WO2022217859A1 - 一种双吲哚生物碱化合物及其合成方法和用途 - Google Patents

一种双吲哚生物碱化合物及其合成方法和用途 Download PDF

Info

Publication number
WO2022217859A1
WO2022217859A1 PCT/CN2021/121941 CN2021121941W WO2022217859A1 WO 2022217859 A1 WO2022217859 A1 WO 2022217859A1 CN 2021121941 W CN2021121941 W CN 2021121941W WO 2022217859 A1 WO2022217859 A1 WO 2022217859A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
reaction
undergoes
hydrogen
independently selected
Prior art date
Application number
PCT/CN2021/121941
Other languages
English (en)
French (fr)
Inventor
张晓琦
叶文才
张冬梅
李勇
敖运林
Original Assignee
暨南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 暨南大学 filed Critical 暨南大学
Publication of WO2022217859A1 publication Critical patent/WO2022217859A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the field of medicinal chemistry, and in particular relates to a bisindole alkaloid compound, a synthesis method thereof, and an application in the preparation of medicines for treating pulmonary hypertension and anti-addiction.
  • Pulmonary hypertension is a common malignant and progressive pulmonary vascular disease caused by various reasons leading to increased pulmonary arterial pressure. Endothelial cell dysfunction is manifested as a decrease in vasodilator substances such as nitric oxide and prostacyclin, and an increase in the level of vasoconstrictor substances such as endothelin, which leads to excessive constriction of pulmonary arteries. Vascular remodeling is manifested as intimal neogenesis, medial thickening and adventitial fibrosis, etc. The activation and excessive proliferation of endothelial cells and smooth muscle cells are the main reasons for vascular remodeling. Therefore, dilating pulmonary arterioles and inhibiting pulmonary arteriolar vascular remodeling are ideal options for the treatment of pulmonary arterial hypertension, and provide a target for the development of therapeutic drugs for pulmonary arterial hypertension.
  • the clinical targeted drugs for the treatment of pulmonary hypertension mainly include endothelin receptor antagonists, 5-phosphodiesterase inhibitors, guanylate cyclase agonists and prostacyclins.
  • Diastolic pulmonary arterioles can improve hemodynamics in patients with pulmonary hypertension, but they all have adverse reactions of varying degrees, including systemic hypotension, teratogenic effects, peripheral edema, anemia, and adverse reactions in the digestive tract, and are expensive.
  • patients who use the above-mentioned targeted therapy drugs can only improve their symptoms in the short term, and the long-term prognosis of patients is not ideal. Therefore, there is an urgent need to develop novel targeted drugs for the treatment of pulmonary arterial hypertension for the relief and treatment of pulmonary arterial hypertension.
  • Drug (drug) addiction includes physical dependence and psychological dependence. Once formed, it often accompanies lifelong, manifested as compulsive drug use behavior, strong drug craving and relapse. Drug addiction is a global public nuisance and a worldwide medical problem. In clinical practice, drug replacement therapy with addictive properties is mainly used for detoxification. Opioids such as methadone and naltrexone cannot eliminate both physical and psychological dependence at the same time. , and improper use will lead to new dependence; non-opioids can only play an adjuvant role in clinical treatment and have many side effects; therefore, it is urgent to find and develop new anti-addiction drugs with high efficiency and low toxicity.
  • the present invention provides a bisindole alkaloid compound with the properties of treating pulmonary hypertension and anti-addiction, its synthesis method and its pharmaceutical application.
  • R 1 is independently selected from C 1 -C 4 alkoxy or hydrogen
  • R 1 is alkoxy, n is 1 or 2;
  • R 2 is independently selected from C 1 -C 4 alkyl or hydrogen
  • R 3 is independently selected from C 1 -C 4 alkoxycarbonyl or hydrogen
  • R 4 is hydrogen
  • R 5 is independently selected from C 1 -C 4 alkyl or C 1 -C 4 hydroxyalkyl
  • R 6 is independently selected from carbonyl, hydroxyl or hydrogen
  • Described alkoxy is preferably methoxy or ethoxy
  • Described alkyl is preferably methyl, ethyl or methylmethine
  • alkoxycarbonyl is preferably methoxycarbonyl or ethoxycarbonyl
  • the hydroxyalkyl group is preferably methylhydroxymethyl.
  • the bisindole alkaloid compounds of the present invention include the following specific compounds:
  • Substituted indole compound A4 generates compound A5 through Friedel-Crafts reaction, compound A5 undergoes substitution reaction to obtain compound A6, compound A6 undergoes further iodination reaction to generate compound A7, compound A7 undergoes reduction reaction to obtain compound A8, and compound A8 further undergoes iodine reaction Substitution reaction generates compound A9; compound A9 reacts with compound A3 to obtain compound A;
  • the bisindole alkaloid compound of the present invention can be used for preparing medicines for treating pulmonary hypertension and anti-addiction medicines;
  • Described medicine comprises the bisindole alkaloid compound of the present invention, and/or its pharmaceutically acceptable salt, and/or its stereoisomer, and/or its prodrug molecule;
  • Prodrug means a prodrug that converts in vivo to the structure of the compounds and pharmaceutically acceptable salts thereof.
  • the medicament contains one or more pharmaceutically acceptable carriers and/or diluents.
  • the present invention has the following advantages and effects:
  • the results of the activity study of the present invention show that the bisindole alkaloid compounds of the present invention can selectively relax the pulmonary artery, inhibit the proliferation of pulmonary artery endothelial cells and vascular smooth muscle cells, reduce the right ventricular diastolic pressure and inhibit the right ventricular diastolic pressure in mice with pulmonary arterial hypertension. hypertrophy.
  • the series of bisindole alkaloid compounds have different chemical structure types from the existing targeted drugs for the treatment of pulmonary arterial hypertension, and are expected to be developed into a new class of targeted drugs for the treatment of pulmonary arterial hypertension.
  • the experimental results of the present invention show that the bisindole alkaloid compounds of the present invention can resist drug addiction in a dose-dependent manner, and have a different chemical structure type from the existing anti-addiction drugs, and are expected to develop into a new type of drug addiction. of anti-addictive drugs.
  • Figure 1 shows the relaxation effect of compound 1 on phenylephrine-induced contraction of the aorta and pulmonary artery in mice; A- the relaxation effect on the aortic contraction; B- the relaxation effect on the pulmonary artery contraction.
  • Figure 2 is the recording of the swimming track of zebrafish before and after compound 2 intervention.
  • Figure 3 shows the difference in activity time and total distance of movement of zebrafish in the non-preferred box before and after compound 2 intervention; where a is the difference in activity time, and b is the difference in total movement distance.
  • the structure of the compound is determined by nuclear magnetic resonance (NMR) or/and mass spectrometry (MS). NMR shifts ([delta]) are given in units of 10<" 6 > (ppm). NMR was measured by Bruker AVANCE-300, Bruker AVANCE-400, Bruker AVANCE-500 or Bruker AVANCE-600 nuclear magnetic instrument, and the solvent was deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated chloroform (CDCl 3 ). ), deuterated methanol (CD 3 OD), and the internal standard was tetramethylsilane (TMS).
  • NMR nuclear magnetic resonance
  • MS mass spectrometry
  • the MS was measured using an Agilent 6210 ESI/TOF mass spectrometer (manufacturer: Agilent, model: 6210 ESI/TOF).
  • the known starting materials of the present invention can be synthesized by using or according to methods known in the art, or can be purchased from Aladdin, Sarn, McLean, Tichai, Merrill, Leyan, Bailingwei, Anaiji, Darui Chemicals and other companies.
  • Argon atmosphere means that the reaction flask is connected to an argon balloon with a volume of about 1 L.
  • the solution refers to an aqueous solution.
  • reaction temperature is room temperature, which is 20°C to 30°C.
  • the monitoring of the reaction progress in the embodiment adopts thin layer chromatography (TLC), the developing solvent used in the reaction, the eluent system of the column chromatography used for separating and purifying the compound and the developing solvent system of the thin layer chromatography method include: A : dichloromethane/methanol system, B: n-hexane/ethyl acetate system, C: petroleum ether/ethyl acetate system, D: acetone, E: dichloromethane/acetone system, F: ethyl acetate/dichloromethane System, G: ethyl acetate/dichloromethane/n-hexane, H: ethyl acetate/dichloromethane/acetone, the volume ratio of the solvent is adjusted according to the polarity of the compound, and a small amount of triethylamine and Adjust with alkaline or acidic reagents such as acetic acid.
  • TLC thin layer chromatography
  • 6-methoxyindole 1a was dissolved in anhydrous ether. After dropping to 0°C, oxalyl chloride was added dropwise. After 3 hours of reaction, it was warmed to room temperature and reacted for 1 hour, and a red solid was produced. Filter with suction and wash with anhydrous ether solution. The filter cake is the crude product of compound 1b (the yield is 92%), which can be directly used in the next reaction without purification.
  • compound 1h was dissolved in nitrogen-nitrogen dimethylformamide, and under argon protection, sodium formate, triphenylphosphine and palladium acetate were added, and the temperature was raised to 55°C for 6 hours. Water and dichloromethane were added, and the reaction solution was extracted three times with dichloromethane. The organic phases were combined and washed with saturated sodium chloride solution. After drying and filtration over anhydrous sodium sulfate, the organic phase was evaporated to dryness under reduced pressure. The obtained crude product was separated and purified by silica gel column chromatography to obtain compound 1i (yield 68%).
  • compound 1r was dissolved in anhydrous tetrahydrofuran, lithium diacetamide and diethylamine were added, and after reacting for 1 hour, saturated sodium chloride solution was added to dilute, and the mixture was extracted with ethyl acetate three times. The organic phases were combined and washed with saturated sodium chloride solution. After drying and filtration over anhydrous sodium sulfate, the organic phase was evaporated to dryness under reduced pressure. The obtained crude product was separated and purified by silica gel column chromatography to obtain compound Is (the yield was 64%).
  • compound 2c was dissolved in nitrogen-nitrogen dimethylformamide, sodium formate, triphenylphosphine and palladium acetate were added under argon protection, and the temperature was raised to 55°C for 6 hours. Water and dichloromethane were added, and the reaction solution was extracted three times with dichloromethane. The organic phases were combined and washed with saturated sodium chloride solution. After drying and filtration over anhydrous sodium sulfate, the organic phase was evaporated to dryness under reduced pressure. The obtained crude product was separated and purified by silica gel column chromatography to obtain compound 2d (yield 65%).
  • compound 2f was dissolved in anhydrous tetrahydrofuran, lithium diacetamide and diethylamine were added, and after 1 hour of reaction, saturated sodium chloride solution was added to dilute, and the mixture was extracted with ethyl acetate three times. The organic phases were combined and washed with saturated sodium chloride solution. After drying and filtration over anhydrous sodium sulfate, the organic phase was evaporated to dryness under reduced pressure. The obtained crude product was separated and purified by silica gel column chromatography to obtain compound 2g (yield 60%).
  • compound 2g was dissolved in tetrahydrofuran/water (2:1), cyanogen bromide and magnesium oxide were added, the temperature was raised to 110°C, the reaction was performed overnight, diluted with saturated sodium chloride solution, and extracted three times with ethyl acetate. The organic phases were combined and washed with saturated sodium chloride solution. After drying and filtration over anhydrous sodium sulfate, the organic phase was evaporated to dryness under reduced pressure. The obtained crude product was separated and purified by silica gel column chromatography to obtain compound 2h (the yield was 50%).
  • mice Take normal C57/BL6 mice, anesthetize with sodium pentobarbital, take lung tissue or aorta, put them in Krebs solution saturated with oxygen at 4°C, quickly separate the pulmonary artery or aorta, and cut them into 1.8-2mm blood vessels ring.
  • the vascular ring was fixed on a multi-channel vascular tension tester with a wire with a diameter of 40 ⁇ m, and the initial tension was set to 1 mN (pulmonary artery) or 3 mN (aorta), and equilibrated for 60 minutes. During the equilibration period, the blood vessels were contracted with Krebs solution containing 60 mM potassium ions.
  • hPAECs and hPASMCs were inoculated into 100mm culture dishes, and when the cells were confluent to 80%, trypsinized and resuspended. The cell density was adjusted and 6000 hPAECs or hPASMCs were inoculated in a 96-well plate respectively. After the cells adhered, different concentrations of compounds 1-20 were added and cultured for 24 hours. Add 10 ⁇ L of MTT (5 mg/mL) solution to each well and incubate for 4 hours. The culture medium was discarded, DMSO was added, and the absorbance value was detected at 570 nm.
  • mice 40 C57/BL6 mice were randomly divided into 10 normoxia group and 30 hypoxia+SU5416 mice.
  • the mice in the hypoxia group were placed in a normal pressure hypoxia box (oxygen concentration of 10%, v/v), and continued hypoxia every day for 28 days.
  • SU5416 20mg/kg. Mice in normoxia group were kept in an environment of normoxia and normal pressure.
  • hypoxia + SU5416 hypoxia + SU5416 + compound 1 low dose (10 mg/kg) and hypoxia + SU5416 + compound 1 high dose (50 mg/kg) /kg) group, reared in normoxia and normal pressure, intragastric administration for 14 days, 1 day/time.
  • the right ventricular systolic blood pressure of the mice was detected by right heart catheterization.
  • Right ventricular hypertrophy index (%) RV/(LV + S ) ⁇ 100.
  • Compound 1 can effectively reduce right ventricular systolic blood pressure and inhibit right ventricular hypertrophy in mice with pulmonary hypertension induced by hypoxia + SU5416.
  • mice 80 Kunming mice, 20 ⁇ 2g, half male and half female. Divided into 8 groups with 10 mice in each group.
  • Compound 1 was administered by intragastric administration in a single dose at 150mg/kg, 176mg/kg, 206mg/kg, 242mg/kg, 281mg/kg, 329mg/kg, 384mg/kg and 450mg/kg. medicine. The changes in body weight, diet, appearance, behavior, excretion and death of experimental animals were observed within 14 days.
  • mice The experimental results are shown in Table 17.
  • the mortality rate of mice was 0, respectively.
  • the LD50 of compound 1 was calculated to be 274.92 mg/kg, and its 95% confidence limit was 242.17 mg/kg kg ⁇ 304.99mg/kg.
  • CPP Conditioned place preference experiment

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pulmonology (AREA)
  • Addiction (AREA)
  • Psychiatry (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种双吲哚生物碱化合物及其合成方法和用途,该化合物具有如式I所示的结构,其中:R 1独立地选自C 1~C 4烷氧基或氢;若R 1为烷氧基,n为1或2;R 2独立地选自C 1~C 4烷基或氢;R 3独立地选自C 1~C 4烷氧基羰基或氢;R 4为氢;R 5独立地选自C 1~C 4烷基或C 1~C 4羟烷基;R 6独立地选自羰基、羟基或氢。本发明的双吲哚生物碱类化合物可选择性地舒张肺动脉,抑制肺动脉内皮细胞和血管平滑肌细胞增殖,降低肺动脉高压小鼠的右心室舒张压和抑制右心室肥厚。本发明的双吲哚生物碱类化合物可剂量依赖性的抵抗药物成瘾,且具有与现有抗成瘾药物不同的化学结构类型,有望发展成为一类新型的抗成瘾药物。

Description

一种双吲哚生物碱化合物及其合成方法和用途 技术领域
本发明属于药物化学领域,具体涉及一种双吲哚生物碱化合物及其合成方法和在制备治疗肺动脉高压和抗成瘾的药物中的应用。
背景技术
肺动脉高压(Pulmonary hypertension)是由各种原因导致肺动脉压力升高的一种常见的恶性进展性肺血管疾病,其病理学特征表现为肺小动脉过度收缩和血管重构。内皮细胞功能紊乱表现为血管舒张物质如一氧化氮(nitric oxide)和前列环素等减少,内皮素等血管收缩物质水平上升,从而导致肺动脉过度收缩。血管重构表现为内膜新生、中膜增厚和外膜纤维化等,内皮细胞和平滑肌细胞激活和过度增殖是血管重构的主要原因。因此,舒张肺小动脉和抑制肺小动脉血管重构是治疗肺动脉高压的理想选择,为肺动脉高压治疗药物开发提供了靶点。
目前,临床上肺动脉高压治疗靶向药物主要包括内皮素受体拮抗剂、5-磷酸二酯酶抑制剂、鸟苷酸环化酶激动剂和前列环素类药物,上述四类药物均可迅速舒张肺小动脉,改善肺动脉高压患者血流动力学,但均存在不同程度的不良反应,包括全身低压、致畸作用、外周水肿、贫血和消化道不良反应等,且价格昂贵。此外,使用上述靶向治疗药物的患者仅能在短期内改善症状,患者长期预后并不理想。因此,迫切需要开发新型的肺动脉高压治疗靶向药物,用于缓解和治疗肺动脉高压。
药物(毒品)成瘾包括躯体依赖和心理依赖,一旦形成常会伴随终身,表现为强迫性的用药行为、强烈的药物渴求和复吸。药物成瘾是全球性的公害,也是世界性的医学难题;临床上主要用具有成瘾性的药物替代疗法进行戒毒,阿片类如美沙酮、纳曲酮等,均不能同时戒除躯体依赖和心理依赖,而且使用不当又会出现新的依赖;非阿片类在临床上仅能起到辅助治疗作用且多具副作 用;因此,急需寻找和开发高效低毒的新型抗成瘾药物。
发明内容
为了克服现有技术的上述不足,本发明提供一种具有治疗肺动脉高压和抗成瘾的双吲哚生物碱类化合物和其合成方法及制药用途。
本发明的目的通过下述技术方案实现:
一种双吲哚生物碱化合物,具有如式I所示的结构:
Figure PCTCN2021121941-appb-000001
其中:R 1独立地选自C 1~C 4烷氧基或氢;
若R 1为烷氧基,n为1或2;
R 2独立地选自C 1~C 4烷基或氢;
R 3独立地选自C 1~C 4烷氧基羰基或氢;
R 4为氢;
R 5独立地选自C 1~C 4烷基或C 1~C 4羟烷基;
R 6独立地选自羰基、羟基或氢;
所述的烷氧基优选甲氧基或乙氧基;
所述的烷基优选甲基、乙基或甲基次甲基;
所述的烷氧基羰基优选甲氧基羰基或乙氧基羰基;
所述的羟烷基优选甲基羟甲基。
本发明的双吲哚生物碱化合物包括以下具体化合物:
Figure PCTCN2021121941-appb-000002
Figure PCTCN2021121941-appb-000003
Figure PCTCN2021121941-appb-000004
本发明双吲哚生物碱化合物的合成方法如下式所示:
Figure PCTCN2021121941-appb-000005
Figure PCTCN2021121941-appb-000006
具体包括以下步骤:
(1)二氢吡啶类化合物A1与单取代乙烯类化合物A2通过狄尔斯-阿尔德反应生成化合物A3;
(2)取代吲哚化合物A4通过傅克反应生成化合物A5,化合物A5经过取代反应得到化合物A6,化合物A6进一步发生碘代反应生成化合物A7,化合物A7经过还原反应得到化合物A8,化合物A8进一步发生碘代反应生成化合物A9;化合物A9与化合物A3反应,得到化合物A;
(3)取代色氨酸类化合物B1通过还原反应得到化合物B2,化合物B2上 两个保护基得到化合物B3,化合物B3通过取代反应得到化合物B4,化合物B4脱去保护基得到化合物B5,化合物B5经过亲电取代得到化合物B6,化合物B6环化得到化合物B7,化合物B7与化合物B8经过连续的迈克尔加成反应得到化合物B9,化合物B9经过分子内亲电反应得到化合物B10,化合物B10经过亲电反应得到化合物B11,化合物B11经过氧化反应得到化合物B12,化合物B12经过还原消除反应得到化合物B13,化合物B13经过还原氢化反应得到化合物B14,化合物B14经过羰基还原反应得到化合物B;
(4)化合物A与化合物B在酸性条件下反应,得到通式I的双吲哚生物碱类化合物。
本发明的双吲哚生物碱化合物可以用于制备治疗肺动脉高压的药物和抗成瘾药物;
所述的药物,包含本发明的双吲哚生物碱化合物、和/或其药学上可接受的盐、和/或其立体异构体、和/或其前药分子;
“前药”表示在体内转变为本申请所涉及的化合物及其药学可接受的盐的结构的前药。
所述的药物,包含一种或多种药学上可接受的载体和/或稀释剂。
本发明相对于现有技术具有如下的优点及效果:
1、本发明活性研究结果显示,本发明的双吲哚生物碱类化合物可选择性地舒张肺动脉,抑制肺动脉内皮细胞和血管平滑肌细胞增殖,降低肺动脉高压小鼠的右心室舒张压和抑制右心室肥厚。此外,该系列双吲哚类生物碱化合物具有与现有肺动脉高压治疗靶向药物不同的化学结构类型,有望发展成为一类新型的肺动脉高压治疗靶向药物。
2、本发明实验结果结果显示,本发明的双吲哚生物碱类化合物可剂量依赖性的抵抗药物成瘾,且具有与现有抗成瘾药物不同的化学结构类型,有望发展成为一类新型的抗成瘾药物。
附图说明
图1是化合物1对苯肾上腺素诱导小鼠主动脉和肺动脉收缩的舒张效果;A-对主动脉收缩的舒张效果;B-对肺动脉收缩的舒张效果。
图2是化合物2干预前后斑马鱼游动轨迹记录图。
图3是化合物2干预前后斑马鱼在非偏爱箱中活动时间差值和运动总路程差值;其中,a-活动时间差值,b-运动总路程差值。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明中,化合物的结构是通过核磁共振(NMR)或/和质谱(MS)来确定的。NMR位移(δ)以10 -6(ppm)的单位给出。NMR的测定是用Bruker AVANCE-300、Bruker AVANCE-400、Bruker AVANCE-500或Bruker AVANCE-600核磁仪,测定溶剂为氘代二甲基亚砜(DMSO-d 6)、氘代氯仿(CDCl 3)、氘代甲醇(CD 3OD),内标为四甲基硅烷(TMS)。
MS的测定用Agilent 6210 ESI/TOF质谱仪(生产商:Agilent,型号:6210ESI/TOF)。
柱层析一般使用烟台黄海硅胶200~300目硅胶为载体。
本发明的已知起始原料可以采用或按照本领域已知的方法来合成,或可购买自阿拉丁、萨恩、麦克林、梯希爱、迈瑞尔、乐研、百灵威、安耐吉、达瑞化学品等公司。
实施例中无特殊说明,反应均在氩气氛下进行。
氩气氛是指反应瓶连接一个约1L容积的氩气气球。
实施例中无特殊说明,溶液是指水溶液。
实施例中无特殊说明,反应的温度为室温,为20℃~30℃。
实施例中的反应进程的监测采用薄层色谱法(TLC),反应所使用的展开剂,分离纯化化合物采用的柱层析的洗脱剂的体系和薄层色谱法的展开剂体系包括:A:二氯甲烷/甲醇体系,B:正己烷/乙酸乙酯体系,C:石油醚/乙酸乙酯体系,D:丙酮,E:二氯甲烷/丙酮体系,F:乙酸乙酯/二氯甲烷体系,G:乙酸乙酯/二氯甲烷/正己烷,H:乙酸乙酯/二氯甲烷/丙酮,溶剂的体积比根据化合物的极性不同而进行调节,也可以加入少量的三乙胺和醋酸等碱性或酸性试剂进行调节。
实施例1
化合物1的制备
1.单体生物碱1i的制备
Figure PCTCN2021121941-appb-000007
第一步:
室温下,将6-甲氧基吲哚1a溶于无水乙醚中,降至0℃后,逐滴加入草酰氯,反应3小时后,升至室温,反应1小时,有红色固体产生。抽滤,并用无水乙醚溶液洗涤。滤饼即为化合物1b粗品(产率为92%),不用纯化,可直接用于下一步反应。
第二步:
室温下,将化合物1b溶于无水乙醇中,降至0℃后,逐滴加入三乙胺,并用氩气流带走滴加过程中产生的氯化氢气体。三乙胺滴加完毕后,加热回流反应3小时。降温至0℃,有黄色固体析出,减压抽滤,滤饼用冰乙醇洗涤,减压干燥得到化合物1c(产率为93%),不用纯化,可直接用于下一步反应。
第三步:
室温下,将化合物1c溶于四氢呋喃中,加入三氟甲烷磺酸银和碘单质,反应过夜,加入饱和的硫代硫酸钠水溶液淬灭反应,反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1d(产率为77%)。
第四步:
室温下,将化合物1d溶于四氢呋喃中,加入氢化铝锂,回流反应过夜。降温至0℃,小心加入饱和的氯化铵水溶液淬灭反应,反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1e(产率为78%)。
第五步:
室温下,将化合物1e溶于二氯甲烷中,降温至0℃,加入咪唑、三苯基膦和碘单质,反应4小时。加入饱和的硫代硫酸钠水溶液淬灭反应,反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1f(产率为84%)。
第六步:
室温下,将碳酸铯加入无水乙腈中,加入化合物1f和化合物1g,并升温至60℃。反应10小时后,降至室温,用硅藻土过滤并用乙酸乙酯洗涤。有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1h(产率为68%)。
第七步:
室温下,将化合物1h溶于氮-氮二甲基甲酰胺中,氩气保护下,加入甲酸钠、三苯基膦和醋酸钯,并升温至55℃反应6小时。加入水和二氯甲烷,反应液用二氯甲烷萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1i(产率为68%)。
化合物1i: 1H NMR(400MHz,CDCl 3)δ7.69(s,NH),7.33(d,J=9.3Hz,1H), 6.76(s,1H),6.75(d,J=9.3Hz,1H),3.83(s,3H),3.71(s,3H),3.53(s,1H),3.37(m,1H),3.21(m,1H),3.15(m,1H),2.96(m,1H),2.89(d,J=8.5Hz,1H),2.81(d,J=8.5Hz,1H),2.54(m,1H),1.88(1H),1.88(1H),1.74(m,1H),1.57(m,1H),1.43(m,1H),1.31(m,1H),1.13(m,1H),0.9(t,J=7.4Hz,3H); 13C NMR(100MHz,CDCl 3)δ176,156.6,136.3,135.3,123.3,119.2,110.2,109.1,94.3,57.8,55.9,55.1,53.2,52.7,51.5,39.3,36.6,32.2,27.5,26.8,22.3,11.8;HR‐ESI‐MS m/z:369.2179[M+H] +(calcd for C 22H 29N 2O 3,369.2173)。
2.单体生物碱1y的制备
Figure PCTCN2021121941-appb-000008
第一步:
0℃下,将L-色氨酸1j溶于四氢呋喃中,加入氢化铝锂,加热回流20小时。加饱和硫酸钠水溶液淬灭。抽滤,减压条件下蒸干溶剂,即得化合物1k粗 品(产率为97%),不用纯化,可直接用于下一步反应。
第二步:
0℃下,将化合物1k溶于吡啶中,加入对甲苯磺酰氯,搅拌20小时。加入饱和氯化钠水溶液,二氯甲烷萃取。用1M盐酸溶液洗涤,再用盐水洗涤,无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1l(产率为96%)。
第三步:
室温下,将化合物1l溶于甲醇中,加入三甲基硅氰回流2小时。减压蒸馏旋干溶剂,溶解于二氯甲烷,过滤,滤液旋干。所得粗产物经硅胶柱层析分离纯化得到化合物1m(产率为92%)。
第四步:
-78℃下,将化合物1m溶于液氨中,加入金属钠,反应1小时。加入氯化铵淬灭。缓慢升至室温挥干溶剂。所得沉淀用2M盐酸溶液溶解,乙酸乙酯萃取。水相用10M氢氧化钠溶液碱化,乙酸乙酯萃取3次。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。。所得粗产物即化合物1n(产率为94%),不用纯化,可直接用于下一步反应。
第五步:
室温下,将化合物1n溶于甲酸乙酯中,加热回流,反应过夜。反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1o(产率为82%)。
第六步:
0℃下,将化合物1o溶于二氯甲烷中,加入三氯氧磷,氩气氛保护,反应5小时。缓慢加入冰水淬灭反应,反应液用10%醋酸水溶液萃取3次,合并水相用二氯甲烷洗涤,水相用氨水碱化,然后二氯甲烷萃取3次,将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物即化合物1p(产率为78%),不用纯化,可直接用于下一步反应。
第七步:
室温下,将化合物1p和化合物1q(3-乙基丁烯酮)溶于盐酸饱和的甲醇中,升温至70℃,反应18小时。减压条件下蒸干溶剂。溶于丙酮/水(10:1)溶液中,加入对甲苯磺酸,加热回流15小时。减压条件下蒸干溶剂。乙酸乙酯溶解,5%碳酸氢钠洗涤,回收有机相,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1r(产率为86%)。
第八步:
0℃下,将化合物1r溶于无水四氢呋喃中,加入二乙酰氨基锂和二乙胺,反应1小时后,加入饱和氯化钠溶液稀释,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1s(产率为64%)。
第九步:
室温下,将化合物1s溶于四氢呋喃/水(2:1)中,加入溴化氰和氧化镁,升温至110℃,反应过夜,加入饱和氯化钠溶液稀释,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1t(产率为52%)。
第十步:
室温下,将化合物1t溶于四氢呋喃中,加入氧化镁,室温下反应14小时。反应液过滤,滤液在减压条件下蒸干溶剂。所得粗产物即化合物1w(产率为83%),不用纯化,可直接用于下一步反应。
第十一步:
-10℃下,将化合物1w溶于吡啶中,加入二氯亚砜,反应半小时。加入冰浴的氢氧化钠溶液,反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1v(产率为86%)。
第十二步:
室温下,将化合物1v溶于吡啶中,加入硼氢化钠,反应过夜。加入三乙胺并反应半小时。反应液过滤,滤液在减压条件下蒸干溶剂。所得粗产物经硅胶 柱层析分离纯化得到化合物1u(产率为79%)。
第十三步:
室温下,将化合物1u溶于甲醇/水(2:1)中,加入氢氧化钠,反应回流过夜。冷却后加入浓盐酸,反应6小时。加入饱和氯化钠溶液稀释,用氨水碱化,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1x(产率为72%)。
第十四步:
室温下,将化合物1x溶于甲醇中,加入甲醛和氰基硼氢化钠,在氩气氛保护下反应1小时。加入氢氧化钠溶液稀释,二氯甲烷萃取3次。将有机相合并,分别用氢氧化钠溶液、水、饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1y(产率为72%)。
化合物1y: 1H NMR(400MHz,CD 3OD)δ7.52(d,J=7.5Hz,1H),7.27(d,J=7.5Hz,1H),7.10(t,J=7.5Hz,1H),7.01(t,J=7.5Hz,1H),5.06(dd,J=12.3,4.1Hz,1H),3.9(t,J=7.8Hz,1H),3.37(dd,J=10.8,6.8Hz,1H),3.19(m,1H),3.11(dd,J=10.8,6.8Hz,1H),2.79(m,1H),2.74(m,1H),2.56(s,3H),2.54(m,1H),2.51(m,1H),2.45(s,3H),2.1(m,1H),1.71(dd,J=15.4,8.7Hz,1H),1.54(m,1H),1.54(m,1H),1.02(t,J=7.1Hz,3H); 13C NMR(100MHz,CD 3OD)δ173.4,137.8,137.1,130.4,123,119.6,119,111.5,109.9,67.9,60.1,50.7,48.3,44.1,44.1,42.9,41.1,32.9,26.5,18.6,13;HR‐ESI‐MS m/z:357.2174[M+H] +(calcd for C 21H 29N 2O 3,357.2173)。
3.化合物1的制备
Figure PCTCN2021121941-appb-000009
第一步:
室温下,将化合物1i和化合物1y溶于1%的盐酸甲醇溶液中,在氩气氛保护下加热回流1小时。用水稀释,碳酸氢钠溶液碱化,二氯甲烷萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物1(产率为67%)。
化合物1: 1H NMR(600MHz,CD 3OD)δ7.59(d,J=7.7Hz,1H),7.16(d,J=8.6Hz,1H),7.02(d,J=7.7Hz,1H),7.00(t,J=7.7Hz,1H),6.97(t,J=7.7Hz,1H),6.80(d,J=8.6Hz,1H),5.18(m,1H),3.98(t,J=7.8Hz,1H),3.94(s,3H),3.67(s,3H),3.37(1H),3.35(overlapped,2H),3.20(1H),3.00(dd,J=12.5,4.2Hz,1H),2.85(1H),2.83(overlapped,2H),2.81(1H),2.66(1H),2.65(1H),2.60(1H),2.56(s,3H),2.50(s,3H),2.46(d,J=12.5Hz,1H),2.29(d,J=8.1Hz,1H),1.91(1H),1.64(1H),1.64(1H),1.49(1H),1.42(1H),1.41(1H),1.38(1H),1.28(1H),1.26(1H),1.08(1H),0.94(t,J=7.4Hz,3H),0.87(1H),0.79(t,J=7.4Hz,3H),0.48(1H); 13C NMR(150MHz,CD 3OD)δ176,173.7,153.3,138.4,138.2,136.7,136.6,130.8,125.7,122.7,119.8,118.9,117.7,116.5,111.1,110.3,110.1,106.3,60.7,57.4,57.4,55.7,54.2,53.7,52.9,50.7,48.3,44.9,44.4,43.3,40.1,38.4,36.8,36,35.7,33.1,28.7,27.6,26.7,22.8,19.3,13,11.9;HR‐ESI‐MS m/z:707.4168[M+H] +(calcd for C 43H 55N 4O 5,707.4167)。
实施例2
化合物2的制备
1.单体生物碱2d的制备
Figure PCTCN2021121941-appb-000010
第一步:
室温下,将碳酸铯加入无水乙腈中,加入化合物2a和化合物2b,并升温至60℃。反应10小时后,降至室温,用硅藻土过滤并用乙酸乙酯洗涤。有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2c(产率为65%)。
第二步:
室温下,将化合物2c溶于氮-氮二甲基甲酰胺中,氩气保护下,加入甲酸钠、三苯基膦和醋酸钯,并升温至55℃反应6小时。加入水和二氯甲烷,反应液用二氯甲烷萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2d(产率为65%)。
化合物2d: 1H NMR(400MHz,CDCl 3)δ7.69(s,NH),7.33(d,J=9.3Hz,1H),6.76(s,1H),6.75(d,J=9.3Hz,1H),3.83(s,3H),3.71(s,3H),3.53(s,1H),3.37(m,1H),3.21(m,1H),3.15(m,1H),2.96(m,1H),2.54(m,1H),1.88(1H),1.88(1H),1.74(m,1H),1.57(m,1H),1.43(m,1H),1.31(m,1H),1.13(m,1H),0.9(t,J=7.4Hz,3H); 13C NMR(100MHz,CDCl 3)δ178.9,176,156.6,136.3,135.3,123.3,119.2,110.2,109.1,94.3,57.8,55.9,55.1,52.7,51.5,39.3,36.6,32.2,27.5,26.8,22.3,11.8;HR-ESI-MS m/z:383.2179[M+H] +(calcd for C 22H 27N 2O 4,383.2173)。
2.单体生物碱2m的制备
Figure PCTCN2021121941-appb-000011
第一步:
室温下,将化合物2e和化合物1q(3-乙基丁烯酮)溶于盐酸饱和的甲醇中,升温至70℃,反应18小时。减压条件下蒸干溶剂。溶于丙酮/水(10:1)溶液中,加入对甲苯磺酸,加热回流15小时。减压条件下蒸干溶剂。乙酸乙酯溶解,5%碳酸氢钠洗涤,回收有机相,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2f(产率为85%)。
第二步:
0℃下,将化合物2f溶于无水四氢呋喃中,加入二乙酰氨基锂和二乙胺,反应1小时后,加入饱和氯化钠溶液稀释,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2g(产率为60%)。
第三步:
室温下,将化合物2g溶于四氢呋喃/水(2:1)中,加入溴化氰和氧化镁,升温至110℃,反应过夜,加入饱和氯化钠溶液稀释,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2h(产率为50%)。
第四步:
室温下,将化合物2h溶于四氢呋喃中,加入氧化镁,室温下反应14小时。反应液过滤,滤液在减压条件下蒸干溶剂。所得粗产物即化合物2i(产率为85%),不用纯化,可直接用于下一步反应。
第五步:
-10℃下,将化合物2i溶于吡啶中,加入二氯亚砜,反应半小时。加入冰浴的氢氧化钠溶液,反应液用乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2j(产率为85%)。
第六步:
室温下,将化合物2j溶于吡啶中,加入硼氢化钠,反应过夜。加入三乙胺 并反应半小时。反应液过滤,滤液在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2k(产率为78%)。
第七步:
室温下,将化合物2k溶于甲醇/水(2:1)中,加入氢氧化钠,反应回流过夜。冷却后加入浓盐酸,反应6小时。加入饱和氯化钠溶液稀释,用氨水碱化,乙酸乙酯萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2l(产率为70%)。
第八步:
室温下,将化合物2l溶于甲醇中,加入甲醛和氰基硼氢化钠,在氩气氛保护下反应1小时。加入氢氧化钠溶液稀释,二氯甲烷萃取3次。将有机相合并,分别用氢氧化钠溶液、水、饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2m(产率为72%)。
化合物2m: 1H NMR(400MHz,CD 3OD)δ7.52(d,J=7.5Hz,1H),7.27(d,J=7.5Hz,1H),7.10(t,J=7.5Hz,1H),7.01(t,J=7.5Hz,1H),5.06(dd,J=12.3,4.1Hz,1H),3.9(t,J=7.8Hz,1H),3.37(dd,J=10.8,6.8Hz,1H),3.19(m,1H),3.11(dd,J=10.8,6.8Hz,1H),2.79(m,1H),2.74(m,1H),2.56(s,3H),2.54(m,1H),2.51(m,1H),2.45(s,3H),2.1(m,1H),1.71(dd,J=15.4,8.7Hz,1H),1.54(m,1H),1.54(m,1H),1.02(t,J=7.1Hz,3H); 13C NMR(100MHz,CD 3OD)δ173.4,137.8,137.1,130.4,123,119.6,119,111.5,109.9,67.9,60.1,50.7,48.3,44.1,44.1,42.9,41.1,32.9,26.5,18.6,13;HR‐ESI‐MS m/z:357.2174[M+H] +(calcd for C 21H 29N 2O 3,357.2173)。
3.二聚体生物碱2的制备
Figure PCTCN2021121941-appb-000012
第一步:
室温下,将化合物2d和化合物2m溶于1%的盐酸甲醇溶液中,在氩气氛保护下加热回流1小时。用水稀释,碳酸氢钠溶液碱化,二氯甲烷萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物2(产率为70%)。
化合物2: 1H NMR(600MHz,CDCl 3)δ7.63(d,J=7.9Hz,1H),7.24(d,J=8.7Hz,1H),7.07(1H),7.07(1H),7.04(d,J=7.7Hz,1H),6.81(d,J=8.7Hz,1H),5.20(dd,J=12.4,3.1Hz,1H),4.29(1H),4.29(1H),4.04(1H),3.95(s,3H),3.71(s,3H),3.33(dd,J=14.5,9.9Hz,1H),3.26(m,1H),3.07(1H),3.01(overlapped,2H),2.93(t,J=2.7Hz,1H),2.90(dd,J=12.5,3.8Hz,1H),2.71(1H),2.66(1H),2.56(s,3H),2.52(s,3H),2.40(d,J=12.5Hz,1H),2.05(d,J=2.6Hz,1H),1.99(1H),1.71(1H),1.71(1H),1.63(dd,J=14.1,1.4Hz,1H),1.52(qd,J=13.7,6.7Hz,1H),1.49(1H),1.40(1H),1.34(1H),1.27(1H),1.15(1H),0.95(t,J=7.3Hz,3H),0.88(t,J=7.3Hz,3H),0.64(dd,J=14.1,1.4Hz,1H); 13C NMR(150MHz,CDCl 3)δ175.9,172.7,172.5,152.2,137,136.1,135.3,133.1,129.3,123.5,122.4,119.6,117.7,117.1,114.6,110.4,110.3,107.9,105.3,59.3,56.8,55.9,54.9,52.9,50.1,46.9,43.9,43.2,42.9,42.6,37.9,37,35.7,35.3,35.1,33.8,30.9,27.6,25.7,20.8,17.7,13,11.4;HR‐ESI‐MS m/z 721.3965[M+H] +(calcd for C 43H 53N 4O 6,721.3960)。
实施例3
化合物3的制备
Figure PCTCN2021121941-appb-000013
第一步:
室温下,将化合物3a和化合物3b溶于1%的盐酸甲醇溶液中,在氩气氛保 护下加热回流1小时。用水稀释,碳酸氢钠溶液碱化,二氯甲烷萃取3次。将有机相合并,并用饱和的氯化钠溶液洗涤。无水硫酸钠干燥过滤后,有机相在减压条件下蒸干溶剂。所得粗产物经硅胶柱层析分离纯化得到化合物3(产率为68%)。
化合物3: 1H NMR(600MHz,CD 3OD)δ7.66(d,J=7.7Hz,1H),7.23(d,J=8.7Hz,1H),7.10(d,J=7.7Hz,1H),7.07(1H),7.07(1H),6.86(d,J=8.7Hz,1H),5.23(dd,J=12.4,3.3Hz,1H),4.03(m,1H),3.99(s,3H),3.70(s,3H),3.52(d,J=2.1Hz,1H),3.41(overlapped,2H),3.39(1H),3.21(1H),3.03(dd,J=12.6,3.8Hz,1H),2.92(1H),2.87(1H),2.78(1H),2.78(1H),2.71(1H),2.61(s,3H),2.58(d,J=3.8Hz,1H),2.56(s,3H),1.97(1H),1.86(dd,J=14.3,3.6Hz,1H),1.70(1H),1.49(dd,J=14.8,7.4Hz,1H),1.45(1H),1.42(1H),1.37(m,1H),1.32(m,1H),1.23(1H),1.22(1H),1.17(m,1H),0.98(t J=7.4Hz,3H),0.85(t J=7.4Hz,3H),0.47(dd,J=14.3,3.6Hz,1H); 13C NMR(150MHz,CD 3OD)δ175.4,173.7,153.2,138.6,138.2,136.7,136.2,130.7,125.1,122.7,119.9,118.9,117.6,116.3,111.1,110.2,109.8,106.3,98.4,70.6,57.3,55.4,55,54,53,50.8,48.3,44.9,44.3,43.3,38.8,38.3,36.8,36,34.5,31.1,27.5,26.7,26.1,22.4,19.1,13.1,12;HR‐ESI‐MS m/z:723.4014[M+H] +(calcd for C 43H 55N 4O 6,723.4010)。
实施例4
化合物4和5的NMR数据如表1所示:
化合物6的NMR数据如表2所示:
化合物7的NMR数据如表3所示:
化合物8的NMR数据如表4所示:
化合物9的NMR数据如表5所示:
化合物10的NMR数据如表6所示:
化合物11的NMR数据如表7所示:
化合物12的NMR数据如表8所示:
化合物13和14的NMR数据如表9所示:
化合物15的NMR数据如表10:
化合物16的NMR数据如表11:
化合物17的NMR数据如表12:
化合物18的NMR数据如表13:
表1  1H and  13C NMR data of 4&5(CD 3OD,δin ppm,J in Hz)
Figure PCTCN2021121941-appb-000014
aOverlapped
表2  1H and  13C NMR data of 6(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000015
aOverlapped
表3  1H and  13C NMR data of 7(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000016
aOverlapped
表4  1H and  13C NMR data of 8(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000017
aOverlapped
表5  1H and  13C NMR data of 9(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000018
aOverlapped
表6  1H and  13C NMR data of 10(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000019
aOverlapped
表7  1H and  13C NMR data of 11(CD 3OD,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000020
aOverlapped
表8  1H and  13C NMR data of 12(δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000021
aOverlapped
表9. 1H and  13C NMR data of 13&14(CD 3OD,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000022
a Spectra measured at 400MHz for  1H-NMR and 100MHz for  13C-NMR
表10. 1H and  13C NMR data of 15(CDCl 3,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000023
a Overlapped.Spectra recorded at 400MHz for  1H NMR and 100MHz for  13C NMR.
表11. 1H and  13C NMR data of 16(CDCl 3,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000024
aOverlapped.Spectra recorded at 300MHz for  1H NMR and 75MHz for  13C NMR.
表12. 1H and  13C NMR data of 17(CDCl 3,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000025
aOverlapped.Spectra recorded at 300MHz for  1H NMR and 75MHz for  13C NMR.
表13. 1H and  13C NMR data of 18(CDCl 3,δin ppm,J in Hz) a
Figure PCTCN2021121941-appb-000026
aOverlapped.Spectra recorded at 300MHz for  1H NMR and 75MHz for  13C NMR.
实施例5
化合物1-18对苯肾上腺素诱导小鼠主动脉和肺动脉收缩的舒张作用
实验方法:取正常C57/BL6小鼠,戊巴比妥钠麻醉,取肺组织或主动脉,置于4℃氧饱和的Krebs溶液中,快速分离肺动脉或主动脉,剪成1.8~2mm的血管环。将血管环用直径为40μm的金属丝固定在多通道血管张力测试仪上,设置初始张力为1mN(肺动脉)或3mN(主动脉),平衡60分钟。平衡期间,使用含60mM钾离子的Krebs溶液收缩血管,收缩曲线稳定后用正常Krebs溶液清洗,保持基础张力不变(F 0)。加入含60mM钾离子的Krebs溶液或者1μM的苯肾上腺素收缩血管,待收缩平衡后(F 1),浓度递增地加入待测药物,记录加药后血管张力的变化(F 2)。
血管舒张率按如下公式计算:舒张率(%)=(F 1-F 2)/(F 1-F 0)×100
实验结果如表14和图1所示,化合物1-18均可浓度依赖性地舒张苯肾上腺素诱导的小鼠肺动脉收缩,而对小鼠主动脉无明显舒张作用,表明该类化合物对肺动脉具有选择性舒张作用。
表14:化合物1-18对苯肾上腺素诱导小鼠肺动脉收缩的舒张作用(n=5~6)
Figure PCTCN2021121941-appb-000027
实施例6
化合物1-18对人肺动脉内皮细胞(hPAECs)和平滑肌细胞(hPASMCs)的增殖抑制作用
实验方法:hPAECs和hPASMCs分别接种到100mm培养皿中,待细胞融合到80%时,胰酶消化,重悬细胞。调整细胞密度,于96孔板中分别接种6000个hPAECs或hPASMCs,待细胞贴壁后,加入不同浓度的化合物1~20,培养24小时。每孔加入10μL MTT(5mg/mL)溶液,孵育4小时。弃培养液,加入DMSO,于570nm处检测吸光度值。
实验结果如表15所示,化合物1-18均能抑制hPAECs和hPASMCs增殖,其中代表化合物1的半数抑制浓度IC 50分别为13.80±0.53μM和27.44±0.28μM。
表15:化合物1-18对人肺动脉内皮细胞和平滑肌细胞的增殖抑制作用(n=3)
Figure PCTCN2021121941-appb-000028
实施例7
化合物1对低氧+SU5416诱导的肺动脉高压小鼠的右心室收缩压和右心室肥厚指数的影响
实验方法:C57/BL6小鼠40只,随机分为常氧组10只和低氧+SU5416 30只。将低氧组小鼠置于常压低氧箱内(氧气浓度为10%,v/v),每天持续低氧,共28天,分别于第0,7,14,21天皮下注射SU5416(20mg/kg)。常氧组小鼠饲养在常氧常压的环境中。第28天检测右心室收缩压,成模小鼠随机分为3组,分别为低氧+SU5416、低氧+SU5416+化合物1低剂量(10mg/kg)和低氧+SU5416+化合物1高剂量(50mg/kg)组,常氧常压饲养,灌胃给药14天,1天/次。给药结束后,通过右心导管法检测而小鼠右心室收缩压。
取小鼠心脏,分离并称量右心室(RV)和左心室+室间隔(LV+S)重量,按如下公式计算右心室肥厚指数:右心室肥厚指数(%)=RV/(LV+S)×100。
实验结果如表16所示,化合物1能有效地降低由低氧+SU5416诱导的肺动脉高压小鼠的右心室收缩压和抑制右心室肥厚。
表16.化合物1对低氧+SU5416诱导肺动脉高压小鼠的右心室收缩压和右心室肥厚指数的影响
Figure PCTCN2021121941-appb-000029
注: ***p<0.001vs常氧组, #p<0.05和 ###p<0.001vs低氧+SU5416。
实施例8
化合物1的小鼠口服半数致死率
实验方法:昆明种小鼠80只,20±2g,雌雄各半。分为8组,每组10只,化合物1按150mg/kg,176mg/kg,206mg/kg,242mg/kg,281mg/kg,329mg/kg,384mg/kg,450mg/kg,单次灌胃给药。观察14天内实验动物体重变化、饮食、外观、行为、排泄和死亡情况。半数致死率按如下公式计算:LD 50=lg -1[X m-i×(ΣP-0.5)],其中i=0.068,X m=2.65,P为动物死亡率,ΣP为各组动物死亡率总和。LD 50的95%可信限=lg -1[lg(LD 50)±1.96×SLD 50];SLD 50=i×(Σ(p×q)/n) 0.5,其中p为死亡率,q为存活率,n=为每组动物数量。
实验结果如表17所示,化合物1在150mg/kg,176mg/kg,206mg/kg,242mg/kg,281mg/kg,329mg/kg,384mg/kg,450mg/kg时小鼠死亡率分别为0,10%,30%,30%,50%,60%,80%和100%(表4),经计算得到化合物1的LD 50=274.92mg/kg,其95%可信限为242.17mg/kg~304.99mg/kg。
表17.化合物1的小鼠口服半数致死率(LD 50)
Figure PCTCN2021121941-appb-000030
实施例9
各生物碱均匀混合物和化合物2对药物依赖斑马鱼条件性位置偏爱实验(CPP)的影响
实验方法:条件性位置偏爱实验(CPP,是目前评价药物精神依赖性的经典实验模型)。通过苯丙胺依赖成年斑马鱼CPP模型(腹腔注射给药),对各生物碱均匀混合物和化合物2的抗成瘾活性进行评价,采用腹腔注射给药(i.p.),比较空白组、模型组(苯丙胺组,MDMA)和(模型组+2)组在药物干预前后在非偏爱箱(给药箱)中的活动时间、运动总路程(5min)的差值(n=10)。
实验结果如图2和图3所示,各生物碱均匀混合物和化合物2在20μg/g(i.p.)能够改变苯丙胺诱导的斑马鱼CPP行为,具有一定的抗成瘾活性。
上述实验结果揭示了本发明所述双吲哚生物碱类化合物可应用于肺动脉高压和药物成瘾的治疗。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种双吲哚生物碱化合物,其特征在于具有如式I所示的结构:
    Figure PCTCN2021121941-appb-100001
    其中:R 1独立地选自C 1~C 4烷氧基或氢;
    若R 1为烷氧基,n为1或2;
    R 2独立地选自C 1~C 4烷基或氢;
    R 3独立地选自C 1~C 4烷氧基羰基或氢;
    R 4为氢;
    R 5独立地选自C 1~C 4烷基或C 1~C 4羟烷基;
    R 6独立地选自羰基、羟基或氢。
  2. 根据权利要求1所述的双吲哚生物碱化合物,其特征在于:所述的烷氧基为甲氧基或乙氧基。
  3. 根据权利要求1所述的双吲哚生物碱化合物,其特征在于:所述的烷基为甲基、乙基或甲基次甲基。
  4. 根据权利要求1所述的双吲哚生物碱化合物,其特征在于:所述的烷氧基羰基为甲氧基羰基或乙氧基羰基。
  5. 根据权利要求1所述的双吲哚生物碱化合物,其特征在于:所述的羟烷基为甲基羟甲基。
  6. 根据权利要求1所述的双吲哚生物碱化合物,其特征在于包括以下化合物:
    Figure PCTCN2021121941-appb-100002
    Figure PCTCN2021121941-appb-100003
    Figure PCTCN2021121941-appb-100004
  7. 权利要求1-6任一项所述的双吲哚生物碱化合物的合成方法,其特征在于包括以下步骤:
    Figure PCTCN2021121941-appb-100005
    Figure PCTCN2021121941-appb-100006
    (1)二氢吡啶类化合物A1与单取代乙烯类化合物A2通过狄尔斯-阿尔德反应生成化合物A3;
    (2)取代吲哚化合物A4通过傅克反应生成化合物A5,化合物A5经过取代反应得到化合物A6,化合物A6进一步发生碘代反应生成化合物A7,化合物A7经过还原反应得到化合物A8,化合物A8进一步发生碘代反应生成化合物A9;化合物A9与化合物A3反应,得到化合物A;
    (3)取代色氨酸类化合物B1通过还原反应得到化合物B2,化合物B2上两个保护基得到化合物B3,化合物B3通过取代反应得到化合物B4,化合物B4 脱去保护基得到化合物B5,化合物B5经过亲电取代得到化合物B6,化合物B6环化得到化合物B7,化合物B7与化合物B8经过连续的迈克尔加成反应得到化合物B9,化合物B9经过分子内亲电反应得到化合物B10,化合物B10经过亲电反应得到化合物B11,化合物B11经过氧化反应得到化合物B12,化合物B12经过还原消除反应得到化合物B13,化合物B13经过还原氢化反应得到化合物B14,化合物B14经过羰基还原反应得到化合物B;
    (4)化合物A与化合物B在酸性条件下反应,得到通式I的双吲哚生物碱类化合物。
  8. 权利要求1-6任一项所述的双吲哚生物碱化合物在制备治疗肺动脉高压的药物和抗成瘾药物中的应用。
  9. 根据权利要求8所述的应用,其特征在于:所述的药物,包含所述的双吲哚生物碱化合物、和/或其药学上可接受的盐、和/或其立体异构体、和/或其前药分子。
  10. 根据权利要求8所述的应用,其特征在于:所述的药物,包含一种或多种药学上可接受的载体和/或稀释剂。
PCT/CN2021/121941 2021-04-14 2021-09-29 一种双吲哚生物碱化合物及其合成方法和用途 WO2022217859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110398201.1A CN113248524B (zh) 2021-04-14 2021-04-14 一种双吲哚生物碱化合物及其合成方法和用途
CN202110398201.1 2021-04-14

Publications (1)

Publication Number Publication Date
WO2022217859A1 true WO2022217859A1 (zh) 2022-10-20

Family

ID=77220690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121941 WO2022217859A1 (zh) 2021-04-14 2021-09-29 一种双吲哚生物碱化合物及其合成方法和用途

Country Status (2)

Country Link
CN (1) CN113248524B (zh)
WO (1) WO2022217859A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248524B (zh) * 2021-04-14 2022-08-05 暨南大学 一种双吲哚生物碱化合物及其合成方法和用途
CN114796171A (zh) * 2022-06-02 2022-07-29 暨南大学 一个倍半萜聚酮化合物用于防治肺动脉高压的用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554656A (zh) * 2003-12-24 2004-12-15 中国人民解放军第二军医大学 云南狗牙花总生物碱和其盐类以及制备方法和用途
CN1915993A (zh) * 2006-09-12 2007-02-21 中国人民解放军第二军医大学 海南狗牙花吲哚类生物碱及其在制备戒毒药物中的用途
CN100376578C (zh) * 2006-09-12 2008-03-26 中国人民解放军第二军医大学 扇形狗牙花吲哚类生物碱及其在制备戒毒药物中的用途
WO2020263941A1 (en) * 2019-06-24 2020-12-30 Caamtech Llc Ibogaine formulations
CN113248525A (zh) * 2021-04-20 2021-08-13 暨南大学 狗牙花属植物提取物及其提取分离方法和用途
CN113248524A (zh) * 2021-04-14 2021-08-13 暨南大学 一种双吲哚生物碱化合物及其合成方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1554656A (zh) * 2003-12-24 2004-12-15 中国人民解放军第二军医大学 云南狗牙花总生物碱和其盐类以及制备方法和用途
CN1915993A (zh) * 2006-09-12 2007-02-21 中国人民解放军第二军医大学 海南狗牙花吲哚类生物碱及其在制备戒毒药物中的用途
CN100376578C (zh) * 2006-09-12 2008-03-26 中国人民解放军第二军医大学 扇形狗牙花吲哚类生物碱及其在制备戒毒药物中的用途
WO2020263941A1 (en) * 2019-06-24 2020-12-30 Caamtech Llc Ibogaine formulations
CN113248524A (zh) * 2021-04-14 2021-08-13 暨南大学 一种双吲哚生物碱化合物及其合成方法和用途
CN113248525A (zh) * 2021-04-20 2021-08-13 暨南大学 狗牙花属植物提取物及其提取分离方法和用途

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BABIAKA SMITH B., SIMOBEN CONRAD V., ABUGA KENNEDY O., MBAH JAMES A., KARPOORMATH RAJSHEKHAR, ONGARORA DENNIS, MUGO HANNINGTON, MO: "Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling", MOLECULES, vol. 26, no. 1, 1 January 2021 (2021-01-01), pages 1 - 19, XP055977056, DOI: 10.3390/molecules26010070 *
BÜCHI G, MANNING R E, MONTI S A: "Voacamine and Voacorine", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 86, no. 21, 5 November 1964 (1964-11-05), pages 4631 - 4641, XP055977042 *
CAI YOU-SHENG, SAROTTI ARIEL M., ZHOU TING-LAN, HUANG RONG, QIU GUOFU, TIAN CONGKUI, MIAO ZE-HONG, MÁNDI ATTILA, KURTÁN TIBOR, CAO: "Flabellipparicine, a Flabelliformide-Apparicine-Type Bisindole Alkaloid from Tabernaemontana divaricata", JOURNAL OF NATURAL PRODUCTS, vol. 81, no. 9, 28 September 2018 (2018-09-28), US , pages 1976 - 1983, XP055977049, ISSN: 0163-3864, DOI: 10.1021/acs.jnatprod.8b00191 *
MORALES-RIOS M S, ESPINEIRA J, JOSEPH-NATHAN P: "Carbon-13 NMR spectroscopy of indole derivatives", MAGNETIC RESONANCE IN CHEMISTRY, vol. 25, no. 5, 1 January 1987 (1987-01-01), GB , pages 377 - 395, XP002493096, ISSN: 0749-1581, DOI: 10.1002/mrc.1260250502 *
ZHOU S Y; ZHOU T L; QIU G; HUAN X; MIAO Z H; YANG S P; CAO S; FAN F; CAI Y S: "Three New Cytotoxic Monoterpenoid Bisindole Alkaloids from Tabernaemontana bufalina", PLANTA MEDICA, 1 May 2018 (2018-05-01), DE , pages 1127 - 1133, XP018530144, ISSN: 0032-0943 *

Also Published As

Publication number Publication date
CN113248524B (zh) 2022-08-05
CN113248524A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
JP3190340B2 (ja) 酸化窒素供与体プロドラッグとしての求核試薬−酸化窒素付加物の酸素置換誘導体
WO2022217859A1 (zh) 一种双吲哚生物碱化合物及其合成方法和用途
CA2054091A1 (en) Isoquinolinone derivatives
JPH05508619A (ja) ヒト結腸直腸癌の有効な抑制剤であるカンプトセシンアナローグ
JP2003528096A (ja) デカヒドロ−イソキノリン
JPH05155858A (ja) トロンボキサン受容体アンタゴニストである新規ベンズイミダゾールおよびアザベンズイミダゾール誘導体、それらの製造方法、およびそれらを含む合成中間体および薬剤組成物
CN111836807A (zh) 氧杂螺环类化合物及其制备方法和用途
CA3160899C (en) Spiro compound serving as erk inhibitor, and application thereof
KR20160089516A (ko) 에테르 측쇄를 함유한 n-치환 이미다졸 카르복실산 에스테르 키랄 화합물, 제조 방법 및 용도
WO2022174525A1 (zh) 一类化合物及其制备方法和用途
JP2002541189A (ja) 細胞膜透過性インジゴイドビスインドール誘導体の使用
WO2016119643A1 (zh) 一种含吲哚乙酸核心结构的化合物及其应用
WO2019052440A1 (zh) 氘原子取代的吲哚甲酰胺类衍生物、其制备方法及其在医药上的应用
WO2003002532A1 (en) Cyclic diamine compounds having fused-ring groups
WO1997026242A1 (fr) Derives de 3-(bis-phenylmethylene substitue) oxindole
EP2981266B1 (en) Pentacyclic pyridoindolobenz[b,d]azepine derivatives and uses thereof
EP4273150A1 (en) Tricyclic compound, and preparation method therefor and medical use thereof
EP3560914A1 (en) Sulfonyl amidine as indoleamine-2,3-dioxygenase inhibitor, and preparation method therefor and use thereof
WO2019232662A1 (zh) 一类具有抗癌活性的吲嗪类化合物及其衍生物
KR20000064618A (ko) 인돌로모르피난 유도체 및 뇌장해 치료·예방제
WO2022171088A1 (zh) 吡唑并[3,4-d]嘧啶-3-酮衍生物
JP2002533323A (ja) メラトニン誘導体とこの誘導体を含む薬剤
JP3471778B2 (ja) 三環性縮合複素環化合物、その製造方法および用途
WO2020098658A1 (zh) 20位取代的喜树碱衍生物及其制备方法和应用
US9598414B2 (en) Substituted benzo[5,6]azepino[3,2,1-hi]pyrido[4,3-b]indoles and substituted benzo[6,7][1,4]oxazepino[2,3,4-hi]pyrido[4,3-b]indoles for treating CNS disorders

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936726

Country of ref document: EP

Kind code of ref document: A1