WO2022211581A1 - 폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치 - Google Patents

폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치 Download PDF

Info

Publication number
WO2022211581A1
WO2022211581A1 PCT/KR2022/004724 KR2022004724W WO2022211581A1 WO 2022211581 A1 WO2022211581 A1 WO 2022211581A1 KR 2022004724 W KR2022004724 W KR 2022004724W WO 2022211581 A1 WO2022211581 A1 WO 2022211581A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
polyester
based resin
decomposing
reaction
Prior art date
Application number
PCT/KR2022/004724
Other languages
English (en)
French (fr)
Inventor
김용환
황정욱
Original Assignee
주식회사 디아이씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210120412A external-priority patent/KR102531887B1/ko
Priority claimed from KR1020210120411A external-priority patent/KR102620572B1/ko
Application filed by 주식회사 디아이씨 filed Critical 주식회사 디아이씨
Publication of WO2022211581A1 publication Critical patent/WO2022211581A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy

Definitions

  • the present invention relates to a catalyst for decomposing a polyester-based resin, a method for producing the same, and a method and a decomposition apparatus for decomposing a polyester-based resin using the catalyst, and more particularly, to a monomer or oligomer that can be recycled by decomposing the polyester-based resin It relates to a catalyst capable of producing , a method for producing the same, and a method and a decomposition apparatus for decomposing a polyester-based resin using the catalyst.
  • PET Polyethylene terephthalate
  • PET is used for packaging materials such as films, fabrics, or various types of bottles, so it is light in weight and high in strength, so it does not break, and has the advantage of stably maintaining the quality of the contents to be stored or protected.
  • PET waste due to the increased consumption of PET in a wide range of industries causes serious environmental problems because PET is not completely degraded by natural microorganisms.
  • the ratio of recovery after use is less than about 20%, and the remainder is incinerated or landfilled.
  • carbon dioxide and fine dust are generated, and landfill causes environmental problems due to soil contamination.
  • Efforts are being made to actively solve environmental problems by recovering and recycling PET waste.
  • PET waste There are two main methods for recycling PET waste: mechanical recycling and chemical recycling.
  • Mechanical recycling removes and pulverizes contaminants from PET waste and reuses them in the form of reduced-sized plays or chips
  • chemical recycling involves partially or completely decomposing PET polymer into monomers and oligomers to reuse as a raw material for PET.
  • the chemical recycling method converts PET polymers into monomers, which are the original raw material, so it is efficient to use resources. It has the advantage of greatly increasing the temperature and reproducing high-quality PET without deterioration of physical properties.
  • the chemical recycling method of PET until now is a method of decomposing PET into BHET (bis-hydroxyethyl terephthalate) by glycolysis using a homogeneous catalyst dissolved in a solvent such as zinc or lithium acetate catalyst.
  • BHET bis-hydroxyethyl terephthalate
  • the recovery method is complicated and the problem of high cost remains, and many studies on heterogeneous catalysts that are easier to recover the catalyst have also been reported.
  • As a catalyst research on the development of core element technology that has excellent performance and price competitiveness is emerging as an urgent task.
  • One aspect of the present invention is to simplify the process of separating the catalyst from the product when used in the process of decomposing and recycling the waste polyester-based resin by using a catalyst capable of decomposing the polyester-based resin or simplifying the separation of the catalyst To provide a catalyst for decomposing polyester-based resins.
  • Another aspect of the present invention is to provide a method for preparing the catalyst for decomposing the polyester-based resin.
  • Another aspect of the present invention is to simplify the process of separating the catalyst from the product in the process of decomposing and recycling the waste polyester-based resin by using the catalyst for decomposing the polyester-based resin, or the recovery and separation of the catalyst is easy.
  • Another aspect of the present invention is to simplify the process of separating the catalyst from the product in the process of decomposing and recycling the waste polyester-based resin by using the catalyst for decomposing the polyester-based resin, or the recovery and separation of the catalyst is easy.
  • One aspect of the present invention is,
  • a core comprising a metal oxide having a magnetic
  • a coating layer provided with at least one catalyst material having a catalytic activity for a glycolysis reaction of a polyester-based resin on the surface of the core; It provides a catalyst for decomposing a polyester-based resin comprising a.
  • the metal oxide may be an oxide of a transition metal selected from the group consisting of iron (Fe), nickel (Ni), and cobalt (Co).
  • the coating layer may further include a composite oxide of an element included in the catalyst material and the transition metal.
  • the metal oxide includes ferric trioxide (Fe 2 O 3 ) or triiron tetraoxide (Fe 3 O 4 ),
  • the catalyst material comprises calcium carbonate,
  • the composite oxide may include at least one selected from the group consisting of CaFeO 3 , CaFe 2 O 4 and Ca 2 Fe 2 O 5 .
  • Another aspect of the present invention is
  • a core preparation step of preparing a core comprising a first compound including a first metal and having paramagnetic properties
  • a salt of a second metal which is a metal different from the first metal, is mixed and stirred in an aqueous solution having a pH of 9 or higher, and a precursor material containing a salt of the second metal is precipitated on the surface of the core.
  • It provides a method for producing a catalyst for decomposing a polyester-based resin according to the above comprising a.
  • the heat treatment step may be performed at 300 to 600° C. for 3 to 6 hours, and a complex oxide may be formed at the interface between the core and the precursor layer.
  • the first compound may include ferric trioxide (Fe 2 O 3 ) or triiron tetraoxide (Fe 3 O 4 ), and the second metal may be calcium (Ca).
  • Another aspect of the present invention is
  • polyester-based resin decomposition method comprising a.
  • the glycol may be added in an amount of 300 to 700 parts by weight based on 100 parts by weight of the waste polyester-based resin, and the catalyst for decomposing the polyester-based resin may be included in an amount of 3 to 20 wt% of the total reactant.
  • the catalyst for decomposing the polyester-based resin recovered in the catalyst recovery step may be reused 1 to 10 more times by repeating the polyester-based resin decomposition step and the catalyst recovery step (S3).
  • Another aspect of the present invention is
  • a detachable catalyst recovery device installed outside or inside the reactor, the catalyst recovery device capable of recovering the catalyst for decomposing the polyester resin using magnetism after the decomposition reaction;
  • a separation device for separating the product of the decomposition reaction from the reaction result remaining after the catalyst for decomposition of the polyester-based resin is recovered after the decomposition reaction;
  • polyester-based resin decomposition device comprising a.
  • the catalyst recovery device may include a permanent magnet or an electromagnet having ferromagnetism.
  • the catalyst for decomposing a polyester resin can catalyze the glycolysis reaction of the polyester resin on the surface, including a core as a support, and a catalyst layer provided on the surface of the core, and the core is paramagnetic Since it is easy to separate or remove by an external magnet, the process of recovering the catalyst from the reaction result after the reaction may be simplified or a separate process may not be required. In addition, even if it is recovered and reused after the completion of the reaction, the conversion rate of the catalyst can be maintained for a long time, thereby improving the economic feasibility of the decomposition and regeneration process of the waste polyester-based resin.
  • the polyester-based resin decomposition method and decomposition device using the catalyst for decomposing the polyester-based resin utilizes the magnetic properties of the catalyst after the glycolysis reaction of the polyester-based resin to facilitate recovery and recycling of the catalyst.
  • the loss of the catalyst during the process is small, the decomposition efficiency of the waste polyester-based resin is excellent, and the separation of the product is easy.
  • the polyester-based resin decomposition apparatus can be used in large-capacity facilities, and thus has excellent economic feasibility, and can be effectively applied to waste polyester-based resin decomposition plant facilities.
  • 1 is a view showing the results of XRD analysis of a catalyst for decomposing a polyester resin according to a heat treatment temperature.
  • FIGS. 2 and 3 are diagrams showing an electron microscope and EDS analysis results of a catalyst for decomposing a polyester-based resin according to an embodiment.
  • FIGS. 4 and 5 are diagrams showing an electron microscope and EDS analysis results of a catalyst for decomposing a polyester-based resin according to an embodiment.
  • 6 and 7 are views showing the electron microscope and EDS analysis results of the catalyst for decomposing the polyester-based resin according to an embodiment.
  • FIG 8 and 9 are views showing the electron microscope and EDS analysis results of the polyester-based resin decomposition catalyst according to the comparative example.
  • FIG. 10 is a view in which EDS analysis results of a catalyst for decomposing a polyester resin are summarized according to temperature.
  • 11 and 12 are views showing the results of analyzing the magnetic properties of the catalyst for decomposing the polyester-based resin.
  • 13 to 16 are graphs showing changes in the reaction conversion rate and the yield of the product by reusing the catalyst for decomposing the polyester-based resin according to Examples and Comparative Examples.
  • 17 is a conceptual diagram schematically illustrating a method of decomposing a waste polyester-based resin.
  • FIG. 18 is a schematic view showing a polyester-based resin decomposing apparatus according to an embodiment.
  • the term comprise, comprises, comprising is meant to include the stated object, step or group of objects, and steps, and any other object. It is not used in the sense of excluding a step or a group of objects or groups of steps.
  • a first aspect of the present invention is a catalyst for decomposing a polyester-based resin that can be used for decomposing a polyester-based polymer resin, more preferably a catalyst for decomposing a polyester resin for recycling the used waste polyester-based resin it is preferable
  • the polyester-based resin means a polymer or polymer including a plurality of ester bonds, and may be, for example, a polyester-based polymer material called polyethylene terephthalate (PET) or PET plastic. And, polyurethane, epoxy material, etc. may be included.
  • PET polyethylene terephthalate
  • PET plastic PET plastic
  • polyurethane, epoxy material, etc. may be included.
  • PET is a polymer synthesized by polymerization of terephthalic acid, a diacid having two carboxylic acid groups, and ethylene glycol, a diol having two alcohol groups. It has a polyester-based polymer structure of a polymerized structure.
  • n is an integer of 2 or more.
  • the catalyst for decomposing the polyester-based resin which is an embodiment of this aspect, preferably has a powder form.
  • the catalyst when it is in the form of a powder, it can have a relatively high surface area or specific surface area relative to weight or volume, so the interface between the substrate and the catalyst in which the reactant and the catalyst are in contact is increased, so that the reaction can be carried out quickly. There is this.
  • the catalyst for decomposing the polyester-based resin of this aspect preferably has a particle diameter of about 30 to 120 nm, preferably 40 to 54 nm.
  • the particle diameter of the catalyst is preferably a value measured by XRD rietveld analysis.
  • the particle diameter of the catalyst for decomposing the polyester resin (after the formation of the coating layer) is larger than the corresponding range, the specific surface area may be relatively reduced and the reaction efficiency may decrease. can be dropped
  • the catalysts for decomposing the polyester resin may agglomerate or form a cluster, so that the catalyst is uniformly dispersed. There is a problem of not losing, and also the recovery function may be reduced because the paramagnetic property of the core is relatively deteriorated.
  • a preferred embodiment of the catalyst for decomposing the polyester-based resin comprises a core and a coating layer provided on the surface of the core.
  • the core serves as a support that allows the catalyst to have a particle size and shape, and facilitates dispersion of the catalyst or control of the particle size.
  • the shape of the core is not limited, but in order to prevent the uniform formation of the coating layer and the destruction of the coating layer, it is preferable that the particles have a spherical or near-spherical shape.
  • the particle diameter of the core can be calculated by using the average value of the major axis and minor axis in the case of a spherical shape and the diameter of a sphere in the case of a non-spherical shape.
  • the particle diameter of the core is about 10 to 50 nm, and it is good that the nanoparticles are preferably 15 to 20 nm,
  • the core of the catalyst for decomposing the polyester-based resin includes the first compound having magnetism.
  • the entire polyester-based resin decomposition catalyst may have magnetic properties, so that in addition to serving as a support for the coating layer, oligomers and monomers after completion of the desired polyester-based resin decomposition reaction Since separation using a magnet is possible without performing a separate process for separation from the catalyst, the reuse of the catalyst is much easier and the complexity of the process for reuse can be prevented, which is economical.
  • the first compound having magnetism is used in the sense of including a metal compound and the metal itself, and in the present specification, magnetic is a concept including both ferromagnetic properties and soft magnetic properties, and more specifically, the first compound has paramagnetic properties. It is preferable to have When the first compound has a paramagnetic property, it can be easily recovered by using magnetic force, and there is an advantage in that the catalyst can be easily separated after removing the magnetic force.
  • the first compound preferably contains a metal oxide as a main component, and preferably has an oxide of a transition metal.
  • the first compound includes a first metal, and preferably includes at least one metal selected from the group consisting of iron (Fe), cobalt (Co) and nickel (Ni) as the first metal, and further Preferably, iron (Fe) is included.
  • Iron is an easily obtainable metal, and has the advantage of good economic feasibility of the catalyst and easy to obtain magnetic properties due to its price and easy processing.
  • An embodiment of the present invention includes an oxide of iron as a compound of the first metal included in the first compound, and an iron oxide such as ferric trioxide (Fe 2 O 3 ) or triiron tetraoxide (Fe 3 O 4 ) may be used. have.
  • the coating layer is a layer provided on the surface of the core having a particle diameter of nanometer unit, and includes a catalyst material that promotes the glycolysis reaction of the polyester-based resin, and the catalyst material is a metal acetate of a second metal ( acetate) compounds, metal halides, metal carbonates, metal sulfates, metal hydroxides, metal phosphates.
  • a metal oxide and a mixture thereof may be used, and a material such as graphene may be further included.
  • the metal halide includes, for example, a chloride, a bromide of a metal, and the like.
  • the second metal a metal selected from the group consisting of calcium (Ca), zinc (Zn) and lithium (Li) may be used, and calcium is preferably used.
  • a preferred embodiment of the present invention includes a catalyst material having catalytic activity for the glycolysis reaction of a polyester-based resin. More specifically, the coating layer includes a second compound and has catalytic activity, and the second compound may be calcium hydroxide, calcium carbonate or calcium oxide containing calcium as the second metal as a catalyst material, preferably calcium narcissus. It is preferable that it is a second compound.
  • the second compound is a catalyst material, and when another compound including the second metal has catalytic activity in addition to the second compound, it may be included in the coating layer as a catalyst material.
  • the coating layer may include a complex oxide of the first metal and the second metal.
  • An embodiment of this aspect includes iron as the first metal and calcium as the second metal, and includes a complex oxide of iron and calcium in the coating layer, for example CaFeO 3 , CaFe 2 O 4 or Ca 2 Fe 2 O 5 Composite oxides such as may be included.
  • the composite oxide containing the first metal and the second metal can be used as a catalyst material and has a catalytic activity of the glycolysis reaction of the polyester-based resin.
  • the first metal included in the composite oxide is derived from the core containing the first compound, and the first compound moves from the core to the coating layer by movement such as diffusion of atoms at the interface between the core and the coating layer and is included in the coating layer.
  • a complex oxide can be formed by mixing or reacting with the catalyst material.
  • the composite oxide may be 0.1 wt% to 60 wt% or less in the total polyester-based resin decomposition catalyst, for example, 0.50 to 56 wt%, and preferably 0.60 to 55.60 wt%. have.
  • the ratio of the first compound may be relatively decreased, so that there may be problems in that magnetic properties may be deteriorated or the number of reusable catalysts may be reduced.
  • the content distribution of the composite oxide is highest at the interface between the core and the coating layer, and decreases toward the inside of the core or decreases toward the surface of the coating layer.
  • the composite oxide is preferably included in the coating layer in a distribution in which the content gradually decreases from the interface between the core and the coating layer to the surface of the coating layer.
  • the compound may be formed by diffusion or mass movement of the first compound and the catalytic material or the second compound, and as the distance from the interface increases, the content of the complex oxide may decrease.
  • the content of the composite oxide may vary depending on the heat treatment temperature when preparing the catalyst for decomposing the polyester-based resin, for example, the content of the composite oxide may increase as the heat treatment temperature increases.
  • the heat treatment temperature T is preferably 300 to 600 °C, preferably 350 to 550 °C is good.
  • the value of k in Relation 1 is 70 to 90, for example, preferably 72 to 88.
  • the thickness of the coating layer is not limited, but preferably 65 nm or less, preferably 1 to 55 nm, and preferably 10 to 50 nm. If the thickness of the coating layer is out of the corresponding range, there is a problem in that the production cost of the catalyst for decomposing the polyester resin increases, the magnetism relative to the weight of the catalyst becomes weak, and the reaction efficiency decreases because the surface area relative to the weight of the catalyst material decreases. can
  • the coating layer is preferably formed of a single coating layer, but it is also possible to include two or more layers or to further include an intermediate layer between the core and the coating layer in order to improve the bonding force between the core and the coating layer and improve the lifespan of the coating layer.
  • a core including a first compound of a first metal, a composite oxide layer provided on the surface of the core and including a composite oxide of a first metal and a second metal, and a second layer provided on the composite oxide layer It is also possible to use a catalyst having a structure including a coating layer including a metal compound, and the coating layer may include some complex oxides.
  • the thickness of the composite oxide layer is preferably 40 nm or less, preferably 0.1 to 50 nm, for example, 1 to 50 nm.
  • the thickness ratio of the composite oxide layer and the coating layer is in the range of 10:1 to 1:10, preferably 2:1 to 1:2. If the thickness of the coating layer is too thick than the thickness of the composite oxide layer, the coating layer may be separated from the core or complex oxide layer or may be easily damaged. As this is reduced, a magnetic degradation problem of the core may occur.
  • Paramagnetic materials are magnetized in a magnetic field but lose their magnetism when the magnetic field is removed. At this time, when the magnetic field is increased, the magnetic saturation state, which is a state in which the magnetization is sufficiently achieved at a certain point in time, is no longer magnetized. magnetic properties can be identified.
  • the catalyst for decomposing the polyester resin of this aspect preferably has paramagnetic properties, specifically, the saturation magnetization (Ms) value is 30 emu/g or more, for example 35 emu/g or more, preferably 47 to 60 emu/g. g is good.
  • Ms saturation magnetization
  • the residual magnetization (Mr) value measured after removing the magnetic field may be within 8 to 11 emu/g, preferably 8.5 to 11 emu/g, for example 9.1 to 11 emu/g, more preferably 9.9 to 11 emu/g is preferred. If the residual magnetization is too large, paramagnetic properties may not be good, so there may be problems of aggregation between catalyst particles and formation of clusters.
  • a second aspect of the present invention is a method for preparing a catalyst for decomposing a polyester-based resin.
  • This manufacturing method is a method for preparing the catalyst for decomposing the polyester-based resin of the first aspect described above, and exemplifies a preferred method among various methods for preparing the catalyst for decomposing the polyester-based resin having the above-described structure and properties write negatively.
  • a method for preparing a catalyst for decomposing a polyester-based resin includes a core preparation step, a core dispersion step, a precursor layer forming step, a washing and drying step, and a heat treatment step.
  • the core preparation step is a step of providing a core having magnetism and on which a coating layer can be formed.
  • the core is preferably a nano particle having paramagnetic properties.
  • a preferred embodiment of this aspect uses, as a core, nanoparticles containing Fe 3 O 4 as the first compound as the first metal as the core.
  • the core may also be manufactured by a method of precipitating the first metal salt, as an example FeCl 2 , FeCl 2 +FeCl 3 , FeSO 4 and FeSO 4 +Fe 2 (SO 4 ) 3
  • An iron-based salt selected from the group comprising It can be obtained by reacting the compound or mixture with ammonium hydroxide and precipitating it under pH conditions of 9 to 11, preferably 10 to 11. If the pH is too low or too high, there may be a problem that the first compound may cause an unexpected reaction or it may be difficult to neutralize for a subsequent step.
  • the core dispersing step is a step of uniformly dispersing the core to form a coating layer that can be used as a catalyst of the polyester-based resin decomposition glycolysis reaction on the surface of the prepared core.
  • the core dispersing step is a step of uniformly dispersing the core to form a coating layer that can be used as a catalyst of the polyester-based resin decomposition glycolysis reaction on the surface of the prepared core.
  • the precursor layer forming step is a pre-step for forming the coating layer, and is a step of precipitating a precursor of the second metal included in the catalyst material included in the coating layer on the surface of the core.
  • the precursor layer formed in the form of a shell on the surface of the core is a catalyst material It contains the precursor material before conversion to
  • the precursor refers to a compound of the second metal before conversion into a catalyst material, and refers to an intermediate compound that can be finally converted into a catalyst material by an additional process such as a heat treatment step to be described later.
  • aqueous solution in which the oxidized second metal ion is dissolved, and the second metal is inorganic.
  • a salt or an aqueous organic salt solution may be prepared.
  • inorganic salt examples include metal sulfate, metal nitrate, metal chloride, metal bromide, metal carbonate, or hydrates thereof.
  • the metal salt inorganic salt or organic salt
  • distilled water distilled water
  • the agitation allows the injected nanoparticle cores to be dispersed without agglomeration or agglomeration, so that a precursor layer having a uniform thickness can be formed on the surface of the core.
  • the mole ratio is less than the corresponding range, the content of the precursor material compared to the first compound is increased, and the surface area of the catalyst is finally reduced, resulting in decreased efficiency.
  • the metal salt of the second metal is chemically precipitated on the surface of the core to form the precursor layer.
  • various precipitation methods may be used, but the method of causing the reaction by controlling the pH is advantageous in economical efficiency of the reaction and in forming the precursor layer having a uniform thickness.
  • the precursor material may be a hydroxide or carbonate of the second metal.
  • the pH is 10 or more, and more preferably, the pH is adjusted to 11 or more. If the pH is too low, the desired reaction does not occur well, so the precursor layer may not be formed well.
  • an aqueous sodium hydroxide solution was used to adjust the pH, and the composition of the basic reagent used to adjust the pH is not limited, but it is good to include a cation that does not participate in the reaction, and an aqueous sodium hydroxide solution it is preferable
  • calcium hydroxide including calcium which is the second metal
  • the calcium hydroxide is included as a precursor material in the precursor layer forming step, and the calcium hydroxide is aggregated and precipitated on the surface of the core or obtained in the form of a shell on the surface of the core.
  • other types of salts such as oxides or carbonates of the second metal are included in the precursor layer.
  • the intermediate layer forming step may be optionally included before the precursor layer forming step, and the intermediate layer is formed on the surface of the core before the precursor layer forming step.
  • the intermediate layer forming step it is preferable to perform high-speed stirring for at least 12 hours after the pH adjustment (pH is maintained high) of the precursor layer forming step is finished.
  • Stirring should be performed in the intermediate layer forming step in order to increase the dispersion degree of nanoparticles, and it is preferable that stirring is performed for a sufficient stirring force and stirring time.
  • the washing and drying step is a step of separating and washing the particles prepared after the precursor layer forming step. After the remaining unreacted material is thoroughly washed and removed from the surface of the particles, the cleaning solution is removed to obtain particles having a desired core-shell structure.
  • the particles obtained after the precursor layer is formed preferably have a particle diameter of 40 to 80 nm, for example, 50 to 60 nm, and some particles may have a microstructure aggregated with each other. If the particle size is smaller than the corresponding range, aggregation of the particles may be more severe.
  • washing solution it is preferable to use a solvent that is easy to remove unreacted substances and easy to volatilize, and it is preferable to use a polar solvent, and preferably a solution containing at least one of water, acetone, and alcohol is used. good night.
  • washing is carried out for 30 minutes by using an ultrasonic cleaner after excessive ethanol is first added to the precursor material, and then the catalyst particles are recovered using magnetic force. Washing and recovery of the stomach are repeated approximately 3 or 4 times, and washing and recovery are repeated 3 or 4 times in the same manner using acetone instead of ethanol to complete the washing. After washing is completed, dry catalyst particles are stored after removing residual moisture by drying in a low vacuum atmosphere at 80°C for about 24 hours.
  • the heat treatment step is a step of converting the solid precursor layer deposited on the surface of the core into a coating layer including a catalyst material having catalytic activity by heat treatment of the precursor layer forming step. It is preferable that the heat treatment step be a step of performing calcination, and calcination means a process of heating solids such as ore to cause thermal decomposition or phase transition, or to remove volatile components.
  • the heat treatment step causes a reaction by heat in the precursor layer chemically deposited on the surface of the core to convert the precursor material into a catalyst material, thereby converting the precursor layer provided on the surface of the core into a coating layer.
  • the heat treatment step is preferably performed under the condition that the heat treatment temperature is 300 to 600° C., and the heat treatment time is 3 to 6 hours, preferably 4 to 6 hours, for example, about 5 hours.
  • the catalytic activity of the prepared catalyst may be low because the conversion of the precursor material to the catalyst material is not sufficiently performed, and the coating layer may not be sufficiently formed, so there may be a problem that the coating layer is separated from the core or is easily broken .
  • the heat treatment temperature is 600° C. or higher, side reactions may occur or reaction efficiency may be reduced, and the first compound may lose magnetism or deteriorate magnetic properties as the temperature rises above the Curie temperature. ⁇ ) may be reduced and there may be a problem that reuse becomes difficult.
  • the heat treatment time is too long or short, there may be a problem that the reaction by the heat treatment is not sufficiently performed.
  • the heat treatment be performed under the atmosphere, and carbon dioxide is contacted with the precursor material, and it is also possible to synthesize the carbonate of the second metal.
  • an incinerator As equipment for heat treatment, an incinerator, an electric furnace, or the like may be used. In a preferred embodiment of the present specification, heat treatment was performed using an electric furnace in an atmospheric atmosphere. (HANTECH, S-1700)
  • a means for dispersing the particles or controlling the agglomerates in the heat treatment step may be used in order to uniformly improve the temperature during the heat treatment and to prevent the agglomerates between the particles from being hardened. If the agglomerate of the agglomerated particles is maintained after the precursor layer forming step, the heat transfer efficiency is low, making it difficult to uniformly heat treatment, and the coating layers containing the catalyst material generated during heat treatment may grow together and cause a problem in which they are connected or agglomerated. .
  • surfactants, acid-base treatment methods, and the like can be used.
  • reaction that occurs in the heat treatment step is not specified, and the specific reaction formula or mechanism may vary depending on the precursor material and the catalyst material, for example, a dehydration reaction may occur.
  • the precursor layer includes calcium hydroxide as a precursor material, and a reaction in which calcium hydroxide as a precursor material is converted into calcium carbonate or calcium oxide may occur by a heat treatment step.
  • a composite oxide may be formed together with a precursor material, a catalyst material, or a second metal at the interface with the coating layer.
  • an additional complex oxide formation reaction may occur at the interface, so a product different from that in the case of heat treatment of the pure precursor material can be obtained, and the formation of a catalyst material such as calcium oxide is suppressed or a reduced content may be obtained.
  • Paramagnetic is maintained due to the first compound included in the core even after the heat treatment step, and the first compound is 20 wt% or more, preferably 25 wt% or more, for example, 27 wt% of the total polyester-based resin decomposition catalyst % to 75 wt%, more preferably 38.9 to 75 wt%.
  • the catalyst for decomposing the entire polyester-based resin on which the coating layer is formed can be utilized as a paramagnetic nanoparticle catalyst including the paramagnetic properties of the core as it is in the range of the first compound.
  • the first compound may have a microstructure structure including crystals, wherein the average particle diameter of the crystals of the first compound is 20 nm or less, for example, 19.7 nm or less, for example, 19.65 nm or less, Preferably, it is good that it is 18.7 nm or less. If the average crystal particle diameter of the first compound is larger than the corresponding range, cracking and brittleness are likely to occur when the catalyst is used, thereby reducing durability or limiting reuse.
  • the component of the core can maintain paramagnetic properties before and after the heat treatment step.
  • a method for decomposing a polyester-based resin using a catalyst for decomposing a polyester-based resin includes a reactant preparation step (S1), a polyester-based resin decomposition step (S2), a catalyst recovery step (S3) and a catalyst recycling step (S4).
  • S1 reactant preparation step
  • S2 polyester-based resin decomposition step
  • S3 catalyst recovery step
  • S4 catalyst recycling step
  • 17 schematically shows a decomposition method of PET as an example of a decomposition method of a polyester-based resin using a catalyst for decomposing a polyester-based resin of this aspect.
  • the reactant preparation step (S1) is a step of preparing a waste polyester-based resin and glycol used as a reactant, which is not included in the reactant, but is defined as a step of preparing a catalyst for decomposing the polyester-based resin to be used in the reaction.
  • glycol means a dihydric alcohol having two hydroxyl groups (hydroxy groups) in a molecule.
  • the reactant preparation step (S1) is a waste resin preparation step of washing and preparing the waste polyester-based resin or pulverized waste polyester-based resin, and a catalyst preparation step of preparing a catalyst for decomposing the polyester resin.
  • n is an integer of 2 or more.
  • Glycol prepared in the step of preparing the reactant is a substance that participates in the glycolysis reaction of the polyester-based resin, and glycol that can be adopted by those skilled in the art if it can glycolyze the polyester-based resin may be used, and one type or a mixture of two or more types of glycols may be used.
  • ethylene glycol EG
  • DEG diethylene glycol
  • PG propylene glycol
  • the glycol is preferably included in an amount of 200 to 800 parts by weight based on 100 parts by weight of the waste polyester-based resin, preferably 300 to 500 parts by weight, and when converted into molar equivalents, the molar ratio of glycol and waste polyester-based resin is greater than 2:1, and it is preferred that the glycol be present in excess.
  • the catalyst for decomposing the polyester resin includes a catalyst material that promotes the glycolysis reaction and at the same time, it is preferable to use a catalyst in the form of nano-unit particles having magnetism.
  • a catalyst for decomposition of a nano-unit paramagnetic polyester-based resin may be used.
  • triiron tetraoxide (Fe 3 O 4 ) which is paramagnetic nanoparticles, is precipitated as a precursor material on the surface of calcium ions in a reducing atmosphere.
  • a catalyst prepared by heat treatment after precipitation or precipitation may be used, and it is preferable to use the catalyst for decomposing the polyester-based resin according to the above-described aspect.
  • the input catalyst for decomposing the polyester resin may be 3 to 20 wt%, preferably 5 to 20 wt%, of the total reactant in which the waste polyester resin, glycol and catalyst are mixed, more preferably 8 to 15 wt% is preferred.
  • the nanoparticles in which calcium is precipitated in the form of a precursor material is a polyester prepared by performing a treatment for 1 to 10 hours at a temperature of 300 to 600° C., for example, 350 to 550° C., after a grinding treatment to pulverize the aggregates.
  • a catalyst for decomposition of a resin-based resin may be used, and the obtained catalyst for decomposition of a polyester-based resin includes an Fe 3 O 4 core in the center, and Ca(OH) 2 , CaCO 3 , CaO or Ca 2 Fe 2 on the surface of the core. It is preferable to form a coating layer containing O 5 to have a core-shell structure.
  • the polyester-based resin decomposition step (S2) is a step in which a waste polyester-based resin and an excess of glycol are mixed in the presence of a polyester-based resin decomposition catalyst and heated to cause a reaction of glycolysis.
  • the reaction temperature is preferably 180 to 240°C, preferably 190 to 200°C, and preferably a temperature near 196°C.
  • the pressure condition may be 0.5 to 1.5 bar, for example, 0.8 to 1.2 bar, specifically, for example, about 0.9 to 1.1 bar, more specifically, for example, 1 bar.
  • the polyester-based resin decomposition step (S2) is preferably performed for 2 to 5 hours, and the reaction time may vary depending on the reaction conditions and reactants, but is preferably made within the range of 3 hours ⁇ 20 minutes.
  • reaction time is too short, there is a problem that the reactants do not react sufficiently, and if the reaction time is too long, there is a problem in that the life of the catalyst is reduced or the reaction efficiency is lowered, so that economic efficiency is not good.
  • the polyester-based resin decomposition step (S2) may include a process of terminating the reaction by cooling the reaction solution to a temperature of 10 to 30° C. or room temperature after a certain reaction time has elapsed.
  • the BHET compound is a concept including an oligomer that can be generated by decomposition of a polyester-based resin, and may include compounds having various structures depending on the structure of the reactant, but basically includes the structure of the BHET monomer are doing Specifically, hydroxyethyl hydroxy diethyl terephthalate (hydroxy ethyl hydroxy diethyl terephthalate), bis-hydroxy diethyl terephthalate (bis-hydroxy diethyl terephthalate), hydroxyethyl hydroxypropyl terephthalate (hydroxyethyl hydroxypropyl terephthalate), At least one selected from the group consisting of bis-hydroxypropyl terephthalate and hydroxy diethyl hydroxypropyl terephthalate may be included.
  • step after the end of the reaction in the polyester-based resin decomposition step (S2), using a magnet to separate the solid unreacted material, the catalyst, and the liquid reaction product in the reaction solution of the reactor, respectively. step, and may include a step of isolating only the catalyst or only the reaction product among them.
  • the solid unreacted material includes the polyester resin that did not participate in the depolymerization reaction, and the liquid reaction product includes BHET and/or BHET compounds produced by depolymerizing the polyester resin.
  • the catalyst recovery step includes a step of separating the solid state unreacted material and the catalyst in a manner that can be employed by a person skilled in the art according to the type of reactor and reaction, for example, the reaction is carried out using a batch reactor.
  • a step of separating the unreacted material and the catalyst present in the reactor is included.
  • the solid unreacted material in the reaction solution sinks due to the difference in density of the constituent components in the reaction solution, and the catalyst for decomposing the polyester resin of the present invention may vary depending on the design of the reaction vessel or catalyst recovery means, but for example For example, it can be concentrated in a desired part of the reactor by a permanent magnet or an electromagnet approaching the bottom of the reaction vessel, so that it can be easily recovered from the reaction solution.
  • the catalyst for decomposing the polyester resin used in the present invention has a characteristic of having a magnetism, and has the advantage that it can be separated using a magnet, and the shape or type of the magnet used may be a permanent magnet or an electromagnet.
  • a method of recovering the used catalyst a method of removing the catalyst from the reactor using a magnet or a method of fixing the catalyst through a magnet of the reactor and separating the reactants from the reactor can be used, and the type of reactor, etc. Depending on the selection, the optimal method may be used.
  • the unreacted material and catalyst that can be recovered in the catalyst recovery step (S3) are put into a new reactor as it is together with an excess of glycol, and the polyester-based resin decomposition step (S2), the catalyst recovery step (S3) This is a step performed for the process of performing again.
  • the recovered catalyst is reused 1 to 10 more times by repeating the polyester-based resin decomposition step (S2) and the catalyst recovery step (S3) and can be recovered, and even if reused in the range of 1 to 10 times, the polyester resin is depolymerized.
  • the catalytic activity is maintained for this purpose, so that the yield of BHET obtained after the reaction can be maintained at 90% or more.
  • the catalyst for decomposing the polyester resin when included in 10wt%, it is good that the conversion rate of the reactant is 55% or more, preferably 60% or more, within 8 times of reuse, the yield of the product is 85% or more, preferably 90% or more.
  • the number of reuses at the initial time point when the conversion rate of the catalyst falls to less than 80% is 5 or more, and more preferably 6 or more.
  • the remaining unreacted material and the reaction product may be separated and recovered through an additional step.
  • the obtained reaction product exists in a liquid state, and products such as BHET and/or BHET compounds present in the reaction product are separated and recovered in a liquid phase through solid-liquid separation, etc., and then stored in a cooling device for 10 to 12 hours. Then, it can be obtained as a final product in a solid state through the step of filtering to remove impurities and drying for 11 to 13 hours.
  • a polyester-based resin decomposition apparatus using a catalyst for decomposing a polyester-based resin may be disclosed.
  • This aspect is a polyester-based resin decomposition device that chemically decomposes and recycles waste polyester-based resin collected using a catalyst for decomposing polyester-based resin into monomers. It is the same catalyst as the catalyst for decomposing the polyester resin, and descriptions of the same or overlapping content will be omitted.
  • a detachable catalyst recovery device installed outside or inside the reactor, the catalyst recovery device capable of recovering the catalyst for decomposing the polyester resin using magnetism after the decomposition reaction;
  • the catalyst for decomposing the polyester-based resin is recovered and includes a separation device for separating the product of the decomposition reaction from the remaining reaction product.
  • FIG. 18 is a schematic view showing a polyester-based resin decomposing apparatus according to an embodiment.
  • Reactor 10 accommodates polyester-based resin, glycol, and a catalyst for decomposing polyester-based resin and the polyester-based resin decomposition reaction is performed, so that the polyester-based resin is depolymerized through glycolysis to form a product. It is a tank to obtain a reaction product containing the monomer BHET (bis-hydroxyethyl terephthalate) and/or a BHET compound having a BHET structure, and its shape and size are not limited.
  • BHET bis-hydroxyethyl terephthalate
  • a BHET compound having a BHET structure and its shape and size are not limited.
  • the reactor 10 for example, a batch or semi-batch type reactor may be used, and one or more reactors may be used.
  • a catalyst for decomposing a polyester-based resin as a reactant and glycol such as ethylene glycol and a polyester-based resin may be introduced into the reactor 10 to perform a reaction.
  • the polyester resin, glycol and the catalyst for decomposing the polyester resin may be pre-mixed at a predetermined ratio, and then put into the reactor 10 at once, and the solid polyester resin and the catalyst for decomposing the polyester resin After pre-mixing in a predetermined ratio and input to the reactor 10 first, the liquid glycol may be sequentially added.
  • the reactor 10 may further include at least one reactant supply line (not shown) for supplying polyester-based resin, glycol, and a catalyst for decomposing polyester-based resin, respectively, or supplying two or more together.
  • At least a glycol supply line may be included in that a reaction occurs when glycol is introduced in excess of liquid glycol.
  • the reactor 10 may further include a stirring means 11 accommodated in the reactor for uniform stirring of the reactants therein, and the stirring means and the stirring method are not limited.
  • the reactor 10 may include a temperature control means 12 for controlling the internal temperature of the reactor and a temperature sensor 13 for measuring the internal temperature of the reactor.
  • the catalyst recovery device 20 is a means for recovering the catalyst for decomposing the polyester-based resin used in the reaction, and may be installed outside or inside the reactor 10 and is detachable.
  • the catalyst recovery device 20 is a means for recovering a catalyst for decomposing a polyester-based resin having paramagnetic properties after the decomposition reaction by electromagnetic force, and may include a permanent magnet or an electromagnet having ferromagnetic properties.
  • the catalyst recovery device 20 may be provided at the lower part of the reactor 10 .
  • the catalysts are fixed by magnetism so that the catalyst is not separated from the lower part of the reactor 10 . It is possible to prevent the catalyst from being desorbed together.
  • the catalyst recovery device 20 may be provided in a structure that can be inserted and removed from the inside of the reactor 10 , and the catalyst recovery device 20 is put in to magnetically attach the catalysts inside the reactor 10 to the reactor. It is also possible to separate only the catalysts in (10) and remove them to the outside of the reactor (10).
  • the separator 30 is a device for separating BHET and BHET compounds, which are products of the decomposition reaction, from the reaction product remaining after the catalyst for decomposing the polyester resin is recovered after the decomposition of the polyester resin. Separation device 30 may be connected from the outlet of the reactor 10, or alternatively, is provided independently of the reactor 10, and directly injects the remaining reaction product in the reactor 10 into the separation device 30 It is also possible
  • the separator 30 is a reaction product in which the solid and liquid phase remaining after the catalyst for decomposing the polyester resin is recovered a solid-liquid separation device 31 for removing the solid phase and separating the liquid phase; and a precipitation device 32 for separating BHET and BHET compounds, which are products of the decomposition reaction, from the liquid reaction product obtained by the solid-liquid separation device 31 .
  • the solid-liquid separation device 31 is the solid phase and the liquid phase through at least one method of specific gravity separation, dissolved air flotation (DAF), centrifugation, decantation (Decantation), overflow (Overflow) and filtering (Filtering)
  • DAF dissolved air flotation
  • Decantation decantation
  • Overflow Overflow
  • Filtering filtering
  • the solid-liquid separator 31 may include a filter for separating a solid unreacted material (such as a polyester-based resin) or some unrecovered catalyst from a liquid reaction product.
  • the liquid reaction product separated in the solid-liquid separation device 31 is sent to the precipitation device 32 to perform a separation process of BHET and BHET compounds, which are products of the decomposition reaction.
  • the precipitation device 32 cools the liquid reaction product obtained in the solid-liquid separation device 31 to precipitate BHET and BHET compounds, which are products of the decomposition reaction. Cooling device 33 for making; a filter 34 for filtering the precipitated BHET and BHET compounds; and a dryer 35 for drying the filtered BHET and BHET compounds.
  • BHET and BHET compounds are filtered in the filter 34 and the recovered glycol is put back into the reactor 10 as a reactant.
  • a line (not shown) may be further included.
  • the waste polyester-based resin decomposition apparatus of this aspect may be variously changed according to its scale and processing amount, and even if a means that can be transformed into a conventional technical level is used or substituted, it is included in the scope of the right of this aspect.
  • the shape and composition of the prepared magnetic catalyst were confirmed using a scanning electron microscope (SEM, Tescan Mira3) and an energy dispersive spectrometer (EDS, Oxford instrument), and Ca(OH) 2 @Fe 3 O 4 of a core-shell structure was confirmed to have been created.
  • SEM scanning electron microscope
  • EDS energy dispersive spectrometer
  • a catalyst for decomposing a polyester resin was prepared in the same manner except that the core product with the precursor layer of Example 1 was heat treated for 5 hours, and the heat treatment temperature was respectively 350, 400, 500, and 550 degrees. .
  • Example 6 Decomposition of polyester-based resin using catalyst for decomposing polyester-based resin
  • a heater is coupled to the reactor to increase the reaction temperature, and when the reaction temperature reaches 196° C., the reaction is performed at a stirring speed of 400 rpm for 3 hours.
  • the reactant is separated into a solid state unreacted substance and a liquid state reaction product using a permanent magnet.
  • the magnetic catalyst sunk by the permanent magnet and the unreacted solid in the solid state were recovered and weighed to calculate the conversion rate.
  • BHET the final product dissolved in the reaction result in the liquid state, was stored in a cooling device for 12 hours, filtered and dried to measure the yield.
  • Wi initial waste PET weight
  • Wf weight of unreacted material and catalyst remaining after reaction
  • Wi weight of initial waste PET
  • WBHET weight of final product
  • the catalyst for decomposing the polyester-based resin prepared in Examples 1 to 5 and Comparative Example 1 was determined using XRD analysis equipment to determine the crystal and phase composition.
  • Example 1 The results of the observed XRD are shown in FIG. 1 .
  • Example 1 it was found that triiron tetraoxide, calcium hydroxide, calcium carbonate, and a complex oxide of iron and calcium were present, and in Example 2, triferric tetraoxide, calcium hydroxide, calcium carbonate and a complex oxide (CaFeO 3 ) were confirmed.
  • Table 1 is data showing the weight fraction (wt%) and particle size of each compound according to the results of XRD analysis.
  • FIGS. 4 and 5 are Example 2
  • FIGS. 6 and 7 are Example 5
  • FIGS. 8 and 9 are Comparative Example 1 shows the experimental results.
  • Example 1 Looking at the electron micrograph of Example 1, it can be seen that particles having a level of 50 to 60 nm are agglomerated, and as a result of EDS-mapping, it can be seen that the distribution of iron, oxygen, and calcium is uniform.
  • Example 2 In the electron micrograph of Example 2, the size of the catalyst particles is smaller than that of Example 1 at a level of 50 nm or more, and has a partially aggregated structure. As a result of EDS-mapping, it can be seen that the distribution of iron, oxygen, and calcium is uniform.
  • Example 5 In the electron micrograph of Example 5, it can be seen that the size of the catalyst particles is about 100 nm, and it is expected that the particles are grown more than in Examples 1 and 2, so that coarse particles are formed as a whole. As a result of EDS-mapping, it can be seen that the distribution of iron, oxygen, and calcium is uniform.
  • VSM Vibrating Sample Magnetometer
  • Tables 3 to 5 are results for the catalysts for decomposing the polyester resin of Examples 1, 2, and 5, respectively.
  • Amount of catalyst for decomposition of polyester-based resin of Example 1 (wt.%) Catalyst can be reused (episode) unreacted PET (g) BHET (g) conversion rate (%) BHET yield (%) 5 One 5.05 40.12 87.38 100.30 5 2 5.63 45.73 85.93 114.33 5 3 11.76 38.05 70.60 95.13 5 4 17.62 38.02 55.95 95.05 5 5 23.31 30.77 41.73 76.93 5 6 36.09 29.39 9.77 73.48 10 One 6.37 37.37 84.08 93.43 10 2 7.06 45.52 82.35 113.80 10 3 7.35 46.26 81.63 115.65 10 4 7.19 47.31 82.03 118.28 10 5 7.24 46.59 81.90 116.48 10 6 7.34 44.57 81.65 111.43 10 7 8.70 44.94 78.25 112.35 10 8 15.84 36.46
  • Catalyst amount for decomposition of polyester-based resin of Example 2 (wt.%) Catalyst can be reused (episode) unreacted PET (g) BHET (g) conversion rate (%) BHET yield (%) 10
  • One 6.13 37.66 84.68 94.15 10 2 6.79 44.76 83.03 111.90 10 3 6.88 45.85 82.80 114.63 10 4 7.02 47.01 82.45 117.53 10 5 7.51 44.98 81.23 112.45 10 6 8.81 45.22 77.98 113.05 10 7 10.01 45.12 74.98 112.80 10 8 12.70 39.00 68.25 97.50 10 9 18.19 38.72 54.53 96.8 10 10 30.64 31.20 23.4 78
  • Amount of catalyst for decomposition of polyester-based resin of Example 5 (wt.%) Catalyst can be reused (episode) unreacted PET (g) BHET (g) conversion rate (%) BHET yield (%) 5 One 4.37 39.34 89.08 98.35 5 2 5.18 44.32 87.05 110.80 5 3 5.88 46.02 85.30 115.05 5 4 28.51 24.74 28.73 61.85 10 One 5.12 32.25 87.20 80.63 10 2 6.40 43.35 84.00 108.38 10 3 5.30 46.53 86.75 116.33 10 4 6.37 44.41 84.08 111.03 10 5 28.04 18.07 29.90 45.18 20 One 9.80 30.80 75.50 77.00 20 2 9.90 42.13 75.25 105.33 20 3 9.12 45.65 77.20 114.13 20 4 9.11 46.47 77.23 116.18 20 5 8.89 46.72
  • 16 is a graph showing the results of Tables 3 to 5 synthesized.
  • Example 1 when the content of the catalyst for decomposing the polyester resin was 5 and 10 wt%, when the content was 10 wt%, the conversion rate and yield reduction due to reuse were significantly reduced, and in Example 5, 5, 10, 20 When wt% was added, the yield and conversion rate decreased significantly at 20% rather than 10%. In particular, when the catalyst was increased from 10 to 20% than when it was increased from 5 to 10%, the catalyst was increased two-fold in the same way, but the time at which the yield decreased was significantly different.
  • Example 5 In contrast to the results of adding the catalysts of Examples 1, 2, and 5 at 10 wt%, the yield was maintained for a long time in Example 2, and, rather, Example 5 had a problem in that the yield was rapidly reduced when reused.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Catalysts (AREA)

Abstract

폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치가 제공된다. 상기 폴리에스테르계 수지 분해용 촉매는 지지체인 코어와, 코어의 표면에 구비되는 촉매층을 포함하여 표면에서 폴리에스테르계 수지의 글리콜리시스 반응을 촉매할 수 있으며, 코어가 상자성을 가져 외부의 자석에 의해 분리 또는 제거가 용이하므로 반응 이후 반응결과물로부터 촉매를 다시 회수하는 공정이 간단해지거나 별도의 공정을 필요로 하지 않을 수 있다. 또한, 반응 종료 이후에 다시 회수되어 재사용되더라도 촉매의 전환율이 오래 유지될 수 있어 폐 폴리에스테르계 수지의 분해 및 재생 공정의 경제성을 향상시킬 수 있다.

Description

폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치
본 발명은 폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치에 관한 것으로서, 더욱 구체적으로는 폴리에스테르계 수지를 분해하여 재활용이 가능한 단량체 또는 올리고머를 생산할 수 있는 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치에 관한 것이다.
대표적으로 사용되고 있는 범용 플라스틱 소재인 폴리에틸렌 테레프탈레이트(Polyethylene terephthalate,PET)는 열가소성 고분자로서, 결정성이 크고 용융점이 높아 성형이 용이하고 투명성을 가지고 있어 다양한 산업 분야 및 생활용품 전반에 걸쳐 폭넓게 사용되고 있다.
특히 PET는 필름, 직물, 또는 다양한 형태의 병과 같은 포장재에 사용되어 무게가 가볍고 강도가 커서 깨지지 않으면서, 저장 또는 보호하고자 하는 내용물의 품질을 안정적으로 유지시켜 줄 수 있는 장점을 가지고 있다.
그러나 광범위한 산업에서의 PET 소비 증가에 의한 PET 폐기물의 발생은 심각한 환경문제를 일으키는데, 이는 PET가 자연 미생물에 의해서는 완전히 분해되지 않기 때문이다. 사용 후 회수되는 비율이 약 20% 이하로서, 나머지는 소각이나 매립되어 처리되고 있는 실정이다. PET를 소각하게 되면 이산화탄소와 미세먼지가 발생하고 매립을 하면 토양이 오염되어 환경적인 문제를 일으키므로, PET폐기물을 회수하고 재활용하여 환경 문제를 적극적으로 해결하고자 하는 노력이 이루어지고 있다.
PET 폐기물을 재활용하는 방법으로는 크게 기계적 재활용과 화학적 재활용의 두가지 방법이 있다. 기계적 재활용은 PET 폐기물로부터 오염물질을 제거 및 분쇄하여 크기를 줄인 플레이나 칩의 형태로 재사용하는 것이고, 화학적 재활용은 PET중합체를 단량체와 올리고머로 부분 또는 전체적으로 분해하여 PET의 원료로 재사용하는 것이다.
기계적 재활용 방법이 PET와 이물질과의 분리가 어렵고 여러 PET가 섞여 원하는 물성을 갖는 제품을 생산하기 어려운 것과는 달리, 화학적 재활용 방법은 PET 고분자를 원래의 원료형태인 단량체로 전환하여 사용하기 때문에 자원 이용 효율을 크게 높이고 물성의 저하없이 고품질의 PET를 재생산해낼 수 있는 장점이 있다.
그러나, PET의 화학적 재활용 방법은 현재까지 아연이나 리튬 아세테이트 촉매와 같이 용매에 용해되는 균일 촉매를 이용해 PET를 글리콜리시스 반응시켜 BHET(bis-hydroxyethyl terephthalate)로 분해하는 방법으로서, 효율이 높지만 촉매를 회수하는 방법이 복잡하고 높은 비용에 대한 문제점이 남아있으며, 촉매 회수가 더 용이한 불균일 촉매에 대한 연구 또한 다수 보고되고 있으나, 균일 촉매 대비 낮은 활성으로 인해 분해율이 떨어지는 한계가 있어 회수가 용이한 불균일 촉매로서 성능이 우수하면서도 가격 경쟁력이 있는 핵심 요소 기술 개발에 대한 연구가 시급한 과제로 대두되고 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허 공보 10-1561528호
본 발명의 일 측면은 폴리에스테르계 수지를 분해할 수 있는 촉매를 활용하여 폐 폴리에스테르계 수지를 분해, 재활용하는 공정에 활용시 생성물에서 촉매를 분리해내는 공정을 단순화 하거나 촉매의 분리가 용이한 폴리에스테르계 수지 분해용 촉매를 제공하는 것이다.
본 발명의 다른 측면은 상기 폴리에스테르계 수지 분해용 촉매의 제조방법을 제공하는 것이다.
본 발명의 또 다른 측면은 상기 폴리에스테르계 수지 분해용 촉매를 활용하여 폐 폴리에스테르계 수지를 분해, 재활용하는 공정에 있어서 생성물에서 촉매를 분리해내는 공정을 단순화하거나 촉매의 회수 및 분리가 용이한 폴리에스테르계 수지 분해방법을 제공하는 것이다.
본 발명의 또 다른 측면은 상기 폴리에스테르계 수지 분해용 촉매를 활용하여 폐 폴리에스테르계 수지를 분해, 재활용하는 공정에 있어서 생성물에서 촉매를 분리해내는 공정을 단순화하거나 촉매의 회수 및 분리가 용이한 폴리에스테르계 수지 분해 장치를 제공하는 것이다.
본 발명일 일 측면은,
자성을 가지는 금속산화물을 포함하는 코어; 및
상기 코어의 표면에 폴리에스테르계 수지의 글리콜리시스 반응에 대한 촉매 활성을 가지는 적어도 하나의 촉매 물질이 구비되는 코팅층; 을 포함하는 폴리에스테르계 수지 분해용 촉매를 제공한다.
상기 금속산화물은 철(Fe), 니켈(Ni) 및 코발트(Co)로 이루어지는 군에서 선택되는 전이금속의 산화물일 수 있다.
상기 코팅층은 상기 촉매 물질에 포함되는 원소와 상기 전이금속의 복합산화물을 더 포함할 수 있다.
상기 금속산화물은 삼산화이철(Fe2O3) 또는 사산화삼철(Fe3O4)을 포함하고,
상기 촉매 물질은 탄산칼슘을 포함하고,
상기 복합산화물은 CaFeO3, CaFe2O4 및 Ca2Fe2O5 로 이루어지는 군에서 선택되는 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 다른 측면은,
제1금속을 포함하는 제1화합물을 포함하며, 상자성 특성을 가지는 코어를 준비하는 코어 준비단계;
상기 제1금속과 다른 금속인 제2금속의 염을 포함하며, pH9 이상인 수용액에 상기 코어를 혼합 및 교반하고, 상기 제2금속의 염을 포함하는 전구체 물질을 석출시켜 상기 코어의 표면에 상기 전구체 물질을 포함하는 전구체층을 형성하는 전구체층 형성단계; 및
상기 전구체층을 열처리하여 폴리에스테르계 수지의 글리콜리시스 반응에 대한 촉매 활성을 가지는 촉매 물질로 전환시키는 열처리단계;
를 포함하는 상기 따른 폴리에스테르계 수지 분해용 촉매의 제조방법을 제공한다.
상기 열처리단계는 300 내지 600℃ 에서 3 내지 6시간동안 수행될 수 있으며, 상기 코어와 상기 전구체층의 계면에서 복합산화물을 형성할 수 있다.
상기 제1화합물은 삼산화이철(Fe2O3) 또는 사산화삼철(Fe3O4)을 포함하고, 상기 제2금속은 칼슘(Ca)일 수 있다.
본 발명의 또 다른 측면은,
폐폴리에스테르계 수지, 글리콜 및 상기 폴리에스테르계 수지 분해용 촉매를 포함하는 반응물을 반응기에 투입하는 반응물준비단계;
상기 반응기 내에서 상기 폴리에스테르계 수지 분해용 촉매를 이용해 상기 폐폴리에스테르계 수지와 상기 글리콜을 글리콜리시스 반응시키는 폴리에스테르계 수지분해단계;
상기 반응 이후 자성을 이용해 상기 폴리에스테르계 수지 분해용 촉매를 회수하는 촉매회수단계; 및
회수된 상기 폴리에스테르계 수지 분해용 촉매를 상기 폴리에스테르계 수지분해단계에 재활용하는 촉매재활용단계;
를 포함하는 폴리에스테르계 수지 분해방법을 제공한다.
상기 글리콜은 상기 폐폴리에스테르계 수지 100 중량부에 대하여 300 내지 700 중량부로 투입되고, 상기 폴리에스테르계 수지 분해용 촉매는 상기 반응물 전체의 3 내지 20 wt% 로 포함될 수 있다.
상기 촉매회수단계에서 회수된 상기 폴리에스테르계 수지 분해용 촉매를 상기 폴리에스테르계 수지 분해단계와 상기 촉매회수단계(S3)를 반복하여 1 내지 10회 더 재사용할 수 있다.
본 발명의 또 다른 측면은,
폴리에스테르계 수지, 글리콜 및 상기 폴리에스테르계 수지 분해용 촉매를 포함하는 반응물을 수용하여 폴리에스테르계 수지 분해반응이 이루어지는 반응기;
상기 반응기의 외부 또는 내부에 설치되는 탈부착 가능한 촉매회수장치로서, 상기 분해반응 후 자성을 이용하여 상기 폴리에스테르계 수지 분해용 촉매를 회수할 수 있는 촉매회수장치; 및
상기 분해반응 후 상기 폴리에스테르계 수지 분해용 촉매가 회수되고 남은 반응결과물로부터 상기 분해반응의 생성물을 분리시키는 분리장치;
를 포함하는 폴리에스테르계 수지 분해 장치를 제공한다.
상기 촉매회수장치는 강자성을 가지는 영구자석 또는 전자석을 포함할 수 있다.
본 발명의 일 측면에 따른 폴리에스테르계 수지 분해용 촉매는 지지체인 코어와, 코어의 표면에 구비되는 촉매층을 포함하여 표면에서 폴리에스테르계 수지의 글리콜리시스 반응을 촉매할 수 있으며, 코어가 상자성을 가져 외부의 자석에 의해 분리 또는 제거가 용이하므로 반응 이후 반응결과물로부터 촉매를 다시 회수하는 공정이 간단해지거나 별도의 공정을 필요로 하지 않을 수 있다. 또한, 반응 종료 이후에 다시 회수되어 재사용되더라도 촉매의 전환율이 오래 유지될 수 있어 폐 폴리에스테르계 수지의 분해 및 재생 공정의 경제성을 향상시킬 수 있다.
상기 폴리에스테르계 수지 분해용 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치는 폴리에스테르계 수지의 글리콜리시스 반응 이후에 촉매가 가지는 자성 특성을 활용하여 촉매의 회수 및 재활용이 용이하므로, 연속적인 공정 수행시 촉매의 손실이 적고, 폐폴리에스테르계 수지의 분해효율이 우수하며, 생성물의 분리가 용이하다는 장점이 있다. 또한, 상기 폴리에스테르계 수지 분해 장치는 대용량의 설비에도 활용이 가능하여 경제성이 우수하며, 폐폴리에스테르계 수지의 분해 플랜트 설비에 효과적으로 적용될 수 있다.
도 1은 열처리 온도에 따른 폴리에스테르계 수지 분해용 촉매의 XRD 분석 결과를 나타낸 도면이다.
도 2 및 도 3은 일 실시예에 따른 폴리에스테르계 수지 분해용 촉매의 전자현미경과 EDS 분석결과를 나타낸 도면이다.
도 4 및 도 5는 일 실시예에 따른 폴리에스테르계 수지 분해용 촉매의 전자현미경과 EDS 분석결과를 나타낸 도면이다.
도 6 및 도 7은 일 실시예에 따른 폴리에스테르계 수지 분해용 촉매의 전자현미경과 EDS 분석결과를 나타낸 도면이다.
도 8 및 도 9는 비교예에 따른 폴리에스테르계 수지 분해용 촉매의 전자현미경과 EDS 분석결과를 나타낸 도면이다.
도 10은 폴리에스테르계 수지 분해용 촉매의 EDS 분석결과를 온도에 따라 정리한 도면이다.
도 11 및 12는 폴리에스테르계 수지 분해용 촉매의 자성 특성을 분석한 결과를 나타낸 도면이다.
도 13 내지 16은 실시예 및 비교예에 따른 폴리에스테르계 수지 분해용 촉매를 재사용하며 반응 전환율과 생성물의 수율 변화 추이를 나타낸 그래프이다.
도 17은 폐 폴리에스테르계 수지를 분해하는 방법을 개략적으로 나타낸 개념도이다.
도 18은 일 실시예에 따른 폴리에스테르계 수지 분해 장치를 나타낸 개략도이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
또한, 이하 본 명세서 및 청구 범위에 사용된 용어나 단어를 해석함에 있어서는, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 반드시 통상적이거나 사전적인 의미로만 한정해서 해석할 것이 아니며, 본 명세서에서 기재하는 바에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석하여야 한다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
<제1 측면>
본 발명의 제1측면은 폴리에스테르계 고분자 수지를 분해하는 용도로 사용가능한 폴리에스테르계 수지 분해용 촉매로서, 더욱 바람직하게는 사용된 폐 폴리에스테르계 수지의 재활용을 위한 폴리에스테르 수지 분해용 촉매인 것이 바람직하다.
여기에서, 폴리에스테르계 수지란, 에스테르결합을 복수개로 포함하여 이루어지는 중합체 또는 고분자를 의미하는 것으로서, 예를들어 폴리에틸렌 테레프탈레이트(Poly Ethylene Terephthalate, PET) 또는 페트 플라스틱이라고도 불리우는 폴리에스테르계 고분자 소재일 수 있고, 폴리우레탄, 에폭시소재 등이 포함될 수 있다.
PET는 카르복시산기를 2개 가지는 2가산인 테레프탈산(Terephthalic acid)와 알코올기를 2개 가지는 다이올인 에틸렌글리콜(Ethylene glycol)의 중합에 의해 합성되는 중합체로서, 테레프탈산과 에틸렌글리콜이 에스테르 결합을 이루며 사슬형태로 중합되는 구조의 폴리에스테르계 중합체 구조를 가진다.
(화학식 1)
Figure PCTKR2022004724-appb-I000001
여기에서, n은 2이상의 정수이다.
본 측면의 일 실시예인 폴리에스테르계 수지 분해용 촉매는 분말의 형태를 가지는 것이 바람직하다. 촉매가 분말의 형태를 가지는 경우 중량이나 부피 대비 상대적으로 높은 표면적 또는 비표면적을 가질 수 있으므로, 실질적으로 반응물과 촉매가 접촉하는 기질-촉매간 계면(Interface)이 증가하여 반응의 빠르게 이루어질 수 있는 장점이 있다.
보다 구체적으로는 본 측면의 폴리에스테르계 수지 분해용 촉매는 입경이 30 내지 120 nm 정도인 것이 좋으며, 바람직하게는 40 내지 54 nm인 것이 좋다. 여기에서, 촉매의 입경은 XRD rietveld 분석법으로 측정되는 값인 것이 바람직하다.
폴리에스테르계 수지 분해용 촉매(코팅층 형성 이후)의 입경이 해당 범위보다 큰 경우 비표면적이 상대적으로 줄어들어 반응 효율이 떨어질 수 있으며, 또한 과도한 코팅층은 촉매의 재활용 시 분화되거나 파괴를 야기하여 촉매 재활용 성능을 떨어뜨릴 수 있다.
폴리에스테르계 수지 분해용 촉매(코팅층 형성 이후)의 입경이 해당 범위보다 작은 경우 폴리에스테르계 수지 분해용 촉매들끼리 서로 응집되거나 클러스터(Cluster)를 형성하는 현상이 발생하여 균일한 촉매의 분산이 이루어지지 않는 문제가 있으며, 또한 상대적으로 코어의 상자성 특성이 저하되어 회수 기능이 저감될 수 있다.
폴리에스테르계 수지 분해용 촉매의 바람직한 일 실시예는 코어와, 코어의 표면에 구비되는 코팅층을 포함하여 이루어진다.
코어는 촉매의 입경, 형태를 가지게 해주는 지지체의 역할을 수행하며, 촉매의 분산이나 입경의 제어를 용이하게 한다.
코어의 형상은 제한되지 않으나 코팅층의 균일한 형성 및 코팅층의 파괴를 방지하기 위해 구형 또는 구형에 가까운 형태의 입자인 것이 좋다.
코어의 입경은 구형인 경우 구의 직경, 비구형인 경우 장축과 단축의 평균값을 이용해 계산할 수 있다.
코어의 입경은 10 내지 50 nm 정도인 것이 좋고, 바람직하게는 15 내지 20 nm 인 나노입자인 것이 좋다,
코어의 입경이 해당 범위보다 큰 경우, 코팅층의 형성시 표면적이 감소하여 효율이 떨어지는 문제가 있으며, 입경이 너무 작은 경우 촉매입자들이 서로 응집되거나 분산이 어려운 문제가 있을 수 있다.
그리고, 폴리에스테르계 수지 분해용 촉매의 코어는 자성을 가지는 제1화합물을 포함하는 것이 바람직하다. 특히 제1화합물이 자성을 가지는 경우, 전체 폴리에스테르계 수지 분해용 촉매가 자성 특성을 가질 수 있어 코팅층의 지지체 역할을 수행하는 것 이외에도, 원하는 폴리에스테르계 수지 분해 반응의 종결 이후에 올리고머 및 모노머들을 촉매와 분리하는 과정을 별도로 수행함 없이 자석을 이용한 분리가 가능해지므로 촉매의 재사용이 훨씬 용이하고 재사용을 위한 공정의 복잡화를 방지할 수 있어 경제적이다.
자성을 가지는 제1화합물은 금속의 화합물 및 금속 자체를 포함하는 의미로 사용되며, 본 명세서에서 자성이란 강자성 특성 및 연자성 특성을 모두 포함하는 개념이고, 보다 구체적으로는 제1화합물은 상자성 특성을 가지는 것이 바람직하다. 제1화합물이 상자성 특성을 가지는 경우 자력을 이용하여 회수를 간편히 할 수 있으며, 자력을 제거후 쉽게 촉매를 분리 시킬 수 있는 장점이 있다.
강자성의 경우 자체적인 인력 또는 척력에 의해 촉매의 균일한 분산이 어려워지거나 반응기 내에서 활용이 어려워질 수 있으며,연자성의 경우 자석을 이용한 회수가 상대적으로 어려워지는 문제가 있을 수 있다.
또한, 제1화합물은 금속의 산화물을 주성분으로 포함하여 이루어지는 것이 좋고, 바람직하게는 전이금속의 산화물(Oxide)을 가지는 것이 바람직하다.
예를들어, 제1화합물은 제1금속을 포함하며, 제1금속으로 철(Fe), 코발트(Co) 및 니켈(Ni)로 이루어지는 군에서 선택되는 적어도 하나 이상의 금속을 포함하는 것이 좋고, 더욱 바람직하게는 철(Fe)을 포함하는 것이 좋다.
철은 쉽게 구할 수 있는 금속으로서, 가격 및 가공이 용이하여 촉매의 경제성이 좋고 자성 특성을 얻기 쉬운 장점이 있다.
본 발명의 일 실시예는 제1화합물에 포함되는 제1금속의 화합물로서 철의 산화물을 포함하는데, 삼산화이철(Fe2O3) 또는 사산화삼철(Fe3O4)와 같은 철산화물이 사용될 수 있다.
코팅층은, 입경이 나노미터 단위의 입자인 코어의 표면에 구비되는 층으로서, 폴리에스테르계 수지의 글리콜리시스 반응을 촉진하는 촉매 물질을 포함하여 이루어지며, 촉매 물질은 제2금속의 금속 아세테이트(acetate)화합물, 금속 할라이드(hallide), 금속 카보네이트(Carbonate), 금속 설페이트(Sulfate), 금속 하이드록사이드(Hydroxide), 금속 포스페이트(Phosphate). 금속 산화물(Oxide) 및 이들의 혼합물이 사용될 수 있고, 그래핀 등의 물질이 더 포함될 수 있다.
바람직하게는 제2금속의 금속 아세테이트, 금속 할라이드, 금속 카보네이트 및 금속 산화물로 이루어지는 군에서 선택되는 적어도 어느 하나 이상의 화합물이 사용되는 것이 바람직하고, 더욱 바람직하게는 금속 산화물을 포함하는 촉매 물질이 사용되는 것이 좋으며, 여기에서 금속 할라이드에는 예를들어 금속의 염화물, 브롬화물 등이 포함된다.
여기에서, 제2금속으로는 칼슘(Ca), 아연(Zn) 및 리튬(Li)으로 이루어지는 군에서 선택되는 금속이 사용될 수 있으며, 바람직하게는 칼슘이 사용되는 것이 좋다.
본 발명의 바람직한 일 실시예는 폴리에스테르계 수지의 글리콜리시스 반응에 대한 촉매 활성을 갖는 촉매 물질을 포함한다. 보다 구체적으로는 코팅층은 제2화합물을 포함하여 촉매 활성을 가지는데, 제2화합물은 촉매 물질로서 제2금속으로 칼슘을 포함하는 수산화칼슘, 탄산칼슘 또는 산화칼슘일 수 있고, 바람직하게는 수선화칼슘이 제2화합물인 것이 좋다.
제2화합물은 촉매 물질이며, 제2화합물 이외에 제2금속을 포함하는 다른 화합물이 촉매 활성을 가지는 경우 촉매 물질로서 코팅층에 포함되는 것도 가능하다.
한편, 칼슘 산화물(CaO, 산화칼슘)이 코팅층에 제2화합물로 포함되는 경우에는 글리콜리시스 반응 전환율이 높고, 코어의 표면에 코팅층을 형성하기가 용이한 장점이 있으나, 산화칼슘은 수화되어 수산화칼슘으로 전환되기 쉬워 얻기가 어려우며, 수산화칼슘을 산화칼슘으로 탈수시키는데 높은 열처리 온도가 요구되는 문제가 있을 수 있다.
또한, 코팅층은 제1금속 및 제2금속의 복합산화물(complex oxide)을 포함하는 것도 가능하다.
본 측면의 일 실시예는 제1금속으로 철, 제2금속으로 칼슘을 포함하며, 코팅층에서 철과 칼슘의 복합산화물을 포함하며, 예시로 CaFeO3, CaFe2O4 또는 Ca2Fe2O5 와 같은 복합산화물이 포함될 수 있다.
제1금속 및 제2금속을 포함하는 복합산화물은 촉매 물질로 활용될 수 있으며폴리에스테르계 수지의 글리콜리시스 반응의 촉매활성을 가진다.
이때, 복합산화물에 포함되는 제1금속은 제1화합물을 포함하는 코어로부터 유래한 것으로서, 코어와 코팅층의 계면에서 원자의 확산과 같은 이동에 의하여 코어로부터 코팅층으로 제1화합물이 이동하여 코팅층에 포함된 촉매물질과 혼합되거나 반응함으로써 복합산화물을 형성할 수 있다.
이때, 복합산화물은 전체 폴리에스테르계 수지 분해용 촉매에서 0.1 wt% 내지 60 wt% 이하일 수 있고, 예를들어 0.50 내지 56 wt% 일 수 있으며, 바람직하게는 0.60 내지 55.60 wt% 의 비율로 포함될 수 있다. 복합산화물의 함량이 너무 높은 경우 제1화합물의 비율이 상대적으로 감소하여 자성 특성이 떨어지거나 촉매의 재사용 가능 회수가 감소하는 문제가 있을 수 있다.
복합산화물의 함량 분포는 코어와 코팅층의 계면에서 가장 높고, 코어의 내부로 갈수록 낮아지거나 코팅층의 표면으로 갈수록 낮아지는 것이 바람직하다. 복합산화물은 예를들어 상기 코어와 상기 코팅층의 계면에서부터 상기 코팅층의 표면까지 갈수록 함량이 점차 감소하는 분포로 코팅층 내에 포함되는 것이 바람직하다.
이는 제1화합물과 촉매물질 또는 제2화합물의 확산 또는 물질이동에 의해 화합물이 형성될 수 있기 때문이고, 계면에서의 거리가 멀어질수록 복합산화물의 함량이 낮아질 수 있다.
또한, 복합산화물의 함량은 폴리에스테르계 수지 분해용 촉매의 제조시 열처리 온도에 따라 달라질 수 있고, 예를 들어 열처리 온도가 증가함에 따라 복합산화물의 함량이 증가할 수 있다.
보다 구체적으로는 열처리온도를 T(℃), 연처리 후 복합산화물의 중량분율을 W1(wt%) 이라고 할 때, 복합산화물의 중량분율과 열처리 온도는 하기 관계식 1을 만족하는 것이 바람직하다.
(관계식 1)
W1 = 0.25 T - k (여기에서, k는 70≤k≤90 을 만족하는 실수)
여기에서, 열처리온도 T는 300 내지 600℃인 것이 좋으며, 바람직하게는 350 내지 550℃ 인 것이 좋다.
또한, 관계식 1 에서 k의 값은 70 내지 90이고, 예를들어 72 내지 88 인 것이 좋다.
k의 값이 해당 범위보다 큰 경우 열처리온도에 비해 복합산화물 함량이 낮아져 촉매활성의 증가 효율이 저하되는 문제가 있고, k의 값이 너무 작은경우 전체 촉매 입자의 자성이 감소하거나 촉매의 물리적 특성이 저하되어 재사용이 어렵거나 회수가 잘 되지 않는 문제가 있을 수 있다.
코팅층의 두께는 제한되지 않으나 65nm 이하인 것이 좋고, 바람직하게는 1 내지 55 nm , 10 내지 50nm 인 것이 바람직하다. 코팅층의 두께가 해당 범위를 벗어나는 경우에는 폴리에스테르계 수지 분해용 촉매의 생산 비용이 증가하고, 촉매의 중량 대비 자성이 약해지며, 촉매 물질의 중량대비 표면적이 감소하여 반응 효율이 감소하는 문제가 있을 수 있다.
추가적으로, 코팅층은 단일한 코팅층으로 이루어지는 것이 좋으나, 코어와 코팅층 간의 결합력을 향상시키고 코팅층의 수명을 향상시키기 위하여 2 이상의 층을 포함하거나 코어와 코팅층 사이에 중간층이 더 포함되는 것도 가능하다.
또는, 제1금속의 제1화합물을 포함하는 코어와, 상기 코어의 표면에 구비되며 제1금속과 제2금속의 복합산화물을 포함하는 복합산화물층, 및 상기 복합산화물층 상에 구비되며 제2금속의 화합물을 포함하는 코팅층을 포함하는 구조의 촉매가 사용되는 것도 가능하며, 코팅층에는 복합산화물이 일부 포함될 수 있다.
이때, 복합산화물층의 두께는 40nm 이하인 것이 좋고, 바람직하게는 0.1 내지 50 nm, 예를들어 1 내지 50nm 인 것이 좋다.
복합산화물층과 코팅층의 두께 비율은 10:1 내지 1 :10 범위이며, 바람직하게는 2:1 ~ 1:2 인 것이 바람직하다. 코팅층의 두께가 복합산화물층의 두께보다 너무 두꺼운 경우 코팅층이 코어나 복한산화물층으로부터 분리되거나 파손되기 쉬운 문제가 생길 수 있으며, 코팅층의 두께가 복합산화물층의 두께보다 너무 얇은 경우 제1화합물의 비율이 감소함에 따른 코어의 자성 저하문제가 발생할 수 있다.
상자성체는 자기장 내에서 자화되지만 자기장이 제거되면 자성이 없어지는 특징을 갖는다. 이때 자기장을 증가시킬때 어느 시점에서 자화가 충분히 이루어져 더이상 자화되지 않는 상태인 자기포화상태, 반대로 자기장을 제거하며 자기장이 0이 되었을 때 자화의 상태인 잔류자화를 측정하고, 히스테리시스 그래프로 나타냄으로써 그 자성 특성을 파악할 수 있다.
본 측면의 폴리에스테르계 수지 분해용 촉매는 상자성을 가지는 것이 좋으며, 구체적으로는 포화자화(Ms) 값이 30 emu/g 이상, 예를들어 35 emu/g 이상, 바람직하게는 47 내지 60 emu/g 인 것이 좋다. 포화자화값은 클수록 자성 특성이 우수하며, 너무 낮은 경우 자성 특성이 낮아져 자성을 이용한 분리나 회수가 어려울 수 있다.
또한, 자기장을 제거한 후 측정되는 잔류자화(Mr) 값은 8 내지 11 emu/g 이내일 수 있고, 바람직하게는 8.5 내지 11 emu/g, 예를들어 9.1 내지 11 emu/g, 더욱 바람직하게는 9.9 내지 11 emu/g 인 것이 좋다. 잔류자화가 너무 큰 경우 상자성 특성이 좋지 않을 수 있어 촉매 입자간 뭉침, 클러스터 형성이 되는 문제가 있을 수 있다.
<제2 측면>
본 발명의 제2측면은 폴리에스테르계 수지 분해용 촉매의 제조방법이다. 본 제조방법은 전술한 제1측면의 폴리에스테르계 수지 분해용 촉매를 제조하는 방법으로서, 전술한 구조 및 특성을 가지는 폴리에스테르계 수지 분해용 촉매를 제조하는 여러 방법들 중 바람직한 제조방법에 대하여 예시적으로 기재한다.
폴리에스테르계 수지 분해용 촉매의 제조방법은 코어 준비단계, 코어분산단계, 전구체층 형성단계, 세척 및 건조단계, 열처리단계를 포함하여 이루어진다.
코어 준비단계는 자성을 가지며 표면에 코팅층이 형성될 수 있는 코어를 제공하는 단계이다. 코어는 상자성의 자성특성을 가지는 나노입자(Nano particle)인 것이 바람직하다. 본 측면의 바람직한 일 실시예는 코어로서 철을 제1금속으로 포함하는 Fe3O4 를 제1화합물로 포함하는 나노입자를 코어로 사용한다.
코어는 제1금속염을 석출하는 방법으로 제조되는 것도 가능하며, 일 예시로서 FeCl2, FeCl2+FeCl3, FeSO4 및 FeSO4+Fe2(SO4)3를 포함하는 군에서 선택되는 철계 염 화합물 또는 혼합물과 수산화암모늄을 반응시켜 9 내지 11, 바람직하게는 10 내지 11정도의 pH조건에서 석출시켜 얻어질 수 있다. pH 가 너무 낮거나 높은 경우 제1화합물이 예상치 못한 반응을 일으키거나 이후 단계를 위한 중화가 어려워지는 문제가 있을 수 있다.
코어 분산단계는 준비된 코어의 표면에 폴리에스테르계 수지 분해 글리콜리시스 반응의 촉매로 사용될 수 있는 코팅층을 형성하기 위해 코어를 균일하게 분산시키는 단계이다. 나노입자 코어들이 서로 응집되는 경우 표면에서 균일한 코팅층의 형성이 어려우므로 300 rpm 이상의 고속 교반을 진행할 수 있다.
전구체층 형성단계는 코팅층을 형성하기 위한 전단계로서 코팅층에 포함되는 촉매 물질에 포함되는 제2금속의 전구체를 코어의 표면에 석출시키는 단계로서, 코어의 표면에 쉘 형태로 형성되는 전구체층은 촉매 물질로 전환되기 전의 전구체 물질을 포함한다. 여기서 전구체란 촉매 물질로 전환되기 이전의 제2금속의 화합물을 의미하는 것이며, 후술할 열처리 단계와 같은 추가 공정에 의해 최종적으로 촉매물질로 전환될 수 있는 중간 화합물을 의미한다.
촉매물질에 포함되는 제2금속을 포함하는 전구체 물질을 코어의 표면에 석출시켜 전구체층을 형성하기 위해, 산화된 제2금속이온이 용해된 수용액을 준비하는 과정이 필요하고, 제2금속의 무기염 또는 유기염 수용액이 준비될 수 있다.
무기염의 예시로는 금속황산염, 금속질산염, 금속염화물, 금속브롬화물, 금속탄산염 또는 이들의 수화물이 사용될 수 있다.
전구체층을 형성하기 위하여 증류수에 제금속의 염(무기염 또는 유기염)을 상온에서 용해시킨 후 코어를 용기 내에 투입하고, 코어를 분산시키기 위한 교반을 수행하는 과정이 이루어지는 것이 좋다.
교반은 투입된 나노입자 코어들이 서로 응집되거나 뭉치지 않고 분산되게 하여 코어의 표면에 균일한 두께의 전구체층이 형성될 수 있도록 한다.
코어와 수용액 속 금속염의 배합량에 대하여, 코어를 이루는 제1화합물의 몰수와 금속염 수용액을 제조하는데 투입된 금속염의 몰수의 비율(코어를 이루는 제1화합물 몰수/제2금속의 염 몰수)이 특정 범위를 만족하는 것이 좋고, 예를들어 제1화합물 : 제2금속의염 = 0.1 ~ 0.3 :1.0, 예를들어 0.1~0.2 : 1.0인 것이 바람직하다.
몰수 비율이 해당 범위보다 작으면 제1화합물 대비 전구체 물질의 함량이 많아져 최종적으로 촉매의 표면적이 감소해 효율이 떨어질 수 있고, 해당 범위보다 크면 최종적으로 코팅층의 두께가 얇아져 내구성이 떨어지는 문제가 발생할 수 있다.
전구체층 형성단계에서는 코어의 표면에서 제2금속의 금속염이 화학적으로 석출되어 전구체층을 형성하는 과정이 이루어지는 것이 좋다. 전구체물질을 석출시키기 위하여는 다양한 석출 방법이 사용되는 것이 가능하지만, pH를 조절하여 반응을 일으키는 방법이 반응의 경제성 및 균일한 두께의 전구체층을 형성하는데 유리하다. 전구체물질은 제2금속의 수산화염 또는 탄산염일 수 있다.
전구체층을 석출시키기 위하여 pH를 9 이상의 염기성 상태로 조절하는 것이 좋으며, 바람직하게는 pH 10이상, 더욱 바람직하게는 pH 가 11 이상으로 조절되는 것이 바람직하다. pH 가 너무 낮으면 원하는 반응이 잘 일어나지 않아 전구체층의 형성이 잘 이루어지지 않을 수 있고, pH가 너무 높으면 사용되는 시약과 장비의 운영이 어렵고 경제성이 나빠지는 문제가 있을 수 있다.
본 발명의 일 실시예는 pH를 조절하기 위하여 수산화나트륨 수용액을 사용하였으며, pH를 조절하기 위해 사용되는 염기성 시약의 조성은 제한되지 않으나 반응에 참여하지 않는 양이온을 포함하는 것이 좋고, 수산화나트륨 수용액인 것이 바람직하다.
본 측면의 일 실시예에서는 전구체층 형성단계에서 제2금속인 칼슘을 포함하는 수산화칼슘을 전구체 물질로 포함하며, 수산화칼슘은 코어 표면에 응집되어 석출되거나 코어 표면에서 쉘 형태로 얻어진다. 이때, 제2금속의 산화물이나 탄산염등 다른 형태의 염이 전구체층에 포함되는 것도 가능하다.
중간층 형성단계는 전구체층 형성단계 이전에 선택적으로 포함될 수 있으며, 전구체층 형성단계 이전에 코어의 표면에 중간층이 형성되는데, 중간층의 물질 및 형성 방법은 제한되지 않으며 통상의 기술자가 채용가능한 공정이 사용될 수 있다.
중간층 형성단계에서는 전구체층 형성단계의 pH 조절(pH를 높게 유지)하는 과정이 끝난 후, 12시간 이상의 고속 교반을 수행하는 것이 좋다. 중간층 형성단계에서 교반이 수행되어야 하는 것은 나노입자의 분산도를 높이기 위해서이며, 충분한 교반력과 교반시간 동안 교반이 이루어지는 것이 좋다.
세척 및 건조단계는 전구체층 형성단계 이후에 제조된 입자들을 분리하고, 세척하는 단계이다. 잔존하는 미반응물을 입자의 표면에서 깨끗이 세척해 제거한 후, 세척액을 제거함으로써 원하는 코어-쉘 구조의 입자가 얻어진다.
전구체층이 형성된 이후 얻어진 입자는 입경이 40 ~ 80nm, 예를들어 50 ~ 60nm 인 것이 좋고, 일부 입자들끼리 서로 응집된 미세구조를 가질 수 있다. 입경이 해당 범위보다 작은 경우 입자의 응집이 더 심해질수 있다.
세척액으로는 미반응물의 제거가 용이하고 휘발이 용이한 용매가 사용되는 것이 좋으며, 극성 용매를 사용하는 것이 좋고, 바람직하게는 물, 아세톤 및 알코올 중 적어도 어느 하나 이상을 포함하는 용액이 사용되는 것이 좋다.
보다 구체적으로는, 세척은 우선적으로 전구체물질에 에탄올을 과량 투입 후 초음파 세척기를 이용하여 30분씩 진행하며, 이후 자력을 이용하여 촉매 입자들을 회수한다. 위 세척과 회수를 대략 3, 4회 반복 수행하며, 에탄올 대신 아세톤을 사용하여 동일한 방법으로 3, 4회 세척과 회수를 반복하여 세척을 완료한다. 세세척이 완료된 후 80°C 온도의 저진공 분위기에서 24시간 내외로 건조 작업을 수행하여 잔존하는 수분을 제거한 후 건조된 촉매 입자를 보관한다.
열처리 단계는 전구체층 형성단계에 의해 코어 표면에 석출된 고상의 전구체층을 열처리하여 촉매활성을 가지는 촉매 물질을 포함하는 코팅층으로 변환시키는 단계이다. 열처리단계는 하소(Calcination)를 수행하는 단계인 것이 좋으며, 하소란 광석 등의 고체를 가열하여 열분해나 상전이를 일으키거나 휘발성분을 제거하는 공정을 의미한다.
열처리 단계는 코어의 표면에 화학적으로 석출된 전구체층에서 열에 의한 반응을 일으켜 전구체 물질을 촉매 물질로 전환하는 반응이 일어나 코어의 표면에 구비된 전구체층을 코팅층으로 변환시킨다.
열처리단계는 열처리 온도가 300 내지 600℃인 조건에서 이루어지는 것이 좋고, 열처리 시간은 3 ~ 6 시간, 바람직하게는 4 ~ 6시간, 예를 들어 5시간내외인 것이 바람직하다.
열처리 온도가 너무 낮은 경우 전구체 물질의 촉매 물질로의 전환이 충분히 이루어지지 않아 제조된 촉매의 촉매활성이 낮을 수 있으며, 코팅층이 충분히 형성되지 않아 코팅층이 코어로부터 분리되거나 부서지기 쉬운 문제가 있을 수 있다.
열처리 온도가 600℃ 이상인 경우 부반응이 생기거나 반응 효율이 떨어질 수 있고, 제1화합물이 퀴리온도 이상으로 승온되어 자성을 잃거나 자성 특성이 저하되는 문제가 있을 수 있으며, 촉매의 재사용 가능 회수(回數)가 감소하여 재사용이 어려워지는 문제가 있을 수 있다. 또, 열처리 시간이 너무 길거나 짧으면 열처리에 의한 반응이 충분히 이루어지지 않는 문제가 있을 수 있다.
열처리는 대기 하에서 이루어지는 것이 좋으며, 이산화탄소가 전구체물질과 접촉되며 제2금속의 탄산염을 합성하는 것도 가능하다.
열처리를 위한 장비로는 소각로(furnace), 전기로 등이 사용될 수 있다. 본 명세서의 바람직한 일 실시예에서는 대기 분위기에서 전기로를 이용하여 열처리를 진행하였다.(HANTECH, S-1700)
열처리시 온도를 균일하게 향상시키고, 입자들간의 응집체가 경화되는 것을 막기 위하여 열처리 단계에서 입자들을 분산시키거나 응집체를 제어하기 위한 수단이 사용되는 것도 가능하다. 전구체층 형성단계 이후 응집된 입자들의 응집체가 유지되는 경우 열전달 효율이 떨어져 균일한 열처리가 어려우며, 열처리시 생성되는 촉매 물질을 포함하는 코팅층들이 서로 성장하며 하나로 이어지거나 뭉쳐지는 문제가 발생할 수 있기 때문이다. 응집체를 제어하기 위하여는 예를들어 계면활성제, 산-염기 처리방법 등이 사용될 수 있다.
열처리 단계에서 일어나는 반응은 특정되지 않고, 전구체 물질과 촉매물질에 따라서 구체적인 반응식이나 메커니즘이 달라질 수 있으며, 예를들어 탈수반응이 일어날 수 있다.
본 발명의 바람직한 일 실시예는 전구체층이 전구체물질로 수산화칼슘을 포함하며, 열처리 단계에 의해 전구체물질인 수산화칼슘이 탄산칼슘 또는 산화칼슘으로 전환되는 반응이 일어날 수 있다.
이때, 열처리 단계로 인하여 코어에 포함된 제1화합물 또는 제1금속이 반응에 참여하는 것도 가능하며, 자성을 가지는 제1화합물 또는 제1금속은 코어의 표면에서 이동(예를들어 확산 등)되어 코팅층과의 계면에서 전구체물질, 촉매물질 또는 제2금속과 함께 복합산화물을 형성할 수 있다.
전구체물질이 코어와 접촉되어 있는 경우에는 계면에서의 부가적인 복합산화물 형성반응이 일어날 수 있으므로, 순수한 전구체물질을 열처리하는 경우와 다른 생성물이 얻어질 수 있으며, 산화칼슘과 같은 촉매 물질의 생성이 억제되거나 함량이 낮아지는 결과가 얻어질 수 있다.
열처리 단계를 거친 이후에도 코어에 포함되는 제1화합물로 인하여 상자성이 유지되며, 제1화합물이 전체 폴리에스테르계 수지 분해용 촉매에서 20 wt% 이상, 바람직하게는 25 wt% 이상, 예를들어 27 wt% ~ 75 wt% 일 수 있으며, 더욱 바람직하게는 38.9 ~75 wt% 를 차지하는 것이 좋다. 코팅층이 형성된 전체 폴리에스테르계 수지 분해용 촉매는 해당 제1화합물의 범위에서 코어의 상자성 특성을 그대로 포함하는 상자성 나노입자 촉매로 활용될 수 있다.
또한, 제1화합물은 결정을 포함하는 미세조직 구조를 가질 수 있으며, 여기에서 제1화합물의 결정의 평균 입경은 20 nm 이하이고, 예를들어 19.7nm 이하인 것이 좋으며, 예를들어 19.65nm 이하, 바람직하게는 18.7nm 이하인 것이 좋다. 제1화합물의 결정 평균 입경이 해당 범위보다 커지면 촉매의 활용시 깨짐, 부서짐이 발생하기 쉬워 내구성이 떨어지거나 재사용이 제한되는 문제가 발생할 수 있다.
전술한 실시예에서 제1화합물의 예시인 산화철의 두가지 형태는 모두 상자성을 가지므로, 코어의 성분은 열처리 단계의 전후에서 상자성을 유지할 수 있다.
본 발명의 일 비교예 중 촉매의 제조시 너무 높은 온도에서 열처리하는 경우 제1화합물 또는 제1화합물에 포함된 금속의 퀴리온도를 넘어 자성을 잃거나 자성이 약화되는 문제가 발생하는 것이 관찰되었다.
또한, 일 실시예에 따르면 고온에서 열처리시 제조된 촉매 입자가 성장하거나 입자간 클러스터의 형성이 이루어져 전체 촉매의 표면적이 저하되고, 분산이 어려워지는 문제가 있다.
<제3 측면>
본 발명에 따르면, 폴리에스테르계 수지 분해용 촉매를 이용한 폴리에스테르계 수지의 분해방법이 제공된다. 폴리에스테르계 수지의 분해방법은 반응물준비단계(S1), 폴리에스테르계 수지분해단계(S2), 촉매회수단계(S3) 및 촉매재활용단계(S4)를 포함한다. 도 17에 본 측면의 폴리에스테르계 수지 분해용 촉매를 이용한 폴리에스테르계 수지의 분해방법의 일 예시로 PET의 분해방법이 개략적으로 도시되어 있다.
반응물준비단계(S1)는 반응물로서 사용되는 폐폴리에스테르계 수지, 글리콜을 준비하는 단계로서, 반응물에 포함되지는 않으나 반응에 사용될 폴리에스테르계 수지 분해용 촉매를 함께 준비하는 단계로 정의한다.
본 명세서에서 글리콜이란, 분자 내에 수산화기(하이드록시기)가 2개 있는 2가 알코올을 의미한다.
이때, 반응물준비단계(S1)은 폐폴리에스테르계 수지 또는 분쇄된 폐폴리에스테르계 수지를 세척하고 준비하는 폐수지 준비단계와, 폴리에스테르계 수지 분해용 촉매를 준비하는 촉매준비단계를 포함하여 이루어질 수 있다.
폐폴리에스테르계 수지는 폴리에스테르계 수지로 이루어지는 물건 및 폐기물을 재활용하기 위하여 세척, 분쇄 또는 그라인딩 하여 작은 조각의 형태로 된 것을 준비하여 사용하는 것이 좋다. 폐폴리에스테르계 수지에 이물질이 포함된 경우 이물질은 글리콜리시스 반응에 참여하지 않아 회수될 수 없기 때문에 여러가지 통상적인 물리, 화학적 분리 공정을 통하여 폴리에스테르계 수지만으로 이루어진 반응물을 분리하여 사용하는 것이 바람직하다. 폴리에스테르계 수지의 일 예시인 PET의 구체적인 화학구조는 아래 화학식 1과 같다.
폐폴리에스테르계 수지를 분쇄하지 않는 경우에는 표면적이 감소하거나 비표면적이 낮아져 반응시간이 오래 걸리므로 반응효율이 낮아 경제성이 낮아지는 문제가 있으며, 이물질이 포함된 경우 반응후 생성물이나 촉매의 회수가 어려워질 수 있는 문제가 있다.
(화학식 1)
Figure PCTKR2022004724-appb-I000002
여기에서, n은 2이상의 정수이다.
반응물을 준비하는 단계에서 준비되는 글리콜(Glycol)은 폴리에스테르계 수지의 글리콜리시스 반응에 참여하는 물질로서, 폴리에스테르계 수지를 글리콜리시스 시킬 수 있는 것이라면 통상의 기술자가 채택할 수 있는 글리콜이 사용될 수 있으며, 1종 또는 2종 이상의 글리콜을 혼합하여 사용할 수도 있다.
구체적으로는 EG(Ethylene Glycol), DEG(Diethylene glycol), PG(propylene glycol)을 사용하는 것이 바람직하다.
글리콜은 폐폴리에스테르계 수지 100 중량부에 대하여 200 내지 800 중량부로 포함되는 것이 좋고, 바람직하게는 300 내지 500 중량부인 것이 좋으며, 몰당량으로 환산하였을때, 글리콜과 폐폴리에스테르계 수지의 몰비율은 2:1 이상으로, 글리콜이 과량 존재하는 것이 바람직하다.
글리콜의 중량분율이 너무 낮은 경우에는 폴리에스테르 대비 당량이 낮아져 폴리에스테르계 수지를 충분히 글리콜리시스 반응시키지 못하여 반응 수율이 낮아지고, 글리콜의 중량분율이 너무 높은 경우에는 반대로 폴리에스테르계 수지의 당량이 낮아져 반응 효율이 낮아지는 문제가 발생할 수 있다.
폴리에스테르계 수지 분해용 촉매는 글리콜리시스 반응을 촉진하는 촉매물질을 포함하며 동시에 자성을 가지는 나노 단위의 입자 형태의 촉매를 사용하는 것이 좋다. 바람직하게는 나노 단위의 상자성 폴리에스테르계 수지 분해용 촉매가 사용될 수 있으며, 예를들어 상자성을 띄는 나노 입자인 사산화삼철(Fe3O4)을 환원 분위기에서 표면에 칼슘이온을 전구체물질 형태로 석출시키거나 석출 이후 열처리함으로써 제조된 촉매가 사용될 수 있으며, 전술한 측면에 따른 폴리에스테르계 수지 분해용 촉매를 사용하는 것이 바람직하다.
이하에서는 전술한 폴리에스테르계 수지 분해용 촉매에 대하여 중복되는 부분을 기재를 생략하였으나, 전술한 측면에 기재된 폴리에스테르계 수지 분해용 촉매가 사용될 수 있다.
투입되는 폴리에스테르계 수지 분해용 촉매는 폐폴리에스테르계 수지, 글리콜 및 촉매가 혼합된 반응물 전체의 3 ~ 20 wt% 일 수 있고, 바람직하게는 5 ~ 20 wt% 일 수 있으며, 더욱 바람직하게는 8 내지 15 wt% 인 것이 좋다.
폴리에스테르계 수지 분해용 촉매의 함량이 너무 낮은 경우, 촉매의 활성이 저하될 때 전체 공정의 반응수율이 저하되기 쉬운 문제점이 있으며, 촉매의 함량이 너무 높은 경우에는 촉매의 분리가 어려워지고 경제성이 나빠지거나, 촉매들끼리 응집되어 표면적 효율이 감소하는 문제가 있을 수 있다.
여기에서, 전구체물질 형태로 칼슘이 석출된 나노입자는 응집체를 분쇄하기 위한 그라인딩 처리 후 300 내지 600℃, 예를들어 350 내지 550℃의 온도로 1 내지 10시간 동안 처리를 수행하여 제조된 폴리에스테르계 수지 분해용 촉매가 사용될 수 있고, 수득된 폴리에스테르계 수지 분해용 촉매는 중심에 Fe3O4 코어를 포함하고, 코어의 표면에 Ca(OH)2, CaCO3, CaO 또는 Ca2Fe2O5를 포함하는 코팅층을 형성하여 코어-쉘의 구조를 가지는 것이 좋다.
폴리에스테르계 수지분해단계(S2)는 폴리에스테르계 수지 분해용 촉매의 존재하에서 폐폴리에스테르계 수지와 과량의 글리콜을 혼합하고 가열하여 글리콜리시스를 반응을 일으키는 단계이다.
본 단계에서는 고분자인 폴리에스테르계 수지가 글리콜리시스를 통해 해중합하면 생성물로서 단량체인 BHET(bis-hydroxyethyl terephthalate) 및/또는 BHET 구조를 포함하는 BHET류 화합물을 포함하는 반응결과물이 얻어진다.
글리콜리시스 반응을 일으키기 위한 조건으로는 반응온도가 180 내지 240℃ 인 것이 좋고, 바람직하게는 190 내지 200℃인 것도 좋으며, 196℃ 근처의 온도인 것이 바람직하다. 압력조건은 0.5~1.5bar일 수 있으며, 예를 들면 0.8~1.2bar, 구체적으로 예를 들면 약 0.9~1.1bar, 보다 구체적으로 예를 들면 1bar일 수 있다.
온도조건이 해당 범위를 벗어나는 경우 반응이 충분히 이루어지지 않거나, 부반응이 일어나 수율이 감소하는 문제가 있을 수 있으며, 압력조건이 해당 범위를 벗어나는 경우에는 수율이 감소하거나 반응이 길어지는 문제가 발생할 수 있다.
폴리에스테르계 수지분해단계(S2)는 2 내지 5 시간동안 이루어지는 것이 좋으며, 반응시간은 반응 조건과 반응물에 따라 달라질 수 있으나 바람직하게는 3시간 ± 20분 범위 내로 이루어지는 것이 좋다.
반응시간이 너무 짧으면 반응물이 충분히 반응하지 않는 문제가 있고, 반응시간이 너무 길면 촉매의 수명이 저하되거나 반응효율이 떨어져 경제성이 좋지않아지는 문제가 있다.
폴리에스테르계 수지분해단계(S2)는 일정 반응시간이 지나면 반응용액을 10 내지 30℃ 온도 또는 상온으로 냉각하여 반응을 종료시키는 과정을 포함하는 것도 좋다.
한편, 전술한 생성물 중 BHET류 화합물은 폴리에스테르계 수지가 분해되어 생성될 수 있는 올리고머를 포함하는 개념으로, 반응물의 구조에 따라 다양한 구조의 화합물을 포함할 수 있으나 기본적으로 BHET 단량체의 구조를 포함하고 있다. 구체적으로는 하이드록시 에틸 하이드록시 다이에틸 테레프탈레이트(hydroxy ethyl hydroxy diethyl terephthalate), 비스-하이드록시 다이에틸 테레프탈레이트(bis-hydroxy diethyl terephthalate), 하이드록시 에틸 하이드록시프로필 테레프탈레이트 (hydroxyethyl hydroxypropyl terephthalate), 비스-하이드록시프로필 테레프탈레이트(bis-hydroxypropyl terephthalate) 및 하이드록시 다이에틸 하이드록시프로필 테레프탈레이트(hydroxy diethyl hydroxypropyl terephthalate)로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있다.
촉매회수단계(S3)는 폴리에스테르계 수지분해단계(S2)에서의 반응종료 이후, 자석을 이용하여 반응기의 반응용액내에 존재하는 고체상태의 미반응물과 촉매, 액체상태의 반응결과물로 각각 분리하는 단계이며, 이들 중 촉매만을 분리하거나 반응결과물만을 분리하는 단계를 포함할 수도 있다.
고체상태의 미반응물은 해중합 반응에 참여하지 못한 폴리에스테르계 수지를 포함하고, 액체상태의 반응결과물은 폴리에스테르계 수지가 해중합하여 생성된 BHET 및/또는 BHET류 화합물을 포함한다.
여기에서, 촉매회수단계는 반응기 및 반응의 형태에 따라 통상의 기술자가 채용 가능한 방식으로 고체상태의 미반응물과 촉매를 분리하는 단계를 포함하며, 예를들어 배치(batch) 반응기를 사용하여 반응을 수행한 경우 반응기 내에 존재하는 미반응물과 촉매를 분리하는 단계가 포함된다.
반응용액내의 고체상태의 미반응물은 반응용액내 구성 성분의 밀도차이에 의하여 가라앉게 되고, 본원발명의 폴리에스테르계 수지 분해용 촉매는 반응용기나 촉매의 회수수단의 설계에 따라 달라질 수 있으나 예를 들어 반응용기의 바닥부분에 접근하는 영구자석 또는 전자석에 의해 반응기의 원하는 부분에 밀집시킬 수 있어 반응용액으로부터 손쉽게 회수될 수 있는 장점이 있다.
본원발명에서 사용되는 폴리에스테르계 수지 분해용 촉매는 자성을 가지는 특징이 있어, 자석을 이용해 분리될 수 있는 장점이 있으며, 이때 사용되는 자석의 형태나 종류는 영구자석 또는 전자석일 수 있다. 또한, 사용된 촉매를 회수하는 방법으로는 자석을 이용해 촉매를 반응기에서 제거하는 방법 또는 촉매를 반응기의 자석을 통해 고정시키고 반응물을 반응기에서 분리해내는 방법 모두가 사용가능하며, 반응기의 종류 등의 선택에 따라 최적의 방식이 사용가능하다.
촉매재활용단계(S4)는 촉매회수단계(S3)에서 회수할 수 있는 미반응물과 촉매를 과량의 글리콜과 함께 그대로 새로운 반응기에 투입하여 폴리에스테르계 수지 분해단계(S2), 촉매회수단계(S3)를 다시 수행하는 과정을 위해 수행되는 단계이다.
회수한 촉매는 폴리에스테르계 수지 분해단계(S2), 촉매회수단계(S3)를 반복하여 1 내지 10회 더 재사용되며 회수될 수 있고, 1 내지 10회 범위에서 재사용하여도 폴리에스테르계 수지를 해중합하기 위한 촉매 활성이 유지되어 반응후 얻어지는 BHET의 수율이 90%이상을 유지할 수 있는 장점이 있다.
또한, 본 측면에 따르면 폴리에스테르계 수지 분해용 촉매는 10wt%로 포함되는 경우에, 재사용 회수가 8회 이내에서 반응물의 전환율이 55% 이상, 바람직하게는 60% 이상인 것이 좋고, 생성물의 수율이 85% 이상, 바람직하게는 90% 이상인 것이 좋다.
또, 다른 관점으로 촉매를 재사용하는 경우 촉매의 전환율이 80% 미만으로 떨어지는 최초의 시점에서의 재사용 수가 5회 이상인 것이 좋고, 더욱 바람직하게는 6회 이상인 것이 바람직하다.
촉매를 회수한 이후 남은 미반응물과 반응결과물은 추가적인 단계를 거쳐 분리, 회수될 수 있다. 특히, 얻어진 반응결과물은 액체상태로 존재하는데, 반응결과물에 존재하는 BHET 및/또는 BHET류 화합물 등의 생성물은 고액분리 등을 거쳐 액상으로 분리, 회수된 후 냉각장치에서 10 ~ 12시간동안 보관된 후, 필터링하여 불순물을 제거하고 11~ 13시간동안 건조하는 단계를 통하여 고체상태의 최종생성물로 수득될 수 있다.
<제4 측면>
본 발명의 제4 측면으로는 폴리에스테르계 수지 분해용 촉매를 활용한 폴리에스테르계 수지 분해 장치가 개시될 수 있다.
본 측면은 폴리에스테르계 수지 분해용 촉매를 이용하여 수거된 폐 폴리에스테르계 수지를 단량체로 화학적 분해해 재활용하는 폴리에스테르계 수지분해 장치로서, 사용되는 폴리에스테르계 수지 분해용 촉매는 전술한 측면에 폴리에스테르계 수지 분해용 촉매와 동일한 촉매로서, 동일하거나 중복되는 내용은 기재를 생략하기로 한다.
본 측면에 따른 폴리에스테르계 수지 분해 장치는,
폴리에스테르계 수지, 글리콜 및 폴리에스테르계 수지 분해용 촉매를 포함하는 반응물을 수용하여 폴리에스테르계 수지 분해반응이 이루어지는 반응기;
상기 반응기의 외부 또는 내부에 설치되는 탈부착 가능한 촉매회수장치로서, 상기 분해반응 후 자성을 이용하여 상기 폴리에스테르계 수지 분해용 촉매를 회수할 수 있는 촉매회수장치; 및
상기 분해반응 후 상기 폴리에스테르계 수지 분해용 촉매가 회수되고 남은 반응결과물로부터 상기 분해반응의 생성물을 분리시키는 분리장치를 포함한다.
도 18은 일 실시예에 따른 폴리에스테르계 수지 분해 장치를 나타낸 개략도이다.
반응기(Reactor, 리액터)(10)는 폴리에스테르계 수지, 글리콜 및 폴리에스테르계 수지 분해용 촉매를 수용하여 폴리에스테르계 수지 분해반응이 이루어짐으로써 폴리에스테르계 수지가 글리콜리시스를 통해 해중합하여 생성물로서 단량체인 BHET(bis-hydroxyethyl terephthalate) 및/또는 BHET 구조를 포함하는 BHET류 화합물을 포함하는 반응결과물을 얻게 되는 탱크로서, 그 형태 및 크기는 제한되지 않는다. 반응기(10)로는 예를 들어 배치(Batch) 또는 세미배치(Semi-batch)형태의 반응기가 사용될 수 있으며, 1개 이상의 반응기가 사용될 수 있다.
반응기(10)의 내부에는 반응물인 폴리에스테르계 수지와 에틸렌글리콜과 같은 글리콜 및 폴리에스테르계 수지 분해용 촉매가 투입되어 반응이 이루어질 수 있다. 폴리에스테르계 수지, 글리콜 및 폴리에스테르계 수지 분해용 촉매는 미리 예정된 비율로 사전 혼합한 후, 반응기(10)에 한번에 투입될 수 있으며, 고상인 폴리에스테르계 수지와 폴리에스테르계 수지 분해용 촉매를 미리 예정된 비율로 사전 혼합하고 반응기(10)에 먼저 투입한 후, 액상의 글리콜을 순차적으로 투입할 수 있다.
다르게는, 반응기(10)는 폴리에스테르계 수지, 글리콜 및 폴리에스테르계 수지 분해용 촉매를 각각 공급하거나 또는 둘 이상을 함께 공급하기 위한 적어도 하나의 반응물 공급라인(미도시)을 더 포함할 수 있다. 액상의 글리콜을 과량 투입하여 글리콜리스시 반응이 일어난다는 점에서 적어도 글리콜 공급라인을 포함할 수 있다.
반응기(10)는 내부에 반응물의 균일한 교반을 위하여 반응기 내부에 수용된 교반수단(11)이 더 포함될 수 있으며, 교반수단 및 교반 방법은 제한되지 않는다.
또한, 반응기(10)는 반응기의 내부 온도를 제어하기 위한 온도제어수단(12) 및 반응기의 내부 온도를 측정하기 위한 온도센서(13)가 포함될 수 있다.
촉매회수장치(20)는 반응에 사용된 폴리에스테르계 수지 분해용 촉매를 회수하기 위한 수단으로서, 반응기(10)의 외부 또는 내부에 설치될 수 있고 탈부착 가능하다. 촉매회수장치(20)는 분해반응 후 상자성을 가지는 폴리에스테르계 수지 분해용 촉매를 전자기력으로 끌어당겨 회수하는 수단으로서, 강자성을 가지는 영구자석 또는 전자석을 포함할 수 있다.
도 18에 도시된 바와 같이, 촉매회수장치(20)는 반응기(10)의 하부에 구비될 수 있으며, 이 경우 반응기(10)의 하부에 촉매가 이탈되지 않도록 자성에 의해 촉매들이 고정되어 반응결과물과 함께 촉매가 이탈되는 것을 막을 수 있다.
다르게는, 촉매회수장치(20)는 반응기(10) 내부에 투입 및 제거 가능한 구조로 구비될 수 있으며, 촉매회수장치(20)를 투입하여 자성으로 반응기(10) 내부의 촉매들을 달라붙게 하고 반응기(10)에서 촉매들만을 분리해 반응기(10)의 외부로 제거하는 것도 가능하다.
분리장치(30)는 폴리에스테르계 수지 분해반응 이후 폴리에스테르계 수지 분해용 촉매가 회수되고 남은 반응결과물로부터 분해반응의 생성물인 BHET 및 BHET류 화합물을 분리하는 장치이다. 분리장치(30)는 반응기(10)의 투출구로부터 연결 형성될 수도 있고, 다르게는 반응기(10)와 독립적으로 구비되고, 반응기(10) 내 남은 반응결과물을 분리장치(30)에 직접 투입하는 것도 가능하다.
폴리에스테르계 수지 분해용 촉매가 회수되고 남은 반응결과물에는, 고상의 미반응물(폴리에스테르계 수지 등)이나 회수되지 못한 일부 촉매가 액상의 반응생성물과 함께 혼합되어 있다. 촉매가 회수되고 남은 반응결과물로부터 분해반응의 생성물인 BHET 및 BHET류 화합물을 분리하기 위하여, 분리장치(30)는, 상기 폴리에스테르계 수지 분해용 촉매가 회수되고 남은 고상 및 액상이 혼합된 반응결과물로부터 고상을 제거하고 액상을 분리하기 위한 고액분리장치(31); 및 상기 고액분리장치(31)에서 얻어진 액상의 반응결과물로부터 상기 분해반응의 생성물인 BHET 및 BHET류 화합물을 분리하기 위한 석출장치(32)를 포함할 수 있다.
고액분리장치(31)는 비중 분리, 용존공기부상(DAF : Dissolved Air Flotation), 원심분리, 디캔테이션(Decantation), 오버플로우(Overflow) 및 필터링(Filtering) 중 적어도 하나의 방법을 통해 상기 고상 및 액상이 혼합된 반응결과물을 고액분리할 수 있으며, 이에 한정되지 않고 고액분리가 가능한 방법은 제한없이 적용될 수 있다.
고액분리장치(31)는 고상의 미반응물(폴리에스테르계 수지 등) 이나 회수되지 못한 일부 촉매를 액상의 반응결과물과 분리하기 위한 필터를 포함할 수 있다.
고액분리장치(31)에서 분리된 액상의 반응결과물은 석출장치(32)로 보내져 분해반응의 생성물인 BHET 및 BHET류 화합물의 분리 공정이 수행된다.
액상의 반응결과물로부터 생성물인 BHET 및 BHET류 화합물을 석출시키기 위하여, 석출장치(32)는 고액분리장치(31)에서 얻어진 액상의 반응결과물을 냉각시켜 분해반응의 생성물인 BHET 및 BHET류 화합물을 석출시키기 위한 냉각장치(33); 석출된 상기 BHET 및 BHET류 화합물을 여과하기 위한 필터(34); 및 여과된 상기 BHET 및 BHET류 화합물을 건조시키기 위한 건조기(35)를 포함할 수 있다.
필터(34)에서 BHET 및 BHET류 화합물이 여과되고 회수된 글리콜은 다시 반응기(10)에 반응물로서 투입되는 것이 좋으며, 이를 위하여 필터(34)로부터 회수된 글리콜을 반응기(10)에 투입시키는 재투입 라인(미도시)이 더 포함될 수 있다.
본 측면의 폐폴리에스테르계 수지 분해 장치는 그 규모, 처리량에 따라 다양하게 변화될 수 있으며, 통상의 기술수준으로 변형 가능한 수단이 사용되거나 치환되는 경우에도 본 측면의 권리범위에 포함된다.
<실시예>
실시예 1 내지 5 : 폴리에스테르계 수지 분해용 촉매의 제조
실시예 1
100ml 증류수에 Ca(NO3)2·4H2O를 상온에서 용해시킨 후, Fe3O4 나노입자 코어를 투입 하여 1시간 동안 400rpm에서 충분히 교반하였다. 반응 용액이 pH 12까지 도달하도록 2M NaOH의 알칼리용액 20ml를 서서히 첨가한 후, 400rpm의 교반 속도로 하룻밤동안 유지하였다. 이후 영구자석을 이용하여 나노입자 코어들을 분리하고, 분리된 나노입자 코어들은 알코올과 아세톤을 이용하여 세척, 건조단계를 반복수행하여 전구체층이 형성된 코어 생성물을 얻었다. 얻은 코어 생성물은 그라인딩 후 5시간동안 450도의 온도로 열처리(하소)하여 폴리에스테르계 수지 분해용 촉매를 얻었다.
제조된 자성촉매의 형상과 성분은 주사 전자 현미경(SEM, Tescan Mira3)과 에너지 분산 분광 분석기(EDS, Oxford instrument)를 이용하여 확인하였고, 코어-쉘 구조의 Ca(OH)2@Fe3O4 가 생성되었음을 확인하였다.
실시예 2 내지 5
실시예 1의 전구체층이 형성된 코어 생성물을 5시간동안 열처리 하였으며, 열처리 온도를 각각 350, 400, 500, 550도의 온도로 열처리한 것을 제외하고는 동일한 방법으로 폴리에스테르계 수지 분해용 촉매를 제조하였다.
실시예 6 : 폴리에스테르계 수지 분해용 촉매를 이용한 폴리에스테르계 수지의 분해
고온·고압 반응기에 각각의 폐PET(40g), 에틸렌 글리콜(200g, PET:EG=1:5) 그리고 전술한 실시예 1의 폴리에스테르계 수지 분해용 촉매(4g)를 투입한다.
반응기에 가열기를 결합하여 반응온도를 높이고, 반응온도가 196℃에 도달하면 400rpm의 교반 속도로 3시간 동안 반응시킨다. 반응물은 영구자석을 이용하여 고체 상태의 미반응물과 액체상태의 반응결과물로 분리시킨다. 영구자석에 의해 가라앉은 자성촉매와 고체 상태의 미반응물은 회수하고 무게를 측정하여 분해율(conversion)을 계산하였다. 또한 액체상태의 반응결과물에 녹아 있는 최종 생성물인 BHET는 냉각장치에서 12시간 보관 후 필터링 및 건조하여 수율(yield)을 측정하였다.
Figure PCTKR2022004724-appb-I000003
(이때, Wi=초기 폐PET 무게, Wf=반응 후 남아있는 미 반응물과 촉매의 무게)
Figure PCTKR2022004724-appb-I000004
(이때, Wi = 초기 폐PET 무게, WBHET = 최종 생산물인 BHET의 무게)
<비교예 >
비교예 1 내지 2 - 폴리에스테르계 수지 분해용 촉매의 제조
비교예 1
실시예 1과 동일한 방법으로 전구체층이 형성된 코어 생성물을 제조한 후, 열처리를 하지 않고 전구체층이 형성된 입자를 수득하였다.
비교예 2
실시예 1과 동일한 방법으로 전구체층이 형성된 코어 생성물을 제조한 후, 600 도의 온도에서 동일한 시간동안 열처리를 수행하여 폴리에스테르계 수지 분해용 촉매를 얻었다.
<실험예>
실험예 1 :폴리에스테르계 수지 분해용 촉매의 상 분석
실시예 1 내지 5, 비교예 1 에서 제조된 폴리에스테르계 수지 분해용 촉매를 XRD 분석 장비를 활용하여 결정, 상의 구성을 확인하였다.
도 1에 관찰된 XRD의 결과를 나타내었다. 실시예 1의 경우 사산화삼철, 수산화칼슘, 탄산칼슘 및 철과 칼슘의 복합산화물이 존재하는 것으로 나타났고, 실시예 2는 사산화삼철, 수산화칼슘, 탄산칼슘 및 복합산화물(CaFeO3)이 확인되었다.
실시예 3 내지 5에는 사산화삼철, 수탄산칼슘 및 철과 칼슘의 복합산화물(Ca2Fe2O5)이 확인되었다.
비교예 1에서는 사삼화삼철과 수산화칼슘이 존재하였고, 복합산화물을 관찰되지 않았다.
표 1은 XRD 분석 결과에 따른 각 화합물상의 중량 분율(wt%), 입경을 나타낸 자료이다.
열처리조건 화합물 종류 결정 입경(nm) 분율(wt.%)
열처리 없음 Fe3O4 19.89 78.60%
Ca(OH)2 48.69 21.40%
350℃ Fe3O4 18.67 74.60%
CaCO3 29.99 24.90%
Ca1Fe1O3 145.03 0.60%
400℃ Fe3O4 13.51 41.50%
Ca2Fe2O5 12.37 25.70%
CaCO3 58.39 32.80%
450℃ Fe3O4 15.36 51.40%
CaCO3 78.43 18.10%
Ca2Fe2O5 21.25 30.50%
500℃ Fe3O4 10.4 38.90%
CaCO3 26.32 20.10%
Ca2Fe2O5 8.14 41.00%
550℃ Fe3O4 19.65 27.00%
Ca2Fe2O5 32.25 55.60%
CaCO3 109.41 17.50%
표 1의 결과를 하기 관계식에 적용해보면,
(관계식 1)
W1 = 0.25 T - k (여기에서, k는 70≤k≤90 을 만족하는 실수)
열처리 온도를 350 에서 550℃ 증가시킴에 따라 k의 값이 각각 86.9, 74.3, 82, 84, 81.9 임을 알 수 있다.
실험예 2 : 폴리에스테르계 수지 분해용 촉매의 외관 관찰
실시예 1 내지 5, 비교예 1 에서 제조된 폴리에스테르계 수지 분해용 촉매를 전자 현미경(FE-SEM)과 EDS 장비를 활용하여 그 형상과 원소의 분포를 관찰하였다.
도 2 및 도 3은 실시예 1의 전자현미경 사진과 EDS 결과를 나타낸 도면이고, 도 4 및 도 5은 실시예 2, 도 6 및 도 7은 실시예 5, 도 8 및 도 9는 비교예 1의 실험 결과를 나타낸 것이다.
실시예 1의 전자현미경 사진을 보면 50 ~ 60nm 수준의 입자들이 응집되는 것을 확인할 수 있고, EDS-맵핑 결과 철, 산소, 칼슘의 분포가 균일한 것을 알 수 있다.
실시예 2의 전자현미경 사진에서는 촉매 입자의 크기가 50nm 이사 수준으로 실시예 1 대비 작으며, 일부 응집 구조를 가진다. EDS-맵핑 결과 철, 산소, 칼슘의 분포가 균일한 것을 알 수 있다.
실시예 5의 전자현미경 사진에서는 촉매 입자의 크기가 약 100nm 정도인 것을 볼 수 있으며, 실시예 1, 2보다 입자의 성장이 많이 이루어져 전체적으로 조대한 입자가 형성된 것으로 예상된다. EDS-맵핑 결과 철, 산소, 칼슘의 분포가 균일한 것을 알 수 있다.
비교예 1의 전자현미경 사진에서는 전구체층이 표면에 형성된 입자들이 응집되어 응집체를 이루고, 응집체들은 분산되지 않고 클러스터(cluster)를 이루며 뭉쳐있는 것을 볼 수 있다. EDS-맵핑 결과 철, 산소, 칼슘의 분포가 균일한 것을 알 수 있다.
도 10은 EDS 결과를 종합한 것으로서, 실시예 및 비교예에서 동일한 조성(Fe, O, C, Ca)가 확인되었고, 강도(Intensity)의 경향성은 크게 나타나지 않았다.
실험예 3 : 폴리에스테르계 수지 분해용 촉매의 자성 특성 분석
실시예 1, 2 및 5, 비교예 1 에서 제조된 폴리에스테르계 수지 분해용 촉매를 시료진동식 자속계(Vibrating Sample Magnetometer, VSM)을 이용하여 외부 자기장을 변화시키며 시료의 포화자화 값과 잔류자화 값을 측정하였다.
도 11 및 도 12에 일부 실험결과를 나타내고, 실험 데이터를 아래 표 2에 정리하였다.
시료 포화자화 (Ms, emu/g) 잔류자화 (Mr, emu/g)
실시예 1 41.61 8.55
실시예 2 47.16 9.94
실시예 5 33.05 8.72
비교예 1 42.60 9.10
동일한 코어를 사용한 실시예 1 내지 5, 비교예 1 에서 모두 상자성(paramagnetism)을 가지는 것을 확인하였으며, 실시예 1, 2, 5의 결과를 도 12의 히스테리시스 곡선이 원점 근처를 지나는 것으로 확인할 수 있다. 실시예 1 2, 5에서 열처리 온도가 증가함에 따라 자성특성이 감소함을 알 수 있었으며, 이는 제1화합물인 삼산화사철의 함량 감소에 의한 영향이 있을 것으로 예상된다.
실험예 4 : 폴리에스테르계 수지 분해용 촉매의 재사용 횟수에 따른 수율 분석
고온·고압 반응기에 각각의 폐PET(40g), 에틸렌 글리콜(200g, PET:EG=1:5) 및 실시예 1 내지 3의 촉매를 5, 10 또는 20wt% 장입하여 반응기에 고정시킨 후, 가열기를 결합시켜 미리 정해진 반응온도인 196℃까지 승온시킨 후, 400rpm 의 속도로 교반시키며 3시간 동안 반응을 수행하였다.
반응 종결 이후 냉각수를 이용해 빠르게 냉각시켜 반응을 중단시킨 후, 1L의 온수를 투입하며 교반하고, 액체상태의 반응물을 고체상태의 미반응물과 촉매로부터 분리하고, 고체상태의 미반응물과 촉매는 자석을 이용해 분리하고 중량을 측정하였으며, 반응물(BHET)는 12시간 냉각장치에서 보관 후, 필터링과 건조(12시간)하여 수율을 측정하였고, 위 반응-분리 과정을 동일하게 반복하며, 반복 회수에 따른 결과를 아래 표 2 내지 4와 같이 정리하였다.
표 3 내지 5 는 각각 실시예 1, 2, 5의 폴리에스테르계 수지 분해용 촉매에 대한 결과이다.
실시예 1의 폴리에스테르계 수지 분해용 촉매 양(wt.%) 촉매 재사용 수
(회)
미반응PET
(g)
BHET
(g)
전환율
(%)
BHET 수율
(%)
5 1 5.05 40.12 87.38 100.30
5 2 5.63 45.73 85.93 114.33
5 3 11.76 38.05 70.60 95.13
5 4 17.62 38.02 55.95 95.05
5 5 23.31 30.77 41.73 76.93
5 6 36.09 29.39 9.77 73.48
10 1 6.37 37.37 84.08 93.43
10 2 7.06 45.52 82.35 113.80
10 3 7.35 46.26 81.63 115.65
10 4 7.19 47.31 82.03 118.28
10 5 7.24 46.59 81.90 116.48
10 6 7.34 44.57 81.65 111.43
10 7 8.70 44.94 78.25 112.35
10 8 15.84 36.46 60.40 91.15
10 9 15.47 44.98 61.33 112.45
10 10 23.70 34.73 40.75 86.83
10 11 39.72 25.05 0.70 62.63
실시예 2의 폴리에스테르계 수지 분해용 촉매 양(wt.%) 촉매 재사용 수
(회)
미반응PET
(g)
BHET
(g)
전환율
(%)
BHET 수율
(%)
10 1 6.13 37.66 84.68 94.15
10 2 6.79 44.76 83.03 111.90
10 3 6.88 45.85 82.80 114.63
10 4 7.02 47.01 82.45 117.53
10 5 7.51 44.98 81.23 112.45
10 6 8.81 45.22 77.98 113.05
10 7 10.01 45.12 74.98 112.80
10 8 12.70 39.00 68.25 97.50
10 9 18.19 38.72 54.53 96.8
10 10 30.64 31.20 23.4 78
실시예 5의 폴리에스테르계 수지 분해용 촉매 양(wt.%) 촉매 재사용 수
(회)
미반응PET
(g)
BHET
(g)
전환율
(%)
BHET 수율
(%)
5 1 4.37 39.34 89.08 98.35
5 2 5.18 44.32 87.05 110.80
5 3 5.88 46.02 85.30 115.05
5 4 28.51 24.74 28.73 61.85
10 1 5.12 32.25 87.20 80.63
10 2 6.40 43.35 84.00 108.38
10 3 5.30 46.53 86.75 116.33
10 4 6.37 44.41 84.08 111.03
10 5 28.04 18.07 29.90 45.18
20 1 9.80 30.80 75.50 77.00
20 2 9.90 42.13 75.25 105.33
20 3 9.12 45.65 77.20 114.13
20 4 9.11 46.47 77.23 116.18
20 5 8.89 46.72 77.78 116.80
20 6 8.75 47.11 78.13 117.78
20 7 8.60 46.81 78.50 117.03
20 8 8.54 45.96 78.65 114.90
20 9 8.42 46.42 78.95 116.05
20 10 8.48 47.56 78.80 118.90
20 11 9.90 44.43 75.25 111.08
20 12 11.83 42.81 70.43 107.03
20 13 12.99 45.31 67.53 113.28
20 14 17.41 37.93 56.48 94.83
20 15 13.94 47.75 65.15 119.38
20 16 20.94 34.79 47.65 86.98
20 17 29.90 34.05 25.25 85.13
도 13은 표 3의 결과를 그래프로 나타낸 것이다.
도 14는 표 4의 결과를 그래프로 나타낸 것이다.
도 15는 표 5의 결과를 그래프로 나타낸 것이다.
도 16은 표 3 내지 표 5의 결과를 종합하여 그래프로 나타낸 것이다.
전체적으로 재사용 수가 증가함에 따라 전환율이 감소하는 경향성을 보였으나, BHET의 수율은 감소 중 9회 정도 재사용시 전환율이 크게 감소하며 수율이 소폭 상승하는 경우가 관찰되었다.
실시예 1에서 폴리에스테르계 수지 분해용 촉매의 함량이 5, 10 wt% 인 경우를 보면, 10 wt% 인 경우 재사용에 따른 전환율과 수율 감소가 크게 감소하였으며, 실시예 5 에서 5, 10, 20 wt%를 투입한 경우 10% 보다 20% 에서 수율 및 전환율 감소가 크게 나타났다. 특히, 5 에서 10 % 로 증가시킨 경우보다 10 에서 20%로 증가시킨 경우 촉매가 동일하게 2배 증가하였으나 수율의 감소 시점은 크게 차이가 났다.
실시예 1, 2, 및 5의 촉매를 10wt% 로 투입한 결과를 대비하면, 실시예 2에서 수율이 오래 유지되었으며, 오히려 실시예 5는 재사용시 수율이 급격히 감소하는 문제가 있었다.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (12)

  1. 자성을 가지는 금속산화물을 포함하는 코어; 및
    상기 코어의 표면에 폴리에스테르계 수지의 글리콜리시스 반응에 대한 촉매 활성을 가지는 적어도 하나의 촉매 물질이 구비되는 코팅층;
    을 포함하는 폴리에스테르계 수지 분해용 촉매.
  2. 제1항에 있어서,
    상기 금속산화물은 철(Fe), 니켈(Ni) 및 코발트(Co)로 이루어지는 군에서 선택되는 전이금속의 산화물인 폴리에스테르계 수지 분해용 촉매.
  3. 제2항에 있어서,
    상기 코팅층은 상기 촉매 물질에 포함되는 원소와 상기 전이금속의 복합산화물을 더 포함하는 폴리에스테르계 수지 분해용 촉매.
  4. 제3항에 있어서,
    상기 금속산화물은 삼산화이철(Fe2O3) 또는 사산화삼철(Fe3O4)을 포함하고,
    상기 촉매 물질은 탄산칼슘을 포함하고,
    상기 복합산화물은 CaFeO3, CaFe2O4 및 Ca2Fe2O5 로 이루어지는 군에서 선택되는 적어도 어느 하나 이상을 포함하는 폴리에스테르계 수지 분해용 촉매.
  5. 제1금속을 포함하는 제1화합물을 포함하며, 상자성 특성을 가지는 코어를 준비하는 코어 준비단계;
    상기 제1금속과 다른 금속인 제2금속의 염을 포함하며, pH9 이상인 수용액에 상기 코어를 혼합 및 교반하고, 상기 제2금속의 염을 포함하는 전구체 물질을 석출시켜 상기 코어의 표면에 상기 전구체 물질을 포함하는 전구체층을 형성하는 전구체층 형성단계; 및
    상기 전구체층을 열처리하여 폴리에스테르계 수지의 글리콜리시스 반응에 대한 촉매 활성을 가지는 촉매 물질로 전환시키는 열처리단계;
    를 포함하는 제1항에 따른 폴리에스테르계 수지 분해용 촉매의 제조방법.
  6. 제5항에 있어서,
    상기 열처리단계는 300 내지 600℃ 에서 3 내지 6시간동안 수행되며, 상기 코어와 상기 전구체층의 계면에서 복합산화물을 형성하는 폴리에스테르계 수지 분해용 촉매의 제조방법.
  7. 제5항에 있어서,
    상기 제1화합물은 삼산화이철(Fe2O3) 또는 사산화삼철(Fe3O4)을 포함하고,
    상기 제2금속은 칼슘(Ca)인 폴리에스테르계 수지 분해용 촉매의 제조방법.
  8. 폐폴리에스테르계 수지, 글리콜 및 제1항 내지 제4항 중 어느 한 항에 따른 폴리에스테르계 수지 분해용 촉매를 포함하는 반응물을 반응기에 투입하는 반응물준비단계;
    상기 반응기 내에서 상기 폴리에스테르계 수지 분해용 촉매를 이용해 상기 폐폴리에스테르계 수지와 상기 글리콜을 글리콜리시스 반응시키는 폴리에스테르계 수지분해단계;
    상기 반응 이후 자성을 이용해 상기 폴리에스테르계 수지 분해용 촉매를 회수하는 촉매회수단계; 및
    회수된 상기 폴리에스테르계 수지 분해용 촉매를 상기 폴리에스테르계 수지분해단계에 재활용하는 촉매재활용단계;
    를 포함하는 폴리에스테르계 수지 분해방법.
  9. 제8항에 있어서,
    상기 글리콜은 상기 폐폴리에스테르계 수지 100 중량부에 대하여 300 내지 700 중량부로 투입되고,
    상기 폴리에스테르계 수지 분해용 촉매는 상기 반응물 전체의 3 내지 20 wt% 로 포함되는 폴리에스테르계 수지 분해방법.
  10. 제8항에 있어서,
    상기 촉매회수단계에서 회수된 상기 폴리에스테르계 수지 분해용 촉매를 상기 폴리에스테르계 수지 분해단계와 상기 촉매회수단계(S3)를 반복하여 1 내지 10회 더 재사용하는 폴리에스테르계 수지 분해방법.
  11. 폴리에스테르계 수지, 글리콜 및 제1항 내지 제4항 중 어느 한 항에 따른 폴리에스테르계 수지 분해용 촉매를 포함하는 반응물을 수용하여 폴리에스테르계 수지 분해반응이 이루어지는 반응기;
    상기 반응기의 외부 또는 내부에 설치되는 탈부착 가능한 촉매회수장치로서, 상기 분해반응 후 자성을 이용하여 상기 폴리에스테르계 수지 분해용 촉매를 회수할 수 있는 촉매회수장치; 및
    상기 분해반응 후 상기 폴리에스테르계 수지 분해용 촉매가 회수되고 남은 반응결과물로부터 상기 분해반응의 생성물을 분리시키는 분리장치;
    를 포함하는 폴리에스테르계 수지 분해 장치.
  12. 제11항에 있어서,
    상기 촉매회수장치는 강자성을 가지는 영구자석 또는 전자석을 포함하는 폴리에스테르계 수지 분해 장치.
PCT/KR2022/004724 2021-04-02 2022-04-01 폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치 WO2022211581A1 (ko)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
KR20210043446 2021-04-02
KR20210043447 2021-04-02
KR10-2021-0043446 2021-04-02
KR20210043444 2021-04-02
KR20210043445 2021-04-02
KR10-2021-0043445 2021-04-02
KR10-2021-0043444 2021-04-02
KR10-2021-0043447 2021-04-02
KR10-2021-0120411 2021-09-09
KR1020210120412A KR102531887B1 (ko) 2021-04-02 2021-09-09 폴리에스테르계 수지 분해용 촉매의 제조방법
KR10-2021-0120412 2021-09-09
KR1020210120411A KR102620572B1 (ko) 2021-04-02 2021-09-09 폴리에스테르계 수지 분해용 촉매

Publications (1)

Publication Number Publication Date
WO2022211581A1 true WO2022211581A1 (ko) 2022-10-06

Family

ID=83456623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/004724 WO2022211581A1 (ko) 2021-04-02 2022-04-01 폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치

Country Status (1)

Country Link
WO (1) WO2022211581A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041829A (ko) * 1999-10-22 2002-06-03 야스이 쇼사꾸 폴리에스테르 폐기물로부터 디메틸 테레프탈레이트 및에틸렌 글리콜을 분리 회수하는 방법
KR20100120904A (ko) * 2009-05-07 2010-11-17 경희대학교 산학협력단 혼성 나노입자 및 그를 이용한 바이오촉매
KR101167288B1 (ko) * 2011-11-22 2012-07-23 이상우 석탄재를 이용한 촉매 제조방법 및 이 방법으로 제조되는 촉매
JP2012187565A (ja) * 2011-03-10 2012-10-04 Hiromi Yamashita コアシェル型触媒およびその製造方法
KR20150004213A (ko) * 2013-07-02 2015-01-12 한국과학기술연구원 중공코어 및 기공성 쉘층을 가지는 금속산화물 복합체 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020041829A (ko) * 1999-10-22 2002-06-03 야스이 쇼사꾸 폴리에스테르 폐기물로부터 디메틸 테레프탈레이트 및에틸렌 글리콜을 분리 회수하는 방법
KR20100120904A (ko) * 2009-05-07 2010-11-17 경희대학교 산학협력단 혼성 나노입자 및 그를 이용한 바이오촉매
JP2012187565A (ja) * 2011-03-10 2012-10-04 Hiromi Yamashita コアシェル型触媒およびその製造方法
KR101167288B1 (ko) * 2011-11-22 2012-07-23 이상우 석탄재를 이용한 촉매 제조방법 및 이 방법으로 제조되는 촉매
KR20150004213A (ko) * 2013-07-02 2015-01-12 한국과학기술연구원 중공코어 및 기공성 쉘층을 가지는 금속산화물 복합체 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2019098599A1 (ko) 보안잉크용 alnico계 자성 입자
WO2019083198A1 (ko) 복합체 및 이를 포함하는 유수 분리용 재료
WO2019022555A1 (ko) 알칼리 퓨전을 통한 폐탈질촉매로부터 선택적 유가금속 회수방법
WO2022211581A1 (ko) 폴리에스테르계 수지 분해용 촉매 및 그 제조방법, 그리고 상기 촉매를 이용한 폴리에스테르계 수지 분해방법 및 분해 장치
WO2020218725A1 (ko) 비방사성 안정 동위원소를 이용한 친환경 열 차폐 필름 및 그 제조방법
WO2023282564A1 (ko) 리튬폐액과 불화물폐액으로부터 고부가가치 자원 회수방법
WO2015099462A1 (ko) 비공유결합 개질된 탄소구조체 및 이를 포함하는 탄소구조체/고분자 복합체
WO2012081897A2 (ko) 니켈 함유 원료로부터 페로니켈을 농축 회수하는 방법, 상기 농축된 페로니켈로부터 니켈을 회수하는 방법 및 상기 방법에서 발생하는 철 함유 용액을 재활용하는 방법
WO2022169073A1 (ko) 이방성 희토류 벌크자석의 제조방법 및 이로부터 제조된 이방성 희토류 벌크자석
WO2016032284A1 (ko) 봉형 산화 몰리브덴의 제조방법 및 산화 몰리브덴 복합체의 제조방법
WO2010027141A2 (ko) 신규한 플러렌 유도체 및 그의 제조 방법
KR102531887B1 (ko) 폴리에스테르계 수지 분해용 촉매의 제조방법
KR100973962B1 (ko) 수지 경화물이 혼입된 합성 수지 제품 분쇄물의 재이용방법
WO2016105075A2 (ko) 산화철 나노튜브의 제조방법 및 이에 의해 제조된 산화철 나노튜브, 자성철 분말의 제조방법 및 이를 이용한 인산염의 제거 및 회수 장치
WO2018194397A4 (ko) 적니를 활용한 일메나이트 제련방법
WO2021085938A1 (ko) 폴리에스테르계 필름 및 이를 이용한 폴리에스테르계 용기의 재생 방법
JP2005022953A (ja) 複合化酸化インジウム粒子およびその製造方法、ならびに導電性塗料、導電性塗膜および導電性シート
WO2020017887A1 (ko) 산화철 자성 분말 및 이의 제조방법
WO2012060583A2 (ko) 고주파 응용을 위한 Co2Z형 페라이트, 이의 제조방법 및 이를 이용한 안테나
WO2021010571A1 (ko) 육각판상 형태의 페라이트 구조체 및 그 제조방법
WO2020204361A1 (ko) 전자파의 차폐 및 흡수 기능이 우수한 복합 자성체 차폐시트 및 자성체시트의 제조 방법
KR20060025097A (ko) 폐 액정표시장치(lcd) 유리의 재회수 방법
WO2010120153A2 (ko) 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법
WO2023038283A1 (ko) 양극 활물질의 재생 방법 및 이로부터 재생된 양극 활물질
KR20220138820A (ko) 폴리에스테르계 수지 분해 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22781700

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22781700

Country of ref document: EP

Kind code of ref document: A1