WO2022213693A1 - 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法 - Google Patents

低盐eow电解槽、低盐eow电解装置及低盐eow制备方法 Download PDF

Info

Publication number
WO2022213693A1
WO2022213693A1 PCT/CN2022/071039 CN2022071039W WO2022213693A1 WO 2022213693 A1 WO2022213693 A1 WO 2022213693A1 CN 2022071039 W CN2022071039 W CN 2022071039W WO 2022213693 A1 WO2022213693 A1 WO 2022213693A1
Authority
WO
WIPO (PCT)
Prior art keywords
eow
salt
low
cavity
anode
Prior art date
Application number
PCT/CN2022/071039
Other languages
English (en)
French (fr)
Inventor
郑列俭
贺齐群
韩之俊
单汨源
满敏
Original Assignee
湖南满缘红水科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南满缘红水科技有限公司 filed Critical 湖南满缘红水科技有限公司
Publication of WO2022213693A1 publication Critical patent/WO2022213693A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • C02F2001/46185Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water only anodic or acidic water, e.g. for oxidizing or sterilizing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms

Definitions

  • the present disclosure generally relates to the technical field of EOW preparation, and in particular relates to a low-salt EOW electrolytic cell, a low-salt EOW electrolysis device and a low-salt EOW preparation method.
  • Electrolyzed-oxidizing water is produced by electrolysis of ordinary water without adding any harmful chemicals.
  • EOW has been used as a disinfectant in the fields of agriculture, medical disinfection, food hygiene, livestock management and antibacterial technology, and EOW has been used as an antibacterial drug in Japan. applied for many years.
  • EOW has antibacterial activity against a variety of microorganisms and can eliminate most common types of viruses, bacteria, fungi and spores in relatively small amounts, typically within 5 to 20 seconds.
  • the Japanese Ministry of Health, Labor and Welfare declared EOW effective in the treatment of chronic diarrhea, abnormal gastrointestinal fermentation, indigestion, high acidity and antacidity, and the Ministry also authorized EOW as a product for household use.
  • the present disclosure provides a low-salt EOW electrolytic cell
  • the low-salt EOW electrolytic cell includes a cell body, a non-polar membrane, a cathode and an anode
  • the cell body is provided with a cavity
  • the non-polar membrane is located in the cavity
  • the cavity is separated to form a cathode cavity and an anode cavity
  • the tank body is provided with a first liquid inlet and a first liquid outlet that communicate with the cathode cavity
  • the tank body is also provided with
  • the anode cavity communicates with the second liquid inlet and the second liquid outlet
  • the first liquid inlet and the second liquid inlet are used for injecting electrolyte
  • the first liquid outlet and the second liquid inlet are used for injecting electrolyte.
  • Two liquid outlets are used to flow out the electrolyzed liquid
  • the cathode is located in the cathode cavity
  • the anode is located in the anode cavity.
  • the tank body includes a first tank body and a second tank body, the first tank body and the second tank body are assembled and connected, and the non-polar diaphragm is fixed between the first tank body and the second tank body;
  • the first slot body has a first hollow part
  • the second slot body has a second hollow part
  • both the first hollow part and the second hollow part are distributed with a plurality of staggered blocking bars.
  • the tank body further includes a third tank body and a fourth tank body, the third tank body is assembled and connected with the first tank body, and forms a cathode cavity, and the fourth tank body is assembled and connected with the second tank body, and form an anode cavity.
  • the inner sidewall of the third tank body has a first protrusion, and the cathode is pressed against the first tank body by the first protrusion;
  • the inner wall of the fourth tank body is provided with a second protrusion, and the anode is pressed against the second tank body by the second protrusion.
  • the cathode is in the form of a plate, and the cathode is distributed with meshes;
  • the anode is plate-shaped, and there are mesh holes distributed on the anode.
  • the non-polar membrane is a nano-ceramic ion exchange membrane.
  • the first liquid inlet is staggered with the first liquid outlet
  • the second liquid inlet and the second liquid outlet are arranged alternately.
  • the first liquid inlet and the second liquid inlet are opened on the same side of the tank body.
  • the first liquid outlet and the second liquid outlet are opened on the same side of the tank body.
  • the present disclosure also provides a low-salt EOW electrolysis device, the low-salt EOW electrolysis device comprising the low-salt EOW electrolysis cell described in the present disclosure.
  • the present disclosure also provides a low-salt EOW preparation method, which is used in the low-salt EOW electrolysis device described in the present disclosure, comprising: injecting the electrolyte into the cathode cavity through the first liquid inlet and the second liquid inlet respectively And in the anode cavity; supply power to the cathode and the anode, the cathode and the anode undergo electrolysis, and EOW is generated in the anode cavity, and alkaline potential water is generated in the cathode cavity; and the generated EOW flows out from the second liquid outlet, and the generated alkali Sexual potential water flows out from the first liquid outlet.
  • only ions can pass through by setting a non-polar membrane, while water and other impurities cannot pass through, and when using a non-polar membrane, under the action of an electric field, anions in the cathode cavity pass through the non-polar membrane during electrolysis. It moves to the anode cavity and generates EOW in the anode cavity.
  • the metal cations in the anode cavity move to the cathode cavity through the non-polar membrane, so that the residual amount of metal cations in the anode cavity is less, that is, the residual amount of metal cations in the generated EOW is smaller than that of the anode cavity. It can realize the preparation of low-salt EOW and ensure the good sterilization effect of the prepared EOW.
  • the preparation method of the low-salt EOW is simple, the preparation of the EOW is convenient, and the prepared EOW contains less salt and has a good bactericidal effect.
  • FIG. 1 is a schematic structural diagram of a low-salt EOW electrolytic cell according to an embodiment of the present disclosure
  • Fig. 2 is the structural representation of another angle of view of the low-salt EOW electrolyzer in Fig. 1;
  • FIG. 3 is a cross-sectional view of a low-salt EOW electrolyzer in FIG. 1;
  • Figure 4 is an exploded view of the low salt EOW electrolyzer of Figure 1;
  • FIG. 5 is a schematic structural diagram of a low-salt EOW electrolysis device according to an embodiment of the present disclosure
  • connection should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; may be mechanical connection or electrical connection; may be direct communication, or indirect communication through an intermediate medium, and may be internal communication between two elements.
  • installation may be a fixed connection or a detachable connection Connection, or integral connection; may be mechanical connection or electrical connection; may be direct communication, or indirect communication through an intermediate medium, and may be internal communication between two elements.
  • plural means two or more.
  • the low-salt EOW electrolytic cell 100 includes a cell body 10 , a non-polar diaphragm 40 , a cathode 20 and an anode 30 , and the cell body 10 is provided with a cavity
  • the non-polar diaphragm 40 is located in the cavity and separates the cavity to form a cathode cavity 15 and an anode cavity 16.
  • the tank body 10 is provided with a first liquid inlet 131 and a first liquid outlet 132 communicating with the cathode cavity 15.
  • the tank body 10 is also provided with a second liquid inlet 141 and a second liquid outlet 142 communicating with the anode cavity 16.
  • the first liquid inlet 131 and the second liquid inlet 141 are used for injecting electrolyte, and the first liquid inlet 141 and the second liquid inlet 141 are used for injecting electrolyte.
  • the liquid port 132 and the second liquid outlet 142 are used to flow out the electrolyzed liquid.
  • the cathode 20 is located in the cathode cavity 15
  • the anode 30 is located in the anode cavity 16 .
  • the electrolysis cell 100 of the low-salt EOW electrolysis device includes a cell body 10 , a non-polar membrane 40 , a cathode 20 and an anode 30 , and the non-polar membrane 40 separates the cavity in the cell body 10 to form a cathode cavity 15 and anode cavity 16, and the tank body 10 is provided with a first liquid inlet 131 communicating with the cathode cavity 15 and a second liquid inlet 141 communicating with the anode cavity 16.
  • the electrolyte When preparing EOW, the electrolyte can be respectively injected into In the cathode cavity 15 and the anode cavity 16, the cathode 20 in the cathode cavity 15 and the anode 30 in the anode cavity 16 undergo an electrolysis reaction, and EOW is generated in the anode cavity 16, alkaline potential water is generated in the cathode cavity 15, and then the anode The EOW in the cavity 16 can flow out from the second liquid outlet 142 , and the alkaline potential water in the cathode cavity 15 can flow out from the first liquid outlet 132 .
  • the non-polar membrane 40 By arranging the non-polar membrane 40, only ions can pass through, while water and other impurities cannot pass through, and the non-polar membrane 40 is used.
  • the anions in the cathode cavity 15 pass through the non-polar membrane 40 to the anode cavity. 16 moves, and EOW is generated in the anode cavity 16, and the metal cations in the anode cavity 16 move to the cathode cavity 15 through the non-polar membrane 40, so that the residual amount of metal cations in the anode cavity 16 is less, that is, the metal cations in the generated EOW are The residual amount is less, the preparation of low-salt EOW is realized, and the good sterilization effect of the prepared EOW is ensured.
  • the tank body 10 includes a first tank body 11 and a second tank body 12, the first tank body 11 and the second tank body 12 are assembled and connected, and the non-polar diaphragm 40 is fixed on the first tank body 11 and the second tank body 12.
  • the first groove body 11 has a first hollow part
  • the second groove body 12 has a second hollow part
  • the first hollow part and the second hollow part are distributed with a plurality of interlaced blocking bars.
  • the non-polar diaphragm 40 is fixed between the first hollow portion and the second hollow portion, and the apolar diaphragm 40 can be provided with a certain support by a plurality of blocking bars arranged in a crisscross pattern, so that the non-polar diaphragm 40 is evenly stressed.
  • the probability of rupture of the non-polar membrane 40 is effectively reduced, the service life of the non-polar membrane 40 is prolonged, and the non-polar membrane 40 is exposed for ion exchange.
  • a non-polar membrane 40 with a relatively large area can be assembled, so that the anions and cations can pass smoothly, and the preparation efficiency of EOW can be accelerated.
  • the non-polar membrane 40 can also be fixed in other ways, or can also be directly placed in the tank body 10 .
  • the tank body 10 further includes a third tank body 13 and a fourth tank body 14 , the third tank body 13 is assembled and connected with the first tank body 11 and forms a cathode cavity 15 , and the fourth tank body 14 is connected with the first tank body 11 .
  • the second tank body 12 is assembled and connected, and forms an anode cavity 16 .
  • the first slot body 11 further has a first frame body part
  • the first hollow part is located in the frame of the first frame body part
  • the second slot body 12 also has a second frame body part
  • the second hollow body part is The part is located in the frame of the second frame body part
  • the surfaces of the first hollow part and the second hollow part for fixing the nonpolar diaphragm 40 are flush with the first frame body part and the second frame body part respectively, and the surface opposite to the surface Recessed in the first frame body part and the second frame body part, the third groove body 13 and the fourth groove body 14 are both provided with grooves in the middle.
  • the first groove body 11 and the third groove body 13 After the first groove body 11 and the third groove body 13 are assembled and connected, the first groove body The recessed portion of the tank body 11 and the recessed portion of the third tank body 13 form the entire cathode cavity 15 . Similarly, the recessed portion of the second tank body 12 and the recessed portion of the fourth tank body 14 form the entire anode cavity 16 . In this way, an injectable space can be provided for the electrolyte, and the overall structure is relatively simple and easy to assemble. In addition, considering the ease of production and processing, assembly and aesthetics, the first groove body 11 and the second groove body 12 have the same structure, the third groove body 13 and the fourth groove body 14 have the same structure, and the first groove body 11 has the same structure.
  • the second groove body 12 , the third groove body 13 and the fourth groove body 14 are all plate-shaped.
  • the third groove body 13 and the fourth groove body 14 can also be enclosed to form a cavity
  • the first groove body 11 , the second groove body 12 and the non-polar diaphragm 40 are integrally located in the cavity
  • the The cavity is divided to form a cathode cavity 15 and an anode cavity 16 .
  • the cathode 20 and the non-polar diaphragm 40 are respectively disposed on opposite sides of the first hollow portion, and both are in contact with the first hollow portion, and the anode 30 and the non-polar diaphragm 40 are respectively disposed on the second hollow portion. The opposite sides are in contact with the second hollow part.
  • the distance between the two stages of the cathode 20 and the anode 30 is the sum of the thickness of the first hollow part, the thickness of the second hollow part and the thickness of the non-polar diaphragm 40 , the distance between the two stages is small, and the electrolysis efficiency is high.
  • the first tank body 11 and the third tank body 13 are respectively provided with electrode holes for the negative wires of the cathode 20 and the anode 30 to pass through, so as to be electrically connected to the power supply, and the power supply is supplied through the power supply to ensure the entire The electrolysis reaction proceeds smoothly, and the two electrode holes are sealed to avoid liquid leakage.
  • the inner side wall of the third tank body 13 has a first protrusion 133 , and the cathode 20 is pressed on the first tank body 11 by the first protrusion 133 , and the inner wall of the fourth tank body 14 is pressed.
  • There are second protrusions 143 and the anode 30 is pressed against the second tank body 12 by the second protrusions 143 .
  • a plurality of first protrusions 133 are uniformly formed on the side of the third tank body 13 toward the cathode 20
  • a plurality of second protrusions are uniformly formed on the side of the fourth tank body 14 toward the anode 30 .
  • the first protrusion 133 is close to the side wall of the groove of the third groove body 13, extending from the bottom wall of the groove of the third groove body 13 to the position of the cathode 20, and the second protrusion 143 is close to the fourth groove.
  • the side wall of the groove of the body 14 extends from the bottom wall of the groove of the fourth tank body 14 to the position of the anode 30 , so as to realize the pressing of the cathode 20 and the anode 30 .
  • the cathode 20 and the anode 30 can be pressed down respectively, so that the two-stage distance between the cathode 20 and the anode 30 is The sum of the thickness of the two hollow parts and the thickness of the non-polar diaphragm 40 has a small distance between the two stages, which further improves the electrolysis efficiency.
  • the two-stage spacing between the anodes 30 is fixed at only 1 mm plus the thickness of the non-polar membrane 40, and the thickness of the non-polar membrane 40 is also very thin, so that the two-stage spacing is very small.
  • protrusions to press the cathode 20 and the anode 30, the structure and the method are relatively simple.
  • the pressing structure is not limited to this method, and the cathode 20 and the anode 30 can also be directly connected to the cathode 20 and the anode 30 by directly opening fixing grooves on the first tank body 11 and the second tank body 12 or forming a fixing clip.
  • Fixed, or a third pressing member may be provided in the cathode cavity 15 or the anode cavity 16 respectively to press the cathode 20 and the anode 30 on the first tank body 11 or the second tank body 12 respectively.
  • the cathode 20 is in the shape of a plate, and the cathode 20 has mesh holes distributed thereon, and the anode 30 is in the shape of a plate, and the anode 30 has mesh holes distributed thereon.
  • both the cathode 20 and the anode 30 are in the shape of a rectangular parallelepiped, and respectively have the cathode 20 lead and the anode 30 lead electrically connected to the power supply, and a plurality of rectangular meshes are evenly distributed on the cathode 20 and the anode 30
  • the holes, the cathode 20 and the anode 30 are all made of titanium material.
  • the meshed titanium cathode 20 and the meshed titanium anode 30 it is beneficial to the rapid relative movement of anions and cations in the cathode cavity 15 and the anode cavity 16, and the effect of improving the efficiency of EOW preparation is achieved.
  • the shapes of the cathode 20 and the anode 30 are not specifically limited, and can be selected according to actual needs, as long as the electrolysis function is satisfied, and the materials of the cathode 20 and the anode 30 are not limited to titanium. It can also be a honeycomb-shaped hexagonal mesh or the like.
  • the non-polar membrane 40 is a nano-ceramic ion exchange membrane.
  • the membrane resistance is low and the electrolysis efficiency is high, which further improves the preparation efficiency of EOW and improves the user experience.
  • the nano-ceramic ion-exchange membrane can withstand strong acid and alkali environments, and avoid corrosion during the electrolysis process. The service life of the non-polar diaphragm 40 is improved, and the production cost is saved.
  • the material of the non-polar membrane 40 is not specifically limited, and the non-polar membrane 40 that can pass both anions and metal cations can meet the electrolysis requirements of the low-salt EOW electrolytic cell 100 .
  • the first liquid inlets 131 and the first liquid outlets 132 are arranged alternately, and the second liquid inlets 141 and the second liquid outlets 142 are arranged alternately.
  • the first liquid inlet 131 and the first liquid outlet 132 are both opened on the outer surface of the tank body 10, and both communicate with the cathode cavity 15, and the first liquid inlet 131 and the first liquid outlet
  • the ports 132 are disposed on opposite sides of the third tank body 13 , and the axial directions of the first liquid inlet 131 and the first liquid outlet 132 are not on the same straight line.
  • the second liquid inlet 141 and the second liquid outlet 142 are both opened on the outer surface of the tank body 10, and both communicate with the anode cavity 16, and the second liquid inlet 141 and the second liquid outlet 142 are arranged at The opposite sides of the fourth tank body 14 are arranged, and the axial directions of the second liquid inlet 141 and the second liquid outlet 142 are not on the same straight line.
  • the first liquid inlet 131 and the second liquid inlet 141 are opened on the same side of the tank body 10
  • the first liquid outlet 132 and the second liquid outlet 142 are opened on the same side of the tank body 10 . Since the first liquid inlet 131 and the second liquid inlet 141 are opened on the same side of the tank body 10, it is convenient to inject electrolyte from the first liquid inlet 131 and the second liquid inlet 141 respectively, and the first liquid outlet 132 and the second liquid outlet 142 are opened on the same side of the tank body 10 to facilitate the collection and processing of the EOW and alkaline potential water flowing out from the first liquid outlet 132 and the second liquid outlet 142 respectively.
  • the overall structure is set The above is more reasonable, the preparation process is easier, and after the low-salt EOW electrolytic cell 100 is installed, the setting of other structures is also convenient.
  • the low-salt EOW electrolysis device includes, in addition to the above-mentioned low-salt EOW electrolysis cell 100 , a power supply, a controller, and an interactor 200 .
  • the power supply is used to provide
  • the controller is electrically connected to the power source, and the automation of the entire EOW preparation process is intelligently controlled by the controller.
  • the interactor 200 is a PLC touch screen and is electrically connected to the controller.
  • the interactor 200 performs human-computer interaction, thereby controlling the entire low-salt EOW electrolysis device or feeding back working information of the entire low-salt EOW electrolysis device.
  • two electrolyzers 100 may be provided.
  • the low-salt EOW electrolysis device further includes a chassis 300, and the electrolytic cell 100, the power supply, the controller, etc. are all installed in the chassis 300, so that the appearance of the entire low-salt EOW electrolysis device looks neater and more beautiful, and the chassis There is also an opening on the 300, and the interactor 200 is arranged at the opening, which is convenient for human-computer interaction, and the overall layout is very reasonable and simple.
  • the chassis 300 is also provided with a first liquid outlet 301 communicating with the first liquid outlet 132 and a second liquid outlet 302 communicating with the second liquid outlet 142, so as to discharge EOW and alkaline potential water to the Chassis 300 outside.
  • the low-salt EOW preparation method is used in the above-mentioned low-salt EOW electrolysis device, and the low-salt EOW preparation method includes: the electrolyte is supplied from a first liquid inlet 131 and a second liquid inlet 141 Injected into the cathode cavity 15 and the anode cavity 16 respectively; supply power to the cathode 20 and the anode 30, the cathode 20 and the anode 30 undergo an electrolytic reaction, and generate EOW in the anode cavity 16, and generate alkaline potential water in the cathode cavity 15; and generate The EOW flows out from the second liquid outlet 142 , and the generated alkaline potential water flows out from the first liquid outlet 132 .
  • the preparation method of the low-salt EOW is simple, convenient for the preparation of the EOW, and the prepared EOW contains less salt and has a good bactericidal effect.
  • the electrolyte is a 0.1% sodium chloride pure water salt solution.
  • EOW is prepared, the preparation instruction is input through the interactor 200, the power is turned on, and the controller controls the electrolyte to automatically flow from the first liquid inlet 131 and the first liquid inlet 131 to the first liquid inlet.
  • the second liquid inlet 141 is injected into the cathode cavity 15 and the anode cavity 16, the flow rate reaches 4 L/min, and electrolysis is performed under a certain current density. Under the action of the electric field, the chloride ions in the cathode cavity 15 are attracted by the anode 30.
  • the non-polar diaphragm 40 quickly moves to the anode chamber 16, and is reduced to chlorine gas at the anode 30 to produce hypochlorous acid.
  • the sodium ions in the anode chamber 16 are rapidly moved to the cathode chamber 15 through the non-polar diaphragm 40 under the attraction of the cathode 20.
  • the residual amount of sodium ions in the cathode cavity 15 is less, so that EOW with low salt and low pH can be produced in the anode cavity 16, wherein the pH value of EOW is about 2-3, orp>1100mv, and the effective chlorine content is 50- 70ppm, which fully meets the requirements, and the cathode chamber 15 can produce alkaline potential water.
  • the electrolyzed EOW flows out from the second liquid outlet 142 and then is discharged to the outside of the chassis 300 through the second liquid outlet 302. It can be used for sterilization and electrolysis.
  • the alkaline potential water flows out from the first liquid outlet 132 and then is discharged to the outside of the case 300 through the first liquid discharge port 301 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

公开了低盐EOW电解槽、低盐EOW电解装置及低盐EOW制备方法。低盐EOW电解装置包括电解槽,电解槽包括槽体、无极性隔膜、阴极以及阳极,槽体设有腔体,无极性隔膜位于腔体内,并将腔体分隔形成阴极腔和阳极腔,槽体上开设有与阴极腔连通的第一进液口及第一出液口,且槽体上还开设有与阳极腔连通的第二进液口及第二出液口,第一进液口及第二进液口用于注入电解液,第一出液口及第二出液口用于流出电解后的液体,阴极位于阴极腔内,阳极位于阳极腔内。

Description

低盐EOW电解槽、低盐EOW电解装置及低盐EOW制备方法
相关申请的引用
本公开要求于2021年4月7日向中华人民共和国国家知识产权局提交的申请号为202110374281.7、名称为“低盐EOW电解槽、低盐EOW电解装置及低盐EOW制备方法”的发明专利申请的全部权益,并通过引用的方式将其全部内容并入本文。
领域
本公开大体上涉及EOW制备技术领域,具体涉及低盐EOW电解槽、低盐EOW电解装置及低盐EOW制备方法。
背景
酸性氧化电位水(electrolyzed-oxidizing water,简称EOW)是由普通水电解产生的,且不添加任何有害化学物质。近年来,由于其生产和应用的简单性,EOW作为一种消毒剂在农业、医疗消毒、食品卫生、牲畜管理和抗菌技术等领域中均得到了使用,而EOW作为一种抗菌药物在日本已经应用了多年。EOW对各种微生物具有抗菌活性,并能以相对较少的量消除大多数常见类型的病毒、细菌、真菌和孢子等,时间通常在5至20秒以内。1966年,日本卫生、劳动和福利部宣布EOW在治疗慢性腹泻、胃肠异常发酵、消化不良、高酸度和抗酸方面是有效的,该部还授权EOW可作为家庭使用的产品。
现如今,随着技术的进步,EOW使用领域越来越广泛,因此,EOW电解装置和EOW制备方法也需要不断改进。
概述
一方面,本公开提供了低盐EOW电解槽,低盐EOW电解槽包括槽体、无极性隔膜、阴极以及阳极,所述槽体设有腔体,所述无极性隔膜位于所述腔体内,并将所述腔体分隔形成阴极腔和 阳极腔,所述槽体上开设有与所述阴极腔连通的第一进液口及第一出液口,且所述槽体上还开设有与所述阳极腔连通的第二进液口及第二出液口,所述第一进液口及所述第二进液口用于注入电解液,所述第一出液口及所述第二出液口用于流出电解后的液体,所述阴极位于所述阴极腔内,所述阳极位于所述阳极腔内。
在某些实施方案中,槽体包括第一槽体及第二槽体,第一槽体与第二槽体装配连接,无极性隔膜固定在第一槽体与第二槽体之间;并且
第一槽体具有第一镂空部,第二槽体具有第二镂空部,第一镂空部及第二镂空部均分布有交错设置的多个阻挡条。
在某些实施方案中,槽体还包括第三槽体及第四槽体,第三槽体与第一槽体装配连接,并形成阴极腔,第四槽体与第二槽体装配连接,并形成阳极腔。
在某些实施方案中,第三槽体的内侧壁上具有第一凸起,通过第一凸起将阴极压紧在第一槽体上;并且
第四槽体的内壁上具有第二凸起,通过第二凸起将阳极压紧在第二槽体上。
在某些实施方案中,阴极呈板状,且阴极上分布有网孔;并且
阳极呈板状,且阳极上分布有网孔。
在某些实施方案中,无极性隔膜为纳米陶瓷离子交换膜。
在某些实施方案中,第一进液口与第一出液口交错设置;并且
第二进液口与第二出液口交错设置。
在某些实施方案中,第一进液口与第二进液口开设在槽体的同侧;并且
第一出液口与第二出液口开设在槽体的同侧。
另一方面,本公开还提供了低盐EOW电解装置,低盐EOW电解装置包括本公开所述的低盐EOW电解槽。
又一方面,本公开还提供了低盐EOW制备方法,其用于本公 开所述的低盐EOW电解装置,包括:电解液由第一进液口和第二进液口分别注入至阴极腔和阳极腔内;向阴极和阳极供电,阴极和阳极发生电解反应,且在阳极腔内生成EOW,阴极腔内生成碱性电位水;以及生成的EOW由第二出液口流出,生成的碱性电位水由第一出液口流出。
在某些实施方案中,通过设置无极性隔膜,只有离子可以通过,而水和其它杂质无法通过,并且采用无极性隔膜,电解时,在电场的作用下,阴极腔内的阴离子通过无极性隔膜向阳极腔移动,并在阳极腔内生成EOW,阳极腔内的金属阳离子通过无极性隔膜向阴极腔移动,这样阳极腔内的金属阳离子残留量较少,即生成的EOW中金属阳离子残留量较少,实现低盐EOW的制备,保证制备的EOW良好的杀菌效果。
在某些实施方案中,该低盐EOW的制备方法简单,便于EOW的制备,并且制备的EOW中含盐量较少,具有良好的杀菌效果。
附图的简要说明
本公开上述和/或附加方面的优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开一实施例的低盐EOW电解槽的结构示意图;
图2是图1中低盐EOW电解槽的另一视角的结构示意图;
图3是图1中低盐EOW电解槽的剖视图;
图4是图1中低盐EOW电解槽的分解图;以及
图5是本公开一实施例的低盐EOW电解装置的结构示意图;
其中图1至图5中附图标记与部件名称之间的对应关系为:
100、电解槽;
10、槽体;11、第一槽体;12、第二槽体;13、第三槽体;131、第一进液口;132、第一出液口;133、第一凸起;14、第四槽体;141、第二进液口;142、第二出液口;143、第二凸起;15、阴极腔;16、阳极腔;
20、阴极;
30、阳极;
40、无极性隔膜;
200、交互器;
300、机箱;301、第一排液口;302、第二排液口。
详述
为了能够更清楚地理解本公开的上述目的、特征和优点,下面结合附图和具体实施方式对本公开进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在本公开的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本公开的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接连通,也可以通过中间媒介间接连通,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。此外,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本公开一实施例提供低盐EOW电解槽100,如图1至图4所示,低盐EOW电解槽100包括槽体10、无极性隔膜40、阴极20以及阳极30,槽体10设有腔体,无极性隔膜40位于腔体内,并将腔体分隔形成阴极腔15和阳极腔16,槽体10上开设有与阴极腔15连通的第一进液口131及第一出液口132,且槽体10上还开设有与阳极腔16连通的第二进液口141及第二出液口142,第一 进液口131及第二进液口141用于注入电解液,第一出液口132及第二出液口142用于流出电解后的液体,阴极20位于阴极腔15内,阳极30位于阳极腔16内。
在某些实施方案中,低盐EOW电解装置的电解槽100,包括槽体10、无极性隔膜40、阴极20以及阳极30,无极性隔膜40将槽体10内的腔体分隔形成阴极腔15和阳极腔16,且槽体10上开设有与阴极腔15连通的第一进液口131及与阳极腔16连通的第二进液口141,在制备EOW时,可将电解液分别注入至阴极腔15内和阳极腔16内,阴极腔15内的阴极20和阳极腔16内的阳极30发生电解反应,且在阳极腔16内生成EOW,阴极腔15内生成碱性电位水,然后阳极腔16内的EOW可由第二出液口142流出,阴极腔15内的碱性电位水可由第一出液口132流出。通过设置无极性隔膜40,只有离子可以通过,而水和其它杂质无法通过,并且采用无极性隔膜40,电解时,在电场的作用下,阴极腔15内的阴离子通过无极性隔膜40向阳极腔16移动,并在阳极腔16内生成EOW,阳极腔16内的金属阳离子通过无极性隔膜40向阴极腔15移动,这样阳极腔16内的金属阳离子残留量较少,即生成的EOW中金属阳离子残留量较少,实现低盐EOW的制备,保证制备的EOW良好的杀菌效果。
在某些实施方案中,槽体10包括第一槽体11及第二槽体12,第一槽体11与第二槽体12装配连接,无极性隔膜40固定在第一槽体11与第二槽体12之间,第一槽体11具有第一镂空部,第二槽体12具有第二镂空部,第一镂空部及第二镂空部均分布有交错设置的多个阻挡条。通过设置第一槽体11和第二槽体12,可以通过第一槽体11和第二槽体12的装配连接实现无极性隔膜40的固定,固定方式简单。而且,该无极性隔膜40固定在第一镂空部与第二镂空部之间,通过纵横交错设置的多个阻挡条可以为无极性隔膜40提供一定的支撑,使得无极性隔膜40受力均匀,有效减小无极性隔膜40破裂的几率,延长无极性隔膜40的使用寿命,并且还使得无极性隔膜40露出,以便进行离子交换。另外,该结 构设置形式,可以装配面积相对较大的无极性隔膜40,使阴阳离子顺利通过,加快EOW的制备效率。当然,在其他实施方案中,无极性隔膜40也可以通过其他方式进行固定,或者也可以直接放置在槽体10内。
在某些实施方案中,槽体10还包括第三槽体13及第四槽体14,第三槽体13与第一槽体11装配连接,并形成阴极腔15,第四槽体14与第二槽体12装配连接,并形成阳极腔16。在某些实施方案中,第一槽体11还具有第一框体部,第一镂空部位于第一框体部的框内,第二槽体12还具有第二框体部,第二镂空部位于第二框体部的框内,且第一镂空部与第二镂空部固定无极性隔膜40的面分别与第一框体部及第二框体部平齐,与该面相对的面凹陷于第一框体部及第二框体部,第三槽体13及第四槽体14均在中部开设有凹槽,第一槽体11与第三槽体13装配连接后,第一槽体11的凹陷部分与第三槽体13的凹槽部分形成整个阴极腔15,同样地,第二槽体12的凹陷部分与第四槽体14的凹槽部分形成整个阳极腔16。这样,可以为电解液提供一可注入的空间,整体结构比较简单,易于装配。另外,还考虑到便于生产加工、装配及美观性的问题,第一槽体11和第二槽体12结构相同,第三槽体13和第四槽体14结构相同,且第一槽体11、第二槽体12、第三槽体13及第四槽体14均呈板状。当然,在其他实施方案中,也可以第三槽体13与第四槽体14围合形成腔体,第一槽体11、第二槽体12及无极性隔膜40整体位于腔体内,并将腔体分隔形成阴极腔15和阳极腔16。
在某些实施方案中,阴极20与无极性隔膜40分别设置在第一镂空部相对的两侧,并均与第一镂空部抵接,阳极30与无极性隔膜40分别设置在第二镂空部相对的两侧,并均与第二镂空部抵接。如此,阴极20和阳极30两级之间的间距为第一镂空部的厚度、第二镂空部的厚度及无极性隔膜40的厚度之和,两级间距较小,电解效率高。在某些实施方案中,第一槽体11及第三槽体13上分别开设有供阴极20和阳极30的阴线穿过的电极孔,以便与 电源电性连接,通过电源进行供电,保证整个电解反应的顺利进行,且两个电极孔处均进行密封处理,避免漏液。
在某些实施方案中,第三槽体13的内侧壁上具有第一凸起133,通过第一凸起133将阴极20压紧在第一槽体11上,第四槽体14的内壁上具有第二凸起143,通过第二凸起143将阳极30压紧在第二槽体12上。在某些实施方案中,第三槽体13朝向靠近阴极20的一侧均匀形成有多个第一凸起133,第四槽体14朝向靠近阳极30的一侧均匀形成有多个第二凸起143,且第一凸起133紧贴第三槽体13凹槽的侧壁,自第三槽体13凹槽的底壁延伸至阴极20所在位置,第二凸起143紧贴第四槽体14凹槽的侧壁,自第四槽体14凹槽的底壁延伸至阳极30所在位置,以实现压紧阴极20和阳极30。通过形成有第一凸起133及第二凸起143,进而可分别将阴极20及阳极30压住,从而阴极20和阳极30之间的两级间距固定为只有第一镂空部的厚度、第二镂空部的厚度及无极性隔膜40的厚度之和,两级间距很小,进一步提高了电解效率,其中,第一镂空部的厚度和第二镂空部的厚度均为0.5mm,阴极20和阳极30之间的两级间距固定为只有1mm加上无极性隔膜40的厚度,且无极性隔膜40的厚度也非常薄,使两级间距很小。另外,通过直接形成凸起的方式来压紧阴极20和阳极30,结构及方式均比较简单。当然,在其他实施方案中,压紧的结构不限于此方式,也可以通过直接在第一槽体11和第二槽体12上分别开设固定槽或者形成固定卡沿将阴极20和阳极30直接固定,或者也可以在阴极腔15或阳极腔16内分别设置第三压紧件,分别将阴极20和阳极30压紧在第一槽体11或者第二槽体12上。
在某些实施方案中,阴极20呈板状,且阴极20上分布有网孔,阳极30呈板状,且阳极30上分布有网孔。在某些实施方案中,阴极20及阳极30均呈长方体板状,并分别具有与电源电性连接的阴极20引线及阳极30引线,且阴极20和阳极30上均均匀分布有多个长方形网孔,阴极20和阳极30均采用钛材料制成。通过采用网状钛阴极20和网状钛阳极30,有利于阴阳离子在阴极 腔15和阳极腔16内快速的相对运动,实现提高EOW制备效率的效果。当然,在其他实施方案中,对阴极20和阳极30的形状不作具体限定,可根据实际需求进行选择,满足电解功能即可,并且阴极20和阳极30的材料也不限于为钛,另外网孔也可以为蜂窝状的六边形网孔等。
在某些实施方案中,无极性隔膜40为纳米陶瓷离子交换膜。使用纳米陶瓷离子交换膜,膜电阻低,电解效率高,进一步提高了EOW的制备效率,提升用户使用体验,并且,纳米陶瓷离子交换膜能耐强酸强碱性环境,避免在电解过程中被腐蚀,提高无极性隔膜40的使用寿命,节约生产成本。当然,在其他实施方案中,对无极性隔膜40的材料不作具体限定,为既可以通过阴离子又可以通过金属阳离子的无极性隔膜40即可,满足该低盐EOW电解槽100的电解需求。
在某些实施方案中,第一进液口131与第一出液口132交错设置,第二进液口141与第二出液口142交错设置。在某些实施方案中,第一进液口131与第一出液口132均开设在槽体10的外表面上,并均与阴极腔15连通,第一进液口131与第一出液口132设置在第三槽体13相对设置的两侧,且第一进液口131与第一出液口132的轴线方向不在同一直线上。同样地,第二进液口141与第二出液口142均开设在槽体10的外表面上,并均与阳极腔16连通,第二进液口141与第二出液口142设置在第四槽体14相对设置的两侧,且第二进液口141与第二出液口142的轴线方向不在同一直线上。如此,在制备EOW时,由第一进液口131和第二进液口141注入至阴极腔15和阳极腔16内的电解液,在阴极腔15或者阳极腔16内的路径加长,经过充分电解后,EOW可以由与第二进液口141错开的第二出液口142流出,碱性电位水可以由与第一进液口131错开的第一出液口132流出,从而使得整个电解反应过程充分进行,保证EOW的制备质量。当然,在其他实施方案中,也可以根据实际情况对各出液口及各进液口的情况进行相应调整。
在某些实施方案中,第一进液口131与第二进液口141开设在槽体10的同侧,第一出液口132与第二出液口142开设在槽体10的同侧。由于第一进液口131与第二进液口141开设在槽体10的同侧,便于分别从第一进液口131和第二进液口141注入电解液,并且,第一出液口132与第二出液口142开设在槽体10的同侧,便于分别对从第一出液口132和第二出液口142流出的EOW和碱性电位水进行收集与处理,整体结构设置上更加合理,制备过程更加容易,且在将该低盐EOW电解槽100安装后,也便于其他各结构的设置。
本公开另一实施例提供低盐EOW电解装置,如图5所示,低盐EOW电解装置除包括上述低盐EOW电解槽100外,还包括电源、控制器及交互器200,电源起到提供电能、实现整个装置供电的效果,控制器与电源电性连接,通过控制器智能控制整个EOW制备过程的自动化进行,交互器200为PLC触控屏,并与控制器电性连接,通过触控交互器200进行人机交互,进而控制整个低盐EOW电解装置或反馈整个低盐EOW电解装置工作信息。在某些实施方案中,为进一步提高EOW的制备效率,电解槽100可设置有两个。
在某些实施方案中,低盐EOW电解装置还包括机箱300,电解槽100、电源及控制器等均安装在机箱300内,使得整个低盐EOW电解装置外表看起来更加整洁、美观,并且机箱300上还开设有一开口,交互器200设置在该开口处,便于进行人机交互,整体布局上非常合理简单。另外,机箱300上还开设有与第一出液口132连通的第一排液口301及与第二出液口142连通的第二排液口302,以便将EOW和碱性电位水排出至机箱300外。
本公开又一实施例提供低盐EOW制备方法,低盐EOW制备方法用于上述低盐EOW电解装置,低盐EOW制备方法包括:电解液由第一进液口131和第二进液口141分别注入至阴极腔15和阳极腔16内;向阴极20和阳极30供电,阴极20和阳极30发生电解反应,且在阳极腔16内生成EOW,阴极腔15内生成碱性电 位水;以及生成的EOW由第二出液口142流出,生成的碱性电位水由第一出液口132流出。
该低盐EOW制备方法简单,便于EOW的制备,并且制备的EOW中含盐量较少,具有良好的杀菌效果。
需要说明的是,电解液为0.1%的氯化钠纯水盐溶液,制备EOW时,通过交互器200输入制备指令,电源接通,控制器控制电解液自动由第一进液口131和第二进液口141注入至阴极腔15和阳极腔16内,流量达到4L/min,并在一定电流密度下进行电解,在电场的作用下,阴极腔15内的氯离子在阳极30的吸引下通过无极性隔膜40迅速向阳极腔16移动,并在阳极30被还原成氯气,生产次氯酸,阳极腔16内的钠离子在阴极20的吸引下通过无极性隔膜40迅速向阴极腔15移动,阴极腔15内的钠离子残留量较少,从而在阳极腔16可产出低盐低PH的EOW,其中,EOW的PH值约为2-3,orp>1100mv,有效氯含量在50-70ppm,完全符合要求,而阴极腔15可产出碱性电位水,电解后的EOW由第二出液口142流出再经第二排液口302排出至机箱300外,可用于杀菌消毒,电解后的碱性电位水由第一出液口132流出再经第一排液口301排出至机箱300外。
以上所述仅为本公开的某些实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 低盐EOW电解槽,其包括:
    槽体(10),设有腔体;
    无极性隔膜(40),位于所述腔体内,并将所述腔体分隔形成阴极腔(15)和阳极腔(16),所述槽体(10)上开设有与所述阴极腔(15)连通的第一进液口(131)及第一出液口(132),且所述槽体(10)上还开设有与所述阳极腔(16)连通的第二进液口(141)及第二出液口(142),所述第一进液口(131)及所述第二进液口(141)用于注入电解液,所述第一出液口(132)及所述第二出液口(142)用于流出电解后的液体;以及
    阴极(20)及阳极(30),所述阴极(20)位于所述阴极腔(15)内,所述阳极(30)位于所述阳极腔(16)内。
  2. 如权利要求1所述的低盐EOW电解槽,其中,所述槽体(10)包括第一槽体(11)及第二槽体(12),所述第一槽体(11)与所述第二槽体(12)装配连接,所述无极性隔膜(40)固定在所述第一槽体(11)与所述第二槽体(12)之间;并且
    所述第一槽体(11)具有第一镂空部,所述第二槽体(12)具有第二镂空部,所述第一镂空部及所述第二镂空部均分布有交错设置的多个阻挡条。
  3. 如权利要求2所述的低盐EOW电解槽,其中,所述槽体(10)还包括第三槽体(13)及第四槽体(14),所述第三槽体(13)与所述第一槽体(11)装配连接,并形成所述阴极腔(15),所述第四槽体(14)与所述第二槽体(12)装配连接,并形成所述阳极腔(16)。
  4. 如权利要求3所述的低盐EOW电解槽,其中,所述第三槽体(13)的内侧壁上具有第一凸起(133),通过所述第一凸起(133)将所述阴极(20)压紧在所述第一槽体(11)上;并且
    所述第四槽体(14)的内壁上具有第二凸起(143),通过所述第二 凸起(143)将所述阳极(30)压紧在所述第二槽体(12)上。
  5. 如权利要求1至4中任一权利要求所述的低盐EOW电解槽,其中,所述阴极(20)呈板状,且所述阴极(20)上分布有网孔;并且
    所述阳极(30)呈板状,且所述阳极(30)上分布有网孔。
  6. 如权利要求1至5中任一权利要求所述的低盐EOW电解槽,其中,所述无极性隔膜(40)为纳米陶瓷离子交换膜。
  7. 如权利要求1至6中任一权利要求所述的低盐EOW电解槽,其中,所述第一进液口(131)与所述第一出液口(132)交错设置;并且
    所述第二进液口(141)与所述第二出液口(142)交错设置。
  8. 如权利要求1至7中任一权利要求所述的低盐EOW电解槽,其中,所述第一进液口(131)与所述第二进液口(141)开设在所述槽体(10)的同侧;并且
    所述第一出液口(132)与所述第二出液口(142)开设在所述槽体的同侧。
  9. 低盐EOW电解装置,包括权利要求1至8中任一权利要求所述的低盐EOW电解槽(100)。
  10. 低盐EOW制备方法,用于权利要求9所述的低盐EOW电解装置,所述低盐EOW制备方法包括:
    电解液由所述第一进液口(131)和所述第二进液口(141)分别注入至所述阴极腔(15)和所述阳极腔(16)内;
    向所述阴极(20)和所述阳极(30)供电,所述阴极(20)和所述阳极(30)发生电解反应,且在所述阳极腔(16)内生成EOW,所述阴极腔(15)内生成碱性电位水;以及
    所述生成的EOW由所述第二出液口(142)流出,生成的碱性电位水由所述第一出液口(132)流出。
PCT/CN2022/071039 2021-04-07 2022-01-10 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法 WO2022213693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110374281.7 2021-04-07
CN202110374281.7A CN113044933A (zh) 2021-04-07 2021-04-07 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法

Publications (1)

Publication Number Publication Date
WO2022213693A1 true WO2022213693A1 (zh) 2022-10-13

Family

ID=76518830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071039 WO2022213693A1 (zh) 2021-04-07 2022-01-10 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法

Country Status (2)

Country Link
CN (1) CN113044933A (zh)
WO (1) WO2022213693A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044933A (zh) * 2021-04-07 2021-06-29 湖南满缘红水科技有限公司 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法
CN113149145A (zh) * 2021-04-07 2021-07-23 湖南满缘红水科技有限公司 制备不含金属离子eow的电解槽、装置及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2441795Y (zh) * 2000-08-08 2001-08-08 上海金元水处理有限公司 高氧化还原电位消毒水生成器
JP5702885B1 (ja) * 2014-10-20 2015-04-15 株式会社日本トリム 電解水生成装置
CN106574382A (zh) * 2014-09-19 2017-04-19 株式会社东芝 电极单元、电解装置和用于电解装置的电极
CN106661743A (zh) * 2014-09-19 2017-05-10 株式会社东芝 电极单元、具备电极单元的电解槽、电解装置、电极单元的电极的制造方法
CN106661744A (zh) * 2014-09-19 2017-05-10 株式会社东芝 电极单元、具备电极单元的电解槽及电解装置
CN212581571U (zh) * 2020-06-03 2021-02-23 宝鸡锐诚钛业有限公司 一种电解槽
CN113044933A (zh) * 2021-04-07 2021-06-29 湖南满缘红水科技有限公司 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法
CN214780934U (zh) * 2021-04-07 2021-11-19 湖南满缘红水科技有限公司 低盐eow电解槽及低盐eow电解装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5639724B1 (ja) * 2014-03-17 2014-12-10 株式会社日本トリム 電解水生成装置及びその製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2441795Y (zh) * 2000-08-08 2001-08-08 上海金元水处理有限公司 高氧化还原电位消毒水生成器
CN106574382A (zh) * 2014-09-19 2017-04-19 株式会社东芝 电极单元、电解装置和用于电解装置的电极
CN106661743A (zh) * 2014-09-19 2017-05-10 株式会社东芝 电极单元、具备电极单元的电解槽、电解装置、电极单元的电极的制造方法
CN106661744A (zh) * 2014-09-19 2017-05-10 株式会社东芝 电极单元、具备电极单元的电解槽及电解装置
JP5702885B1 (ja) * 2014-10-20 2015-04-15 株式会社日本トリム 電解水生成装置
CN212581571U (zh) * 2020-06-03 2021-02-23 宝鸡锐诚钛业有限公司 一种电解槽
CN113044933A (zh) * 2021-04-07 2021-06-29 湖南满缘红水科技有限公司 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法
CN214780934U (zh) * 2021-04-07 2021-11-19 湖南满缘红水科技有限公司 低盐eow电解槽及低盐eow电解装置

Also Published As

Publication number Publication date
CN113044933A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2022213693A1 (zh) 低盐eow电解槽、低盐eow电解装置及低盐eow制备方法
JP5761874B2 (ja) 電解システム
JPH06339683A (ja) 電解水生成装置
CN107921372B (zh) 大容量水电解系统及其使用方法
TWI622666B (zh) 電解水生成裝置
KR100756662B1 (ko) 순간 살균수 생성장치
CN109498825B (zh) 一种家用消毒装置
JPH07155760A (ja) 電解水製造装置
WO2005105678A1 (ja) 電解水製造装置
CN214780934U (zh) 低盐eow电解槽及低盐eow电解装置
JP4302386B2 (ja) 電解装置
KR20080040659A (ko) 전기분해 유도용 조성물과 이를 이용한 전기분해 장치
JP4056623B2 (ja) 電解中性水生成機の電解槽
WO2022213694A1 (zh) 制备不含金属离子的eow的电解槽、装置及方法
JP6599411B2 (ja) 電解セルおよび電解セル用電極板
CN211471571U (zh) 一种臭氧电解室
EP3239360B1 (en) Pipe-type electrolysis cell
EP3580181B1 (en) Device comprising a channel, a cathode, an anode and a power source, and method for the production of chlorine dioxide
CN112707479A (zh) 一种次氯酸水机
JP5172550B2 (ja) 複極式電解槽及びこれに用いられるスペーサ
JP2021116459A (ja) 電解槽および電解装置
KR102062810B1 (ko) 냉각식 통형 유격막 전해수 생성장치
CN212050655U (zh) 小型电解水装置及其系统
CN214406517U (zh) 用于热水器的清洗装置及热水器
CN217324334U (zh) 一种新型电解水装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22783764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22783764

Country of ref document: EP

Kind code of ref document: A1