WO2022213794A1 - 有机化合物及包含其的电子元件和电子装置 - Google Patents

有机化合物及包含其的电子元件和电子装置 Download PDF

Info

Publication number
WO2022213794A1
WO2022213794A1 PCT/CN2022/081751 CN2022081751W WO2022213794A1 WO 2022213794 A1 WO2022213794 A1 WO 2022213794A1 CN 2022081751 W CN2022081751 W CN 2022081751W WO 2022213794 A1 WO2022213794 A1 WO 2022213794A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
independently selected
Prior art date
Application number
PCT/CN2022/081751
Other languages
English (en)
French (fr)
Inventor
岳娜
华正伸
金荣国
李应文
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to US18/012,913 priority Critical patent/US20230257387A1/en
Publication of WO2022213794A1 publication Critical patent/WO2022213794A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the technical field of organic electroluminescent materials, and in particular, to an organic compound and electronic components and electronic devices comprising the same.
  • Organic electroluminescent devices are thin-film devices prepared from organic light-emitting materials, which can emit light under the excitation of an electric field.
  • organic electroluminescent devices also need to have different organic functional material layers, and the ⁇ -bond or anti- ⁇ -bond orbitals of the organic functional materials form shifted valences and conduction properties, and their overlapping produces respectively.
  • the highest occupied orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) generate charge transport through intermolecular hopping.
  • the electron blocking layer is used to block the electrons transmitted from the organic light-emitting layer, thereby ensuring that the electrons and holes can be efficiently recombined in the organic light-emitting layer; at the same time, the electron blocking layer can also block the organic light-emitting layer.
  • Excitons can reduce the triplet quenching of excitons, thereby ensuring the luminous efficiency of organic electroluminescent devices.
  • the compound of the electron blocking layer has a relatively high LUMO value, which can effectively block the transport and diffusion of electrons and excitons from the organic light-emitting layer to the anode direction.
  • the continuous improvement of the performance of organic electroluminescent devices requires not only the innovation of the structure and manufacturing process of the organic electroluminescent devices, but also the continuous research and innovation of organic electroluminescent materials.
  • the purpose of the present disclosure is to overcome the above-mentioned deficiencies in the prior art, and to provide an organic compound and electronic components and electronic devices including the same.
  • an organic compound is provided, and the general structural formula of the organic compound is shown in Chemical Formula 1:
  • R 5 and R 6 are the same or different from each other, and are independently selected from alkyl groups with 1 to 10 carbon atoms, aryl groups with 6 to 20 carbon atoms, and haloalkyl groups with 1 to 10 carbon atoms.
  • the connected carbon atoms together form a substituted or unsubstituted 5-18-membered aliphatic ring or a 5-18-membered aromatic ring, and the substituents on the 5-18-membered aliphatic ring or the 5-18-membered aromatic ring are independently selected.
  • R 1 , R 2 , R 3 and R 4 is the same or different from each other, and is independently selected from hydrogen, deuterium, halogen, cyano, alkyl having 1 to 10 carbon atoms, and 3 to 10 carbon atoms. cycloalkyl group, aryl group with 6-20 carbon atoms, heteroaryl group with 3-12 carbon atoms or group represented by Chemical Formula 2, and the R 1 , R 2 , R 3 and R 4 There are 1, 2, 3 or 4 groups represented by chemical formula 2;
  • R 1 , R 2 , R 3 and R 4 are represented by Ri, n 1 to n 4 are represented by ni , ni represents the number of Ri, i is a variable, representing 1, 2, 3 or 4, when i When i is 1 or 4, n i is selected from 1, 2, 3 or 4; when i is 2, n i is selected from 1, 2 or 3; when i is 3, n i is selected from 1 or 2; and when When n i is greater than 1, the values of any two n i are the same or different;
  • L 1 , L 2 and L 3 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted arylene group having 3 to 30 carbon atoms. substituted heteroarylene;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, or substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms;
  • the substituents in L 1 , L 2 , L 3 , Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, heteroaryl group having 3 to 20 carbon atoms, carbon Aryl having 6 to 20 atoms, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, deuterated alkyl group having 1 to 10 carbon atoms, and 1 carbon atom ⁇ 10 alkoxy groups, 3-10 carbon atoms cycloalkyl groups, 1-10 carbon atoms alkylthio groups, 3-12 carbon atoms trialkylsilyl groups, 6 carbon atoms ⁇ 18 arylsilyl groups, aryloxy groups with 6-20 carbon atoms, or arylthio groups with 6-20 carbon atoms; or, any of L 1 , L 2 , L 3 , Ar 1 and Ar 2 Two adjacent substituents form a 5-13-membered aliphatic
  • the organic compound of the present disclosure has a fused-ring parent core of carbazolofluorene, the core structure has high hole mobility, and the parent core is a non-planar macroconjugated structure, which can effectively improve the steric hindrance of the material , to avoid compound stacking, thereby improving the stability of film formation, and connecting arylamine groups on the fused ring can further effectively reduce the interaction between the molecules of the large planar conjugated structure and reduce the stacking of molecules.
  • By adjusting the substitution on the arylamine group further improve the hole transport ability, reduce the energy level difference between singlet state and triplet state, so that the compound has excellent hole transport performance.
  • the compound of the present disclosure can be applied to a hole transport layer or an electron blocking layer (hole adjustment layer) of an organic electroluminescence device, so that the device has a lower driving voltage and can also improve the luminous efficiency and service life of the device.
  • an electronic component comprising an anode, a cathode, and at least one functional layer interposed between the anode and the cathode, the functional layer comprising the above-mentioned organic compound.
  • an electronic device including the above electronic element.
  • FIG. 1 is a schematic structural diagram of an embodiment of an organic electroluminescent device of the present disclosure.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of the embodiments of the present disclosure.
  • the present disclosure provides an organic compound whose general structural formula is shown in Chemical Formula 1:
  • R 5 and R 6 are the same or different from each other, and are independently selected from alkyl groups with 1 to 10 carbon atoms, haloalkyl groups with 1 to 10 carbon atoms, and cycloalkanes with 3 to 10 carbon atoms.
  • R 5 and R 6 are connected to each other to be common with them
  • the connected carbon atoms together form a substituted or unsubstituted 5-18-membered aliphatic ring or a 5-18-membered aromatic ring, and the substituents on the 5-18-membered aliphatic ring or the 5-18-membered aromatic ring are independently selected.
  • R 1 , R 2 , R 3 and R 4 is the same or different from each other, and is independently selected from hydrogen, deuterium, halogen, cyano, alkyl having 1 to 10 carbon atoms, and 3 to 10 carbon atoms. cycloalkyl group, aryl group with 6-20 carbon atoms, heteroaryl group with 3-12 carbon atoms or group represented by Chemical Formula 2, and the R 1 , R 2 , R 3 and R 4 There are 1, 2, 3 or 4 groups represented by chemical formula 2;
  • R 1 , R 2 , R 3 and R 4 are represented by Ri, n 1 to n 4 are represented by ni , ni represents the number of Ri, i is a variable, representing 1, 2, 3 or 4, when i When i is 1 or 4, n i is selected from 1, 2, 3 or 4; when i is 2, n i is selected from 1, 2 or 3; when i is 3, n i is selected from 1 or 2; and when When n i is greater than 1, the values of any two n i are the same or different;
  • L 1 , L 2 and L 3 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, or a substituted or unsubstituted arylene group having 3 to 30 carbon atoms. substituted heteroarylene;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, or substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms;
  • the substituents in L 1 , L 2 , L 3 , Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, heteroaryl group having 3 to 20 carbon atoms, carbon Aryl having 6 to 20 atoms, alkyl group having 1 to 10 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, deuterated alkyl group having 1 to 10 carbon atoms, and 1 carbon atom ⁇ 10 alkoxy groups, 3-10 carbon atoms cycloalkyl groups, 1-10 carbon atoms alkylthio groups, 3-12 carbon atoms trialkylsilyl groups, 6 carbon atoms ⁇ 18 arylsilyl groups, aryloxy groups with 6-20 carbon atoms, arylthio groups with 6-20 carbon atoms; or, any of L 1 , L 2 , L 3 , Ar 1 and Ar 2 Two adjacent substituents form a 5-13-membered aliphatic
  • R 1 , R 2 , R 3 and R 4 is the group shown in Chemical Formula 2, and the rest are hydrogen.
  • the organic compound has the structure shown in Formula 1A, 2A, 3A or 4A shown below:
  • the R 1 , R 2 , R 3 and R 4 are independently selected from hydrogen, deuterium, cyano, fluorine, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl, trideuterium substituted methyl, trimethylsilyl, phenyl, naphthyl, biphenyl, pyridyl, pyrimidinyl, quinolyl, isoquinolyl, carbazolyl, dibenzofuranyl, dibenzothienyl , dimethylfluorenyl or N-phenylcarbazolyl.
  • organic compound has the structure shown below:
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, chlorine
  • formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the R" on the two benzene rings The number q of "substituents" can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent, namely Rc can be, for example, deuterium, halogen group, cyano group, heteroaryl group with 3 to 20 carbon atoms, aryl group with 6 to 20 carbon atoms, and aryl group with 1 to 10 carbon atoms.
  • Substituted functional groups may be substituted by one or more of the above-mentioned Rc substituents; when two substituents Rc are attached to the same atom, the two substituents Rc may exist independently or be attached to each other to A ring is formed with the atom; when there are two adjacent substituents Rc on the functional group, the adjacent two substituents Rc can exist independently or be condensed into a ring with the functional group to which they are connected.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 3 is selected from a substituted arylene group having 12 carbon atoms, then all carbon atoms in the arylene group and the substituents thereon are 12. For example: Ar 1 is Then the number of carbon atoms is 15; L 3 is Its carbon number is 12.
  • alkyl may include straight-chain or branched-chain alkyl groups.
  • An alkyl group can have 1 to 10 carbon atoms, and numerical ranges such as “1 to 10" refer to each integer in the given range.
  • the alkyl group is selected from alkyl groups with 1 to 4 carbon atoms, and specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl , tert-butyl.
  • cycloalkyl refers to saturated hydrocarbons containing alicyclic structures, including monocyclic and fused ring structures.
  • Cycloalkyl groups can have 3 to 10 carbon atoms, and numerical ranges such as "3 to 10" refer to each integer in the given range. Cycloalkyl groups can also be divided into two rings sharing one carbon atom—a spiro ring, two rings sharing two carbon atoms—a fused ring, and two rings sharing two or more carbon atoms—a bridged ring.
  • Specific examples of cycloalkyl groups include, but are not limited to, cyclohexyl, cyclopentyl, or adamantyl.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation.
  • two or more aromatic groups linked by carbon-carbon bond conjugation may also be considered aryl groups of the present disclosure.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10] phenanthryl, pyrenyl, benzofluoranthene, Base et al.
  • the "substituted or unsubstituted aryl group" of the present disclosure may contain 6 to 30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group is 6 to 25, in some embodiments , the number of carbon atoms in the substituted or unsubstituted aryl group is 6-20, in other embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group is 6-18, in other embodiments The number of carbon atoms in the substituted or unsubstituted aryl group is 6 to 15.
  • the number of carbon atoms in an aryl group can be 6, 10, 12, 13, 14, 15, 16, 18, 20, 24, 25 or 30, of course, The number of carbon atoms may also be other numbers, which will not be listed here.
  • biphenyl can be understood as a phenyl substituted aryl group, and can also be understood as an unsubstituted aryl group.
  • the arylene group referred to refers to a divalent or multivalent group formed by the further loss of one or more hydrogen atoms from an aryl group.
  • a substituted aryl group may be one or two or more hydrogen atoms in an aryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy and other groups are substituted.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy and other groups are substituted.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituents on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the aryl group and its substituents. The total
  • the fluorenyl group may be substituted, and the two substituent groups may be combined with each other to form a spiro structure.
  • Specific examples of the substituted fluorenyl group include but are not limited to the following structures:
  • an aryl group having 6-20 carbon atoms specific examples thereof include but are not limited to: phenyl, naphthyl, anthracenyl, phenanthryl, dimethylfluorenyl, biphenyl, etc. Wait.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing 1, 2, 3, 4, 5, 6, 7 or more heteroatoms in the ring, which may be B, O, N , at least one of P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene thieny
  • thienyl, furanyl, phenanthroline, etc. are heteroaryl groups of a single aromatic ring system type
  • N-phenylcarbazolyl and N-pyridylcarbazolyl are polycyclic groups connected by carbon-carbon bond conjugation System type of heteroaryl.
  • the "substituted or unsubstituted heteroaryl" of the present disclosure may contain 3 to 30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl is 5 to 25, and in others In embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 5-20, in other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 5-18, in In other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 5-12.
  • the number of carbon atoms in a substituted or unsubstituted heteroaryl group can be 3, 4, 5, 7, 12, 13, 14, 15, 16, 18, 20 , 24, 25 or 30, of course, the number of carbon atoms can also be other numbers, which will not be listed here.
  • the referenced heteroarylene group refers to a divalent or multivalent group formed by the heteroaryl group further losing one or more hydrogen atoms.
  • a substituted heteroaryl group may be one or two or more hydrogen atoms in the heteroaryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, alkoxy and other groups.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, alkoxy and other groups.
  • the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • a heteroaryl group having 3-20 carbon atoms specific examples thereof include but are not limited to: carbazolyl, dibenzofuranyl, dibenzothienyl, pyridyl, quinoline group, isoquinolinyl, quinoxalinyl or quinazolinyl.
  • halogen groups may include fluorine, iodine, bromine, or chlorine, among others.
  • trialkylsilyl group having 3 to 12 carbon atoms include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • an unpositioned linker refers to a single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. -1) to any possible connection method shown in formula (f-10).
  • the dibenzofuranyl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of one side of the benzene ring,
  • the meaning represented by it includes any possible connection modes shown by formula (X'-1) to formula (X'-4).
  • a non-positioned substituent in the present disclosure refers to a substituent attached through a single bond extending from the center of the ring system, which means that the substituent may be attached at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioning link, and the meanings represented by the formula (Y-1) to Any possible connection mode shown by formula (Y-7).
  • the L 1 , L 2 and L 3 are the same or different, and are each independently selected from a single bond or a substituted or unsubstituted arylene group having 6 to 18 carbon atoms, A substituted or unsubstituted heteroarylene group having 5 to 18 carbon atoms.
  • the substituents in L 1 , L 2 and L 3 are the same or different, and each is independently selected from deuterium, halogen group, cyano group, phenyl group, trialkyl silicon having 3 to 8 carbon atoms group, alkyl group with 1 to 4 carbon atoms, haloalkyl group with 1 to 4 carbon atoms, deuterated alkyl group with 1 to 4 carbon atoms, alkoxy group with 1 to 4 carbon atoms, carbon An alkylthio group having 1 to 4 atoms, a phenyl group, a naphthyl group, a biphenyl group, an anthracenyl group, a phenanthryl group, a pyridyl group, a dibenzothienyl group, a dibenzofuranyl group or a carbazolyl group.
  • the L 1 , L 2 and L 3 are each independently selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted anthracenylene, substituted or unsubstituted phenanthrene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienylene, substituted or unsubstituted An unsubstituted fluorenylene group, a substituted or unsubstituted carbazolylylene group, or a subunit group formed by connecting two or three of the above-mentioned subunits through a single bond.
  • the substituents in L 1 , L 2 and L 3 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, trifluoro Methyl, trideuteromethyl, trimethylsilyl, cyclopentyl, phenyl, biphenyl, naphthyl, anthracenyl, phenanthryl, dibenzothienyl, dibenzofuranyl, carbazolyl or pyridyl.
  • the L 1 , L 2 and L 3 are each independently selected from a single bond or a substituted or unsubstituted group V, and the unsubstituted group V is selected from the following groups: group of:
  • the substituted group V has one or more substituents, each of which is independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl group, trifluoromethyl, trideuteromethyl, trimethylsilyl, phenyl, naphthyl or pyridyl; when the number of substituents of V is greater than 1, the substituents are the same or different.
  • plural means two or more.
  • the L 1 , L 2 and L 3 are independently selected from the group consisting of a single bond or the following groups:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 25 carbon atoms, or 5 to 5 carbon atoms. 25 of substituted or unsubstituted heteroaryl.
  • the substituents in Ar 1 and Ar 2 are independently selected from deuterium, halogen group, cyano group, aryl group with 6-15 carbon atoms, and heteroaryl group with 5-12 carbon atoms group, alkyl group with 1 to 4 carbon atoms, trialkylsilyl group with 3 to 8 carbon atoms, cycloalkyl group with 5 to 10 carbon atoms, haloalkyl group with 1 to 4 carbon atoms, A deuterated alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or an alkylthio group having 1 to 4 carbon atoms.
  • the substituents in Ar 1 and Ar 2 are independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, trifluoromethyl, Trideuteromethyl, trimethylsilyl, methoxy, isopropoxy, phenyl, cyclohexyl, phenyl, naphthyl, fluorenyl, dibenzothienyl, dibenzofuranyl, phenanthryl or carbazolyl.
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted naphthyl, Substituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted pyridyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted phenothiazinyl, substituted or unsubstituted phenoxthiyl.
  • described Ar 1 and Ar 2 are independently selected from substituted or unsubstituted group W, and unsubstituted group W is selected from the group consisting of the following groups:
  • the substituted group W has one or more substituents, each of which is independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl , trifluoromethyl, trideuteromethyl, trimethylsilyl, methoxy, isopropoxy, phenyl, cyclohexyl, phenyl, naphthyl, fluorenyl, dibenzothienyl, diphenyl and furanyl, phenanthryl or carbazolyl; when the number of W substituents is greater than 1, the substituents are the same or different.
  • Ar 1 and Ar 2 are independently selected from the group consisting of the following groups:
  • the R 1 , R 2 , R 3 and R 4 are each independently selected from hydrogen, the group shown in Chemical Formula 2, deuterium, cyano, fluorine, methyl, ethyl , isopropyl, tert-butyl, trifluoromethyl, trideuteromethyl, trimethylsilyl, phenyl, naphthyl, biphenyl, dimethylfluorenyl, pyridyl, pyrimidinyl, quinoline group, isoquinolinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, dimethylfluorenyl or N-phenylcarbazolyl, and each of the R 1 , R 2 , R 3 and One and only one of R 4 is a group represented by Chemical Formula 2.
  • the R 5 and R 6 are each independently an alkyl group with 1-4 carbon atoms, an aryl group with a carbon number of 6-12, or, R 5 and R 6 are mutually Linked to form an unsubstituted 5-10-membered aliphatic ring or a substituted or unsubstituted 9-14-membered aromatic ring together with the carbon atoms to which they are commonly attached, the substituents on the 9-14-membered aromatic ring are each independently It is selected from deuterium, halogen group, cyano group or alkyl group having 1 to 4 carbon atoms.
  • the R 5 and R 6 are each independently methyl, ethyl, n-propyl, isopropyl, tert-butyl, trifluoromethyl, trideuteromethyl, phenyl, naphthyl, biphenyl, terphenyl, fluorenyl, dimethylfluorenyl, anthracenyl, phenanthryl, pyridyl, dibenzothienyl, dibenzofuranyl or carbazolyl, or R 5 and R are attached to each other to form, together with the carbon atom to which they are attached, a fluorene ring, cyclopentane, cyclohexane or
  • the R and R are each independently selected from methyl or the following groups:
  • R and R are connected to each other to form the following spiro ring together with the carbon atom to which they are commonly connected:
  • the organic compound is selected from the group formed by:
  • the present disclosure also provides an electronic component including an anode and a cathode disposed opposite to each other, and at least one functional layer interposed between the anode and the cathode, the functional layer comprising the organic compound of the present disclosure.
  • the functional layer includes a hole transport layer and/or an electron blocking layer, and the electron blocking layer or hole transport layer includes the organic compound.
  • the electronic component described in the present disclosure is an organic electroluminescent device or a solar cell, and further optionally, the organic electroluminescent device is a red organic electroluminescent device or a green organic electroluminescent device.
  • the organic electroluminescent device includes an anode 100, a cathode 200, and at least one functional layer 300 between the anode layer and the cathode layer.
  • Layer 300 includes hole injection layer 310, hole transport layer 320, electron blocking layer 330, organic electroluminescence layer 340, electron transport layer 350 and electron injection layer 360; hole injection layer 310, hole transport layer 320, electron
  • the blocking layer 330 , the organic electroluminescence layer 340 , the electron transport layer 350 and the electron injection layer 360 may be sequentially formed on the anode 100 .
  • the hole transport layer 320 and/or the electron blocking layer 330 may contain the organic compounds described in the present disclosure.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer 320 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. This does not make special restrictions.
  • the hole transport layer 320 is composed of the compound NPB. In another embodiment of the present disclosure, the hole transport layer 320 is composed of the compounds of the present disclosure.
  • the electron blocking layer 330 is used to block the electrons transmitted from the organic light emitting layer 340 , thereby ensuring that electrons and holes can be recombined in the organic light emitting layer 340 efficiently; at the same time, the electron blocking layer 330 can also block the organic light emitting layer 340 The diffused excitons reduce the triplet quenching of the excitons, thereby ensuring the luminous efficiency of the organic electroluminescent device.
  • the electron blocking layer 330 can effectively block the transmission and diffusion of electrons and excitons from the organic light-emitting layer 340 to the anode 100 .
  • the electron blocking layer 330 is composed of the organic compound provided by the present disclosure.
  • the organic electroluminescent layer 340 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic electroluminescent layer 340 is composed of a host material and a guest material.
  • the holes and electrons injected into the organic electroluminescent layer 340 can recombine in the organic electroluminescent layer 340 to form excitons, and the excitons transfer energy to the organic electroluminescent layer 340.
  • Host material the host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic electroluminescent layer 340 can be metal chelate compounds, bis-styryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not particularly limited in the present disclosure .
  • the host material of the organic electroluminescent layer 340 is CBP.
  • the guest material of the organic electroluminescent layer 340 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not described in this disclosure. special restrictions.
  • the guest material of the organic electroluminescent layer 340 is Ir(piq) 2 (acac).
  • the electron transport layer 350 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from benzimidazole derivatives, oxadiazole derivatives, quinoxaline Derivatives or other electron transport materials.
  • the compounds of the present disclosure form an electron-deficient large conjugated planar structure, which has the advantages of asymmetric structure and large steric hindrance, which can reduce intermolecular cohesion and crystallization tendency, thereby increasing the electronic transfer rate.
  • the electron transport layer 350 is composed of ET-06 and LiQ.
  • the cathode 200 includes a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multi-layer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca, but not limited thereto.
  • a metal electrode comprising silver and magnesium is preferably included as the cathode.
  • a hole injection layer 310 is further disposed between the anode 100 and the hole transport layer 320 to enhance the capability of injecting holes into the hole transport layer 320 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in the present disclosure.
  • the hole injection layer 310 is composed of F4-TCNQ.
  • an electron injection layer 360 is further disposed between the cathode 200 and the electron transport layer 350 to enhance the capability of injecting electrons into the electron transport layer 350 .
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 360 includes ytterbium (Yb).
  • the present disclosure also provides an electronic device including the electronic element described in the present disclosure.
  • the electronic device provided by the present disclosure is an electronic device 400
  • the electronic device 400 includes the above-mentioned organic electroluminescent device.
  • the electronic device may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like.
  • the rest of the conventional reagents are from Shantou Xilong Chemical Factory, Guangdong Guanghua Chemical Reagent Factory, Guangzhou Chemical Reagent Factory, Tianjin Haoyuyu Chemical Co., Ltd., Tianjin Fuchen Chemical Reagent Factory, Wuhan Xinhuayuan Technology Development Co., Ltd., Qingdao Tenglong It can be purchased from Chemical Reagent Co., Ltd. and Qingdao Ocean Chemical Factory.
  • Anhydrous tetrahydrofuran, dioxane, toluene, ether and other anhydrous solvents are obtained by refluxing and drying with metallic sodium.
  • reaction in each synthesis example is generally carried out under the positive pressure of nitrogen or argon, or a drying tube is set on the anhydrous solvent (unless otherwise stated); in the reaction, the reaction flask is plugged with a suitable rubber stopper, The substrate is injected into the reaction vial via a syringe. All glassware used was dried.
  • the chromatographic column was a silica gel column, and silica gel (100-200 mesh) was purchased from Qingdao Ocean Chemical Factory.
  • the measurement conditions of low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column type: Zorbax SB-C18, 2.1 ⁇ 30 mm, 3.5 microns, 6 min, flow rate 0.6 mL/ min.
  • Mobile phase 5%-95% (acetonitrile with 0.1% formic acid) in (water with 0.1% formic acid) using electrospray ionization (ESI) at 210nm/254nm with UV detection.
  • ESI electrospray ionization
  • Hydrogen nuclear magnetic resonance spectrum Bruker 400MHz nuclear magnetic instrument, at room temperature, with CDCl 3 as solvent (in ppm), with TMS (0 ppm) as reference standard. When multiplets are present, the following abbreviations will be used: s (singlet), d (doublet), t (triplet), m (multiplet).
  • Target compounds were detected by UV at 210 nm/254 nm using Agilent 1260 pre-HPLC or Calesep pump 250 pre-HPLC (column type: NOVASEP 50/80 mm DAC).
  • Tetrabutylammonium bromide (5.47g, 16.96mmol), tetrakis(triphenylphosphine)palladium (9.80g, 8.48mmol) and potassium carbonate (175.77g, 1271.76mmol) were added, and the mixture was stirred until After clarification, the reaction was refluxed for 24 h. After the reaction was completed, it was cooled to room temperature. Add dichloromethane for extraction, wash the organic phase with water until neutral, collect the organic phase, dry the organic phase with anhydrous magnesium sulfate, filter the filtrate and concentrate under reduced pressure to obtain the crude product; the crude product is purified by silica gel column chromatography to obtain intermediate SA 3-1 (196 g, yield: 71.3%).
  • the intermediate shown in the following table 1 is synthesized with reference to the synthetic method of the intermediate SA 3-1, wherein, the reactant SA 1-X (X is an integer of 2 to 4) is used to replace the reactant SA 1-1, and the reactant SA 2 -X (X is an integer of 1 to 3) replaces the reactant SA 2-1 to synthesize the intermediate SA 3-X (X is an integer of 2 to 5) shown in Table 1 below.
  • the intermediate shown in the following table 2 is synthesized with reference to the synthetic method of the intermediate SA 4-1, wherein the intermediate SA 3-X (X is an integer of 2 to 5) replaces the reactant SA 3-1, and the synthesis is shown in the following table 2
  • the intermediate shown in the following table 3 is synthesized with reference to the synthetic method of the intermediate SB 2-1, wherein SB 1-X (X is an integer of 2 to 5) replaces the reactant SB 1-1 to synthesize the intermediate shown in the following table 3 SB 2-X (X is an integer of 2 to 5).
  • SB-1-1 (109 g, 322.48 mmol) was added to the three-necked flask, dry THF (545 mL) was added, and cooled to -10°C, SB-3-1 (61.29 g, 338.60 mmol) was added, and the reaction was continuously stirred. The temperature was raised to room temperature, then NH 4 Cl (500 mL) was added for quenching, ethyl acetate was added to the reaction solution, the separated organic layer was washed with water, then dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain a concentrate, which was used Toluene and n-heptane were recrystallized.
  • the intermediate shown in table 6 is synthesized with reference to the synthetic method of intermediate SB 8-1, wherein SB 2-X (X is an integer of 3 to 5) replaces intermediate SB 2-1, SB 7-X (X is 1 Or 2) replace the reactant SB 7-1 to synthesize the intermediate SB 8-X (X is an integer from 3 to 5) shown in Table 6 below.
  • the intermediate shown in the following table 7 is synthesized with reference to the synthetic method of the intermediate SB 9-1, wherein SB 1-X (X is an integer of 2 to 4) replaces the reactant SB 1-1, and the intermediate shown in the following table 7 is synthesized Body SB 9-X (X is an integer of 2 to 4).
  • the intermediate shown in the following table 8 was synthesized with reference to the synthetic method of the intermediate SC 3-1, wherein SC 2-2 replaced the reactant SC 2-1, and the intermediate SC 3-2 shown in the following table 8 was synthesized.
  • intermediates shown in the following table 10 are synthesized with reference to the synthetic method of intermediate A 1-1, wherein intermediate SY Z-X (X is an integer from 1 to 7, Y is A, B or C, Z is 4, 6, 8 or 9) or reactant SA 4-6 instead of intermediate SA 4-1 to synthesize intermediate Y 1-X (X is an integer from 1 to 18, Y is A, B or C) as shown in Table 10 below.
  • intermediates shown in the following table 11 were synthesized with reference to the synthetic method of intermediate A 3-1, wherein intermediate Y 1-X (X is an integer from 1 to 18, Y is A, B or C) replaces intermediate A 1- 1.
  • Reactant A 2-X (X is an integer from 1 to 6) replaces reactant A 2-1 to synthesize intermediate Y 3-X (X is an integer from 1 to 18, Y is A as shown in Table 11 below) , B or C).
  • intermediate Y 3-X (X is an integer from 1 to 18, Y is A, B or C) replaces intermediate A3-1 , synthesizing the intermediate Y 4-X (X is an integer from 1 to 18, Y is A, B or C) as shown in Table 12 below.
  • reaction solution was extracted with toluene, the organic phase was separated, dried over anhydrous magnesium sulfate, and the filtrate was filtered to remove the solvent under reduced pressure to obtain a crude product; the crude product was purified by silica gel column chromatography to obtain Intermediate A 6-1 (34.04 g, yield : 67.3%).
  • intermediate Y 4-X (X is an integer of 1 to 18, Y is A, B or C) replaces intermediate A 4- 1.
  • the reactant A 5-X (X is an integer of 1 to 4) replaces the reactant A 5-1, and the intermediate Y 6-X shown in the following table 13 is synthesized (X is an integer of 1 to 18, and Y is A , B or C).
  • reaction solution was extracted with chloroform, the organic phase was separated, and the organic phase was dried using anhydrous magnesium sulfate. After filtration, the filtrate was evaporated under reduced pressure to remove the solvent to obtain the crude product; the crude product was purified by silica gel column chromatography to obtain Intermediate A 7-1 (21.65 g , yield: 72.0%).
  • intermediate Y 6-X (X is an integer of 1 to 18, Y is A, B or C) replaces intermediate A 6- 1.
  • intermediates shown in the following table 15 are synthesized with reference to the synthetic method of intermediate A 8-1, wherein intermediate Y7-X (X is an integer of 1 to 14 or 17, Y is A, B or C) replaces intermediate A 7 -1, Synthesize the intermediate Y 8-X shown in Table 15 below (X is an integer from 1 to 14 or 17, and Y is A, B or C).
  • intermediate shown in the following table 16 was synthesized with reference to the synthetic method of intermediate A 10-1, wherein intermediate Y 8-X (X is an integer of 1 to 14 or 17, Y is A, B or C) replaces intermediate A 8-1, the reactant A 9-X (X is an integer from 1 to 10) replaces the reactant A 9-1 to synthesize the intermediate Y 10-X (X is an integer from 1 to 14 or 17 as shown in Table 16 below) , Y is A, B or C).
  • intermediate shown in the following table 17 was synthesized with reference to the synthesis method of intermediate A 12-1, wherein intermediate Y Z-X (X is an integer from 1 to 18, Y is A, B or C, and Z is 7 or 10) replaces the intermediate Body A 7-1, reactant A 11-X (X is an integer from 1 to 13) replaces reactant A 11-1, and synthesize intermediates Y 12-X and Y 13-X (X is the following table 17) An integer of 1 to 18, Y is A, B or C).
  • the anode 100ITO substrate was cut into a size of 40mm (length) x 40mm (width) x 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with a cathode 200, an anode 100 and an insulating layer pattern, using ultraviolet ozone And O 2 :N 2 plasma is used for surface treatment to increase the work function of the anode 100 (experimental substrate), and the surface of the ITO substrate is cleaned with an organic solvent to remove scum and oil stains on the surface of the ITO substrate.
  • Compound F4-TCNQ was vacuum evaporated on the experimental substrate to form a thickness of The hole injection layer 310 (HIL) of the The hole transport layer 320 (HTL).
  • HIL hole injection layer 310
  • HTL The hole transport layer 320
  • Compound 1 was vacuum evaporated on the hole transport layer 320 (HTL) to form a thickness of The electron blocking layer 330 (EBL).
  • the organic electroluminescent layer 340 red light-emitting layer, R-EML.
  • ET-06 and LiQ were mixed in a weight ratio of 1:1 and evaporated to form Thick electron transport layer 350 (ETL), then Yb is evaporated on the electron transport layer to form a thickness of The electron injection layer 360 (EIL).
  • Magnesium (Mg) and silver (Ag) were vacuum-deposited on the electron injection layer at a film thickness ratio of 1:9 to form a thickness of the cathode 200.
  • CP-5 was vapor-deposited on the cathode 200 to form a thickness of the capping layer (CPL), thereby completing the fabrication of red organic electroluminescent devices.
  • a red organic electroluminescent device was fabricated in the same manner as in Example 1, except that the compounds listed in Table 21 were used instead of Compound 1 in forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated by the same method as in Example 1 except that Compound A was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated in the same manner as in Example 1, except that Compound B was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated by the same method as in Example 1 except that Compound C was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated by the same method as in Example 1 except that Compound D was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated by the same method as in Example 1 except that Compound E was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • a red organic electroluminescent device was fabricated by the same method as in Example 1 except that Compound F was used instead of Compound 1 when forming the electron blocking layer (EBL).
  • EBL electron blocking layer
  • the properties of the organic electroluminescent devices prepared in Examples 1 to 50 are improved compared with the comparative example.
  • the devices corresponding to the organic compounds used as electron blocking layers are compared with the devices corresponding to the compounds of Comparative Examples 1 to 6 in the prior art, and the driving voltage of the organic electroluminescent devices is reduced by at least 0.19% V, the current efficiency (Cd/A) is increased by at least 10.67%, the lifespan is increased by at least 16.27%, and the highest lifespan can be increased by 179h.
  • the luminous efficiency (Cd/A) and the lifetime (T95) of the electronic device are significantly improved by using the organic compound of the present disclosure as the electron blocking layer of the electronic device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供一种有机化合物及其电子元件和电子装置,属于有机电致发光技术领域。本公开的化合物包含稠合共轭环体系,还具有立体的芳胺基团,能有效提高材料的热稳定性、膜稳定性、载流子迁移率。本公开化合物应用于有机电致发光器件可以提高器件的发光效率和寿命。

Description

有机化合物及包含其的电子元件和电子装置
本公开要求在2021年04月08日提交中国国家知识产权局的、申请号为202110377495.X的中国专利申请的优先权,该专利申请所公开的全部内容通过引用结合在本公开中。
技术领域
本公开涉及有机电致发光材料技术领域,具体而言,涉及一种有机化合物及包含其的电子元件和电子装置。
背景技术
目前,OLED由于其亮度高、响应快、适应性广等优点已广泛备用于手机、电脑、照明等领域。有机电致发光器件是通过有机发光材料制备的薄膜器件,可在电场的激发下进行发光。有机电致发光器件除了电极材料膜层,还需要具有不同的有机功能材料层,而有机功能材料的π键或反π键轨道形成了移位的原子价和传导性能,其交迭分别产生了最高占据轨道(HOMO)和分子最低空轨道(LUMO),通过分子间跳跃产生电荷传输。
有机发光器件结构中,电子阻挡层用于阻挡有机发光层传输过来的电子,进而保证电子和空穴能够很高效地在有机发光层复合;同时,电子阻挡层还可以阻挡有机发光层扩散过来的激子,减少激子的三线态淬灭,进而保证有机电致发光器件的发光效率。电子阻挡层的化合物具有比较高的LUMO值,其可以有效阻挡电子和激子从有机发光层向阳极方向的传输和扩散。
有机电致发光器件性能的不断提升,不仅需要有机电致发光器件的结构和制作工艺的创新,也需要有机电致发光材料的不断研究和创新。目前,通过改变有机功能材料来提高有机电致发光器件性能,需满足降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命的能力。
发明内容
本公开的目的在于克服上述现有技术中的不足,提供一种有机化合物及包含其的电子元件和电子装置。
根据本公开的第一个方面,提供一种有机化合物,所述有机化合物的结构通式如化学式1所示:
Figure PCTCN2022081751-appb-000001
其中,R 5和R 6彼此相同或不同,且分别独立地选自碳原子数为1~10的烷基、碳原子数为6~20的芳基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为3~20的杂芳基、氢、氘、卤素基团或氰基,或者,R 5和R 6相互连接以与它们所共同连接的碳原子一起形成取代或未取代的5~18元脂肪族环或5~18元芳香环,所述5~18元脂肪族环或5~18元芳香环上的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基或碳原子数为1~10的氘代烷基;
各R 1、R 2、R 3和R 4彼此相同或不同,且分别独立地选自氢、氘、卤素、氰基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~12的杂芳基或化学式2所示的基团,且所述R 1、R 2、R 3和R 4中有1、2、3或4个为化学式2所示的基团;
R 1、R 2、R 3和R 4以R i表示,n 1~n 4以n i表示,n i表示R i的个数,i为变量,表示1、2、3或4, 当i为1或4时,n i选自1、2、3或4;当i为2时,n i选自1、2或3;当i为3时,n i选自1或2;且当n i大于1时,任意两个n i的取值相同或不同;
L 1、L 2和L 3相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、或者碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、或者碳原子数为3~30的取代或未取代的杂芳基;
L 1、L 2、L 3、Ar 1和Ar 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为3~10的环烷基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基硅基、碳原子数为6~20的芳氧基或碳原子数为6~20的芳硫基;或者,L 1、L 2、L 3、Ar 1和Ar 2中任意两个相邻的取代基形成5~13元脂肪族环或5~13元芳香环。
本公开的有机化合物具有咔唑并芴的稠环母核,该母核结构具有较高的空穴迁移率,并且该母核为非平面大共轭体系结构,能有效提高材料的空间位阻,避免化合物层叠,进而提高成膜稳定性,并且在稠环上连接芳胺基团,可以进一步有效降低大平面共轭结构分子间的相互作用,减少分子的堆叠,通过调节芳胺上的取代基团,进一步提高空穴传输能力,减小单线态和三线态的能级差,使化合物具有优良的空穴传输性能。本公开化合物可应用于有机电致发光器件的空穴传输层或电子阻挡层(空穴调整层),使器件具有较低的驱动电压,还可以提高器件的发光效率和使用寿命。
根据本公开的第二个方面,提供一种电子元件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,功能层包含上述的有机化合物。
根据本公开的第三个方面,提供一种电子装置,包括上述的电子元件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施方式,并且与描述一起用于解释本公开的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施方式,而不是全部实施方式。对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
图1是本公开的有机电致发光器件的一实施方式的结构示意图。
图2是本公开一实施方式的电子装置的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;330、电子阻挡层(也称为空穴调整层);340、有机电致发光层;350、电子传输层;360、电子注入层;400、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
本公开提供一种有机化合物,该有机化合物的结构通式如化学式1所示:
Figure PCTCN2022081751-appb-000002
其中,R 5和R 6彼此相同或不同,且分别独立地选自碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、氢、氘、卤素基团或氰基,或者,R 5和R 6相互连接以与它们所共同连接的碳原子一起形成取代或未取代的5~18元脂肪族环或5~18元芳香环,所述5~18元脂肪族环或5~18元芳香环上的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基或碳原子数为1~10的氘代烷基;
各R 1、R 2、R 3和R 4彼此相同或不同,且分别独立地选自氢、氘、卤素、氰基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~12的杂芳基或化学式2所示的基团,且所述R 1、R 2、R 3和R 4中有1、2、3或4个为化学式2所示的基团;
R 1、R 2、R 3和R 4以R i表示,n 1~n 4以n i表示,n i表示R i的个数,i为变量,表示1、2、3或4,当i为1或4时,n i选自1、2、3或4;当i为2时,n i选自1、2或3;当i为3时,n i选自1或2;且当n i大于1时,任意两个n i的取值相同或不同;
L 1、L 2和L 3相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、或者碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、或者碳原子数为3~30的取代或未取代的杂芳基;
L 1、L 2、L 3、Ar 1和Ar 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为3~10的环烷基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基硅基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基;或者,L 1、L 2、L 3、Ar 1和Ar 2中任意两个相邻的取代基形成5~13元脂肪族环或5~13元芳香环。
可选地,所述R 1、R 2、R 3和R 4中只有1个为化学式2所示的基团,其余均为氢。
可选地,所述有机化合物具有如下所示式1A、2A、3A或4A所示的结构:
Figure PCTCN2022081751-appb-000003
其中,所述R 1、R 2、R 3和R 4分别独立地选自氢、氘、氰基、氟、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基、联苯基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋喃基、二苯并噻吩基、二甲基芴基或N-苯基咔唑基。
进一步可选地,所述有机化合物具有如下所示的结构:
Figure PCTCN2022081751-appb-000004
Figure PCTCN2022081751-appb-000005
在本公开中,所采用的描述方式“各自独立地选自”与“分别独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2022081751-appb-000006
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本公开中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为3~10的环烷基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基硅基、碳原子数为6~20的芳氧基、碳原子数为6~20的芳硫基。“取代的”官能团可以被上述Rc中的1个或2个以上的取代基取代;当同一个原子上连接有两个取代基Rc时,这两个取代基Rc可以独立地存在或者相互连接以与所述原子形成环;当官能团上存在两个相邻的取代基Rc时,相邻的两个取代基Rc可以独立地存在或者与其所连接的官能团稠合成环。
在本公开中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L 3选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar 1
Figure PCTCN2022081751-appb-000007
则其碳原子数为15;L 3
Figure PCTCN2022081751-appb-000008
其碳原子数为12。
在本公开中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至10个碳原子,诸如“1至10”的数值范围是指给定范围中的各个整数。可选地,烷基选自碳原子数为1~4的烷基,具体实例包括但不限于,甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基。
在本公开中,环烷基指的是含有脂环结构的饱和烃,包含单环和稠环结构。环烷基可具有3~10个碳原子,诸如“3至10”的数值范围是指给定范围中的各个整数。环烷基还可分为两个环共用一个碳原子一螺环、两个环共用两个碳原子一稠环和两个环共用两个以上碳原子一桥环。环烷基的具体实例包括但不限于,环己基、环戊基或金刚烷基。
在本公开中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本公开的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2022081751-appb-000009
基等。本公开的“取代或未取代的芳基”可含有6~30个碳原子,在一些实施方式中,取代或未取代的芳基中的碳原子数是6~25个,在一些实施方式中,取代或未取代的芳基中的碳原子数是6~20个,在另一些实施方式中,取代或未取代的芳基中的碳原子数是6~18个,在另一些实施方式中取代或未取代的芳基中的碳原子数是6~15个。举例而言,芳基的碳原子数量可以是6个、10个、12个、13个、14个、15个、16个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。在本公开中,联苯基可以理解为苯基取代的芳基,也可以理解为未取代的芳基。
本公开中,涉及的亚芳基是指芳基进一步失去一个或多个氢原子所形成的二价或多价基团。
在本公开中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基及其取代基的总碳原子数为18。
本公开中,芴基可以是取代的,两个取代基可以彼此结合形成螺结构,取代的芴基的具体实例包括但不限于以下结构:
Figure PCTCN2022081751-appb-000010
在本公开中,作为取代基的碳原子数为6-20的芳基,其具体实例包括但不限于:苯基、萘基、蒽基、菲基、二甲基芴基、联苯基等等。
在本公开中,杂芳基是指环中包含1、2、3、4、5、6、7或更多个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-芳基咔唑基(如N-苯基咔唑基)、N-杂芳基咔唑基(如N-吡啶基咔唑基)、N-烷基咔唑基(如N-甲基咔唑基)等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本公开的“取代或未取代的杂芳基”可含有3~30个碳原子,在一些实施方式中,取代或未取代的杂芳基中的碳原子数是5~25个,在另一些实施方式中,取代或未取代的杂芳基中的碳原子数是5~20个, 在另一些实施方式中,取代或未取代的杂芳基中的碳原子数是5~18个,在另一些实施方式中,取代或未取代的杂芳基中的碳原子数是5~12个。举例而言,取代或未取代的杂芳基的碳原子数量可以是3个、4个、5个、7个、12个、13个、14个、15个、16个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
本公开中,涉及的亚杂芳基是指杂芳基进一步失去一个或多个氢原子所形成的二价或多价基团。
在本公开中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本公开中,作为取代基的碳原子数为3-20的杂芳基,其具体实例包括但不限于:咔唑基、二苯并呋喃基、二苯并噻吩基、吡啶基、喹啉基、异喹啉基、喹喔啉基或喹唑啉基。
在本公开中,卤素基团可以包括氟、碘、溴或氯等。
在本公开中,碳原子数为3~12的三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本公开中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2022081751-appb-000011
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2022081751-appb-000012
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2022081751-appb-000013
本公开中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2022081751-appb-000014
Figure PCTCN2022081751-appb-000015
在本公开的一种实施方式中,所述L 1、L 2和L 3相同或不同,且各自独立地选自单键或碳原子数为6~18的取代或未取代的亚芳基、碳原子数为5~18的取代或未取代的亚杂芳基。
可选地,L 1、L 2和L 3中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、苯基、碳原子数为3~8的三烷基硅基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、苯基、萘基、联苯基、蒽基、菲基、吡啶基、二苯并噻吩基、二苯并呋喃基或咔唑基。
在本公开的一种实施方式中,所述L 1、L 2和L 3分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚芴基、取代或未取代的亚咔唑基,或者为上述亚基中两者或三者通过单键连接所形成的亚基基团。
可选地,所述L 1、L 2和L 3中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、环戊基、苯基、联苯基、萘基、蒽基、菲基、二苯并噻吩基、二苯并呋喃基、咔唑基或吡啶基。
在本公开另一种实施方式中,所述L 1、L 2和L 3分别独立地选自单键或者取代或未取代的基团V,未取代的基团V选自如下基团所组成的组:
Figure PCTCN2022081751-appb-000016
其中,
Figure PCTCN2022081751-appb-000017
表示化学键;取代的基团V上具有一个或多个取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基或吡啶基;当V的取代基个数大于1时,各取代基相同或不同。
本公开中,“多个”是指2个或2个以上。
可选地,所述L 1、L 2和L 3分别独立地选自单键或者如下基团所组成的组:
Figure PCTCN2022081751-appb-000018
Figure PCTCN2022081751-appb-000019
在本公开的一种实施方式中,所述Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~25的取代或未取代的芳基、或者碳原子数为5~25的取代或未取代的杂芳基。
可选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为1~4的烷基、碳原子数为3~8的三烷基硅基、碳原子数为5~10的环烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基或碳原子数为1~4的烷硫基。
可选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、甲氧基、异丙氧基、苯基、环己基、苯基、萘基、芴基、二苯并噻吩基、二苯并呋喃基、菲基或咔唑基。
可选地,所述Ar 1和Ar 2分别独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的二苯并呋喃基,取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的咔唑基、取代或未取代的吡啶基、取代或未取代的螺二芴基、取代或未取代的吩噻嗪基、取代或未取代的吩噁噻基。
可选地,所述Ar 1和Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团所组成的组:
Figure PCTCN2022081751-appb-000020
其中,
Figure PCTCN2022081751-appb-000021
表示化学键;取代的基团W上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、甲氧基、异丙氧基、苯基、环己基、苯基、萘基、芴基、二苯并噻吩基、二苯并呋喃基、菲基或咔唑基;当W的取代基个数大于1时,各取代基相同或不同。
进一步可选地,所述Ar 1和Ar 2分别独立地选自如下基团所组成的组:
Figure PCTCN2022081751-appb-000022
Figure PCTCN2022081751-appb-000023
在本公开的一种实施方式中,所述R 1、R 2、R 3和R 4分别独立地选自氢、化学式2所示的基团、氘、氰基、氟、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基、联苯基、二甲基芴基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋喃基、二苯并噻吩基、二甲基芴基或N-苯基咔唑基,且所述各R 1、R 2、R 3和R 4中有且仅有有1个为化学式2所示的基团。
在本公开的一种实施方式中,所述R 5和R 6各自独立地为碳原子数1~4的烷基、碳原子数为6~12的芳基,或者,R 5和R 6相互连接以与它们所共同连接的碳原子一起形成未取代的5~10元脂肪族环或取代或未取代的9~14元芳香环,所述9~14元芳香环上的取代基各自独立地选自氘、卤素基团、氰基或碳原子数为1~4的烷基。
在本公开的一种实施方式中,所述R 5和R 6各自独立地为甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、苯基、萘基、联苯基、三联苯基、芴基、二甲基芴基、蒽基、菲基、吡啶基、二苯并噻吩基、二苯并呋喃基或咔唑基,或者R 5和R 6相互连接以与它们所共同连接的碳原子一起形成芴环、环戊烷、环己烷或
Figure PCTCN2022081751-appb-000024
在本公开的一种实施方式中,所述R 5和R 6各自独立地选自甲基或以下基团:
Figure PCTCN2022081751-appb-000025
或者R 5和R 6相互连接以与它们所共同连接的碳原子一起形成以下螺环:
Figure PCTCN2022081751-appb-000026
可选地,有机化合物选自如下化合物所形成的组:
Figure PCTCN2022081751-appb-000027
Figure PCTCN2022081751-appb-000028
Figure PCTCN2022081751-appb-000029
Figure PCTCN2022081751-appb-000030
Figure PCTCN2022081751-appb-000031
Figure PCTCN2022081751-appb-000032
Figure PCTCN2022081751-appb-000033
Figure PCTCN2022081751-appb-000034
Figure PCTCN2022081751-appb-000035
Figure PCTCN2022081751-appb-000036
本公开还提供一种电子元件,包括相对设置的阳极和阴极,以及介于阳极与阴极之间的至少一层功能层,该功能层包含本公开的有机化合物。
可选地,所述功能层包括空穴传输层和/或电子阻挡层,所述电子阻挡层或空穴传输层包括所述有机化合物。
可选地,本公开所述电子元件为有机电致发光器件或太阳能电池,进一步可选地,所述有机电致发光器件为红色有机电致发光器件或绿色有机电致发光器件。
在本公开一种具体实施方式中,如图1所示,所述有机电致发光器件包括阳极100、阴极200、以及介于阳极层与阴极层之间的至少一层功能层300,该功能层300包括空穴注入层310、空穴传输层320、电子阻挡层330、有机电致发光层340、电子传输层350以及电子注入层360;空穴注入层310、空穴传输层320、电子阻挡层330、有机电致发光层340、电子传输层350以及电子注入层360可以依次形成在阳极100上。其中,空穴传输层320和/或电子阻挡层330可以含有本公开所述的有机化合物。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极 的透明电极。
可选地,空穴传输层320可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本公开对此不做特殊的限定。在本公开的一种实施方式中,空穴传输层320由化合物NPB组成。本公开的另一种实施方式中,空穴传输层320由本公开化合物组成。
可选地,电子阻挡层330用于阻挡有机发光层340传输过来的电子,进而保证电子和空穴能够很高效地在有机发光层340复合;同时,电子阻挡层330还可以阻挡有机发光层340扩散过来的激子,减少激子的三线态淬灭,进而保证有机电致发光器件的发光效率。电子阻挡层330可以有效阻挡电子和激子从有机发光层340向阳极100方向的传输和扩散。优选地,电子阻挡层330由本公开所提供的有机化合物组成。
有机电致发光层340可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机电致发光层340由主体材料和客体材料组成,注入有机电致发光层340的空穴和电子可以在有机电致发光层340复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机电致发光层340的主体材料可以为金属螯类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本公开对此不做特殊的限制。例如,有机电致发光层340主体材料为CBP。
有机电致发光层340的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本公开对此不做特殊的限制。例如,有机电致发光层340的客体材料为Ir(piq) 2(acac)。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料。从分子设计的角度来看,本公开化合物形成了缺电子型的大共轭平面结构,具有结构不对称且空间位阻较大的优点,可以降低分子间凝聚力,减少结晶趋势,从而提高了电子传输率。例如,电子传输层350由ET-06和LiQ组成。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al,Liq/Al,LiO 2/Al,LiF/Ca,LiF/Al和BaF 2/Ca,但不限于此。优选包括包含银和镁的金属电极作为阴极。
可选地,在阳极100和空穴传输层320之间还设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本公开对此不做特殊的限制。例如,空穴注入层310由F4-TCNQ组成。
可选地,在阴极200和电子传输层350之间还设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层360包括镱(Yb)。
本公开还提供一种电子装置,该电子装置包括本公开所述的电子元件。
举例而言,如图2所示,本公开提供的电子装置为电子装置400,该电子装置400包括上述有机电致发光器件。该电子装置可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面将结合实施例详细描述本公开,但是,以下描述是用于解释本公开,而不是以任意方式限制本公开的范围。
合成实施例
所属领域的专业人员应该认识到,本公开所描述的化学反应可以用来合适地制备许多本公开的其他化合物,且用于制备本公开的化合物的其它方法都被认为是在本公开的范围之内。例如,根据本公开那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本公开所描述的,或将反应条件做一些常规的修改。
下面所描述的合成例中,除非另有声明,否则所有的温度的单位为摄氏度。部分试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company andAlfa ChemicalCompany,部分不能直接采购的中间体是通过商购原料经简单反应制备得到,除非另有声明,否则使用时都没有经过进一步纯化。其余的常规试剂从汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂等处购买得到。无水四氢呋喃、二氧六环、甲苯、乙醚等无水溶剂是经过金属钠回流干燥得到。各合成例中的反应一般是在氮气或氩气正压下进行的,或者在无水溶剂上套一干燥管(除非另有声明);在反应中,反应瓶都塞上合适的橡皮塞,底物通过注射器注入反应瓶中。所用到的各个玻璃器皿都是干燥过的。
在纯化时,色谱柱是硅胶柱,硅胶(100-200目)购于青岛海洋化工厂。
在各个合成例中,低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的乙腈)在(含0.1%甲酸的水)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
核磁共振氢谱:布鲁克(Bruker)400MHz核磁仪,室温条件下,以CDCl 3为溶剂(以ppm为单位),用TMS(0ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)。
目标化合物使用Agilent 1260pre-HPLC或Calesep pump 250pre-HPLC(柱子型号:NOVASEP 50/80mm DAC),在210nm/254nm用UV检测。
1.中间体SY Z-X的合成
(1)中间体SA 3-1的合成
Figure PCTCN2022081751-appb-000037
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入反应物SA 1-1(211.54g,847.84mmol)、反应物SA 2-1(170.25g,847.84mmol)、四氢呋喃(1272mL)和H 2O(424mL)。升温搅拌至澄清并回流,加入四丁基溴化铵(5.47g,16.96mmol)、四(三苯基膦)钯(9.80g,8.48mmol)和碳酸钾(175.77g,1271.76mmol),搅拌至澄清,回流反应24h,反应结束后,冷却至室温。加入二氯甲烷萃取,有机相用水洗至中性,收集有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩,得到粗品;粗品采用硅胶柱色谱纯化,得到中间体SA 3-1(196g,收率:71.3%)。
参照中间体SA 3-1的合成方法合成下表1所示的中间体,其中,以反应物SA 1-X(X为2~4的整数)代替反应物SA 1-1,反应物SA 2-X(X为1~3的整数)代替反应物SA 2-1,合成如下表1所示的中间体SA 3-X(X为2~5的整数)。
表1
Figure PCTCN2022081751-appb-000038
(2)中间体SA 4-1的合成
Figure PCTCN2022081751-appb-000039
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体SA 3-1(190g,585.2mmol)、乙酸(900mL)和磷酸(50mL)。升温至50℃,搅拌至澄清后,反应4h,反应结束后,冷却至室温。加入NaOH水溶液中和至pH=7,加入乙酸乙酯萃取,收集有机相,使用无水硫酸镁干燥有机相,过滤,滤液减压蒸馏浓缩,得到粗品;粗品采用硅胶柱色谱纯化,得到中间体SA 4-1(122.56g,收率:68.2%)。
参照中间体SA 4-1的合成方法合成下表2所示的中间体,其中中间体SA 3-X(X为2~5的整数)代替反应物SA 3-1,合成如下表2所示的中间体SA 4-X(X为2~5的整数)。
表2
Figure PCTCN2022081751-appb-000040
Figure PCTCN2022081751-appb-000041
(3)中间体SB 2-1的合成
Figure PCTCN2022081751-appb-000042
向三口瓶中加入雷尼镍(6g),水合肼(83mL,1716mmol),加入反应物SB 1-1(145g,429mmol),加入甲苯(870mL)和乙醇(290mL),快速搅拌并升温至回流,反应2h,反应结束后旋干溶剂,残留物用硅胶柱色谱纯化,得到中间体SB 2-1(104.25g,收率:75.2%)
参照中间体SB 2-1的合成方法合成下表3所示的中间体,其中SB 1-X(X为2~5的整数)代替反应物SB 1-1合成如下表3所示的中间体SB 2-X(X为2~5的整数)。
表3
Figure PCTCN2022081751-appb-000043
(4)中间体SB 4-1的合成
Figure PCTCN2022081751-appb-000044
向三口烧瓶中加入SB-1-1(109g,322.48mmol),加入干燥的THF(545mL),并冷却至-10℃,加入SB-3-1(61.29g,338.60mmol),不断搅拌使反应升至室温,然后加入NH 4Cl(500mL)进行淬灭,向反应液中加入乙酸乙酯,分出的有机层并用水洗涤,然后用无水硫酸钠干燥,减压浓缩得到浓缩物,采用甲苯和正庚烷进行重结晶。将重结晶得到的固体加入含有DCM(200mL)的三口烧瓶中,并加入SB-3(1)-1(苯,25.19g,322.48mmol)升温至50℃,然后滴加三氟甲磺酸(80mL),并反应30min,然后用水进行洗涤,分出有机相用无水硫酸钠进行干燥,减压浓缩,所得残留物过硅胶柱纯化,用正庚烷/乙酸乙酯进行洗脱,得到中间体SB-4-1(112.10g,收率:73.0%)。
参照中间体SB 4-1的合成方法合成下表4所示的中间体,其中SB 1-X(X为2~5的整数)代替反应物SB1-1,SB-3(1)-X代替反应物苯,SB 3-X(X为1~6的整数)代替反应物SB 3-1合成如下表4所示的中间体SB 4-X(X为2~7的整数)。
表4
Figure PCTCN2022081751-appb-000045
Figure PCTCN2022081751-appb-000046
(5)中间体SB 6-1的合成
Figure PCTCN2022081751-appb-000047
在氮气下,向三口瓶中加入中间体SB 2-1(107g,330.25mmol),反应物SB-5-1(38.89g,247.69mmol),加入二氧六环,叔丁醇钾(92.64g,825.63mmol)和Pd 2(dba) 3(6.05g,6.605mmol)搅拌升温120℃,反应12h后,加入碘甲烷(46.88g,330.25mmol),在室温下搅拌反应6h,反应结束,用水洗至中性,采用石油醚/乙酸乙酯(体积比10:1)过硅胶柱纯化,得到中间体SB 6-1(112.11g,收率:82.0%)
参照中间体SB-6-1的合成方法合成下表5所示的中间体,其中SB 2-X(X为2~5的整数)代替中间体SB 2-1,SB 5-X(X为2~5的整数)代替反应物SB 5-1合成如下表5所示的中间体SB 6-X(X为2~5的整数)。
表5
Figure PCTCN2022081751-appb-000048
(6)中间体SB 8-1的合成
Figure PCTCN2022081751-appb-000049
将中间体SB 2-1(121g,373.46mmol)溶于含有干燥的DMSO(605mL)的三口瓶中,在室温下加入叔丁醇钠(53.83g,560.19mmol),加热搅拌使反应温度达到65℃,将反应物SB 7-1(252.44g,746.92mmol)溶于干燥的DMSO中并滴加入三口瓶,滴加结束后,在65℃下保温30min,反应结束后加入300mL的NH 4OH水溶液并搅拌20min,过滤,滤饼用甲醇和水进行洗涤,所得粗品用硅胶柱色谱纯化得到中间体SB 8-1(111.30g,收率:76%).
参照中间体SB 8-1的合成方法合成下表6所示的中间体,其中SB 2-X(X为3~5的整数)代替中间体SB 2-1,SB 7-X(X为1或2)代替反应物SB 7-1合成如下表6所示的中间体SB 8-X(X为3~5的整数)。
表6
Figure PCTCN2022081751-appb-000050
(7)中间体SB 9-1的合成
Figure PCTCN2022081751-appb-000051
在充分干燥的条件下,在氮气保护下,向1L四口烧瓶中加入2-溴-1,1-联苯(105.5g,452.58mmol)和600mL干燥过的四氢呋喃,搅拌溶解后用液氮降温至-78℃以下,缓慢滴加n-BuLi正己烷溶液120mL(452.58mmol);滴加结束后在-78℃下搅拌1h,然后在该温度下分批加入SB-1-1(152.97g,452.58mmol)固体,加入结束后在-78℃下保温1h,然后在室温下搅拌12h。待反应结束,滴加8mL盐酸溶液淬灭反应,用乙酸乙酯萃取,有机相用饱和食盐水洗涤,无水硫酸钠干燥后,减压浓缩除去溶剂,得到中间体SB-3-2。在不进行进一步纯化的情况下,再投料到2L的干燥三口烧瓶中,加入1335mL乙酸和20g质量分数为36%的盐酸,升温回流3h,结束反应。冷却至室温后,过滤,用水洗涤两次,分出的有机相用无水硫酸钠干燥,减压浓缩后,所得残留物经硅胶柱色谱提纯,得到中间体SB-9-1(123.40g,收率:57.5%)。
参照中间体SB 9-1的合成方法合成下表7所示的中间体,其中SB 1-X(X为2~4的整数)代替反应物SB 1-1,合成如下表7所示的中间体SB 9-X(X为2~4的整数)。
表7
Figure PCTCN2022081751-appb-000052
(8)中间体SC 3-1的合成
Figure PCTCN2022081751-appb-000053
在氮气保护下,向三口瓶中加入反应物SC 1-1(128.3g,577.17mmol)、四氢呋喃(768mL),开启搅拌,搅拌均匀后体系降温至-78℃,待温度稳定后开始滴加正丁基锂溶液(92g,1442.8mmol),滴加完毕后在-78℃下保温反应1h,然后将反应物SC 2-1(168.26g,577.17mmol)用四氢呋喃(336mL)稀释(稀释比例是1:2)后滴加至体系中,滴加完毕后在-78℃下保温1h,然后自然升温至25℃搅拌12h。反应完全后,将反应液倒入水中(1000mL)搅拌10min,然后加入二氯甲烷(800mL)进行萃取,萃取2次,合并有机相,用无水硫酸镁干燥后,减压浓缩,所得残留物过硅胶漏斗,然后将滤液蒸干,得中间体SC 3-1(166.9g,收率:65%)。
参照中间体SC 3-1的合成方法合成下表8所示的中间体,其中SC 2-2代替反应物SC 2-1,合成如下表8所示的中间体SC 3-2。
表8
Figure PCTCN2022081751-appb-000054
(9)中间体SC 4-1的合成
Figure PCTCN2022081751-appb-000055
向单口瓶中加入中间体SC 3-1(153g,343.53mmol)和三氟乙酸(459mL),开启搅拌,然后逐渐升温至80℃回流反应11h,反应完成后,将反应液倒入水中,搅拌30min后过滤,依次用水淋洗,用乙醇淋洗,后得到粗品,用二氯甲烷:正庚烷=1:2(v/v)重结晶,得到中间体SC 4-1(111.58g,收率:76%)。
参照中间体SC 4-1的合成方法合成下表9所示的中间体,其中SC 3-2代替中间体SC 3-1,合成如下表9所示的中间体SC 4-2。
表9
Figure PCTCN2022081751-appb-000056
2.中间体Y 1-X的合成
中间体A 1-1的合成
Figure PCTCN2022081751-appb-000057
向装有机械搅拌、温度计、滴液漏斗的三口瓶中通氮气(0.100L/min)置换15min,加入中间体SA 4-1(111g,360.4mmol)和四氢呋喃(896mL),液氮降温至-80至-90℃,滴加叔丁基锂(t-BuLi)的四氢呋喃溶液(20mL,180.2mmol),滴加完毕后保温搅拌1h后,向其中添加硼酸三异丙酯(83.64mL,360.4mmol),然后逐渐升至室温,搅拌3h,向反应混合物中添加盐酸水溶液(600mL),然后在室温下搅拌反应1.5h。反应结束,过滤沉淀物,滤饼用水和乙醚洗涤,然后在真空干燥得到中间体A 1-1(88.56g,收率:90.1%)。
参照中间体A 1-1的合成方法合成下表10所示的中间体,其中中间体SY Z-X(X为1~7的整数,Y为A、B或C,Z为4、6、8或9)或反应物SA 4-6代替中间体SA 4-1,合成如下表10所示的中间体Y 1-X(X为1~18的整数,Y为A、B或C)。
表10
Figure PCTCN2022081751-appb-000058
Figure PCTCN2022081751-appb-000059
Figure PCTCN2022081751-appb-000060
Figure PCTCN2022081751-appb-000061
3.中间体Y 3-X的合成
中间体A 3-1的合成
Figure PCTCN2022081751-appb-000062
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 1-1(87.4g,320.14mmol)、反应物A 2-1(79.72g,320.14mmol)、四氢呋喃(528mL)和H 2O(176mL)。升温搅拌至澄清并回流,加入四丁基溴化铵(2.06g,6.40mmol)、四(三苯基膦)钯(3.70g,3.20mmol)和碳酸钾(66.28g,480.22mmol),回流反应15h,反应结束后,冷却至室温。加入二氯甲烷萃取,水洗至中性,收集有机相,使用无水硫酸镁干燥,过滤后将滤液减压蒸馏浓缩,得到粗品;粗品采用硅胶柱色谱纯化,得到中间体A 3-1(76.2g,收率:68.1%)。
参照中间体A 3-1的合成方法合成下表11所示的中间体,其中中间体Y 1-X(X为1~18的整数,Y为A、B或C)代替中间体A 1-1,反应物A 2-X(X为1~6的整数)代替反应物A 2-1,合成如下表11所示的中间体Y 3-X(X为1~18的整数,Y为A、B或C)。
表11
Figure PCTCN2022081751-appb-000063
Figure PCTCN2022081751-appb-000064
Figure PCTCN2022081751-appb-000065
Figure PCTCN2022081751-appb-000066
4.中间体Y 4-X的合成
中间体A4-1的合成
Figure PCTCN2022081751-appb-000067
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 3-1(74g,211.43mmol)、三苯基膦(11.1g,42.32mmol)和邻二氯苯(100mL)。开启搅拌,升温至170℃~190℃反应16h,反应结束后,冷却至室温。反应液水洗后分离有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂得到粗品;对粗品进行硅胶柱色谱提纯,得到中间体A4-1(43.70g,收率:65.0%)。
参照中间体A 4-1的合成方法合成下表12所示的中间体,其中中间体Y 3-X(X为1~18的整数,Y为A、B或C)代替中间体A3-1,合成如下表12所示的中间体Y 4-X(X为1~18的整数,Y为A、B或C)。
表12
Figure PCTCN2022081751-appb-000068
Figure PCTCN2022081751-appb-000069
Figure PCTCN2022081751-appb-000070
Figure PCTCN2022081751-appb-000071
5.中间体Y 6-X的合成
中间体A 6-1的合成
Figure PCTCN2022081751-appb-000072
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 4-1(37.75g,118.71mmol)、反应物A 5-1(22.67g,118.71mmol)、碳酸铯(3.87g,11.87mmol)和二甲基亚砜(320mL)。开启搅拌,反应15h,反应结束后,冷却至室温。反应液用甲苯萃取,分离有机相,使用无水硫酸镁干燥,过滤后将滤液减压蒸馏除去溶剂得到粗品;对粗品进行硅胶柱色谱提纯,得到中间体A 6-1(34.04g,收率:67.3%)。
参照中间体A 6-1的合成方法合成下表13所示的中间体,其中中间体Y 4-X(X为1~18的整数,Y为A、B或C)代替中间体A 4-1,反应物A 5-X(X为1~4的整数)代替反应物A 5-1,合成如下表13所示的中间体Y 6-X(X为1~18的整数,Y为A、B或C)。
表13
Figure PCTCN2022081751-appb-000073
Figure PCTCN2022081751-appb-000074
Figure PCTCN2022081751-appb-000075
Figure PCTCN2022081751-appb-000076
Figure PCTCN2022081751-appb-000077
6.中间体Y 7-X的合成
中间体A 7-1的合成
Figure PCTCN2022081751-appb-000078
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 6-1(32.84g,76.72mmol)、醋酸钯(1.71g,7.65mmol)、三环己基磷氟硼酸盐(25.16g,76.72mmol)、碳酸铯(44.92g,137.79mmol)和N,N-二甲基乙酰胺(160mL)。开启搅拌,加热回流反应2h,反应结束后,冷却至室温。反应液用氯仿萃取,分离出有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂得到粗品;对粗品进行硅胶柱色谱提纯,得到中间体A 7-1(21.65g,收率:72.0%)。
参照中间体A 7-1的合成方法合成下表14所示的中间体,其中中间体Y 6-X(X为1~18的整数,Y为A、B或C)代替中间体A 6-1,合成如下表14所示的中间体Y 7-X(X为1~18的整数,Y为A、B或C)。
表14
Figure PCTCN2022081751-appb-000079
Figure PCTCN2022081751-appb-000080
Figure PCTCN2022081751-appb-000081
Figure PCTCN2022081751-appb-000082
Figure PCTCN2022081751-appb-000083
7.中间体Y 9-X的合成
中间体A 9-1的合成
Figure PCTCN2022081751-appb-000084
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入中间体A 7-1(20.3g,51.79mmol),联硼酸频哪醇酯(13.1g,51.79mmol),乙酸钾(7.62g,77.68mmol),x-Phos(0.49g,1.036mmol),三(二亚苄基丙酮)二钯(0.47g,0.518mmol)和1,4-二氧六环(160mL),加热至75~85℃回流反应3h,反应结束后,冷却至室温。萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后将滤液减压除去溶剂,使用甲苯体系对粗品进行重结晶提纯,过滤得到中间体A 8-1(25.01g,收率:76.1%)。
参照中间体A 8-1的合成方法合成下表15所示的中间体,其中中间体Y7-X(X为1~14的整数或17,Y为A、B或C)代替中间体A 7-1,合成如下表15所示的中间体Y 8-X(X为1~14的整数 或17,Y为A、B或C)。
表15
Figure PCTCN2022081751-appb-000085
Figure PCTCN2022081751-appb-000086
Figure PCTCN2022081751-appb-000087
8.中间体Y 10-X的合成
中间体A 10-1的合成
Figure PCTCN2022081751-appb-000088
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 8-1(18.44g,38.18mmol),反应物A 9-1(9.09g,38.18mmol),醋酸钯(0.124g,0.382mmol),碳酸钾(7.9g,57.27mmol),s-phos(0.313g,0.7636mmol),甲苯(108mL),无水乙醇(36mL)和去离子水(36mL);开启搅拌和加热,温度上升到70℃~80℃,回流反应4h,反应结束后,冷却至室温。甲苯萃取,水洗,合并有机相,用无水硫酸镁进行干燥,过滤,减压浓缩除去溶剂,使用二氯甲烷/正庚烷体系对所得粗品进行重结晶提纯,得到固体中间体A 10-1(13.4g,收率75.1%)。
参照中间体A 10-1的合成方法合成下表16所示的中间体,其中中间体Y 8-X(X为1~14的整数或17,Y为A、B或C)代替中间体A 8-1,反应物A 9-X(X为1~10的整数)代替反应物A 9-1,合成如下表16所示的中间体Y 10-X(X为1~14的整数或17,Y为A、B或C)。
表16
Figure PCTCN2022081751-appb-000089
Figure PCTCN2022081751-appb-000090
Figure PCTCN2022081751-appb-000091
Figure PCTCN2022081751-appb-000092
9.中间体Y 12-X、Y 13-X的合成
中间体A 12-1的合成
Figure PCTCN2022081751-appb-000093
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 7-1(12.5g,31.90mmol),反应物A 11-1(2.97g,31.90mmol),三(二亚苄基丙酮)二钯(0.29g,0.32mmol),x-phos(0.30g,0.64mmol),叔丁醇钠(4.60g,47.85mmol)和甲苯(330mL),加热至105℃~110℃,搅拌反应1h,反应结束后,冷却至室温。甲苯萃取,水洗,合并有机相,用无水硫酸镁进行干燥,过滤,减压浓缩除去溶剂,使用二氯甲烷/正庚烷体系对所得粗品进行重结晶提纯,得到固体中间体A 12-1(10.02g,收率:70.1%)。
参照中间体A 12-1的合成方法合成下表17所示的中间体,其中中间体Y Z-X(X为1~18的整数,Y为A、B或C,Z为7或10)代替中间体A 7-1,反应物A 11-X(X为1~13的整数)代替反应物A 11-1,合成如下表17所示的中间体Y 12-X、Y 13-X(X为1~18的整数,Y为A、B或C)。
表17
Figure PCTCN2022081751-appb-000094
Figure PCTCN2022081751-appb-000095
Figure PCTCN2022081751-appb-000096
Figure PCTCN2022081751-appb-000097
Figure PCTCN2022081751-appb-000098
Figure PCTCN2022081751-appb-000099
Figure PCTCN2022081751-appb-000100
Figure PCTCN2022081751-appb-000101
10.化合物的合成
化合物1的合成
Figure PCTCN2022081751-appb-000102
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体A 12-1(9.5g,21.18mmol),反应物A 14-1(4.94g,21.18mmol),三(二亚苄基丙酮)二钯(0.19g,0.21mmol),s-phos(0.174g,0.42mmol),叔丁醇钠(3.05g,31.77mmol)和甲苯(76mL),加热至105℃~110℃,搅拌反应2h,反应结束后,冷却至室温。甲苯萃取,水洗,合并有机相,用无水硫酸镁进行干燥,过滤,减压浓缩除去溶剂,使用二氯甲烷/正庚烷体系对所得粗品进行重结晶提纯,得到固体化合物1(8.27g,收率:65.0%),质谱:m/z=601.2[M+H] +
参照化合物1的合成方法合成下表18所示的化合物,其中中间体Y Z-X(X为1~18的整数,Y为A、B或C,Z为12或13)代替中间体A 12-1,反应物A 14-X(X为1~16的整数)代替反应物A 14-1,合成如下表18所示的化合物。
表18
Figure PCTCN2022081751-appb-000103
Figure PCTCN2022081751-appb-000104
Figure PCTCN2022081751-appb-000105
Figure PCTCN2022081751-appb-000106
Figure PCTCN2022081751-appb-000107
Figure PCTCN2022081751-appb-000108
Figure PCTCN2022081751-appb-000109
Figure PCTCN2022081751-appb-000110
部分化合物核磁数据如下表19所示
表19
Figure PCTCN2022081751-appb-000111
有机电致发光器件的制备和性能评估
实施例1
红色有机电致发光器件
将厚度为
Figure PCTCN2022081751-appb-000112
的阳极100ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极200、阳极100以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极100(实验基板)的功函数,并采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的浮渣及油污。
在实验基板上真空蒸镀化合物F4-TCNQ以形成厚度为
Figure PCTCN2022081751-appb-000113
的空穴注入层310(HIL);并在空穴注入层310上方真空蒸镀化合物NPB,以形成厚度为
Figure PCTCN2022081751-appb-000114
的空穴传输层320(HTL)。
在空穴传输层320(HTL)上真空蒸镀化合物1,形成厚度为
Figure PCTCN2022081751-appb-000115
的电子阻挡层330(EBL)。
在电子阻挡层330(EBL)上,将Ir(piq) 2(acac)和CBP以3%:97%的膜厚比例进行共同蒸镀,形成厚度为
Figure PCTCN2022081751-appb-000116
的有机电致发光层340(红色发光层,R-EML)。
将ET-06和LiQ以1:1的重量比进行混合并蒸镀形成
Figure PCTCN2022081751-appb-000117
厚的电子传输层350(ETL),接着将Yb蒸镀在电子传输层上,形成厚度为
Figure PCTCN2022081751-appb-000118
的电子注入层360(EIL)。
将镁(Mg)和银(Ag)以1:9的膜厚比真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2022081751-appb-000119
的阴极200。
此外,在上述阴极200上蒸镀CP-5,形成厚度为
Figure PCTCN2022081751-appb-000120
的覆盖层(CPL),从而完成红色有机电致 发光器件的制造。
F4-TCNQ、NPB、Ir(piq) 2(acac)、CBP、ET-06、LiQ、CP-5、化合物A、化合物B、化合物C的结构式如下表20所示。
表20
Figure PCTCN2022081751-appb-000121
实施例2~50
除了在形成电子阻挡层(EBL)时,采用表21中所列的化合物替代化合物1以外,采用与实施例1相同的方法制作红色有机电致发光器件。
比较例1
除了在形成电子阻挡层(EBL)时,利用化合物A替代化合物1,采用与实施例1相同的方法制作红色有机电致发光器件。
比较例2
除了在形成电子阻挡层(EBL)时,利用化合物B替代化合物1,采用与实施例1相同的方法制作红 色有机电致发光器件。
比较例3
除了在形成电子阻挡层(EBL)时,利用化合物C替代化合物1,采用与实施例1相同的方法制作红色有机电致发光器件。
比较例4
除了在形成电子阻挡层(EBL)时,利用化合物D替代化合物1,采用与实施例1相同的方法制作红色有机电致发光器件。
比较例5
除了在形成电子阻挡层(EBL)时,利用化合物E替代化合物1,采用与实施例1相同的方法制作红色有机电致发光器件。
比较例6
除了在形成电子阻挡层(EBL)时,利用化合物F替代化合物1,采用与实施例1相同的方法制作红色有机电致发光器件。
对如上制得的有机电致发光器材,在15mA/cm 2的条件下分析了器件的性能,其结果示于表21。
表21 红色有机电致发光器件的性能测试结果
Figure PCTCN2022081751-appb-000122
Figure PCTCN2022081751-appb-000123
根据表21的结果可知,在本公开的有机化合物作为电子阻挡层的OLED器件中,相比于比较例,实施例1~50制备的有机电致发光器件的各项性能均有所提高。其中,实施例1~50中,作为电子阻挡层的有机化合物所对应的器件与现有技术中比较例1~6的化合物所对应的器件相比,有机电致发光器件的驱动电压至少降低0.19V,电流效率(Cd/A)至少提高了10.67%,寿命最少提高了16.27%,最高的寿命可提高179h。由上述数据可知,采用本公开的有机化合物作为电子元件的电子阻挡层,该电子元件的发光效率(Cd/A)和寿命(T95)都有显著的提高。
前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书所述的实施方式说明了己知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。
本领域的普通技术人员可以理解,上述各实施方式是实现本公开的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本公开的精神和范围。

Claims (16)

  1. 有机化合物,其特征在于,所述有机化合物的结构通式如化学式1所示:
    Figure PCTCN2022081751-appb-100001
    其中,R 5和R 6彼此相同或不同,且分别独立地选自碳原子数为1~10的烷基、碳原子数为6~20的芳基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为3~20的杂芳基、氢、氘、卤素基团或氰基,或者,R 5和R 6相互连接以与它们所共同连接的碳原子一起形成取代或未取代的5~18元脂肪族环或5~18元芳香环,所述5~18元脂肪族环或5~18元芳香环上的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基或碳原子数为1~10的氘代烷基;
    各R 1、R 2、R 3和R 4彼此相同或不同,且分别独立地选自氢、氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为6~20的芳基、碳原子数为3~12的杂芳基或化学式2所示的基团,且所述R 1、R 2、R 3和R 4中有1、2、3或4个为化学式2所示的基团;
    R 1、R 2、R 3和R 4以R i表示,n 1~n 4以n i表示,n i表示R i的个数,i为变量,表示1、2、3或4,当i为1或4时,n i选自1、2、3或4;当i为2时,n i选自1、2或3;当i为3时,n i选自1或2;且当n i大于1时,任意两个n i的取值相同或不同;
    L 1、L 2和L 3相同或不同,且分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、或者碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    L 1、L 2、L 3、Ar 1和Ar 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为1~10的烷氧基、碳原子数为3~10的环烷基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基硅基、碳原子数为6~20的芳氧基或碳原子数为6~20的芳硫基;或者,L 1、L 2、L 3、Ar 1和Ar 2中任意两个相邻的取代基形成5~13元脂肪族环或5~13元芳香环。
  2. 根据权利要求1所述的有机化合物,其中,所述L 1、L 2和L 3相同或不同,且各自独立地选自单键或碳原子数为6~18的取代或未取代的亚芳基、碳原子数为5~18的取代或未取代的亚杂芳基;
    可选地,L 1、L 2和L 3中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、苯基、碳原子数为3~8的三烷基硅基、碳原子数为1~4的烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基、碳原子数为1~4的烷硫基、苯基、萘基、联苯基、蒽基、菲基、吡啶基、二苯并噻吩基、二苯并呋喃基或咔唑基。
  3. 根据权利要求1所述的有机化合物,其中,所述L 1、L 2和L 3分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚蒽基、取 代或未取代的亚菲基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚芴基、取代或未取代的亚咔唑基或者为上述亚基中两者或三者通过单键连接所形成的亚基基团;
    可选地,所述L 1、L 2和L 3中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、环戊基、苯基、联苯基、萘基、蒽基、菲基、二苯并噻吩基、二苯并呋喃基、咔唑基或吡啶基。
  4. 根据权利要求1所述的有机化合物,其中,所述L 1、L 2和L 3分别独立地选自单键或者取代或未取代的基团V,所述未取代的基团V选自如下基团所组成的组:
    Figure PCTCN2022081751-appb-100002
    其中,
    Figure PCTCN2022081751-appb-100003
    表示化学键;取代的基团V上具有一个或多个取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基或吡啶基;当V的取代基个数大于1时,各取代基相同或不同。
  5. 根据权利要求1所述的有机化合物,其中,所述L 1、L 2和L 3分别独立地选自单键或者如下基团所组成的组:
    Figure PCTCN2022081751-appb-100004
  6. 根据权利要求1所述的有机化合物,其中,所述Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~25的取代或未取代的芳基或者碳原子数为5~25的取代或未取代的杂芳基;
    可选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为1~4的烷基、碳原子数为3~8的三烷基硅基、碳原子数为5~10的环烷基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷氧基或碳原子数为1~4的烷硫基。
  7. 根据权利要求1所述的有机化合物,其中,所述Ar 1和Ar 2分别独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的 菲基、取代或未取代的蒽基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的咔唑基、取代或未取代的吡啶基、取代或未取代的螺二芴基、取代或未取代的吩噻嗪基、取代或未取代的吩噁噻基;
    任选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、甲氧基、异丙氧基、苯基、环己基、苯基、萘基、芴基、二苯并噻吩基、二苯并呋喃基、菲基或咔唑基。
  8. 根据权利要求1所述的有机化合物,其中,所述Ar 1和Ar 2分别独立地选自取代或未取代的基团W,所述未取代的基团W选自如下基团所组成的组:
    Figure PCTCN2022081751-appb-100005
    其中,
    Figure PCTCN2022081751-appb-100006
    表示化学键;取代的基团W上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、甲氧基、异丙氧基、苯基、环己基、苯基、萘基、芴基、二苯并噻吩基、二苯并呋喃基、菲基或咔唑基;当W上的取代基个数大于1时,各取代基相同或不同。
  9. 根据权利要求1所述的有机化合物,其中,所述Ar 1和Ar 2分别独立地选自如下基团所组成的组:
    Figure PCTCN2022081751-appb-100007
  10. 根据权利要求1所述的有机化合物,其中,所述R 1、R 2、R 3和R 4分别独立地选自氢、氘、氰基、氟、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基、苯基、萘基、联苯基、二甲基芴基、吡啶基、嘧啶基、喹啉基、异喹啉基、咔唑基、二苯并呋喃基、二苯并噻吩基、二甲基芴基、N-苯基咔唑基或化学式2所示的基团,且所述各R 1、R 2、R 3和R 4中有且仅有1个为化学式2所示的基团。
  11. 根据权利要求1所述的有机化合物,其中,所述R 5和R 6各自独立地为甲基、乙基、正丙基、 异丙基、叔丁基、三氟甲基、三氘代甲基、苯基、萘基、联苯基、三联苯基、芴基、二甲基芴基、蒽基、菲基、吡啶基、二苯并噻吩基、二苯并呋喃基或咔唑基,或者R 5和R 6相互连接以与它们所共同连接的碳原子一起形成芴环、环戊烷、环己烷或
    Figure PCTCN2022081751-appb-100008
  12. 根据权利要求1所述的有机化合物,其中,所述R 5和R 6各自独立地选自甲基或以下基团:
    Figure PCTCN2022081751-appb-100009
    或者R 5和R 6相互连接以与它们所共同连接的碳原子一起形成以下螺环:
    Figure PCTCN2022081751-appb-100010
  13. 根据权利要求1所述的有机化合物,其中,所述有机化合物选自如下化合物所形成的组:
    Figure PCTCN2022081751-appb-100011
    Figure PCTCN2022081751-appb-100012
    Figure PCTCN2022081751-appb-100013
    Figure PCTCN2022081751-appb-100014
    Figure PCTCN2022081751-appb-100015
    Figure PCTCN2022081751-appb-100016
    Figure PCTCN2022081751-appb-100017
    Figure PCTCN2022081751-appb-100018
    Figure PCTCN2022081751-appb-100019
  14. 电子元件,其特征在于,所述电子元件包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包含权利要求1~13中任意一项所述的有机化合物;
    优选地,所述功能层包括电子阻挡层和/或空穴传输层,所述电子阻挡层或空穴传输层包括所述有机化合物。
  15. 根据权利要求14所述的电子元件,其中,所述电子元件为有机电致发光器件或光电转化器件;
    优选地,所述有机电致发光器件为红色有机电致发光器件或绿色有机电致发光器件。
  16. 电子装置,其特征在于,包括权利要求14或15所述的电子元件。
PCT/CN2022/081751 2021-04-08 2022-03-18 有机化合物及包含其的电子元件和电子装置 WO2022213794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/012,913 US20230257387A1 (en) 2021-04-08 2022-03-18 Organic compound, electronic element and electronic device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110377495.XA CN114539262B (zh) 2021-04-08 2021-04-08 有机化合物及包含其的电子元件和电子装置
CN202110377495.X 2021-04-08

Publications (1)

Publication Number Publication Date
WO2022213794A1 true WO2022213794A1 (zh) 2022-10-13

Family

ID=81668559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081751 WO2022213794A1 (zh) 2021-04-08 2022-03-18 有机化合物及包含其的电子元件和电子装置

Country Status (3)

Country Link
US (1) US20230257387A1 (zh)
CN (1) CN114539262B (zh)
WO (1) WO2022213794A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451739A (zh) * 2016-07-27 2019-03-08 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包括所述有机电致发光化合物的有机电致发光装置
WO2020171630A1 (en) * 2019-02-20 2020-08-27 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN111801399A (zh) * 2018-03-27 2020-10-20 罗门哈斯电子材料韩国有限公司 用于有机电致发光装置的组合物材料、多种主体材料、以及包含其的有机电致发光装置
WO2020262853A1 (ko) * 2019-06-26 2020-12-30 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112236881A (zh) * 2018-06-08 2021-01-15 罗门哈斯电子材料韩国有限公司 多个主体材料以及包含其的有机电致发光装置
CN112300053A (zh) * 2019-07-15 2021-02-02 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN112368854A (zh) * 2018-07-13 2021-02-12 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN112424964A (zh) * 2018-07-25 2021-02-26 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN112437989A (zh) * 2018-07-31 2021-03-02 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108727398B (zh) * 2018-06-28 2020-03-17 宁波卢米蓝新材料有限公司 一种稠环化合物及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451739A (zh) * 2016-07-27 2019-03-08 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包括所述有机电致发光化合物的有机电致发光装置
CN111801399A (zh) * 2018-03-27 2020-10-20 罗门哈斯电子材料韩国有限公司 用于有机电致发光装置的组合物材料、多种主体材料、以及包含其的有机电致发光装置
CN112236881A (zh) * 2018-06-08 2021-01-15 罗门哈斯电子材料韩国有限公司 多个主体材料以及包含其的有机电致发光装置
CN112368854A (zh) * 2018-07-13 2021-02-12 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN112424964A (zh) * 2018-07-25 2021-02-26 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
CN112437989A (zh) * 2018-07-31 2021-03-02 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置
WO2020171630A1 (en) * 2019-02-20 2020-08-27 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020262853A1 (ko) * 2019-06-26 2020-12-30 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN112300053A (zh) * 2019-07-15 2021-02-02 罗门哈斯电子材料韩国有限公司 多种主体材料和包含其的有机电致发光装置

Also Published As

Publication number Publication date
US20230257387A1 (en) 2023-08-17
CN114539262B (zh) 2023-05-23
CN114539262A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2022160661A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2022027992A1 (zh) 含氮化合物、电子元件和电子装置
WO2022206493A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021228111A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022188514A1 (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2021223688A1 (zh) 一种有机化合物和应用以及使用其的有机电致发光器件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022233243A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
CN113861044B (zh) 有机化合物及包含其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
CN113121588B (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022134613A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021244442A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021136064A1 (zh) 含氮化合物、有机电致发光器件以及电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783861

Country of ref document: EP

Kind code of ref document: A1