WO2022210518A1 - Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate - Google Patents

Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate Download PDF

Info

Publication number
WO2022210518A1
WO2022210518A1 PCT/JP2022/014941 JP2022014941W WO2022210518A1 WO 2022210518 A1 WO2022210518 A1 WO 2022210518A1 JP 2022014941 W JP2022014941 W JP 2022014941W WO 2022210518 A1 WO2022210518 A1 WO 2022210518A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
sintered body
nitride sintered
less
plate
Prior art date
Application number
PCT/JP2022/014941
Other languages
French (fr)
Japanese (ja)
Inventor
江 尹
和久 森
勝博 小宮
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023511247A priority Critical patent/JP7429825B2/en
Publication of WO2022210518A1 publication Critical patent/WO2022210518A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to an aluminum nitride sintered body, a method for manufacturing the same, a circuit board, and a laminated substrate.
  • a circuit board or the like having a ceramic plate is used in such a power module in order to efficiently diffuse heat generated from a semiconductor element and to suppress leakage current.
  • a ceramic sintered body used for such a ceramic plate is generally manufactured by forming a ceramic raw material powder into a predetermined shape to form a ceramic green body, and then sintering the ceramic green body.
  • Patent Document 1 discloses that a nitride selected from the group of Zr and Ti is used in an amount of 3 to 20 parts by mass in terms of oxide as a sintering aid, and an aluminum nitride sintered body is used. Techniques for increasing the thermal conductivity and mechanical strength of steel have been proposed.
  • Electronic components such as power modules are expected to have even higher performance, and along with this, it is believed that the level of demand for the performance of various products used in electronic components will continue to rise. It is assumed that the amount of heat generated during use of electronic components will increase, and ceramic sintered bodies are also excellent in terms of withstanding the effects of differences in thermal expansion coefficients between constituent members of electronic components, that is, differences in the amount of deformation between constituent members. Bending strength is required. By using a ceramic sintered body with excellent bending strength, it may be possible to prolong the specified life of electronic components.
  • One aspect of the present disclosure is an aluminum nitride sintered body comprising aluminum nitride particles and sintering aid particles, which is laminated with a metal plate to prepare a laminate and placed in an environment of 350° C. for 5 minutes. After exposure, the above laminate was cooled in an environment of 25 ° C. for 5 minutes, and after exposing it to an environment of -78 ° C. for 5 minutes, a heat cycle test of 10 cycles was performed, with one cycle of returning to 25 ° C.
  • an aluminum nitride sintered body having an observed crack rate of less than 9.00 area % when the aluminum nitride sintered body is cracked.
  • the above-mentioned aluminum nitride sintered body can exhibit excellent bending strength because the occurrence of cracks is suppressed to a predetermined value or less when a heat cycle test is performed under specific conditions.
  • the inventors of the present invention have found through studies that if there is variation in the surface properties of the aluminum nitride sintered plate (for example, the degree of unevenness on the main surface, etc.), when an external force is applied to the aluminum nitride sintered plate, the relative It was found that stress concentration occurs in the weak part, and there may be cases where the expected bending strength is not exhibited. Furthermore, cracks that occur when a heat cycle test is performed under specific conditions are caused by aluminum nitride. It was found that the above crack rate corresponds to the development of visible cracks from latent defects in the crystal plate, and is suitable for evaluating the surface properties of aluminum nitride sintered plates. The present disclosure has been made based on the above findings.
  • the aluminum nitride sintered body has a plate shape having a pair of main surfaces, and the difference between the maximum height roughness Ry and the arithmetic mean roughness Ra on the main surfaces may be 6.00 ⁇ m or less.
  • the difference between the maximum height roughness Ry and the arithmetic mean roughness Ra is within the above range, it is possible to suppress the variation in properties on the main surface and to more uniformly disperse the thermal stress, resulting in a more excellent It can exhibit bending strength.
  • the maximum height roughness Ry may be less than 10.00 ⁇ m.
  • the particle size when the integrated value from the small particle size reaches 50% and 90% of the total is d50 and d90, respectively.
  • the value of d90-d50 may be less than 10.0 ⁇ m.
  • One aspect of the present disclosure provides a circuit board comprising the aluminum nitride sintered body described above and a conductor portion attached to the aluminum nitride sintered body.
  • the circuit board has the above-described aluminum nitride sintered body, even when the temperature during use is high, the circuit board can withstand deformation between members and exhibit excellent connection reliability.
  • One aspect of the present disclosure provides a laminated substrate comprising the aluminum nitride sintered body described above and a metal plate attached to the aluminum nitride sintered body.
  • the laminated substrate has the above-described aluminum nitride sintered body, even when the temperature during use is high, it can withstand deformation between members and can exhibit excellent connection reliability.
  • One aspect of the present disclosure is a firing step of obtaining a sintered body by firing a molded body composed of a mixture containing aluminum nitride and a sintering aid for 1 to 6 hours, and firing the sintered body at 1400 ° C. or higher and 1700 ° C.
  • a step of obtaining an annealed product by heat treatment at a temperature of less than 1 hour or more and a step of polishing the surface of the annealed product to obtain an aluminum nitride sintered body, the sintering aid
  • the agent contains yttrium oxide and aluminum oxide, the mass ratio of the aluminum oxide to the yttrium oxide is less than 0.5, and the firing step includes heating at a temperature of 1700 ° C.
  • a method of manufacturing a body is provided.
  • a sintering aid blended in a predetermined ratio is used, and the sintered body obtained by passing through at least two stages of predetermined firing processes is subjected to annealing treatment.
  • the composite compound derived from the sintering aid formed between the particles of the aluminum nitride crystals is again liquefied to promote the growth of fine aluminum nitride particles on the surface of the sintered body, and the sintered body Defects such as grain boundaries and cracks occurring on the surface are repaired, unevenness on the main surface is reduced, and then the main surface of the sintered body obtained can be made more uniform by polishing.
  • the aluminum nitride sintered body to be obtained can suppress the occurrence of stress concentration due to variations in the properties of the main surface when an external force is applied. That is, according to the manufacturing method described above, an aluminum nitride sintered body having excellent bending strength can be manufactured.
  • an aluminum nitride sintered body with excellent bending strength and a method for producing the same can be provided. According to the present disclosure, it is also possible to provide a laminated substrate and a circuit substrate that are equipped with the aluminum nitride sintered body and have excellent connection reliability.
  • FIG. 1 is a perspective view showing an example of an aluminum nitride sintered plate.
  • FIG. 2 is a perspective view showing an example of a laminated substrate.
  • FIG. 3 is a perspective view showing an example of a circuit board.
  • FIG. 4 is an SEM image showing the main surface of the annealed product and the main surface of the aluminum nitride sintered plate in the manufacturing process of the aluminum nitride sintered plate in Example 1.
  • FIG. 5 is an SEM image showing the main surface of the sintered plate before polishing and the main surface of the aluminum nitride sintered plate in the manufacturing process of the aluminum nitride sintered plate in Comparative Example 1.
  • FIG. 1 is a perspective view showing an example of an aluminum nitride sintered plate.
  • FIG. 2 is a perspective view showing an example of a laminated substrate.
  • FIG. 3 is a perspective view showing an example of a circuit board.
  • FIG. 4 is an SEM image showing the main surface of the
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • FIG. 1 is a perspective view showing an example of an aluminum nitride sintered plate.
  • the aluminum nitride sintered plate 100 indicates a plate-shaped aluminum nitride sintered body having a pair of main surfaces, but its shape may be, for example, a sheet shape, and is usually a rectangular parallelepiped shape.
  • the sintering aid particles are particles containing a component derived from the sintering aid.
  • the aluminum nitride sintered plate 100 is laminated with a metal plate to prepare a laminate, exposed to a 350 ° C. environment for 5 minutes, and then cooled for 5 minutes in a 25 ° C. environment.
  • the crack rate is, for example, 8.00 area% or less, 6.00 area% or less, 5.00 area% or less, 4.00 area% or less, 3.00 area% or less, 2.00 area% or less, or It may be 1.00 area % or less.
  • the bending strength is excellent.
  • the lower limit of the crack rate is not particularly limited, it may be, for example, 0.01 area % or more.
  • the crack rate may be adjusted within the above range, and may be, for example, 0.01 to 9.00 area %.
  • the crack rate in this specification can be determined by a heat cycle test under predetermined conditions.
  • a brazing material containing silver (Ag), copper (Cu) and an active metal 90 parts by weight of Ag, 10 parts by weight of Cu, 3 parts by weight of Sn, and 3.5 parts by weight of Ti
  • a copper plate (thickness: 0.3 mm) was bonded to the aluminum nitride sintered plate 100 via a brazing material having a certain composition, so that the brazing material layer had a thickness of 15 ⁇ m.
  • a measurement sample (laminate) prepared by bonding under the conditions of 1 hour and a degree of vacuum of 1 ⁇ 10 ⁇ 3 Pa is used.
  • a crack rate is measured by a heat cycle test on the sample under predetermined conditions.
  • a specific method of the heat cycle test is as described in Examples.
  • the aluminum nitride sintered plate 100 from the viewpoint of further suppressing stress concentration and further improving bending strength, it is desirable that at least one of the opposing main surfaces is smoother, and both main surfaces are smooth. is more desirable.
  • the aluminum nitride sintered plate 100 preferably has a small difference between the maximum height roughness Ry and the arithmetic mean roughness Ra on at least one main surface.
  • the upper limit of the difference ((Ry-Ra) value) between the maximum height roughness Ry and the arithmetic mean roughness Ra on the main surface is, for example, 6.00 ⁇ m or less, 5.00 ⁇ m or less, 4.00 ⁇ m or less, 3 It may be 0.00 ⁇ m or less, 2.00 ⁇ m or less, or 1.00 ⁇ m or less.
  • the upper limit of the value of (Ry-Ra) is within the above range, it is possible to suppress the variation in properties on the main surface, disperse the thermal stress more uniformly, and improve the bending strength. can demonstrate.
  • the lower limit of the value of (Ry-Ra) is not particularly limited, and may be, for example, more than 0.01 ⁇ m or 1.00 ⁇ m or more.
  • the value of (Ry-Ra) may be adjusted within the range described above, and may be, for example, greater than 0.01 ⁇ m and 6.00 ⁇ m, or from 1.00 to 6.00 ⁇ m.
  • the upper limit of the maximum height roughness Ry of the aluminum nitride sintered plate 100 is, for example, less than 10.00 ⁇ m, 8.00 ⁇ m or less, 7.00 ⁇ m or less, 5.00 ⁇ m or less, 4.00 ⁇ m or less, 3.00 ⁇ m or less, or 2.00 ⁇ m or less.
  • the lower limit of Ry may be, for example, 0.30 ⁇ m or more, 0.60 ⁇ m or more, or 1.00 ⁇ m or more.
  • the value of the maximum height roughness Ry of the aluminum nitride sintered plate 100 may be adjusted within the above range, for example, 0.30 to 8.00 ⁇ m, 0.60 to 8.00 ⁇ m, or 1.00 to 7 00 ⁇ m.
  • the maximum height roughness Ry and the arithmetic mean roughness Ra in this specification are described in JIS B 0601: 1994 "Product Geometric Characteristics Specifications (GPS)-Surface Texture: Contour Curve Method-Terms, Definitions and Surface Texture Parameters". It means the maximum height roughness Ry and the arithmetic mean roughness Ra, which can be measured by a line contact type measuring instrument.
  • the line contact type for example, "Surface Roughness Measuring Instrument Surftest SJ-301" (product name) manufactured by Mitutoyo Co., Ltd. can be used.
  • the particle diameters when the integrated value from the small particle diameter reaches 50% and 90% of the total are d50 and d90, respectively.
  • the upper limit of the value of d90-d50 is, for example, less than 10.0 ⁇ m, 8.0 ⁇ m or less, 6.0 ⁇ m or less, 5.0 ⁇ m or less, 4.0 ⁇ m or less, 3.0 ⁇ m or less, or 2.0 ⁇ m or less. good.
  • the lower limit of the value of d90-d50 may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more.
  • the production of the aluminum nitride sintered plate 100 can be facilitated and an increase in cost can be suppressed.
  • the upper limit of d90 of aluminum nitride particles is, for example, 15.0 ⁇ m or less, 14.0 ⁇ m or less, 13.0 ⁇ m or less, 12.0 ⁇ m or less, 11.0 ⁇ m or less, 10.0 ⁇ m or less, 9.0 ⁇ m or less, 8.0 ⁇ m or less, or 7.0 ⁇ m or less.
  • the fact that the upper limit of d90 is within the above range means that the formation of coarse particles in the aluminum nitride sintered plate 100 is suppressed, and that the structure of the sintered body is more uniform. That is, it is possible to suppress the occurrence of stress concentration when force is applied from the outside, and to further improve the bending strength of the sintered plate.
  • the lower limit of d90 may be, for example, 4.0 ⁇ m or more, 4.5 ⁇ m or more, or 5.0 ⁇ m or more.
  • d90 may be adjusted within the ranges described above, and may be, for example, 4.0 to 15.0 ⁇ m, or 5.0 to 15.0 ⁇ m.
  • d50 and d90 in this specification mean values measured by the following method.
  • the object to be measured is a position that is dug down by 50 ⁇ m from the main surface of the aluminum nitride sintered plate 100 in the thickness direction.
  • a region of 50 ⁇ m ⁇ 50 ⁇ m is determined at an arbitrary position in the acquired image, and the particle size distribution of the aluminum nitride particles is created using image analysis software.
  • the particle diameters are determined for five regions in the same manner as described above, and the arithmetic mean values are taken as the d50 and d90 of aluminum nitride, respectively.
  • the shape of the aluminum nitride particles is usually not constant. Therefore, the particle diameter of aluminum nitride particles is defined as the distance between the two most distant points on the circumference of the particle to be measured.
  • image analysis software for example, "GIMP2" (trade name) or "imageJ" (trade name) distributed under the GNU GPL can be used.
  • the upper limit of the thickness of the aluminum nitride sintered plate 100 may be, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, or 0.7 mm or less. When the upper limit of the thickness is within the above range, the heat dissipation can be improved when used as a constituent member of the heat dissipation sheet.
  • the lower limit of the thickness of the aluminum nitride sintered plate 100 may be, for example, 0.15 mm or more, or 0.20 mm or more. When the lower limit of the thickness is within the above range, the heat dissipation properties and thermal resistivity of the entire circuit board prepared using the aluminum nitride sintered plate can be improved.
  • the thickness of the aluminum nitride sintered plate 100 may be adjusted within the above range, and may be, for example, 0.20-1.0 mm.
  • the aluminum nitride sintered plate 100 has excellent bending strength.
  • the bending strength of the aluminum nitride sintered plate 100 can be, for example, 370 MPa or more, 390 MPa or more, 400 MPa or more, 450 MPa or more, or 500 MPa or more.
  • Bending strength in this specification means a value measured according to the method described in JIS C 2141:1992 "Electrical insulating ceramic material test method". Specifically, it is measured according to the method described in the Examples of this specification.
  • the aluminum nitride sintered plate 100 Since the aluminum nitride sintered plate 100 has a uniform structure, the bending strength distribution is sufficiently suppressed.
  • the aluminum nitride sintered plate 100 has a relatively large Weibull coefficient in the Weibull statistical analysis of its bending strength.
  • the Weibull coefficient with respect to the bending strength of the aluminum nitride sintered plate 100 is, for example, 10.0 or more, 12.0 or more. It can be 13.0 or more, 14.0 or more, 15.0 or more, or 16.0 or more.
  • Weibull statistics are used to evaluate the distribution of flexural strength.
  • the vertical axis is the fracture probability F ( ⁇ ) and the horizontal axis is the bending strength ⁇ (strength at break, bending strength)
  • the slope m is the Weibull coefficient.
  • a large Weibull modulus means that the bending strength distribution is narrow and close to normal distribution.
  • the failure probability F( ⁇ ) in the Weibull plot is given by the following formula (1).
  • F( ⁇ ) 1 ⁇ exp[ ⁇ ( ⁇ / ⁇ ) m ] (1)
  • is a fitting parameter.
  • the aluminum nitride sintered body described above can be produced, for example, by the following method.
  • One embodiment of a method for producing an aluminum nitride sintered body includes a firing step of obtaining a sintered body by firing a molded body composed of a mixture containing aluminum nitride and a sintering aid for 1 to 6 hours; A step of obtaining an annealed product by heat-treating the body at a temperature of 1400 ° C. or more and less than 1700 ° C. for 1 hour or more (hereinafter also referred to as an annealing step); and a step of obtaining a body (hereinafter also referred to as a polishing step).
  • Additives include binders, plasticizers, dispersion media, release agents, and the like. Binders include, for example, methylcellulose-based binders having plasticity or surfactant effects, and acrylic acid ester-based binders having excellent thermal decomposability. Examples of plasticizers include glycerin and the like. Dispersion media include, for example, ion-exchanged water and ethanol.
  • Aluminum nitride is not particularly limited, and aluminum nitride powder produced by a known method such as a direct nitriding method in which metal aluminum is nitrided in a nitrogen atmosphere, and a reduction nitriding method in which aluminum oxide is reduced with carbon. Available.
  • the sintering aid contains yttrium oxide and aluminum oxide.
  • the sintering aid may be particulate.
  • the mass ratio of aluminum oxide to yttrium oxide (content of aluminum oxide/content of yttrium oxide) is less than 0.5. Thereby, aggregation of oxides in the aluminum nitride sintered plate can be suppressed.
  • the mixing ratio of yttrium oxide and aluminum oxide can be adjusted within the range described above, thereby adjusting the oxide composition in the aluminum nitride sintered plate.
  • Aluminum oxide and yttrium oxide form a liquid phase of a composite oxide during sintering to promote sintering. Thereby, the aluminum nitride sintered plate can be sufficiently densified.
  • the content of the sintering aid may be, for example, 1 to 10.0 parts by mass with respect to 100 parts by mass of aluminum nitride.
  • the content of the sintering aid is a value calculated from the amount of the sintering aid in terms of oxide.
  • the content of aluminum oxide may be, for example, 0.1 to 5.0 parts by mass with respect to 100 parts by mass of aluminum nitride.
  • the content of aluminum oxide may be, for example, 0.1 to 5.0 parts by mass with respect to 100 parts by mass of aluminum nitride.
  • the aluminum nitride, the sintering aid, and the additive added as necessary may be blended and mixed and used as a forming raw material.
  • the forming raw material may be formed, for example, into a sheet by a known method such as a doctor blade method.
  • the molded body obtained may be degreased.
  • the degreasing method is not particularly limited, and for example, the compact may be heated to 300 to 700° C. in air or in a non-oxidizing atmosphere such as nitrogen.
  • the heating time may be, for example, 1 to 10 hours.
  • the aluminum nitride sintered body can be obtained by firing the above compact.
  • the baking step (hereinafter also referred to as the baking step) may be performed in an inert gas atmosphere.
  • the inert gas may be nitrogen, for example.
  • the firing step may be performed under atmospheric pressure.
  • the firing step includes a step of obtaining a first fired body from the molded body by heating at a temperature of 1700 ° C. or more and less than 1800 ° C. for 1 hour or more (hereinafter also referred to as a first firing step), and a temperature of 1800 to 1900 ° C. and a step of obtaining the sintered body from the first sintered body by heating at for one hour or more (hereinafter also referred to as a second sintering step).
  • firing time refers to the time during which the temperature of the atmosphere in which the object to be fired, such as the molded article, is placed reaches the firing temperature and is maintained at that temperature.
  • the firing temperature in the first firing step can be selected depending on the composition of the sintering aid, and may be, for example, 1750°C or lower, 1730°C or lower, or 1720°C or lower.
  • the rate of temperature increase until the firing temperature in the first firing step is reached may be relatively high, for example, 20° C./min or more, or 30° C./min or more.
  • the sintering temperature is preferably maintained for a predetermined period of time.
  • the firing time in the first firing step may be, for example, 1.0 hours or longer, 2.0 hours or longer, or 2.5 hours or longer.
  • the firing temperature in the second firing step may be, for example, less than 1850°C, less than 1840°C, or 1830°C or less.
  • the rate of temperature increase until reaching the firing temperature in the second firing step may be, for example, 0.5° C./min or more, or 1.0° C./min or more.
  • the sintering temperature is preferably maintained for a predetermined period of time.
  • the firing time in the second firing step may be, for example, 1.0 hours or longer, 1.5 hours or longer, or 2.0 hours or longer.
  • the firing time of the firing step is 6.0 hours or less in total, but may be, for example, 5.0 hours or less or 4.0 hours or less.
  • the total firing time of the firing step may be, for example, 1.0 hours or more, 2.0 hours or more, or 3.0 hours or more.
  • the firing time of the firing step can be adjusted within the range described above, and may be, for example, 1.0 to 4.0 hours.
  • the composite compound derived from the sintering aid formed between the grains of the aluminum nitride crystals is re-liquidized to form fine nitriding.
  • the composite compound derived from the sintering aid formed between the grains of the aluminum nitride crystals is re-liquidized to form fine nitriding.
  • Polishing is sometimes performed in the conventional method of manufacturing an aluminum nitride sintered body, but due to circumstances such as the presence of coarse particles of aluminum nitride on the surface, the unevenness before polishing is large, and it is necessary to increase the amount of polishing. If coarse particles of aluminum nitride shed from the surface during this process, large recesses may be formed. For this reason, it is not easy to smooth the surface in the conventional method of manufacturing an aluminum nitride sintered plate.
  • the aluminum nitride particles are suppressed from being coarsened and homogenized in the sintering step, and the annealing step is performed to suppress an increase in the amount of polishing and further reduce the frequency of shedding. can prepare an aluminum nitride sintered body having a smoother and more homogeneous primary surface.
  • the heating temperature in the annealing process is 1400°C or more and less than 1700°C.
  • the heating temperature in the annealing step may be, for example, 1650° C. or lower, or 1600° C. or lower.
  • the lower limit of the heating temperature in the annealing step may be, for example, 1400° C. or higher.
  • the heating temperature in the annealing step may be adjusted within the range described above, and may be, for example, 1400-1600.degree.
  • the heating time in the annealing step is 1 hour or longer, but may be 2 hours or longer, for example.
  • the upper limit of the heating time in the annealing step may be, for example, 6 hours or less.
  • the heating time in the annealing step may be adjusted within the above range, and may be, for example, 1 to 6 hours.
  • the polishing process can be performed by, for example, honing treatment.
  • the honing treatment can be performed, for example, on the surface of the annealed object under conditions of polishing pressure: 0.15 to 0.35 MPa, polishing amount: 2 to 10 ⁇ m, and time: 1 to 5 minutes.
  • the aluminum nitride sintered plate obtained by the manufacturing method described above may be processed into a desired shape as necessary.
  • the aluminum nitride sintered body may be processed into, for example, a plate having a pair of main surfaces to form an aluminum nitride sintered plate.
  • a metal part such as a metal circuit or a metal plate may be attached to the aluminum nitride sintered body to form the substrate.
  • the substrate may be, for example, a laminated substrate in which a main surface of a sintered aluminum nitride plate and a main surface of a metal plate such as a copper plate are bonded together.
  • the substrate of the present disclosure may be a laminate substrate or a circuit substrate.
  • the lower limit of the thickness of the aluminum nitride sintered body may be, for example, 0.10 mm or more, 0.20 mm or more, or 0.25 mm or more.
  • the upper limit of the thickness of the aluminum nitride sintered body may be, for example, 3.00 mm or less, 1.50 mm or less, or 1.00 mm or less.
  • the thickness of the aluminum nitride sintered body can be adjusted within the above range, and may be, for example, 0.10-3.00 mm, or 0.25-1.00 mm. By setting the thickness of the aluminum nitride sintered body within the above range, both the heat dissipation characteristics and the thermal resistivity of the entire circuit board can be achieved at higher levels.
  • FIG. 2 is a perspective view showing an example of a laminated substrate.
  • the laminated substrate 200 includes a pair of metal plates 110 arranged to face each other, and an aluminum nitride sintered plate 100 between the pair of metal plates 110 .
  • Examples of the metal plate 110 include a copper plate.
  • the shape and size of the aluminum nitride sintered plate 100 and the metal plate 110 may be the same or different.
  • the metal plate 110 and the aluminum nitride sintered plate 100 may be joined with, for example, brazing material.
  • One of the pair of metal plates 110 may be used as a heat dissipation material, and the other may be processed into a circuit pattern.
  • the circuit pattern may be formed by etching the metal plate 110 using a resist. As a result, it is possible to form a circuit board capable of sufficiently suppressing leakage current or the like, or to form a heat dissipation board.
  • FIG. 3 is a perspective view showing an example of a circuit board.
  • the circuit board 300 includes an aluminum nitride sintered plate 100 , a plurality of conductor portions 20 and a metal plate 110 .
  • Conductor portion 20 is provided on one main surface 100A of aluminum nitride sintered plate 100
  • metal plate 110 is provided on the other surface of aluminum nitride sintered plate 100 .
  • the metal plate 110 may function as a heat dissipation material.
  • the aluminum nitride sintered plate 100 in the laminated substrate 200 and the circuit board 300 is composed of an aluminum nitride sintered plate with excellent electrical insulation and thermal conductivity. Therefore, it has excellent reliability when used in various products such as power modules.
  • circuit patterns may be formed on both main surfaces of the aluminum nitride sintered plate 100 .
  • the conductor portion 20 may be formed by spraying metal powder and heat-treating it. Also, the descriptions of the above-described embodiments can be applied to each other.
  • Example 1 Production of aluminum nitride sintered plate
  • 6.0 parts by mass of yttrium oxide powder as a sintering aid and 0.3 parts by mass of ⁇ -aluminum oxide were blended and mixed using a ball mill to obtain a mixed powder.
  • cellulose ether binder manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Metrose
  • glycerin manufactured by Kao Corporation, trade name: Excepar
  • ion exchange 10 parts by mass of water was added and mixed for 1 minute using a Henschel mixer to obtain a molding raw material.
  • This molding raw material is molded with a screw type extruder to produce a sheet-like molded body (width: 80 mm, thickness: 0.8 mm), dried at 100 ° C. for 1 hour, and then cut into a length of 60 mm.
  • x Width: 60 mm shaped compact was obtained.
  • boron nitride powder as a mold release agent to this compact, a plurality of the above compacts were laminated to adjust the mass of the laminate to 95 kg.
  • a degreased body was obtained by heating the obtained laminate at 600° C. in the air for degreasing.
  • the degreased body is placed in a heating furnace and heated from 25° C. to 1700° C. at a heating rate of 20° C./min under atmospheric pressure in a nitrogen gas atmosphere and held at 1700° C. for 2.5 hours. (first firing step).
  • the temperature was raised to 1820° C. at a temperature elevation rate of 1° C./min, and held at 1820° C. for 2 hours (second firing step). After that, the heating was stopped and allowed to cool in the heating furnace to obtain a sintered body.
  • An annealed product was obtained by heat-treating the sintered body at 1700°C for 2 hours in a nitrogen gas atmosphere (annealing step).
  • the surface of the annealed product is honed under the conditions of a polishing pressure of 0.15 to 0.35 MPa, a polishing amount of 2 to 10 ⁇ m, and a time of 1 to 5 minutes to obtain a thickness of 0.635 mm.
  • the aluminum nitride sintered plate was obtained (polishing step).
  • FIG. 4 shows SEM images obtained by scanning electron microscope (SEM) of the main surface of the annealed product and the main surface of the aluminum nitride sintered plate.
  • SEM scanning electron microscope
  • FIG. 4 shows the main surface of the annealed product, and (b) shows the main surface of the aluminum nitride sintered plate.
  • FIG. 4(a) shows the main surface of the annealed product
  • FIG. 4(b) shows the main surface of the aluminum nitride sintered plate.
  • a heat cycle test was performed on the obtained aluminum nitride sintered plate (thickness: 0.635 mm). Specifically, first, a brazing material containing silver (Ag), copper (Cu), and an active metal (90 parts by mass of Ag, 10 parts by mass of Cu, 3 parts by mass of Sn, and 3.5 parts by mass of Ti A copper plate (thickness: 0.3 mm) was bonded to the aluminum nitride sintered plate through a brazing material having a composition of 830° C. for a bonding time of 15 ⁇ m.
  • An aluminum nitride substrate (laminate) was prepared by bonding under the condition of vacuum degree: 1 ⁇ 10 ⁇ 3 Pa for 1 hour.
  • the obtained laminate was exposed to a 350° C. environment for 5 minutes and then cooled to a 25° C. environment for 5 minutes.
  • the laminate that has undergone the above pretreatment is first exposed to an environment in dry ice (-78 ° C.) for 5 minutes, and then returned to room temperature (25 ° C.) as one cycle.
  • a cycle test was performed. After the test, the aluminum nitride substrate was etched with an aqueous solution of copper chloride, ammonium fluoride, and hydrogen peroxide to remove the metal plate and the brazing material from the laminate, and the aluminum nitride sintered plate was taken out.
  • Example 2 An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing temperature in the annealing step was changed to 1400° C. and the annealing time was changed to 1 hour.
  • Example 3 An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing time in the annealing step was changed to 6 hours.
  • Example 4 An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing temperature in the annealing step was changed to 1500°C.
  • FIG. 5 shows SEM images obtained by a scanning electron microscope (SEM) of the main surface of the sintered body before polishing and the main surface of the aluminum nitride sintered plate.
  • SEM scanning electron microscope
  • Comparative example 2 An aluminum nitride sintered plate was prepared in the same manner as in Comparative Example 1, except that the annealing step was not performed.
  • Comparative Example 3 An aluminum nitride sintered plate was prepared in the same manner as in Comparative Example 1, except that the annealing time in the annealing step was changed to 2 hours.
  • an aluminum nitride sintered body with excellent bending strength and a method for producing the same can be provided. According to the present disclosure, it is also possible to provide a laminated substrate and a circuit substrate that are equipped with the aluminum nitride sintered body and have excellent connection reliability.
  • Conductor portion 100... Aluminum nitride sintered plate, 110... Metal plate, 200... Laminated substrate, 300... Circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

One aspect of the present disclosure provides an aluminium nitride sintered body which comprises aluminium nitride particles and sintering additive particles, wherein the observed crack rate is less than 9.00% by area when a ten-cycle heat cycle test is carried out on a laminate body that has been produced by laminating the aluminium sintered body with a metal plate, and has then been exposed for five minutes to an environment of 350°C and then cooled for five minutes at 25°C, each cycle comprising exposing the laminate body to an environment of -78°C for five minutes and then returning to 25°C.

Description

窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板Aluminum nitride sintered body, manufacturing method thereof, circuit board, and laminated board
 本開示は、窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板に関する。 The present disclosure relates to an aluminum nitride sintered body, a method for manufacturing the same, a circuit board, and a laminated substrate.
 近年、モーター等の産業機器、及び電気自動車等の製品には、大電力制御用のパワーモジュールが用いられている。このようなパワーモジュールには、半導体素子から発生する熱を効率的に拡散するとともに、漏れ電流を抑制するため、セラミック板を備える回路基板等が用いられている。このようなセラミック板に用いられるセラミック焼結体は、通常、セラミック原料粉末を所定形状に成形してセラミック成形体とした後に、セラミック成形体を焼結することで製造される。 In recent years, industrial equipment such as motors and products such as electric vehicles use power modules for high power control. A circuit board or the like having a ceramic plate is used in such a power module in order to efficiently diffuse heat generated from a semiconductor element and to suppress leakage current. A ceramic sintered body used for such a ceramic plate is generally manufactured by forming a ceramic raw material powder into a predetermined shape to form a ceramic green body, and then sintering the ceramic green body.
 セラミック焼結体としては、窒化物、炭化物、硼化物、又は珪化物等で構成されるものが知られている。このうち、窒化アルミニウム焼結体は、熱伝導性及び電気絶縁性に優れている。このため、パワーモジュール等の電子部品のヒートシンク材として用いられている。これらの用途への適性を高めるため、特許文献1では、焼結助剤として酸化物換算で3~20質量部のZr,Tiの群から選択される窒化物を用いて、窒化アルミニウム焼結体の熱伝導率と機械的強度を高くする技術が提案されている。 As ceramic sintered bodies, those composed of nitrides, carbides, borides, silicides, etc. are known. Among them, the aluminum nitride sintered body is excellent in thermal conductivity and electrical insulation. Therefore, it is used as a heat sink material for electronic parts such as power modules. In order to improve suitability for these uses, Patent Document 1 discloses that a nitride selected from the group of Zr and Ti is used in an amount of 3 to 20 parts by mass in terms of oxide as a sintering aid, and an aluminum nitride sintered body is used. Techniques for increasing the thermal conductivity and mechanical strength of steel have been proposed.
特開2018-184316号公報JP 2018-184316 A
 パワーモジュール等の電子部品は、一層の高性能化が図られており、これに伴って、電子部品に用いられる各種製品の性能への要求レベルが益々高くなっていくと考えられる。電子部品の使用時における発熱量の上昇も想定され、セラミック焼結体にも電子部品の構成部材間の熱膨張率の差による影響、すなわち構成部材間の変形量の違いに耐えるための優れた曲げ強さが求められる。優れた曲げ強さを有するセラミック焼結体を用いることによって電子部品の仕様寿命を長期化することも可能となり得る。 Electronic components such as power modules are expected to have even higher performance, and along with this, it is believed that the level of demand for the performance of various products used in electronic components will continue to rise. It is assumed that the amount of heat generated during use of electronic components will increase, and ceramic sintered bodies are also excellent in terms of withstanding the effects of differences in thermal expansion coefficients between constituent members of electronic components, that is, differences in the amount of deformation between constituent members. Bending strength is required. By using a ceramic sintered body with excellent bending strength, it may be possible to prolong the specified life of electronic components.
 本開示の目的は、曲げ強さに優れる窒化アルミニウム焼結体及びその製造方法を提供することである。本開示の目的はまた、上記窒化アルミニウム焼結体を備え、接続信頼性に優れる積層基板及び回路基板を提供することである。 An object of the present disclosure is to provide an aluminum nitride sintered body with excellent bending strength and a method for producing the same. Another object of the present disclosure is to provide a laminated substrate and a circuit substrate which are equipped with the aluminum nitride sintered body and have excellent connection reliability.
 本開示の一側面は、窒化アルミニウム粒子と、焼結助剤粒子と、を含む、窒化アルミニウム焼結体であって、金属板と積層して積層体を調製し、350℃の環境に5分間曝した後、25℃の環境で5分間冷却した上記積層体を対象とし、-78℃の環境に5分間曝した後に、25℃に戻す操作を1サイクルとして、10サイクルのヒートサイクル試験を行った場合に、観測されるクラック率が9.00面積%未満である、窒化アルミニウム焼結体を提供する。 One aspect of the present disclosure is an aluminum nitride sintered body comprising aluminum nitride particles and sintering aid particles, which is laminated with a metal plate to prepare a laminate and placed in an environment of 350° C. for 5 minutes. After exposure, the above laminate was cooled in an environment of 25 ° C. for 5 minutes, and after exposing it to an environment of -78 ° C. for 5 minutes, a heat cycle test of 10 cycles was performed, with one cycle of returning to 25 ° C. Provided is an aluminum nitride sintered body having an observed crack rate of less than 9.00 area % when the aluminum nitride sintered body is cracked.
 上記窒化アルミニウム焼結体は、特定条件のヒートサイクル試験を行った場合のクラックの発生が所定値以下に抑制されていることから、優れた曲げ強さを発揮し得る。本発明者らは検討によって、窒化アルミニウム焼結板の表面性状(例えば、主面における凹凸の程度等)にバラつきがあると、窒化アルミニウム焼結板に外力が加わった際に、主面における相対的に脆弱な部分に応力集中が起こり、期待されるような曲げ強さが発揮されない場合が生じ得ることを見出し、さらに特定条件下におけるヒートサイクル試験を行った場合に発生するクラックが、窒化アルミニウム結晶板の潜在欠陥を目視可能な亀裂へと成長させたものに対応し、上記クラック率が窒化アルミニウム焼結板の表面性状を評価するのに適していることを見出した。本開示は上記知見に基づいてなされたものである。 The above-mentioned aluminum nitride sintered body can exhibit excellent bending strength because the occurrence of cracks is suppressed to a predetermined value or less when a heat cycle test is performed under specific conditions. The inventors of the present invention have found through studies that if there is variation in the surface properties of the aluminum nitride sintered plate (for example, the degree of unevenness on the main surface, etc.), when an external force is applied to the aluminum nitride sintered plate, the relative It was found that stress concentration occurs in the weak part, and there may be cases where the expected bending strength is not exhibited. Furthermore, cracks that occur when a heat cycle test is performed under specific conditions are caused by aluminum nitride. It was found that the above crack rate corresponds to the development of visible cracks from latent defects in the crystal plate, and is suitable for evaluating the surface properties of aluminum nitride sintered plates. The present disclosure has been made based on the above findings.
 上記窒化アルミニウム焼結体は、一対の主面を有する板状であり、上記主面における最大高さ粗さRyと算術平均粗さRaとの差が6.00μm以下であってよい。最大高さ粗さRyと算術平均粗さRaとの差が上記範囲内であることで、主面における性状のバラつきを抑制し、熱応力をより均一に分散させることが可能となり、より優れた曲げ強さを発揮し得る。 The aluminum nitride sintered body has a plate shape having a pair of main surfaces, and the difference between the maximum height roughness Ry and the arithmetic mean roughness Ra on the main surfaces may be 6.00 μm or less. When the difference between the maximum height roughness Ry and the arithmetic mean roughness Ra is within the above range, it is possible to suppress the variation in properties on the main surface and to more uniformly disperse the thermal stress, resulting in a more excellent It can exhibit bending strength.
 上記最大高さ粗さRyが10.00μm未満であってよい。 The maximum height roughness Ry may be less than 10.00 μm.
 上記窒化アルミニウム粒子に対する電子顕微鏡画像解析によって測定される粒子径の累積頻度分布曲線において、小粒径からの積算値が全体の50%及び90%に達した時の粒子径を、それぞれd50及びd90としたときに、d90-d50の値が10.0μm未満であってよい。 In the cumulative frequency distribution curve of the particle size measured by electron microscope image analysis for the aluminum nitride particles, the particle size when the integrated value from the small particle size reaches 50% and 90% of the total is d50 and d90, respectively. , the value of d90-d50 may be less than 10.0 μm.
 本開示の一側面は、上述の窒化アルミニウム焼結体と、当該窒化アルミニウム焼結体に取り付けられている導体部と、を備える、回路基板を提供する。 One aspect of the present disclosure provides a circuit board comprising the aluminum nitride sintered body described above and a conductor portion attached to the aluminum nitride sintered body.
 上記回路基板は、上述の窒化アルミニウム焼結体を有することから、使用時の温度が高い場合であっても、部材間の変形に耐えることができ、優れた接続信頼性を発揮し得る。 Since the circuit board has the above-described aluminum nitride sintered body, even when the temperature during use is high, the circuit board can withstand deformation between members and exhibit excellent connection reliability.
 本開示の一側面は、上述の窒化アルミニウム焼結体と、当該窒化アルミニウム焼結体に取り付けられている金属板と、を備える積層基板を提供する。 One aspect of the present disclosure provides a laminated substrate comprising the aluminum nitride sintered body described above and a metal plate attached to the aluminum nitride sintered body.
 上記積層基板は、上述の窒化アルミニウム焼結体を有することから、使用時の温度が高い場合であっても、部材間の変形に耐えることができ、優れた接続信頼性を発揮し得る。 Since the laminated substrate has the above-described aluminum nitride sintered body, even when the temperature during use is high, it can withstand deformation between members and can exhibit excellent connection reliability.
 本開示の一側面は、窒化アルミニウム及び焼結助剤を含む混合物で構成される成形体を1~6時間焼成して焼結体を得る焼成工程と、上記焼結体を1400℃以上1700℃未満の温度で1時間以上加熱処理することでアニール処理物を得る工程と、上記アニール処理物の表面を研磨処理することで窒化アルミニウム焼結体を得る工程と、を有し、上記焼結助剤は酸化イットリウム及び酸化アルミニウムを含有し、上記酸化イットリウムに対する上記酸化アルミニウムの質量比が0.5未満であり、上記焼成工程は、1700℃以上1800℃未満の温度で1時以上加熱することによって、上記成形体から第一焼成体を得る工程と、1800~1900℃の温度で1時間以上加熱することによって、上記第一焼成体から上記焼結体を得る工程と、を含む、窒化アルミニウム焼結体の製造方法を提供する。 One aspect of the present disclosure is a firing step of obtaining a sintered body by firing a molded body composed of a mixture containing aluminum nitride and a sintering aid for 1 to 6 hours, and firing the sintered body at 1400 ° C. or higher and 1700 ° C. a step of obtaining an annealed product by heat treatment at a temperature of less than 1 hour or more; and a step of polishing the surface of the annealed product to obtain an aluminum nitride sintered body, the sintering aid The agent contains yttrium oxide and aluminum oxide, the mass ratio of the aluminum oxide to the yttrium oxide is less than 0.5, and the firing step includes heating at a temperature of 1700 ° C. or more and less than 1800 ° C. for 1 hour or more. , a step of obtaining a first fired body from the molded body, and a step of obtaining the sintered body from the first fired body by heating at a temperature of 1800 to 1900 ° C. for 1 hour or more. Provided is a method of manufacturing a body.
 上記窒化アルミニウム焼結体の製造方法では、所定の割合で配合された焼結助剤を使用し、少なくとも2段階の所定の焼成工程を経ることで得られる焼結体に対してアニール処理を行うことで、窒化アルミニウム結晶の粒子間に形成された焼結助剤に由来する複合化合物を改めて液相化することによって、焼結体表面に微細な窒化アルミニウム粒子の成長を促し、上記焼結体表面に発生した粒界や亀裂等の欠陥を修復し、また主面上の凹凸を軽減し、その後研磨処理を行うことによって得られる焼結体の主面をより一層均一化することができる。これにより、得られる窒化アルミニウム焼結体は、外力が加わった際、主面の性状のバラつきによって応力集中が生じることを抑制できる。すなわち上述の製造方法によれば、曲げ強さに優れる窒化アルミニウム焼結体を製造できる。 In the above method for producing an aluminum nitride sintered body, a sintering aid blended in a predetermined ratio is used, and the sintered body obtained by passing through at least two stages of predetermined firing processes is subjected to annealing treatment. As a result, the composite compound derived from the sintering aid formed between the particles of the aluminum nitride crystals is again liquefied to promote the growth of fine aluminum nitride particles on the surface of the sintered body, and the sintered body Defects such as grain boundaries and cracks occurring on the surface are repaired, unevenness on the main surface is reduced, and then the main surface of the sintered body obtained can be made more uniform by polishing. As a result, the aluminum nitride sintered body to be obtained can suppress the occurrence of stress concentration due to variations in the properties of the main surface when an external force is applied. That is, according to the manufacturing method described above, an aluminum nitride sintered body having excellent bending strength can be manufactured.
 本開示によれば、曲げ強さに優れる窒化アルミニウム焼結体及びその製造方法を提供できる。本開示によればまた、上記窒化アルミニウム焼結体を備え、接続信頼性に優れる積層基板及び回路基板を提供できる。 According to the present disclosure, an aluminum nitride sintered body with excellent bending strength and a method for producing the same can be provided. According to the present disclosure, it is also possible to provide a laminated substrate and a circuit substrate that are equipped with the aluminum nitride sintered body and have excellent connection reliability.
図1は、窒化アルミニウム焼結板の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of an aluminum nitride sintered plate. 図2は、積層基板の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of a laminated substrate. 図3は、回路基板の一例を示す斜視図である。FIG. 3 is a perspective view showing an example of a circuit board. 図4は、実施例1における窒化アルミニウム焼結板の製造工程におけるアニール処理物の主面、及び窒化アルミニウム焼結板の主面を示すSEM画像である。FIG. 4 is an SEM image showing the main surface of the annealed product and the main surface of the aluminum nitride sintered plate in the manufacturing process of the aluminum nitride sintered plate in Example 1. FIG. 図5は、比較例1における窒化アルミニウム焼結板の製造工程における研磨処理前の焼結板の主面、及び窒化アルミニウム焼結板の主面を示すSEM画像である。5 is an SEM image showing the main surface of the sintered plate before polishing and the main surface of the aluminum nitride sintered plate in the manufacturing process of the aluminum nitride sintered plate in Comparative Example 1. FIG.
 以下、場合によって図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合によって重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings as the case may be. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same functions, and duplicate descriptions are omitted depending on the case. In addition, unless otherwise specified, positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings. Furthermore, the dimensional ratio of each element is not limited to the illustrated ratio.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified. The content of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
 窒化アルミニウム焼結体の一実施形態は、窒化アルミニウム粒子と、焼結助剤粒子と、を含む。図1は、窒化アルミ焼結板の一例を示す斜視図である。窒化アルミニウム焼結板100は、一対の主面を有する板状に成形された窒化アルミニウム焼結体を示しているが、その形状は、例えば、シート状であってよく、通常、直方体形状である。上記焼結助剤粒子とは、焼結助剤に由来する成分を含む粒子である。 An embodiment of the aluminum nitride sintered body includes aluminum nitride particles and sintering aid particles. FIG. 1 is a perspective view showing an example of an aluminum nitride sintered plate. The aluminum nitride sintered plate 100 indicates a plate-shaped aluminum nitride sintered body having a pair of main surfaces, but its shape may be, for example, a sheet shape, and is usually a rectangular parallelepiped shape. . The sintering aid particles are particles containing a component derived from the sintering aid.
 上記窒化アルミニウム焼結板100は、金属板と積層して積層体を調製し、当該積層体を350℃の環境に5分間曝した後に、25℃の環境で5分間冷却した上記積層体を対象とし、-78℃の環境に5分間曝した後に、25℃に戻す操作を1サイクルとして、10サイクルのヒートサイクル試験を行った場合に、観測されるクラック率が9.00面積%未満である。上記クラック率は、例えば、8.00面積%以下、6.00面積%以下、5.00面積%以下、4.00面積%以下、3.00面積%以下、2.00面積%以下、又は1.00面積%以下であってよい。上記クラック率が上記範囲内であることで、曲げ強さにより優れる。上記クラック率の下限値は特に限定されるものではないが、例えば、0.01面積%以上であってよい。上記クラック率は上述の範囲内で調整してよく、例えば、0.01~9.00面積%であってよい。 The aluminum nitride sintered plate 100 is laminated with a metal plate to prepare a laminate, exposed to a 350 ° C. environment for 5 minutes, and then cooled for 5 minutes in a 25 ° C. environment. When a heat cycle test of 10 cycles is performed, with exposure to an environment of -78 ° C for 5 minutes and then returning to 25 ° C as one cycle, the observed crack rate is less than 9.00 area%. . The crack rate is, for example, 8.00 area% or less, 6.00 area% or less, 5.00 area% or less, 4.00 area% or less, 3.00 area% or less, 2.00 area% or less, or It may be 1.00 area % or less. When the crack rate is within the above range, the bending strength is excellent. Although the lower limit of the crack rate is not particularly limited, it may be, for example, 0.01 area % or more. The crack rate may be adjusted within the above range, and may be, for example, 0.01 to 9.00 area %.
 本明細書におけるクラック率は、所定条件のヒートサイクル試験によって決定することができる。ヒートサイクル試験には、銀(Ag)、銅(Cu)及び活性金属を含むろう材(Agが90質量部、Cuが10質量部、Snが3質量部、及びTiが3.5質量部である組成を有するろう材)を介して、ろう材層の厚みが15μmになるように、上記窒化アルミニウム焼結板100に銅板(厚み:0.3mm)を、接合温度:830℃、接合時間:1時間、真空度:1×10-3Paの条件で接合することによって作製された測定サンプル(積層体)を用いる。当該サンプルに対する所定条件でのヒートサイクル試験によって、クラック率を測定する。ヒートサイクル試験の具体的な方法は実施例に記載のとおりとする。 The crack rate in this specification can be determined by a heat cycle test under predetermined conditions. For the heat cycle test, a brazing material containing silver (Ag), copper (Cu) and an active metal (90 parts by weight of Ag, 10 parts by weight of Cu, 3 parts by weight of Sn, and 3.5 parts by weight of Ti) was used. A copper plate (thickness: 0.3 mm) was bonded to the aluminum nitride sintered plate 100 via a brazing material having a certain composition, so that the brazing material layer had a thickness of 15 μm. A measurement sample (laminate) prepared by bonding under the conditions of 1 hour and a degree of vacuum of 1×10 −3 Pa is used. A crack rate is measured by a heat cycle test on the sample under predetermined conditions. A specific method of the heat cycle test is as described in Examples.
 上記窒化アルミニウム焼結板100は、応力集中をより抑制し、曲げ強さをより向上させる観点から、対向する主面の少なくとも一方がより平滑であることが望ましく、両主面が平滑であることがより望ましい。上記窒化アルミニウム焼結板100は、少なくとも一方の主面における最大高さ粗さRyと算術平均粗さRaとの差が小さいことが好ましい。主面における最大高さ粗さRyと算術平均粗さRaとの差((Ry-Ra)の値)の上限値は、例えば、6.00μm以下、5.00μm以下、4.00μm以下、3.00μm以下、2.00μm以下、又は1.00μm以下であってよい。上記(Ry-Ra)の値の上限値が上記範囲内であることで、主面における性状のバラつきを抑制し、熱応力をより均一に分散させることが可能となり、より優れた曲げ強さを発揮し得る。(Ry-Ra)の値の下限値は特に限定されるものではなく、例えば、0.01μm超、又は1.00μm以上であってよい。上記(Ry-Ra)の値は上述の範囲内で調整してよく、例えば、0.01μm超6.00μm、又は1.00~6.00μmであってよい。 In the aluminum nitride sintered plate 100, from the viewpoint of further suppressing stress concentration and further improving bending strength, it is desirable that at least one of the opposing main surfaces is smoother, and both main surfaces are smooth. is more desirable. The aluminum nitride sintered plate 100 preferably has a small difference between the maximum height roughness Ry and the arithmetic mean roughness Ra on at least one main surface. The upper limit of the difference ((Ry-Ra) value) between the maximum height roughness Ry and the arithmetic mean roughness Ra on the main surface is, for example, 6.00 μm or less, 5.00 μm or less, 4.00 μm or less, 3 It may be 0.00 μm or less, 2.00 μm or less, or 1.00 μm or less. When the upper limit of the value of (Ry-Ra) is within the above range, it is possible to suppress the variation in properties on the main surface, disperse the thermal stress more uniformly, and improve the bending strength. can demonstrate. The lower limit of the value of (Ry-Ra) is not particularly limited, and may be, for example, more than 0.01 μm or 1.00 μm or more. The value of (Ry-Ra) may be adjusted within the range described above, and may be, for example, greater than 0.01 μm and 6.00 μm, or from 1.00 to 6.00 μm.
 上記窒化アルミニウム焼結板100の上記最大高さ粗さRyの上限値は、例えば、10.00μm未満、8.00μm以下、7.00μm以下、5.00μm以下、4.00μm以下、3.00μm以下、又は2.00μm以下であってよい。Ryの上限値が上記範囲内であることで、応力の集中をより抑制することができる。Ryの下限値は、例えば、0.30μm以上、0.60μm以上、又は1.00μm以上であってよい。Ryの下限値が上記範囲内であることで、窒化アルミニウム焼結板100の製造をより容易にすると共に、コストの上昇を抑制することができる。窒化アルミニウム焼結板100の最大高さ粗さRyの値は上述の範囲内で調整してよく、例えば、0.30~8.00μm、0.60~8.00μm、又は1.00~7.00μmであってよい。 The upper limit of the maximum height roughness Ry of the aluminum nitride sintered plate 100 is, for example, less than 10.00 μm, 8.00 μm or less, 7.00 μm or less, 5.00 μm or less, 4.00 μm or less, 3.00 μm or less, or 2.00 μm or less. When the upper limit of Ry is within the above range, stress concentration can be further suppressed. The lower limit of Ry may be, for example, 0.30 μm or more, 0.60 μm or more, or 1.00 μm or more. When the lower limit of Ry is within the above range, the production of the aluminum nitride sintered plate 100 can be facilitated, and an increase in cost can be suppressed. The value of the maximum height roughness Ry of the aluminum nitride sintered plate 100 may be adjusted within the above range, for example, 0.30 to 8.00 μm, 0.60 to 8.00 μm, or 1.00 to 7 00 μm.
 本明細書における最大高さ粗さRy及び算術平均粗さRaは、JIS B 0601:1994「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に記載された最大高さ粗さRy及び算術平均粗さRaを意味し、ライン接触式の測定器によって測定することができる。ライン接触式の側的としては、例えば、株式会社ミツトヨ製の「表面粗さ測定機サーフテスト SJ-301」(製品名)等を使用できる。 The maximum height roughness Ry and the arithmetic mean roughness Ra in this specification are described in JIS B 0601: 1994 "Product Geometric Characteristics Specifications (GPS)-Surface Texture: Contour Curve Method-Terms, Definitions and Surface Texture Parameters". It means the maximum height roughness Ry and the arithmetic mean roughness Ra, which can be measured by a line contact type measuring instrument. As for the line contact type, for example, "Surface Roughness Measuring Instrument Surftest SJ-301" (product name) manufactured by Mitutoyo Co., Ltd. can be used.
 窒化アルミニウム粒子に対する電子顕微鏡画像解析によって測定される粒子径の累積頻度分布曲線において、小粒径からの積算値が全体の50%及び90%に達した時の粒子径を、それぞれd50及びd90としたときに、d90-d50の値が小さいことが好ましい。d90-d50の値の上限値は、例えば、10.0μm未満、8.0μm以下、6.0μm以下、5.0μm以下、4.0μm以下、3.0μm以下、又は2.0μm以下であってよい。d90-d50の値の上限値が上記範囲内であることで、窒化アルミニウム粒子のバラつきが少なく、窒化アルミニウム焼結板100の主面において大きな欠損が発生することを抑制することができ、曲げ強さをより向上できる。d90-d50の値の下限値は、例えば、0.1μm以上、0.5μm以上、又は1.0μm以上であってよい。d90-d50の値の下限値が上記範囲内であることで、窒化アルミニウム焼結板100の製造をより容易にすると共に、コストの上昇を抑制することができる。 In the cumulative frequency distribution curve of particle diameters measured by electron microscope image analysis for aluminum nitride particles, the particle diameters when the integrated value from the small particle diameter reaches 50% and 90% of the total are d50 and d90, respectively. , it is preferable that the value of d90-d50 is small. The upper limit of the value of d90-d50 is, for example, less than 10.0 μm, 8.0 μm or less, 6.0 μm or less, 5.0 μm or less, 4.0 μm or less, 3.0 μm or less, or 2.0 μm or less. good. When the upper limit of the value of d90-d50 is within the above range, there is little variation in the aluminum nitride particles, and it is possible to suppress the occurrence of large defects on the main surface of the aluminum nitride sintered plate 100, and the bending strength can be improved. The lower limit of the value of d90-d50 may be, for example, 0.1 μm or more, 0.5 μm or more, or 1.0 μm or more. When the lower limit of the value of d90-d50 is within the above range, the production of the aluminum nitride sintered plate 100 can be facilitated and an increase in cost can be suppressed.
 窒化アルミニウム粒子のd90の上限値は、例えば、15.0μm以下、14.0μm以下、13.0μm以下、12.0μm以下、11.0μm以下、10.0μm以下、9.0μm以下、8.0μm以下、又は7.0μm以下であってよい。d90の上限値が上記範囲内であることは、窒化アルミニウム焼結板100中に粗大粒子の生成が抑制されていることを意味し、焼結体組織がより一層均一であることを意味する。すなわち、外部から力が加えられた際の応力集中が生じることを抑制し、焼結板の曲げ強さをより向上することができる。d90の下限値は、例えば、4.0μm以上、4.5μm以上、又は5.0μm以上であってよい。d90の下限値が上記範囲内であることで、優れた曲げ強さを発揮すると共に、熱伝導率などの他の特性の低下を抑制することができる。d90の下限値が上記範囲内であることでまた、窒化アルミニウム焼結板100の製造をより容易にすると共に、コストの上昇を抑制することができる。d90は上述の範囲内で調整してよく、例えば、4.0~15.0μm、又は5.0~15.0μmであってよい。 The upper limit of d90 of aluminum nitride particles is, for example, 15.0 μm or less, 14.0 μm or less, 13.0 μm or less, 12.0 μm or less, 11.0 μm or less, 10.0 μm or less, 9.0 μm or less, 8.0 μm or less, or 7.0 μm or less. The fact that the upper limit of d90 is within the above range means that the formation of coarse particles in the aluminum nitride sintered plate 100 is suppressed, and that the structure of the sintered body is more uniform. That is, it is possible to suppress the occurrence of stress concentration when force is applied from the outside, and to further improve the bending strength of the sintered plate. The lower limit of d90 may be, for example, 4.0 μm or more, 4.5 μm or more, or 5.0 μm or more. When the lower limit of d90 is within the above range, it is possible to exhibit excellent bending strength and suppress deterioration of other properties such as thermal conductivity. When the lower limit of d90 is within the above range, it is possible to facilitate the production of the aluminum nitride sintered plate 100 and to suppress an increase in cost. d90 may be adjusted within the ranges described above, and may be, for example, 4.0 to 15.0 μm, or 5.0 to 15.0 μm.
 本明細書におけるd50及びd90は、以下の方法で測定される値を意味する。まず、窒化アルミニウム焼結板100の厚み方向に水平な断面の走査型電子顕微鏡画像(2000倍で観察)を取得する。測定対象は窒化アルミニウム焼結板100の主面から厚み方向に50μmだけ掘り下げた位置とする。取得した画像における任意の位置において、50μm×50μmの領域を決定し、画像解析ソフトを用いて、窒化アルミニウム粒子の粒度分布を作成する。上述のようにして得られた、電子顕微鏡画像解析によって測定される粒子径の累積頻度分布曲線における小粒子径側からの累積頻度が50%となる粒子径及び90%となる粒子径をそれぞれ決定する。同画像において、上述と同様にして、5個の領域について粒子径を決定し、その算術平均値をそれぞれ窒化アルミニウムのd50及びd90とする。なお、窒化アルミニウム粒子の形状は通常一定でない。そこで、窒化アルミニウム粒子の粒径は、測定対象となる粒子の外周の最も離れた二点の距離とする。画像解析ソフトは、例えば、GNU GPLの下で配布されている「GIMP2」(商品名)又は「imageJ」(商品名)等を使用できる。  d50 and d90 in this specification mean values measured by the following method. First, a scanning electron microscope image (observed at a magnification of 2000) of a cross section horizontal to the thickness direction of the aluminum nitride sintered plate 100 is obtained. The object to be measured is a position that is dug down by 50 μm from the main surface of the aluminum nitride sintered plate 100 in the thickness direction. A region of 50 μm×50 μm is determined at an arbitrary position in the acquired image, and the particle size distribution of the aluminum nitride particles is created using image analysis software. Determine the particle diameter at which the cumulative frequency from the small particle diameter side in the cumulative frequency distribution curve of the particle diameter measured by electron microscope image analysis obtained as described above is 50% and the particle diameter at which the cumulative frequency is 90%. do. In the same image, the particle diameters are determined for five regions in the same manner as described above, and the arithmetic mean values are taken as the d50 and d90 of aluminum nitride, respectively. Incidentally, the shape of the aluminum nitride particles is usually not constant. Therefore, the particle diameter of aluminum nitride particles is defined as the distance between the two most distant points on the circumference of the particle to be measured. For image analysis software, for example, "GIMP2" (trade name) or "imageJ" (trade name) distributed under the GNU GPL can be used.
 窒化アルミニウム焼結板100の厚さの上限値は、例えば、1.0mm以下、0.9mm以下、0.8mm以下、又は0.7mm以下であってよい。厚さの上限値が上記範囲内であることで、放熱シートの構成部材として用いた際の放熱性を向上し得る。窒化アルミニウム焼結板100の厚さの下限値は、例えば、0.15mm以上、又は0.20mm以上であってよい。厚さの下限値が上記範囲内であると、上記窒化アルミニウム焼結板を用いて調製される回路基板全体の放熱特性及び熱抵抗率が向上させることができる。窒化アルミニウム焼結板100の厚さは上述の範囲内で調整してよく、例えば、0.20~1.0mmであってよい。 The upper limit of the thickness of the aluminum nitride sintered plate 100 may be, for example, 1.0 mm or less, 0.9 mm or less, 0.8 mm or less, or 0.7 mm or less. When the upper limit of the thickness is within the above range, the heat dissipation can be improved when used as a constituent member of the heat dissipation sheet. The lower limit of the thickness of the aluminum nitride sintered plate 100 may be, for example, 0.15 mm or more, or 0.20 mm or more. When the lower limit of the thickness is within the above range, the heat dissipation properties and thermal resistivity of the entire circuit board prepared using the aluminum nitride sintered plate can be improved. The thickness of the aluminum nitride sintered plate 100 may be adjusted within the above range, and may be, for example, 0.20-1.0 mm.
 上記窒化アルミニウム焼結板100は曲げ強さに優れる。上記窒化アルミニウム焼結板100の曲げ強さは、例えば、370MPa以上、390MPa以上、400MPa以上、450MPa以上、又は500MPa以上とすることができる。本明細書における曲げ強さは、JIS C 2141:1992「電気絶縁用セラミック材料試験方法」に記載の方法に準拠して測定される値を意味する。具体的には、本明細書の実施例に記載の方法に沿って測定する。 The aluminum nitride sintered plate 100 has excellent bending strength. The bending strength of the aluminum nitride sintered plate 100 can be, for example, 370 MPa or more, 390 MPa or more, 400 MPa or more, 450 MPa or more, or 500 MPa or more. Bending strength in this specification means a value measured according to the method described in JIS C 2141:1992 "Electrical insulating ceramic material test method". Specifically, it is measured according to the method described in the Examples of this specification.
 上記窒化アルミニウム焼結板100は組織が均一であることから、上述の曲げ強さの分布も十分抑制されている。上記窒化アルミニウム焼結板100は、その曲げ強さに対するワイブル統計による解析において、ワイブル係数が比較的大きなものとなっている。上記窒化アルミニウム焼結板100の曲げ強さに対する上記ワイブル係数は、例えば、10.0以上、12.0以上。13.0以上、14.0以上、15.0以上、又は16.0以上とすることもできる。 Since the aluminum nitride sintered plate 100 has a uniform structure, the bending strength distribution is sufficiently suppressed. The aluminum nitride sintered plate 100 has a relatively large Weibull coefficient in the Weibull statistical analysis of its bending strength. The Weibull coefficient with respect to the bending strength of the aluminum nitride sintered plate 100 is, for example, 10.0 or more, 12.0 or more. It can be 13.0 or more, 14.0 or more, 15.0 or more, or 16.0 or more.
 ワイブル統計は、曲げ強さの分布を評価するために用いられる。窒化アルミニウム焼結板100について、縦軸に破壊確率F(σ)、横軸に曲げ強さσ(破壊時強度、抗折強度)を取ったワイブルプロットを作成した場合の、傾きmがワイブル係数である。ワイブル係数が大きいことは、曲げ強さの分布が狭く、正規分布に近くなることを意味する。ワイブルプロットにおける破壊確率F(σ)は、下記式(1)で与えられる。
 F(σ)=1-exp[-(σ/η)]・・・(1)
 上記式(1)中、ηはフィッティングパラメータである。
Weibull statistics are used to evaluate the distribution of flexural strength. Regarding the aluminum nitride sintered plate 100, when a Weibull plot is created in which the vertical axis is the fracture probability F (σ) and the horizontal axis is the bending strength σ (strength at break, bending strength), the slope m is the Weibull coefficient. is. A large Weibull modulus means that the bending strength distribution is narrow and close to normal distribution. The failure probability F(σ) in the Weibull plot is given by the following formula (1).
F(σ)=1−exp[−(σ/η) m ] (1)
In the above formula (1), η is a fitting parameter.
 上述の窒化アルミニウム焼結体は、例えば、以下のような方法で製造することができる。窒化アルミニウム焼結体の製造方法の一実施形態は、窒化アルミニウム及び焼結助剤を含む混合物で構成される成形体を1~6時間焼成して焼結体を得る焼成工程と、上記焼結体を1400℃以上1700℃未満の温度で1時間以上加熱処理することでアニール処理物を得る工程(以下、アニール工程ともいう)と、上記アニール処理物の表面を研磨処理することで窒化アルミニウム焼結体を得る工程(以下、研磨工程ともいう)と、を有する。 The aluminum nitride sintered body described above can be produced, for example, by the following method. One embodiment of a method for producing an aluminum nitride sintered body includes a firing step of obtaining a sintered body by firing a molded body composed of a mixture containing aluminum nitride and a sintering aid for 1 to 6 hours; A step of obtaining an annealed product by heat-treating the body at a temperature of 1400 ° C. or more and less than 1700 ° C. for 1 hour or more (hereinafter also referred to as an annealing step); and a step of obtaining a body (hereinafter also referred to as a polishing step).
 まず、原料を準備する。原料としては、例えば、窒化アルミニウム、焼結助剤、及び、必要に応じて添加剤を用いる。添加剤としては、バインダー、可塑剤、分散媒、及び離型剤等が挙げられる。バインダーとしては、例えば、可塑性又は界面活性効果を有するメチルセルロース系のもの、熱分解性に優れたアクリル酸エステル系のものが挙げられる。可塑剤としては、例えば、グリセリン等が挙げられる。分散媒としては、例えば、イオン交換水及びエタノール等が挙げられる。 "First, prepare the ingredients." As raw materials, for example, aluminum nitride, sintering aids, and, if necessary, additives are used. Additives include binders, plasticizers, dispersion media, release agents, and the like. Binders include, for example, methylcellulose-based binders having plasticity or surfactant effects, and acrylic acid ester-based binders having excellent thermal decomposability. Examples of plasticizers include glycerin and the like. Dispersion media include, for example, ion-exchanged water and ethanol.
 窒化アルミニウムは、特に限定されるものではなく、金属アルミニウムを窒素雰囲気下で窒化する直接窒化法、及び、酸化アルミニウムをカーボンで還元する還元窒化法等、公知の方法で製造された窒化アルミニウム粉末を使用できる。 Aluminum nitride is not particularly limited, and aluminum nitride powder produced by a known method such as a direct nitriding method in which metal aluminum is nitrided in a nitrogen atmosphere, and a reduction nitriding method in which aluminum oxide is reduced with carbon. Available.
 上記焼結助剤は酸化イットリウム及び酸化アルミニウムを含有する。焼結助剤は粒状物であってよい。酸化イットリウムに対する酸化アルミニウムの質量比(酸化アルミニウムの含有量/酸化イットリウムの含有量の値)は、0.5未満である。これによって、窒化アルミニウム焼結板における酸化物の凝集を抑制することができる。酸化イットリウム及び酸化アルミニウムの配合割合は上述の範囲内で調整することができ、これによって窒化アルミニウム焼結板における酸化物の組成を調整することもできる。酸化アルミニウム及び酸化イットリウムは、焼結の際に、複合酸化物の液相を形成して焼結を促進する。これによって、窒化アルミニウム焼結板が十分に緻密化させることができる。 The sintering aid contains yttrium oxide and aluminum oxide. The sintering aid may be particulate. The mass ratio of aluminum oxide to yttrium oxide (content of aluminum oxide/content of yttrium oxide) is less than 0.5. Thereby, aggregation of oxides in the aluminum nitride sintered plate can be suppressed. The mixing ratio of yttrium oxide and aluminum oxide can be adjusted within the range described above, thereby adjusting the oxide composition in the aluminum nitride sintered plate. Aluminum oxide and yttrium oxide form a liquid phase of a composite oxide during sintering to promote sintering. Thereby, the aluminum nitride sintered plate can be sufficiently densified.
 上記焼結助剤の含有量は、窒化アルミニウム100質量部に対して、例えば、1~10.0質量部であってよい。焼結剤の含有量を上記範囲内とすることで、得られる窒化アルミニウム焼結体の密度を向上させ、曲げ強さをより向上させることができる。焼結助剤の含有量を上記範囲内とすることでまた、得られる窒化アルミニウム焼結体の熱伝導率を向上させることができる。上記焼結助剤の含有量は焼結助剤の酸化物換算量で計算した値である。 The content of the sintering aid may be, for example, 1 to 10.0 parts by mass with respect to 100 parts by mass of aluminum nitride. By setting the content of the sintering agent within the above range, the density of the obtained aluminum nitride sintered body can be improved, and the bending strength can be further improved. By setting the content of the sintering aid within the above range, the thermal conductivity of the obtained aluminum nitride sintered body can be improved. The content of the sintering aid is a value calculated from the amount of the sintering aid in terms of oxide.
 また、酸化アルミニウムの含有量は、窒化アルミニウム100質量部に対して、例えば、0.1~5.0質量部であってよい。酸化アルミニウムの含有量を0.1質量部以上とすることで、得られる窒化アルミニウム焼結体の密度をより向上させることができる。また酸化アルミニウムの含有量を5.0質量部以下とすることで、窒化アルミニウムの相対的な含有割合を増加させることができ、得られる窒化アルミニウム焼結体の熱伝導率の低下をより抑制することができる。 Also, the content of aluminum oxide may be, for example, 0.1 to 5.0 parts by mass with respect to 100 parts by mass of aluminum nitride. By setting the content of aluminum oxide to 0.1 parts by mass or more, the density of the obtained aluminum nitride sintered body can be further improved. In addition, by setting the content of aluminum oxide to 5.0 parts by mass or less, the relative content of aluminum nitride can be increased, and the decrease in thermal conductivity of the obtained aluminum nitride sintered body can be further suppressed. be able to.
 窒化アルミニウム、焼結助剤及び必要に応じて添加される添加剤は、配合して混合し、成形原料として用いてよい。成形原料をドクターブレード法等の公知の方法によって例えばシート状に成形してよい。得られた成形体の脱脂を行ってもよい。脱脂方法は特に限定されず、例えば、成形体を空気中又は窒素等の非酸化雰囲気中で300~700℃に加熱して行ってよい。加熱時間は、例えば1~10時間であってよい。 The aluminum nitride, the sintering aid, and the additive added as necessary may be blended and mixed and used as a forming raw material. The forming raw material may be formed, for example, into a sheet by a known method such as a doctor blade method. The molded body obtained may be degreased. The degreasing method is not particularly limited, and for example, the compact may be heated to 300 to 700° C. in air or in a non-oxidizing atmosphere such as nitrogen. The heating time may be, for example, 1 to 10 hours.
 窒化アルミニウム焼結体は、上述の成形体を焼成して得ることができる。焼成の工程(以下、焼成工程ともいう)は、不活性ガス雰囲気中で行ってよい。不活性ガスとしては、例えば、窒素であってよい。焼成工程は、大気圧下で行ってもよい。 The aluminum nitride sintered body can be obtained by firing the above compact. The baking step (hereinafter also referred to as the baking step) may be performed in an inert gas atmosphere. The inert gas may be nitrogen, for example. The firing step may be performed under atmospheric pressure.
 焼成工程では、窒化アルミニウム及び焼結助剤を含む混合物で構成される成形体を1~6時間焼成して焼結体を得る(焼成時間が1~6時間である)。焼成工程は、1700℃以上1800℃未満の温度で1時以上加熱することによって、上記成形体から第一焼成体を得る工程(以下、第一焼成工程ともいう)と、1800~1900℃の温度で1時間以上加熱することによって、上記第一焼成体から上記焼結体を得る工程(以下、第二焼成工程ともいう)と、を含む。 In the firing step, a molded body composed of a mixture containing aluminum nitride and a sintering aid is fired for 1 to 6 hours to obtain a sintered body (the firing time is 1 to 6 hours). The firing step includes a step of obtaining a first fired body from the molded body by heating at a temperature of 1700 ° C. or more and less than 1800 ° C. for 1 hour or more (hereinafter also referred to as a first firing step), and a temperature of 1800 to 1900 ° C. and a step of obtaining the sintered body from the first sintered body by heating at for one hour or more (hereinafter also referred to as a second sintering step).
 本明細書における焼成時間とは、上記成形体等の焼成対象物の置かれる雰囲気の温度が、上記焼成温度に到達してから、その温度に保持する時間を意味する。 The term "firing time" as used herein refers to the time during which the temperature of the atmosphere in which the object to be fired, such as the molded article, is placed reaches the firing temperature and is maintained at that temperature.
 第一焼成工程の焼成温度は、焼結助剤の組成等によって選択することができ、例えば、1750℃以下、1730℃以下、又は1720℃以下であってよい。第一焼成工程の上記焼成温度に到達するまでの昇温速度は比較的大きくてよく、例えば、20℃/分以上、又は30℃/分以上であってよい。第一焼成工程で、好ましくは上記焼成温度に所定時間保持する。第一焼成工程における焼成時間は、例えば、1.0時間以上、2.0時間以上、又は2.5時間以上であってよい。 The firing temperature in the first firing step can be selected depending on the composition of the sintering aid, and may be, for example, 1750°C or lower, 1730°C or lower, or 1720°C or lower. The rate of temperature increase until the firing temperature in the first firing step is reached may be relatively high, for example, 20° C./min or more, or 30° C./min or more. In the first sintering step, the sintering temperature is preferably maintained for a predetermined period of time. The firing time in the first firing step may be, for example, 1.0 hours or longer, 2.0 hours or longer, or 2.5 hours or longer.
 第二焼成工程の焼成温度は、得られる焼結体の組織密度を向上させる観点から、例えば、1850℃未満、1840℃未満、又は1830℃以下であってよい。第二焼成工程の上記焼成温度に到達するまでの昇温速度は、例えば、0.5℃/分以上、又は1.0℃/分以上であってよい。第二焼成工程で、好ましくは上記焼成温度に所定時間保持する。第二焼成工程における焼成時間は、例えば、1.0時間以上、1.5時間以上、又は2.0時間以上であってよい。 From the viewpoint of improving the texture density of the resulting sintered body, the firing temperature in the second firing step may be, for example, less than 1850°C, less than 1840°C, or 1830°C or less. The rate of temperature increase until reaching the firing temperature in the second firing step may be, for example, 0.5° C./min or more, or 1.0° C./min or more. In the second sintering step, the sintering temperature is preferably maintained for a predetermined period of time. The firing time in the second firing step may be, for example, 1.0 hours or longer, 1.5 hours or longer, or 2.0 hours or longer.
 上記焼成工程の焼成時間は合計で6.0時間以下であるが、例えば、5.0時間以下、又は4.0時間以下であってよい。焼成時間の合計を上記範囲内とすることによって、上記成形体又は窒化アルミニウム焼結体の表層における焼結助剤が成形体又は窒化アルミニウム焼結板の外部へと抜けることを低減することができ、表面粗さを低減することができる。上記焼成工程の焼成時間は合計で、例えば、1.0時間以上、2.0時間以上、又は3.0時間以上であってよい。焼成時間の合計を上記範囲内とすることによって、焼結助剤を溶融させ、窒化アルミニウムの粒子の溶解を十分なものとし、より均一な環境で窒化アルミニウムの粒子の際成長を行うことができるため一層均一な粒度分布を有する窒化アルミニウム焼結体を調製することができる。上記焼成工程の焼成時間は上述の範囲内で調整でき、例えば、1.0~4.0時間であってよい。 The firing time of the firing step is 6.0 hours or less in total, but may be, for example, 5.0 hours or less or 4.0 hours or less. By setting the total firing time within the above range, it is possible to reduce the leakage of the sintering aid in the surface layer of the molded body or aluminum nitride sintered body to the outside of the molded body or aluminum nitride sintered plate. , the surface roughness can be reduced. The total firing time of the firing step may be, for example, 1.0 hours or more, 2.0 hours or more, or 3.0 hours or more. By setting the total firing time within the above range, the sintering aid is melted, the aluminum nitride particles are sufficiently dissolved, and the grain growth of the aluminum nitride particles can be performed in a more uniform environment. Therefore, an aluminum nitride sintered body having a more uniform particle size distribution can be prepared. The firing time of the firing step can be adjusted within the range described above, and may be, for example, 1.0 to 4.0 hours.
 アニール工程は、焼成工程で得られた焼結体の主面上において、窒化アルミニウム結晶の粒子間に形成された焼結助剤に由来する複合化合物を改めて液相化することによって、微細な窒化アルミニウムの粒子を形成し、上記焼結体表面に発生した粒界や亀裂等の欠陥を修復し、また主面上における凹凸を軽減して、その上で続く研磨処理を行うことで、従来よりも主面における凹凸が軽減された窒化アルミニウム焼結体を調製できる。従来の窒化アルミニウム焼結体の製造方法においても研磨処理を行う場合はあるが、表面に窒化アルミニウムの粗大粒子が存在する等の事情によって、研磨前の凹凸が大きく研磨量を多くする必要がり、この過程で窒化アルミニウムの粗大粒子が表面から脱粒すると、大きな凹部が形成されるといった場合がある。これによって、従来の窒化アルミニウム焼結板の製造方法の場合、表面を平滑化するのは容易ではない。本開示の製造方法では、焼結工程において窒化アルミニウム粒子の粗大化を抑制し、均質化すると共に、アニール工程を介することによって、研磨量の増大を抑制し、更には脱粒の頻度を低下させることによって、より平滑で均質な主面を有する窒化アルミニウム焼結体を調製できる。 In the annealing step, on the main surface of the sintered body obtained in the firing step, the composite compound derived from the sintering aid formed between the grains of the aluminum nitride crystals is re-liquidized to form fine nitriding. By forming aluminum particles, repairing defects such as grain boundaries and cracks generated on the surface of the sintered body, reducing unevenness on the main surface, and then performing a subsequent polishing treatment, It is also possible to prepare an aluminum nitride sintered body with reduced unevenness on the main surface. Polishing is sometimes performed in the conventional method of manufacturing an aluminum nitride sintered body, but due to circumstances such as the presence of coarse particles of aluminum nitride on the surface, the unevenness before polishing is large, and it is necessary to increase the amount of polishing. If coarse particles of aluminum nitride shed from the surface during this process, large recesses may be formed. For this reason, it is not easy to smooth the surface in the conventional method of manufacturing an aluminum nitride sintered plate. In the production method of the present disclosure, the aluminum nitride particles are suppressed from being coarsened and homogenized in the sintering step, and the annealing step is performed to suppress an increase in the amount of polishing and further reduce the frequency of shedding. can prepare an aluminum nitride sintered body having a smoother and more homogeneous primary surface.
 アニール工程における加熱温度は、1400℃以上1700℃未満である。アニール工程における加熱温度は、例えば、1650℃以下、又は1600℃以下であってよい。加熱温度の上限値を上記範囲内とすることで、窒化アルミニウム粒子の粗大化を抑制しつつ、焼結体表面に窒化アルミニウムの微細な粒子を形成することができる。アニール工程における加熱温度の下限値は、例えば、1400℃以上であってよい。加熱温度の下限値を上記範囲内とすることで、焼結体表面における窒化アルミニウムの微細な粒子の形成を促進することができる。アニール工程における加熱温度は上述の範囲内で調整してよく、例えば、1400~1600℃であってよい。 The heating temperature in the annealing process is 1400°C or more and less than 1700°C. The heating temperature in the annealing step may be, for example, 1650° C. or lower, or 1600° C. or lower. By setting the upper limit of the heating temperature within the above range, fine particles of aluminum nitride can be formed on the surface of the sintered body while suppressing coarsening of the aluminum nitride particles. The lower limit of the heating temperature in the annealing step may be, for example, 1400° C. or higher. By setting the lower limit of the heating temperature within the above range, the formation of fine particles of aluminum nitride on the surface of the sintered body can be promoted. The heating temperature in the annealing step may be adjusted within the range described above, and may be, for example, 1400-1600.degree.
 アニール工程における加熱時間は、1時間以上であるが、例えば、2時間以上であってよい。加熱時間の下限値を上記範囲内とすることで、液相反応を促進し、微細な窒化アルミニウムの粒子をより十分に析出させることができる。アニール工程における加熱時間の上限値は、例えば、6時間以下であってよい。加熱時間の上限値を上記範囲内とすることで、主面における窒化アルミニウム粒子の粗大化を抑制できる。アニール工程における加熱時間は上述の範囲内で調整してよく、例えば、1~6時間であってよい。 The heating time in the annealing step is 1 hour or longer, but may be 2 hours or longer, for example. By setting the lower limit of the heating time within the above range, the liquid phase reaction can be promoted and the fine aluminum nitride particles can be precipitated more sufficiently. The upper limit of the heating time in the annealing step may be, for example, 6 hours or less. By setting the upper limit of the heating time within the above range, coarsening of the aluminum nitride particles on the main surface can be suppressed. The heating time in the annealing step may be adjusted within the above range, and may be, for example, 1 to 6 hours.
 研磨工程は、例えば、ホーニング処理等によって行うことができる。ホーニング処理は、例えば、アニール処理物の表面を研磨圧力:0.15~0.35MPa、研磨量:2~10μm、時間:1~5分間の条件で行うことができる。 The polishing process can be performed by, for example, honing treatment. The honing treatment can be performed, for example, on the surface of the annealed object under conditions of polishing pressure: 0.15 to 0.35 MPa, polishing amount: 2 to 10 μm, and time: 1 to 5 minutes.
 上述の製造方法によって得られた窒化アルミニウム焼結板は、必要に応じて所望の形状に加工してもよい。窒化アルミニウム焼結体は、例えば、一対の主面を有する板状に加工され、窒化アルミニウム焼結板とされてもよい。窒化アルミニウム焼結体に金属回路又は金属板等の金属部を取り付けて基板としてもよい。基板は、例えば、窒化アルミニウム焼結板の主面と銅板等の金属板の主面とを接合した積層基板であってよい。また、金属板の一部をエッチング等によって除去して導体部となる回路パターンが形成された回路基板であってもよい。このように、本開示の基板は、積層基板であってよく、回路基板であってもよい。板状の場合、窒化アルミニウム焼結体の厚みの下限値は、例えば、0.10mm以上、0.20mm以上、又は0.25mm以上であってよい。板状の場合、窒化アルミニウム焼結体の厚みの上限値は、例えば、3.00mm以下、1.50mmm以下、又は1.00mm以下であってよい。窒化アルミニウム焼結体の厚みは上述の範囲内で調整することがき、例えば、0.10~3.00mm、又は0.25~1.00mmであってよい。窒化アルミニウム焼結体の厚みを上述の範囲内とすることで、回路基板全体の放熱特性及び熱抵抗率をより高水準で両立することができる。 The aluminum nitride sintered plate obtained by the manufacturing method described above may be processed into a desired shape as necessary. The aluminum nitride sintered body may be processed into, for example, a plate having a pair of main surfaces to form an aluminum nitride sintered plate. A metal part such as a metal circuit or a metal plate may be attached to the aluminum nitride sintered body to form the substrate. The substrate may be, for example, a laminated substrate in which a main surface of a sintered aluminum nitride plate and a main surface of a metal plate such as a copper plate are bonded together. Moreover, it may be a circuit board having a circuit pattern formed by removing a part of a metal plate by etching or the like to form a conductor portion. Thus, the substrate of the present disclosure may be a laminate substrate or a circuit substrate. In the case of a plate shape, the lower limit of the thickness of the aluminum nitride sintered body may be, for example, 0.10 mm or more, 0.20 mm or more, or 0.25 mm or more. In the case of a plate shape, the upper limit of the thickness of the aluminum nitride sintered body may be, for example, 3.00 mm or less, 1.50 mm or less, or 1.00 mm or less. The thickness of the aluminum nitride sintered body can be adjusted within the above range, and may be, for example, 0.10-3.00 mm, or 0.25-1.00 mm. By setting the thickness of the aluminum nitride sintered body within the above range, both the heat dissipation characteristics and the thermal resistivity of the entire circuit board can be achieved at higher levels.
 積層基板の一実施形態は、上述の窒化アルミニウム焼結板と、当該窒化アルミニウム焼結板に取り付けられている金属板と、を備える。図2は、積層基板の一例を示す斜視図である。積層基板200は、互いに対向するように配置された一対の金属板110と、一対の金属板110の間に窒化アルミニウム焼結板100と、を備える。金属板110としては、例えば、銅板等が挙げられる。窒化アルミニウム焼結板100と、金属板110の形状及びサイズは同じであってもよいし、異なっていてもよい。金属板110と窒化アルミニウム焼結板100は、例えば、ろう材によって接合されていてもよい。一対の金属板110の一方を放熱材とし、他方を回路パターンに加工してもよい。回路パターンは、レジストを用いて金属板110をエッチングして形成してもよい。これによって、漏れ電流等を十分に抑制することが可能な回路基板を形成したり、放熱基板を形成したりすることができる。 An embodiment of the laminated substrate comprises the aluminum nitride sintered plate described above and a metal plate attached to the aluminum nitride sintered plate. FIG. 2 is a perspective view showing an example of a laminated substrate. The laminated substrate 200 includes a pair of metal plates 110 arranged to face each other, and an aluminum nitride sintered plate 100 between the pair of metal plates 110 . Examples of the metal plate 110 include a copper plate. The shape and size of the aluminum nitride sintered plate 100 and the metal plate 110 may be the same or different. The metal plate 110 and the aluminum nitride sintered plate 100 may be joined with, for example, brazing material. One of the pair of metal plates 110 may be used as a heat dissipation material, and the other may be processed into a circuit pattern. The circuit pattern may be formed by etching the metal plate 110 using a resist. As a result, it is possible to form a circuit board capable of sufficiently suppressing leakage current or the like, or to form a heat dissipation board.
 回路基板の一実施形態は、上述の窒化アルミニウム焼結板と、当該窒化アルミニウム焼結板に取り付けられている導体部と、を備える。図3は、回路基板の一例を示す斜視図である。回路基板300は、窒化アルミニウム焼結板100と、複数の導体部20と、金属板110と、を備える。導体部20は、窒化アルミニウム焼結板100の一方の主面100A上に設けられ、金属板110は、窒化アルミニウム焼結板100の他方面に設けられる。回路基板300をパワーモジュールに用いた場合に、金属板110は、放熱材として機能してもよい。 An embodiment of the circuit board includes the aluminum nitride sintered plate described above and a conductor portion attached to the aluminum nitride sintered plate. FIG. 3 is a perspective view showing an example of a circuit board. The circuit board 300 includes an aluminum nitride sintered plate 100 , a plurality of conductor portions 20 and a metal plate 110 . Conductor portion 20 is provided on one main surface 100A of aluminum nitride sintered plate 100 , and metal plate 110 is provided on the other surface of aluminum nitride sintered plate 100 . When the circuit board 300 is used for a power module, the metal plate 110 may function as a heat dissipation material.
 積層基板200及び回路基板300における窒化アルミニウム焼結板100は、電気絶縁性及び熱伝導性に優れる窒化アルミニウム焼結板で構成される。このため、パワーモジュール等の種々の製品に用いたときに優れた信頼性を有する。 The aluminum nitride sintered plate 100 in the laminated substrate 200 and the circuit board 300 is composed of an aluminum nitride sintered plate with excellent electrical insulation and thermal conductivity. Therefore, it has excellent reliability when used in various products such as power modules.
 以上、本開示の幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、本開示の基板の形状及び構造は、図2及び図3のものに限定されない。例えば、窒化アルミニウム焼結板100の両方の主面に、回路パターンが形成されていてもよい。また、導体部20は、金属板110をエッチングして形成することに代えて、金属粉末を溶射し熱処理することによって形成してもよい。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments. For example, the shape and structure of the substrates of the present disclosure are not limited to those of FIGS. For example, circuit patterns may be formed on both main surfaces of the aluminum nitride sintered plate 100 . Also, instead of etching the metal plate 110, the conductor portion 20 may be formed by spraying metal powder and heat-treating it. Also, the descriptions of the above-described embodiments can be applied to each other.
 以下、本開示について、実施例及び比較例を用いてより詳細に説明する。なお、本開示は以下の実施例に限定されるものではない。 Hereinafter, the present disclosure will be described in more detail using examples and comparative examples. It should be noted that the present disclosure is not limited to the following examples.
(実施例1)
(窒化アルミニウム焼結板の作製)
 窒化アルミニウムの粉末100質量部にたいして、焼結助剤として酸化イットリウム粉末6.0質量部、及びα-酸化アルミニウム0.3質量部を配合し、ボールミルを用いて混合して混合粉末を得た。混合粉末100質量部に対し、セルロースエーテル系バインダー(信越化学工業株式会社製、商品名:メトローズ)を6質量部、グリセリン(花王株式会社製、商品名:エキセパール)を5質量部、及びイオン交換水を10質量部添加して、ヘンシェルミキサーを用いて1分間混合し、成形原料を得た。
(Example 1)
(Production of aluminum nitride sintered plate)
To 100 parts by mass of aluminum nitride powder, 6.0 parts by mass of yttrium oxide powder as a sintering aid and 0.3 parts by mass of α-aluminum oxide were blended and mixed using a ball mill to obtain a mixed powder. For 100 parts by mass of the mixed powder, 6 parts by mass of cellulose ether binder (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: Metrose), 5 parts by mass of glycerin (manufactured by Kao Corporation, trade name: Excepar), and ion exchange 10 parts by mass of water was added and mixed for 1 minute using a Henschel mixer to obtain a molding raw material.
 この成形原料を、スクリュー式押出成型機によって成形し、シート状の成形体(幅:80mm、厚み:0.8mm)を作製し、100℃で1時間乾燥した後、裁断して、縦:60mm×横:60mm形状の成形体を得た。この成形体に、離型剤として窒化ホウ素粉を塗布した後、複数の上記成形体を積層し、積層体の質量が95kgとなるよう調整した。得られた積層体を、空気中で、600℃で加熱して脱脂することによって、脱脂体を得た。 This molding raw material is molded with a screw type extruder to produce a sheet-like molded body (width: 80 mm, thickness: 0.8 mm), dried at 100 ° C. for 1 hour, and then cut into a length of 60 mm. x Width: 60 mm shaped compact was obtained. After applying boron nitride powder as a mold release agent to this compact, a plurality of the above compacts were laminated to adjust the mass of the laminate to 95 kg. A degreased body was obtained by heating the obtained laminate at 600° C. in the air for degreasing.
 次に、脱脂体を、加熱炉に入れて、窒素ガス雰囲気中で、大気圧下、20℃/分の昇温速度で25℃から1700℃まで昇温し、1700℃で2.5時間保持した(第一焼成工程)。次に、1℃/分の昇温速度で、1820℃まで昇温し、1820℃で2時間保持した(第二焼成工程)。その後、加熱を停止し、加熱炉内で放冷して、焼結体を得た。 Next, the degreased body is placed in a heating furnace and heated from 25° C. to 1700° C. at a heating rate of 20° C./min under atmospheric pressure in a nitrogen gas atmosphere and held at 1700° C. for 2.5 hours. (first firing step). Next, the temperature was raised to 1820° C. at a temperature elevation rate of 1° C./min, and held at 1820° C. for 2 hours (second firing step). After that, the heating was stopped and allowed to cool in the heating furnace to obtain a sintered body.
 上記焼結体を、窒素ガス雰囲気中、1700℃で2時間、加熱処理することでアニール処理物を得た(アニール工程)。次に、上記アニール処理物の表面を研磨圧力:0.15~0.35MPa、研磨量:2~10μm、時間:1~5分間の条件で、ホーニング処理することによって、厚さ:0.635mmの窒化アルミニウム焼結板を得た(研磨工程)。なお、参考のために、アニール処理物の主面、及び窒化アルミニウム焼結板の主面を走査型電子顕微鏡(SEM)によって取得したSEM画像を図4に示す。図4中、(a)はアニール処理物の主面を示し、(b)は窒化アルミニウム焼結板の主面を示す。図4の(a)に示されるとおり、アニール処理物には表面上に窒化アルミニウムの微細な粒子が形成されていることが確認できる。また、図4の(b)に示されるとおり、研磨後の窒化アルミニウム焼結板の主面には、目立った脱粒箇所等が観察されなかった。 An annealed product was obtained by heat-treating the sintered body at 1700°C for 2 hours in a nitrogen gas atmosphere (annealing step). Next, the surface of the annealed product is honed under the conditions of a polishing pressure of 0.15 to 0.35 MPa, a polishing amount of 2 to 10 μm, and a time of 1 to 5 minutes to obtain a thickness of 0.635 mm. of the aluminum nitride sintered plate was obtained (polishing step). For reference, FIG. 4 shows SEM images obtained by scanning electron microscope (SEM) of the main surface of the annealed product and the main surface of the aluminum nitride sintered plate. In FIG. 4, (a) shows the main surface of the annealed product, and (b) shows the main surface of the aluminum nitride sintered plate. As shown in FIG. 4(a), it can be confirmed that fine particles of aluminum nitride are formed on the surface of the annealed product. In addition, as shown in FIG. 4(b), no conspicuous shedding spots or the like were observed on the main surface of the aluminum nitride sintered plate after polishing.
<窒化アルミニウム焼結板に対するヒートサイクル試験>
 得られた窒化アルミニウム焼結板(厚み:0.635mm)について、ヒートサイクル試験を行った。具体的には、まず、銀(Ag)、銅(Cu)及び活性金属を含むろう材(Agが90質量部、Cuが10質量部、Snが3質量部、及びTiが3.5質量部である組成を有するろう材)を介して、ろう材層の厚みが15μmになるように、上記窒化アルミニウム焼結板に銅板(厚み:0.3mm)を、接合温度:830℃、接合時間:1時間、真空度:1×10-3Paの条件で接合することによって窒化アルミニウム基板(積層体)を調製した。得られた積層体について、350℃の環境に5分間曝した後に、25℃の環境で5分間冷却した。上記前処理をお子なった積層体を、まずドライアイス中(-78℃)の環境に5分間曝した後に、室温(25℃)に戻す操作を1サイクルとして、これを10サイクル実施するヒートサイクル試験を行った。試験後の窒化アルミニウム基板に対して、塩化銅水溶液、フッ化アンモニウム、及び過酸化水素によってエッチングすることで、上記積層体から、金属板及びろう材を除去し、窒化アルミニウム焼結板を取り出した。得られた窒化アルミニウム焼結板の上記銅板が積層されていた側の主面の画像をスキャナで、600dpi×600dpiの解像度で取り込んだ。取得画像に対して、画像解析ソフト「GIMP2」で二値化(閾値:140)した後、窒化アルミニウム焼結板の主面に水平方向に向かって発生したクラックの面積を、窒化アルミニウム焼結板の主面の面積(全面積)で除すことで、クラックの率を算出した。結果を表1に示す。
<Heat cycle test for aluminum nitride sintered plate>
A heat cycle test was performed on the obtained aluminum nitride sintered plate (thickness: 0.635 mm). Specifically, first, a brazing material containing silver (Ag), copper (Cu), and an active metal (90 parts by mass of Ag, 10 parts by mass of Cu, 3 parts by mass of Sn, and 3.5 parts by mass of Ti A copper plate (thickness: 0.3 mm) was bonded to the aluminum nitride sintered plate through a brazing material having a composition of 830° C. for a bonding time of 15 μm. An aluminum nitride substrate (laminate) was prepared by bonding under the condition of vacuum degree: 1×10 −3 Pa for 1 hour. The obtained laminate was exposed to a 350° C. environment for 5 minutes and then cooled to a 25° C. environment for 5 minutes. The laminate that has undergone the above pretreatment is first exposed to an environment in dry ice (-78 ° C.) for 5 minutes, and then returned to room temperature (25 ° C.) as one cycle. A cycle test was performed. After the test, the aluminum nitride substrate was etched with an aqueous solution of copper chloride, ammonium fluoride, and hydrogen peroxide to remove the metal plate and the brazing material from the laminate, and the aluminum nitride sintered plate was taken out. . An image of the main surface of the obtained aluminum nitride sintered plate on which the copper plate was laminated was taken with a scanner at a resolution of 600 dpi×600 dpi. After binarizing (threshold: 140) the obtained image with the image analysis software "GIMP2", the area of cracks generated in the horizontal direction on the main surface of the aluminum nitride sintered plate was measured. The ratio of cracks was calculated by dividing by the area of the main surface (total area). Table 1 shows the results.
<窒化アルミニウム焼結板の物性測定>
 得られた窒化アルミニウム焼結板について、窒化アルミニウム(AlN)粒子のd50(平均粒子径)及びd90、並びに、主面における算術平均粗さRa及び最大高さ粗さRyを測定した。結果を表1に示す。
<Measurement of physical properties of aluminum nitride sintered plate>
For the obtained aluminum nitride sintered plate, d50 (average particle diameter) and d90 of aluminum nitride (AlN) particles, arithmetic mean roughness Ra and maximum height roughness Ry on the main surface were measured. Table 1 shows the results.
<窒化アルミニウム焼結板の評価>
 得られた窒化アルミニウム焼結板の曲げ強さ及び曲げ強さの分布(ワイブル係数)を測定した。窒化アルミニウム焼結板の曲げ強さは、JIS C 2141:1992「電気絶縁用セラミック材料試験方法」に記載の方法に準拠して測定した。また、得られた曲げ強さの結果に基づいてワイブルプロットを作成し、ワイブル係数を決定した。結果を表1に示す。
<Evaluation of aluminum nitride sintered plate>
The bending strength and bending strength distribution (Weibull coefficient) of the obtained aluminum nitride sintered plate were measured. The bending strength of the aluminum nitride sintered plate was measured according to the method described in JIS C 2141:1992 "Electrical insulating ceramic material test method". In addition, a Weibull plot was created based on the bending strength obtained, and the Weibull coefficient was determined. Table 1 shows the results.
(実施例2)
 アニール工程におけるアニール温度を1400℃とし、アニール時間を1時間に変更したこと以外は、実施例1と同様にして、窒化アルミニウム焼結板を調製した。
(Example 2)
An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing temperature in the annealing step was changed to 1400° C. and the annealing time was changed to 1 hour.
(実施例3)
 アニール工程におけるアニール時間を6時間に変更したこと以外は、実施例1と同様にして、窒化アルミニウム焼結板を調製した。
(Example 3)
An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing time in the annealing step was changed to 6 hours.
(実施例4)
 アニール工程におけるアニール温度を1500℃に変更したこと以外は、実施例1と同様にして、窒化アルミニウム焼結板を調製した。
(Example 4)
An aluminum nitride sintered plate was prepared in the same manner as in Example 1, except that the annealing temperature in the annealing step was changed to 1500°C.
(比較例1)
 アニール工程におけるアニール温度を1800℃に変更し、アニール時間を8時間に変更したこと以外は実施例1と同様にして、窒化アルミニウム焼結板を得た。なお、参考のために、研磨処理前の焼結体の主面、及び窒化アルミニウム焼結板の主面を走査型電子顕微鏡(SEM)によって取得したSEM画像を図5に示す。図5中、(a)は研磨処理前の焼結体の主面を示し、(b)は窒化アルミニウム焼結板の主面を示す。図5の(a)及び(b)から確認されるように、研磨後の窒化アルミニウム焼結板の主面に、窒化アルミニウム粒子の脱粒によって形成された凹部が観察されている。
(Comparative example 1)
An aluminum nitride sintered plate was obtained in the same manner as in Example 1, except that the annealing temperature in the annealing step was changed to 1800° C. and the annealing time was changed to 8 hours. For reference, FIG. 5 shows SEM images obtained by a scanning electron microscope (SEM) of the main surface of the sintered body before polishing and the main surface of the aluminum nitride sintered plate. In FIG. 5, (a) shows the main surface of the sintered body before polishing, and (b) shows the main surface of the aluminum nitride sintered plate. As can be seen from FIGS. 5(a) and 5(b), depressions formed by shedding of aluminum nitride particles are observed on the main surface of the polished aluminum nitride sintered plate.
(比較例2)
 アニール工程を実施しなかったこと以外は、比較例1と同様にして、窒化アルミニウム焼結板を調製した。
(Comparative example 2)
An aluminum nitride sintered plate was prepared in the same manner as in Comparative Example 1, except that the annealing step was not performed.
(比較例3)
 アニール工程におけるアニール時間を2時間に変更したこと以外は、比較例1と同様にして、窒化アルミニウム焼結板を調製した。
(Comparative Example 3)
An aluminum nitride sintered plate was prepared in the same manner as in Comparative Example 1, except that the annealing time in the annealing step was changed to 2 hours.
<窒化アルミニウム焼結板に対するヒートサイクル試験>
 実施例2~4、及び比較例1~3で得られた窒化アルミニウム焼結板のそれぞれについて、実施例1と同様にして、ヒートサイクル試験を行った。結果を表1に示す。
<Heat cycle test for aluminum nitride sintered plate>
A heat cycle test was performed in the same manner as in Example 1 for each of the aluminum nitride sintered plates obtained in Examples 2 to 4 and Comparative Examples 1 to 3. Table 1 shows the results.
<窒化アルミニウム焼結板の物性測定>
 実施例2~4、及び比較例1~3で得られた窒化アルミニウム焼結板のそれぞれについて、実施例1と同様にして、窒化アルミニウム(AlN)粒子のd50(平均粒子径)及びd90、並びに、主面における算術平均粗さRa及び最大高さ粗さRyを測定した。結果を表1に示す。
<Measurement of physical properties of aluminum nitride sintered plate>
For each of the aluminum nitride sintered plates obtained in Examples 2 to 4 and Comparative Examples 1 to 3, in the same manner as in Example 1, d50 (average particle diameter) and d90 of aluminum nitride (AlN) particles, and , the arithmetic mean roughness Ra and the maximum height roughness Ry on the main surface were measured. Table 1 shows the results.
<窒化アルミニウム焼結板の評価>
 実施例2~4、及び比較例1~3で得られた窒化アルミニウム焼結板のそれぞれについて、実施例1と同様にして、窒化アルミニウム焼結板の曲げ強さ及び曲げ強さの分布(ワイブル係数)を測定した。結果を表1に示す。
<Evaluation of aluminum nitride sintered plate>
For each of the aluminum nitride sintered plates obtained in Examples 2 to 4 and Comparative Examples 1 to 3, the bending strength of the aluminum nitride sintered plate and the distribution of bending strength (Weibull coefficient) was measured. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、曲げ強さに優れる窒化アルミニウム焼結体及びその製造方法を提供できる。本開示によればまた、上記窒化アルミニウム焼結体を備え、接続信頼性に優れる積層基板及び回路基板を提供できる。 According to the present disclosure, an aluminum nitride sintered body with excellent bending strength and a method for producing the same can be provided. According to the present disclosure, it is also possible to provide a laminated substrate and a circuit substrate that are equipped with the aluminum nitride sintered body and have excellent connection reliability.
 20…導体部、100…窒化アルミニウム焼結板、110…金属板、200…積層基板、300…回路基板。 20... Conductor portion, 100... Aluminum nitride sintered plate, 110... Metal plate, 200... Laminated substrate, 300... Circuit board.

Claims (7)

  1.  窒化アルミニウム粒子と、焼結助剤粒子と、を含む、窒化アルミニウム焼結体であって、
     金属板と積層して積層体を調製し、350℃の環境に5分間曝した後、25℃の環境で5分間冷却した前記積層体を対象とし、-78℃の環境に5分間曝した後に、25℃に戻す操作を1サイクルとして、10サイクルのヒートサイクル試験を行った場合に、観測されるクラック率が9.00面積%未満である、窒化アルミニウム焼結体。
    An aluminum nitride sintered body containing aluminum nitride particles and sintering aid particles,
    A laminate was prepared by laminating with a metal plate, exposed to an environment of 350 ° C. for 5 minutes, cooled for 5 minutes in an environment of 25 ° C., and exposed to an environment of -78 ° C. for 5 minutes. , an aluminum nitride sintered body having an observed crack rate of less than 9.00 area % when subjected to a heat cycle test of 10 cycles, one cycle of which is an operation of returning to 25°C.
  2.  一対の主面を有する板状であり、前記主面における最大高さ粗さRyと算術平均粗さRaとの差が6.0μm以下である、請求項1に記載の窒化アルミニウム焼結体。 The aluminum nitride sintered body according to claim 1, which has a plate-like shape having a pair of main surfaces, and the difference between the maximum height roughness Ry and the arithmetic mean roughness Ra on the main surfaces is 6.0 µm or less.
  3.  前記最大高さ粗さRyが10.0μm未満である、請求項2に記載の窒化アルミニウム焼結体。 The aluminum nitride sintered body according to claim 2, wherein the maximum height roughness Ry is less than 10.0 µm.
  4.  前記窒化アルミニウム粒子に対する電子顕微鏡画像解析によって測定される粒子径の累積頻度分布曲線において、小粒径からの積算値が全体の50%及び90%に達した時の粒子径を、それぞれd50及びd90としたときに、d90-d50の値が10.0μm未満である、請求項1~3のいずれか一項に記載の窒化アルミニウム焼結体。 In the cumulative frequency distribution curve of the particle size measured by electron microscope image analysis for the aluminum nitride particles, the particle size when the integrated value from the small particle size reaches 50% and 90% of the total is d50 and d90, respectively. 4. The aluminum nitride sintered body according to any one of claims 1 to 3, wherein the value of d90-d50 is less than 10.0 µm.
  5.  請求項1~4のいずれか一項に記載の窒化アルミニウム焼結体と、当該窒化アルミニウム焼結体に取り付けられている導体部と、を備える、回路基板。 A circuit board comprising the aluminum nitride sintered body according to any one of claims 1 to 4 and a conductor part attached to the aluminum nitride sintered body.
  6.  請求項1~4のいずれか一項に記載の窒化アルミニウム焼結体と、当該窒化アルミニウム焼結体に取り付けられている金属板と、を備える積層基板。 A laminated substrate comprising the aluminum nitride sintered body according to any one of claims 1 to 4 and a metal plate attached to the aluminum nitride sintered body.
  7.  窒化アルミニウム及び焼結助剤を含む混合物で構成される成形体を1~6時間焼成して焼結体を得る焼成工程と、
     前記焼結体を1400℃以上1700℃未満の温度で1時間以上加熱処理することでアニール処理物を得る工程と、
     前記アニール処理物の表面を研磨処理することで窒化アルミニウム焼結体を得る工程と、を有し、
     前記焼結助剤は酸化イットリウム及び酸化アルミニウムを含有し、
     前記酸化イットリウムに対する前記酸化アルミニウムの質量比が0.5未満であり、
     前記焼成工程は、
      1700℃以上1800℃未満の温度で1時以上加熱することによって、前記成形体から第一焼成体を得る工程と、
      1800~1900℃の温度で1時間以上加熱することによって、前記第一焼成体から前記焼結体を得る工程と、を含む、窒化アルミニウム焼結体の製造方法。
    a firing step of firing a molded body composed of a mixture containing aluminum nitride and a sintering aid for 1 to 6 hours to obtain a sintered body;
    obtaining an annealed product by heat-treating the sintered body at a temperature of 1400° C. or more and less than 1700° C. for 1 hour or more;
    and obtaining an aluminum nitride sintered body by polishing the surface of the annealed product,
    The sintering aid contains yttrium oxide and aluminum oxide,
    The mass ratio of the aluminum oxide to the yttrium oxide is less than 0.5,
    The firing step includes
    a step of obtaining a first fired body from the molded body by heating at a temperature of 1700° C. or more and less than 1800° C. for 1 hour or more;
    and obtaining the sintered body from the first sintered body by heating at a temperature of 1800 to 1900° C. for 1 hour or longer.
PCT/JP2022/014941 2021-03-31 2022-03-28 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate WO2022210518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023511247A JP7429825B2 (en) 2021-03-31 2022-03-28 Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021060245 2021-03-31
JP2021-060245 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022210518A1 true WO2022210518A1 (en) 2022-10-06

Family

ID=83456332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014941 WO2022210518A1 (en) 2021-03-31 2022-03-28 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate

Country Status (2)

Country Link
JP (1) JP7429825B2 (en)
WO (1) WO2022210518A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129075A (en) * 1986-11-18 1988-06-01 旭硝子株式会社 Manufacture of aluminum nitride sintered body
JPH0524930A (en) * 1991-07-16 1993-02-02 Showa Denko Kk Aln sintered compact and production thereof
JPH10245267A (en) * 1997-03-06 1998-09-14 Denki Kagaku Kogyo Kk Aluminum nitride substrate and use thereof
JPH10310475A (en) * 1997-05-02 1998-11-24 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and its use
JP2001097779A (en) * 1999-09-28 2001-04-10 Toshiba Corp Aluminum nitride board and circuit board using the same
JP2001102476A (en) * 1999-09-30 2001-04-13 Toshiba Corp Ceramic substrate and manufacturing method thereof
WO2002024605A1 (en) * 2000-09-21 2002-03-28 Sintokogio, Ltd. Method for toughening modification of ceramic and ceramic product
WO2002042241A1 (en) * 2000-11-22 2002-05-30 Ibiden Co., Ltd. Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2002293637A (en) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact, and manufacturing method and application thereof
JP2005075695A (en) * 2003-09-02 2005-03-24 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same
WO2006135016A1 (en) * 2005-06-15 2006-12-21 Tokuyama Corporation Aluminum nitride sinter, slurry, green object, and degreased object
WO2007018140A2 (en) * 2005-08-11 2007-02-15 Tokuyama Corporation Aluminum nitride sintered body
WO2017033855A1 (en) * 2015-08-24 2017-03-02 住友電気工業株式会社 Aluminum nitride sintered body and method for producing same
WO2021261441A1 (en) * 2020-06-22 2021-12-30 デンカ株式会社 Aluminum nitride sintered body, circuit substrate and junction substrate

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63129075A (en) * 1986-11-18 1988-06-01 旭硝子株式会社 Manufacture of aluminum nitride sintered body
JPH0524930A (en) * 1991-07-16 1993-02-02 Showa Denko Kk Aln sintered compact and production thereof
JPH10245267A (en) * 1997-03-06 1998-09-14 Denki Kagaku Kogyo Kk Aluminum nitride substrate and use thereof
JPH10310475A (en) * 1997-05-02 1998-11-24 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and its use
JP2001097779A (en) * 1999-09-28 2001-04-10 Toshiba Corp Aluminum nitride board and circuit board using the same
JP2001102476A (en) * 1999-09-30 2001-04-13 Toshiba Corp Ceramic substrate and manufacturing method thereof
WO2002024605A1 (en) * 2000-09-21 2002-03-28 Sintokogio, Ltd. Method for toughening modification of ceramic and ceramic product
WO2002042241A1 (en) * 2000-11-22 2002-05-30 Ibiden Co., Ltd. Aluminum nitride sintered body, method for producing aluminum nitride sintered body, ceramic substrate and method for producing ceramic substrate
JP2002293637A (en) * 2001-03-29 2002-10-09 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact, and manufacturing method and application thereof
JP2005075695A (en) * 2003-09-02 2005-03-24 Denki Kagaku Kogyo Kk Aluminum nitride sintered compact and method of manufacturing the same
WO2006135016A1 (en) * 2005-06-15 2006-12-21 Tokuyama Corporation Aluminum nitride sinter, slurry, green object, and degreased object
WO2007018140A2 (en) * 2005-08-11 2007-02-15 Tokuyama Corporation Aluminum nitride sintered body
WO2017033855A1 (en) * 2015-08-24 2017-03-02 住友電気工業株式会社 Aluminum nitride sintered body and method for producing same
WO2021261441A1 (en) * 2020-06-22 2021-12-30 デンカ株式会社 Aluminum nitride sintered body, circuit substrate and junction substrate

Also Published As

Publication number Publication date
JPWO2022210518A1 (en) 2022-10-06
JP7429825B2 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
JP5673847B2 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
US8858865B2 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP6293949B2 (en) Silicon nitride substrate for pressure contact structure and silicon nitride circuit substrate using the same
JP2004260039A (en) Holding structure for device of manufacturing semiconductor or liquid crystal and device of manufacturing semiconductor or liquid crystal mounting same
JP2011178598A (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
KR101904538B1 (en) Ceramic circuit board and manufacturing method thereof
WO2022210518A1 (en) Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
JP7064065B1 (en) How to improve the electrical insulation of ceramic sintered bodies, substrates, and ceramic sintered bodies
JP7080422B1 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and bonded substrate
WO2021261452A1 (en) Aluminum nitride sintered body, and substrate
WO2022210520A1 (en) Aluminum nitride sintered body, method for producing same, circuit board, and multilayer substrate
JP7203286B2 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and jointed board
KR101937961B1 (en) Silicon nitride substrate without planarization and method of manufacturing the same
JP7330416B2 (en) Aluminum nitride sintered plate, circuit board, and laminated board
EP3846596A1 (en) Silicon nitride substrate and silicon nitride circuit board
WO2024111483A1 (en) Ceramic sintered body, method for producing same, bonded body, and power module
JP2013182983A (en) Silicon nitride circuit board and module using the same
WO2024111484A1 (en) Bonded body and power module
JP2002293641A (en) Silicon nitride-based sintered compact
JP2000269615A (en) Circuit board
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
JP3922847B2 (en) Aluminum nitride sintered body for circuit board and manufacturing method thereof
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2022094464A (en) Green sheet of silicon nitride and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023511247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780729

Country of ref document: EP

Kind code of ref document: A1