方式中,第一像素分隔体132包括层叠设置的第一分隔部1321和第二分隔部1322,第二分隔部1322位于第一分隔部1321远离基底11的一侧,且第一分隔部1321的导热系数小于第二分隔部1322的导热系数。
下面以第一分隔部1321和第二分隔部1322的材料均包括像素分隔材料和导热材料133;第一分隔部1321内的导热材料133与第二分隔部1322内的导热材料133相同,且第一分隔部1321内的导热材料133的质量百分比,小于第二分隔部1322内的导热材料133的质量百分比为例,说明第一像素分隔体132的具体形成过程:
在实际制作过程中,如图9所示,可在形成有第一电极12的基底11上,依次形成第一分隔薄膜21和第二分隔薄膜22,第一分隔薄膜21和第二分隔薄膜22的材料包括像素分隔材料和导热材料133,且第一分隔薄膜21内导热材料133的质量百分比小于第二分隔薄膜22内导热材料133的质量百分比。
当第一分隔薄膜21和第二分隔薄膜22内的像素分隔材料为无机材料时,可采用CVD(Chemical Vapor Deposition,化学气相沉积)工艺依次沉积第一分隔薄膜21和第二分隔薄膜22。例如,无机材料为氧化硅,导热材料133为氮化硼,在沉积第一分隔薄膜21和第二分隔薄膜22时,可控制第一分隔薄膜21中的氮化硼与氧化硅的质量比为1:9,第二分隔薄膜22中的氮化硼与氧化硅的质量比为3:7。
而当第一分隔薄膜21和第二分隔薄膜22内的像素分隔材料为有机材料时,将导热材料133与有机材料按照第一比例混合后,旋涂在形成有第一电极12的基底11上,形成第一分隔薄膜21,接着将导热材料133与有机材料按照第二比例混合后旋涂在第一分隔薄膜21上,形成第二分隔薄膜22。例如,导热材料133为氮化硼,将氮化硼纳米片与有机材料按照质量比1:9混合后旋涂在形成有第一电极12的基底11上,接着将氮化硼纳米片与有机材料按照质量比3:7混合后旋涂在第一分隔薄膜21上。
如图10所示,在形成第一分隔薄膜21和第二分隔薄膜22之后,在第二分隔薄膜22上涂覆第一光刻胶31,对第一光刻胶31曝光、显影后,得到图案化的第一光刻胶31。
如图11所示,对第一光刻胶31去除区域处的第一分隔薄膜21和第二分隔薄膜22进行干法刻蚀,即对不需要形成第一像素分隔体132的区域处的第一分隔薄膜21和第二分隔薄膜22进行刻蚀,刻蚀完成后将残留的第一光刻胶31剥离,以得到第一分隔部1321和第二分隔部1322。
另一种可选的实施方式中,发光功能层14包括层叠设置的第一功能层、量子点发光层143和第二功能层,第一功能层、量子点发光层143和第二功能层依次远离第一电极12设置;在第一像素分隔体132中,与第二功能层和量子点发光层143接触的部位沿平行于基底11所在平面的横截面的面积,大于与第一功能层接触的部位沿平行于基底11所在平面的横截面的面积。
在实际制作过程中,如图14所示,可在形成有第一电极12的基底11上旋涂第三光刻胶33,对第三光刻胶33曝光、显影后,得到图案化的第三光刻胶33,且图案化的第三光刻胶33为正置的梯形体。
如图15所示,然后在形成有图案化的第三光刻胶33和第一电极12的基底11上,形成覆盖第三光刻胶33和基底11的第一像素分隔薄膜,接着去除第三光刻胶33,以将第三光刻胶33上的第一像素分隔薄膜也去除掉,从而形成第一像素分隔体132。
当第一像素分隔体132包括像素分隔材料和导热材料133,且像素分隔材料为无机材料时,可采用CVD工艺沉积第一像素分隔薄膜。例如,无机材料为氧化硅,导热材料133为氮化硼,在沉积第一像素分隔薄膜时,可控制第一像素分隔薄膜中的氮化硼与氧化硅的质量比为3:7。
而当第一像素分隔体132包括像素分隔材料和导热材料133,且像素分隔材料为有机材料时,将导热材料133与有机材料按照比例混合后,旋涂在形成有图案化的第三光刻胶33和第一电极12的基底11上,形成第一像素分隔薄膜。例如,导热材料133为氮化硼,将氮化硼纳米片与有机材料按照质量比3:7混合后进行涂覆。
具体的,步骤702包括:在所述基底上形成第一像素分隔体;在所述第一像素分隔体远离所述发光功能层的一侧形成第二像素分隔体;所述第二像素分隔体的导热系数小于所述第一像素分隔体的导热系数。
在实际产品中,像素界定层除了包括像素开口131和第一像素分隔体 132之外,还可以包括位于第一像素分隔体132远离像素开口131一侧的第二像素分隔体134,因此,在基底11上形成第一像素分隔体132之后,还需要在第一像素分隔体132远离像素开口131的一侧形成第二像素分隔体134,且第二像素分隔体134仅包括像素分隔材料,即第二像素分隔体134内未掺杂导热材料133,以使得第二像素分隔体134的导热系数小于第一像素分隔体132的导热系数。
针对图11所示的第一像素分隔体132,在形成第一分隔部1321和第二分隔部1322之后,如图12所示,在基底11、第二分隔部1322和第一电极12上旋涂第二光刻胶32,对第二光刻胶32曝光、显影后,得到图案化的第二光刻胶32。此时,图案化的第二光刻胶32仅位于第二分隔部1322和第一电极12上。
如图13所示,在形成有图案化的第二光刻胶32的基底11上,形成覆盖基底11和第二光刻胶32的第二像素分隔薄膜,接着去除第二光刻胶32,以将第二光刻胶32上的第二像素分隔薄膜也去除掉,从而形成第二像素分隔体134。
而针对图15所示的第一像素分隔体132,在形成第一像素分隔体132之后,如图16所示,在基底11、第一像素分隔体132和第一电极12上旋涂第四光刻胶34,对第四光刻胶34曝光、显影后,得到图案化的第四光刻胶34。此时,图案化的第四光刻胶34仅位于第一像素分隔体132和第一电极12上。
如图17所示,在形成有图案化的第四光刻胶34的基底11上,形成覆盖基底11和第四光刻胶34的第二像素分隔薄膜,接着去除第四光刻胶34,以将第四光刻胶34上的第二像素分隔薄膜也去除掉,从而形成第二像素分隔体134。
其中,第二像素分隔薄膜包括的像素分隔材料可以为无机材料,其可采用CVD工艺形成;第二像素分隔薄膜包括的像素分隔材料也可以为有机材料,其可以采用旋涂工艺形成。
步骤703,在所述像素开口内形成发光功能层。
在本申请实施例中,在基底11上形成像素界定层之后,在像素开口131内形成发光功能层14。其中,发光功能层14包括层叠设置的第一功能层、量子点发光层143和第二功能层,第一功能层、量子点发光层143和第二功能层依次远离第一电极12设置。
下面以第一功能层包括层叠设置的空穴注入层141和空穴传输层142,第二功能层为电子传输层144为例,说明发光功能层14的具体形成过程。
首先,在像素开口131内的第一电极12上形成空穴注入层141。空穴注入层141的材料为PEDOT溶液,具体的可采用第一旋涂工艺在像素开口131内的第一电极12上旋涂PEDOT溶液,并进行第一退火处理,以形成空穴注入层141。其中,第一旋涂工艺的旋涂转速为4000rpm,第一旋涂工艺的旋涂时间为30s,第一退火处理的退火温度为200℃,第一退火处理的退火时间为5分钟。
然后,在空穴注入层141上形成空穴传输层142。空穴传输层142的材料为TFB,将TFB分散于氯苯溶剂(10mg/ml)中,形成空穴传输层142的前驱体溶液,采用第二旋涂工艺在空穴注入层141上旋涂空穴传输层142的前驱体溶液,并进行第二退火处理,以去除空穴传输层142的前驱体溶液中的氯苯溶剂,形成空穴传输层142。其中,第二旋涂工艺的旋涂转速为3000rpm,第二旋涂工艺的旋涂时间为30s,第二退火处理的退火温度为180℃,第二退火处理的退火时间为15分钟。
接着,在空穴传输层142上形成量子点发光层143。量子点发光层143的材料为CdSe/ZnS量子点,将CdSe/ZnS量子点分散于辛烷溶剂(15mg/ml)中,形成量子点发光层143的前驱体溶液,采用第三旋涂工艺在空穴传输层142上旋涂量子点发光层143的前驱体溶液,并进行第三退火处理,以去除量子点发光层143的前驱体溶液中的辛烷溶剂,形成量子点发光层143。其中,第三旋涂工艺的旋涂转速为2500rpm,第三旋涂工艺的旋涂时间为30s,第三退火处理的退火温度为120℃,第三退火处理的退火时间为20分钟。
最后,在量子点发光层143上形成电子传输层144。电子传输层144的材料为氧化锌纳米粒子,将氧化锌纳米粒子分散于乙醇溶剂(30mg/ml)中,形成电子传输层144的前驱体溶液,采用第四旋涂工艺在量子点发光层143上旋涂电子传输层144的前驱体溶液,并进行第四退火处理,以去除电子传输层144的前驱体溶液中的乙醇溶剂,形成电子传输层144。其中,第四旋涂工艺的旋涂转速为2500rpm,第四旋涂工艺的旋涂时间为30s,第四退火处理的退火温度为120℃,第四退火处理的退火时间为20分钟。
步骤704,形成覆盖所述发光功能层的第二电极。
在本申请实施例中,在像素开口131内形成发光功能层14之后,采用真空蒸镀工艺形成覆盖发光功能层14的第二电极15,该第二电极15还可 以覆盖第一像素分隔体132,或者覆盖第一像素分隔体132和第二像素分隔体134。
可选的,在步骤704之后,还包括:在所述第二电极远离所述基底的一侧形成封装结构;在所述封装结构远离所述第二电极的一侧形成导热层。
在本申请实施例中,在形成覆盖发光功能层14的第二电极15之后,在第二电极15远离基底11的一侧形成封装结构16。
其中,该封装结构16可以为无机膜层、有机膜层或者有机膜层与无机膜层的叠层结构,无机膜层可采用CVD工艺形成,有机膜层可采用涂覆工艺形成;该封装结构16还可以为封装盖板,可采用贴合工艺在第二电极15远离基底11的一侧形成封装结构16。
在第二电极15远离基底11的一侧形成封装结构16之后,还可以采用溅射工艺在封装结构16远离第二电极15的一侧形成导热层17,以进一步提高量子点发光器件的导热效果。
需要说明的是,在图13所示的结构上形成发光功能层14、第二电极15、封装结构16和导热层17后,可得到如图2所示的量子点发光器件,在图17所示的结构上形成发光功能层14、第二电极15、封装结构16和导热层17后,可得到如图3所示的量子点发光器件。
在本申请实施例中,通过采用包括导热材料的材料作为第一像素分隔体的材料,因此,量子点发光器件在发光时,发光功能层产生的热量会传导至第一像素分隔体内部,再通过第一像素分隔体将热量传导至外界环境,使得包括导热材料的第一像素分隔体可实现将发光功能层产生的热量进行有效导出,避免热量聚集导致量子点发光器件的温度升高,从而提高了量子点发光器件的寿命和稳定性。
本申请实施例还提供了一种显示装置,包括如图1或图6所示的多个上述的量子点发光器件,多个量子点发光器件呈阵列分布,且相邻两个量子点发光器件共用同一第一像素分隔体132。
如图18所示,10表示一个量子点发光器件中的像素界定层的结构,每个量子点发光器件中的像素界定层包括像素开口131以及围设形成像素开口131的第一像素分隔体132,此时,像素界定层不包括第二像素分隔体134,相邻两个量子点发光器件共用同一第一像素分隔体132。
需要说明的是,沿图18中的截面A-A’得到的剖视图,为图1或图6所示的量子点发光器件中的像素界定层的结构。在实际产品中,相邻两行量子 点发光器件所共用的第一像素分隔体132是相互连接的,相邻两列量子点发光器件所共用的第一像素分隔体132也是相互连接的。
本申请实施例另外提供了一种显示装置,包括如图2至图5所示的多个上述的量子点发光器件,多个量子点发光器件呈阵列分布,且相邻两个量子点发光器件共用同一第二像素分隔体134。
如图19所示,10表示一个量子点发光器件中的像素界定层的结构,每个量子点发光器件中的像素界定层包括像素开口131、围设形成像素开口131的第一像素分隔体132,以及位于第一像素分隔体132远离像素开口131一侧的第二像素分隔体134,且相邻两个量子点发光器件共用同一第二像素分隔体134。
通过在相邻两个量子点发光器件中的第一像素分隔体132之间仅设置一个第二像素分隔体134,从而减小第二像素分隔体134的占用空间。
需要说明的是,沿图19中的截面B-B’得到的剖视图,为图2至图5所示的量子点发光器件中的像素界定层的结构。在实际产品中,相邻两行量子点发光器件所共用的第二像素分隔体134是相互连接的,相邻两列量子点发光器件所共用的第二像素分隔体134也是相互连接的。
此外,显示装置中的第二电极15为面电极,即各个量子点发光器件中的第二电极15相互连接,且覆盖各个量子点发光器件的发光功能层14和第一像素分隔体132,或者覆盖各个量子点发光器件的发光功能层14、第一像素分隔体132和第二像素分隔体134。
并且,显示装置中的封装结构16和导热层17也是呈一体结构的,即各个量子点发光器件中的封装结构16相互连接,各个量子点发光器件中的导热层17也相互连接。
在具体实施时,本申请实施例提供的上述显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在本申请实施例中,通过采用包括导热材料的材料作为第一像素分隔体的材料,因此,量子点发光器件在发光时,发光功能层产生的热量会传导至第一像素分隔体内部,再通过第一像素分隔体将热量传导至外界环境,使得包括导热材料的第一像素分隔体可实现将发光功能层产生的热量进行有效导出,避免热量聚集导致量子点发光器件的温度升高,从而提高了量子点发光器件的寿命和稳定性。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本公开的至少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本公开可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种量子点发光器件,其中,包括:
    第一电极,位于基底上;
    像素界定层,位于所述基底上,所述像素界定层包括暴露出所述第一电极的像素开口以及围设形成所述像素开口的第一像素分隔体;
    发光功能层,位于所述像素开口内;
    第二电极,覆盖所述发光功能层;
    其中,所述第一像素分隔体的材料包括导热材料,所述导热材料为绝缘材料,且所述导热材料的导热系数大于25W/(m·K)。
  2. 根据权利要求1所述的量子点发光器件,其中,所述第一像素分隔体的材料包括像素分隔材料和所述导热材料,所述导热材料掺杂在所述像素分隔材料内,且所述导热材料的导热系数大于所述像素分隔材料的导热系数;或者,
    所述第一像素分隔体的材料仅包括所述导热材料。
  3. 根据权利要求2所述的量子点发光器件,其中,所述第一像素分隔体包括层叠设置的第一分隔部和第二分隔部,所述第二分隔部位于所述第一分隔部远离所述基底的一侧;
    其中,所述第一分隔部的导热系数小于所述第二分隔部的导热系数。
  4. 根据权利要求3所述的量子点发光器件,其中,所述第一分隔部和所述第二分隔部的材料均包括所述像素分隔材料和所述导热材料;
    所述第一分隔部内的所述导热材料与所述第二分隔部内的所述导热材料相同,且所述第一分隔部内的所述导热材料的质量百分比,小于所述第二分隔部内的所述导热材料的质量百分比。
  5. 根据权利要求3所述的量子点发光器件,其中,所述第一分隔部包括的导热材料与所述第二分隔部包括的导热材料不同,所述第一分隔部包括的导热材料的导热系数小于所述第二分隔部包括的导热材料的导热系数。
  6. 根据权利要求5所述的量子点发光器件,其中,所述第一分隔部和所述第二分隔部的材料均包括所述像素分隔材料和所述导热材料;
    所述第一分隔部内的导热材料的质量百分比,等于或小于所述第二分隔部内的导热材料的质量百分比。
  7. 根据权利要求3所述的量子点发光器件,其中,位于所述发光功能层的第一侧面处的所述第一分隔部和所述第二分隔部,沿垂直于所述基底 所在平面的横截面的形状包括矩形;所述第一侧面为所述发光功能层中与所述基底所在平面垂直的任意一个表面。
  8. 根据权利要求3所述的量子点发光器件,其中,所述发光功能层包括层叠设置的第一功能层、量子点发光层和第二功能层,所述第一功能层、所述量子点发光层和所述第二功能层依次远离所述第一电极设置;
    所述量子点发光层靠近所述基底一侧的表面到所述基底的距离,大于所述第二分隔部靠近所述基底一侧的表面到所述基底的距离。
  9. 根据权利要求2所述的量子点发光器件,其中,所述发光功能层包括层叠设置的第一功能层、量子点发光层和第二功能层,所述第一功能层、所述量子点发光层和所述第二功能层依次远离所述第一电极设置;
    在所述第一像素分隔体中,与所述第二功能层和所述量子点发光层接触的部位沿平行于所述基底所在平面的横截面的面积,大于与所述第一功能层接触的部位沿平行于所述基底所在平面的横截面的面积。
  10. 根据权利要求9所述的量子点发光器件,其中,从所述基底指向所述第二电极的方向上,位于所述发光功能层的第二侧面处的所述第一像素分隔体,沿垂直于所述基底所在平面的横截面的形状包括倒梯形。
  11. 根据权利要求1至10中任一项所述的量子点发光器件,其中,所述像素界定层还包括第二像素分隔体,所述第二像素分隔体位于所述第一像素分隔体远离所述发光功能层的一侧,且所述第二像素分隔体的导热系数小于所述第一像素分隔体的导热系数。
  12. 根据权利要求11所述的量子点发光器件,其中,所述第二像素分隔体与所述第一像素分隔体之间不存在间隙,且在沿着垂直于所述基底的方向上,所述第二像素分隔体与所述第一像素分隔体的厚度相等。
  13. 根据权利要求11所述的量子点发光器件,其中,所述像素界定层还包括第三像素分隔体,所述第三像素分隔体位于所述第一像素分隔体远离所述基底的一侧,所述第三像素分隔体的导热系数大于或等于所述第一像素分隔体的导热系数,且所述第三像素分隔体还延伸至所述第二像素分隔体远离所述基底的表面。
  14. 根据权利要求1至10中任一项所述的量子点发光器件,其中,所述量子点发光器件还包括导热层,所述导热层位于所述第二电极远离所述基底的一侧。
  15. 根据权利要求14所述的量子点发光器件,其中,所述量子点发光 器件还包括封装结构;
    所述导热层位于所述封装结构与所述第二电极之间,且所述导热层的材料为绝缘材料;或者,所述导热层位于所述封装结构远离所述第二电极的一侧。
  16. 根据权利要求1所述的量子点发光器件,其中,所述导热材料包括氮化硼、氮化铝、氧化铍中的至少一者。
  17. 一种显示装置,其中,包括多个如权利要求1至10以及权利要求14至16中任一项所述的量子点发光器件,且相邻两个所述量子点发光器件共用同一第一像素分隔体。
  18. 一种显示装置,其中,包括多个如权利要求11至13中任一项所述的量子点发光器件,且相邻两个所述量子点发光器件共用同一第二像素分隔体。
PCT/CN2021/126049 2021-04-16 2021-10-25 量子点发光器件及显示装置 WO2022217883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110414619.7 2021-04-16
CN202110414619.7A CN115224213A (zh) 2021-04-16 2021-04-16 量子点发光器件及显示装置

Publications (1)

Publication Number Publication Date
WO2022217883A1 true WO2022217883A1 (zh) 2022-10-20

Family

ID=83605200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126049 WO2022217883A1 (zh) 2021-04-16 2021-10-25 量子点发光器件及显示装置

Country Status (2)

Country Link
CN (1) CN115224213A (zh)
WO (1) WO2022217883A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244847A (ja) * 2005-03-03 2006-09-14 Seiko Epson Corp 発光装置、及びこれを備えた電子機器
CN105609536A (zh) * 2016-02-15 2016-05-25 京东方科技集团股份有限公司 一种阵列基板、oled显示面板及显示装置
CN106876566A (zh) * 2017-03-06 2017-06-20 Tcl集团股份有限公司 Qled器件及其制备方法
CN108878668A (zh) * 2018-07-04 2018-11-23 京东方科技集团股份有限公司 背板及其制作方法、显示装置以及照明装置
CN109378324A (zh) * 2018-09-03 2019-02-22 纳晶科技股份有限公司 用于发光装置的背板、发光装置及其封装方法
CN110690362A (zh) * 2019-10-15 2020-01-14 昆山国显光电有限公司 显示面板和显示装置
CN110993827A (zh) * 2019-12-23 2020-04-10 武汉华星光电半导体显示技术有限公司 Oled显示面板和显示装置
CN111725428A (zh) * 2020-06-30 2020-09-29 上海天马微电子有限公司 一种显示面板及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006244847A (ja) * 2005-03-03 2006-09-14 Seiko Epson Corp 発光装置、及びこれを備えた電子機器
CN105609536A (zh) * 2016-02-15 2016-05-25 京东方科技集团股份有限公司 一种阵列基板、oled显示面板及显示装置
CN106876566A (zh) * 2017-03-06 2017-06-20 Tcl集团股份有限公司 Qled器件及其制备方法
CN108878668A (zh) * 2018-07-04 2018-11-23 京东方科技集团股份有限公司 背板及其制作方法、显示装置以及照明装置
CN109378324A (zh) * 2018-09-03 2019-02-22 纳晶科技股份有限公司 用于发光装置的背板、发光装置及其封装方法
CN110690362A (zh) * 2019-10-15 2020-01-14 昆山国显光电有限公司 显示面板和显示装置
CN110993827A (zh) * 2019-12-23 2020-04-10 武汉华星光电半导体显示技术有限公司 Oled显示面板和显示装置
CN111725428A (zh) * 2020-06-30 2020-09-29 上海天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
CN115224213A (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2020238467A1 (zh) 显示基板及其制备方法、显示装置
US20230040100A1 (en) Display substrate, preparation method therefor, and display apparatus
US10978527B2 (en) Display substrate and method of fabricating the same, and display device
CN109801954B (zh) 阵列基板及其制造方法、显示面板及显示装置
WO2019179395A1 (zh) 显示基板及其制造方法
EP2744008A1 (en) Array substrate, method for fabricating the same, and OLED display device
WO2019184360A1 (zh) 阵列基板及其制备方法、显示装置
WO2020244432A1 (zh) 显示基板的制备方法、显示基板及显示装置
TW200423805A (en) A pixel having an organic emitting diode and method of fabricating the pixel
TW202002353A (zh) 顯示面板
WO2021213510A1 (zh) 显示面板、显示装置以及显示面板的制造方法
WO2020239071A1 (zh) 显示基板及其制作方法、显示面板和显示装置
US20210257589A1 (en) Display substrate and manufacturing method thereof, and display device
WO2021184235A1 (zh) 一种阵列基板及其制备方法和显示面板
CN108899346B (zh) 一种显示面板和显示装置
WO2024021466A1 (zh) 阵列基板及其制备方法、显示装置
WO2022077771A1 (zh) 显示面板及其制作方法
JP2018536961A (ja) 有機エレクトロルミネッセンス素子及びその作製方法、表示装置
US20200235337A1 (en) Display panel, display device and method of manufacturing display panel
WO2019114347A1 (zh) 阵列基板及其制备方法
WO2022217883A1 (zh) 量子点发光器件及显示装置
WO2021237734A1 (zh) 显示面板及其制作方法、显示装置
US20230172009A1 (en) Organic light-emitting diode display device and manufacturing method thereof
WO2023231739A1 (zh) 有机发光晶体管及其制造方法、发光基板及显示装置
CN215070044U (zh) 量子点发光器件及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936750

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/03/2024)