WO2022217796A1 - 降镉生物改性陶粒及其制备方法 - Google Patents

降镉生物改性陶粒及其制备方法 Download PDF

Info

Publication number
WO2022217796A1
WO2022217796A1 PCT/CN2021/112743 CN2021112743W WO2022217796A1 WO 2022217796 A1 WO2022217796 A1 WO 2022217796A1 CN 2021112743 W CN2021112743 W CN 2021112743W WO 2022217796 A1 WO2022217796 A1 WO 2022217796A1
Authority
WO
WIPO (PCT)
Prior art keywords
cadmium
ceramsite
biologically modified
bacterial suspension
reducing
Prior art date
Application number
PCT/CN2021/112743
Other languages
English (en)
French (fr)
Inventor
张奇春
张耿苗
狄蕊
张祝宁
李厚孚
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2022217796A1 publication Critical patent/WO2022217796A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/14Enzymes or microbial cells immobilised on or in an inorganic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4868Cells, spores, bacteria
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus

Definitions

  • the invention relates to a cadmium-reducing biologically modified ceramsite and a preparation method thereof.
  • adsorption method is a commonly used method for remediation of heavy metal cadmium in water and soil.
  • the method of removing or fixing heavy metal ions by adsorbent is called adsorption method.
  • the principle of the adsorption method is to use the unique functional groups, surface electrostatic charge, surface bond energy, surface specific pore size, etc. of the adsorbent to form coordination compounds, ion associations with the ions to be adsorbed, or use physical adsorption to separate and enrich specific forms.
  • the adsorption mechanism of heavy metals varies with the structure and performance of the adsorbent.
  • Typical adsorbent materials are activated carbon, zeolite, bentonite, sepiolite, ceramsite, etc. my country pays special attention to economical, effective and easily available natural or modified adsorption materials. research and develop.
  • Ceramsite is a kind of artificial lightweight coarse aggregate with clay material as raw material. It is a clay mineral spherical or spherical silicate product with certain strength. Its internal porous, large specific surface area, good chemical and thermal stability, good adsorption performance for heavy metals, and easy to regenerate, easy to reuse, so ceramsite is a cheap and effective adsorbent, but simply using ceramsite The effect of carrying out heavy metal adsorption is limited.
  • the problem to be solved by the present invention is to provide a cadmium-reducing biologically modified ceramsite and a preparation method thereof.
  • the cadmium-reducing biologically modified ceramsite of the present invention combines adsorbent remediation and microbial remediation, and can be used to treat cadmium in water bodies. pollution problem.
  • the present invention provides a preparation method of cadmium-reducing biologically modified ceramsite, comprising the following steps:
  • the cadmium-tolerant functional strain is preferably Bacillus sp.K1;
  • step 3 according to the solid-liquid ratio of 35 ⁇ 5g/100mL, after mixing the sterile ceramsite obtained in step 1) with the bacterial suspension II, first shake for 1.5-2.5h, and then dry;
  • step 4 after mixing the dried ceramsite obtained in step 3) with the bacterial suspension II, first shake for 1.5-2.5 hours, and then dry; to obtain cadmium-reducing biologically modified ceramsite;
  • the dosage of bacterial suspension II is the same as that of bacterial suspension II in step 3).
  • both step 3) and step 4) are: shaking at a rotational speed of 80-120 rpm.
  • the drying in step 3) is drying at 25-35 °C for 1.5-2.5 hours;
  • the drying in step 4) is drying at 25-35 °C for 3.5 hours ⁇ 4.5 hours;
  • step 1) is: soak the ceramsite in a 2% glutaraldehyde solution for 2 to 4 hours, and then wash it with deionized water for 2 to 4 times , Sterilize at 120 ⁇ 122°C for 20 ⁇ 30min, and dry at 25°C for 5 ⁇ 7 hours; get sterile ceramsite.
  • step 1) the particle size of the ceramsite is 3-5 mm.
  • the present invention also provides the cadmium-reducing biologically modified ceramsite prepared by the above method.
  • the cadmium-resistant functional strain is the cadmium-resistant strain Bacillus sp. It has adsorption effect; it is informed in the published "Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil".
  • the aseptic ceramsite and the bacterial suspension are mixed and cultured, and the cadmium-resistant strain is fixed on the aseptic modified ceramsite.
  • the pretreated aseptic ceramsite and the bacterial strain in the present invention both have the function of adsorbing heavy metal cadmium, wherein, the bacterial strain has been screened by the laboratory and has been verified to have tolerance and adsorption function to cadmium, while the modified ceramsite has the function of adsorbing heavy metal cadmium.
  • the present invention combines adsorbent remediation with bioremediation, thereby having strong adsorption to cadmium ions in water. It also has the potential to passivate the heavy metal cadmium in the soil.
  • the preparation method of the invention has the advantages of simplicity, rapidity, low cost and no pollution, and at the same time, it has the advantages of convenient use and obvious cadmium reduction effect in application, so it has broad application prospects.
  • the invention can be used for treating the cadmium pollution problem in the water body, and has the potential of repairing the cadmium pollution problem in the soil at the same time.
  • Figure 1 is an electron microscope image of the cadmium-resistant strain Bacillus sp.K1 immobilized on the surface of modified ceramsite;
  • a, b, c, and d are the four areas (left, right, upper, and lower) on the surface of the ceramsite respectively;
  • Figure 2 is a graph showing the adsorption rate-time curve of bio-modified ceramsite in 100 mg/L Cd 2+ solution
  • Figure 3 is a graph showing the adsorption kinetics of bio-modified ceramsite in 100 mg/L Cd 2+ solution.
  • Embodiment 1 A biological ceramsite with a function of adsorbing cadmium, the preparation method of which is to perform the following steps in sequence:
  • Ceramsite must always be submerged in 2% glutaraldehyde solution throughout the soaking process.
  • the bio-modified ceramsite was taken for SEM scanning electron microscope analysis, and it was short rod-shaped.
  • the immobilization effect of the strain was observed from the morphological characterization: Cd-resistant bacteria were distributed in the gap and surface of the ceramsite.
  • the solution culture experiment was used to prepare a 100 mg/L CdSO 4 solution, weigh 2.5 g of the bio-modified ceramsite, and add it to 50 ml of the cadmium solution. , 45, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360min, take samples, stand for 10min, filter, and measure the cadmium ion concentration in the filtrate by ICP-MS. Each treatment was repeated 3 times, and the average value of each group was taken as the data, and the adsorption amount and adsorption rate were calculated:
  • q t is the ion adsorption capacity of the adsorbent per unit weight at time t, mg/g
  • E is the ion adsorption rate of the adsorbent at time t
  • c0 and ct are the mass concentrations of Cd ions in the solution before adsorption and at time t, respectively, mg/L
  • V is the volume of the reaction solution, L
  • m is the mass of the adsorbent, g.
  • the bio-modified ceramsite is added to the high-concentration 100 mg/L Cd polluted solution, and the adsorption rate achieved over time is shown in Figure 2. It can be seen that the bio-modified ceramsite can reach the adsorption equilibrium within 360 minutes. In the equilibrium adsorption, the adsorption rate is as high as about 88%. At this time, the concentration of cadmium in the solution is 12.016 mg/L. At the same time, the adsorption rate can reach about 80% within 150 minutes, and the cadmium concentration of the solution is 23.061 mg/L at this time, which is significantly lower than that of the original solution.
  • bio-modified ceramsite produced by the present invention can significantly reduce the high concentration (100mg/L) cadmium pollution solution under the addition amount of 0.05g/mL, and its adsorption rate is as high as 88%. It can meet the needs of water pollution treatment plants for rapid and large-scale treatment of cadmium-contaminated water bodies. Moreover, the adsorption process of bio-modified ceramsite is stable and controllable. In practical application, it can adapt to the adjustment and research and development of various water treatment process projects in the factory, and can be popularized and applied.
  • step 1) of Example 1 "the ceramsite is soaked in 2% glutaraldehyde solution”, that is, the ceramsite is directly washed with water, sterilized at high temperature and dried, and the rest are equivalent to Example 1. The final result is called ceramsite A.
  • Comparative example 3 Change the cadmium-resistant strain Bacillus sp.k1 to the cadmium-resistant bacteria Arthrobacter m6 (from "Cadmium-resistant bacteria combined with plant absorption to remediate heavy metal cadmium pollution in soil"), and the remainder is equal to Example 1. The final result is called ceramsite D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Water Supply & Treatment (AREA)
  • Biomedical Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Virology (AREA)
  • Soil Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

提供了一种降镉生物改性陶粒及其制备方法,制备方法包括以下步骤:将陶粒先于1.5~2.5%戊二醛溶液中浸泡,再水洗、灭菌、干燥,得无菌陶粒;先制备浓度≥1×10 8CFU/mL的耐镉功能菌株的菌悬液I,菌悬液I离心后弃上清液,在菌体沉淀中加入生理盐水将菌体复悬形成OD=0.9~1.1的菌悬液Ⅱ;将无菌陶粒与菌悬液Ⅱ混合后震荡、烘干;烘干后陶粒与菌悬液Ⅱ再次混合后震荡、烘干;得降镉生物改性陶粒。该降镉生物改性陶粒可用于治理水体中的镉污染问题,同时具备修复土壤中镉污染问题的潜质。

Description

降镉生物改性陶粒及其制备方法
本申请要求于2021年04月15日提交中国专利局、申请号为202110408143.6、发明名称为“降镉生物改性陶粒及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种降镉生物改性陶粒及其制备方法。
背景技术
在我国现代化工农业的不断发展的路程上,相当长的一段时间内国内企业对于环保的重视程度有所欠缺,其中未达标的工业“三废”大量排放、对金属矿的开采与冶炼、污水灌溉等因素导致国内大量水体和土壤遭受了严重的重金属污染。其中,重金属镉(Cd)的污染情况尤其严重,Cd于1974年被联合国环境规划局和国际劳动卫生重金属委员会定为重点环境污染物,其易于在人体内积累,当通过食物链被人体摄入并在某些器官中累积至一定程度会造成慢性中毒,影响人体健康。
随着重金属污染现状的日益加剧,水体和土壤中重金属的处理和去除也迫在眉睫。目前,吸附法是国内外常用的修复水体和土壤中重金属镉的方法。通过吸附剂来吸附脱除或固定重金属离子的方法称为吸附法。吸附法的原理是利用吸附剂特有的功能团、表面静电荷、表面键能、表面特定孔径等与待吸附的离子形成配位化合物、离子缔合物或采用物理吸附来分离富集特定形态的重金属,其吸附机理随吸附剂的结构、性能的不同而不同。也因此,吸附法的核心是吸附剂的选择,典型的吸附材料有如活性炭、沸石、膨润土、海泡石、陶粒等,我国特别重视经济、有效、且易获得的天然或改性吸附材料的研究开发。
陶粒是一种以粘土质材料为原料的人造轻质粗集料,是具有一定强度的粘土矿物球形或类球形硅酸盐产品。其内部多孔,比表面积较大,化学和热稳定性好,对重金属具有较好的吸附性能,且易于再生,便于重复利用,因此陶粒是一种廉价有效的吸附剂,但单纯使用陶粒进行重金属吸附的效果有限。
发明内容
本发明要解决的问题是提供一种降镉生物改性陶粒及其制备方法,本发明的降镉生物改性陶粒是将吸附剂修复与微生物修复相结合,可用于治理水体中的镉污染问题。
为了解决上述技术问题,本发明提供一种降镉生物改性陶粒的制备方法,包括以下步骤:
1)、陶粒的预处理:
将陶粒先于1.5~2.5%(质量%)戊二醛溶液中浸泡,再水洗、灭菌、干燥,得无菌陶粒;
2)、先制备浓度≥1×108CFU/mL的耐镉功能菌株的菌悬液I,然后将菌悬液I离心后弃上清液,在离心所得的菌体沉淀中加入生理盐水将菌体复悬形成OD=0.9~1.1的菌悬液Ⅱ;
耐镉功能菌株优选Bacillus sp.K1;
3)、按照35±5g/100mL的料液比,将步骤1)所得的无菌陶粒与菌悬液Ⅱ混合后,先震荡1.5~2.5h,再烘干;
4)、将步骤3)所得的烘干后陶粒与菌悬液Ⅱ混合后,先震荡1.5~2.5h,再烘干;得降镉生物改性陶粒;
菌悬液Ⅱ的用量同步骤3)中菌悬液Ⅱ的用量。
作为本发明的降镉生物改性陶粒的制备方法的改进:步骤3)和步骤4)均为:按照80~120rpm的转速震荡。
作为本发明的降镉生物改性陶粒的制备方法的进一步改进:步骤3)的烘干为25~35℃烘干1.5~2.5小时;步骤4)的烘干为25~35℃烘干3.5~4.5小时;
作为本发明的降镉生物改性陶粒的制备方法的进一步改进:步骤1)为:将陶粒先于2%戊二醛溶液中浸泡2~4小时,再去离子水洗涤2~4次、120~122℃灭菌20~30min、25℃干燥5~7小时;得无菌陶粒。
作为本发明的降镉生物改性陶粒的制备方法的进一步改进:步骤1)中,陶粒的粒径为3~5mm。
作为本发明的降镉生物改性陶粒的制备方法的进一步改进,菌悬液Ⅰ的制备方法为:采用1%接种量在100mL牛肉膏蛋白胨培养基中接入耐镉功能菌株K1,于25℃、180rpm恒温振荡仪中培养至对数期,用紫外分 光光度计(600nm)调节OD=1。
本发明还同时提供了利用上述方法制备而得的降镉生物改性陶粒。
在本发明中,耐镉功能菌株为经由浙江大学环境与资源学院实验室筛选鉴定得出的耐镉菌株Bacillussp.K1(枯草芽孢杆菌,Bacteria;Firmicutes;Bacilli;Bacillales;Bacillaceae;Bacillus),对Cd具有吸附效果;在已公开的《Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil》中有告知。
本发明是使无菌陶粒和菌悬液混合培养,将耐镉菌株固定于无菌改性陶粒上。
本发明中的预处理后的无菌陶粒和菌株均具备吸附重金属镉的功能,其中,该菌株经由本实验室筛选得到、已验证对镉具备耐受性和吸附功能,而改性陶粒除本身具备吸附重金属的功能外,其粗糙多孔的表面结构有利于微生物的附着,以此为原理,本发明将吸附剂修复与生物修复相结合,从而对水体中的镉离子具有很强的吸附能力,也具备钝化土壤中重金属镉的潜质。本发明在制备方法上具有简便快速、成本低廉、无污染的优点,同时在应用上具有使用方便、降镉效果明显的优点,因此具有广阔的应用前景。本发明可用于治理水体中的镉污染问题,同时具备修复土壤中镉污染问题的潜质。
说明书附图
下面结合附图对本发明的具体实施方式作进一步详细说明。
图1为将耐镉菌株Bacillus sp.K1固定在改性陶粒表面的电镜图;
图1中:a、b、c、d分别为陶粒表面的4个区域(左、右、上、下);
图2为降隔生物改性陶粒在100mg/L的Cd 2+溶液中的吸附率-时间曲线图;
图3为降隔生物改性陶粒在100mg/L的Cd 2+溶液中的吸附动力学曲线图。
具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1、一种吸附镉功能生物陶粒,其制备方法为依次进行以下步骤:
1)、称取1200g陶粒(粒径为3~5mm),将陶粒在2%(质量%)戊二醛溶液中浸泡2~4h,以去离子水洗涤3遍,高温灭菌(在121℃灭菌20min),25℃下干燥6小时;得无菌陶粒。
说明:在整个浸泡过程中,陶粒必须始终被2%戊二醛溶液所浸没。
2)、于250mL锥形瓶中加入100mL牛肉膏蛋白胨培养基(为常规培养基),1%(体积%)接种量接入耐镉菌株Bacillus sp.k1,于25℃、180rpm恒温振荡仪中培养至对数期,用紫外分光光度计(600nm)调节OD=1,制备成菌悬液I(≥1×10 8CFU/mL)。
将菌悬液Ⅰ在8000r/min下离心10min,弃上清液,用20mL生理盐水将菌体复悬形成菌悬液Ⅱ,调节OD=1。
3)、称取无菌陶粒,使无菌陶粒和菌悬液II的用量比例为35g:100mL在锥形瓶中混合,以100rpm转速震荡2h,放入30℃烘箱烘干2h。
4)、取出烘箱中的陶粒,再一次进行与菌悬液Ⅱ进行混合(菌悬液Ⅱ的用量同上步骤),100rpm转速震荡2h后取出再放入30℃烘箱烘干4h。从而得到负载耐镉菌株Bacillus sp.k1的降隔生物改性陶粒,待用。
取降隔生物改性陶粒进行SEM扫描电子显微镜分析,为短杆状,从形态表征上观察其菌株固定效果:耐镉菌在陶粒间隙及表面均有分布。
实验1、降隔生物改性陶粒对镉污染水体的改良实验:
采用溶液培养实验,制备100mg/L CdSO 4溶液,称取降隔生物改性陶粒2.5g加入50ml镉溶液中,使用恒温振荡仪以180r/min转速于25℃恒温振荡,分别于15、30、45、60、90、120、150、180、210、240、270、300、330、360min后取样,静置10min后过滤,采用ICP-MS测定滤液中镉离子浓度。各处理重复3次,取每组平均值作为数据,并计算吸附量和吸附率:
t时刻陶粒对重金属离子的吸附量计算公式:
Figure PCTCN2021112743-appb-000001
t时刻陶粒对Cd离子的吸附率计算公式:
Figure PCTCN2021112743-appb-000002
其中:q t为t时刻单位重量吸附剂的离子吸附量,mg/g;E为t时刻吸附剂的离子吸附率;c0、ct分别为吸附前与吸附t时刻溶液中Cd离子的质量浓度,mg/L;V是反应溶液体积,L;m为吸附剂质量,g。
结果:本发明方法将耐镉菌株负载于改性陶粒上的效果如图1,可见存在大量Bacillus sp.k1杆菌形态的菌株附着在降隔生物改性陶粒的粗糙表面上,本方法负载效果佳。
本发明将降隔生物改性陶粒加入高浓度的100mg/L Cd污染溶液中,其随时间持续而达到的吸附率表现如图2。可见在360分钟内降隔生物改性陶粒可达到吸附平衡,在平衡吸附时,其吸附率高达约88%,此时溶液镉浓度为12.016mg/L。同时,在150分钟内吸附率即可达约80%,此时溶液镉浓度为23.061mg/L,对比原溶液显著降低。由图3中显示的吸附动力学曲线(吸附量-时间)可见,在整个吸附过程中降隔生物改性陶粒的吸附量呈现稳定的上升趋势,没有出现不稳定或解吸的现象,其t时刻单位重量吸附剂的离子吸附量为1.760mg/g。
上述结果可知,本发明所制作的降隔生物改性陶粒在0.05g/mL添加量下可显著降低高浓度(100mg/L)的镉污染溶液,其吸附率高达88%,在实际应用过程中可达到水污染处理厂对快速、大量处理镉污染水体的需求。且降隔生物改性陶粒吸附过程稳定可控,在实际应用中,可适应工厂各水处理工艺项目的调整和研发,可进行推广应用。
对比例1、取消实施例1步骤1)中的“陶粒在2%戊二醛溶液中浸泡”,即,将陶粒直接进行水洗、高温灭菌和干燥,其余等同于实施例1。最终所得物称为陶粒A。
对比例2-1、将无菌陶粒和菌悬液II的用量比由“35g:100mL”改成“25g:100mL”,其余等同于实施例1。最终所得物称为陶粒B。
对比例2-2、将无菌陶粒和菌悬液II的用量比由“35g:100mL”改成“45g:100mL”,其余等同于实施例1。最终所得物称为陶粒C。
对比例3、将耐镉菌株Bacillus sp.k1改成耐镉菌Arthrobacter m6(源自《耐镉菌联合植物吸收对土壤重金属镉污染的修复》),余等同于实施例1。最终所得物称为陶粒D。
将上述对比例所得陶粒按照实验1所述方法进行检测,360min对应的吸附率与实施例1的对比如表1所述。
表1实施例1、对比例1、2-1、2-2和3制备的陶粒360min对应的吸附
  吸附率
实施例1的陶粒 87.984%
陶粒A(对比例1) 65.88%
陶粒B(对比例2-1) 58.45%
陶粒C(对比例2-2) 60.25%
陶粒D(对比例3) 30.88%
最后,还需要注意的是,以上列举的仅是本发明的若干个具体实施例。显然,本发明不限于以上实施例,还可以有许多变形。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。

Claims (13)

  1. 降镉生物改性陶粒的制备方法,其特征在于包括以下步骤:
    1)、陶粒的预处理:
    将陶粒先于1.5~2.5wt.%戊二醛溶液中浸泡,再水洗、灭菌、干燥,得无菌陶粒;
    2)、先制备浓度≥1×10 8CFU/mL的耐镉功能菌株的菌悬液I,然后将所述菌悬液I离心后弃上清液,在离心所得的菌体沉淀中加入生理盐水将菌体复悬形成OD=0.9~1.1的菌悬液Ⅱ;
    3)、按照35±5g/100mL的料液比,将步骤1)所得的无菌陶粒与步骤2)所得的菌悬液Ⅱ混合后,先震荡1.5~2.5h,再烘干,得到烘干后陶粒;
    4)、将步骤3)所得的烘干后陶粒与步骤2)所得的菌悬液Ⅱ混合后,先震荡1.5~2.5h,再烘干;得所述降镉生物改性陶粒;
    所述步骤4)中菌悬液Ⅱ的用量同所述步骤3)中菌悬液Ⅱ的用量。
  2. 根据权利要求1所述的降镉生物改性陶粒的制备方法,其特征在于:
    所述耐镉功能菌株为Bacillus sp.K1。
  3. 根据权利要求2所述的降镉生物改性陶粒的制备方法,其特征在于:
    步骤3)中所述震荡和步骤4)所述震荡均为:按照80~120rpm的转速震荡。
  4. 根据权利要求3所述的降镉生物改性陶粒的制备方法,其特征在于:
    步骤3)的所述烘干为25~35℃烘干1.5~2.5小时;
    步骤4)的所述烘干为25~35℃烘干3.5~4.5小时。
  5. 根据权利要求1~4任一所述的降镉生物改性陶粒的制备方法,其特征在于:
    步骤1)为:将陶粒先于2wt.%戊二醛溶液中浸泡2~4小时,再用去离子水洗涤2~4次、120~122℃灭菌20~30min、25℃干燥5~7小时;得所 述无菌陶粒。
  6. 根据权利要求1~4任一所述的降镉生物改性陶粒的制备方法,其特征在于:
    步骤1)中,所述陶粒的粒径为3~5mm。
  7. 根据权利要求1所述的降镉生物改性陶粒的制备方法,其特征在于:
    菌悬液Ⅰ的制备方法为:采用1%接种量在牛肉膏蛋白胨培养基中接入耐镉功能菌株K1,于25℃、180rpm恒温振荡培养至对数期,用紫外分光光度计调节OD=1。
  8. 根据权利要求7所述的降镉生物改性陶粒的制备方法,其特征在于:所述紫外分光光度计的波长为600nm。
  9. 权利要求1~8任一所述的制备方法制备而得的降镉生物改性陶粒。
  10. 根据权利要求9所述的降镉生物改性陶粒,其特征在于,所述耐镉功能菌在陶粒间隙及表面均有分布。
  11. 权利要求9或10所述降镉生物改性陶粒对水体中镉离子吸附的应用。
  12. 根据权利要求11所述的应用,其特征在于,所述水体中镉离子的浓度为100mg/L;所述降镉生物改性陶粒的添加量为0.05g/mL。
  13. 权利要求9或10所述降镉生物改性陶粒钝化土壤中重金属镉的应用。
PCT/CN2021/112743 2021-04-15 2021-08-16 降镉生物改性陶粒及其制备方法 WO2022217796A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110408143.6A CN113106083B (zh) 2021-04-15 2021-04-15 降镉生物改性陶粒及其制备方法
CN202110408143.6 2021-04-15

Publications (1)

Publication Number Publication Date
WO2022217796A1 true WO2022217796A1 (zh) 2022-10-20

Family

ID=76717573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112743 WO2022217796A1 (zh) 2021-04-15 2021-08-16 降镉生物改性陶粒及其制备方法

Country Status (3)

Country Link
CN (1) CN113106083B (zh)
LU (1) LU500803B1 (zh)
WO (1) WO2022217796A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113106083B (zh) * 2021-04-15 2022-06-21 浙江大学 降镉生物改性陶粒及其制备方法
CN114793828A (zh) * 2022-04-29 2022-07-29 湖北省烟草科学研究院 一种烟草育苗基质及其制备和使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653754A (zh) * 2012-05-29 2012-09-05 中华人民共和国沈阳出入境检验检疫局 一种去除土壤中残留农药的微生物固定化颗粒的制备方法
CN109351770A (zh) * 2018-09-20 2019-02-19 鞍钢集团矿业有限公司 一种含尾矿和煤灰的陶粒及其制备方法与应用
CN111235076A (zh) * 2020-03-31 2020-06-05 山东碧蓝生物科技有限公司 一种天神芽孢杆菌、其菌剂及在重金属修复领域的应用
CN111363738A (zh) * 2020-04-22 2020-07-03 圣清环保股份有限公司 一种修复镉污染土壤的微生物菌剂及其制备方法与应用
CN113106083A (zh) * 2021-04-15 2021-07-13 浙江大学 降镉生物改性陶粒及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628437B (zh) * 2018-12-29 2022-04-05 河北大学 降低土壤镉含量的复合钝化剂及其制备方法与应用
CN110642598B (zh) * 2019-10-30 2021-10-29 湖北工业大学 离子选择性吸附陶粒的制备方法
CN110947357B (zh) * 2019-12-20 2021-11-26 华南农业大学 一种陶粒吸附性能改进的方法,改性陶粒及其应用
CN112317530B (zh) * 2020-09-29 2022-04-26 海南大学 一种真菌生物修复重金属镉污染水稻的有效方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102653754A (zh) * 2012-05-29 2012-09-05 中华人民共和国沈阳出入境检验检疫局 一种去除土壤中残留农药的微生物固定化颗粒的制备方法
CN109351770A (zh) * 2018-09-20 2019-02-19 鞍钢集团矿业有限公司 一种含尾矿和煤灰的陶粒及其制备方法与应用
CN111235076A (zh) * 2020-03-31 2020-06-05 山东碧蓝生物科技有限公司 一种天神芽孢杆菌、其菌剂及在重金属修复领域的应用
CN111363738A (zh) * 2020-04-22 2020-07-03 圣清环保股份有限公司 一种修复镉污染土壤的微生物菌剂及其制备方法与应用
CN113106083A (zh) * 2021-04-15 2021-07-13 浙江大学 降镉生物改性陶粒及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 May 2010, CENTRAL SOUTH UNIVERSITY, CN, article XIAOXI ZENG: "Isolation, Cadmium-resistance Mechanism and Cadmiums Biosorption of Heavy-metal-resistant Microbes", pages: 1 - 117, XP055976967 *

Also Published As

Publication number Publication date
CN113106083B (zh) 2022-06-21
LU500803B1 (en) 2022-05-02
CN113106083A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
WO2022217796A1 (zh) 降镉生物改性陶粒及其制备方法
CN108624582B (zh) 用于土壤修复的微生物制剂
CN111268880A (zh) 一种金属离子改性污泥基生物炭的制备方法及其应用
Zhang et al. An intensified degradation of phenanthrene with macroporous alginate–lignin beads immobilized Phanerochaete chrysosporium
CN113215009B (zh) 一种复合固定化菌剂及其制备方法与应用
CN111748483B (zh) 一株石油烃降解芽孢杆菌及其应用
CN107151665A (zh) 固定化内生菌生物吸附剂处理含铅废水的方法
Li et al. Adsorption of heavy metal tolerance strains to Pb 2+ and Cd 2+ in wastewater
CN108587950A (zh) 耐盐氨氧化细菌挂膜生物炭球的制备方法及应用
CN111154810B (zh) 一种用于酸性条件下固持铅离子的矿物生物改性方法以及改性矿物材料和应用
CN114231520A (zh) 一种高效转化土壤重金属铬的炭基生物菌剂
CN114807111A (zh) 一种复合固定化菌剂及其制备方法和应用
CN108866105B (zh) 用肠杆菌ly6生产纳米硫化镉的方法
CN111440756B (zh) 一种利用嗜热菌处理石油污水的方法
CN113462590A (zh) 一种复合微生物菌剂的制备及其在污染物多环芳烃降解中的应用
CN108570325B (zh) 用于高盐土壤修复的微生物制剂及其制备方法
CN109607822B (zh) 一种生态友好型河湖砷原位治理复合材料及其制备方法和应用
CN107151664A (zh) 固定化内生菌生物吸附剂及其制备方法
CN116622694A (zh) 一种悬浮型固定化藻菌共生颗粒及其制备方法和应用
CN105861366B (zh) 多环芳烃降解菌FA1在吸附重金属Pb离子中的应用
CN110241110B (zh) 利用磁性纳米颗粒固定化邻苯二甲酸二丁酯降解菌的方法及应用
CN108384777B (zh) 土壤修复用多孔微生物制剂的制备方法
Andleeb et al. Biodegradation of anthraquinone dye by Aspergillus niger sa1 in self designed fluidized bed bioreactor
CN107090422B (zh) 一种含可溶性二硫化钼的微生物菌剂及其应用
CN116926056A (zh) 一种固定化菌剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936668

Country of ref document: EP

Kind code of ref document: A1