WO2010120153A2 - 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법 - Google Patents

나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법 Download PDF

Info

Publication number
WO2010120153A2
WO2010120153A2 PCT/KR2010/002398 KR2010002398W WO2010120153A2 WO 2010120153 A2 WO2010120153 A2 WO 2010120153A2 KR 2010002398 W KR2010002398 W KR 2010002398W WO 2010120153 A2 WO2010120153 A2 WO 2010120153A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon
resin
composition
carbon
nano
Prior art date
Application number
PCT/KR2010/002398
Other languages
English (en)
French (fr)
Other versions
WO2010120153A3 (ko
Inventor
김상옥
Original Assignee
(주)월드튜브
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090033349A external-priority patent/KR100955295B1/ko
Priority claimed from KR1020090130512A external-priority patent/KR101084974B1/ko
Application filed by (주)월드튜브 filed Critical (주)월드튜브
Priority claimed from KR1020100035407A external-priority patent/KR101084977B1/ko
Publication of WO2010120153A2 publication Critical patent/WO2010120153A2/ko
Publication of WO2010120153A3 publication Critical patent/WO2010120153A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon

Definitions

  • the present invention relates to a nanocarbon liquid composition, a nanocarbon resin composition, a nanocarbon solid body, a nanocarbon resin body, and a production method thereof.
  • Nano carbon is a single layer of SWNT, carbon nanotubes such as MWNT composed of two to ten layers, carbon nano horn, carbon nano fiber (CNF), graphite nano fiber, carbon nano rod, SWNT It includes grapan and the like.
  • nanocarbon Compared with the existing materials, nanocarbon has very excellent electrical, mechanical and thermal properties, and many studies have been conducted on electronics, electrical appliances, and high-performance complexes, and some of them are commercially available.
  • Korean Patent Publication No. 10-2008-0021002 describes a method for dispersing composite resin and carbon nanotubes having excellent dispersibility
  • Korean Patent Publication No. 2003-0016055 and Korean Patent Registration No. 10-0610888 No. describes a method for dispersing carbon nanotubes into tablets and liquid coatings and dispersing them in matrix resins
  • Korean Patent No. 10-0839173 discloses dispersing reinforcing materials (carbon fibres, glass fibers, carbon, graphite). The method is described
  • Korean Laid-Open Patent Publication No. 10-2006-0006002 describes a method of dispersing by treating a surfactant and an aqueous latex (aqueous precursor).
  • the present invention has been made in order to solve the above problems, easy storage and handling, excellent dispersibility and conductivity, and easy to manufacture nanocarbon liquid composition, nanocarbon resin composition, nanocarbon solid body, nanocarbon resin body And to provide a method for producing these.
  • Metals including oxides and ions, excluding metals derived from nanocarbon raw materials
  • nano-carbon solids comprising a bonding resin.
  • the metal is Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, Ti At least one metal selected from the group consisting of V, Ge, Bi, Si, Zr and alloys thereof.
  • the binder resin is at least one selected from the group consisting of acryl, urethane, vinyl, fluorinated, siliconized, chlorinated, epoxy, phenol, cellulose, styrene, olefin, elastomer, paraffin, ester resin, and mixtures thereof. Resin.
  • the binder resin is preferably a modified resin containing a filler and a dispersant or a modified resin containing a dispersant and an additive.
  • the apparent density of the solid is preferably composed of 0.1 to 0.7g / cm3.
  • the solid body is manufactured to have a diameter of 3.35 to 4.63 mm and a height twice the diameter, and the breakdown load of the KS L 1601 test method is 0.12 to 3.25 kgf.
  • the solid body is manufactured to have a diameter of 3.35 to 4.63 mm and a height twice the diameter, and the compressive strength according to the KS L 1601 test method is 0.01 to 0.25 kgf / mm 2.
  • the solid body preferably further comprises at least one from the group consisting of a compatibilizer, a coupling agent, and a chelating agent for dispersion with the matrix resin.
  • the solid body preferably further comprises at least one selected from the group consisting of carbon fibers, carbon nanofibers, metal coating fibers, metal fibers, metal powder, expanded graphite, thermally conductive carbon, conductive polymers.
  • the metal is included in 0.00001 to 4 parts by weight based on 100 parts by weight of the nanocarbon;
  • the binder resin is preferably included in 0.00001 to 4 parts by weight based on 100 parts by weight of the nanocarbon.
  • the nanocarbon solid may be used as a raw material of the antistatic yarn, electromagnetic shielding yarn, smart fiber.
  • nanocarbon solids may be used as a raw material of the conductive and physical properties reinforcing additives of the metal composite.
  • the nanocarbon solid may be used as a raw material of the conductive and physical property reinforcing additives of the resin polymerization.
  • Metals including oxides and ions, excluding metals derived from nanocarbon raw materials
  • a nanocarbon resin body including a resin containing at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin is provided.
  • the above-described nanocarbon solids are mixed with a resin containing at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin to provide a nanocarbon resin body.
  • the matrix resin is pps (polyphenylenesulfide), peek (polyetheretherketone), psf (polysulfone), pc (polycarbonate), pp (polypropylene), tpo (thermoplasticolefine), pe (polyethylene), ps (polystyrene), pi (polyimide ), pa11 (polyamide based on 11-aminoundecanoic acid), pa12 (polyamide based on -aminododecanoic acid or on laurolactam), pa6 (polyamide based on e-caprolactam), pa6t (polyamide based on hexamethylenediamine, and terephthalic acid), pa9t ( polyamide 9t), pmma (poly methyl methacrylate), tpu (thermoplasticurethane), abs (acrylonitrile butadiene styrene), pom (poly acetal), pp
  • the carrier resin may be the same resin as the matrix resin, ethylene, amide resin, or low molecular resin.
  • the nanocarbon is preferably included in 0.1% to 98% by weight of the total weight of the nanocarbon resin body.
  • Still another aspect of the present invention provides a nanocarbon molded article manufactured using the nanocarbon resin body described above.
  • the nano-carbon molded article is a bumper, a fender, a rear, a fuel filter, a fuel filter case, a fuel tank, a fuel pipe, an electromagnetic shielding dashboard, a mobile phone case, a laptop case, a fuel cell bipolar plate, an environmental machine Electrode, acid-alkaline electrolyte electrode, semiconductor chip carrier film, transport tray, pallet, antistatic film, transparent ESD film, transparent ESD plate, LCD PE foam sheet, packaging foam (PE, PS), wire material, heating element material, Heat sink material, building structural material, building reinforcement material, actuator, conductive fiber.
  • Metals including oxides and ions, excluding metals derived from nanocarbon raw materials
  • nanocarbon liquid composition comprising a solvent.
  • the metal is Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, At least one metal selected from the group consisting of Ti, V, Ge, Bi, Si, Zr and alloys thereof.
  • the solvent is preferably one selected from the group consisting of water, alcohols, organic solvents, and mixtures thereof.
  • nano-carbon liquid composition prepared by dispersing the above-described nano-carbon solids in a liquid material.
  • the nanocarbon liquid composition includes nanocarbon, a metal, a binder resin, and a solvent.
  • the nanocarbon liquid composition may further include a conductive material.
  • the conductive material may be at least one selected from the group consisting of carbon, graphite, conductive polymers, and metals.
  • the nano-carbon liquid composition is a conductive paint, conductive coating, EMI / ESD liquid composition, thermal conductive paint, thermal conductive coating, heat-generating paint, heat-dissipating paint, electrical and thermal conductive adhesive-adhesive preparation, actuate Can be used for conductive fibers.
  • the nanocarbon liquid composition may be used is coated on a cloth, mesh, film, iron plate, wire, pipe, film, sheet.
  • the nanocarbon liquid composition may be extruded into a sheet or a film while the liquid component is removed through a molding machine.
  • Metals including oxides and ions, excluding metals derived from nanocarbon raw materials
  • a resin comprising at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin
  • nanocarbon resin composition comprising a solvent.
  • nanocarbon resin composition comprising at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin in the above-described nanocarbon resin composition.
  • the matrix resin is pps (polyphenylenesulfide), peek (polyetheretherketone), psf (polysulfone), pc (polycarbonate), pp (polypropylene), tpo (thermoplasticolefine), pe (polyethylene), ps (polystyrene), pi (polyimide ), pa11 (polyamide based on 11-aminoundecanoic acid), pa12 (polyamide based on -aminododecanoic acid or on laurolactam), pa6 (polyamide based on e-caprolactam), pa6t (polyamide based on hexamethylenediamine, and terephthalic acid), pa9t ( polyamide 9t), pmma (poly methyl methacrylate), tpu (thermoplasticurethane), abs (acrylonitrile butadiene styrene), pom (poly acetal), pp
  • the carrier resin may be the same resin as the matrix resin, ethylene or amide resin, or low molecular resin.
  • the nanocarbon resin composition may be extruded into a sheet or film while the liquid component is removed through a molding machine.
  • the nano-carbon molded article is a bumper, a fender, a rear, a fuel filter, a fuel filter case, a fuel tank, a fuel pipe, an electromagnetic shielding dashboard, a mobile phone case, a laptop case, a fuel cell bipolar plate, an environmental machine Electrode, acid-alkaline electrolyte electrode, semiconductor chip carrier film, transport tray, pallet, antistatic film, transparent ESD film, transparent ESD plate, LCD PE foam sheet, packaging foam (PE, PS), wire material, heating element material, Heat sink material, building structural material, building reinforcement material, actuator, conductive fiber.
  • It provides a method for producing a nano-carbon liquid composition comprising a step of removing the liquid component and then pulverized or crushed into powder after the nano-carbon in the intermediate composition.
  • Preparing a carbon nanocarbon composition comprising a step of adding a binder resin and a nanocarbon to the intermediate composition, followed by stirring to remove the liquid component and pulverizing or crushing the powder into a powder;
  • It provides a method for producing a nano-carbon solid comprising a solid manufacturing step of molding the nano-carbon liquid composition to a predetermined shape and then dried.
  • Nanocarbon liquid composition manufacturing step comprising the step of putting the nanocarbon in the first composition and then stirring to remove the liquid component, pulverized or crushed into a powder;
  • It provides a method for producing a nano-carbon resin composition
  • a method for producing a nano-carbon resin composition comprising a; mixing the solid body with a resin comprising at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin.
  • Nanocarbon composition manufacturing step comprising the step of putting the nano-carbon in the intermediate composition and then stirring to remove the liquid component and pulverized or crushed into powder;
  • nanocarbon composition with a resin comprising at least one of a matrix resin or a carrier resin for stabilizing dispersion with the matrix resin;
  • It provides a method for producing a nano-carbon resin body comprising a drying step of molding the composition mixed with the matrix resin to a predetermined shape and then dried.
  • the nanocarbon solids according to the present invention are easy to handle, do not fly well, can be freely mixed with various matrix resins, do not phase separate from the matrix resins when the molding machine is placed, and can be fed side by side without first mixing or branding. It is a green material that has the effect of reducing
  • the method for producing a nano-carbon solid provides a method for efficiently producing the solid of the nano-carbon described above.
  • the molded article using the nano-carbon solids according to the present invention can be produced in various forms according to the use of the molded article.
  • the nanocarbon liquid composition, the nanocarbon resin composition, and the manufacturing method thereof according to the present invention have no complicated manufacturing process such as acid treatment, and are easy to produce, and can be freely mixed with various matrix resins. In addition, side feeding is possible without first mixing or branding, thus reducing the process.
  • FIG. 1 is a photograph of a nanocarbon solids according to an embodiment of the present invention.
  • Figure 2 is a view of the nanocarbon solids of various diameters and lengths prepared according to one embodiment of the present invention.
  • Figure 3 is a photograph of nanocarbon solids of various dimensions prepared in accordance with one embodiment of the present invention.
  • Figure 4 is a view showing the FT-IR nanocarbon solids prepared in accordance with an embodiment of the present invention.
  • FIG. 5 is a view showing a RAMAN spectrum of the nanocarbon solids prepared according to one embodiment of the present invention.
  • Figure 6 is a SEM photograph of the nanocarbon solids prepared according to one embodiment of the present invention.
  • FIG. 7 is a TGA diagram of nanocarbon solids prepared according to one embodiment of the present invention.
  • FIG. 8 is a view showing a RAMAN spectrum measured after compounding a nanocarbon solid prepared in accordance with an embodiment of the present invention in polycarbonate.
  • FIG. 9 is a SEM photograph after compounding a nanocarbon solid prepared in accordance with an embodiment of the present invention in polycarbonate.
  • 10 is a nanocarbon solid prepared according to an embodiment of the present invention and after mixing without compounding in PPS (polyphenylenesulfide), TPU (thermoplasticurethane), PEEK (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene stylene) The figure which shows the resistance value of an injection product.
  • PPS polyphenylenesulfide
  • TPU thermoplasticurethane
  • PEEK polycarbonate
  • PC polycarbonate
  • ABS acrylonitrile butadiene stylene
  • FIG. 11 is a view showing nanocarbon solids prepared according to an embodiment of the present invention and PC (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene stylene), PET (polyethylene terephthalate), PE (polyethylene), PP ( The figure shows the resistance of extruded products of poly propylene) and PA66 (poly amide based on hexamethylene diamine).
  • the method for preparing a nanocarbon liquid composition according to one aspect of the present invention includes an intermediate composition manufacturing step and a nanocarbon liquid composition manufacturing step.
  • the intermediate composition is prepared by adding a metal or metal oxide to a solvent such as water, an alcohol, an organic solvent, a mixture thereof, and a weak acid and treating it for 0.5-4 hours by a physical method, and then slowly stirring with a stirrer to separate the supernatant and precipitate. It is the step of separating the by filtering.
  • a solvent such as water, an alcohol, an organic solvent, a mixture thereof, and a weak acid
  • the form of the metal (oxide) used at this time may be a powder, a flake or a solution, in the case of powder is preferably a size of 30-325 mesh, the metal is usually in the form of an ionic state or oxide after reacting with a weak acid to be described later It is expected to exist.
  • the metal is preferably included in 0.00001 to 4 parts by weight relative to 100 parts by weight of nanocarbon to be included in the nanocarbon liquid composition manufacturing step. If less than 0.00001, it is difficult to produce solids and reduce contact resistance with nanocarbon, and if more than 4, problems with wetness of nanocarbon and application of matrix resin with solids are included. Because it can happen.
  • the weak acid that can be used at this time includes malic acid, citric acid, tannic acid, salic acid, vinegar acid, malic acid, maleic anhydride, lactic acid, glacial acetic acid, fish acid, folic acid, succinic acid, oxalic acid, formic acid.
  • the physical method is preferably a high dispersion mixer, bead mill, basket mill, ultrasonic irradiation.
  • an additive may be added during or after the treatment by a physical method, and as the additive, a catalyst, a stabilizer, or a reducing agent may be used.
  • Nanocarbon liquid composition manufacturing step is to put the nanocarbon to the above-described intermediate composition, and stirred for 0.5 to 4 hours.
  • the nanocarbon is preferably pure nanocarbon, but typically contains 0.1 to 20 wt% of metal (including ions and oxides) as impurities in preparing nanocarbon powders.
  • a compatibilizer may be further included in the nanocarbon liquid composition.
  • the compatibilizer is mixed to make a size of 1 to 300 ⁇ m.
  • a super mixer, Henschel mixer, ribbon branda, kneader, or double mixer can be used.
  • Compatibilizers include SEBS (styrene-ethylene-butylene-styrene), PP-G-MA (polypropylene graft maleic anhydride), PE-G-MA (polyethylene graft maleic anhydride), PVDF (polyvinylidene fluor Ride: Polyvinylidene fluoride), functional group block resin can be used.
  • SEBS styrene-ethylene-butylene-styrene
  • PP-G-MA polypropylene graft maleic anhydride
  • PE-G-MA polyethylene graft maleic anhydride
  • PVDF polyvinylidene fluor Ride: Polyvinylidene fluoride
  • functional group block resin can be used.
  • the mixing ratio of the nanocarbon liquid composition and the compatibilizer is not limited, and chelating agents, coupling agents, and lubricants may be further mixed according to use.
  • carbon, graphite, conductive polymers, metals, etc. may be added during the production of nanocarbon liquid compositions depending on the use of solid bodies such as fuel cells, environmental machines, electrodes for acid-alkaline electrolytes, heating elements, metal replacement parts, and high thermal conductivity parts.
  • solid bodies such as fuel cells, environmental machines, electrodes for acid-alkaline electrolytes, heating elements, metal replacement parts, and high thermal conductivity parts.
  • carbon fibers, carbon nanofibers, metal coating fibers, metal fibers, metal powders, expanded graphite, thermally conductive carbon, conductive polymers, metals and the like may be added together with the nanocarbons.
  • Method for producing a nanocarbon resin composition according to another aspect of the present invention further comprises a resin addition step comprising a resin in the above-described nanocarbon liquid composition.
  • the nanocarbon resin composition describes all the resin compositions prepared by adding the resin to the above-described nanocarbon liquid composition, and typically, a carrier resin for stabilizing dispersion with a matrix resin or a matrix resin in the nanocarbon liquid composition, or The resin composition containing a carrier resin and a matrix resin.
  • Matrix resins include pps (polyphenylenesulfide), peek (polyetheretherketone), psf (polysulfone), pc (polycarbonate), pp (polypropylene), tpo (thermoplasticolefine), pe (polyethylene), ps (polystyrene), pi (polyimide), pa11 (polyamide based on 11-aminoundecanoic acid), pa12 (polyamide based on ⁇ -aminododecanoic acid or on laurolactam), pa6 (polyamide based on ⁇ -caprolactam), pa6t (polyamide based on hexamethylenediamine, and terephthalic acid), pa9t (polyamide 9t ), pmma (poly methyl methacrylate), tpu (thermoplasticurethane), abs (acrylonitrile butadiene styrene), pom (poly acetal),
  • the solid and the matrix resin are mixed enough to prevent phase separation with a mixer such as a mixer, brand, and dumbler.
  • the carrier resin is mixed to make a size of 1 to 300 ⁇ m.
  • a super mixer Henschel mixer, ribbon branda, kneader, or double mixer can be used.
  • the carrier resin the same resin as the matrix resin, ethylene or amide resin, or low molecular resin may be used.
  • a method for preparing a nanocarbon solid includes an intermediate composition manufacturing step, a nanocarbon liquid composition manufacturing step, and a solid manufacturing step.
  • the intermediate composition manufacturing step is a step of separating the supernatant by filtering the metal or metal oxide into the weak acid, and then stirred about 0.5-4 hours by a physical method and slowly stirred with a stirrer to separate the supernatant and the precipitate.
  • the form of the metal (oxide) used at this time may be a powder, a flake or a solution, in the case of powder is preferably a size of 30-325 mesh, the metal is usually in the form of an ionic state or oxide after reacting with a weak acid to be described later It is expected to exist.
  • the metal is preferably included in 0.00001 to 4 parts by weight relative to 100 parts by weight of nanocarbon to be included in the nanocarbon liquid composition manufacturing step. If less than 0.00001, it is difficult to produce solids and reduce contact resistance with nanocarbon, and if more than 4, problems with wetness of nanocarbon and application of matrix resin with solids are included. Because it can happen.
  • the weak acid that can be used at this time includes malic acid, citric acid, tannic acid, salic acid, vinegar acid, malic acid, maleic anhydride, lactic acid, glacial acetic acid, fish acid, folic acid, succinic acid, oxalic acid, formic acid.
  • the physical method is preferably a high dispersion mixer, bead mill, basket mill, ultrasonic irradiation.
  • an additive may be added during or after the treatment by a physical method, and as the additive, a catalyst, a stabilizer, or a reducing agent may be used.
  • Nanocarbon liquid composition is prepared by the step of completely dispersing the binder resin in the above-described intermediate composition by physical method, and then put the nanocarbon, stirred for 0.5 to 4 hours, after aging for 1 to 24 hours to filter the liquid, filter press, The liquid is removed using a solid-liquid separator, a centrifuge, a dehydrator, etc. to prepare a nanocarbon liquid composition, and the nanocarbon liquid composition is pulverized or crushed into powder.
  • Nanocarbon is preferably pure nanocarbon, but typically contains 0.1 to 20 wt% of a metal (including ions and oxides) when preparing nanocarbon powder.
  • the binder resin is advantageous for dispersing and improving physical properties, and is a resin for agglomerating nanocarbons into a solid body.Acryl, urethane, vinyl, fluorinated, siliconized, chlorinated fluorine, epoxy, phenol, and cellulose depending on the type of matrix resin. Us, styrene, olefins, elastomers, paraffins, ester resins can be used. In addition, more preferably modified resin is preferred.
  • the modified resin refers to a resin obtained by mixing a filler with or without filler in the resin together with a dispersant and a stabilizer.
  • the binder resin is preferably included in an amount of 0.00001 to 4 parts by weight based on 100 parts by weight of the nanocarbon contained in the nanocarbon liquid composition manufacturing step. If it is included less than 0.00001, it is difficult to manufacture solids with nanocarbon, and if included in more than 4, there is a problem that can cause the matrix resin and the trabble when manufacturing the application.
  • nano clay titanium dioxide, zinc oxide, magnesium hydroxide, magnesium oxide, calcium carbonate, etc.
  • a dispersant a polyethylene glycol (DEG), a polyethylene glycol (MEG), a surfactant, a stabilizer, or a plasticizer may be used.
  • DEG polyethylene glycol
  • MEG polyethylene glycol
  • surfactant a stabilizer
  • plasticizer a plasticizer
  • the solid body when used as a filler of the nanocarbon composite may further comprise a compatibilizer in the nanocarbon liquid composition powder in order to maximize compatibility with the matrix resin.
  • the compatibilizer is mixed to make a size of 1 to 300 ⁇ m.
  • a super mixer, Henschel mixer, ribbon branda, kneader, or double mixer can be used.
  • Compatibilizers include SEBS (styrene-ethylene-butylene-styrene), PP-G-MA (polypropylene graft maleic anhydride), PE-G-MA (polyethylene graft maleic anhydride), PVDF (polyvinylidene fluor Ride: Polyvinylidene fluoride), functional group block resin can be used.
  • SEBS styrene-ethylene-butylene-styrene
  • PP-G-MA polypropylene graft maleic anhydride
  • PE-G-MA polyethylene graft maleic anhydride
  • PVDF polyvinylidene fluor Ride: Polyvinylidene fluoride
  • functional group block resin can be used.
  • the mixing ratio of the nanocarbon liquid composition powder and the compatibilizer is not limited, and the chelating agent, the coupling agent, and the lubricant may be additionally mixed to suit the purpose, thereby making the preparation of the solid easier.
  • the nanocarbon liquid composition powder is put into a mold and made into a predetermined shape, and then put into a dryer such as a cabinet dryer, a rotary quill dryer, a hot air dryer, a conveyor hot air dryer, a vacuum dryer and a far-infrared dryer, and an ultra-high frequency dryer. It is a step of drying between to prepare a solid.
  • a dryer such as a cabinet dryer, a rotary quill dryer, a hot air dryer, a conveyor hot air dryer, a vacuum dryer and a far-infrared dryer, and an ultra-high frequency dryer. It is a step of drying between to prepare a solid.
  • a method of making the powder into a predetermined shape can be produced by using a negative molder, or by using a depilator, tableting machine, ceramic press, extruder (screw, hydraulic, pneumatic) or the like.
  • the shape of the solid to be produced can be produced in a wide variety of chips, pellets, eggs, pills, beads, necklaces, and the like is not limited to the shape.
  • 1 shows photographs of various nanocarbon solids
  • FIG. 2 is an explanatory diagram showing diameters and lengths of various nanocarbon solids.
  • the weight ratio of the nanocarbon when the nanocarbon solids are prepared, the weight ratio of the nanocarbon may be prepared in an amount of 85 wt% to 99 wt%.
  • a method for preparing a nanocarbon resin includes an intermediate composition manufacturing step, a nanocarbon liquid composition manufacturing step, and a solid manufacturing step.
  • the nanocarbon resin body describes a resin body prepared by adding a resin to the above-described nanocarbon liquid composition or nanocarbon solid body, and typically, a matrix resin and a matrix resin in the nanocarbon liquid composition or a nabocarbon solid body.
  • the nanocarbon resin body can be produced by two methods. The first is a method of mixing the resin in the nano-carbon liquid composition and then drying to solidify, the second is a method of mixing the prepared nano-carbon solid with a matrix resin and the like. At this time, the nanocarbon solids can be directly mixed with the matrix resin or the like, or dispersed in the liquid material again to liquefy and mix the nanocarbon liquid. Nanocarbon solids may be mixed alone, added with conductive materials such as carbon, graphite, metal, or may include additional solvents, resins, and additives.
  • a method of manufacturing a molded article using a nanocarbon solid, a nanocarbon liquid composition, a nanocarbon resin body, and a nanocarbon resin composition further includes a molding step.
  • the molding step is a step of preparing a molded article by putting a suitable nano-carbon solids, nano-carbon liquid composition, nano-carbon resin body, nano-carbon resin composition in the molding machine.
  • a suitable nano-carbon solids, nano-carbon liquid composition, nano-carbon resin body, nano-carbon resin composition in the molding machine.
  • an injection molding machine, an extruder, a compressor, etc. may be used, and as the molded product, the nanocarbon molded product may be used as an electrostatic coating bumper, a fender, a rear, a fuel filter, a fuel filter case, a fuel tank, fuel piping, an electromagnetic shielding dashboard, and the like.
  • Cell phone case Cell phone case, notebook case, fuel cell bipolar plate, environmental machine electrode, acid-alkaline electrolyte electrode, semiconductor chip carrier film, transport tray, pallet, antistatic film, transparent ESD film, transparent ESD plate, LCD PE foam sheet, packaging Foam material (PE, PS), electric wire material, heating element material, heat sink material, building structural material, building reinforcement material, actuators, conductive fibers and the like can be produced.
  • PE polyethylene glycol
  • PS packaging Foam material
  • electric wire material heating element material, heat sink material, building structural material, building reinforcement material, actuators, conductive fibers and the like
  • Molded products produced in this way can eliminate the skin phenomenon generated during the molding work, which is the biggest disadvantage of nanocarbon, it is possible to work in small quantities.
  • Metals Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr
  • weak acids glacial acetic acid, lactic acid, malic acid, citric acid, salic acid, maleic anhydride, formic acid, vinegar acid, tannic acid, succinic acid, oxalic acid, oxalic acid, folic acid
  • the modified resin in the container containing the intermediate composition, completely dispersed by physical method, and then put the nanocarbon to make a nanocarbon liquid composition.
  • the mixture is stirred in an ultrasonic bath. After stirring, the liquid phase is removed by filtration, and the pulverized nanocarbon liquid composition is pulverized or crushed into powder.
  • the powder is chopped into a chip-shaped molder, dried at 120 ° C. for 30 minutes, shaken off from the mold, and then completely dried at 100-250 ° C. to prepare chips.
  • a solid body may be manufactured using a depilator, a tablet press, a ceramic press, an extruder, a compressor, or the like instead of a mold in which a chip shape of a predetermined form is engraved, and when dried in a drier at 80 to 250 ° C. for 1 to 24 hours, Shaped pellets, pills and the like are produced.
  • Example 2 1-100 parts by weight of additives, such as metal particles, metal fibers, carbon or graphite particles, glass fibers or carbon fibers, based on 100 parts by weight of nanocarbon according to the use of the solid body in the preparation of the nano-carbon liquid composition It differs from Example 1 in that it contains further.
  • additives such as metal particles, metal fibers, carbon or graphite particles, glass fibers or carbon fibers
  • Example 3 is distinguished from Example 1 in that it contains 1-99900 parts by weight of a carrier resin, based on 100 parts by weight of nanocarbon, of the carrier resin in the preparation of the nanocarbon resin composition.
  • Example 4 1-100 weight based on 100 parts by weight of carbon nanotube additives such as metal particles, metal fibers, carbon or graphite particles, glass fibers or carbon fibers according to the use of the solid body in the preparation of the nano-carbon liquid composition It further comprises, in the preparation of the nano-carbon liquid composition powder is distinguished from Example 1 in that the compatibilizer, the carrier resin further comprises 1-100 parts by weight in a particle size of 1-300um size.
  • Metals Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr
  • weak acids glacial acetic acid, lactic acid, malic acid, citric acid, salic acid, maleic anhydride, formic acid, vinegar acid, tannic acid, succinic acid, oxalic acid, oxalic acid, folic acid
  • Metals Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr
  • weak acids glacial acetic acid, lactic acid, malic acid, citric acid, salic acid, maleic anhydride, formic acid, vinegar acid, tannic acid, succinic acid, oxalic acid, oxalic acid, folic acid
  • Nanocarbon solution is put in a container containing an intermediate composition to make a nanocarbon liquid composition.
  • the nanocarbon resin composition is prepared by mixing the mixed solution liquid matrix resin sufficiently to prevent phase separation from the nanocarbon liquid composition using a mixer such as a mixer, a blender, or a dumbler.
  • Example 6 The nanocarbon resin composition of Example 6 is dried and then solidified to form a nanocarbon resin body.
  • a nanocarbon resin body is prepared by compounding or mixing the resin composition or nanocarbon solid body of the nanocarbon solid body of Example 1 with a matrix resin.
  • nanocarbon solids of Examples 1 to 4 prepared according to the present invention were prepared by various dimensions as shown in FIG. 3, and the apparent density, fracture load, and fracture strength for each dimension were tested and summarized as shown in Table 1 below. .
  • the nanocarbon solids according to the embodiment of the present invention can be produced in a wide variety of sizes and strengths, it can be seen that the breakdown load is very low can be used to easily disperse the solids.
  • the apparent density of the solid is composed of 0.1 to 1.5g / cm3
  • the breaking load of the solid is composed of 0.05 to 5 kgf
  • the breaking strength may be composed of 0.05 to 3 MPa.
  • the breaking load and the breaking strength are not manufactured as a solid outside the above-described range, or because they are too hard to be used again after the step of crushing.
  • FIG. 4 is a measurement result by KBr method
  • FIG. 4 (b) is a measurement result in a liquid state.
  • the RAMAN spectrum was measured to determine whether the nanocarbon solids according to Examples 1 to 4 of the present invention are easily dispersed after manufacturing the chip, and the results are shown in FIG. 5.
  • the nanocarbon solids according to the present invention have defects and graphite peaks, and thus have a high degree of dispersion. That is, even with such defects and graphite peaks, the solids according to the present invention are damaged by nanocarbons compared to the conventional methods of producing defects through acid treatment resulting in nanocarbon damage (ie, lower aspect ratio). It is very advantageous in that it creates defects without.
  • TGA Thermogravimetric analysis
  • the nanocarbon is almost 98%, which contains about 2% of resin and metals (oxides, ions), and the like.
  • FIG. 7 (a) shows the result of compounding in polycarbonate
  • FIG. 7 (b) shows the result of compounding in polyethylene (PE).
  • the nanocarbon solids of the present invention can be easily processed to disperse and disappear defects, and can be completely interfacial with the polycarbonate resin.
  • nanocarbons typically have pores around nanocarbons due to their very high hydrophobicity, but in the nanocarbon solids according to the present invention of FIG. 9, it can be seen that pores do not occur around nanocarbons as a complete bond with polycarbonate.
  • PPS poly phenylene sulfide
  • TPU thermoplasticurethane
  • PEEK polyetheretherketone
  • PC polycarbonate
  • PC polycarbonate
  • ABS acrylonitrile butadiene styrene
  • Nanocarbon solids according to Examples 1 to 4 of the present invention is a PC (polycarbonate), PC (polycarbonate) / ABS (acrylonitrile butadiene styrene), PET (polyethylene terephthalate), PE (polyethylene), PP (polypropylene)
  • PC polycarbonate
  • ABS acrylonitrile butadiene styrene
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP polypropylene
  • PPS polyphenylenesulfide
  • TPU thermoplasticurethane
  • PEEK polyetheretherketone
  • PC polycarbonate
  • PC polycarbonate
  • ABS acrylonitrile butadiene styrene
  • Example 5 and Comparative Examples 1 to 3 according to the present invention to prepare a molded article including nanocarbon as compared to the melt flow index (MFI), Tensile strength (Tensile strength), Tensile elongation, Flexure Flexural strength, flexural modulus, heat distortion temp, notched impact strength, specific gravity, and surface resistance were measured and summarized in Table 3.
  • Comparative Example 1 is the same as Example 1, except that 1 to 1.5 parts by weight of the solid body made by adding 0.5 to 100 parts by weight of the fluorocarbon resin to 100 parts by weight of the nanocarbon was mixed with 98.5 to 99 parts by weight of the polycarbonate resin, the matrix resin. An injection molded product was produced.
  • Comparative Example 2 is a mixture of 18.5 parts by weight of metal powder, 1 to 1.5 parts by weight of fluorocarbon resin and 18.5 parts by weight of polycarbonate resin 98.5 to 99 parts by weight of the matrix resin based on 100 parts by weight of nanocarbon. Except for the production of the injection molding in the same manner as in Example 1.
  • Comparative Example 3 was prepared in the same manner as in Example 1 except for mixing with the polycarbonate resin 98500 to 99900 parts by weight of the matrix resin based on 100 parts by weight of nanocarbon.
  • the metal component of the nanocarbon raw material and the metal component of the nanocarbon solid body according to the present invention using the nanocarbon raw material were analyzed, and the results shown in Tables 4 and 5, respectively.
  • the metal component of the nanocarbon solids increased compared to the metal component of the nanocarbon raw material. This means that the metal included in the manufacturing process is included in the solid body.
  • Example 1 The solid body of Example 1 was uniformly dispersed in a raw material of a yarn to prepare an antistatic yarn, an electromagnetic wave shielding yarn, and a smart fiber.
  • the nanocarbon liquid composition prepared by dispersing the nanocarbon solids in a liquid material was coated on a cloth, a mesh, a film, an iron plate, a wire, and the like to prepare a molded article.
  • nanocarbon liquid composition prepared by dispersing the nanocarbon solids in a liquid material
  • a film and a sheet were prepared while removing the solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법에 관한 것으로서, 산처리등의 복잡한 제조공정없이 간편하게 제조되며, 나노카본의 순도가 높은 나노카본액 조성물, 나노카본 고형체를 제공하고 이들의 적용범위를 제공한다.

Description

나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법
본 발명은 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법에 관한 것이다.
나노카본은 단일겹의 SWNT, 2-십수겹으로 구성되어 있는 MWNT등의 탄소나노튜브, 고깔형태가 꼽혀있는 탄소나노 혼, 탄소나노섬유(CNF), 흑연 나노 섬유, 탄소나노로드, SWNT가 펼쳐진 형태인 그라판등을 포함한다.
기존의 소재들과 비교하여보면 나노카본은 매우 우수한 전기적 성질과 기계적 성질, 열적성질을 가지고 있어 전자, 전기제품, 고기능 복합체등에 많은 연구가 이루어져 일부는 상용화되어지고 있다.
그러나 많은 연구와 개발이 실행되고 있으나 낮은 겉보기밀도로 인한 인체유해성 문제와 분산의 어려움 때문에 아직까지 대량사용은 장벽으로 남아있는 실정이다.
특히 낮은 겉보기밀도 때문에 날리는 것을 방지하기 위해 수처리, 계면활성제처리로 보완하고 있으나, 나노카본의 주용도인 우수한 전기적, 열전도 성질을 발현하는 제품에 적용은 어려운 실정이다.
예컨데, 한국공개특허 제10-2008-0021002호에는 컴퍼지트의 매트릭스 수지와 분산성이 우수한 탄소나노튜브의 분산방법이 기재되어 있고, 한국공개특허 제2003-0016055호 및 한국등록특허 제10-0610888호에는 탄소나노튜브를 정제 및 액상 코팅물로 제조하여 매트릭스 수지에 분산시키는 방법이 기재되어 있으며, 한국등록특허 제10-0839173호에는 보강재(카본파이브,유리섬유,카본,흑연)를 넣어 분산하는 방법이 기재되어 있으며, 한국공개특허 제10-2006-0006002호에는 계면활성제와 수성라텍스(수용성전구체)를 처리하여 분산을 하는 방법등이 기재되어 있다.
그러나 대다수의 방법들이 공정이 복잡하고 강산(질산, 황산,염산)과 강 환원제(과산화수소)처리로 비환경적이고 비경제적이며, 대부분 탄소나노튜브를 직접 공정에 이용하는 것이어서, 손쉽게 분산성과 용해성이 좋은 제품을 원하는 고객의 니즈를 충족시키지 못하고 있다.
본 발명은 상기한 문제점을 해결하기 위해 안출된 것으로 보관 및 취급이 용이하고, 분산성 및 전도성이 우수하며, 제조가 간단한 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법을 제공하는 데 있다.
본 발명의 일측면은,
나노카본;
금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다); 및
결합수지를 포함하는 나노카본 고형체를 제공한다.
이 때 상기 금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr 및 그 합금으로 구성되는 군에서 선택되는 적어도 하나 이상의 금속을 포함한다.
또한, 상기 결합수지는 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀룰로우스, 스티렌, 올레핀, 엘라스토머, 파라핀, 에스테르 수지 및 그 혼합물로 구성된 군에서 선택되는 적어도 하나 이상의 수지를 포함한다.
또한, 상기 결합수지는 필러와 분산제가 포함된 개질수지 또는 분산제와 첨가제가 포함된 개질 수지인 것이 바람직하다.
또한, 상기 고형체의 겉보기 밀도는 0.1 내지 0.7g/cm3로 구성되는 것이 바람직하다.
또한, 상기 고형체를 지름 3.35 내지 4.63mm, 높이를 지름의 2배로 제작하여, KS L 1601 시험방법에 의한 파괴하중이 0.12 내지 3.25kgf로 구성되는 것이 바람직하다.
또한, 상기 고형체를 지름 3.35 내지 4.63mm, 높이를 상기 지름의 2배로 제작하여, KS L 1601 시험방법에 의한 압축강도가 0.01 내지 0.25 kgf/mm2 로 구성되는 것이 바람직하다.
또한, 상기 고형체는 메트릭스 수지와의 분산을 위한 상용화제, 커플링제, 및 킬레이트제로 구성되는 군에서 적어도 하나를 더 포함하는 것이 바람직하다.
또한, 상기 고형체는 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 열전도성 탄소, 전도성고분자로 구성되는 군에서 선택되는 적어도 하나 이상을 더 포함하는 것이 바람직하다.
또한, 상기 금속은 상기 나노카본 100중량부에 대해 0.00001 내지 4중량부로 포함되고;
상기 결합수지는 상기 나노카본 100중량부에 대해 0.00001 내지 4중량부로 포함되는 것이 바람직하다.
또한, 상기 나노카본 고형체는 제전사, 전자파 차폐사, 스마트 섬유의 원료로 사용될 수 있다.
또한, 상기 나노카본 고형체는 금속 컴퍼지트의 전도성 및 물성보강 첨가제의 원료로 사용될 수 있다.
또한, 상기 나노카본 고형체는 수지 중합의 전도성 및 물성보강 첨가제의 원료로 사용될 수 있다.
본 발명의 다른 측면은,
나노카본;
금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다); 및
메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나가 포함된 수지를 포함하는 나노카본 수지체를 제공한다.
이 때, 전술한 나노카본 고형체를 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나가 포함된 수지에 혼합시켜 나노카본 수지체를 제공한다.
이 때, 상기 메트릭스 수지는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on -aminododecanoic acid or on laurolactam), pa6(polyamide based on e-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류로 구성되는 군에서 선택되는 하나 이상이 포함될 수 있다.
이 때, 상기 캐리어수지는 상기 메트릭스 수지와 동일한 수지나 에틸렌, 아마이드계 수지, 또는 저분자 수지일 수 있다.
또한, 상기 나노카본은 나노카본 수지체 전체중량의 0.1중량% 내지 98중량%로 포함되는 것이 바람직하다.
본 발명의 또 다른 측면은,
전술한 나노카본 고형체를 이용하여 제조된 나노카본 성형품을 제공한다.
본 발명의 또 다른 측면은, 전술한 나노카본 수지체를 이용하여 제조된 나노카본 성형품을 제공한다.
이 때, 상기 나노카본 성형품은 자동차의 정전도장용 범퍼, 펜다, 리어, 연료필터, 연료필터케이스, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰 케이스, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, LCD PE 폼 간지, 포장용 발포재(PE, PS), 전선재료, 발열체 재료, 방열체 재료, 건축용 구조재, 건축용 보강재, 액추에이트, 전도성섬유일 수 있다.
본 발명의 또 다른 측면은,
나노카본;
금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다);
용매를 포함하는 나노카본액 조성물을 제공한다.
이 때, 상기 금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr 및 그 합금으로 구성되는 군에서 선택되는 적어도 하나 이상의 금속을 포함한다.
이 때, 상기 용매는 물, 알콜, 유기용제, 및 그 혼합물로 구성되는 군에서 선택되는 하나인 것이 바람직하다.
본 발명의 또 다른 측면은,
전술한 나노카본 고형체를 액상물질에 분산하여 제조된 나노카본액 조성물을 제공한다.
이 때, 상기 나노카본액 조성물은 나노카본, 금속, 결합수지, 및 용매를 포함하는 것이 바람직하다.
또한, 상기 나노카본액 조성물에는 전도성 물질이 더 포함될 수 있다.
또한, 상기 전도성 물질은 카본, 흑연, 전도성고분자및 금속으로 구성된 군에서 선택되는 적어도 하나일 수 있다.
이 때, 상기 나노카본액 조성물은 전도성 도료, 전도성 코팅제, EMI/ ESD용 액상 조성물, 열전도성 도료, 열전도성 코팅제, 발열용 도료, 방열용 도료, 전기 및 열전도용 접착-점착제의 제조, 액추에이트, 전도성 섬유에 사용될 수 있다.
또한, 상기 나노카본액 조성물은 천, 메쉬, 필름, 철판, 와이어, 파이프, 필름, 시트에 코팅되어 사용될 수 있다.
또한, 상기 나노카본액 조성물은 성형기를 통하여 액상성분이 제거되면서 시트 또는 필름으로 압출될 수 있다.
본 발명의 또 다른 측면은,
전술한 나노카본액 조성물을 이용하여 제조된 나노카본 성형품을 제공한다.
본 발명의 또 다른 측면은,
나노카본;
금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다);
메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지; 및
용매를 포함하는 나노카본 수지 조성물을 제공한다.
본 발명의 또 다른 측면은, 전술한 나노카본 수지 조성물에 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함시킨 나노카본 수지 조성물을 제공한다.
이 때, 상기 메트릭스 수지는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on -aminododecanoic acid or on laurolactam), pa6(polyamide based on e-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류로 구성되는 군에서 선택되는 하나 이상이 포함된다.
또한, 상기 캐리어수지는 상기 메트릭스 수지와 동일한 수지나 에틸렌 또는 아마이드계 수지, 저분자 수지일 수 있다.
또한, 상기 나노카본 수지 조성물은 성형기를 통하여 액상성분이 제거되면서 시트 또는 필름으로 압출될 수 있다.
본 발명의 또 다른 측면은,
전술한 나노카본 수지 조성물을 이용하여 제조된 나노카본 성형품을 제공한다.
이 때, 상기 나노카본 성형품은 자동차의 정전도장용 범퍼, 펜다, 리어, 연료필터, 연료필터케이스, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰 케이스, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, LCD PE 폼 간지, 포장용 발포재(PE, PS), 전선재료, 발열체 재료, 방열체 재료, 건축용 구조재, 건축용 보강재, 액추에이트, 전도성섬유일 수 있다.
본 발명의 또 다른 측면은,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간 조성물 제조단계; 및
상기 중간조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물의 제조방법을 제공한다.
본 발명의 또 다른 측면은,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
상기 중간조성물에 결합수지 및 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물 제조단계; 및
상기 나노카본액 조성물을 소정의 형상으로 성형한 후 건조하는 고형체 제조단계를 포함하는 나노카본 고형체의 제조방법을 제공한다.
본 발명의 또 다른 측면은,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
상기 제1조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물 제조단계; 및
상기 고형체를 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지와 혼합하는 혼합단계;를 포함하는 나노카본 수지 조성물의 제조방법을 제공한다.
본 발명의 또 다른 측면은,
약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
상기 중간조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본 조성물 제조단계;
상기 나노카본 조성물을 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지와 혼합하는 혼합단계;
상기 메트릭스 수지와 혼합된 조성물을 소정의 형상으로 성형한 후 건조하는 건조단계를 포함하는 나노카본 수지체의 제조방법을 제공한다.
본 발명에 따른 나노카본 고형체는 취급이 쉽고, 잘 날리지 않으며, 여러 메트릭스 수지와 자유로운 믹싱이 가능하며, 성형기 투입시 메트릭스 수지와 상분리가 일어나지 않으며, 1차 믹싱이나 브랜딩없이 사이드 피딩이 가능하므로 공정을 줄이는 효과가 있는 그린 재료라고 할 수 있다..
또한 본 발명에 따른 나노카본 고형체의 제조방법에 따르면 전술한 나노카본의 고형체를 효율적으로 제조하는 방법을 제공한다.
또한 본 발명에 따른 나노카본 고형체를 이용한 성형품은 성형품의 용도에 맞게 다양한 형태로 제작될 수 있다.
본 발명에 따른 나노카본액 조성물, 나노카본 수지 조성물 및 그 제조방법은 산처리등 복잡한 제조공정이 없어 생산이 쉽고, 여러 메트릭스 수지와 자유로운 믹싱이 가능하며, 성형기 투입시 메트릭스 수지와 상분리가 일어나지 않으며, 1차 믹싱이나 브랜딩없이 사이드 피딩이 가능하므로 공정을 줄이는 효과가 있다.
도 1은 본 발명의 일실시예에 따른 나노카본 고형체의 사진.
도 2는 본 발명의 일실시예에 따라 제조된 여러 가지 직경과 길이의 나노카본 고형체 도면.
도 3은 본 발명의 일실시예에 따라 제조된 여러 가지 치수의 나노카본 고형체의 사진.
도 4는 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 FT-IR을 도시한도면.
도 5는 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 RAMAN spectrum을 도시한 도면.
도 6은 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 SEM 사진.
도 7은 본 발명의 일실시예에 따라 제조된 나노카본 고형체의 TGA 도면.
도 8은 본 발명의 일실시예에 따라 제조된 나노카본 고형체를 폴리카보네이트에 컴파운딩한 후 측정한 RAMAN spectrum을 도시한 도면.
도 9는 본 발명의 일실시예에 따라 제조된 나노카본 고형체를 폴리카보네이트에 컴파운딩한 후의 SEM 사진을 도시한 도면.
도 10은 본 발명의 일실시예에 따라 제조된 나노카본 고형체와 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene stylene)에 컴파운딩 없이 믹싱 후 사출 제품의 저항치을 도시한 도면.
도 11은 본 발명의 일실시예에 따라 제조된 나노카본 고형체와 PC(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene stylene), PET(poly ethylene terephthalate), PE(poly ethylene), PP(poly propylene), PA66(poly amide based on hexamethylene diamine)의 압출 제품 저항치을 도시한 도면.
본 발명의 일측면에 따른 나노카본액 조성물의 제조방법은 중간조성물 제조단계, 나노카본액 조성물 제조단계를 포함한다.
중간조성물 제조단계는 물, 알콜, 유기용제, 및 그 혼합물등의 용매와, 약산에 금속 또는 금속산화물을 넣어 물리적방법으로 0.5-4 시간 정도 처리 후 교반기로 서서히 저어 주면 상등액과 침전물로 분리되므로 상등액을 필터링으로 분리하는 단계이다.
이 때 사용되는 금속(산화물)의 형태는 분말, 조각 또는 용액일 수 있고, 분말일 경우 30-325메쉬의 크기인 것이 바람직하며, 금속은 후술할 약산과 반응한 후에는 통상 이온상태 또는 산화물 형태로 존재하는 것으로 예상된다.
이 때, 금속은 나노카본액 조성물 제조단계에서 포함될 나노카본 100중량부 대비 0.00001 내지 4 중량부로 포함되는 것이 바람직하다. 0.00001 미만으로 포함될 경우 나노카본으로 고형체 제조와 접촉저항 저감에 어려운 문제점이 있고, 4 초과로 포함될 경우 고형체 제조시 나노카본의 습윤(Wetting)과 메트릭스 수지와의 적용시 트러블이 발생하는 문제점이 일어날 수 있기 때문이다.
이 때 사용될 수 있는 약산은 사과산, 구연산, 타닌산, 살릭산, 식초산, 말릭산, 무수말레익산, 젖산, 빙초산, 수산, 엽산, 호박산, 옥살산, 개미산이 포함된다. 또한, 물리적 방법은 고분산 믹서, 비드밀, 바스켓밀, 초음파 조사가 바람직하게 사용된다.
이 때, 물리적 방법으로 처리시 또는 처리한 후 첨가제를 넣을 수 있으며, 이 때의 첨가제로는 촉매나 안정제, 환원제가 사용될 수 있다.
나노카본액 조성물 제조단계는 전술한 중간조성물에 나노카본을 넣고, 0.5 내지 4시간동안 교반하는 단계이다.
나노카본은 순수한 나노카본이 바람직하나 통상적으로 나노카본 분말 제조시에 불순물로 금속(이온 및 산화물을 포함)이 0.1 내지 20wt%량으로 포함된다.
한편 메트릭스 수지와의 상용성을 극대화하기 위해서 나노카본액 조성물에 상용화제를 더 포함할 수 있다. 이 경우, 상용화제는 1 내지 300㎛의 크기로 만들어 믹싱한다. 믹싱할 경우, 슈퍼 믹서, 헨셀 믹서, 리본 브랜다, 반죽기, 또는 더블 혼합기를 사용할 수 있다.
상용화제로는 SEBS(스티렌-에틸렌-부틸렌-스티렌), PP-G-MA(폴리프로필렌 그라프트 무수말레익산), PE-G-MA(폴리에틸렌 그라프트 무수말레익산), PVDF(폴리비닐리덴 플로라이드 : Polyvinylidene fluoride), 관능기부착 블락수지가 사용될 수 있다.
이 경우, 나노카본액 조성물과 상용화제의 혼합비율에는 제한이 없으며, 킬레이트제, 커플링제, 활제가 용도에 맞게 추가 믹싱될 수 있다. 또한 연료전지, 환경기계나 산-알카리 전해액용 전극이나 발열체, 금속대체 부품, 고열전도성 부품 등 고형체가 사용될 용도에 따라 나노카본액 조성물 제조시에 카본, 흑연, 전도성고분자, 금속등을 첨가할 수 있다. 예컨대, 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 열전도성 카본, 전도성고분자, 금속등을 나노카본과 함께 첨가할 수 있다.
본 발명의 다른 측면에 따른 나노카본 수지 조성물의 제조방법은 전술한 나노카본액 조성물에 수지를 포함하는 수지첨가단계를 더 포함한다.
즉, 나노카본 수지조성물은 전술한 나노카본액 조성물에 수지를 첨가하여 제조되는 모든 수지조성물을 설명하는 것으로서, 대표적으로 나노카본 액 조성물에 메트릭스 수지 또는 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 또는 캐리어수지와 메트릭스 수지가 포함된 수지 조성물을 말한다.
메트릭스 수지로는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on ω-aminododecanoic acid or on laurolactam), pa6(polyamide based on ε-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류가 사용될 수 있다. 이 때, 나노카본액 조성물은 매트릭스 수지 100중량부에 대해서 0.1 내지 900중량부로 포함시킬 수 있다.
고형체와 메트릭스 수지는 믹서, 브랜다, 덤블러 등의 혼합기로 상분리가 일어나지 않을 정도로 충분히 혼합된다.
또한, 캐리어 수지는 1 내지 300㎛의 크기로 만들어 믹싱한다. 믹싱할 경우, 슈퍼 믹서, 헨셀 믹서, 리본 브랜다, 반죽기, 또는 더블 혼합기를 사용할 수 있다.
캐리어 수지로는 메트릭스 수지와 동일한 수지나 에틸렌 또는 아마이드계 수지, 저분자 수지가 사용될 수 있다.
본 발명의 다른 측면에 따른 나노카본 고형체의 제조방법은 중간조성물 제조단계, 나노카본액 조성물 제조단계, 고형체 제조단계를 포함한다.
중간조성물 제조단계는 약산에 금속 또는 금속산화물을 넣어 물리적방법으로 0.5-4 시간 정도 처리 후 교반기로 서서히 저어 주면 상등액과 침전물로 분리되므로 상등액을 필터링으로 분리하는 단계이다.
이 때 사용되는 금속(산화물)의 형태는 분말, 조각 또는 용액일 수 있고, 분말일 경우 30-325메쉬의 크기인 것이 바람직하며, 금속은 후술할 약산과 반응한 후에는 통상 이온상태 또는 산화물 형태로 존재하는 것으로 예상된다.
이 때, 금속은 나노카본액 조성물 제조단계에서 포함될 나노카본 100중량부 대비 0.00001 내지 4 중량부로 포함되는 것이 바람직하다. 0.00001 미만으로 포함될 경우 나노카본으로 고형체 제조와 접촉저항 저감에 어려운 문제점이 있고, 4 초과로 포함될 경우 고형체 제조시 나노카본의 습윤(Wetting)과 메트릭스 수지와의 적용시 트러블이 발생하는 문제점이 일어날 수 있기 때문이다.
이 때 사용될 수 있는 약산은 사과산, 구연산, 타닌산, 살릭산, 식초산, 말릭산, 무수말레익산, 젖산, 빙초산, 수산, 엽산, 호박산, 옥살산, 개미산이 포함된다. 또한, 물리적 방법은 고분산 믹서, 비드밀, 바스켓밀, 초음파 조사가 바람직하게 사용된다.
이 때, 물리적 방법으로 처리시 또는 처리한 후 첨가제를 넣을 수 있으며, 이 때의 첨가제로는 촉매나 안정제, 환원제가 사용될 수 있다.
나노카본액 조성물 제조단계는 전술한 중간조성물에 결합수지를 넣어 물리적 방법으로 완전히 분산한 후 나노카본을 넣고, 0.5 내지 4시간동안 교반하고, 1 내지 24시간 숙성 후 액상을 필터링한 다음 필터프레스, 고액분리기, 원심분리기, 탈수기등을 사용하여 액체를 제거하여 나노카본액 조성물을 제조하고, 나노카본액 조성물을 분쇄하거나 파쇄하여 파우더로 만드는 단계이다.
나노카본은 순수한 나노카본이 바람직하나 통상적으로 나노카본 분말 제조시에 금속(이온 및 산화물을 포함)이 0.1 내지 20wt%량으로 포함된다.
결합수지는 분산을 유리하게 하고 물성을 좋게하며, 나노카본을 고형체로 응집시키기 위한 수지로서, 메트릭스 수지의 종류에 따라 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀롤로우스, 스티렌, 올레핀, 엘라스토머, 파라핀, 에스테르 수지가 사용될 수 있다. 또한 보다 바람직하게 개질한 수지가 바람직한데, 개질한 수지란 수지에 필러(filler)포함 혹은 불포함한 것을 분산제, 안정제와 같이 넣어 믹싱한 수지를 말한다.
결합수지는 나노카본액 조성물 제조단계에서 포함되는 나노카본 100중량부 대비 0.00001 내지 4 중량부로 포함되는 것이 바람직하다. 0.00001 미만으로 포함될 경우 나노카본으로 고형체 제조가 어려운 문제점이 있고, 4초과로 포함될 경우 응용제품 제조시 메트릭스 수지와 트라블을 일으킬 수 있는 문제점이 있기 때문이다.
필러는 나노 클레이, 이산화티탄, 산화아연, 수산화마그네슘, 산화마그네슘, 탄산 칼슘등이 사용될 수 있으며, 분산제로는 DEG(Diethylene Glycol), MEG(monoethylene Glycol), 계면활성제, 안정제, 가소제가 사용될 수 있다.
한편, 고형체가 나노카본 복합체의 충진제로 사용될 경우에는 메트릭스 수지와의 상용성을 극대화하기 위해서 나노카본액 조성물 파우더에 상용화제를 더 포함할 수 있다. 이 경우, 상용화제는 1 내지 300㎛의 크기로 만들어 믹싱한다. 믹싱할 경우, 슈퍼 믹서, 헨셀 믹서, 리본 브랜다, 반죽기, 또는 더블 혼합기를 사용할 수 있다.
상용화제로는 SEBS(스티렌-에틸렌-부틸렌-스티렌), PP-G-MA(폴리프로필렌 그라프트 무수말레익산), PE-G-MA(폴리에틸렌 그라프트 무수말레익산), PVDF(폴리비닐리덴 플로라이드 : Polyvinylidene fluoride), 관능기부착 블락수지가 사용될 수 있다.
이 경우, 나노카본액 조성물 파우더과 상용화제의 혼합비율에는 제한이 없으며, 킬레이트제, 커플링제, 활제가 용도에 맞게 추가 믹싱하여 고형체의 제조를 보다 용이하게 할 수 있다.한편, 연료전지, 환경기계나 산-알카리 전해액용 전극이나 발열체, 금속대체 부품, 고열전도성 부품 등 고형체가 사용될 용도에 따라 나노카본액 조성물 제조시에 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 열전도성 카본등을 나노카본과 함께 첨가할 수 있다.
고형체 제조단계는 나노카본액 조성물 파우더를 몰드등에 넣어 소정 형체로 만들어 캐비넷 건조기, 로타리 퀼런 건조기, 열풍 건조기, 콘베어식 열풍 건조기, 진공 건조기와 원적외선 건조기, 초고주파건조기등의 건조기에 넣어 80-250℃사이에서 건조하여 고형체를 제조하는 단계이다.
이 때, 파우더를 소정형상으로 만드는 방법는 음각형 몰더로 찍거나, 제환기, 타정기, 세라믹 프레스기, 압출기(스크류식, 유압식, 공압식)등으로 제조할 수 있다. 이 때, 만들어 지는 고형체의 형상은 칩, 펠렛, 알, 환약형태, 염주, 목걸이 형태등 매우 다양하게 제조될 수 있으며 그 형상에 제한되지 않는다. 도 1은 다양한 나노카본 고형체의 사진을 도시하고 있고, 도 2는 다양한 나노카본 고형체의 직경과 길이를 도시하는 설명도이다.
본 발명에 따라 나노카본 고형체 제조시 나노카본의 중량비율은 85중량% 내지 99중량%로 제조될 수 있다.
본 발명의 다른 측면에 따른 나노카본 수지체의 제조방법은 중간조성물 제조단계, 나노카본액 조성물 제조단계, 고형체 제조단계를 포함한다.
즉, 나노카본 수지체는 전술한 나노카본액 조성물 또는 나노카본 고형체에 수지를 첨가하여 제조되는 수지체를 설명하는 것으로서, 대표적으로 나노카본 액 조성물 또는 나보카본 고형체에 메트릭스 수지, 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지, 또는 캐리어수지와 메트릭스 수지가 모두 포함된 수지를 말한다.
나노카본 수지체는 2가지 방법으로 제조될 수 있다. 첫째는 나노카본액 조성물에 수지를 혼합한 후 건조하여 고형화 시키는 방법이고, 둘째는 제조된 나노카본 고형체를 메트릭스수지등과 혼합하여 제조하는 방법이다. 이 때, 나노카본 고형체를 직접 메트릭스 수지등과 혼합하거나, 다시 액상물질에 분산시켜 나노카본액을 액상화하여 혼합할 수 있다. 나노카본 고형체는 단독으로 혼합하거나, 카본, 흑연, 금속 같은 전도성물질과 함께 첨가되거나, 추가의 용매, 수지, 및 첨가제가 포함될 수 있다.
본 발명의 다른 측면에 따른 나노카본 고형체, 나노카본액 조성물, 나노카본 수지체, 나노카본 수지조성물을 이용한 성형품의 제조방법은 성형단계를 더 포함한다.
성형단계는 성형기에 적절한 나노카본 고형체, 나노카본액 조성물, 나노카본 수지체, 나노카본 수지조성물를 넣어 성형품을 제조하는 단계이다. 성형기로는 사출기, 압출기, 압축기등이 사용될 수 있으며, 성형품으로는 상기 나노카본 성형품은 자동차의 정전도장용 범퍼, 펜다, 리어, 연료필터, 연료필터케이스, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰 케이스, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, LCD PE 폼 간지, 포장용 발포재(PE, PS), 전선재료, 발열체 재료, 방열체 재료, 건축용 구조재, 건축용 보강재, 액추에이트, 전도성섬유등이 제조될 수 있다.
이러한 방법으로 제조되는 성형품은 나노카본의 최대 단점인 성형작업시 생기는 스킨현상을 없앨 수 있으므로 소량으로 제품 작업이 가능하다.
[실시예1]
금속(Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr)과 전술한 금속의 산화물류 100중량부에 대해서 약산(빙초산, 젖산, 사과산, 구연산, 살릭산, 무수말레익산, 개미산, 식초산, 타닌산, 호박산, 옥살산, 수산, 엽산)을 20-100중량부, 알콜 및 물을 1-500중량부, 촉매 1-20중량부에 넣어 물리적방법(고분산믹서, 비드밀, 초음파)으로 온도 50-200를 유지하며 0.5 내지 4시간 처리한 후 1 내지 24시간 정도 숙성시킨 후 진공 필터링하여 활성액인 중간조성물을 분리한다.
중간조성물을 넣은 용기에 개질한 수지를 넣어 물리적방법으로 완전히 분산 후 나노카본을 넣어 나노카본액 조성물을 만든다. 혼합물을 초음파 베쓰(Bath)에 넣어 교반한다. 교반 후 액상을 필터링으로 제거한 후, 다져저 있는 나노카본액 조성물을 분쇄나 파쇄하여 파우더로 만든다.
파우더를 칩 형태가 음각된 몰더에 다져 넣어 120℃로 30분 건조 후 틀에서 털어낸 후 다시 100-250℃에서 완전히 건조 시키면 칩이 제조된다. 이 때, 소정 형태의 칩형상이 음각된 몰더 대신 제환기, 타정기, 세라믹 프레스, 압출기, 압축기등을 사용하여 고형체를 제조할 수 있으며, 80 내지 250℃로 건조기에서 1 내지 24시간 건조시키면 여러 형상의 펠렛, 알약등이 제조된다.
[실시예 2]
실시예 2는 나노카본액 조성물 제조시에 고형체가 사용될 용도에 따라 금속입자, 금속섬유, 탄소 또는 흑연입자, 유리섬유 또는 탄소섬유등의 첨가제를 나노카본 100중량부를 기준으로 1-100중량부 더 포함한다는 점에서 실시예 1과 구별된다.
[실시예3]
실시예 3은 나노카본 수지조성물로 제조시에 캐리어 수지를 1-300um크기의 입자를 나노카본 100중량부를 기준으로 1-99900중량부 더 포함한다는 점에서 실시예 1과 구별된다.
[실시예4]
실시예 4는 나노카본액 조성물 제조시에 고형체가 사용될 용도에 따라 금속입자, 금속섬유, 탄소 또는 흑연입자, 유리섬유 또는 탄소섬유등의 첨가제를 카본나노튜브 100 중량부를 기준으로 1-100중량부 더 포함하고, 나노카본액 조성물 파우더 제조시에 상용화제, 캐리어 수지를 1-300um크기의 입자크기로 1-100중량부를 더 포함한다는 점에서 실시예 1과 구별된다.
[실시예5]
금속(Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr)과 전술한 금속의 산화물류 100중량부에 대해서 약산(빙초산, 젖산, 사과산, 구연산, 살릭산, 무수말레익산, 개미산, 식초산, 타닌산, 호박산, 옥살산, 수산, 엽산)을 20-100중량부, 알콜 및 물을 1-500중량부, 촉매 1-20중량부에 넣어 물리적방법(고분산믹서, 비드밀, 초음파)으로 온도 50-200를 유지하며 0.5 내지 4시간 처리한 후 1 내지 24시간 정도 숙성시킨 후 진공 필터링하여 활성액으로 나노카본액 조성물을 제조한다.
[실시예6]
금속(Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, K, Ba, Mg, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr)과 전술한 금속의 산화물류 100중량부에 대해서 약산(빙초산, 젖산, 사과산, 구연산, 살릭산, 무수말레익산, 개미산, 식초산, 타닌산, 호박산, 옥살산, 수산, 엽산)을 20-100중량부, 알콜 및 물을 1-500중량부, 촉매 1-20중량부에 넣어 물리적방법(고분산믹서, 비드밀, 초음파)으로 온도 50-200를 유지하며 0.5 내지 4시간 처리한 후 1 내지 24시간 정도 숙성시킨 후 진공 필터링하여 중간조성물의 활성액을 분리한다.
중간조성물을 넣은 용기에 나노카본을 넣어 나노카본액 조성물을 만든다. 나노카본액 조성물에 믹서, 브랜다, 덤블러 등의 혼합기로 상분리가 일어나지 않을 정도로 충분히 혼합액상의 메트릭스 수지를 혼합하여 나노카본 수지 조성물을 만든다.
[실시예7]
실시예 6의 나노카본 수지 조성물을 건조 후 고형화하여 나노카본 수지체를 만든다.
[실시예8]
실시예 1의 나노카본 고형체의 수지 조성물 또는 나노카본 고형체를 매트릭스 수지와 컴파운딩하거나 혼합하여 나노카본 수지체를 제조한다.
[실험예 1]
본 발명에 따라 제조된 전술한 실시예 1 내지 실시예 4의 나노카본 고형체를 도 3와 같이 여러가지 치수별로 제조하여, 치수별 겉보기 밀도, 파괴하중, 파괴강도를 실험하여 표 1과 같이 정리하였다.
표 1
1번 시편 2번 시편 3번 시편 4번 시편 5번 시편 6번 시편 7번 시편
높이(cm) 0.39 1.66 2.70 3.11 1.98 2.70 1.06
직경(cm) 0.35 0.39 0.41 0.46 0.36 0.38 0.435
부피(cm) 0.038 0.198 0.356 0.516 0.274 0.274 0.157
질량(g) 0.007 0.10 0.19 0.32 0.06 0.09 0.05
밀도(g/cm) 0.184 0.505 0.533 0.620 0.219 0.328 0.318
파괴하중(kgf) 0.27 2.30 2.50 3.20 0.45 0.40 0.20
파괴강도(Mpa) 0.30 1.92 1.82 1.94 0.44 0.34 0.15
이에 따르면 본 발명의 실시예에 따른 나노카본 고형체는 매우 다양한 크기 및 강도로 제조될 수 있고, 파괴하중이 매우 낮아 고형체를 쉽게 분산시켜 사용할 수 있음을 확인할 수 있다. 이에 고형체의 겉보기 밀도는 0.1 내지 1.5g/cm3로 구성되고, 고형체의 파괴하중은 0.05 내지 5 kgf로 구성되며, 파괴강도는 0.05 내지 3 MPa로 구성될 수 있다. 한편, 파괴하중 및 파괴강도는 전술한 범위 외에서는 고형체로 제조되지 않거나, 너무 단단해져서 다시 파쇄하는 단계를 거쳐야 사용할 수 있기 때문이다.
[실험예 2]
본 발명의 실시예에 따른 나노카본 고형체를 만들기 위한 중간조성물의 활성도를 측정하기 위해 FT-IR(Fourier Transform Infrared Spectroscopy)을 조사하였다. 도 4에 따르면 중간조성물에는 -OH, C=O,-C-O,-CH3, C-H등의 활성기가 포함되어 분산이 쉽고 좋은 나노카본 고형체를 만들 수 있음을 확인할 수 있다. 한편, 도 4의 (a) KBr법에 의한 측정결과이고, 도 4의 (b)는 액상상태에서의 측정결과이다.
[실험예 3]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체의 칩 제조 후 분산하기 쉬운 상태 인지를 측정하기 위해 RAMAN spectrum을 측정하였고, 결과는 도 5와 같다.
도 5는 본 발명에 따른 나노카본 고형체는 결점(defect)과 흑연피크를 가지는 것이 확인되었으며 이로써 높은 분산도를 가지고 있음을 알 수 있다. 즉, 이러한 결점과 흑연피크를 가짐에도 본 발명에 따른 고형체는 종래에 산처리를 통하여 결점을 생성하는 방법이 나노카본의 손상(즉, 종횡비가 낮아짐)을 가져오는 것과 비교할 때 나노카본의 손상없이 결점을 만든다는 점에서 매우 유리하다.
[실험예 4]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체의 표면상태를 측정하기 위해 SEM을 측정하였고, 결과는 도 6와 같다.
도 6은 본 발명의 나노카본은 고형체로 제조되었음에도 종래에 나노카본의 분산향상을 위한 방법으로 사용되었던 화학개질법, 물리흡착법(파이-파이결합으로 비공유래핑), 혼산(강산)처리 방법, 또는 중합공정을 거친 나노카본과 거의 동일한 표면 상태를 보여준다.
[실험예 5]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체의 나노카본의 양을 측정하기 위해 TGA(Thermogravimetric analysis)을 수행하였고, 결과는 도 7과 같다.
도 7에 따르면 나노카본이 거의 98%로서 약 2%의 수지 및 금속(산화물, 이온)등이 포함되어 있음을 알 수 있다.
도 7(a)는 폴리카보네이트에 컴파운딩한 결과이고, 도 7(b)는 폴리에틸렌(PE)에 컴파운딩한 결과이다.
[실험예 6]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체와 폴리카보네이트(PC)를 컴파운딩한 후 RAMAN spectrum을 측정하였고, 결과는 도 8와 같다.
도 8에 따르면 본 발명의 나노카본 고형체는 분산이 쉽게 처리되어 결점이 사라지고, 폴리카보네이트 수지와 완전히 계면접착한 상태를 확인할 수 있다.
[실험예 7]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체와 폴리카보네이트(PC)를 컴파운딩한 후 SEM을 촬영하였고, 결과는 도 9와 같다.
통상적으로 나노카본은 매우 높은 소수성으로 인하여 나노카본 주위로 구멍이 발생하나 도 9의 본발명에 따른 나노카본 고형체에서는 폴리카보네이트와 완전결합으로서 나노카본 주위로 구멍이 발생하지 않음을 확인할 수 있다.
[실험예 8]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체를 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)에 믹싱 후 컴파운딩 없이 제조된 사출제품의 저항치를 측정하였고, 결과는 도 10과 같다.
도 10의 결과는 PPS(poly phenylene sulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)별와 같이 높은 성형온도를 가져 컴파운딩이 어려운 매트릭스 수지에서도 컴파운딩 없이 단순히 혼합만으로 사출성형하여 사출품의 제조가 가능함을 보여준다.
[실험예 9]
본 발명의 실시예 1 내지 실시예 4에 따른 나노카본 고형체를 PC(polycarbonate), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene), PET(poly ethylene terephthalate), PE(polyethylene), PP(polypropylene), PA66(polyamide based on hexamethylenediamine and adipic acid)에 믹싱 후 컴파운딩 없이 제조된 압출제품의 저항치를 측정하였고, 결과는 도 11과 같다.
도 11의 결과는 PPS(polyphenylenesulfide), TPU(thermoplasticurethane), PEEK(polyetheretherketone), PC(polycarbonate)/ABS(acrylonitrile butadiene styrene)와 같이 높은 성형온도를 가져 컴파운딩이 어려운 매트릭스 수지에서도 별도의 컴파운딩 없이 단순히 혼합만으로 압출성형하여 압출품의 제조가 가능함을 보여준다.
[실험예 10]
본 발명에 따라 제조된 전술한 실시예 1 내지 실시예 4의 나노카본 고형체를 지름3.35 내지 4.63mm, 높이를 지름의 2배인 시편으로 제작하여 표준 실험 방법(KS L 1601)에 측정된 파괴하중, 및 압축강도를 측정하여 표 2과 같이 정리하였다.
표 2
시편 지름 파괴하중 kgf 압축강도kgf/mm2
1-1 3.35 0.3517 0.04
1-2 3.58 0.2014 0.02
1-3 3.35 0.2685 0.03
2-1 3.97 2.47 0.20
2-2 3.86 2.215 0.19
2-3 3.95 2.392 0.20
3-1 4.09 3.141 0.24
3-2 4.17 1.57 0.12
3-3 4.16 2.189 0.16
4-1 4.53 3.252 0.20
4-2 4.63 3.342 0.20
4-3 4.62 3.254 0.19
5-1 3.57 0.4128 0.04
5-2 3.71 0.4217 0.04
5-3 3.54 0.4967 0.05
6-1 3.75 0.3624 0.03
6-2 3.9 0.4295 0.04
6-3 3.84 0.4027 0.03
7-1 4.24 0.1208 0.01
7-2 4.43 0.2282 0.01
7-3 4.28 0.2152 0.01
(한국 요업기술원 실험, 온도 20 ~ 21℃, 상대습도 41-42% )
[실험예 11]
아래와 같은 본 발명에 따른 실시예 5와 이와 대비되는 비교예 1 내지 3과 같이 나노카본을 포함한 성형품을 제조하여 용융흐름지수(MFI), 인장강도(Tensile strength), 신축율(Tensile elongation), 굴곡강도(Flexural strength), 굴곡탄성율(Flexural modulus), 열변형온도(heat distortion temp), 노치드 충격강도, 비중, 및 표면저항을 측정하여 표 3으로 정리하였다.
[실시예5]
금속 0.00001 내지 4중량부(포함될 나노카본 100중량부 대비)가 포함된 중간조성물의 상등액을 10 내지 500중량부, 결합수지인 불소수지를 0.5 내지 100중량부, 나노카본 100중량부를 넣어 만든 고형체 1 내지 1.5 중량부를 메트릭스 수지인 폴리카보네이트 수지 98.5 내지 99중량부를 각각 이축압출기(에스엠플라텍 58m/m)에 동시공급(혹은 믹싱기로 혼합)하면서 압출온도/다이스부 270, 275, 275, 275, 275, 275, 275, 275, 275, 250과 스크류속도 200 내지 500회전수로 컴파운딩 후 사출기를 통하여 10/10/1.5의 사각 사출품을 제작하였다.
[비교예1]
비교예 1은 나노카본 100중량부에 대해 불소수지 0.5 내지 100중량부를 넣어 만든 고형체 1 내지 1.5 중량부를 메트릭스 수지인 폴리카보네이트 수지 98.5 내지 99중량부와 혼합한 것을 제외하고는 실시예 1과 동일하게 사출품을 제작하였다.
[비교예2]
비교예 2는 나노카본 100중량부에 대해 금속 파우더 1 내지 1.5중량부, 불소수지 0.5 내지 100중량부를 넣어 만든 고형체 1 내지 1.5 중량부를 메트릭스 수지인 폴리카보네이트 수지 98.5 내지 99중량부와 혼합한 것을 제외하고는 실시예 1과 동일하게 사출품을 제작하였다.
[비교예3]
비교예 3은 나노카본 100중량부에 대해 메트릭스 수지인 폴리카보네이트 수지 98500 내지 99900중량부와 혼합한 것을 제외하고는 실시예 1과 동일하게 사출품을 제작하였다.
[규칙 제91조에 의한 정정 01.07.2010]
표3
Figure WO-DOC-TABLE-3
이에 따르면, 본 발명의 실시예만이 나노카본이 분산된 성형품이 제조되었고 나머지 비교예들에서는 물성을 측정하기에 적합한 사출품 제조 자체가 불가능하였다.
[실험예 12]
나노카본 원재료의 금속성분과 상기 나노카본 원재료를 사용하여 본 발명에 따른 나노카본 고형체의 금속성분을 분석한 결과 각각 표 4 및 표 5와 같은 결과를 얻었다.
[규칙 제91조에 의한 정정 01.07.2010] 
표 4
Figure WO-DOC-TABLE-4
[규칙 제91조에 의한 정정 01.07.2010] 
표 5
Figure WO-DOC-TABLE-5
이에 따르면 나노카본 원재료의 금속성분에 비해서 나노카본 고형체의 금속성분이 증가하였음을 알 수 있다. 이는 제조과정에서 포함되는 금속이 고형체에 포함되었음을 의미한다.
[실시예6]
실시예 1의 고형체를 실의 원료에 균일 분산하여 제전사 및 전자파 차폐사, 및 스마트 섬유를 제조하였다.
[실시예7]
나노카본 고형체를 액상물질에 분산하여 제조된 나노카본액 조성물을 천, 메쉬, 필름, 철판, 와이어 등에 코팅하여 성형품을 제조하였다.
[실시예8]
나노카본 고형체를 액상물질에 분산하여 제조된 나노카본액 조성물의 도포한 후 용매를 제거하면서 필름 및 시트를 제조하였다.
전술한 바와 같이 발명은 상기 실시예들을 기준으로 주로 설명되어졌으나, 발명의 요지와 범위를 벗어나지 않고 많은 다른 가능한 수정과 변형이 이루어질 수 있다. 전술한 발명에 대한 권리범위는 이하의 청구범위에서 정해지는 것으로서, 명세서 본문의 기재에 구속되지 않으며, 청구범위의 균등범위에 속하는 변형과 변경은 모두 본 발명의 범위에 속할 것이다.

Claims (46)

  1. 나노카본;
    금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다); 및
    결합수지를 포함하는 나노카본 고형체.
  2. 제1항에 있어서,
    상기 금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr 및 그 합금으로 구성되는 군에서 선택되는 적어도 하나 이상의 금속을 포함하는 나노카본 고형체.
  3. 제2항에 있어서,
    상기 결합수지는 아크릴, 우레탄, 비닐, 불소화, 실리콘화, 염소불소화, 에폭시, 페놀, 셀룰로우스, 스티렌, 올레핀, 엘라스토머, 파라핀, 에스테르 수지 및 그 혼합물로 구성된 군에서 선택되는 적어도 하나 이상의 수지를 포함하는 나노카본 고형체.
  4. 제3항에 있어서,
    상기 결합수지는 필러와 분산제가 포함된 개질수지 또는 분산제와 첨가제가 포함된 개질 수지인 나노카본 고형체.
  5. 제1항에 있어서,
    상기 고형체의 겉보기 밀도는 0.1 내지 0.7g/cm3로 구성되는 나노카본 고형체.
  6. 제1항에 있어서,
    상기 고형체를 지름 3.35 내지 4.63mm, 높이를 지름의 2배로 제작하여, KS L 1601 시험방법에 의한 파괴하중이 0.12 내지 3.25kgf로 구성되는 나노카본 고형체.
  7. 제1항에 있어서,
    상기 고형체를 지름 3.35 내지 4.63mm, 높이를 상기 지름의 2배로 제작하여, KS L 1601 시험방법에 의한 압축강도가 0.01 내지 0.25 kgf/mm2 로 구성되는 나노카본 고형체.
  8. 제1항에 있어서,
    상기 고형체는 메트릭스 수지와의 분산을 위한 상용화제, 커플링제, 및 킬레이트제로 구성되는 군에서 적어도 하나를 더 포함하는 나노카본 고형체.
  9. 제1항에 있어서,
    상기 고형체는 탄소섬유, 탄소나노섬유, 금속코팅섬유, 금속섬유, 금속분말, 팽창흑연, 열전도성 탄소, 전도성고분자로 구성되는 군에서 선택되는 적어도 하나 이상을 더 포함하는 나노카본 고형체.
  10. 제1항에 있어서,
    상기 금속은 상기 나노카본 100중량부에 대해 0.00001 내지 4중량부로 포함되고;
    상기 결합수지는 상기 나노카본 100중량부에 대해 0.00001 내지 4중량부로 포함되는 나노카본 고형체.
  11. 제1항에 있어서,
    상기 나노카본 고형체는 제전사, 전자파 차폐사, 스마트 섬유의 원료로 사용되는 나노카본 고형체.
  12. 제1항에 있어서,
    상기 나노카본 고형체는 금속 컴퍼지트의 전도성 및 물성보강 첨가제의 원료로 사용되는 나노카본 고형체.
  13. 제1항에 있어서,
    상기 나노카본 고형체는 수지 중합의 전도성 및 물성보강 첨가제의 원료로 사용되는 나노카본 고형체.
  14. 나노카본;
    금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다); 및
    메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나가 포함된 수지를 포함하는 나노카본 수지체.
  15. 제1항 내지 제10항의 나노카본 고형체를 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나가 포함된 수지에 혼합시킨 나노카본 수지체.
  16. 제14항에 있어서,
    상기 메트릭스 수지는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on ω-aminododecanoic acid or on laurolactam), pa6(polyamide based on ε-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류로 구성되는 군에서 선택되는 하나 이상이 포함되는 나노카본 수지체.
  17. 제14항에 있어서,
    상기 캐리어수지는 상기 메트릭스 수지와 동일한 수지나 에틸렌, 아마이드계 수지, 또는 저분자 수지인 나노카본 수지체.
  18. 제1항 내지 제10항에 있어서,
    상기 나노카본은 나노카본 수지체 전체중량의 0.1중량% 내지 98중량%로 포함되는 나노카본 수지체.
  19. 제1항 내지 제10항 중 어느 한 항의 나노카본 고형체를 이용하여 제조된 나노카본 성형품.
  20. 제1항 내지 제10항 중 어느 한 항의 나노카본 수지체를 이용하여 제조된 나노카본 성형품.
  21. 제19항에 있어서,
    상기 나노카본 성형품은 자동차의 정전도장용 범퍼, 펜다, 리어, 연료필터, 연료필터케이스, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰 케이스, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, LCD PE 폼 간지, 포장용 발포재(PE, PS), 전선재료, 발열체 재료, 방열체 재료, 건축용 구조재, 건축용 보강재, 액추에이트, 전도성섬유인 나노카본 성형품.
  22. 나노카본;
    금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다);
    용매를 포함하는 나노카본액 조성물.
  23. 제22항에 있어서,
    상기 금속은 Ag, Cu, Mn, Fe, Ni, Cr, Co, Mo, W, Te, Pt, Li, Na, Ca, K, Ba, Mg, B, Zn, Al, Ga, Sn, Ti, V, Ge, Bi, Si, Zr 및 그 합금으로 구성되는 군에서 선택되는 적어도 하나 이상의 금속을 포함하는 나노카본액 조성물.
  24. 제22항에 있어서,
    상기 용매는 물, 알콜, 유기용제, 및 그 혼합물로 구성되는 군에서 선택되는 하나인 나노카본액 조성물.
  25. 제1항 내지 제10항 중 어느 한 항의 나노카본 고형체를 액상물질에 분산하여제조된 나노카본액 조성물.
  26. 제25항에 있어서,
    상기 나노카본액 조성물은 나노카본, 금속, 결합수지, 및 용매를 포함하는 나노카본액 조성물.
  27. 제22항에 있어서,
    상기 나노카본액 조성물에는 전도성 물질이 더 포함되는 나노카본액 조성물.
  28. 제27항에 있어서,
    상기 전도성 물질은 카본, 흑연, 전도성고분자및 금속으로 구성된 군에서 선택되는 적어도 하나인 나노카본액 조성물.
  29. 제22항에 있어서,
    상기 나노카본액 조성물은 전도성 도료, 전도성 코팅제, EMI/ ESD용 액상 조성물, 열전도성 도료, 열전도성 코팅제, 발열용 도료, 방열용 도료, 전기 및 열전도용 접착-점착제의 제조, 액추에이트, 전도성 섬유에 사용되는 나노카본액 조성물.
  30. 제22항에 있어서,
    상기 나노카본액 조성물은 천, 메쉬, 필름, 철판, 와이어, 파이프, 필름, 시트에 코팅되어 사용되는 나노카본액 조성물.
  31. 제22항에 있어서,
    상기 나노카본액 조성물은 성형기를 통하여 액상성분이 제거되면서 시트 또는 필름으로 압출되는 나노카본액 조성물.
  32. 제22항의 나노카본액 조성물을 이용하여 제조된 나노카본 성형품.
  33. 나노카본;
    금속(산화물 및 이온을 포함하고, 나노카본 원재료 유래의 금속은 제외한다);
    메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지; 및
    용매를 포함하는 나노카본 수지 조성물.
  34. 제25항의 나노카본 수지 조성물에 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함시킨 나노카본 수지 조성물.
  35. 제33항에 있어서,
    상기 메트릭스 수지는 pps(polyphenylenesulfide), peek(polyetheretherketone), psf(polysulfone), pc(polycarbonate), pp(polypropylene), tpo(thermoplasticolefine), pe(polyethylene), ps(polystyrene), pi(polyimide), pa11(polyamide based on 11-aminoundecanoic acid), pa12(polyamide based on ω-aminododecanoic acid or on laurolactam), pa6(polyamide based on ε-caprolactam), pa6t(polyamide based on hexamethylenediamine, and terephthalic acid), pa9t(polyamide 9t), pmma(poly methyl methacrylate), tpu(thermoplasticurethane), abs(acrylonitrile butadiene styrene), pom(poly acetal), ppo(polyphenyloxide), pes(polyethersulfone), pet(poly ethylene terephthalate), pbt(polybutylene terephthalate) , mppe(modified polyphenylene ether), pa66(polyamide based on hexamethylenediamine and adipic acid), pei(polyetherimide), pai(polyamideimide), lcp(liquid crystal polymer), par(polyacrylate), pvc(polyvinyl chloride), 열경화성 수지, 엘라스토머 및 고무류로 구성되는 군에서 선택되는 하나 이상이 포함되는 나노카본 수지 조성물.
  36. 제33항에 있어서,
    상기 캐리어수지는 상기 메트릭스 수지와 동일한 수지나 에틸렌 또는 아마이드계 수지, 저분자 수지인 나노카본 수지 조성물.
  37. 제33항에 있어서,
    상기 나노카본 수지 조성물은 성형기를 통하여 액상성분이 제거되면서 시트 또는 필름으로 압출되는 나노카본 수지 조성물.
  38. 제33항의 나노카본 수지 조성물을 이용하여 제조된 나노카본 성형품.
  39. 제38항에 있어서,
    상기 나노카본 성형품은 자동차의 정전도장용 범퍼, 펜다, 리어, 연료필터, 연료필터케이스, 연료탱크, 연료배관, 전자파차폐 대쉬 보드, 휴대폰 케이스, 노트북 케이스, 연료전지 바이폴라 플레이트, 환경기계 전극, 산-알칼리 전해액 전극, 반도체 칩 캐리어 필름, 운반용 트레이, 파레트, 대전방지 필름, 투명 ESD 필름, 투명 ESD 판, LCD PE 폼 간지, 포장용 발포재(PE, PS), 전선재료, 발열체 재료, 방열체 재료, 건축용 구조재, 건축용 보강재, 액추에이트, 전도성섬유인 나노카본 성형품.
  40. 약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간 조성물 제조단계; 및
    상기 중간조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물의 제조방법.
  41. 약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
    상기 중간조성물에 결합수지 및 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물 제조단계; 및
    상기 나노카본액 조성물을 소정의 형상으로 성형한 후 건조하는 고형체 제조단계를 포함하는 나노카본 고형체의 제조방법.
  42. 제41항에 있어서,
    상기 중간조성물 제조단계 및 상기 나노카본액 조성물 제조단계에서 상기 교반은 0.5 내지 4시간동안 이루어지는 나노카본을 포함한 나노카본 고형체의 제조방법.
  43. 제41항에 있어서,
    상기 나노카본액 조성물 제조단계에서 상기 교반 후 1 내지 24시간동안의 숙성과정을 포함하는 나노카본 고형체의 제조방법.
  44. 제41항에 있어서,
    상기 고형체 제조단계에서 건조는 80 내지 250℃ 사이에서 이루어지는 나노카본 고형체의 제조방법.
  45. 약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
    상기 제1조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본액 조성물 제조단계; 및
    상기 고형체를 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지와 혼합하는 혼합단계;를 포함하는 나노카본 수지 조성물의 제조방법.
  46. 약산에 금속(산화물, 이온을 포함한다)을 넣어 교반하여 침전물을 제거하고 상등액을 얻는 중간조성물 제조단계;
    상기 중간조성물에 나노카본을 넣어 교반한 후 액체성분를 제거하고 분쇄 또는 파쇄하여 파우더로 만드는 공정을 포함하는 나노카본 조성물 제조단계;
    상기 나노카본 조성물을 메트릭스 수지 또는 상기 메트릭스 수지와의 분산을 안정화하기 위한 캐리어 수지 중 적어도 하나를 포함하는 수지와 혼합하는 혼합단계;
    상기 메트릭스 수지와 혼합된 조성물을 소정의 형상으로 성형한 후 건조하는 건조단계를 포함하는 나노카본 수지체의 제조방법.
PCT/KR2010/002398 2009-04-16 2010-04-16 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법 WO2010120153A2 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020090033349A KR100955295B1 (ko) 2009-04-16 2009-04-16 나노카본을 포함한 고형체의 제조방법
KR10-2009-0033349 2009-04-16
KR1020090130512A KR101084974B1 (ko) 2009-12-24 2009-12-24 나노카본을 포함한 고형체의 제조방법
KR10-2009-0130512 2009-12-24
KR1020100035407A KR101084977B1 (ko) 2010-04-16 2010-04-16 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법
KR10-2010-0035407 2010-04-16

Publications (2)

Publication Number Publication Date
WO2010120153A2 true WO2010120153A2 (ko) 2010-10-21
WO2010120153A3 WO2010120153A3 (ko) 2011-04-21

Family

ID=42983027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002398 WO2010120153A2 (ko) 2009-04-16 2010-04-16 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법

Country Status (1)

Country Link
WO (1) WO2010120153A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906941A (zh) * 2016-06-20 2016-08-31 苏州科斯曼照明工程有限公司 一种用于太阳能电池板的导电塑料
CN111361180A (zh) * 2020-02-14 2020-07-03 大连交通大学 一种碳纤维精细结构部件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570634B1 (ko) * 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
US20060270777A1 (en) * 2005-05-13 2006-11-30 National Institute Of Aerospace Associates Dispersions of carbon nanotubes in polymer matrices
KR20080021002A (ko) * 2005-05-30 2008-03-06 에스.에이. 나노실 중합체 매트릭스에서 탄소 나노튜브의 분산 방법
KR100839173B1 (ko) * 2007-03-21 2008-06-17 신일화학공업(주) 탄소나노튜브를 함유한 변성 폴리페닐렌 옥사이드 수지조성물
US20080275172A1 (en) * 2006-07-31 2008-11-06 National Institute Of Aerospace Associates Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570634B1 (ko) * 2003-10-16 2006-04-12 한국전자통신연구원 탄소나노튜브와 금속분말 혼성 복합에 의해 제조된 전자파차폐재
US20060270777A1 (en) * 2005-05-13 2006-11-30 National Institute Of Aerospace Associates Dispersions of carbon nanotubes in polymer matrices
KR20080021002A (ko) * 2005-05-30 2008-03-06 에스.에이. 나노실 중합체 매트릭스에서 탄소 나노튜브의 분산 방법
US20080275172A1 (en) * 2006-07-31 2008-11-06 National Institute Of Aerospace Associates Nanocomposites from stable dispersions of carbon nanotubes in polymeric matrices using dispersion interaction
KR100839173B1 (ko) * 2007-03-21 2008-06-17 신일화학공업(주) 탄소나노튜브를 함유한 변성 폴리페닐렌 옥사이드 수지조성물

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105906941A (zh) * 2016-06-20 2016-08-31 苏州科斯曼照明工程有限公司 一种用于太阳能电池板的导电塑料
CN111361180A (zh) * 2020-02-14 2020-07-03 大连交通大学 一种碳纤维精细结构部件及其制备方法
CN111361180B (zh) * 2020-02-14 2021-02-19 大连交通大学 一种碳纤维结构部件及其制备方法

Also Published As

Publication number Publication date
WO2010120153A3 (ko) 2011-04-21

Similar Documents

Publication Publication Date Title
KR101084977B1 (ko) 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법
JP6047569B2 (ja) ナノチューブ及び微粉砕炭素繊維ポリマー複合組成物ならびに作製方法
TWI591121B (zh) 具有抗靜電性的全芳香族液晶聚酯樹脂複合物及含有其的物品
WO2015147501A1 (ko) 복합재료 제조용 카테콜아민-판상흑연 기반 고분자 복합체
KR101951959B1 (ko) 전기 전도성 탄소를 포함하는 폴리아미드 조성물
Prashantha et al. Highly dispersed polyamide‐11/halloysite nanocomposites: Thermal, rheological, optical, dielectric, and mechanical properties
US9551072B2 (en) Graphene coated substrates and resulting composites
US8124678B2 (en) Nanocomposite master batch composition and method of manufacture
WO2016190722A1 (ko) 2종 이상의 아민을 포함하는 기능화 그래핀 및 그 제조방법
Zhan et al. Dielectric thermally conductive and stable poly (arylene ether nitrile) composites filled with silver nanoparticles decorated hexagonal boron nitride
KR20110115954A (ko) 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 성형품, 나노카본 수지체 및 이들의 제조방법
WO2020235983A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
KR101579522B1 (ko) 우수한 방열 특성과 전자파 차폐 및 흡수능을 갖는 수지 조성물, 및 이를 이용하여 제조된 성형체
WO2015105296A1 (ko) 전도성 폴리아미드/폴리페닐렌 에테르 수지 조성물 및 이로부터 제조된 자동차용 성형품
WO2011078492A2 (ko) 다기능성 수지 복합재 및 이를 이용한 성형품
WO2022103116A1 (ko) 이차전지 폐분리막을 이용한 복합수지 조성물의 제조 방법
TW201027565A (en) Composite material including carbon fibers
KR20110068479A (ko) 차단성과 전기전도성이 우수한 수지 복합체 및 이를 이용한 성형품
WO2010120153A2 (ko) 나노카본액 조성물, 나노카본 수지 조성물, 나노카본 고형체, 나노카본 수지체 및 이들의 제조방법
WO2015129962A1 (ko) 도장 성형품
KR20140081997A (ko) 개질화된 탄소나노튜브를 포함하는 기계적 물성과 전기 전도성이 우수한 고분자 나노복합재 및 이의 제조방법
WO2020145500A1 (ko) 내열성과 전자파 차폐능이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이로부터 제조된 사출성형품
KR101308153B1 (ko) 천연섬유계 필러를 함유하는 폐플라스틱의 재활용 방법
KR101654638B1 (ko) 하이브리드 필러 복합체 및 이의 제조방법
KR100955295B1 (ko) 나노카본을 포함한 고형체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764692

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764692

Country of ref document: EP

Kind code of ref document: A2