JPH0524930A - Aln sintered compact and production thereof - Google Patents

Aln sintered compact and production thereof

Info

Publication number
JPH0524930A
JPH0524930A JP3201281A JP20128191A JPH0524930A JP H0524930 A JPH0524930 A JP H0524930A JP 3201281 A JP3201281 A JP 3201281A JP 20128191 A JP20128191 A JP 20128191A JP H0524930 A JPH0524930 A JP H0524930A
Authority
JP
Japan
Prior art keywords
aln
average
sintered body
grain boundary
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3201281A
Other languages
Japanese (ja)
Inventor
Tsunesuke Shioi
恒介 塩井
Toshikazu Moriguchi
敏和 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP3201281A priority Critical patent/JPH0524930A/en
Publication of JPH0524930A publication Critical patent/JPH0524930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain the high-thermal conductivity AlN sintered compact having an excellent heat resistant fatigue characteristic, etc., by mixing AlN raw material powder, an oxygen content control agent and a sintering assistant of a Y system at regulated compounding ratios, oxygen content in the raw material, etc., then molding and sintering the mixture. CONSTITUTION:(A) The AlN raw material powder, (B) the oxygen content control agent (e.g.: alumina) and (C) the oxide and/or carbonate of Y are so mixed that the content of the component C attains 2 to 10wt.% in terms of Y2O3 by the total weight of the components A, B and C. Further, the the amt. of the component C to be added, designated as a wt.%, and the amt. of the carbon to be incorporated into the molding after degreasing, designated as c wt.%, are so adjusted that the b wt.% of the oxygen to be incorporated into the components B and A satisfies equation. The mixture is then molded and sintered. The AlN sintered compact which has 0.1 to 1.5mum average circumferential length of the grain boundary phase at the cut section of the sintered 0.5 to 1 ratio of the average min. diameter and the average max. diameter and <=0.5 ratio of the average grain size and the average grain size of the AlN particles and in which the grain boundary compsn. consists of 3Y2O3.5Al2O3 and Y2O3.Al2O3 is thereby obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐熱疲労特性の優れた
高熱伝導性 AlN焼結体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high thermal conductivity AlN sintered body having excellent thermal fatigue resistance.

【0002】[0002]

【従来の技術】近年、半導体工業の急速な技術革新によ
り、IC、LSIをはじめとする大規模集積回路の高集
積化、高出力化は著しく、これに伴い、パッケージ当り
の発熱量は急激に増大し、基板材料の放熱性が重要視さ
れ、アルミナに替わる基板材料として熱伝導性に優れた
ベリリアが一部使用されているが、ベリリアは毒性が強
く 、取り扱い等に難点がある。そのため、アルミナや
ベリリアに替わる基板材料として AlNが注目を集めてい
る。
2. Description of the Related Art In recent years, due to rapid technological innovation in the semiconductor industry, high integration and high output of large-scale integrated circuits such as ICs and LSIs have been remarkably achieved. However, the heat dissipation of the substrate material is becoming more important, and beryllia, which excels in thermal conductivity, is used as a substrate material instead of alumina. However, beryllia is highly toxic and has problems in handling. Therefore, AlN is attracting attention as a substrate material that replaces alumina and beryllia.

【0003】AlN焼結体の助剤をはじめとして焼結体お
よびその製造方法については種々の先願があり、特に最
近では、高熱伝導性の AlN焼結体の製法、焼結体の粒界
相の組成および組織に関する出願が多い(特開昭62−
52181、特開昭62−171964、特開平2−3
8369等)。また、 AlN焼結体の熱伝導率に及ぼす微
構造についてもいろいろ検討されている[第24回窯業
基礎討論会要旨集P.175(1986)、日本セラミ
ックス協会学術論文誌97[12]、1478(198
9)]。また、日本セラミックス協会学術論文誌93
[9]、41(1985)では、焼結助剤としてCa(N
O3)2を添加してなる焼結体において、焼結助剤成分から
なる粒界相が球状を呈することに関する知見が開示され
ている。
Sintered bodies such as auxiliary materials for AlN sintered bodies
There are various prior applications regarding the manufacturing method and its manufacturing method, and especially
Recently, the manufacturing method of high thermal conductivity AlN sintered body, the grain boundary of the sintered body
There are many applications regarding the composition and structure of phases (Japanese Patent Laid-Open No. 62-
52181, JP-A-62-171964, JP-A-2-3
8369). In addition, the effect on the thermal conductivity of the AlN sintered body
Various studies have also been conducted on the structure [24th Ceramic Industry
Proceedings of Basic Discussion P. 175 (1986), Nippon Cerami
Academic society journal97[12], 1478 (198
9)]. Also, the Ceramic Society of Japan93
[9], 41 (1985), Ca (N) as a sintering aid.
O3)2In the sintered body obtained by adding
The findings regarding that the grain boundary phase becomes spherical
ing.

【0004】[0004]

【発明が解決しようとする課題】上記のように最近開示
された AlN焼結体は優れた熱伝導性を有するが、高出力
化、高集積化による発熱量が増大すると、耐熱サイクル
特性等の耐熱疲労特性が難点となり、基板等の薄板に亀
裂が発生し、基板回路に支障をきたすという問題もでて
くる。そのため、耐熱サイクル特性を向上させる必要が
あり、本発明はその特性を向上させることを目的とす
る。
The AlN sintered body recently disclosed as described above has excellent thermal conductivity, but when the amount of heat generated by higher output and higher integration increases, heat cycle characteristics, etc. Thermal fatigue resistance becomes a problem, and cracks may occur in a thin plate such as a substrate, causing a problem in the circuit of the substrate. Therefore, it is necessary to improve the heat resistance cycle characteristics, and the present invention aims to improve the characteristics.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記目的を
解決すべく種々検討した結果、粒界相を含有する AlN焼
結体において、該焼結体切断面における粒界相の (a)平均周長が0.1〜15μm で、(b)平均最小
径と平均最大径の比率が0.5〜1.0で、(c)平均
粒径と AlN粒の平均粒径の比率が0.5以下であり、か
つ該粒界相組成が3Y2O3・5Al2O3 およびY2O3・Al2O3
からなることを特徴とする AlN焼結体を見出し、その焼
結体の造り方としてAlN原料粉末、焼結助剤および酸素
含量調整剤の総重量に対し、Yの酸化物および/または
炭酸塩を酸化物Y2O3換算で焼結助剤添加量awt%として
2〜10wt%入れ、更に脱脂後の成形体中に含有されて
いる炭素量をcwt%としたときに 0.3a+1.3c+2.3>b>0.2a+1.3c+0.7 を満足するように酸素含量調整剤および AlN原料粉末中
に含有される酸素量bwt%を調整し、混合、成形、焼結
することを特徴とする AlN焼結体の製造方法を見出し
た。
Means for Solving the Problems As a result of various studies to solve the above-mentioned object, the present inventor has found that in an AlN sintered body containing a grain boundary phase, (a ) The average circumference is 0.1 to 15 μm, (b) the ratio of the average minimum diameter to the average maximum diameter is 0.5 to 1.0, and (c) the ratio of the average particle diameter to the average particle diameter of AlN particles. 0.5 or less and the composition of the grain boundary phase is 3Y 2 O 3 .5Al 2 O 3 and Y 2 O 3 .Al 2 O 3
Of AlN raw material powder, sintering aid and oxygen content adjusting agent as the total weight of YN oxide and / or carbonate as a method of making the sintered body. Is added to the oxide as an oxide Y 2 O 3 in an amount of 2 wt% to 10 wt% as the addition amount of the sintering aid, and when the carbon amount contained in the molded body after degreasing is defined as cwt%, 0.3a + 1.3c + 2 The oxygen content adjusting agent and the oxygen content bwt% contained in the AlN raw material powder are adjusted so as to satisfy 3>b> 0.2a + 1.3c + 0.7, followed by mixing, molding and sintering. A method for manufacturing an AlN sintered body has been found.

【0006】焼結助剤を用いた AlN焼結体の組織をみる
と、「 AlN(結晶)粒」を焼結助剤が酸化物として固化
した液相である「粒界相」が覆っているが、本発明者は
その粒界相の覆い方およびその粒界相の存在の状態が、
AlN焼結体の熱伝導率に影響を及ぼすとともに、耐熱サ
イクル特性等の耐熱疲労特性にも関係していることを見
出した。
[0006] Looking at the structure of the AlN sintered body using the sintering aid, "AlN (crystal) grains" are covered by the "grain boundary phase" which is a liquid phase in which the sintering aid is solidified as an oxide. However, the present inventors have found that the state of covering the grain boundary phase and the existence of the grain boundary phase are
It has been found that the thermal conductivity of the AlN sintered body is affected and that it is related to the thermal fatigue resistance such as the thermal cycle characteristics.

【0007】これらを解析した結果、粒界相の形状、大
きさおよびその組成を限定することにより、 AlN焼結体
の高熱伝導率を維持しつつ、耐熱疲労特性を向上するこ
とができることがわかった。すなわち、 AlN焼結体にお
いて粒界相は小さく、球状で、かつその組成が3Y2O3
5Al2O3 (以下YAGと略記する)およびY2O3・Al2O3
(以下YAPと略記する)であることがわかった。
As a result of analyzing these, it was found that by limiting the shape, size and composition of the grain boundary phase, the thermal fatigue resistance can be improved while maintaining the high thermal conductivity of the AlN sintered body. It was That is, in the AlN sintered body, the grain boundary phase is small, spherical, and its composition is 3Y 2 O 3 ·.
5Al 2 O 3 (hereinafter abbreviated as YAG) and Y 2 O 3 · Al 2 O 3
(Hereinafter abbreviated as YAP).

【0008】それを定量的に表わすと AlN焼結体の粒界
相の切断面における粒界相の平均周長が0.1〜15μ
m で、平均最小径と平均最大経の比率が0.5〜1.0
で、平均粒径と AlN粒の平均粒径の比率が0.5以下で
あり、かつその組成がYAGおよびYAPであることに
よって高熱伝導率を維持しつつ、耐熱疲労特性が優れた
AlN焼結体を得ることを本発明者は見出した。
To express it quantitatively, the average peripheral length of the grain boundary phase at the cut surface of the grain boundary phase of the AlN sintered body is 0.1 to 15 μm.
In m, the ratio of average minimum diameter to average maximum diameter is 0.5 to 1.0
And the ratio of the average particle size to the average particle size of AlN particles is 0.5 or less, and the composition thereof is YAG and YAP, the high thermal conductivity is maintained and the thermal fatigue resistance is excellent.
The present inventors have found that an AlN sintered body can be obtained.

【0009】AlN焼結体の粒界相の切断面における粒界
相の平均周長が15μm を超えると粒界相に大きな亀裂
を生じ易く、焼結体の耐熱疲労特性が低下し、0.1μ
m 未満では熱伝導率が低下し好ましくない。また、平均
最小径と平均最大径の比率が0.5未満であったり、粒
界相の平均粒径と AlN粒の平均粒径の比率が0.5を超
えると同様に粒界相に大きな亀裂を生じ易く AlN焼結体
の耐熱疲労特性が低下する。本発明では、 AlN焼結体の
粒界相は AlN粒の粒界や三重点に球状に存在し、粒界相
の大きさおよび AlN粒と粒界相との接触面積は非常に小
さい。
If the average peripheral length of the grain boundary phase at the cut surface of the grain boundary phase of the AlN sintered body exceeds 15 μm, large cracks are easily generated in the grain boundary phase, and the thermal fatigue resistance of the sintered body deteriorates. 1μ
When it is less than m 3, the thermal conductivity is lowered, which is not preferable. Also, if the ratio of the average minimum diameter to the average maximum diameter is less than 0.5, or if the ratio of the average grain size of the grain boundary phase to the average grain size of AlN grains exceeds 0.5, the grain boundary phase has a large amount. Cracks easily occur and the thermal fatigue resistance of the AlN sintered body deteriorates. In the present invention, the grain boundary phase of the AlN sintered body exists spherically at the grain boundary or triple point of the AlN grain, and the size of the grain boundary phase and the contact area between the AlN grain and the grain boundary phase are very small.

【0010】次に本発明の焼結体の造り方につき工程順
に説明するが、焼結助剤の添加量および酸素含量調整剤
等の酸素量の関係の配合比率以外のことについては、す
なわち AlN微粉末原料、バインダー等、並びに原料混合
法、成形法、脱脂、焼結法のやり方やこれらの条件等は
従来、通常使用されるものであり、行なわれる方法、条
件で造ることができる。
Next, the method of manufacturing the sintered body of the present invention will be described in the order of steps. Except for the compounding ratio other than the mixing ratio of the addition amount of the sintering aid and the oxygen amount of the oxygen content adjusting agent, that is, AlN. The fine powder raw material, the binder and the like, the method of the raw material mixing method, the molding method, the degreasing and the sintering method and the conditions thereof have been conventionally used, and the method and the conditions can be used.

【0011】主原料である AlN微粉末は純度95%以上
の平均粒径が20μm 以下、好ましくは5μm 以下の粒
径を有し、金属不純物量としては500ppm 以下のもの
が、また含有O2 量として4wt%以下のものが好まし
い。本発明として重要な役割を果たす焼結助剤としては
Yの酸化物および/または炭酸塩を使用するが、 AlN原
料粉末、焼結助剤および酸素含量調整剤の総重量に対
し、Yの酸化物および/または炭酸塩を酸化物Y2O3換算
で焼結助剤添加量awt%として2〜10wt%入れ、更に
脱脂後の成形体中に含有されている炭素量をcwt%とし
たときに 0.3a+1.3c+2.3>b>0.2a+1.3c+0.7 を満足するように酸素含量調整剤および AlN原料粉末中
に含有される酸素量bwt%を調整し、これら所定量の焼
結助剤、酸素含量調整剤を AlN原料粉末に混合する。こ
こでいう「脱脂後」の脱脂については後に詳説する。
The AlN fine powder, which is the main raw material, has an average particle size of not less than 95% and a mean particle size of 20 μm or less, preferably 5 μm or less, and a metal impurity amount of 500 ppm or less, and an O 2 content. Is preferably 4 wt% or less. As the sintering aid that plays an important role in the present invention, Y oxide and / or carbonate is used, but the amount of Y oxidation is larger than the total weight of AlN raw material powder, sintering aid and oxygen content adjuster. 2 to 10 wt% as a sintering aid addition amount awt% in terms of oxide Y 2 O 3 and carbon amount cwt% contained in the molded body after degreasing. The oxygen content adjusting agent and the oxygen content bwt% contained in the AlN raw material powder are adjusted so as to satisfy 0.3a + 1.3c + 2.3>b> 0.2a + 1.3c + 0.7. Mix the auxiliaries and oxygen content modifiers with the AlN raw powder. The "after degreasing" degreasing here will be described in detail later.

【0012】焼結助剤の添加量は、酸化物Y2O3換算で、
AlN原料粉末、焼結助剤および酸素含量調整剤の総重量
に対し、2〜10wt%添加するが、好ましい範囲として
は2〜7wt%である。2wt%未満では緻密な焼結体を得
るのに長時間を要し、10wt%を超えると熱伝導率の低
下をもたらす。
The addition amount of the sintering aid is calculated based on the oxide Y 2 O 3 .
2 to 10 wt% is added to the total weight of the AlN raw material powder, the sintering aid and the oxygen content adjusting agent, and the preferable range is 2 to 7 wt%. If it is less than 2 wt%, it takes a long time to obtain a dense sintered body, and if it exceeds 10 wt%, the thermal conductivity is lowered.

【0013】本発明における酸素含量調整剤とは、上記
の式に関係する酸素量を調整するために添加するもの
で、アルミニウムの酸化物であるアルミナAl2O3 または
酸窒化物等を用いる。上記の式を満足し AlN原料微粉末
中の酸素で足りればアルミナ等の酸素含量調整剤を添加
しなくてもよい。
The oxygen content adjusting agent in the present invention is added to adjust the amount of oxygen related to the above formula, and alumina such as alumina Al 2 O 3 or oxynitride is used. If the above formula is satisfied and the oxygen in the AlN raw material fine powder is sufficient, it is not necessary to add an oxygen content modifier such as alumina.

【0014】また、焼結前の成形体中に炭素が含まれて
いると、 AlN原料粉末に含有されている酸素と反応する
ので、本発明のためには焼結助剤の添加量を減らすか、
上記のアルミナ等の酸素含量調整剤の添加量が結果とし
て増えることになる。
If carbon is contained in the green body before sintering, it reacts with oxygen contained in the AlN raw material powder, so that the amount of the sintering aid added is reduced for the purpose of the present invention. Or
As a result, the added amount of the oxygen content modifier such as alumina is increased.

【0015】AlN微粉末と焼結助剤との混合は、乾式混
合または有機溶媒を使用した湿式混合により行なうが、
後者の湿式混合の方がよく混合でき好ましい。混合粉末
に更に、パラフィンワックス、ポリビニルブチラール、
エチルセルロース等の有機バインダーを混合粉末に対
し、3〜15wt%、好ましくは5〜10wt%添加して、
適当な成形手段、例えば乾式プレス法、ラバープレス
法、押出法、射出法、ドクターブレードシート成形法等
によって所定の形状に成形する。金型成形法では造粒し
た粉を使用するのが一般である。また、 AlN焼結基板の
ときには、一般的には、ドクターブレード法にて成形さ
れる。この場合には、有機溶剤、ポリエチレングリコー
ル等の分散剤、ポリビニルブチラール等のバインダーお
よびブチルフタリルブチルグリコレート等の可塑剤を A
lN原料粉、焼結助剤に混合し、ドクターブレード法にて
薄生板(グリーンシート)を造るのが一般である。
The AlN fine powder and the sintering aid are mixed by dry mixing or wet mixing using an organic solvent.
The latter wet mixing is preferable because it can mix well. Paraffin wax, polyvinyl butyral,
Add an organic binder such as ethyl cellulose to the mixed powder in an amount of 3 to 15 wt%, preferably 5 to 10 wt%,
It is formed into a predetermined shape by an appropriate forming means such as a dry pressing method, a rubber pressing method, an extrusion method, an injection method, and a doctor blade sheet forming method. Granulated powder is generally used in the mold forming method. In the case of an AlN sintered substrate, it is generally formed by the doctor blade method. In this case, use an organic solvent, a dispersant such as polyethylene glycol, a binder such as polyvinyl butyral, and a plasticizer such as butylphthalyl butyl glycolate.
It is general to make a thin plate (green sheet) by the doctor blade method by mixing with 1N raw material powder and a sintering aid.

【0016】成形後、真空、N2、Ar又は大気中で400
〜700℃で0.1〜24時間にて脱脂処理を行な
う。。本発明にて、添加する焼結助剤量を規定している
場合の「脱脂後にこの成形体中に含有されている炭素
量」とは、上記脱脂処理済の成形体を非酸化性雰囲気中
または真空雰囲気中で1300℃で2時間加熱された後
に成形体中に含有されているトータルカーボン量を本発
明では表わしているものとする。また、この炭素量は好
ましくは2wt%以下である。
After molding, 400, in vacuum, N 2 , Ar or air
Degreasing treatment is performed at ˜700 ° C. for 0.1 to 24 hours. . In the present invention, "the amount of carbon contained in this molded body after degreasing" in the case where the amount of the sintering aid to be added is specified means that the degreased molded body is in a non-oxidizing atmosphere. Alternatively, the total amount of carbon contained in the molded body after being heated at 1300 ° C. for 2 hours in a vacuum atmosphere is represented in the present invention. The carbon content is preferably 2 wt% or less.

【0017】脱脂後、1700〜2000℃で0.1〜
24時間にて、真空又はN2、Ar等の非酸化性ガスの−5
00mmHg〜10kg/cm2 の条件下で焼結する。上記の
ようにして造られた本発明の AlN焼結体の AlN(結晶)
粒を覆っている粒界相は、粒界や三重点に球状に存在
し、粒界相の大きさおよび AlN粒と粒界相との接触面積
は非常に小さい。
After degreasing, 0.1 to 1700 to 2000 ° C.
In 24 hours, it is -5 in vacuum or non-oxidizing gas such as N 2 and Ar.
Sintering is performed under the conditions of 00 mmHg to 10 kg / cm 2 . AlN (crystal) of the AlN sintered body of the present invention manufactured as described above
The grain boundary phase covering the grains is spherical at grain boundaries and triple points, and the size of the grain boundary phase and the contact area between AlN grains and the grain boundary phase are very small.

【0018】また、本発明の AlN焼結体の焼結助剤成分
を含有する粒界相は、ガーネット型結晶構造を有するY
AGおよびペロブスカイト型結晶構造を有するYAPか
らなる。これらの量比を粉末X線回折(Cu Kα;40
KV、20mA;スキャンスピード1 deg/min )のピーク
比で見ると、YAG相、面指数(532)の回折角2θ
=46.6°の回折ピーク高さをI(YAG)と、YA
P相、面指数(121)の回折角2θ=34.3°の回
折ピーク高さをI(YAP)とすると、 0.1≦I(YAG)/I(YAP)≦10.0 の範囲が好ましく、この場合には、前述の焼結助剤の添
加量awt%は2〜10wt%で変わりないが、酸素量bwt
%の好ましい範囲は、 0.3a+1.3c+1.9≧b≧0.2a+1.3c+1.3 であり、また 0.1≦I(YAG)/I(YAP)≦2.0 の範囲がより好ましく、この場合にはawt%は2〜10
wt%と同様に変わりないが、酸素量bwt%のより好まし
い範囲は、 0.3a+1.3c+1.6≧b≧0.2a+1.3c+1.3 である。これらの式中のa,b,cは前述の定義と同じ
ものである。YAG相とYAP相は、酸化イットリウム
等の焼結助剤添加量に対する窒化アルミニウム原料粉末
に含まれる酸素量が多いときにYAG相が増え、YAP
相が減少し、逆の場合にはYAG相が減少し、YAP相
が増大する傾向がある。
The grain boundary phase containing the sintering aid component of the AlN sintered body of the present invention is Y having a garnet type crystal structure.
It is composed of AG and YAP having a perovskite type crystal structure. These quantitative ratios were determined by powder X-ray diffraction (Cu Kα; 40
KV, 20mA; scan speed 1 deg / min) peak ratio, YAG phase, plane index (532) diffraction angle 2θ
= 46.6 ° diffraction peak height is I (YAG), YA
Assuming that the diffraction peak height of the P phase and the plane index (121) at the diffraction angle 2θ = 34.3 ° is I (YAP), the range of 0.1 ≦ I (YAG) / I (YAP) ≦ 10.0 is Preferably, in this case, the addition amount awt% of the above-mentioned sintering aid does not change from 2 to 10 wt%, but the oxygen amount bwt
The preferable range of% is 0.3a + 1.3c + 1.9 ≧ b ≧ 0.2a + 1.3c + 1.3, and the range of 0.1 ≦ I (YAG) / I (YAP) ≦ 2.0 is more preferable. In this case, awt% is 2-10
Although it does not change like wt%, the more preferable range of the oxygen amount b wt% is 0.3a + 1.3c + 1.6 ≧ b ≧ 0.2a + 1.3c + 1.3. In these formulas, a, b, and c have the same definitions as described above. The YAG phase and the YAP phase increase in the YAG phase when the amount of oxygen contained in the aluminum nitride raw material powder is large relative to the amount of the sintering aid such as yttrium oxide added.
The phases tend to decrease, and in the opposite case, the YAG phase tends to decrease and the YAP phase tends to increase.

【0019】[0019]

【実施例】以下、実施例にて本発明を詳細に説明する。 実施例1〜16 AlN粉末(平均粒径1.6μm 、BET比表面積値3.
8cm2 /g、酸素2.4wt%、Fe60ppm )にY2O
3(純度99.9%、平均粒径0.4μm )粉の焼結助
剤および酸素含量調整剤であるAl2O3 を表1の比率で混
合した。ただし、実施例16のみ AlN原料粉末の酸素量
は3.3wt%であった。これらの混合粉100重量部に
対し、それぞれ成形用バインダーとしてポリビニルブチ
ラール10重量部、可塑剤としてブチルフタリルブチル
グリコレート2.5重量部、溶剤としてトリクロルエチ
レン10重量部、テトラクロルエチレン20重量部、n
−ブチルアルコール20重量部をそれぞれ添加した。こ
れらをナイロン製ボールミルポットにて48時間混合
し、スラリー化した。スラリーの固形分濃度は73.4
wt%であった。
EXAMPLES The present invention will be described in detail below with reference to examples. Examples 1 to 16 AlN powder (average particle size 1.6 μm, BET specific surface area value 3.
8 cm 2 / g, oxygen 2.4 wt%, Fe 60 ppm) Y 2 O
3 (purity 99.9%, average particle size 0.4 μm) powder sintering aid and oxygen content modifier Al 2 O 3 were mixed in the ratios shown in Table 1. However, only in Example 16, the oxygen content of the AlN raw material powder was 3.3 wt%. To 100 parts by weight of these mixed powders, 10 parts by weight of polyvinyl butyral as a molding binder, 2.5 parts by weight of butylphthalyl butyl glycolate as a plasticizer, 10 parts by weight of trichlorethylene as a solvent, and 20 parts by weight of tetrachloroethylene, respectively. , N
20 parts by weight of butyl alcohol were added. These were mixed for 48 hours in a nylon ball mill pot to form a slurry. The solid concentration of the slurry is 73.4.
It was wt%.

【0020】このスラリーをドクターブレード法にて厚
さ1.1mmのグリーンシートを造った。このグリーンシ
ートを30mm角に裁断し、真空中にて600℃、2時間
脱脂処理を行なった。この脱脂体の炭素含有量は0.5
wt%であった。脱脂後、更に真空雰囲気中で、1300
℃で2時間加熱処理をした後の成形体中の炭素含有量は
0.4wt%であった。すなわち、添加する焼結助剤量を
規定する式中のCの値は0.4wt%ということになる。
A green sheet having a thickness of 1.1 mm was prepared from this slurry by the doctor blade method. This green sheet was cut into 30 mm square and degreased at 600 ° C. for 2 hours in vacuum. The carbon content of this defatted body is 0.5
It was wt%. After degreasing, 1300 in vacuum atmosphere
The carbon content in the molded body after the heat treatment at 0 ° C. for 2 hours was 0.4 wt%. That is, the value of C in the formula defining the amount of the sintering additive to be added is 0.4 wt%.

【0021】上記の脱脂後成形体を焼結炉中に配し、大
気圧の窒素気流(流量100l/hr)中にて、表1に示
す焼結温度にて、総て6時間焼結した。次に、得られた
焼結体の組織等を観察するために、それぞれの焼結体を
切断し、切断面を研磨し、SEMおよび画像解析装置に
て、焼結体の粒界相の「平均周長」、「平均最小径と平
均最大径の比率」および「粒界相の平均粒径と AlN粒の
平均粒径の比率」を求めた。
The above-mentioned degreased compact was placed in a sintering furnace and sintered in a nitrogen stream at an atmospheric pressure (flow rate 100 l / hr) at a sintering temperature shown in Table 1 for a total of 6 hours. . Next, in order to observe the structure and the like of the obtained sintered body, each sintered body was cut, the cut surface was polished, and the SEM and the image analyzer were used to measure the grain boundary phase of the sintered body. "Average circumference", "average minimum diameter to average maximum diameter", and "average grain size of grain boundary phase to average grain size of AlN grains" were obtained.

【0022】また、当該焼結体をそれぞれ微粉砕し、粉
末X線回折用試料となし、I(YAG)/I(YAP)
値の測定を行なった。この際の測定の装置は理学電機社
製ガイガーフレックスRAD−2B、測定条件の主なも
のは次の通りの条件である。 ターゲット Cu Kα 電圧、電流 40KV、20mA スキャンスピード 1 deg/min スリット 1−0.3−1
The sintered bodies were finely pulverized to form powder X-ray diffraction samples, I (YAG) / I (YAP).
The value was measured. The measuring device at this time is Geiger Flex RAD-2B manufactured by Rigaku Denki Co., Ltd., and the main measuring conditions are as follows. Target Cu Kα Voltage, current 40KV, 20mA Scan speed 1 deg / min Slit 1-0.3-1

【0023】次に、それぞれの焼結体につき熱サイクル
テストを行なった。その方法等につき下記する。熱サイ
クルテストは、まず焼結体を25mm角で厚さ0.635
mmに加工し素試料とした。
Next, a thermal cycle test was conducted on each sintered body. The method etc. will be described below. In the thermal cycle test, first, the sintered body is 25 mm square and the thickness is 0.635.
It was processed into mm and used as an elementary sample.

【0024】次にTi金属粉(d50=10μm )2.0重
量部、Ag金属粉(d50=10μm )71.0重量部およ
びCu金属粉(d50=15μm )27.0重量部の3種の
金属粉100重量部に対し、エチルセルロース10重量
部およびテルピネオール(和光純薬(株)製市販品)1
0重量部をそれぞれ添加混合したペーストを造った。そ
のペーストを図1の形状、寸法の厚さ0.3mm、23mm
角の銅板に塗布し、上記 AlN焼結体と840℃にて1.
3kg/cm2 の圧力にて圧接しつつ接合した。この接合
試料を表1に示した実施例1〜16につきそれぞれ10
枚ずつ作製した。
[0024] Next Ti metal powder (d 50 = 10μm) 2.0 parts by weight, Ag metal powder (d 50 = 10μm) 71.0 parts by weight of Cu metal powder (d 50 = 15μm) 27.0 parts by weight 10 parts by weight of ethyl cellulose and terpineol (commercially available from Wako Pure Chemical Industries, Ltd.) per 100 parts by weight of three kinds of metal powders
A paste was prepared by adding and mixing 0 parts by weight of each. Paste the paste into the shape and dimensions shown in Fig. 1 with thicknesses of 0.3 mm and 23 mm.
Apply to a square copper plate, and with the above AlN sintered body at 840 ℃ 1.
Bonding was carried out with pressure of 3 kg / cm 2 . This bonded sample was used in each of Examples 1 to 16 shown in Table 1 for 10 times.
It was made one by one.

【0025】これらの接合試料に図2に示す熱サイクル
で熱履歴を与えた。熱サイクルテストは、−55℃→1
50℃→−55℃を1サイクルとして1000サイクル
の熱履歴後、実体顕微鏡で5倍で観察し、クラックの有
無を調べ、それぞれ10枚のうち1枚でもクラックが認
められた場合を×印、全く認められなかった場合を○印
にて評価し表1に示した。
A thermal history was applied to these bonded samples by the thermal cycle shown in FIG. Thermal cycle test is -55 ° C → 1
After the thermal history of 1000 cycles with 50 ° C. → −55 ° C. as one cycle, it is observed with a stereoscopic microscope at 5 times to check for cracks. When even one of 10 sheets has cracks, x mark indicates, When none of them was observed, the evaluation was indicated by a circle, and the results are shown in Table 1.

【0026】更に、焼結体の開気孔を水で3時間煮沸
し、その飽水重量より求め、表1に併記した。また、熱
伝導率は熱サイクルテストに用いた焼結体につき、レー
ザーフラッシュ法により求め、表1に併記した。
Further, the open pores of the sintered body were boiled with water for 3 hours and determined from the saturated water weight thereof. The thermal conductivity of the sintered body used in the thermal cycle test was determined by the laser flash method and is also shown in Table 1.

【0027】比較例1〜5 実施例1〜16と同様な条件等で表2に示した比較例1
〜5の原料配合割合で混合スラリー化し、その後、シー
ト化、焼結した。焼結体組織の観察、熱サイクルテスト
および焼結体の特性等は、実施例1〜16と同一条件で
行ない、表2に示す結果を得た。
Comparative Examples 1 to 5 Comparative Example 1 shown in Table 2 under the same conditions as in Examples 1 to 16
The raw material was mixed and slurried in a raw material mixing ratio of ˜5, and then formed into a sheet and sintered. The observation of the structure of the sintered body, the heat cycle test, the characteristics of the sintered body, and the like were performed under the same conditions as in Examples 1 to 16, and the results shown in Table 2 were obtained.

【0028】その結果、実施例で得られたように高熱伝
導率を維持し、熱サイクルテストにて良結果を得たもの
は比較例では得られなかった。
As a result, the high thermal conductivity as obtained in the examples and good results in the heat cycle test were not obtained in the comparative examples.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【発明の効果】本発明により従来にない AlN焼結体すな
わち、高熱伝導率を維持し、かつ、耐熱サイクル特性の
優れた AlN焼結体が得られた。
According to the present invention, an unprecedented AlN sintered body, that is, an AlN sintered body which maintains high thermal conductivity and is excellent in heat cycle characteristics, was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱サイクルテストに使用した銅板張り AlN焼結
体試料の平面図である。 (a)が表面、(b)が裏面である。
FIG. 1 is a plan view of a copper plate-clad AlN sintered body sample used in a thermal cycle test. (A) is the front surface and (b) is the back surface.

【図2】熱サイクルテストのサイクル条件図である。FIG. 2 is a cycle condition diagram of a heat cycle test.

【符号の説明】[Explanation of symbols]

1 AlN焼結体 2 銅板 1 AlN sintered body 2 Copper plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粒界相を含有する AlN焼結体において、
該焼結体切断面における粒界相の(a)平均周長が0.
1〜15μm で、(b)平均最小径と平均最大径の比率
が0.5〜1.0で、(c)平均粒径と AlN粒の平均粒
径の比率が0.5以下であり、かつ該粒界相組成が3Y2
O3・5Al2O3 およびY2O3・Al2O3 からなることを特徴と
する AlN焼結体。
1. An AlN sintered body containing a grain boundary phase,
The average peripheral length (a) of the grain boundary phase on the cut surface of the sintered body is 0.
1 to 15 μm, (b) the ratio of the average minimum diameter to the average maximum diameter is 0.5 to 1.0, and (c) the ratio of the average particle diameter to the average particle diameter of AlN particles is 0.5 or less, And the composition of the grain boundary phase is 3Y 2
O 3 · 5Al 2 O 3 and Y 2 O 3 · Al 2 O 3 AlN sintered body, characterized in that it consists of.
【請求項2】 AlN原料粉末、焼結助剤および酸素含量
調整剤の総重量に対し、Yの酸化物および/または炭酸
塩を酸化物Y2O3換算で焼結助剤添加量awt%として2〜
10wt%入れ、更に脱脂後の成形体中に含有されている
炭素量をcwt%としたときに 0.3a+1.3c+2.3>b>0.2a+1.3c+0.7 を満足するように酸素含量調整剤および AlN原料粉末中
に含有される酸素量bwt%を調整し、混合、成形、焼結
することを特徴とする AlN焼結体の製造方法。
2. The amount of sintering aid added in terms of oxide Y 2 O 3 awt% based on the total weight of AlN raw material powder, sintering aid and oxygen content modifier. As 2
Oxygen content was adjusted so as to satisfy 0.3a + 1.3c + 2.3>b> 0.2a + 1.3c + 0.7 when the amount of carbon contained in the molded body after degreasing is 10wt% and cwt%. A method for producing an AlN sintered body, which comprises adjusting the amount of oxygen bwt% contained in the agent and the AlN raw material powder, and mixing, shaping and sintering.
JP3201281A 1991-07-16 1991-07-16 Aln sintered compact and production thereof Pending JPH0524930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3201281A JPH0524930A (en) 1991-07-16 1991-07-16 Aln sintered compact and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3201281A JPH0524930A (en) 1991-07-16 1991-07-16 Aln sintered compact and production thereof

Publications (1)

Publication Number Publication Date
JPH0524930A true JPH0524930A (en) 1993-02-02

Family

ID=16438370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3201281A Pending JPH0524930A (en) 1991-07-16 1991-07-16 Aln sintered compact and production thereof

Country Status (1)

Country Link
JP (1) JPH0524930A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839023A (en) * 1995-10-25 1998-11-17 Minolta Co., Ltd. Fixing apparatus and control method thereof
JPH1171184A (en) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd Binder for aln sintered product, its production and binding of aln sintered product therewith
JP2001302351A (en) * 2000-04-18 2001-10-31 Nippon Tungsten Co Ltd AIN-Al2O3 COMPOSITE MATERIAL
WO2006135016A1 (en) * 2005-06-15 2006-12-21 Tokuyama Corporation Aluminum nitride sinter, slurry, green object, and degreased object
WO2022210517A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
WO2022210520A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminum nitride sintered body, method for producing same, circuit board, and multilayer substrate
JPWO2022210518A1 (en) * 2021-03-31 2022-10-06

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839023A (en) * 1995-10-25 1998-11-17 Minolta Co., Ltd. Fixing apparatus and control method thereof
JPH1171184A (en) * 1997-08-22 1999-03-16 Toshiba Ceramics Co Ltd Binder for aln sintered product, its production and binding of aln sintered product therewith
JP2001302351A (en) * 2000-04-18 2001-10-31 Nippon Tungsten Co Ltd AIN-Al2O3 COMPOSITE MATERIAL
WO2006135016A1 (en) * 2005-06-15 2006-12-21 Tokuyama Corporation Aluminum nitride sinter, slurry, green object, and degreased object
WO2022210517A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
WO2022210520A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminum nitride sintered body, method for producing same, circuit board, and multilayer substrate
JPWO2022210518A1 (en) * 2021-03-31 2022-10-06
WO2022210518A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
JPWO2022210517A1 (en) * 2021-03-31 2022-10-06

Similar Documents

Publication Publication Date Title
JP5060093B2 (en) Semiconductor device substrate
JP4869070B2 (en) High thermal conductivity silicon nitride sintered body and silicon nitride structural member
JP3100871B2 (en) Aluminum nitride sintered body
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
KR960016070B1 (en) Sintered aluminium nitride and its production
JPH06219844A (en) Aln sintered compact and production thereof
JPH0524930A (en) Aln sintered compact and production thereof
TWI746750B (en) Aligned AlN sintered body and its manufacturing method
JP3537241B2 (en) Method for producing silicon nitride sintered body
JPH07172921A (en) Aluminum nitride sintered material and its production
EP1036779B1 (en) Aluminium nitride sintered product and process for its production
JP3208181B2 (en) Silicon nitride based sintered body
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
WO2023157784A1 (en) Silicon nitride sintered body, and manufacturing method of silicon nitride sintered body
JPH06191953A (en) Aluminum nitride sintered compact
JP4753195B2 (en) Method for producing aluminum nitride sintered body
JP2000264737A (en) Aluminum nitride sintered compact and its production
JPH11100273A (en) Silicon nitride sintered compact, its production and circuit board
JP2000191376A (en) Aluminum nitride sintered body and its production
JPH0881266A (en) Production of aluminum nitride sintered compact
JPH11116338A (en) Aluminum nitride sintered product and circuit substrate using the same
JPH0517236A (en) Aluminum nitride sintered body and joined body using same
JPH046161A (en) Production of aln sintered body
JPH06219843A (en) Aln sintered compact excellent in surface cleaning property and production thereof