WO2024111484A1 - Bonded body and power module - Google Patents

Bonded body and power module Download PDF

Info

Publication number
WO2024111484A1
WO2024111484A1 PCT/JP2023/041137 JP2023041137W WO2024111484A1 WO 2024111484 A1 WO2024111484 A1 WO 2024111484A1 JP 2023041137 W JP2023041137 W JP 2023041137W WO 2024111484 A1 WO2024111484 A1 WO 2024111484A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
ceramic
metal plate
ceramic plate
pores
Prior art date
Application number
PCT/JP2023/041137
Other languages
French (fr)
Japanese (ja)
Inventor
江 尹
勝博 小宮
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024111484A1 publication Critical patent/WO2024111484A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • This disclosure relates to a joint and a power module.
  • Patent Document 1 proposes reducing the bonding void rate in the brazing material layer that bonds the ceramic plate and the circuit pattern to a predetermined value or less.
  • Power modules and other electronic components are becoming more compact and more sophisticated. As a result, the reliability of the various products used in these electronic components is becoming increasingly higher. For example, assemblies such as circuit boards on which semiconductor elements using wide-gap semiconductors are mounted are required to have higher insulation performance than ever before at high temperatures.
  • the present disclosure therefore provides a joint that has excellent insulation reliability at high temperatures.
  • the present disclosure also provides a power module that has excellent reliability by including such a joint.
  • One aspect of the present disclosure provides the following ceramic sintered body:
  • a joint comprising a ceramic plate, a metal plate, and a brazing material layer joining the main surface of the ceramic plate and the main surface of the metal plate, in which the average area ratio of pores in a region from the main surface of the ceramic plate to a depth of 200 ⁇ m, including directly below the outer edge of the side of the metal plate, on a cut surface obtained by cutting the ceramic plate along the thickness direction of the ceramic plate, is 2.0% or less.
  • the ceramic plate and the metal plate have different thermal expansion coefficients, thermal stress occurs in the ceramic plate as the temperature of the joint changes. This thermal stress is greatest in the ceramic plate near the end of the metal plate. Therefore, when a high voltage is applied to the metal plate of such a joint, insulation breakdown is likely to occur in the ceramic plate near the end of the metal plate as the temperature of the joint increases.
  • the average area ratio of pores in the region including directly below the outer edge of the metal plate and up to a depth of 200 ⁇ m from the main surface of the ceramic plate, which corresponds to the portion where large thermal stress occurs is sufficiently low. Therefore, insulation breakdown of the joint at high temperatures can be sufficiently suppressed. Therefore, the joint has excellent insulation reliability at high temperatures.
  • the bonded body of the above [1] may be any one of the following [2] to [5].
  • the maximum value of the circular equivalent diameter of the pores in the region of the ceramic plate is 10 ⁇ m or less. If there are large pores, insulation breakdown is likely to occur from those pores. By reducing the maximum value of the circular equivalent diameter of the pores, the variation in insulation reliability can be sufficiently reduced. Therefore, the joint of [2] above has even better insulation reliability at high temperatures. Since the ceramic plate in the joint of [3] above has a sufficient thickness, the durability of the insulation at high temperatures can be improved. In the joint of [4] above, the thickness of the metal plate is 0.5 mm or less, so that the thermal stress generated in the ceramic plate can be reduced. Therefore, the insulation reliability at high temperatures can be further improved. In [5] above, a power module capable of operating at high frequencies can be obtained by using the joint with excellent insulation performance at high temperatures as a circuit board on which a semiconductor element made of a semiconductor material with a band gap exceeding 1.12 eV is mounted.
  • One aspect of the present disclosure provides the following power module:
  • a power module comprising the assembly described in any one of [1] to [5] above and a semiconductor element electrically connected to the metal plate of the assembly.
  • the power module includes the semiconductor element and the bonded body, which has excellent insulation performance at high temperatures. Therefore, the power module has excellent reliability.
  • the power module [6] above may be any one of the following [7] to [9].
  • the power module of [7] above has semiconductor elements made of semiconductor materials with a large band gap, and can therefore be driven at high frequencies to improve control performance.
  • semiconductors with a large band gap are used, the amount of heat generated by the semiconductor elements increases. Therefore, by reducing the thickness of the ceramic plates as in [8] above, the joint can be made smaller and heat dissipation can be improved. Also, by increasing the thickness of the metal plates as in [9] above, heat dissipation can be improved, further increasing reliability.
  • the present disclosure can provide a joint that has excellent insulation reliability at high temperatures. Furthermore, the present disclosure can provide a power module that has excellent reliability by including such a joint.
  • FIG. 1 is a plan view of the joint body.
  • FIG. 2 is a cross-sectional view of the bonded body taken along the thickness direction.
  • FIG. 3 is an enlarged cross-sectional view showing a cross section obtained by cutting the ceramic plate along the thickness direction, the cross section including the area just below the outer edge of the side of the metal plate and extending to a depth of 200 ⁇ m from the main surface of the ceramic plate.
  • FIG. 4 is a cross-sectional view of the power module.
  • FIG. 5 is a diagram showing an example of a volume-based particle size distribution of a sintering additive powder obtained by a laser diffraction/scattering method.
  • FIG. 6 is a diagram showing an example of an image of grain growth as sintering progresses in one example of a manufacturing method.
  • FIG. 7 is a schematic diagram showing an example of an inspection device for performing a Vt test.
  • FIG. 8A is a photograph (500x) showing an image of the cut surface of the ceramic plate of Example 1 taken by a scanning electron microscope
  • FIG. 8B is a diagram showing the image after being binarized.
  • FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method.
  • FIG. 10 is a photograph taken by a scanning electron microscope (200x) of a cut surface of a conventional molded body (ceramic green sheet) and of aggregates of sintering additive powder contained in the cut surface.
  • FIG. 11A is a photograph (500x) showing an image of the cut surface of the ceramic plate of Comparative Example 1 taken with a scanning electron microscope
  • FIG. 11B is a diagram showing the photograph after being binarized.
  • the bonded body includes a ceramic plate, a metal plate, and a brazing material layer that bonds a main surface of the ceramic plate to a main surface of the metal plate.
  • the ceramic plate is composed of a ceramic sintered body that contains ceramic particles.
  • the ceramic particles constituting the ceramic sintered body may contain at least one selected from the group consisting of silicon nitride particles, aluminum nitride particles, and alumina particles.
  • the ceramic plate may contain pores. Examples of the ceramic plate include a silicon nitride plate containing silicon nitride particles as a main component, an aluminum nitride plate containing aluminum nitride particles as a main component, and an alumina plate containing alumina particles as a main component.
  • the ceramic plate may also be composed of a composite sintered body containing multiple types of ceramic particles.
  • the average area ratio of pores in the region of the cut surface obtained by cutting the ceramic plate along the thickness direction of the ceramic plate, including directly below the outer edge of the side of the metal plate and extending to a depth of 200 ⁇ m from the main surface of the ceramic plate is 2.0% or less.
  • the average area ratio in this region may be 1.9% or less, 1.8% or less, 1.7% or less, 1.6% or less, 1.5% or less, 1.4% or less, or 1.3% or less.
  • a bonded body including ceramic plates having such a small average area ratio in this region has sufficiently excellent insulation reliability at high temperatures.
  • the average area ratio in this region may be 0.1% or more, 0.3% or more, 0.5% or more, or 0.8% or more.
  • An example of the average range of the area ratio in this region is 0.1 to 1.9%.
  • the side of the metal plate may be inclined so as to widen toward the ceramic plate.
  • the "outer edge of the side of the metal plate” is the outer edge of the main surface of the metal plate facing the ceramic plate.
  • the brazing filler metal may creep up onto the side of the metal plate and be covered with the brazing filler metal. If the side of the metal plate is covered with a coating layer containing a brazing filler metal component, the "outer edge of the side of the metal plate” is the outer edge of the coating layer that covers the side of the metal plate.
  • insulation reliability at high temperatures refers to insulation reliability in an environment of, for example, 80 to 100°C. If the assembly is used as a part of a power module, it will be exposed to such a temperature environment for a long time. In particular, a power module using a wide-gap semiconductor generates a large amount of heat because it is driven at high frequency, so the assembly (circuit board) built into the power module is frequently exposed to such high temperatures.
  • the average value of the area ratio of pores in the region including just below the outer edge of the metal plate and up to a depth of 200 ⁇ m from the main surface of the ceramic plate, which corresponds to the portion where thermal stress increases at high temperatures is sufficiently low. Therefore, insulation breakdown at high temperatures of the assembly of this embodiment can be sufficiently suppressed. Therefore, the assembly of this embodiment has excellent insulation reliability at high temperatures.
  • the junction may be a circuit board on which a semiconductor element is mounted, the semiconductor element being made of a semiconductor material having a band gap of more than 1.12 eV, 2.0 eV or more, 2.5 eV or more, or more than 3.0 eV.
  • the semiconductor element may be a wide-gap semiconductor element. That is, examples of wide-gap semiconductor materials constituting the semiconductor element include silicon carbide, diamond, gallium oxide, and gallium nitride.
  • the semiconductor may also be a semiconductor doped with impurities.
  • a wide-gap semiconductor (wide-gap semiconductor material) refers to one having a band gap of 2.2 eV or more.
  • the average value of the area ratio in the region is the arithmetic average value of the area ratio in at least five regions.
  • the at least five regions are different from each other and are selected so that the regions do not overlap.
  • the area of each region is, for example, 0.05 mm2.
  • the maximum value of the circle-equivalent diameter of the pores in the at least five regions is 10 ⁇ m or less, 9 ⁇ m or less, 8 ⁇ m or less, or 7 ⁇ m or less. By reducing the maximum value of the circle-equivalent diameter of the pores in this way, the variation in insulation reliability can be sufficiently reduced.
  • the area of the pores in the region and the maximum value of the circle-equivalent diameter can be determined from an image magnified 500 times by a scanning electron microscope.
  • the thickness of the ceramic plate may be 0.2 mm or more, 0.25 mm or more, or 0.3 mm or more. Increasing the thickness of the ceramic plate in this manner can improve the durability of the insulation at high temperatures.
  • the thickness of the ceramic plate may be 0.35 mm or less, or 0.31 mm or less. This allows the joint to be made smaller, and can improve heat dissipation when mounted on a device that generates a large amount of heat, such as a power module having a wide handgap semiconductor element. This can further increase the reliability of devices such as power modules.
  • One example of the thickness range of the ceramic plate may be 0.2 to 0.35 mm, from the viewpoint of achieving both of the above-mentioned characteristics.
  • the thickness of the metal plate may be 0.5 mm or less, 0.45 mm or less, or 0.4 mm or less. By reducing the thickness of the metal plate in this way, the thermal stress generated in the ceramic plate can be reduced. Therefore, the insulation reliability at high temperatures can be further improved.
  • the thickness of the metal plate may be 0.3 mm or more, or 0.35 mm or more. This improves heat dissipation and further increases the reliability of the device when the metal plate is mounted on a device that generates a large amount of heat, such as a power module having a wide handgap semiconductor element.
  • An example of the thickness range of the metal plate may be 0.3 to 0.5 mm from the viewpoint of achieving both the above-mentioned characteristics.
  • the metal plate may be, for example, a copper plate from the viewpoint of increasing thermal conductivity and electrical conductivity.
  • FIG. 1 is a plan view showing an example of a joint.
  • FIG. 2 is a cross-sectional view obtained by cutting along line II-II in FIG. 1.
  • the joint 100 shown in FIGS. 1 and 2 comprises a ceramic plate 10, a metal plate 41 joined to one main surface 10A of the ceramic plate 10 via a brazing material layer 51, and a metal plate 42 joined to the other main surface 10B of the ceramic plate 10 via the brazing material layer 51.
  • the metal plate 41 is patterned and functions, for example, as a circuit. In this specification, such a metallic circuit pattern is also referred to as a metal plate.
  • the metal plate 42 is not patterned and functions, for example, as a heat sink.
  • the average area ratio of pores in the region RE including directly below the outer edge 44 on the side of the metal plate 41 and extending to a depth of 200 ⁇ m from the main surface 10A of the ceramic plate 10 is 2.0% or less.
  • Directly below the outer edge 44 on the side of the metal plate 41 is directly below the outer edge of the side (side surface) of the metal plate 41 when the joint body 100 is viewed in plan as shown in FIG. 1.
  • regions RE1, RE2, RE3, RE4, and RE5 are selected directly below at least five outer edge portions 44a, 44b, 44c, 44d, and 44e of the outer edge 44 on the side of the metal plate 41.
  • Regions RE1, RE2, RE3, RE4, and RE5 all include the area directly below the outer edge 44 (outer edge portions 44a, 44b, 44c, 44d, and 44e) and are areas up to a depth of 200 ⁇ m from the main surface 10A of the ceramic plate 10. Note that region RE5, which includes the outer edge portion 44e and the area directly below it, is not shown in FIG. 2. Region RE5, like regions RE1, RE2, RE3, and RE4, can also be defined by obtaining a cut surface obtained by cutting the ceramic plate 10 along the thickness direction so as to pass directly below the outer edge 44 of the metal plate 41.
  • regions RE Five regions RE are shown in FIG. 1 (four in FIG. 2), but six or more regions RE may be selected to determine the average value of the pore area ratio in the regions RE. Furthermore, the positions at which the ceramic plate 10 is cut in the thickness direction are not limited to those shown in FIG. 1 and FIG. 2. For example, five cut surfaces may be obtained, the regions RE may be determined in each cut surface, and the pore area ratio in each region RE may be determined. The average value of the pore area ratio in the bonded body 100 may be calculated by arithmetically averaging the pore area ratios determined in each region RE.
  • the thickness ranges of the ceramic plate 10 and the metal plates 41 and 42 are as described above. The thicknesses of the metal plates 41 and 42 may be the same or different from each other.
  • FIG. 3 is a diagram showing an example of an image obtained when a part of the cut surface 10C of the ceramic plate 10 is observed with a scanning electron microscope (SEM, magnification: 500 times).
  • the region RE in the cut surface 10C of the ceramic plate 10 includes ceramic particles and pores 20.
  • the region RE includes a plurality of pores 20.
  • FIG. 3 shows a schematic enlargement of one pore 20. In this way, the two-dimensional image of the pores 20 includes pores that are not perfect circles. Note that the region RE usually includes a large number of ceramic particles, but in FIG. 3, the ceramic particles are omitted for convenience.
  • the area of each pore 20 can be obtained using commercially available image processing software (e.g., Image J).
  • the area of each pore 20 may be obtained by binarizing the SEM image.
  • the total area of the pores 20 is calculated from the area of each pore 20 included in the region RE shown in FIG. 3.
  • the total area of the pores 20 can be calculated by dividing the total area by the area of the region RE.
  • the area of the region RE is, for example, 0.05 mm2 .
  • the average area ratio of the pores 20 can be calculated as described above.
  • the average area ratio of the pores 20 is 2.0% or less as described above. Other examples of numerical ranges are as described above.
  • a joint 100 including such a ceramic plate 10 large thermal stress occurs in region RE as the temperature changes.
  • region RE the area ratio of pores 20 is low, so the occurrence and progression of cracks can be sufficiently suppressed. Therefore, the joint 100 has excellent insulation reliability at high temperatures.
  • the circular equivalent diameter of the pores 20 contained in the region RE in Figure 3 can be obtained using commercially available image processing software (e.g., Image J).
  • image processing software e.g., Image J
  • the maximum value of the circular equivalent diameter of the pores 20 in the five regions is obtained. In other words, the maximum value is obtained from among the five maximum values.
  • the maximum value of the circular equivalent diameter obtained in this way is within the above-mentioned range.
  • the area ratio of pores in the region RE from the main surface of the ceramic plate to a depth of 200 ⁇ m, including directly below the outer edge of the side of the metal plate 42 on the main surface 10B, may be obtained.
  • three regions RE from the main surface 10A to a depth of 200 ⁇ m may be selected, and two regions RE from the main surface 10B to a depth of 200 ⁇ m may be selected.
  • the region RE may contain a sintering aid phase in addition to the pores 20 and ceramic particles.
  • the average area ratio of the ceramic particles (ceramic phase) in the region RE may be 70 to 90%, or 75 to 85%.
  • the average area ratio of the sintering aid phase in the region RE may be 10 to 25%, or 14 to 22%.
  • a ceramic plate 10 having a region RE (cut surface 10C) containing ceramic particles and a sintering aid phase at such average area ratios has a sufficiently high thermal conductivity.
  • the average area ratio of the ceramic particles and the sintering aid phase is calculated as the arithmetic average of the area ratios measured in at least five regions RE, similar to the average area ratio of the pores 20.
  • 1, 2, and 3 are an example of a bonded body.
  • the shapes of the ceramic plate 10 and the metal plates 41, 42 are not limited to those shown in FIG. 1 and FIG. 2.
  • the metal plate 42 may also have a circuit pattern.
  • both the metal plate 41 and the metal plate 42 do not need to be patterned.
  • a metal plate may be bonded to only one main surface of the ceramic plate.
  • the brazing material layers 51, 52 are layers that join the ceramic plate 10 and the metal plates 41, 42, and contain brazing material components.
  • the brazing material layers 51, 52 may contain, for example, silver derived from the brazing material, or silver and copper.
  • the brazing material layers 51, 52 may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material.
  • the two or more metals may be an alloy.
  • the active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
  • the silver and copper contained in the brazing material layers 51, 52 may be contained as an alloy, such as an Ag-Cu eutectic alloy.
  • the silver content in the brazing material layers 51, 52 may be 45-95 mass% or 50-95 mass% in Ag equivalent.
  • the total silver and copper content in the brazing material layers 51, 52 may be 65-100 mass%, 70-99 mass%, or 90-98 mass% in Ag and Cu equivalent, respectively.
  • the thickness and composition of the brazing material layers 51, 52 may be the same as or different from each other.
  • the power module includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint.
  • the joint may be the joint 100 described above or a modified version thereof.
  • the description of the joint and the modified versions applies to the power module of this embodiment.
  • Such a power module includes a joint (circuit board) that has excellent insulation reliability at high temperatures. Therefore, even when used in a high-temperature environment, high performance can be maintained. In this way, the power module has excellent reliability.
  • FIG. 4 is a cross-sectional view showing an example of a power module.
  • the description of this example is not limited to this example, and is also applicable to modified examples of the power module.
  • the power module 200 in FIG. 4 includes a base plate 90 and a joint body 100 that is joined to one side of the base plate 90 via solder 82.
  • a metal plate 42 (heat sink) on one side of the joint body 100 is joined to the base plate 90 via solder 82.
  • a semiconductor element 80 is attached to the metal plate 41 (circuit pattern) on the other side of the joint body 100 via solder 81.
  • the semiconductor element 80 is connected to a predetermined location of the metal plate 41 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 41 are electrically connected.
  • a metal wire 84 such as an aluminum wire.
  • the semiconductor element 80 and the metal plate 41 are electrically connected.
  • one of the metal plates 41, metal plate 41a is connected to an electrode 83 that penetrates the housing 86 via solder 85.
  • a housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint body 100.
  • the housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95.
  • the resin 95 seals the joint body 100 and the semiconductor element 80.
  • the resin may be, for example, a thermosetting resin or a photocurable resin.
  • a cooling fin 92 which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90.
  • the base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
  • the metal plate 41 and the metal plate 42 are electrically insulated by the ceramic plate 10.
  • the metal plate 41 (41a) may form an electric circuit.
  • the metal plate 41 and the metal plate 42 are respectively joined to the main surface 10A and the main surface 10B of the ceramic plate 10 by a brazing material layer (not shown) containing a brazing material component.
  • the power module 200 has excellent reliability because it includes the joint 100.
  • the semiconductor element 80 in the power module 200 may be made of a semiconductor material having a band gap of more than 1.12 eV, 2.0 eV or more, 2.5 eV or more, or more than 3.0 eV.
  • the semiconductor element may be made of a wide-gap semiconductor material. Examples of wide-gap semiconductor materials include silicon carbide, diamond, and gallium nitride.
  • the junction 100 and its variations have excellent insulation reliability at high temperatures, so that the power module 200 including the wide-gap semiconductor element can operate at a high power level.
  • the band gap of the semiconductor material constituting the semiconductor element 80 may be 6.0 eV or less, 5.5 eV or less, or 5.0 eV or less. An example of the range of the band gap of the semiconductor material is more than 1.12 eV and 6.0 eV or less.
  • This manufacturing method includes a crushing process in which the sintering aid raw material is crushed in a crusher to obtain sintering aid powder with a D50 (median diameter) of 0.5 to 1.1 ⁇ m, a mixing process in which a mixed raw material containing ceramic powder and sintering aid powder is prepared, and a firing process in which a compact of the mixed raw material is fired.
  • the sintering aid powder may contain at least one selected from the group consisting of alkaline earth metal oxides, rare earth oxides, transition metal oxides different from the rare earth oxides, silica, and alumina, and may contain two or more, or three or more.
  • the alkaline earth metal oxide has an alkaline earth metal and oxygen as constituent elements.
  • the alkaline earth metal oxide may include at least one selected from the group consisting of magnesium oxide, calcium oxide, and strontium oxide.
  • the rare earth oxide has a rare earth element and oxygen as constituent elements.
  • the rare earth oxide may include, for example, at least one selected from the group consisting of yttrium oxide and cerium oxide.
  • the transition metal oxide different from the rare earth oxide has a transition metal different from the rare earth and oxygen as constituent elements.
  • Such a transition metal oxide may include, for example, iron oxide.
  • An example of a sintering aid powder includes magnesium oxide, rare earth oxide, and silica.
  • the content of the rare earth oxide may be 30 to 80 parts by mass, or may be 40 to 70 parts by mass.
  • the content of the magnesium oxide may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
  • the content of the silica may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
  • the D50 (median diameter) of the sintering aid powder in the grinding process may be prepared, for example, by grinding the sintering aid raw material with a grinder.
  • a bead mill type grinder may be used as the grinder.
  • the particle size distribution of the sintering aid powder may be adjusted by changing at least one condition selected from the group consisting of the diameter of the beads of the bead mill type grinder, the peripheral speed, and the grinding time.
  • the diameter of the beads may be 0.1 to 0.3 mm.
  • the peripheral speed of the rotor may be 8 to 12 m/sec.
  • the D50 of the sintering aid powder exceeds 1.1 ⁇ m, the number and size of the pores 20 increase, and the average area ratio of the pores 20 in the region RE tends to increase. Also, when the D50 of the sintering aid powder is less than 0.5 ⁇ m, the crushed particles tend to aggregate due to the relationship between the input energy applied to the sintering aid raw material from the crusher and the crushing ratio. This is thought to be due to the fact that as the crushing progresses, the frequency of contact between the crushed particles increases, and the potential energy becomes attractive. In this case too, the average area ratio of the pores 20 in the region RE tends to increase.
  • the D50 of the sintering aid powder is determined based on the volumetric particle size distribution measured by a particle size distribution measuring device using a laser diffraction/scattering method.
  • the particles contained in the sintering aid powder are sufficiently small and the particles can be prevented from agglomerating together. This makes it possible to prevent the generation of pores due to the particles and agglomerates of the sintering aid powder when producing a ceramic plate (ceramic sintered body). Therefore, the average value of the area ratio of the pores 20 in the region RE can be reduced, and the maximum value of the circle equivalent diameter of the pores 20 contained in the region RE can be reduced. In addition, the grain growth of the ceramic particles can be promoted with high uniformity.
  • Figure 5 shows an example of a volumetric particle size distribution of sintering aid powder by laser diffraction and scattering.
  • the horizontal axis is particle size [ ⁇ m] in logarithmic scale, and the vertical axis is frequency [volume %].
  • the particle size distribution in this disclosure is measured in accordance with the method described in JIS Z 8825:2013 "Particle size analysis - Laser diffraction and scattering method".
  • An LS-13 320 (product name) manufactured by Beckman Coulter is used to measure the particle size distribution.
  • the measurement conditions are a particle refractive index of 2.2 and a solvent refractive index of 1.33.
  • the sintering aid powder may have only one peak in the particle size distribution (frequency %) as shown in Figure 5. Such sintering aid powder is sufficiently inhibited from agglomerating, so that the size and number of pores in the ceramic sintered body can be sufficiently reduced.
  • the peak in the particle size distribution may be sharp.
  • the D100 of the sintering aid powder may be 5.5 ⁇ m or less, or may be less than 5.0 ⁇ m.
  • the ratio of D100 to D50 may be 5 or less.
  • An example of the lower limit of D100 is 2 ⁇ m.
  • An example of the lower limit of the ratio of D100 to D50 is 2.
  • the sintering aid powder obtained by pulverization is mixed with the ceramic powder and, if necessary, additives, and mixed using, for example, a ball mill.
  • additives include binders, plasticizers, dispersion media, and release agents.
  • binders include methylcellulose-based binders that have plasticity or surface activity, and acrylic ester-based binders that have excellent thermal decomposition properties.
  • plasticizers include glycerin.
  • dispersion media include ion-exchanged water and ethanol.
  • the ceramic powder for example, silicon nitride powder, aluminum nitride powder, or aluminum oxide powder can be used.
  • the D50 (median diameter) of the ceramic powder may be 0.1 to 6 ⁇ m, or may be 0.5 to 4 ⁇ m. This allows a sufficiently densified ceramic sintered body to be obtained.
  • the D50 of the ceramic powder is determined in the same manner as the D50 of the sintering aid powder.
  • the number of peaks in the particle size distribution (frequency %) of the ceramic powder may also be one.
  • the mass ratio of the sintering aid powder to the ceramic powder may be 0.03 to 0.12, or may be 0.05 to 0.1. This makes it easier to densify the ceramic sintered body, and allows the flexural strength to be sufficiently high.
  • the mixed raw material obtained in the mixing step is applied to a release film at a specified thickness by a doctor blade method, a calendar method, an extrusion method, or the like, and then dried and molded to obtain a molded body.
  • the molding pressure may be 3 to 30 MPa.
  • the molded body may be produced by uniaxial pressing or by CIP. It may also be fired while being molded by hot pressing.
  • the ceramic green sheet substrate may be punched out using a mold equipped with a die and a punch to obtain a molded body.
  • the solid content of the ceramic green sheet substrate when punched with a die may be 65 to 85% by mass, or 75 to 85% by mass.
  • the solid content may be adjusted by carrying out a drying process to dry the ceramic green sheet substrate before punching with a die.
  • the molded body may be degreased before being sintered in the sintering step.
  • the degreasing method is not particularly limited, and may be performed, for example, by heating the molded body to 300 to 700°C in air or a non-oxidizing atmosphere such as nitrogen.
  • the heating time may be, for example, 1 to 10 hours.
  • Ceramic plates can be obtained by firing the molded body.
  • the atmosphere, temperature, and time during firing can be set appropriately depending on the type of ceramic sintered body.
  • silicon nitride plate as the ceramic plate, it may be performed in an inert gas atmosphere such as nitrogen gas or argon gas.
  • the pressure during firing may be 0.7 to 1 MPa.
  • the firing temperature may be 1800 to 2100°C, 1800 to 2000°C, or 1800 to 1900°C.
  • the firing time at the firing temperature may be 3 to 20 hours, or 4 to 16 hours.
  • the sintering temperature may be, for example, 1760 to 1840°C.
  • the holding time in the temperature range of 1760 to 1840°C may be, for example, 1 to 10 hours. Firing may be carried out under atmospheric pressure.
  • the sintering conditions may be appropriately set so that the sintered body is sufficiently densified.
  • Figure 6 is a diagram showing an image of grain growth as sintering progresses in the manufacturing method of this example.
  • fine sintering aid powder 32 is dispersed with high uniformity in ceramic particles 12 in the molded body.
  • the liquefied sintering aid phase 32a diffuses to the grain boundaries by capillary action as shown in (b) of Figure 6.
  • the shrinkage of the molded body (ceramic sintered body) progresses, and the pores 22 disappear as shown in (c) of Figure 6.
  • the ceramic particles 12 melt into the sintering aid phase 32a, and columnar ceramic particles 14 are generated as shown in (d) of Figure 6.
  • the pores 22 disappear sufficiently with the smooth grain growth of the ceramic particles, so that the pores 20 contained in the ceramic plate 10 can be sufficiently reduced.
  • a part of the sintering aid phase 32a may remain in the ceramic plate.
  • FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method.
  • agglomerates 132 of sintering aid powder are contained in ceramic particles 112 in the molded body.
  • a cross-sectional photograph of such a conventional molded body is shown in Figure 10.
  • the liquefied sintering aid phase 132a diffuses from the agglomerates 132 to the grain boundaries by capillary action starting from the agglomerates 132.
  • pores 122 are formed in the agglomerates 132 because of the large size of the agglomerates 132. Because the pores 122 are large in size, they do not disappear even when the molded body shrinks, and the pores 122 remain in the ceramic plate as shown in (c) of Figure 9. In this way, the number of large pores contained in the ceramic plate increases.
  • the particles of the sintering aid powder are sufficiently fine, and the aggregation of the particles is suppressed. Therefore, it is possible to reduce the pores remaining as traces of the sintering aid powder. This reduces the number of pores generated during the sintering process and makes the size of the pores smaller.
  • the average area ratio of the pores 20 in the region RE of the ceramic plate 10 obtained in this way becomes sufficiently small.
  • the maximum value of the circle equivalent diameter of the pores 20 in the region RE also becomes sufficiently small.
  • Such a ceramic plate can sufficiently suppress the occurrence and progression of cracks when thermal stress occurs due to temperature change. Therefore, it has excellent insulation reliability at high temperatures.
  • FIG. 7 is a schematic diagram showing an example of an inspection device for performing a V-t test on a joint (circuit board).
  • the inspection device 400 includes an AC power source 60 and a voltage resistance tester 50 connected to the AC power source 60.
  • One terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72a that contacts the metal plate 41 joined to the ceramic plate 10.
  • the other terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72b that contacts the metal plate 42 via an electrode 70 that is placed in a storage tank 77 that stores insulating oil 76.
  • the electrode 70 is arranged along the bottom surface and one side surface of the storage tank 77. As shown in FIG. 7, the electrode 70 has an L-shape when viewed in vertical cross section.
  • Two insulating support parts 74 are provided on the electrode 70 adjacent to the conductive support part 72b. The two insulating support parts 74 each contact the metal plate 42, and support the assembly 100 in the insulating oil 76.
  • the electrode 70 and the conductive support parts 72a, 72b may be made of, for example, oxygen-free copper.
  • the insulating oil 76 may be, for example, a fluorine-based inert liquid.
  • the voltage resistance tester 50 may be a commercially available product. In this inspection device 400, a voltage of, for example, about 10 to 15 kV is applied between the metal plates 41, 42 that sandwich the ceramic plate 10, and the voltage resistance tester 50 measures the presence or absence of leakage current. By heating the insulating oil 76, the insulating performance of the ceramic plate 10 in the bonded body 100 at high temperatures, for example, above 100°C, may be evaluated.
  • the inspection device is not limited to the configuration shown in FIG. 7, and can be used without any particular restrictions as long as it is an inspection device capable of performing a V-t test when a voltage is applied between the metal plates 41 and 42 at a temperature of, for example, 100°C or higher.
  • the present disclosure is in no way limited to the above-described embodiments.
  • the contents of the description regarding the embodiments of the ceramic sintered body also apply to the bonded body, the power module, and the manufacturing method of the ceramic sintered body.
  • the contents of the description regarding the embodiments of the manufacturing method of the ceramic sintered body also apply to the ceramic sintered body.
  • a bead mill type pulverizer manufactured by Ashizawa Finetech Co., Ltd., device name: Star Mill LMZ
  • the pulverization conditions (bead diameter, rotor circumferential speed, and pulverization time) of the bead mill type pulverizer were changed as shown in Tables 1 and 2 to prepare eight types of sintering aid powders with different pulverization conditions.
  • the volumetric particle size distribution of each sintering aid powder was measured using a particle size distribution measuring device using the laser diffraction/scattering method (Nikkiso Co., Ltd., device name: particle size distribution measuring device MT3000II). From the particle size distribution measurement results, D50 (median size) and D100 (maximum particle size) were calculated. The results are shown in Tables 1 and 2. Tables 1 and 2 also show the ratio of D100 to D50. The particle size distributions (frequency %) of numbers 5 to 8 all had only one peak. In other words, these particle size distributions had the shape shown in Figure 5.
  • results for numbers 1 to 3 in Table 1 confirm that the D50 and D100 of the sintering aid can be reduced by reducing the diameter of the beads. Additionally, the results for numbers 3, 4, and 5 in Tables 1 and 2 confirm that the D50 and/or D100 can be reduced by increasing the circumferential speed of the rotor. The results for numbers 5 and 6 confirm that the D50 and D100 can be reduced by extending the grinding time. On the other hand, the results for numbers 6, 7, and 8 confirm that the D50 and D100 increase when the grinding time is too long. This is thought to be due to the aggregation of the ground powder.
  • Example 1 [Preparation of silicon nitride plate]
  • silicon nitride powder D50: 0.7 ⁇ m
  • sintering aid powder number 6 in Table 2 additives (solvent-based binder) were mixed in a bead mill to prepare a raw material slurry.
  • the above-mentioned raw material slurry was applied to a release film by a doctor blade method to prepare a green sheet.
  • the above laminate was placed in an electric furnace equipped with a carbon heater and heated in air at 500 ° C for 20 hours to degrease.
  • the degreased molded body was placed in a sintering furnace, the pressure in the furnace was reduced to less than 100 Pa, and the temperature was raised to 900°C. Nitrogen gas was then introduced into the furnace, and the temperature was raised to 1500°C under a pressure of approximately 0.9 MPa and held at that temperature for 4 hours. After that, the temperature was raised to 1830°C and held at 1830°C for 5 hours. In this way, a silicon nitride plate with a thickness of 3 mm was obtained.
  • a brazing filler metal was prepared containing 89.5 parts by mass of Ag powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Ag-HWQ, average particle size D50: 2.5 ⁇ m, specific surface area: 0.4 m2 / g), 9.5 parts by mass of Cu powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Cu-HWQ, average particle size D50: 3.0 ⁇ m, specific surface area: 0.4 m2/g), and 1.0 part by mass of Sn powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd.: Sn-HPN, average particle size D50: 3 ⁇ m, specific surface area: 0.1 m2/ g ) for a total of 100 parts by mass, and 3.5 parts by mass of titanium hydride powder (manufactured by Toho Tech Co., Ltd., product name: TCH-100).
  • a copper plate for forming a circuit was placed on the brazing material layer on one of the main surfaces of the silicon nitride plate, and a copper plate for forming a heat sink (both C1020 oxygen-free copper plates with a thickness of 0.3 mm and a purity of 99.60% by mass) was placed on the brazing material layer on the other main surface of the silicon nitride plate to obtain a laminate.
  • This laminate was heated at 830° C. for 30 minutes in a vacuum of 1.0 ⁇ 10 ⁇ 3 Pa or less to obtain a bonded body.
  • An etching resist was printed on the bonded copper plate for forming a circuit, and the copper plate for forming a circuit was etched with a ferric chloride solution to form a circuit pattern as shown in FIG.
  • the silicon nitride plate was cut along the thickness direction of the silicon nitride plate to obtain a cut surface. Cutting was performed at multiple locations to select five regions including the area immediately below the outer edge of the side of the circuit pattern and extending to a depth of 200 ⁇ m from the main surface of the silicon nitride plate.
  • the identified regions RE were observed at a magnification of 500 times using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the total area of pores and the maximum value of the circle-equivalent diameter of the pores in the five regions RE (each area: 0.05 mm 2 ) were obtained. Each region included the area immediately below the outer edge of the side of the circuit pattern.
  • the size and number of pores were measured using image processing software (ImageJ).
  • the total area of pores was divided by the area of the field of view (0.05 mm 2 ) to obtain the area ratio of the pores.
  • the maximum circle-equivalent diameter of the pores and the area ratio of the pores were obtained in each of the five regions RE.
  • the arithmetic mean value of the pore area ratio and the maximum value of the pore equivalent circle diameter (maximum value in the five regions RE) are shown in Table 3.
  • the insulating oil in the testing device was heated to 100°C, the circuit board 100 was fixed in the insulating oil, and a voltage of 10 kV was applied between the circuit pattern 41 and the copper plate 42, and the time until dielectric breakdown occurred (maximum: 746 hours) was measured.
  • the results are shown in Table 3.
  • Example 2 A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 5 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • Example 3 A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 7 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • Example 4 A silicon nitride plate and a bonded body were produced and each evaluation was carried out in the same manner as in Example 1, except that the sintering aid powder No. 8 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • Example 1 A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 3 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • Example 2 A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 1 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • Example 3 A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 2 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
  • FIG. 8 (A) is a photograph showing an SEM image (500x) of one of the above-mentioned regions selected from the cut surface of the silicon nitride plate of Example 1
  • Figure 8 (B) is a diagram showing the SEM image after binarization.
  • Figure 11 (A) is a photograph showing an SEM image (500x) of one of the above-mentioned regions selected from the cut surface of the silicon nitride plate of Comparative Example 1
  • Figure 11 (B) is a diagram showing the SEM image after binarization. Comparing Figures 8 and 11, the number of pores and the size of the pores were clearly smaller in Example 1 than in Comparative Example 1.
  • a bonded body having excellent insulation reliability at high temperatures is provided.
  • a power module having excellent reliability is provided by including the bonded body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a bonded body comprising a ceramic plate, a metal plate, and a brazing material layer that bonds the main surface of the ceramic plate and the main surface of the metal plate. In a cross-section obtained by cutting the ceramic plate along the thickness direction thereof, the average value of the area ratio of pores is 2.0% or less in a region from the main surface of the ceramic plate to a depth of 200 μm and including directly below the outer edge at the side of the metal plate.

Description

接合体及びパワーモジュールJoint and power module
 本開示は、接合体及びパワーモジュールに関する。 This disclosure relates to a joint and a power module.
 近年、モーター等の産業機器、及び電気自動車等の製品には、大電力制御用のパワーモジュールが用いられている。このようなパワーモジュールには、半導体装置から発生する熱を効率的に拡散するとともに、漏れ電流を抑制するため、セラミック板と回路パターンを備える回路基板が用いられている。例えば、特許文献1では、セラミック板と回路パターンとを接合するろう材層における接合ボイド率を所定値以下に低減することが提案されている。 In recent years, power modules for controlling large amounts of power have been used in industrial equipment such as motors, and in products such as electric vehicles. In these power modules, a circuit board having a ceramic plate and a circuit pattern is used to efficiently diffuse heat generated by the semiconductor device and suppress leakage current. For example, Patent Document 1 proposes reducing the bonding void rate in the brazing material layer that bonds the ceramic plate and the circuit pattern to a predetermined value or less.
 半導体装置には、ワイドギャップ半導体を用いることが提案されている(例えば、特許文献2)。ワイドギャップ半導体を用いた半導体装置は、Si半導体を備えた半導体装置よりも、耐圧性及び耐熱性に優れる。このようなワイドギャップ半導体は、耐圧性に優れ、高温動作が可能である。 The use of wide-gap semiconductors in semiconductor devices has been proposed (for example, Patent Document 2). Semiconductor devices using wide-gap semiconductors have better pressure resistance and heat resistance than semiconductor devices equipped with Si semiconductors. Such wide-gap semiconductors have excellent pressure resistance and are capable of high-temperature operation.
国際公開第2019/022133号International Publication No. 2019/022133 特開2018-200918号公報JP 2018-200918 A
 パワーモジュール等の電子部品は、高性能化及び小型化が図られている。これに伴って、電子部品に用いられる各種製品の信頼性の要求レベルが益々高くなっている。例えば、ワイドギャップ半導体を用いた半導体素子が搭載される回路基板等の接合体は、高温下において従来よりも高い絶縁性能を有することが求められる。 Power modules and other electronic components are becoming more compact and more sophisticated. As a result, the reliability of the various products used in these electronic components is becoming increasingly higher. For example, assemblies such as circuit boards on which semiconductor elements using wide-gap semiconductors are mounted are required to have higher insulation performance than ever before at high temperatures.
 そこで、本開示は、高温下における絶縁信頼性に優れる接合体を提供する。また、本開示は、そのような接合体を備えることによって信頼性に優れるパワーモジュールを提供する。 The present disclosure therefore provides a joint that has excellent insulation reliability at high temperatures. The present disclosure also provides a power module that has excellent reliability by including such a joint.
 本開示の一側面は、以下のセラミック焼結体を提供する。 One aspect of the present disclosure provides the following ceramic sintered body:
[1]セラミック板と、金属板と、前記セラミック板の主面と前記金属板の主面とを接合するろう材層と、を備え、前記セラミック板の厚さ方向に沿うようにして前記セラミック板を切断して得られる切断面のうち、前記金属板の側部における外縁の直下を含み、前記セラミック板の主面から深さ200μmまでの領域における気孔の面積比率の平均値が2.0%以下である、接合体。 [1] A joint comprising a ceramic plate, a metal plate, and a brazing material layer joining the main surface of the ceramic plate and the main surface of the metal plate, in which the average area ratio of pores in a region from the main surface of the ceramic plate to a depth of 200 μm, including directly below the outer edge of the side of the metal plate, on a cut surface obtained by cutting the ceramic plate along the thickness direction of the ceramic plate, is 2.0% or less.
 接合体に、例えば半導体素子等が搭載されると、半導体素子の発熱等に伴って温度が変動する。ここで、セラミック板と金属板とは熱膨張率が異なるため、接合体の温度変化に伴ってセラミック板には熱応力が生じる。この熱応力は、セラミック板のうち、金属板の端部近傍の部分で最も大きくなる。したがって、このような接合体の金属板に高電圧が印加されると、接合体の温度の上昇に伴って、セラミック板のうち金属板の端部近傍の部分で絶縁破壊が生じやすくなる。上記[1]の接合体では、大きい熱応力が生じる部分に相当する、金属板の外縁の直下を含み且つセラミック板の主面から深さ200μmまでの領域における気孔の面積比率の平均値を十分に低くしている。このため、上記接合体の高温下における絶縁破壊を十分に抑制することができる。したがって、上記接合体は高温下における絶縁信頼性に優れる。 When a semiconductor element or the like is mounted on the joint, the temperature fluctuates due to heat generation from the semiconductor element. Here, since the ceramic plate and the metal plate have different thermal expansion coefficients, thermal stress occurs in the ceramic plate as the temperature of the joint changes. This thermal stress is greatest in the ceramic plate near the end of the metal plate. Therefore, when a high voltage is applied to the metal plate of such a joint, insulation breakdown is likely to occur in the ceramic plate near the end of the metal plate as the temperature of the joint increases. In the joint of [1] above, the average area ratio of pores in the region including directly below the outer edge of the metal plate and up to a depth of 200 μm from the main surface of the ceramic plate, which corresponds to the portion where large thermal stress occurs, is sufficiently low. Therefore, insulation breakdown of the joint at high temperatures can be sufficiently suppressed. Therefore, the joint has excellent insulation reliability at high temperatures.
 上記[1]の接合体は、以下の[2]~[5]のいずれか一つであってもよい。 The bonded body of the above [1] may be any one of the following [2] to [5].
[2]前記切断面の前記領域に含まれる前記気孔の円相当径の最大値が10μm以下である、上記[1]に記載の接合体。
[3]前記セラミック板の厚みが0.2mm以上である、[1]又は[2]に記載の接合体。
[4]前記金属板の厚みが0.5mm以下である、[1]~[3]のいずれか一つに記載の接合体。
[5]バンドギャップが1.12eVを超える半導体材料で構成される半導体素子が搭載される回路基板である、[1]~[4]のいずれか一つに記載の接合体。
[2] The bonded body according to the above-mentioned [1], wherein the maximum value of the equivalent circle diameter of the pores included in the region of the cut surface is 10 μm or less.
[3] The joined body according to [1] or [2], wherein the ceramic plate has a thickness of 0.2 mm or more.
[4] The joined body according to any one of [1] to [3], wherein the metal plate has a thickness of 0.5 mm or less.
[5] The bonded structure according to any one of [1] to [4], which is a circuit board on which a semiconductor element made of a semiconductor material having a band gap exceeding 1.12 eV is mounted.
 上記[2]の接合体は、セラミック板の上記領域における気孔の円相当径の最大値が10μm以下である。大きな気孔があると、そこを起点に絶縁破壊が生じやすくなる。気孔の円相当径の最大値を小さくすることによって、絶縁信頼性のばらつきを十分に低減することができる。したがって、上記[2]の接合体は、高温での絶縁信頼性に一層優れる。上記[3]の接合体におけるセラミック板は十分な厚みを有することから、高温下における絶縁の耐久性を向上することができる。上記[4]の接合体では、金属板の厚みが0.5mm以下であることによって、セラミック板に生じる熱応力を小さくすることができる。したがって、高温での絶縁信頼性を一層向上することができる。上記[5]では、高温下における絶縁性能に優れる接合体を、バンドギャップが1.12eVを超える半導体材料で構成される半導体素子が搭載される回路基板として用いることによって、高周波で駆動することが可能なパワーモジュールを得ることができる。 In the joint of [2] above, the maximum value of the circular equivalent diameter of the pores in the region of the ceramic plate is 10 μm or less. If there are large pores, insulation breakdown is likely to occur from those pores. By reducing the maximum value of the circular equivalent diameter of the pores, the variation in insulation reliability can be sufficiently reduced. Therefore, the joint of [2] above has even better insulation reliability at high temperatures. Since the ceramic plate in the joint of [3] above has a sufficient thickness, the durability of the insulation at high temperatures can be improved. In the joint of [4] above, the thickness of the metal plate is 0.5 mm or less, so that the thermal stress generated in the ceramic plate can be reduced. Therefore, the insulation reliability at high temperatures can be further improved. In [5] above, a power module capable of operating at high frequencies can be obtained by using the joint with excellent insulation performance at high temperatures as a circuit board on which a semiconductor element made of a semiconductor material with a band gap exceeding 1.12 eV is mounted.
 本開示の一側面は、以下のパワーモジュールを提供する。 One aspect of the present disclosure provides the following power module:
[6]上記[1]~[5]のいずれか一つに記載の接合体と、当該接合体の前記金属板と電気的に接続される半導体素子と、を備えるパワーモジュール。 [6] A power module comprising the assembly described in any one of [1] to [5] above and a semiconductor element electrically connected to the metal plate of the assembly.
 上記パワーモジュールは、半導体素子とともに高温での絶縁性能に優れる上記接合体を備える。したがって、上記パワーモジュールは信頼性に優れる。 The power module includes the semiconductor element and the bonded body, which has excellent insulation performance at high temperatures. Therefore, the power module has excellent reliability.
 上記[6]のパワーモジュールは、以下の[7]~[9]のいずれか一つであってもよい。 The power module [6] above may be any one of the following [7] to [9].
[7]前記半導体素子を構成する半導体材料のバンドギャップが1.12eVを超える、[6]に記載のパワーモジュール。
[8]前記セラミック板の厚みが0.35mm以下である、[6]又は[7]に記載のパワーモジュール。
[9]前記接合体における前記金属板の厚みが0.3mm以上である、[6]~[8]のいずれか一つに記載のパワーモジュール。
[7] The power module according to [6], wherein the band gap of the semiconductor material constituting the semiconductor element exceeds 1.12 eV.
[8] The power module according to [6] or [7], wherein the ceramic plate has a thickness of 0.35 mm or less.
[9] The power module according to any one of [6] to [8], wherein the thickness of the metal plate in the joined body is 0.3 mm or more.
 上記[7]のパワーモジュールは、バンドギャップが大きい半導体材料で構成される半導体素子を有することから、高周波で駆動して制御性能を向上することができる。このようなバンドギャップの大きい半導体を用いると、半導体素子の発熱量が増大する。そこで、上記[8]のとおりセラミック板の厚みを小さくすることによって、接合体を小型化するとともに放熱性を向上することができる。また、上記[9]のとおり、金属板の厚みを大きくすることによって放熱性を向上して、信頼性を一層高くすることができる。 The power module of [7] above has semiconductor elements made of semiconductor materials with a large band gap, and can therefore be driven at high frequencies to improve control performance. When such semiconductors with a large band gap are used, the amount of heat generated by the semiconductor elements increases. Therefore, by reducing the thickness of the ceramic plates as in [8] above, the joint can be made smaller and heat dissipation can be improved. Also, by increasing the thickness of the metal plates as in [9] above, heat dissipation can be improved, further increasing reliability.
 本開示は、高温下における絶縁信頼性に優れる接合体を提供することができる。また、本開示は、そのような接合体を備えることによって信頼性に優れるパワーモジュールを提供することができる。 The present disclosure can provide a joint that has excellent insulation reliability at high temperatures. Furthermore, the present disclosure can provide a power module that has excellent reliability by including such a joint.
図1は、接合体の平面図である。FIG. 1 is a plan view of the joint body. 図2は、接合体の厚さ方向に沿う断面図である。FIG. 2 is a cross-sectional view of the bonded body taken along the thickness direction. 図3は、セラミック板の厚さ方向に沿うようにして切断して得られる切断面のうち、金属板の側部における外縁の直下を含み、セラミック板の主面から深さ200μmまでの領域を模式的に示す拡大断面図である。FIG. 3 is an enlarged cross-sectional view showing a cross section obtained by cutting the ceramic plate along the thickness direction, the cross section including the area just below the outer edge of the side of the metal plate and extending to a depth of 200 μm from the main surface of the ceramic plate. 図4は、パワーモジュールの断面図である。FIG. 4 is a cross-sectional view of the power module. 図5は、レーザー回折・散乱法による焼結助剤粉末の体積基準の粒子径分布の一例を示す図である。FIG. 5 is a diagram showing an example of a volume-based particle size distribution of a sintering additive powder obtained by a laser diffraction/scattering method. 図6は、製造方法の一例において焼結が進行するときの粒成長のイメージ例を示す図である。FIG. 6 is a diagram showing an example of an image of grain growth as sintering progresses in one example of a manufacturing method. 図7は、V-t試験を行う検査装置の一例を模式的に示す図である。FIG. 7 is a schematic diagram showing an example of an inspection device for performing a Vt test. 図8の(A)は、走査型電子顕微鏡による実施例1のセラミック板の切断面の画像を示す写真(500倍)であり、図8の(B)は、当該画像を二値化処理して示す図である。FIG. 8A is a photograph (500x) showing an image of the cut surface of the ceramic plate of Example 1 taken by a scanning electron microscope, and FIG. 8B is a diagram showing the image after being binarized. 図9は、従来の製造方法において焼結が進行するときの粒成長のイメージを示す図である。FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method. 図10は、走査型電子顕微鏡による、従来の成形体(セラミックグリーンシート)の切断面(200倍)と、当該切断面に含まれる焼結助剤粉末の凝集体の写真である。FIG. 10 is a photograph taken by a scanning electron microscope (200x) of a cut surface of a conventional molded body (ceramic green sheet) and of aggregates of sintering additive powder contained in the cut surface. 図11の(A)は、走査型電子顕微鏡による比較例1のセラミック板の切断面の画像を示す写真(500倍)であり、図11の(B)は、当該写真を二値化処理して示す図である。FIG. 11A is a photograph (500x) showing an image of the cut surface of the ceramic plate of Comparative Example 1 taken with a scanning electron microscope, and FIG. 11B is a diagram showing the photograph after being binarized.
 以下、場合により図面を参照して、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。なお、「~」の記号で示される数値範囲は、下限値及び上限値を含む。すなわち、「A~B」で示される数値範囲は、A以上且つB以下を意味する。上限値のみを有する数値範囲と下限値のみを有する数値範囲を組み合わせた数値範囲も本開示に含まれる。各数値範囲の上限又は下限をいずれかの実施例の数値で置き換えたものも、本開示に含まれる。複数の材料が例示されている場合、そのうちの一種を単独で用いてもよいし、複数を組み合わせて用いてもよい。 Below, embodiments of the present disclosure will be described, with reference to the drawings where necessary. However, the following embodiments are merely examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following content. Note that the numerical ranges indicated with the symbol "to" include the lower limit and the upper limit. In other words, the numerical range indicated by "A to B" means A or more and B or less. This disclosure also includes numerical ranges that combine a numerical range having only an upper limit with a numerical range having only a lower limit. This disclosure also includes numerical ranges in which the upper or lower limit of each numerical range is replaced with the numerical value of any of the examples. When multiple materials are exemplified, one of the materials may be used alone, or multiple materials may be used in combination.
 一実施形態に係る接合体は、セラミック板と、金属板と、セラミック板の主面と金属板の主面とを接合するろう材層と、を備える。セラミック板は、セラミック粒子を含むセラミック焼結体で構成される。 The bonded body according to one embodiment includes a ceramic plate, a metal plate, and a brazing material layer that bonds a main surface of the ceramic plate to a main surface of the metal plate. The ceramic plate is composed of a ceramic sintered body that contains ceramic particles.
 セラミック焼結体を構成するセラミック粒子は、窒化ケイ素粒子、窒化アルミニウム粒子及びアルミナ粒子からなる群より選ばれる少なくとも一つを含有していてもよい。セラミック板は気孔を含んでもよい。セラミック板としては、主成分として窒化ケイ素粒子を含む窒化ケイ素板、主成分として窒化アルミニウム粒子を含む窒化アルミニウム板、及び、主成分としてアルミナ粒子を含むアルミナ板が挙げられる。また、複数種類のセラミック粒子を含む複合焼結体で構成されるセラミック板であってもよい。 The ceramic particles constituting the ceramic sintered body may contain at least one selected from the group consisting of silicon nitride particles, aluminum nitride particles, and alumina particles. The ceramic plate may contain pores. Examples of the ceramic plate include a silicon nitride plate containing silicon nitride particles as a main component, an aluminum nitride plate containing aluminum nitride particles as a main component, and an alumina plate containing alumina particles as a main component. The ceramic plate may also be composed of a composite sintered body containing multiple types of ceramic particles.
 本実施形態の接合体において、セラミック板の厚さ方向に沿うようにしてセラミック板を切断して得られる切断面のうち、金属板の側部における外縁の直下を含み、セラミック板の主面から深さ200μmまでの領域における気孔の面積比率の平均値は2.0%以下である。当該領域における面積比率の平均値は、1.9%以下、1.8%以下、1.7%以下、1.6%以下、1.5%以下、1.4%以下、又は1.3%以下であってよい。このように当該領域における面積比率の平均値が小さいセラミック板を備える接合体は、高温における絶縁信頼性に十分に優れる。当該領域における面積比率の平均値は、0.1%以上、0.3%以上、0.5%以上、又は0.8%以上であってよい。当該領域における面積比率の平均値の範囲の一例は、0.1~1.9%である。 In the bonded body of this embodiment, the average area ratio of pores in the region of the cut surface obtained by cutting the ceramic plate along the thickness direction of the ceramic plate, including directly below the outer edge of the side of the metal plate and extending to a depth of 200 μm from the main surface of the ceramic plate, is 2.0% or less. The average area ratio in this region may be 1.9% or less, 1.8% or less, 1.7% or less, 1.6% or less, 1.5% or less, 1.4% or less, or 1.3% or less. A bonded body including ceramic plates having such a small average area ratio in this region has sufficiently excellent insulation reliability at high temperatures. The average area ratio in this region may be 0.1% or more, 0.3% or more, 0.5% or more, or 0.8% or more. An example of the average range of the area ratio in this region is 0.1 to 1.9%.
 金属板の側面は、セラミック板に向かって拡がるように傾斜していてもよい。この場合、「金属板の側部における外縁」は、金属板のセラミック板側の主面の外縁となる。金属板の側面にはろう材が這い上がってろう材で覆われていてもよい。金属板の側面がろう材成分を含む被覆層で覆われている場合、「金属板の側部における外縁」は、金属板の側面を覆う被覆層の外縁となる。 The side of the metal plate may be inclined so as to widen toward the ceramic plate. In this case, the "outer edge of the side of the metal plate" is the outer edge of the main surface of the metal plate facing the ceramic plate. The brazing filler metal may creep up onto the side of the metal plate and be covered with the brazing filler metal. If the side of the metal plate is covered with a coating layer containing a brazing filler metal component, the "outer edge of the side of the metal plate" is the outer edge of the coating layer that covers the side of the metal plate.
 本明細書において、高温における絶縁信頼性とは、例えば80~100℃の環境下における絶縁信頼性をいう。接合体をパワーモジュールの部品として用いると、このような温度環境下に長時間曝されることとなる。特に、ワイドギャップ半導体を用いたパワーモジュールは、高周波で駆動されるために発熱量が大きいため、当該パワーモジュールに内蔵される接合体(回路基板)は、このような高温下に頻繁に曝されることとなる。本実施形態の接合体では、高温度下において熱応力が大きくなる部分に相当する、金属板の外縁の直下を含み且つセラミック板の主面から深さ200μmまでの領域における気孔の面積比率の平均値を十分に低くしている。このため、本実施形態の接合体の高温下における絶縁破壊を十分に抑制することができる。したがって、本実施形態の接合体は高温下における絶縁信頼性に優れる。 In this specification, insulation reliability at high temperatures refers to insulation reliability in an environment of, for example, 80 to 100°C. If the assembly is used as a part of a power module, it will be exposed to such a temperature environment for a long time. In particular, a power module using a wide-gap semiconductor generates a large amount of heat because it is driven at high frequency, so the assembly (circuit board) built into the power module is frequently exposed to such high temperatures. In the assembly of this embodiment, the average value of the area ratio of pores in the region including just below the outer edge of the metal plate and up to a depth of 200 μm from the main surface of the ceramic plate, which corresponds to the portion where thermal stress increases at high temperatures, is sufficiently low. Therefore, insulation breakdown at high temperatures of the assembly of this embodiment can be sufficiently suppressed. Therefore, the assembly of this embodiment has excellent insulation reliability at high temperatures.
 接合体は、バンドギャップが1.12eV超、2.0eV以上、2.5eV以上、又は3.0eVを超える半導体材料で構成される半導体素子が搭載される回路基板であってよい。半導体素子はワイドギャップ半導体素子であってよい。すなわち、半導体素子を構成するワイドギャップ半導体材料としては、例えば、炭化ケイ素、ダイヤモンド、酸化ガリウム及び窒化ガリウムが挙げられる。また、これらに不純物をドープした半導体であってよい。本明細書におけるワイドギャップ半導体(ワイドギャップ半導体材料)は、2.2eV以上のバンドギャップを有するものをいう。 The junction may be a circuit board on which a semiconductor element is mounted, the semiconductor element being made of a semiconductor material having a band gap of more than 1.12 eV, 2.0 eV or more, 2.5 eV or more, or more than 3.0 eV. The semiconductor element may be a wide-gap semiconductor element. That is, examples of wide-gap semiconductor materials constituting the semiconductor element include silicon carbide, diamond, gallium oxide, and gallium nitride. The semiconductor may also be a semiconductor doped with impurities. In this specification, a wide-gap semiconductor (wide-gap semiconductor material) refers to one having a band gap of 2.2 eV or more.
 当該領域における面積比率の平均値は、少なくとも5つの領域における面積比率の算術平均値である。少なくとも5つの領域は、互いに異なる領域であり、領域同士が重複しないように選定する。各領域の面積は、例えば、それぞれ0.05mmである。少なくとも5つの領域における気孔の円相当径の最大値は、10μm以下、9μm以下、8μm以下、又は7μm以下である。このように気孔の円相当径の最大値を小さくすることによって、絶縁信頼性のばらつきを十分に低減することができる。領域における気孔の面積及び円相当径の最大値は、走査型電子顕微鏡で500倍に拡大した画像において求めることができる。 The average value of the area ratio in the region is the arithmetic average value of the area ratio in at least five regions. The at least five regions are different from each other and are selected so that the regions do not overlap. The area of each region is, for example, 0.05 mm2. The maximum value of the circle-equivalent diameter of the pores in the at least five regions is 10 μm or less, 9 μm or less, 8 μm or less, or 7 μm or less. By reducing the maximum value of the circle-equivalent diameter of the pores in this way, the variation in insulation reliability can be sufficiently reduced. The area of the pores in the region and the maximum value of the circle-equivalent diameter can be determined from an image magnified 500 times by a scanning electron microscope.
 セラミック板の厚みは、0.2mm以上、0.25mm以上又は0.3mm以上であってよい。このようにセラミック板の厚みを大きくすることによって、高温下における絶縁の耐久性を向上することができる。セラミック板の厚みは、0.35mm以下、又は0.31mm以下であってよい。これによって、接合体を小型化するとともに、ワイドハンドギャップ半導体素子を有するパワーモジュールのように発熱量が大きいデバイスに搭載された場合に、放熱性を向上することができる。したがって、パワーモジュール等のデバイスの信頼性を一層高くすることができる。セラミック板の厚み範囲の一例は、上述の特性を両立する観点から、0.2~0.35mmであってよい。 The thickness of the ceramic plate may be 0.2 mm or more, 0.25 mm or more, or 0.3 mm or more. Increasing the thickness of the ceramic plate in this manner can improve the durability of the insulation at high temperatures. The thickness of the ceramic plate may be 0.35 mm or less, or 0.31 mm or less. This allows the joint to be made smaller, and can improve heat dissipation when mounted on a device that generates a large amount of heat, such as a power module having a wide handgap semiconductor element. This can further increase the reliability of devices such as power modules. One example of the thickness range of the ceramic plate may be 0.2 to 0.35 mm, from the viewpoint of achieving both of the above-mentioned characteristics.
 金属板の厚みは、0.5mm以下、0.45mm以下、又は0.4mm以下であってよい。このように金属板の厚みを小さくすることによって、セラミック板に生じる熱応力を小さくすることができる。したがって、高温での絶縁信頼性を一層向上することができる。金属板の厚みは、0.3mm以上、又は0.35mm以上であってよい。これによって、ワイドハンドギャップ半導体素子を有するパワーモジュールのように発熱量が大きいデバイスに搭載された場合に、放熱性を向上して、デバイスの信頼性を一層高くすることができる。金属板の厚み範囲の一例は、上述の特性を両立する観点から、0.3~0.5mmであってよい。金属板は、熱伝導性及び電気伝導性を高くする観点から、例えば銅板であってよい。 The thickness of the metal plate may be 0.5 mm or less, 0.45 mm or less, or 0.4 mm or less. By reducing the thickness of the metal plate in this way, the thermal stress generated in the ceramic plate can be reduced. Therefore, the insulation reliability at high temperatures can be further improved. The thickness of the metal plate may be 0.3 mm or more, or 0.35 mm or more. This improves heat dissipation and further increases the reliability of the device when the metal plate is mounted on a device that generates a large amount of heat, such as a power module having a wide handgap semiconductor element. An example of the thickness range of the metal plate may be 0.3 to 0.5 mm from the viewpoint of achieving both the above-mentioned characteristics. The metal plate may be, for example, a copper plate from the viewpoint of increasing thermal conductivity and electrical conductivity.
 図1は、接合体の一例を示す平面図である。図2は、図1のII-II線で切断して得られる断面図である。図1及び図2に示す接合体100は、セラミック板10と、セラミック板10の一方の主面10Aにろう材層51を介して接合された金属板41と、セラミック板10の他方の主面10Bにろう材層51を介して接合された金属板42と、を備える。金属板41は、パターン形成されており、例えば回路として機能する。本明細書では、このように金属製の回路パターンも金属板と称する。金属板42はパターン形成されておらず、例えば放熱板として機能する。 FIG. 1 is a plan view showing an example of a joint. FIG. 2 is a cross-sectional view obtained by cutting along line II-II in FIG. 1. The joint 100 shown in FIGS. 1 and 2 comprises a ceramic plate 10, a metal plate 41 joined to one main surface 10A of the ceramic plate 10 via a brazing material layer 51, and a metal plate 42 joined to the other main surface 10B of the ceramic plate 10 via the brazing material layer 51. The metal plate 41 is patterned and functions, for example, as a circuit. In this specification, such a metallic circuit pattern is also referred to as a metal plate. The metal plate 42 is not patterned and functions, for example, as a heat sink.
 図2は、セラミック板10の厚さ方向に沿う切断面を示している。このようにして得られる切断面のうち、金属板41の側部における外縁44の直下を含み、セラミック板10の主面10Aから深さ200μmまでの領域REにおける気孔の面積比率の平均値が2.0%以下である。金属板41の側部における外縁44の直下は、図1のように接合体100を平面視したときの金属板41の側部(側面)の外縁の直下である。図1に示すように、金属板41の側部における外縁44の少なくとも5つの外縁部分44a,44b,44c,44d,44eの直下において、領域RE1,RE2,RE3,RE4,RE5を選択する。領域RE1,RE2,RE3,RE4,RE5は、いずれも、外縁44(外縁部分44a,44b,44c,44d,44e)の直下を含み、セラミック板10の主面10Aから深さ200μmまでの領域である。なお、図2には、外縁部分44e及びその直下を含む領域RE5が示されていない。領域RE5も、領域RE1,RE2,RE3,RE4と同様に、セラミック板10の厚さ方向に沿って金属板41の外縁44の直下を通るように切断して得られる切断面を得て画定することができる。 2 shows a cut surface along the thickness direction of the ceramic plate 10. In the cut surface thus obtained, the average area ratio of pores in the region RE including directly below the outer edge 44 on the side of the metal plate 41 and extending to a depth of 200 μm from the main surface 10A of the ceramic plate 10 is 2.0% or less. Directly below the outer edge 44 on the side of the metal plate 41 is directly below the outer edge of the side (side surface) of the metal plate 41 when the joint body 100 is viewed in plan as shown in FIG. 1. As shown in FIG. 1, regions RE1, RE2, RE3, RE4, and RE5 are selected directly below at least five outer edge portions 44a, 44b, 44c, 44d, and 44e of the outer edge 44 on the side of the metal plate 41. Regions RE1, RE2, RE3, RE4, and RE5 all include the area directly below the outer edge 44 ( outer edge portions 44a, 44b, 44c, 44d, and 44e) and are areas up to a depth of 200 μm from the main surface 10A of the ceramic plate 10. Note that region RE5, which includes the outer edge portion 44e and the area directly below it, is not shown in FIG. 2. Region RE5, like regions RE1, RE2, RE3, and RE4, can also be defined by obtaining a cut surface obtained by cutting the ceramic plate 10 along the thickness direction so as to pass directly below the outer edge 44 of the metal plate 41.
 図1には5箇所の領域RE(図2には4箇所)が示されているが、6箇所以上の領域REを選択して領域REにおける気孔の面積比率の平均値を求めてよい。また、セラミック板10の厚さ方向に沿って切断する位置は、図1及び図2に示す位置に限定されない。例えば、5つの切断面を得て、それぞれの切断面において領域REを確定し、各領域REにおける気孔の面積比率を求めてもよい。接合体100における気孔の面積比率の平均値は、各領域REにおいて求めた気孔の面積比率を算術平均して算定することができる。なお、セラミック板10及び金属板41,42の厚みの範囲は、上述したとおりである。金属板41,42の厚みは、互いに同じであってよいし、互いに異なっていてもよい。 Five regions RE are shown in FIG. 1 (four in FIG. 2), but six or more regions RE may be selected to determine the average value of the pore area ratio in the regions RE. Furthermore, the positions at which the ceramic plate 10 is cut in the thickness direction are not limited to those shown in FIG. 1 and FIG. 2. For example, five cut surfaces may be obtained, the regions RE may be determined in each cut surface, and the pore area ratio in each region RE may be determined. The average value of the pore area ratio in the bonded body 100 may be calculated by arithmetically averaging the pore area ratios determined in each region RE. The thickness ranges of the ceramic plate 10 and the metal plates 41 and 42 are as described above. The thicknesses of the metal plates 41 and 42 may be the same or different from each other.
 図3には、セラミック板10の切断面10Cの一部を走査型電子顕微鏡(SEM、倍率:500倍)で観察したときの画像の一例を模式的に示す図である。図3に示されるようにセラミック板10の切断面10Cにおける領域REは、セラミック粒子と気孔20とを含む。領域REには複数の気孔20が含まれている。図3には、一つの気孔20を模式的に拡大して示している。このように、気孔20の二次元画像には、真円ではないものも含まれている。なお、領域REには、通常、多数のセラミック粒子が含まれているが、図3では、便宜上、セラミック粒子の表示を省略している。各気孔20の面積は、市販の画像処理ソフトウエア(例えば、Image J)を用いて求めることができる。SEM画像を二値化処理して、各気孔20の面積を求めてもよい。 FIG. 3 is a diagram showing an example of an image obtained when a part of the cut surface 10C of the ceramic plate 10 is observed with a scanning electron microscope (SEM, magnification: 500 times). As shown in FIG. 3, the region RE in the cut surface 10C of the ceramic plate 10 includes ceramic particles and pores 20. The region RE includes a plurality of pores 20. FIG. 3 shows a schematic enlargement of one pore 20. In this way, the two-dimensional image of the pores 20 includes pores that are not perfect circles. Note that the region RE usually includes a large number of ceramic particles, but in FIG. 3, the ceramic particles are omitted for convenience. The area of each pore 20 can be obtained using commercially available image processing software (e.g., Image J). The area of each pore 20 may be obtained by binarizing the SEM image.
 図3に示す領域REに含まれる各気孔20の面積から、気孔20の面積の合計値を求める。この面積の合計値を領域REの面積で除することによって、各領域REにおける気孔20の面積比率を求めることができる。領域REの面積は、例えば、0.05mmである。各領域REにおける気孔20の面積比率を用いて、上述のとおり気孔20の面積比率の平均値を算定することができる。気孔20の面積比率の平均値は上述したとおり2.0%以下である。その他の数値範囲の例は上述したとおりである。 The total area of the pores 20 is calculated from the area of each pore 20 included in the region RE shown in FIG. 3. The total area of the pores 20 can be calculated by dividing the total area by the area of the region RE. The area of the region RE is, for example, 0.05 mm2 . Using the area ratio of the pores 20 in each region RE, the average area ratio of the pores 20 can be calculated as described above. The average area ratio of the pores 20 is 2.0% or less as described above. Other examples of numerical ranges are as described above.
 このようなセラミック板10を備える接合体100では、温度変化に伴って領域REにおいて大きい熱応力が発生する。領域REでは、気孔20の面積比率が低いため、クラックの発生及び進展を十分に抑制することができる。したがって、接合体100は、高温における絶縁信頼性に優れる。 In a joint 100 including such a ceramic plate 10, large thermal stress occurs in region RE as the temperature changes. In region RE, the area ratio of pores 20 is low, so the occurrence and progression of cracks can be sufficiently suppressed. Therefore, the joint 100 has excellent insulation reliability at high temperatures.
 図3の領域REに含まれる気孔20の円相当径は、市販の画像処理ソフトウエア(例えば、Image J)を用いて求めることができる。領域REとして5つの領域RE1,RE2,RE3,RE4,RE5を選定した場合、5つの領域における気孔20の円相当径の最大値を求める。すなわち5つの最大値の中から最大値を求める。このようにして求められる円相当径の最大値が、上述の範囲にある。 The circular equivalent diameter of the pores 20 contained in the region RE in Figure 3 can be obtained using commercially available image processing software (e.g., Image J). When five regions RE1, RE2, RE3, RE4, and RE5 are selected as the region RE, the maximum value of the circular equivalent diameter of the pores 20 in the five regions is obtained. In other words, the maximum value is obtained from among the five maximum values. The maximum value of the circular equivalent diameter obtained in this way is within the above-mentioned range.
 この例では、主面10Aから深さ200μmまでの領域のみを複数選定したが、別の例では主面10Bにおいて金属板42の側部における外縁の直下を含み、セラミック板の主面から深さ200μmまでの領域REにおける気孔の面積比率を求めてもよい。例えば、主面10Aから深さ200μmまでの領域REを3つ選択し、主面10Bから深さ200μmまでの領域REを2つ選択してもよい。 In this example, only multiple regions from the main surface 10A to a depth of 200 μm were selected, but in another example, the area ratio of pores in the region RE from the main surface of the ceramic plate to a depth of 200 μm, including directly below the outer edge of the side of the metal plate 42 on the main surface 10B, may be obtained. For example, three regions RE from the main surface 10A to a depth of 200 μm may be selected, and two regions RE from the main surface 10B to a depth of 200 μm may be selected.
 領域REは、気孔20及びセラミック粒子の他に、焼結助剤相を含んでよい。領域REにおけるセラミック粒子(セラミック相)の面積比率の平均値は、70~90%であってよく、75~85%であってもよい。領域REにおける焼結助剤相の面積比率の平均値は、10~25%であってよく、14~22%であってよい。セラミック粒子及び焼結助剤相をこのような面積比率の平均値で含む領域RE(切断面10C)を有するセラミック板10は、十分に高い熱伝導率を有する。なお、セラミック粒子及び焼結助剤相の面積比率の平均値は、気孔20の面積比率の平均値と同様に、少なくとも5つの領域REで測定されるそれぞれの面積比率の算術平均値として求められる。 The region RE may contain a sintering aid phase in addition to the pores 20 and ceramic particles. The average area ratio of the ceramic particles (ceramic phase) in the region RE may be 70 to 90%, or 75 to 85%. The average area ratio of the sintering aid phase in the region RE may be 10 to 25%, or 14 to 22%. A ceramic plate 10 having a region RE (cut surface 10C) containing ceramic particles and a sintering aid phase at such average area ratios has a sufficiently high thermal conductivity. The average area ratio of the ceramic particles and the sintering aid phase is calculated as the arithmetic average of the area ratios measured in at least five regions RE, similar to the average area ratio of the pores 20.
 図1,図2及び図3は、接合体の一例である。セラミック板10及び金属板41,42の形状は図1及び図2に示す形状に限定されない。接合体100の変形例では金属板42も回路パターンであってよい。別の変形例では、金属板41と金属板42の両方がパターン形成されていなくてよい。例えば、金属板をエッチングして回路パターンを形成する場合、回路パターンを形成する前及び回路パターンを形成する後の両方が接合体に該当する。さらに別の変形例では、セラミック板の一方の主面に接合される金属板(回路パターン)が複数であってもよい。セラミック板の一方の主面のみに金属板が接合されていてもよい。 1, 2, and 3 are an example of a bonded body. The shapes of the ceramic plate 10 and the metal plates 41, 42 are not limited to those shown in FIG. 1 and FIG. 2. In a modified example of the bonded body 100, the metal plate 42 may also have a circuit pattern. In another modified example, both the metal plate 41 and the metal plate 42 do not need to be patterned. For example, when a metal plate is etched to form a circuit pattern, both before and after the circuit pattern is formed correspond to the bonded body. In yet another modified example, there may be multiple metal plates (circuit patterns) bonded to one main surface of the ceramic plate. A metal plate may be bonded to only one main surface of the ceramic plate.
 ろう材層51,52は、セラミック板10と金属板41,42とを接合する層であり、ろう材成分を含む。ろう材層51,52は、例えば、ろう材に由来する銀、又は銀及び銅を含んでよい。ろう材層51,52は、さらに、ろう材に由来する錫及び活性金属からなる群より選ばれる一種又は二種以上の金属を含有してよい。ろう材層51,52において、二種以上の金属は合金となっていてもよい。活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含んでいてよい。ろう材層51,52に含まれる銀及び銅は、例えばAg-Cu共晶合金等の合金として含まれていてもよい。 The brazing material layers 51, 52 are layers that join the ceramic plate 10 and the metal plates 41, 42, and contain brazing material components. The brazing material layers 51, 52 may contain, for example, silver derived from the brazing material, or silver and copper. The brazing material layers 51, 52 may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material. In the brazing material layers 51, 52, the two or more metals may be an alloy. The active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium. The silver and copper contained in the brazing material layers 51, 52 may be contained as an alloy, such as an Ag-Cu eutectic alloy.
 ろう材層51,52における銀の含有量は、Ag換算で45~95質量%であってよく、50~95質量%であってもよい。ろう材層51,52における銀及び銅の合計含有量は、それぞれAg及びCuに換算して65~100質量%であってよく、70~99質量%であってよく、90~98質量%であってもよい。ろう材層51,52の厚み及び組成は、互いに同一であってもよいし、互いに異なっていてもよい。 The silver content in the brazing material layers 51, 52 may be 45-95 mass% or 50-95 mass% in Ag equivalent. The total silver and copper content in the brazing material layers 51, 52 may be 65-100 mass%, 70-99 mass%, or 90-98 mass% in Ag and Cu equivalent, respectively. The thickness and composition of the brazing material layers 51, 52 may be the same as or different from each other.
 一実施形態に係るパワーモジュールは、接合体(回路基板)と、接合体の金属板に電気的に接続される半導体素子と、を備える。接合体は、上述の接合体100又はその変形例であってよい。接合体、及びこれらの変形例に関する説明内容は、本実施形態のパワーモジュールに適用される。このようなパワーモジュールは、高温における絶縁信頼性に優れる接合体(回路基板)を備える。したがって、高温となる環境下で使用しても、高い性能を維持することができる。このように、上記パワーモジュールは信頼性に優れる。 The power module according to one embodiment includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint. The joint may be the joint 100 described above or a modified version thereof. The description of the joint and the modified versions applies to the power module of this embodiment. Such a power module includes a joint (circuit board) that has excellent insulation reliability at high temperatures. Therefore, even when used in a high-temperature environment, high performance can be maintained. In this way, the power module has excellent reliability.
 図4は、パワーモジュールの一例を示す断面図である。この例の説明内容は本例に限定されず、パワーモジュールの変形例にも適用される。図4のパワーモジュール200は、ベース板90と、ハンダ82を介してベース板90の一方面と接合される接合体100とを備える。接合体100の一方面側における金属板42(放熱板)がハンダ82を介してベース板90と接合している。 FIG. 4 is a cross-sectional view showing an example of a power module. The description of this example is not limited to this example, and is also applicable to modified examples of the power module. The power module 200 in FIG. 4 includes a base plate 90 and a joint body 100 that is joined to one side of the base plate 90 via solder 82. A metal plate 42 (heat sink) on one side of the joint body 100 is joined to the base plate 90 via solder 82.
 接合体100の他方面側における金属板41(回路パターン)には、ハンダ81を介して半導体素子80が取り付けられている。半導体素子80は、アルミワイヤ(アルミ線)等の金属ワイヤ84で金属板41の所定箇所に接続されている。このようにして、半導体素子80と金属板41とは電気的に接続されている。筐体86の外部と金属板41とを電気的に接続するため、金属板41の一つである金属板41aは、ハンダ85を介して筐体86を貫通して設けられる電極83に接続されている。 A semiconductor element 80 is attached to the metal plate 41 (circuit pattern) on the other side of the joint body 100 via solder 81. The semiconductor element 80 is connected to a predetermined location of the metal plate 41 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 41 are electrically connected. To electrically connect the outside of the housing 86 to the metal plate 41, one of the metal plates 41, metal plate 41a, is connected to an electrode 83 that penetrates the housing 86 via solder 85.
 ベース板90の一方の主面上には、当該主面と一体になって接合体100を収容する筐体86が配置されている。ベース板90の一方の主面と筐体86とで形成される収容空間には樹脂95が充填されている。樹脂95は、接合体100及び半導体素子80を封止している。樹脂は、例えば、熱硬化型樹脂であってよく、光硬化型樹脂であってもよい。 A housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint body 100. The housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95. The resin 95 seals the joint body 100 and the semiconductor element 80. The resin may be, for example, a thermosetting resin or a photocurable resin.
 ベース板90の他方の主面には、グリース94を介して放熱部材をなす冷却フィン92が接合されている。ベース板90の端部には冷却フィン92をベース板90に固定するネジ93が取り付けられている。ベース板90及び冷却フィン92はアルミニウムで構成されていてもよい。ベース板90及び冷却フィン92は、高い熱伝導率を有することによって放熱部として良好に機能する。 A cooling fin 92, which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90. The base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
 セラミック板10によって、金属板41と金属板42は電気的に絶縁される。金属板41(41a)は電気回路を構成していてよい。金属板41及び金属板42は、ろう材成分を含むろう材層(不図示)によってセラミック板10の主面10A及び主面10Bにそれぞれ接合されている。パワーモジュール200は接合体100を備えることから信頼性に優れる。 The metal plate 41 and the metal plate 42 are electrically insulated by the ceramic plate 10. The metal plate 41 (41a) may form an electric circuit. The metal plate 41 and the metal plate 42 are respectively joined to the main surface 10A and the main surface 10B of the ceramic plate 10 by a brazing material layer (not shown) containing a brazing material component. The power module 200 has excellent reliability because it includes the joint 100.
 パワーモジュール200における半導体素子80は、バンドギャップが1.12eV超、2.0eV以上、2.5eV以上、又は3.0eVを超える半導体材料で構成されていてよい。半導体素子はワイドギャップ半導体材料で構成されていてもよい。ワイドギャップ半導体材料としては、例えば、炭化ケイ素、ダイヤモンド、及び窒化ガリウムが挙げられる。接合体100及びその変形例は、高温における絶縁信頼性に優れることから、ワイドギャップ半導体素子を備えるパワーモジュール200は、高い電力レベルで動作することができる。半導体素子80を構成する半導体材料のバンドギャップは、6.0eV以下、5.5eV以下、又は5.0eV以下であってよい。半導体材料のバンドギャップの範囲の一例は、1.12eV超且つ6.0eV以下である。 The semiconductor element 80 in the power module 200 may be made of a semiconductor material having a band gap of more than 1.12 eV, 2.0 eV or more, 2.5 eV or more, or more than 3.0 eV. The semiconductor element may be made of a wide-gap semiconductor material. Examples of wide-gap semiconductor materials include silicon carbide, diamond, and gallium nitride. The junction 100 and its variations have excellent insulation reliability at high temperatures, so that the power module 200 including the wide-gap semiconductor element can operate at a high power level. The band gap of the semiconductor material constituting the semiconductor element 80 may be 6.0 eV or less, 5.5 eV or less, or 5.0 eV or less. An example of the range of the band gap of the semiconductor material is more than 1.12 eV and 6.0 eV or less.
 接合体100に備えられるセラミック板10の製造方法の一例を説明する。この一例の製造方法は、焼結助剤原料を粉砕機で粉砕してD50(メジアン径)が0.5~1.1μmの焼結助剤粉末を得る粉砕工程と、セラミック粉末と焼結助剤粉末とを含む混合原料を調製する混合工程と、混合原料の成形体を焼成する焼成工程と、を有する。 An example of a manufacturing method for the ceramic plate 10 provided in the joint body 100 will be described. This manufacturing method includes a crushing process in which the sintering aid raw material is crushed in a crusher to obtain sintering aid powder with a D50 (median diameter) of 0.5 to 1.1 μm, a mixing process in which a mixed raw material containing ceramic powder and sintering aid powder is prepared, and a firing process in which a compact of the mixed raw material is fired.
 焼結助剤粉末は、アルカリ土類金属酸化物、希土類酸化物、当該希土類酸化物とは異なる遷移金属酸化物、シリカ及びアルミナからなる群より選ばれる少なくとも一つを含んでよく、二つ以上又は三つ以上を含んでもよい。 The sintering aid powder may contain at least one selected from the group consisting of alkaline earth metal oxides, rare earth oxides, transition metal oxides different from the rare earth oxides, silica, and alumina, and may contain two or more, or three or more.
 アルカリ土類金属酸化物は、構成元素としてアルカリ土類金属と酸素とを有する。アルカリ土類金属酸化物は、酸化マグネシウム、酸化カルシウム及び酸化ストロンチウムからなる群より選ばれる少なくとも一つを含んでよい。希土類酸化物は、構成元素として希土類元素と酸素とを有する。希土類酸化物は、例えば、酸化イットリウム及び酸化セリウムからなる群より選ばれる少なくとも一つを含んでよい。当該希土類酸化物とは異なる遷移金属酸化物は、構成元素として、希土類とは異なる遷移金属と酸素とを有する。このような遷移金属酸化物は、例えば、酸化鉄を含んでよい。 The alkaline earth metal oxide has an alkaline earth metal and oxygen as constituent elements. The alkaline earth metal oxide may include at least one selected from the group consisting of magnesium oxide, calcium oxide, and strontium oxide. The rare earth oxide has a rare earth element and oxygen as constituent elements. The rare earth oxide may include, for example, at least one selected from the group consisting of yttrium oxide and cerium oxide. The transition metal oxide different from the rare earth oxide has a transition metal different from the rare earth and oxygen as constituent elements. Such a transition metal oxide may include, for example, iron oxide.
 焼結助剤粉末の一例は、酸化マグネシウム、希土類酸化物、及びシリカを含む。この場合、焼結助剤粉末の全体を100質量部としたときに、希土類酸化物の含有量は、30~80質量部であってよく、40~70質量部であってもよい。このとき、酸化マグネシウムの含有量は5~40質量部であってよく、10~30質量部であってもよい。このとき、シリカの含有量は5~40質量部であってよく、10~30質量部であってもよい。 An example of a sintering aid powder includes magnesium oxide, rare earth oxide, and silica. In this case, when the total amount of the sintering aid powder is 100 parts by mass, the content of the rare earth oxide may be 30 to 80 parts by mass, or may be 40 to 70 parts by mass. In this case, the content of the magnesium oxide may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass. In this case, the content of the silica may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
 粉砕工程における焼結助剤粉末のD50(メジアン径)は、例えば、焼結助剤原料を粉砕機で粉砕して調製してもよい。粉砕機としては、ビーズミル式粉砕機を用いることができる。ビーズミル式粉砕機のビーズの直径、周速及び粉砕時間からなる群より選ばれる少なくとも一つの条件を変更することで、焼結助剤粉末の粒子径分布を調整してもよい。ビーズの直径は0.1~0.3mmであってよい。ロータの周速は8~12m/秒であってよい。粉砕時間は5~20分間であってよい。ビーズミル式粉砕機以外の粉砕機としては、ボールミル、振動ミル、及びポットミル等が挙げられる。 The D50 (median diameter) of the sintering aid powder in the grinding process may be prepared, for example, by grinding the sintering aid raw material with a grinder. A bead mill type grinder may be used as the grinder. The particle size distribution of the sintering aid powder may be adjusted by changing at least one condition selected from the group consisting of the diameter of the beads of the bead mill type grinder, the peripheral speed, and the grinding time. The diameter of the beads may be 0.1 to 0.3 mm. The peripheral speed of the rotor may be 8 to 12 m/sec. The grinding time may be 5 to 20 minutes. Examples of grinders other than the bead mill type grinder include a ball mill, a vibration mill, and a pot mill.
 焼結助剤粉末のD50が1.1μmを超えると気孔20の個数及びサイズが増大して、領域REにおける気孔20の面積比率の平均値が高くなる傾向にある。また、焼結助剤粉末のD50が0.5μm未満になると、粉砕機から焼結助剤原料に加えられる入力エネルギーと粉砕比の関係性により、粉砕された粒子が凝集する傾向にある。この要因としては、粉砕が進むと粉砕された粒子同士の接触頻度が増加すること、及び、ポテンシャルエネルギーが引力リッチになることが考えられる。この場合も、領域REにおける気孔20の面積比率の平均値が高くなる傾向にある。 When the D50 of the sintering aid powder exceeds 1.1 μm, the number and size of the pores 20 increase, and the average area ratio of the pores 20 in the region RE tends to increase. Also, when the D50 of the sintering aid powder is less than 0.5 μm, the crushed particles tend to aggregate due to the relationship between the input energy applied to the sintering aid raw material from the crusher and the crushing ratio. This is thought to be due to the fact that as the crushing progresses, the frequency of contact between the crushed particles increases, and the potential energy becomes attractive. In this case too, the average area ratio of the pores 20 in the region RE tends to increase.
 焼結助剤粉末のD50は、レーザー回折・散乱法による粒子径分布測定装置によって測定される体積基準の粒子径分布に基づいて求められる。焼結助剤粉末のD50が上記範囲であることによって、焼結助剤粉末に含まれる粒子が十分に小さく、且つ粒子同士が凝集することを抑制できる。これによって、セラミック板(セラミック焼結体)を作製する際に、焼結助剤粉末の粒子及び凝集体に起因する気孔の発生を抑制することができる。したがって、領域REにおける気孔20の面積比率の平均値を低くするとともに、領域REに含まれる気孔20の円相当径の最大値を小さくすることができる。また、セラミック粒子の粒成長を高い均一性で進行させることができる。 The D50 of the sintering aid powder is determined based on the volumetric particle size distribution measured by a particle size distribution measuring device using a laser diffraction/scattering method. By having the D50 of the sintering aid powder within the above range, the particles contained in the sintering aid powder are sufficiently small and the particles can be prevented from agglomerating together. This makes it possible to prevent the generation of pores due to the particles and agglomerates of the sintering aid powder when producing a ceramic plate (ceramic sintered body). Therefore, the average value of the area ratio of the pores 20 in the region RE can be reduced, and the maximum value of the circle equivalent diameter of the pores 20 contained in the region RE can be reduced. In addition, the grain growth of the ceramic particles can be promoted with high uniformity.
 図5は、レーザー回折・散乱法による焼結助剤粉末の体積基準の粒子径分布の一例を示す図である。横軸は、対数目盛の粒径[μm]であり、縦軸は頻度[体積%]である。本開示における粒子径分布は、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠して測定される。粒子径分布測定には、ベックマンコールター社製のLS-13 320(商品名)を用いる。測定条件としては、粒子屈折率を2.2、溶媒の屈折率を1.33とする。 Figure 5 shows an example of a volumetric particle size distribution of sintering aid powder by laser diffraction and scattering. The horizontal axis is particle size [μm] in logarithmic scale, and the vertical axis is frequency [volume %]. The particle size distribution in this disclosure is measured in accordance with the method described in JIS Z 8825:2013 "Particle size analysis - Laser diffraction and scattering method". An LS-13 320 (product name) manufactured by Beckman Coulter is used to measure the particle size distribution. The measurement conditions are a particle refractive index of 2.2 and a solvent refractive index of 1.33.
 焼結助剤粉末は、図5に示されるように、粒子径分布(頻度%)におけるピークが一つのみであってよい。このような焼結助剤粉末は、凝集が十分に抑制されているため、セラミック焼結体における気孔のサイズ及び個数を十分に低減することができる。粒子径分布におけるピークは、シャープであってよい。例えば、焼結助剤粉末のD100は、5.5μm以下であってよく、5.0μm未満であってもよい。例えば、D50に対するD100の比は、5以下であってよい。D100の下限の一例は2μmである。D50に対するD100の比の下限の一例は2である。 The sintering aid powder may have only one peak in the particle size distribution (frequency %) as shown in Figure 5. Such sintering aid powder is sufficiently inhibited from agglomerating, so that the size and number of pores in the ceramic sintered body can be sufficiently reduced. The peak in the particle size distribution may be sharp. For example, the D100 of the sintering aid powder may be 5.5 μm or less, or may be less than 5.0 μm. For example, the ratio of D100 to D50 may be 5 or less. An example of the lower limit of D100 is 2 μm. An example of the lower limit of the ratio of D100 to D50 is 2.
 混合工程では、粉砕によって得られた焼結助剤粉末と、セラミック粉末、及び、必要に応じて添加剤を配合し、例えばボールミル等を用いて混合する。このようにして、焼結助剤粉末とセラミック粉末を含む混合原料を調製する。添加剤としては、バインダ、可塑剤、分散媒、及び離型剤等が挙げられる。バインダとしては、例えば、可塑性又は界面活性効果を有するメチルセルロース系のもの、熱分解性に優れたアクリル酸エステル系のものが挙げられる。可塑剤としては、例えばグリセリンが挙げられる。分散媒としては、イオン交換水及びエタノール等が挙げられる。 In the mixing process, the sintering aid powder obtained by pulverization is mixed with the ceramic powder and, if necessary, additives, and mixed using, for example, a ball mill. In this way, a mixed raw material containing the sintering aid powder and the ceramic powder is prepared. Examples of additives include binders, plasticizers, dispersion media, and release agents. Examples of binders include methylcellulose-based binders that have plasticity or surface activity, and acrylic ester-based binders that have excellent thermal decomposition properties. Examples of plasticizers include glycerin. Examples of dispersion media include ion-exchanged water and ethanol.
 セラミック粉末としては、例えば、窒化ケイ素粉末、窒化アルミニウム粉末、又は酸化アルミニウム粉末等を用いることができる。セラミック粉末のD50(メジアン径)は、0.1~6μmであってよく、0.5~4μmであってもよい。これによって、十分に緻密化したセラミック焼結体を得ることができる。セラミック粉末のD50は、焼結助剤粉末のD50と同じ方法で求められる。セラミック粉末の粒子径分布(頻度%)のピークの数も一つであってよい。 As the ceramic powder, for example, silicon nitride powder, aluminum nitride powder, or aluminum oxide powder can be used. The D50 (median diameter) of the ceramic powder may be 0.1 to 6 μm, or may be 0.5 to 4 μm. This allows a sufficiently densified ceramic sintered body to be obtained. The D50 of the ceramic powder is determined in the same manner as the D50 of the sintering aid powder. The number of peaks in the particle size distribution (frequency %) of the ceramic powder may also be one.
 セラミック粉末に対する焼結助剤粉末の質量基準の配合比は、0.03~0.12であってよく、0.05~0.1であってもよい。これによって、セラミック焼結体が緻密化し易くなり、抗折強度を十分に高くすることができる。 The mass ratio of the sintering aid powder to the ceramic powder may be 0.03 to 0.12, or may be 0.05 to 0.1. This makes it easier to densify the ceramic sintered body, and allows the flexural strength to be sufficiently high.
 混合工程で得られた混合原料を、ドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布して乾燥し、成形して成形体を得る。成形圧力は3~30MPaであってよい。成形体は一軸加圧して作製してもよいし、CIPによって作製してもよい。また、ホットプレスによって成形しながら焼成してもよい。例えば、ドクターブレード法等の上記方法によってセラミックグリーンシート基材を作製した後、ダイとパンチを備える金型を用いてセラミックグリーンシート基材を打ち抜いて成形体を得てもよい。 The mixed raw material obtained in the mixing step is applied to a release film at a specified thickness by a doctor blade method, a calendar method, an extrusion method, or the like, and then dried and molded to obtain a molded body. The molding pressure may be 3 to 30 MPa. The molded body may be produced by uniaxial pressing or by CIP. It may also be fired while being molded by hot pressing. For example, after producing a ceramic green sheet substrate by the above-mentioned methods such as the doctor blade method, the ceramic green sheet substrate may be punched out using a mold equipped with a die and a punch to obtain a molded body.
 金型で打ち抜かれる際のセラミックグリーンシート基材の固形分の含有量は、65~85質量%であってよく、75~85質量%であってもよい。固形分の含有量は、金型で打ち抜く前に、セラミックグリーンシート基材を乾燥する乾燥工程を行って調節してもよい。 The solid content of the ceramic green sheet substrate when punched with a die may be 65 to 85% by mass, or 75 to 85% by mass. The solid content may be adjusted by carrying out a drying process to dry the ceramic green sheet substrate before punching with a die.
 焼成工程で成形体を焼成する前に、成形体の脱脂を行ってもよい。脱脂方法は特に限定されず、例えば、成形体を空気中又は窒素等の非酸化雰囲気中で300~700℃に加熱して行ってよい。加熱時間は、例えば1~10時間であってよい。 The molded body may be degreased before being sintered in the sintering step. The degreasing method is not particularly limited, and may be performed, for example, by heating the molded body to 300 to 700°C in air or a non-oxidizing atmosphere such as nitrogen. The heating time may be, for example, 1 to 10 hours.
 セラミック板(板状のセラミック焼結体)は、成形体を焼成して得ることができる。焼成時の雰囲気、温度及び時間等は、セラミック焼結体の種類に応じて適宜設定することができる。セラミック板として窒化ケイ素板を製造する場合、窒素ガス又はアルゴンガス等の不活性ガス雰囲気中で行ってよい。焼成時の圧力は、0.7~1MPaであってよい。焼成温度は1800~2100℃、1800~2000℃、又は1800~1900℃であってよい。当該焼成温度における焼成時間は3~20時間であってよく、4~16時間であってよい。 Ceramic plates (plate-shaped ceramic sintered bodies) can be obtained by firing the molded body. The atmosphere, temperature, and time during firing can be set appropriately depending on the type of ceramic sintered body. When manufacturing a silicon nitride plate as the ceramic plate, it may be performed in an inert gas atmosphere such as nitrogen gas or argon gas. The pressure during firing may be 0.7 to 1 MPa. The firing temperature may be 1800 to 2100°C, 1800 to 2000°C, or 1800 to 1900°C. The firing time at the firing temperature may be 3 to 20 hours, or 4 to 16 hours.
 セラミック板として窒化アルミニウム板を製造する場合、焼成温度は例えば1760~1840℃であってよい。1760~1840℃の温度範囲における保持時間は、例えば1~10時間であってよい。焼成は大気圧下で行ってよい。窒化ケイ素板及び窒化アルミニウム板以外のセラミック板(例えば、及び酸化アルミニウム板)を製造する場合、焼結体の緻密化が十分に進行するような焼結条件を適宜設定すればよい。 When manufacturing an aluminum nitride plate as the ceramic plate, the sintering temperature may be, for example, 1760 to 1840°C. The holding time in the temperature range of 1760 to 1840°C may be, for example, 1 to 10 hours. Firing may be carried out under atmospheric pressure. When manufacturing ceramic plates other than silicon nitride plates and aluminum nitride plates (for example, and aluminum oxide plates), the sintering conditions may be appropriately set so that the sintered body is sufficiently densified.
 図6は、本例の製造方法において焼結が進行するときの粒成長のイメージを示す図である。この例では、図6の(a)に示されるように、成形体において、微細な焼結助剤粉末32がセラミック粒子12中に高い均一性で分散している。このような成形体を焼成すると、図6の(b)に示されるように液化した焼結助剤相32aが毛細管現象によって粒界に拡散する。焼結助剤相32aが拡散すると成形体(セラミック焼結体)の収縮が進行し、図6の(c)のように気孔22が消滅する。加熱を継続すると、セラミック粒子12が焼結助剤相32a中に溶けて、図6の(d)に示されるように柱状のセラミック粒子14が生成する。このように、液相焼結が進行する際に、セラミック粒子の円滑な粒成長に伴って気孔22が十分に消滅するため、セラミック板10に含まれる気孔20を十分に低減することができる。焼結助剤相32aの一部はセラミック板に残存してもよい。 Figure 6 is a diagram showing an image of grain growth as sintering progresses in the manufacturing method of this example. In this example, as shown in (a) of Figure 6, fine sintering aid powder 32 is dispersed with high uniformity in ceramic particles 12 in the molded body. When such a molded body is fired, the liquefied sintering aid phase 32a diffuses to the grain boundaries by capillary action as shown in (b) of Figure 6. When the sintering aid phase 32a diffuses, the shrinkage of the molded body (ceramic sintered body) progresses, and the pores 22 disappear as shown in (c) of Figure 6. When heating is continued, the ceramic particles 12 melt into the sintering aid phase 32a, and columnar ceramic particles 14 are generated as shown in (d) of Figure 6. In this way, as liquid phase sintering progresses, the pores 22 disappear sufficiently with the smooth grain growth of the ceramic particles, so that the pores 20 contained in the ceramic plate 10 can be sufficiently reduced. A part of the sintering aid phase 32a may remain in the ceramic plate.
 図9は、従来例の製造方法において焼結が進行するときの粒成長のイメージを示す図である。従来例の製造方法では、図9の(a)に示されるように、成形体において、焼結助剤粉末の凝集体132がセラミック粒子112中に含まれている。そのような従来例の成形体の断面写真が図10に示されている。このような成形体を焼成すると、図9の(b)に示されるように液化した焼結助剤相132aが凝集体132を起点に毛細管現象によって粒界に拡散する。毛細管現象による拡散が進行すると、凝集体132のサイズが大きいため、凝集体132の部分に気孔122が生じる。気孔122は大きいサイズを有するため、成形体が収縮しても消滅せず、図9の(c)に示されるように気孔122がセラミック板中に残存する。このようにして、セラミック板中に含まれるサイズの大きな気孔の個数が増加する。 Figure 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method. In the conventional manufacturing method, as shown in (a) of Figure 9, agglomerates 132 of sintering aid powder are contained in ceramic particles 112 in the molded body. A cross-sectional photograph of such a conventional molded body is shown in Figure 10. When such a molded body is fired, as shown in (b) of Figure 9, the liquefied sintering aid phase 132a diffuses from the agglomerates 132 to the grain boundaries by capillary action starting from the agglomerates 132. As diffusion by capillary action progresses, pores 122 are formed in the agglomerates 132 because of the large size of the agglomerates 132. Because the pores 122 are large in size, they do not disappear even when the molded body shrinks, and the pores 122 remain in the ceramic plate as shown in (c) of Figure 9. In this way, the number of large pores contained in the ceramic plate increases.
 従来例の製造方法に対し、本例のセラミック板10の製造方法では、焼結助剤粉末の粒子が十分に微細であり、且つ粒子同士の凝集が抑制されている。このため、焼結助剤粉末の痕跡として残存する気孔を低減できる。これによって、焼結過程で生じる気孔の個数を低減するとともに、気孔のサイズを小さくすることができる。このようにして得られるセラミック板10の領域REにおける気孔20の面積比率の平均値は十分に小さくなる。また、領域REにおける気孔20の円相当径の最大値も十分に小さくなる。このようなセラミック板は、温度変化に伴って熱応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。このため、高温における絶縁信頼性に優れる。 Compared to the conventional manufacturing method, in the manufacturing method of the ceramic plate 10 of this example, the particles of the sintering aid powder are sufficiently fine, and the aggregation of the particles is suppressed. Therefore, it is possible to reduce the pores remaining as traces of the sintering aid powder. This reduces the number of pores generated during the sintering process and makes the size of the pores smaller. The average area ratio of the pores 20 in the region RE of the ceramic plate 10 obtained in this way becomes sufficiently small. In addition, the maximum value of the circle equivalent diameter of the pores 20 in the region RE also becomes sufficiently small. Such a ceramic plate can sufficiently suppress the occurrence and progression of cracks when thermal stress occurs due to temperature change. Therefore, it has excellent insulation reliability at high temperatures.
 図7は、接合体(回路基板)のV-t試験を行う検査装置の一例を模式的に示す図である。検査装置400は、交流電源60と、交流電源60に接続された耐電圧試験器50とを備える。耐電圧試験器50の一方の端子は、セラミック板10に接合された金属板41に接触する導電性支持部72aと電気的に接続される。耐電圧試験器50の他方の端子は、絶縁油76を貯留する貯留槽77内に配置される電極70を介して、金属板42に接触する導電性支持部72bと電気的に接続される。 FIG. 7 is a schematic diagram showing an example of an inspection device for performing a V-t test on a joint (circuit board). The inspection device 400 includes an AC power source 60 and a voltage resistance tester 50 connected to the AC power source 60. One terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72a that contacts the metal plate 41 joined to the ceramic plate 10. The other terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72b that contacts the metal plate 42 via an electrode 70 that is placed in a storage tank 77 that stores insulating oil 76.
 電極70は、貯留槽77の底面及び一側面に沿って配置されている。電極70は、図7に示されるように、鉛直方向断面でみたときにL字型形状を有している。電極70には、導電性支持部72bに隣接して、2つの絶縁性支持部74が設置されている。2つの絶縁性支持部74は、金属板42とそれぞれ接し、接合体100を絶縁油76中において支持している。 The electrode 70 is arranged along the bottom surface and one side surface of the storage tank 77. As shown in FIG. 7, the electrode 70 has an L-shape when viewed in vertical cross section. Two insulating support parts 74 are provided on the electrode 70 adjacent to the conductive support part 72b. The two insulating support parts 74 each contact the metal plate 42, and support the assembly 100 in the insulating oil 76.
 電極70及び導電性支持部72a,72bとしては、例えば無酸素銅製のものを用いることができる。絶縁油76としては、例えばフッ素系不活性液体が用いることができる。耐電圧試験器50としては市販のものを用いることができる。このような検査装置400では、セラミック板10を挟む金属板41,42の間に例えば10~15kV程度の電圧を印加し、耐電圧試験器50において漏れ電流の有無を測定する。絶縁油76を加熱することによって、例えば100℃以上の高温下における接合体100におけるセラミック板10の絶縁性能を評価することができる。 The electrode 70 and the conductive support parts 72a, 72b may be made of, for example, oxygen-free copper. The insulating oil 76 may be, for example, a fluorine-based inert liquid. The voltage resistance tester 50 may be a commercially available product. In this inspection device 400, a voltage of, for example, about 10 to 15 kV is applied between the metal plates 41, 42 that sandwich the ceramic plate 10, and the voltage resistance tester 50 measures the presence or absence of leakage current. By heating the insulating oil 76, the insulating performance of the ceramic plate 10 in the bonded body 100 at high temperatures, for example, above 100°C, may be evaluated.
 検査装置は図7の構成に限定されず、例えば100℃以上の温度下で、金属板41,42間に電圧を印加したときのV-t試験を行うことが可能な検査装置であれば、特に制限なく用いることができる。 The inspection device is not limited to the configuration shown in FIG. 7, and can be used without any particular restrictions as long as it is an inspection device capable of performing a V-t test when a voltage is applied between the metal plates 41 and 42 at a temperature of, for example, 100°C or higher.
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。セラミック焼結体の実施形態に関する説明内容は、接合体、パワーモジュール、及びセラミック焼結体の製造方法にも適用される。セラミック焼結体の製造方法の実施形態に関する説明内容は、セラミック焼結体にも適用される。 Although the embodiments of the present disclosure have been described above, the present disclosure is in no way limited to the above-described embodiments. The contents of the description regarding the embodiments of the ceramic sintered body also apply to the bonded body, the power module, and the manufacturing method of the ceramic sintered body. The contents of the description regarding the embodiments of the manufacturing method of the ceramic sintered body also apply to the ceramic sintered body.
 上記各実施形態で具体的に記載された数値範囲の上限値及び下限値を任意に組み合わせた数値範囲も、本開示に含まれる。また、数値範囲の上限値及び/又は下限値を、以下に説明する実施例の値で置換したものも本開示に含まれる。  Numerical ranges that combine the upper and lower limit values of the numerical ranges specifically described in each of the above embodiments are also included in the present disclosure. In addition, numerical ranges in which the upper and/or lower limit values are replaced with the values of the examples described below are also included in the present disclosure.
 実施例、参考例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の具体例に限定されるものではない。 The contents of this disclosure will be explained in more detail with reference to examples, reference examples, and comparative examples, but this disclosure is not limited to the specific examples below.
(焼結助剤粉末の調製)
 焼結助剤粉末の原料として、市販の酸化イットリウム粉末、酸化マグネシウム粉末及びシリカ粉末を準備した。これらを、Y:MgO:SiO=5:2:2の質量比となるように配合して混合粉末を得た。ビーズミル式粉砕機(アシザワ・ファインテック株式会社製、装置名:スターミルLMZ)を用いて混合粉末を粉砕し、焼結助剤粉末を得た。ビーズミル式粉砕機による粉砕条件(ビーズの直径、ロータの周速及び粉砕時間)を表1及び表2に示すとおりに変更して、粉砕条件が互いに異なる8種類の焼結助剤粉末を調製した。
(Preparation of sintering aid powder)
As raw materials for the sintering aid powder, commercially available yttrium oxide powder, magnesium oxide powder, and silica powder were prepared. These were mixed to obtain a mixed powder with a mass ratio of Y2O3 :MgO: SiO2 = 5:2:2. The mixed powder was pulverized using a bead mill type pulverizer (manufactured by Ashizawa Finetech Co., Ltd., device name: Star Mill LMZ) to obtain a sintering aid powder. The pulverization conditions (bead diameter, rotor circumferential speed, and pulverization time) of the bead mill type pulverizer were changed as shown in Tables 1 and 2 to prepare eight types of sintering aid powders with different pulverization conditions.
 レーザー回折・散乱法による粒子径分布測定装置(日機装株式会社製、装置名:粒子径分布測定器 MT3000II)を用いて、各焼結助剤粉末の体積基準の粒子径分布を測定した。これらの粒子径分布の測定結果から、D50(メジアン径)、及び、D100(最大粒子径)を求めた。結果は、表1及び表2に示すとおりであった。表1及び表2には、D50に対するD100の比も示した。番号5~8の粒子径分布(頻度%)は、いずれもピークを一つのみ有していた。すなわち、これらの粒子径分布は図5に示すような形状を有していた。 The volumetric particle size distribution of each sintering aid powder was measured using a particle size distribution measuring device using the laser diffraction/scattering method (Nikkiso Co., Ltd., device name: particle size distribution measuring device MT3000II). From the particle size distribution measurement results, D50 (median size) and D100 (maximum particle size) were calculated. The results are shown in Tables 1 and 2. Tables 1 and 2 also show the ratio of D100 to D50. The particle size distributions (frequency %) of numbers 5 to 8 all had only one peak. In other words, these particle size distributions had the shape shown in Figure 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の番号1~3の結果から、ビーズの直径を小さくすることによって、焼結助剤のD50及びD100を小さくできることが確認された。また、表1及び表2の番号3,4,5の結果から、ロータの周速を大きくすることによって、D50及び/又はD100を小さくできることが確認された。番号5,6の結果から、粉砕時間を長くするとD50及びD100を小さくできることが確認された。一方、番号6,7,8の結果から、粉砕時間を長くし過ぎると、D50及びD100が大きくなることが確認された。これは、粉砕粉が凝集することに起因すると考えられる。 The results for numbers 1 to 3 in Table 1 confirm that the D50 and D100 of the sintering aid can be reduced by reducing the diameter of the beads. Additionally, the results for numbers 3, 4, and 5 in Tables 1 and 2 confirm that the D50 and/or D100 can be reduced by increasing the circumferential speed of the rotor. The results for numbers 5 and 6 confirm that the D50 and D100 can be reduced by extending the grinding time. On the other hand, the results for numbers 6, 7, and 8 confirm that the D50 and D100 increase when the grinding time is too long. This is thought to be due to the aggregation of the ground powder.
(実施例1)
[窒化ケイ素板の作製]
 市販の窒化ケイ素粉末(D50:0.7μm)、表2の番号6の焼結助剤粉末、及び添加剤(溶剤系のバインダ)を、ビーズミルに入れて混合し、原料スラリーを調製した。窒化ケイ素粉末と焼結助剤粉末の配合比は、窒化ケイ素粉末:焼結助剤粉末=91:9とした。次に、離型フィルム上にドクターブレード法によって、上述の原料スラリーを塗布してグリーンシートを作製した。作製したセラミックグリーンシートを、縦×横=250mm×180mmとなるように切断し、70枚積層して積層体を得た。上記積層体を、カーボンヒータを備える電気炉中に配置し、空気中、500℃で20時間加熱して脱脂した。
Example 1
[Preparation of silicon nitride plate]
Commercially available silicon nitride powder (D50: 0.7 μm), sintering aid powder number 6 in Table 2, and additives (solvent-based binder) were mixed in a bead mill to prepare a raw material slurry. The compounding ratio of silicon nitride powder and sintering aid powder was silicon nitride powder: sintering aid powder = 91:9. Next, the above-mentioned raw material slurry was applied to a release film by a doctor blade method to prepare a green sheet. The prepared ceramic green sheet was cut to a length x width = 250 mm x 180 mm, and 70 sheets were stacked to obtain a laminate. The above laminate was placed in an electric furnace equipped with a carbon heater and heated in air at 500 ° C for 20 hours to degrease.
 脱脂後の成形体を焼成炉内に置いて、焼成炉内を100Pa以下に減圧し、900℃まで昇温した。その後、焼成炉内に窒素ガスを導入し、約0.9MPaの加圧下で1500℃まで昇温し、4時間保持した。保持後、1830℃まで昇温し、1830℃で5時間保持した。このようにして厚さ3mmの窒化ケイ素板を得た。 The degreased molded body was placed in a sintering furnace, the pressure in the furnace was reduced to less than 100 Pa, and the temperature was raised to 900°C. Nitrogen gas was then introduced into the furnace, and the temperature was raised to 1500°C under a pressure of approximately 0.9 MPa and held at that temperature for 4 hours. After that, the temperature was raised to 1830°C and held at 1830°C for 5 hours. In this way, a silicon nitride plate with a thickness of 3 mm was obtained.
[接合体の作製]
 Ag粉末(福田金属箔粉工業株式会社製、商品名:Ag-HWQ、平均粒子径D50:2.5μm、比表面積0.4m/g)89.5質量部、Cu粉末(福田金属箔粉工業株式会社製、商品名:Cu-HWQ、平均粒子径D50:3.0μm、比表面積:0.4m/g、)9.5質量部、Sn粉末(福田金属箔粉工業株式会社製:Sn-HPN、平均粒子径D50:3μm、比表面積0.1m/g)1.0質量部の合計100質量部に対して、水素化チタン粉末(トーホーテック株式会社製、商品名:TCH-100)を3.5質量部含むろう材を調製した。このろう材を、塗布量が8mg/cmとなるように、窒化ケイ素板の両主面の上にスクリーン印刷法で塗布した。
[Preparation of Joint]
A brazing filler metal was prepared containing 89.5 parts by mass of Ag powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Ag-HWQ, average particle size D50: 2.5 μm, specific surface area: 0.4 m2 / g), 9.5 parts by mass of Cu powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Cu-HWQ, average particle size D50: 3.0 μm, specific surface area: 0.4 m2/g), and 1.0 part by mass of Sn powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd.: Sn-HPN, average particle size D50: 3 μm, specific surface area: 0.1 m2/ g ) for a total of 100 parts by mass, and 3.5 parts by mass of titanium hydride powder (manufactured by Toho Tech Co., Ltd., product name: TCH-100). This brazing filler metal was applied by screen printing to both main surfaces of a silicon nitride plate so that the application amount was 8 mg/ cm2 .
 窒化ケイ素板の一方の主面のろう材層の上に回路形成用銅板を、他方の主面のろう材層の上に放熱板形成用銅板(いずれも厚さ0.3mm、純度99.60質量%のC1020無酸素銅板)を重ね合わせて積層体を得た。この積層体を、1.0×10-3Pa以下の真空中にて830℃、30分間の条件で加熱して、接合体を得た。接合した回路形成用銅板にエッチングレジストを印刷し、塩化第二鉄溶液で回路形成用銅板をエッチングして図1に示すような回路パターンを形成した。さらに、フッ化アンモニウム/過酸化水素溶液で、金属板の側面よりも外方にはみ出ているろう材層を除去した。このようにして回路基板を作製した。回路基板は、以下の切断面観察及びV-t試験に用いるため、複数枚作製した。 A copper plate for forming a circuit was placed on the brazing material layer on one of the main surfaces of the silicon nitride plate, and a copper plate for forming a heat sink (both C1020 oxygen-free copper plates with a thickness of 0.3 mm and a purity of 99.60% by mass) was placed on the brazing material layer on the other main surface of the silicon nitride plate to obtain a laminate. This laminate was heated at 830° C. for 30 minutes in a vacuum of 1.0×10 −3 Pa or less to obtain a bonded body. An etching resist was printed on the bonded copper plate for forming a circuit, and the copper plate for forming a circuit was etched with a ferric chloride solution to form a circuit pattern as shown in FIG. 1. Furthermore, the brazing material layer protruding beyond the side surface of the metal plate was removed with an ammonium fluoride/hydrogen peroxide solution. In this way, a circuit board was produced. A plurality of circuit boards were produced for use in the following cross-sectional observation and V-t test.
[切断面観察]
 回路基板を、窒化ケイ素板の厚さ方向に沿うようにして窒化ケイ素板を切断して切断面を得た。複数箇所で切断を行って、回路パターンの側部における外縁直下を含み、窒化ケイ素板の主面から深さ200μmまでの領域を5つ選択した。特定した領域REを、走査型電子顕微鏡(SEM)で500倍に拡大して観察した。5つの領域RE(各面積:0.05mm)における気孔の合計面積と気孔の円相当径の最大値を求めた。各領域は回路パターンの側部における外縁直下を含んでいた。気孔のサイズと個数は、画像処理ソフトウエア(ImageJ)を用いて測定した。気孔の合計面積を視野の面積(0.05mm)で除して気孔の面積比率を求めた。5つの領域REのそれぞれにおいて、気孔の円相当径の最大値と気孔の面積比率を求めた。気孔の面積比率の算術平均値と、気孔の円相当径の最大値(5つの領域REにおける最大値)は、表3に示すとおりであった。
[Cutting surface observation]
The silicon nitride plate was cut along the thickness direction of the silicon nitride plate to obtain a cut surface. Cutting was performed at multiple locations to select five regions including the area immediately below the outer edge of the side of the circuit pattern and extending to a depth of 200 μm from the main surface of the silicon nitride plate. The identified regions RE were observed at a magnification of 500 times using a scanning electron microscope (SEM). The total area of pores and the maximum value of the circle-equivalent diameter of the pores in the five regions RE (each area: 0.05 mm 2 ) were obtained. Each region included the area immediately below the outer edge of the side of the circuit pattern. The size and number of pores were measured using image processing software (ImageJ). The total area of pores was divided by the area of the field of view (0.05 mm 2 ) to obtain the area ratio of the pores. The maximum circle-equivalent diameter of the pores and the area ratio of the pores were obtained in each of the five regions RE. The arithmetic mean value of the pore area ratio and the maximum value of the pore equivalent circle diameter (maximum value in the five regions RE) are shown in Table 3.
[絶縁性試験]
 図7に示すような検査装置を用い、JIS C2110-1:2010に準拠して回路基板のV-t試験を行った。この検査には、株式会社計測技術研究所製のAC20kV耐電圧試験器(型式:7473)を用いた。絶縁油としては、シリコンオイルを用いた。貯留槽77、電極70、導電性支持部72a,72b、及び絶縁性支持部74として、大西電子株式会社製の検査治具を用いた。電極70は無酸素銅製のものを、導電性支持部72a,72bは炭素工具鋼鋼材(SK材)にロジウムめっきが施されたものを、それぞれ用いた。
[Insulation test]
Using an inspection device as shown in FIG. 7, a V-t test of the circuit board was performed in accordance with JIS C2110-1:2010. For this inspection, an AC 20 kV withstand voltage tester (model: 7473) manufactured by Keisoku Gijutsu Kenkyusho Co., Ltd. was used. Silicon oil was used as the insulating oil. An inspection jig manufactured by Onishi Electronics Co., Ltd. was used as the reservoir 77, the electrode 70, the conductive support parts 72a, 72b, and the insulating support part 74. The electrode 70 was made of oxygen-free copper, and the conductive support parts 72a, 72b were made of carbon tool steel material (SK material) plated with rhodium.
 検査装置の絶縁油を100℃に加熱し、当該絶縁油中に回路基板100を固定して、回路パターン41と銅板42との間に10kVの電圧を印加して、絶縁破壊するまでの時間(最大:746時間)を測定した。結果は、表3に示すとおりであった。 The insulating oil in the testing device was heated to 100°C, the circuit board 100 was fixed in the insulating oil, and a voltage of 10 kV was applied between the circuit pattern 41 and the copper plate 42, and the time until dielectric breakdown occurred (maximum: 746 hours) was measured. The results are shown in Table 3.
(実施例2)
 表2の番号6の焼結助剤粉末に代えて、表2の番号5の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
Example 2
A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 5 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
(実施例3)
 表2の番号6の焼結助剤粉末に代えて、表2の番号7の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
Example 3
A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 7 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
(実施例4)
 表2の番号6の焼結助剤粉末に代えて、表2の番号8の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
Example 4
A silicon nitride plate and a bonded body were produced and each evaluation was carried out in the same manner as in Example 1, except that the sintering aid powder No. 8 in Table 2 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
(比較例1)
 表2の番号6の焼結助剤粉末に代えて、表1の番号3の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
(Comparative Example 1)
A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 3 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
(比較例2)
 表2の番号6の焼結助剤粉末に代えて、表1の番号1の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
(Comparative Example 2)
A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 1 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
(比較例3)
 表2の番号6の焼結助剤粉末に代えて、表1の番号2の焼結助剤粉末を用いたこと以外は、実施例1と同じ手順で、窒化ケイ素板及び接合体を作製し、各評価を行った。結果は表3に示すとおりであった。
(Comparative Example 3)
A silicon nitride plate and a bonded body were produced and each evaluation was performed in the same manner as in Example 1, except that the sintering aid powder No. 2 in Table 1 was used instead of the sintering aid powder No. 6 in Table 2. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すとおり、D50が小さい焼結助剤粉末を用いることによって、気孔の面積比率が小さくなることが確認された。D50及びD100/D50が最も小さい番号6の焼結助剤粉末を用いた実施例1では、気孔の面積比率を最も小さくすることができた。この実施例1は、絶縁破壊が生じず、最も優れた絶縁信頼性を有していた。図8の(A)は実施例1の窒化ケイ素板の切断面で選択された上記領域の一つのSEM画像(500倍)を示す写真であり、図8(B)は当該SEM画像を二値化処理して示す図である。図11(A)は比較例1の窒化ケイ素板の切断面で選択された上記領域の一つのSEM画像(500倍)を示す写真であり、図11(B)は当該SEM画像を二値化処理して示す図である。図8と図11の対比から、比較例1よりも実施例1の方が明らかに気孔の個数が少なく、気孔のサイズも小さかった。 As shown in Table 3, it was confirmed that the area ratio of pores is reduced by using a sintering aid powder with a small D50. In Example 1, which used sintering aid powder No. 6 with the smallest D50 and D100/D50, the area ratio of pores was the smallest. This Example 1 had the best insulation reliability without any insulation breakdown. Figure 8 (A) is a photograph showing an SEM image (500x) of one of the above-mentioned regions selected from the cut surface of the silicon nitride plate of Example 1, and Figure 8 (B) is a diagram showing the SEM image after binarization. Figure 11 (A) is a photograph showing an SEM image (500x) of one of the above-mentioned regions selected from the cut surface of the silicon nitride plate of Comparative Example 1, and Figure 11 (B) is a diagram showing the SEM image after binarization. Comparing Figures 8 and 11, the number of pores and the size of the pores were clearly smaller in Example 1 than in Comparative Example 1.
 表3に示す結果から、窒化ケイ素板の上記領域における気孔の面積比率の平均値及び気孔の円相当径の最大値は、実施例1~4の方が、比較例1~3よりも小さかった。実施例1の回路基板のV-t試験では試験終了(746時間)まで絶縁破壊が生じなかった。また、実施例2~4も、比較例1~3よりも破壊に要する時間が長く、絶縁信頼性に優れることが確認された。 From the results shown in Table 3, the average pore area ratio and maximum pore circle equivalent diameter in the above-mentioned region of the silicon nitride plate were smaller in Examples 1 to 4 than in Comparative Examples 1 to 3. In the V-t test of the circuit board of Example 1, no insulation breakdown occurred until the end of the test (746 hours). Furthermore, it was confirmed that Examples 2 to 4 also took longer to break down than Comparative Examples 1 to 3, and therefore had superior insulation reliability.
 本開示によれば、高温下における絶縁信頼性に優れる接合体が提供される。また、本開示によれば、上記接合体を備えることによって信頼性に優れるパワーモジュールが提供される。 According to the present disclosure, a bonded body having excellent insulation reliability at high temperatures is provided. In addition, according to the present disclosure, a power module having excellent reliability is provided by including the bonded body.
 10…セラミック板、10A,10B…主面、10C…切断面、12,14…セラミック粒子、20,22,122…気孔、32…焼結助剤粉末、32a,132a…焼結助剤相、41…金属板(回路パターン)、42…金属板(銅板)、44…外縁、44a,44b,44c,44d,44e…外縁部分、50…耐電圧試験器、51,52…ろう材層、60…交流電源、70,83…電極、72a,72b…導電性支持部、74…絶縁性支持部、76…絶縁油、77…貯留槽、80…半導体素子、81,82,85…ハンダ、84…金属ワイヤ、86…筐体、90…ベース板、92…冷却フィン、93…ネジ、94…グリース、95…樹脂、100…接合体(回路基板)、132…凝集体、200…パワーモジュール、400…検査装置、RE,RE1,RE2,RE3,RE4,RE5…領域。 10...ceramic plate, 10A, 10B...main surface, 10C...cut surface, 12, 14...ceramic particles, 20, 22, 122...pores, 32...sintering aid powder, 32a, 132a...sintering aid phase, 41...metal plate (circuit pattern), 42...metal plate (copper plate), 44...outer edge, 44a, 44b, 44c, 44d, 44e...outer edge portion, 50...voltage tester, 51, 52...brazing material layer, 60...AC power source, 70, 83...electrodes, 72a , 72b...conductive support part, 74...insulating support part, 76...insulating oil, 77...reservoir, 80...semiconductor element, 81, 82, 85...solder, 84...metal wire, 86...housing, 90...base plate, 92...cooling fin, 93...screw, 94...grease, 95...resin, 100...joint (circuit board), 132...aggregate, 200...power module, 400...inspection device, RE, RE1, RE2, RE3, RE4, RE5...area.

Claims (9)

  1.  セラミック板と、金属板と、前記セラミック板の主面と前記金属板の主面とを接合するろう材層と、を備え、
     前記セラミック板の厚さ方向に沿うようにして前記セラミック板を切断して得られる切断面のうち、前記金属板の側部における外縁の直下を含み、前記セラミック板の主面から深さ200μmまでの領域における気孔の面積比率の平均値が2.0%以下である、接合体。
    A ceramic plate, a metal plate, and a brazing material layer that joins a main surface of the ceramic plate and a main surface of the metal plate,
    A bonded body, wherein, in a cut surface obtained by cutting the ceramic plate along the thickness direction of the ceramic plate, the average area ratio of pores in a region including directly below the outer edge of the side of the metal plate and extending to a depth of 200 μm from the main surface of the ceramic plate is 2.0% or less.
  2.  前記切断面の前記領域に含まれる前記気孔の円相当径の最大値が10μm以下である、請求項1に記載の接合体。 The bonded body according to claim 1, wherein the maximum circle equivalent diameter of the pores contained in the region of the cut surface is 10 μm or less.
  3.  前記セラミック板の厚みが0.2mm以上である、請求項1に記載の接合体。 The bonded body according to claim 1, wherein the ceramic plate has a thickness of 0.2 mm or more.
  4.  前記金属板の厚みが0.5mm以下である、請求項1に記載の接合体。 The joint body according to claim 1, wherein the thickness of the metal plate is 0.5 mm or less.
  5.  バンドギャップが1.12eVを超える半導体材料で構成される半導体素子が搭載される回路基板である、請求項1に記載の接合体。 The junction according to claim 1, which is a circuit board on which a semiconductor element made of a semiconductor material having a band gap exceeding 1.12 eV is mounted.
  6.  請求項1~5のいずれか一項に記載に接合体と、当該接合体の前記金属板と電気的に接続される半導体素子と、を備えるパワーモジュール。 A power module comprising a joint body according to any one of claims 1 to 5 and a semiconductor element electrically connected to the metal plate of the joint body.
  7.  前記半導体素子を構成する半導体材料のバンドギャップが1.12eVを超える、請求項6に記載のパワーモジュール。 The power module according to claim 6, wherein the band gap of the semiconductor material constituting the semiconductor element exceeds 1.12 eV.
  8.  前記セラミック板の厚みが0.35mm以下である、請求項6に記載のパワーモジュール。 The power module according to claim 6, wherein the thickness of the ceramic plate is 0.35 mm or less.
  9.  前記接合体における前記金属板の厚みが0.3mm以上である、請求項6に記載のパワーモジュール。 The power module according to claim 6, wherein the thickness of the metal plate in the joint is 0.3 mm or more.
PCT/JP2023/041137 2022-11-25 2023-11-15 Bonded body and power module WO2024111484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-188488 2022-11-25
JP2022188488 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111484A1 true WO2024111484A1 (en) 2024-05-30

Family

ID=91195622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041137 WO2024111484A1 (en) 2022-11-25 2023-11-15 Bonded body and power module

Country Status (1)

Country Link
WO (1) WO2024111484A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004579A1 (en) * 2005-07-04 2007-01-11 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
WO2013008920A1 (en) * 2011-07-14 2013-01-17 株式会社東芝 Ceramic circuit board
WO2020203787A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package
JP2021031310A (en) * 2019-08-16 2021-03-01 デンカ株式会社 Ceramic substrate, circuit boards and their manufacturing methods, and power modules
JP2022166447A (en) * 2021-04-21 2022-11-02 株式会社Maruwa Sintered silicon nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004579A1 (en) * 2005-07-04 2007-01-11 Denki Kagaku Kogyo Kabushiki Kaisha Method for producing ceramic sheet, ceramic substrate using ceramic sheet obtained by such method, and use thereof
WO2013008920A1 (en) * 2011-07-14 2013-01-17 株式会社東芝 Ceramic circuit board
WO2020203787A1 (en) * 2019-03-29 2020-10-08 デンカ株式会社 Silicon nitride substrate, silicon nitride-metal complex, silicon nitride circuit board, and semiconductor package
JP2021031310A (en) * 2019-08-16 2021-03-01 デンカ株式会社 Ceramic substrate, circuit boards and their manufacturing methods, and power modules
JP2022166447A (en) * 2021-04-21 2022-11-02 株式会社Maruwa Sintered silicon nitride

Similar Documents

Publication Publication Date Title
US9780011B2 (en) Brazing material, brazing material paste, ceramic circuit substrate, ceramic master circuit substrate, and power semiconductor module
US8858865B2 (en) Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
WO2013054852A1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
JP6129738B2 (en) Ceramic circuit board
WO2013008919A1 (en) Ceramic circuit board
JP6319643B2 (en) Ceramics-copper bonded body and method for manufacturing the same
JP6529999B2 (en) Method of manufacturing silicon nitride substrate
JP4345066B2 (en) Ceramic circuit board and power semiconductor module using the same
JP6632995B2 (en) Ceramic body and method of manufacturing the same
JPWO2018221504A1 (en) Aluminum nitride sintered body and semiconductor holding device
JPWO2016042884A1 (en) Chip ceramic semiconductor electronic components
JP2005112677A (en) Braze for ceramic substrate and ceramic circuit board using the same
JP5366859B2 (en) Silicon nitride substrate and semiconductor module using the same
KR20130050092A (en) Ceramic circuit board and manufacturing method thereof
WO2024111484A1 (en) Bonded body and power module
US11370709B2 (en) Ceramic member
WO2024111483A1 (en) Ceramic sintered body, method for producing same, bonded body, and power module
JP7064065B1 (en) How to improve the electrical insulation of ceramic sintered bodies, substrates, and ceramic sintered bodies
JP7251001B2 (en) Ceramic sintered bodies and substrates for semiconductor devices
JP2004160549A (en) Ceramic-metal complex and high heat-conductive substrate for heat radiation using the same
JP7319607B2 (en) Silicon nitride substrate and silicon nitride circuit substrate
JP2013182983A (en) Silicon nitride circuit board and module using the same
JP7429825B2 (en) Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board
JP2020167317A (en) Polycrystalline magnesium silicide, sintered body, and use of the same
JP2013227204A (en) Method for producing ceramic circuit board and ceramic circuit board