WO2013008920A1 - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
WO2013008920A1
WO2013008920A1 PCT/JP2012/067957 JP2012067957W WO2013008920A1 WO 2013008920 A1 WO2013008920 A1 WO 2013008920A1 JP 2012067957 W JP2012067957 W JP 2012067957W WO 2013008920 A1 WO2013008920 A1 WO 2013008920A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
alumina substrate
alumina
mass
ceramic circuit
Prior art date
Application number
PCT/JP2012/067957
Other languages
French (fr)
Japanese (ja)
Inventor
星野 政則
中山 憲隆
隆之 那波
佐藤 英樹
裕 小森田
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to KR1020137027479A priority Critical patent/KR101522806B1/en
Priority to JP2013524003A priority patent/JP6129738B2/en
Priority to CN201280019672.6A priority patent/CN103503130B/en
Publication of WO2013008920A1 publication Critical patent/WO2013008920A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/06Oxidic interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/54Oxidising the surface before joining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/706Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the metallic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a ceramic circuit board using an alumina substrate.
  • ceramic circuit boards in which metal plates such as a copper plate, an aluminum plate, and various clad plates are bonded on a ceramic substrate are widely used as circuit substrates such as a power transistor module substrate and a switching power supply module substrate.
  • a ceramic substrate an inexpensive and highly versatile alumina (Al 2 O 3 ) substrate, an aluminum nitride (AlN) substrate having electrical insulation and excellent thermal conductivity, or high-strength silicon nitride ( A Si 3 N 4 ) substrate or the like is generally used.
  • Al 2 O 3 alumina
  • AlN aluminum nitride
  • a Si 3 N 4 high-strength silicon nitride
  • an alumina substrate is advantageous in that it is inexpensive and highly versatile.
  • FIG. 1 is a plan view showing an example of a configuration on the pattern surface side of a ceramic circuit board.
  • FIG. 2 is a cross-sectional view taken along line AA of the ceramic circuit board shown in FIG.
  • FIG. 3 is a bottom view showing an example of the configuration of the back side of the ceramic circuit board shown in FIG.
  • the ceramic circuit board 1 has a metal circuit board 3 such as a copper plate bonded or formed on one surface of the ceramic board 2 and the other surface being the back surface of the ceramic board 2. It is formed by joining a back metal plate 4 such as a copper plate.
  • the metal circuit board 3 is composed of various metal plates bonded to the surface of the ceramic substrate 2 or a metal layer formed on the surface of the ceramic substrate 2.
  • the direct bonding method is, for example, a method of directly bonding the ceramic substrate 2 and the metal circuit board 3 by generating a eutectic liquid phase at the interface between the ceramic substrate 2 and the metal circuit board 3.
  • the direct bonding method will be specifically described by taking as an example the case where the metal circuit board 3 is a copper circuit board.
  • a copper circuit board 3 punched into a predetermined shape is placed in contact with a ceramic substrate 2 and heated to generate a eutectic liquid phase such as Cu—Cu 2 O or Cu—O at the bonding interface.
  • the wettability between the ceramic substrate 2 and the copper circuit board 3 is enhanced by the crystal phase.
  • this eutectic liquid phase is cooled and solidified, the ceramic substrate 2 and the copper circuit board 3 are directly joined together to obtain the ceramic circuit board 1.
  • This method is a so-called direct copper bonding method (DBC method: Direct Bonding Copper method).
  • the refractory metal metallization method is a method of obtaining the ceramic circuit substrate 1 by integrating the ceramic substrate 2 and the metal circuit layer by baking a refractory metal such as Mo or W onto the surface of the ceramic substrate 2.
  • the active metal method is such that, for example, a metal plate 3 such as a copper circuit board is placed on the ceramic substrate 2 via an Ag—Cu brazing material layer containing an active metal such as a group 4A element such as Ti, Zr, and Hf. Is a method of obtaining the ceramic circuit board 1 by integrally bonding the two.
  • the bonding strength between the brazing material layer and the copper circuit board 3 is increased by the Cu and Ag components of the brazing material layer, and the bonding between the brazing material layer and the ceramic substrate 2 is performed by the Ti, Zr, and Hf components. Strength increases.
  • the ceramic circuit board 1 obtained by the direct bonding method or the active metal brazing method has a high bonding strength between the ceramic substrate 2 and the metal circuit board 3 and has a simple structure. For this reason, the ceramic circuit board 1 is advantageous in that it can be miniaturized and highly mounted, has the effect of shortening the manufacturing process, and can be applied to a large current type or highly integrated semiconductor chip. ing.
  • the thickness of the ceramic board 2 is reduced to about 0.25 to 0.38 mm to reduce the thermal resistance.
  • a ceramic circuit board 1 that improves the flexibility of the ceramic board 2 and prevents the metal circuit board 3 from peeling off is known.
  • an alumina substrate having a purity as high as about 96% is used as the ceramic substrate 2, and this alumina is used.
  • Patent Document 1 discloses a ceramic circuit board using a high-purity alumina substrate having a purity of 99.5% or more.
  • Patent Document 1 a ceramic circuit board having excellent properties such as strength and Vickers hardness is obtained by setting the alumina purity to 99.8%.
  • the ceramic circuit board described in Patent Document 1 uses high-purity alumina as a raw material, the sinterability is poor, and it has been necessary to sinter at 1600 ° C. for as long as 20 hours. For this reason, the ceramic circuit board described in Patent Document 1 has a problem in that the merit of the alumina substrate, which is high in manufacturing cost and low in price, cannot be sufficiently exhibited.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a ceramic circuit board excellent in characteristics such as bonding strength and Vickers hardness by using an inexpensive alumina substrate which is not highly pure as a ceramic substrate. To do.
  • the inventors of the present application are alumina substrates obtained by cauterization using alumina powder and a sintering aid containing at least sodium oxide as a raw material, and are derived from the sintering aid generated from the sintering aid. It has been found that according to a high-purity alumina substrate containing a small amount of components, an alumina substrate having high sinterability, cost reduction, and high Vickers hardness can be obtained. The inventors of the present application have found that a ceramic circuit board having excellent bonding strength can be obtained by using this alumina substrate, and have completed the present invention.
  • the ceramic circuit board of the present invention solves the above-mentioned problem.
  • the alumina substrate contains 99.5% by mass or more of alumina Al 2 O 3.
  • the component derived from a sintering aid is an inorganic oxide containing sodium
  • Sodium in the sintering aid-derived component is contained in an amount of 0.001 to 0.1% by mass in 100% by mass of the alumina substrate in terms of mass converted to sodium oxide Na 2 O
  • the alumina substrate has a maximum void diameter. It is 12 ⁇ m or less, the void average diameter is 10 ⁇ m or less, and the Vickers hardness is 1500 or more.
  • the component derived from the sintering aid is an inorganic oxide further containing silicon, and the silicon in the component derived from the sintering aid is the mass of the alumina substrate 100 in terms of mass converted to silicon oxide SiO 2. It is preferable that 0.001 to 0.2 mass% is contained in the mass%.
  • the sintering auxiliary agent-derived component is an inorganic oxide further containing iron, and the iron in the sintering auxiliary agent-derived component is the alumina in a mass converted to iron oxide Fe 2 O 3. It is preferable that 0.001 to 0.05% by mass is contained in 100% by mass of the substrate.
  • the alumina substrate preferably has an average crystal grain size of alumina crystal grains of 20 ⁇ m or less.
  • the alumina substrate preferably has a void volume ratio, which is a volume ratio of voids existing in the alumina substrate, of 3% by volume or less.
  • the alumina substrate preferably has 2 to 30 voids per unit area of 100 ⁇ m ⁇ 100 ⁇ m calculated by cross-sectional observation.
  • the alumina substrate has a void area ratio, which is a void area ratio in a cross section of the alumina substrate, of 10% or less.
  • the alumina substrate has a withstand voltage of 25 KV / mm or more.
  • the alumina substrate preferably has a toughness value of 3.2 MPa ⁇ m 1/2 or more.
  • the alumina substrate preferably has a thermal conductivity of 28 W / m ⁇ K or more.
  • the alumina substrate has a bending strength of 400 MPa or more.
  • the metal circuit board is bonded to the alumina substrate by a direct bonding method.
  • the metal circuit board is preferably a copper circuit board, and the copper circuit board is preferably bonded to the alumina substrate by a Cu—O eutectic compound.
  • the metal circuit board is a copper circuit board, and the copper circuit board preferably contains 0.1 to 1.0% by mass of carbon.
  • the curve along the surface of the metal circuit board is It is preferable to have an intricate structure in which the ratio of contact with the curve along the surface irregularities is 95% or more.
  • the alumina substrate preferably has a thickness of 0.25 to 1.2 mm.
  • the metal circuit board preferably has a thickness of 0.1 to 0.5 mm.
  • the alumina purity is a high-purity alumina substrate having a purity of 99.5% by mass or more
  • the sinterability is improved by the sodium oxide added as a sintering aid. Since the time is short, the cost can be significantly reduced.
  • the ceramic circuit board according to the present invention since a predetermined amount of the sintering aid-derived component containing sodium is included, characteristics such as bonding strength are also high.
  • FIG. 1 is a schematic cross-sectional view of a bonding interface of a ceramic circuit board according to Example 1.
  • the ceramic circuit board of the present invention will be described.
  • the ceramic circuit board of the present invention is a ceramic circuit board in which a metal circuit board is bonded on an alumina substrate.
  • the ceramic circuit board of the present invention is, for example, a ceramic circuit board 1 in which a metal circuit board 3 is bonded on one surface of an alumina substrate 2 as shown in FIG.
  • FIG. 1 shows an example in which a back metal plate 4 such as a copper plate is bonded to the other surface of the alumina substrate 2, that is, the surface on the back surface side.
  • the ceramic circuit substrate of the present invention is an alumina substrate.
  • the metal circuit board 3 may be joined to both surfaces on one surface of 2 and the other surface.
  • the alumina substrate contains 99.5% by mass or more of alumina Al 2 O 3 and a sintering aid-derived component produced from a sintering aid blended before sintering, preferably less than 0.5% by mass, preferably Including 0.3% by mass or less.
  • the alumina substrate used in the present invention is a polycrystal composed of many alumina crystal grains, and the sintering aid-derived component is a glass phase present at the grain boundaries of the alumina crystal grains.
  • the total amount of the alumina Al 2 O 3 and the sintering aid-derived component is preferably substantially 100% by mass.
  • the sintering auxiliary agent-derived component may contain inevitable impurity components that are components other than the sintering auxiliary component.
  • the sintering aid component and the inevitable impurity component will be described in detail later.
  • the sintering aid component is a substance obtained by converting Na, Si, and Fe into the same oxide as the sintering aid. Examples of the sintering aid component include Na 2 O, SiO 2 and Fe 2 O 3 .
  • an inevitable impurity component is the remainder remove
  • the inevitable impurity component contained in the sintering aid-derived component may be contained in an amount of 0.05% by mass or less in 100% by mass of the alumina substrate.
  • the sintering aid-derived component contained in the alumina substrate is a raw material of the alumina substrate of the present invention, and the sintering aid blended with the alumina powder before sintering became a liquid phase by heat treatment during sintering. Later, it means an inorganic oxide that has solidified into a glass phase.
  • the sintering aid-derived component is contained in the alumina substrate at less than 0.5% by mass, preferably 0.3% by mass or less.
  • the sintering aid-derived component contained in the alumina substrate is an inorganic oxide containing at least sodium.
  • Sodium in the binder-derived component is contained in an amount of 0.001 to 0.1 mass% (10 to 1000 mass ppm) in 100 mass% of the alumina substrate in terms of mass converted to sodium oxide Na 2 O.
  • the mass converted to sodium oxide Na 2 O is 0.001 to 0.1 mass% (10 to 1000 mass ppm) in 100 mass% of the alumina substrate, the sodium component functions as a sintering aid and voids Can be suppressed.
  • the mass converted to sodium oxide Na 2 O is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing sodium becomes insufficient, and the mechanical strength of the alumina substrate is reduced. It tends to decline.
  • the mass in terms of sodium oxide Na 2 O is more than 0.1 mass% in 100 mass% alumina substrate, or large voids diameter, Vickers hardness is easily lowered.
  • sodium oxide Na 2 O added as a sintering aid or contained as an impurity in the alumina powder
  • Sodium components such as sodium oxide Na 2 O, metallic Na, and sodium hydroxide are easily dissolved when added to water or during sintering.
  • pure water is used during the granulation process for producing a granulated powder containing alumina powder and a sintering aid, it is converted into pure water from sodium oxide Na 2 O, sodium hydroxide NaOH, etc. during granulation. Na ions melt out.
  • Metal Na has a melting point of 98 ° C.
  • sodium oxide Na 2 O has a melting point of 1132 ° C.
  • sodium hydroxide NaOH has a melting point of 318 ° C.
  • the sintering temperature in the sintering process when manufacturing the alumina substrate is as high as about 1200 to 1700 ° C.
  • the sodium component starts to melt during the sintering.
  • the amount of sodium component dissolved out increases, the formation of voids proceeds, and many large voids exceeding 10 ⁇ m are likely to be formed on the resulting alumina substrate.
  • a high-purity alumina powder having a purity of 99.5% by mass or more used as a raw material for producing an alumina substrate has a sodium content of about 30 ppm by mass (0.003% by mass) or less. Few. For this reason, when manufacturing an alumina substrate, it is preferable to add an appropriate amount of a sodium component as a sintering aid to high-purity alumina powder.
  • the added amount of the sodium component is 0.001 to 0.1 in 100% by mass of the alumina substrate in which the sodium in the auxiliary component derived from the obtained alumina substrate is converted to sodium Na 2 O as described above.
  • a method of adding a sodium component at the time of manufacturing an alumina substrate for example, a method of positively adding a sodium component, a method of using an impurity sodium component in an alumina raw material powder, an alumina ball (purity 96 % Alumina) and a method of mixing the sodium component in the alumina balls can be used.
  • the sintering aid-derived component contained in the alumina substrate is preferably an inorganic oxide further containing silicon in addition to sodium. Silicon in the sintering aid-derived component is usually contained in an amount of 0.001 to 0.2% by mass in 100% by mass of the alumina substrate in terms of mass converted to silicon oxide SiO 2 .
  • the mass of silicon converted to silicon oxide SiO 2 is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing silicon becomes insufficient, and the mechanical strength of the alumina substrate Is prone to decline.
  • the mass in terms of silicon oxide, silicon SiO 2 is more than 0.2 mass% in 100 mass% of alumina substrate, will not capitalize the characteristics of high purity alumina, the Vickers hardness tends to decrease.
  • the component derived from the sintering aid contained in the alumina substrate is preferably an inorganic oxide further containing iron in addition to sodium or sodium and silicon.
  • Iron in the sintering aid-derived component is usually contained in an amount of 0.001 to 0.05% by mass in 100% by mass of the alumina substrate in terms of mass converted to iron oxide Fe 2 O 3 .
  • the mass of iron converted to iron oxide Fe 2 O 3 is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing iron becomes insufficient, and the alumina substrate machine The mechanical strength tends to decrease.
  • the mass obtained by converting the iron oxide iron Fe 2 O 3 is more than 0.05 mass% in 100 mass% of alumina substrate, will not capitalize the characteristics of high purity alumina, the Vickers hardness tends to decrease.
  • the sintering aid-derived component is an inorganic oxide further containing at least one element selected from silicon (Si) and iron (Fe) in addition to sodium (Na)
  • the sintering aid-derived component is Compared with the case of an inorganic oxide containing only sodium (Na), an alumina substrate with improved sinterability is obtained. That is, when the sintering aid in the state before sintering of the sintering aid-derived component further contains one or more oxides selected from Si oxide and Fe oxide in addition to Na oxide, It becomes easy to form a glass phase that becomes a grain boundary phase.
  • the sintering auxiliary agent-derived component further contains at least one element selected from calcium (Ca) and magnesium (Mg) in addition to sodium (Na), silicon (Si) and iron (Fe). It may be a thing.
  • the sintering auxiliary agent-derived component is an inorganic oxide containing all of sodium (Na), silicon (Si) and iron (Fe), the sintering auxiliary agent-derived component is very easy to form a homogeneous glass phase. Therefore, it is most preferable.
  • the substance which converted Na, Si, and Fe and the compound of these elements into the same oxide as a sintering auxiliary agent among sintering auxiliary agent origin components is called a sintering auxiliary agent component.
  • the sintering aid-derived component is an inorganic oxide containing Na, Si and Fe, and compounds of these elements
  • Na 2 is a substance obtained by converting these elements into the same oxide as the sintering aid.
  • O, SiO 2 , and Fe 2 O 3 are sintering aid components.
  • components other than the sintering aid component among the sintering aid-derived components are referred to as inevitable impurity components.
  • the alumina crystal grains of the alumina substrate have an average crystal grain size of usually 20 ⁇ m or less, preferably 13 ⁇ m or less. Since the alumina substrate used in the present invention has high sinterability, the average crystal grain size of the alumina crystal grains becomes as small as 20 ⁇ m or less.
  • the average and the crystal grain size is the average value of the grain diameter D c calculated from a plurality of alumina crystal grains observed by cross-sectional observation of the alumina substrate as follows. That is, as shown in FIG. 4, when one alumina crystal grain 22 is observed, first, the length of the line segment selected so that the diameter of the alumina crystal grain 22 is the largest is taken as the major axis L1. Next, a vertical line perpendicular to the line segment constituting the major axis L1 and passing through the midpoint of the line segment constituting the major axis L1 is drawn, and the length of the portion representing the diameter of the alumina crystal grain in the vertical line is drawn. The short diameter is L2.
  • the (L1 + L2) / 2 to calculate the grain size D c of one of the alumina grains 22. Then, this operation is performed for 100 alumina crystal grains in the field of view of the cross section of the alumina substrate, and the average value of the 100 crystal grain diameters D c is defined as the average crystal grain diameter of the alumina crystal grains.
  • Alumina crystal grains of alumina substrate variation of the crystal grain size D c is small. That is, in the alumina substrate, the following ratio N A / N t which is an index indicating the small variation in the crystal grain size D c of the alumina crystal grains is usually 80% or more, and the variation in the crystal grain size D c is small.
  • the ratio N A / N t is observed within the observation range with respect to the total number N t of alumina crystal grains observed within the observation range of unit area 200 ⁇ m ⁇ 200 ⁇ m by cross-sectional observation of the alumina substrate. This means the ratio N A / N t of the number N A of alumina crystal grains within the range of 0.3 A to 1.7 A when the average crystal grain size of the crystal grains is A ⁇ m.
  • the alumina substrate used in the present invention has a small average crystal grain size of alumina crystal grains of 20 ⁇ m or less and a small variation in the crystal grain size D c of the alumina crystal grains.
  • the triple point between the alumina crystal grains is small, the number of voids is small, and the size of the voids is small.
  • the triple point between alumina crystal grains means a grain boundary part surrounded by three alumina crystal grains.
  • the voids of the alumina substrate are usually voids or depressions generated at the triple point between the alumina crystal grains.
  • the alumina substrate has an average void diameter of 10 ⁇ m or less, preferably 5 ⁇ m or less.
  • the alumina substrate has a maximum void diameter of 12 ⁇ m or less, preferably 10 ⁇ m or less. A void is formed in the gap between alumina crystal particles. When the maximum diameter of the void exceeds 12 ⁇ m, there is a possibility that the mechanical strength and dielectric strength of the alumina substrate may be lowered because a partially densified region is formed on the alumina substrate.
  • the average diameter of the void refers to the average value of the diameter D v of the void calculated from 100 voids observed by cross-sectional observation of the alumina substrate as follows. That is, first, with respect to the cross section of the alumina substrate, an enlarged photograph capable of obtaining an observation range of a unit area of 200 ⁇ m ⁇ 200 ⁇ m or 100 ⁇ m ⁇ 100 ⁇ m was taken and measured so that the diameter of each void existing in the observation range was the largest. the value and individual void diameter D v. Then performed for 100 voids measurements randomly chosen within the observation range of the diameter D v of the void, to define the average value of 100 void of diameter D v and the average diameter of the void.
  • the maximum diameter of the voids means the maximum value of the diameter D v of the void calculated from 100 voids observed by cross-sectional observation of the alumina substrate as described above.
  • a secondary electron image of an SEM photograph is preferably 250 times or more, and more preferably 500 times or more.
  • the alumina crystal may be shed from the cross section.
  • degranulation is a phenomenon in which the alumina particles fall off as they are, so that the crystallization of alumina crystal particles and voids can be distinguished in the cross-sectional observation of the alumina substrate.
  • the number of voids per unit area 100 ⁇ m ⁇ 100 ⁇ m calculated by cross-sectional observation is usually 2 to 30, preferably 5 to 20.
  • the number of voids per unit area 100 ⁇ m ⁇ 100 ⁇ m calculated by cross-sectional observation of the alumina substrate is 2 to 30, the alumina substrate has high strength and high bonding strength with the metal circuit board.
  • the bonding strength between the alumina substrate and the metal circuit board is a shape in which the unevenness of the surface of the alumina substrate and the surface of the metal circuit board are complicated, that is, the surface of the metal circuit board is deformed following the unevenness of the surface of the alumina substrate.
  • the unevenness on the surface of the alumina substrate is formed by the surface shape of the alumina crystal grains, the surface shape of the component derived from the sintering aid, and the shape of the void.
  • the size of the unevenness on the surface of the alumina substrate is usually that of the void. The unevenness due to the shape becomes the largest. For this reason, if the number of voids per unit area of 100 ⁇ m ⁇ 100 ⁇ m is two or more on the surface of the alumina substrate, the bonding strength between the alumina substrate and the metal circuit board tends to be high.
  • the void number of per unit area 100 [mu] m ⁇ 100 [mu] m calculated by the cross-section observation means the number N v of the voids is calculated as follows. That is, first, an enlarged photograph capable of obtaining an observation range having a unit area of 200 ⁇ m ⁇ 200 ⁇ m or 100 ⁇ m ⁇ 100 ⁇ m is taken for the cross section of the alumina substrate, and the total number N vT of voids existing in the observation range is counted. Next, the total number N vT of voids is converted into the number per 100 ⁇ m ⁇ 100 ⁇ m, and the number N v100 of voids per 100 ⁇ m ⁇ 100 ⁇ m is calculated.
  • the unit area of 200 ⁇ m ⁇ 200 ⁇ m includes four parts of the unit area of 100 ⁇ m ⁇ 100 ⁇ m.
  • the voids of the number N v100 obtained by converting the total number N vT void at one location of a unit area 200 [mu] m ⁇ 200 [mu] m in number per 100 [mu] m ⁇ 100 [mu] m may be as it is as the number of voids N v.
  • the bonding strength with the metal circuit board may be lowered.
  • the number of voids per unit area 100 ⁇ m ⁇ 100 ⁇ m calculated by cross-sectional observation of the alumina substrate exceeds 30, surface defects of the alumina substrate occur, and the mechanical strength, dielectric strength and thermal conductivity of the alumina substrate decrease. It's easy to do.
  • the alumina substrate has a void ratio of 3% by volume or less, which is a ratio of the volume of voids present in the alumina substrate.
  • the void ratio is the volume of the cavity in the alumina substrate calculated by the Archimedes method.
  • the void area ratio which is the void area ratio calculated by observing the cross section of the alumina substrate, is usually 10% or less, preferably 5% or less, and more preferably 3% or less. If the void area ratio exceeds 10%, the mechanical strength of the alumina substrate may be lowered.
  • the void area ratio means an area ratio RS v of voids is calculated as follows. That is, first, an enlarged photograph capable of obtaining an observation range having a unit area of 200 ⁇ m ⁇ 200 ⁇ m or 100 ⁇ m ⁇ 100 ⁇ m is taken with respect to the cross section of the alumina substrate, and the total area of the voids S vT Is calculated. Next, a value per 1 ⁇ m 2 obtained by dividing the total area S vT of the voids by the unit area is defined as a void area ratio RS v (%).
  • the alumina substrate has a Vickers hardness of 1500 or more.
  • the Vickers hardness means the Vickers hardness defined in JIS-R-1610.
  • the alumina substrate usually has a withstand voltage of 25 KV / mm or more.
  • the withstand voltage is that each ceramic circuit board is immersed in insulating oil (trade name Fluorinert), electrodes are arranged on metal circuit boards bonded to both surfaces of the ceramic board, and 10 kV / min between these electrodes. AC voltage is applied at the rate of voltage rise.
  • the alumina substrate has a fracture toughness value of 3.2 MPa ⁇ m 1/2 or more.
  • the fracture toughness value means a fracture toughness value defined in JIS-R-1607.
  • the alumina substrate usually has a thermal conductivity of 28 W / m ⁇ K or more.
  • the thermal conductivity means a thermal conductivity measured by a laser flash method according to JIS-R-1611.
  • the alumina substrate usually has a bending strength (three-point bending strength) of 400 MPa or more.
  • the bending strength (three-point bending strength) means a dielectric strength specified by JIS-R-1601.
  • the thickness of the alumina substrate is usually 0.25 to 1.2 mm.
  • an alumina substrate can be manufactured by preparing an alumina powder and a sintering aid, performing a slurry adjustment process or a granulation process, performing a molding process, performing a degreasing process, and performing a sintering process. it can.
  • the purity of the alumina powder is usually 99.5 to 99.9% by mass.
  • the alumina powder usually contains Na, Si and Fe, or substances containing other elements as components other than alumina.
  • Na, Si and Fe, and compounds of these elements are substances consisting of the same elements as the sintering aid, and hence are referred to as sintering aid component impurities.
  • substances other than alumina and sintering aid component impurities are referred to as inevitable impurities.
  • the sintering aid component impurity is a substance composed of the same elements as the sintering aid, it functions as a sintering aid in the sintering process. For this reason, it is preferable to handle the sintering aid component impurities contained in the alumina powder as part of the sintering aid.
  • the mass of the sintering aid component impurity is the mass converted to the sintering aid, and this converted mass is used as the sintering aid.
  • a method of making part of the mass is used. Specifically, when the sintering aid component impurities are Na, Si, and Fe, and compounds of these elements, these are used as the sintering aids Na 2 O, SiO 2 , and Fe 2 O, respectively. After converting to 3 , the mass of these oxides is handled as the mass of the sintering aid.
  • SiO 2 converted from the Si component in the sintering aid component impurities contained in the alumina powder is Ag, and SiO 2 added as a sintering aid to this alumina powder is Bg, the sintering aid
  • the total mass of the SiO 2 agent is A + Bg.
  • the average particle size of the alumina powder is usually 1 to 4 ⁇ m. Further, if the alumina powder contains 2 to 30% by mass of alumina powder having a particle size of 0.8 ⁇ m or less, the void size of the resulting alumina substrate can be reduced or the number of voids can be reduced. preferable.
  • the reason for this is as follows. Voids are generated in the gaps between the alumina crystal grains. An alumina powder containing 2 to 30% by mass of an alumina powder having a particle diameter of 0.8 ⁇ m or less has a moderate distribution of large and small powders. A structure can be adopted in which small alumina powder enters the gap. For this reason, the alumina substrate obtained from the alumina powder having such a structure has a small void size and a small number of voids.
  • a sintering aid As a raw material for the alumina substrate, a sintering aid is used in addition to the alumina powder. As a sintering aid, at least sodium oxide (Na 2 O) is used.
  • the sintering aid may contain one or more oxides selected from silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ) in addition to sodium oxide (Na 2 O).
  • the sintering aid preferably contains all of sodium oxide (Na 2 O), silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ).
  • the sintering aid is selected from calcium oxide (CaO) and magnesium oxide (MgO) in addition to sodium oxide (Na 2 O), silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ). It may further contain an oxide of seeds or more.
  • a sintering aid a powdery one is used.
  • the sintering aid is mixed with the alumina powder in the subsequent slurry adjustment step or granulation step.
  • the total amount of the mixed powder of alumina powder and sintering aid, and the mass M A converted sintering aid component impurities contained in the alumina powder sintering aid, and the mass M S sintering aids M A + M S is contained at 0.5 mass% or less.
  • the ball milling using alumina balls mill in slurry adjusting process after in consideration of the amount M B of the sintering auxiliary component impurities incorporated from the alumina balls mill, determine the amount of sintering aid. That is, the mixed powder of alumina powder and sintering aid, is M A + M S + M B to be included 0.5 mass%.
  • the sintering aid component impurity taken in from the alumina ball mill is the same material as the sintering aid component impurity contained in the alumina powder.
  • the slurry adjustment step is a step of preparing a slurry by mixing alumina powder and sintering aid powder.
  • alumina powder and sintering aid powder are added in pure water or an organic solvent, and a binder such as PVA (polyvinyl alcohol) is further added as necessary. It can be prepared by pulverizing the auxiliary powder.
  • the balls used in the ball mill are preferably made of alumina. However, alumina balls made of alumina usually have an alumina purity of about 96% and contain a relatively large amount of impurities such as Na, Si, and Fe.
  • the sintering powder in the ball mill treatment using the alumina balls, it is preferable to mix the sintering powder with an amount of the sintering aid powder taking into account impurities such as Na, Si and Fe mixed in the slurry from the alumina balls.
  • the above-described slurry adjustment step or the following granulation step is selected and performed.
  • the granulation step is a step of mixing and granulating alumina powder and sintering aid powder.
  • the granulated powder obtained by granulation is, for example, a wet ball mill after adding alumina powder and sintering aid powder in pure water or an organic solvent, and further adding a binder such as PVA (polyvinyl alcohol) if necessary.
  • PVA polyvinyl alcohol
  • the molding step is a step of producing a molded body using the slurry obtained in the slurry adjustment step or the granulated powder obtained in the granulation step.
  • molding process produces a plate-shaped molded object, for example using a doctor blade method.
  • molding process produces a plate-shaped molded object, for example using a metal mold
  • the thickness of the plate-shaped molded body is 1 mm or less, it is preferable to use a doctor blade method.
  • a degreasing process is a process of degreasing the obtained plate-shaped molded object.
  • the plate-shaped molded body is degreased by heat treatment usually at 400 to 900 ° C.
  • a sintering process is a process of sintering the degreased plate-shaped molded object.
  • the sintering when sintering at normal pressure, the sintering is usually performed by heat treatment at 1200 to 1700 ° C. for 2 to 12 hours, preferably 1200 to 1680 ° C. for 5 to 12 hours.
  • it can be sintered by heat treatment usually at 1200 to 1700 ° C. for 2 to 6 hours, preferably 1200 to 1680 ° C. for 2 to 5 hours.
  • the sintering process may be performed in two stages with different temperature ranges for the heat treatment. For example, after heat treatment at a temperature range of 1450 to 1650 ° C. for 4 to 7 hours, heat treatment may be performed at less than 1450 ° C. for 2 to 3 hours. In this way, since the sintering process does not continue to sinter for a long time at a high temperature, but after sintering for a certain period of time, by sintering at a slightly low temperature, the grain growth of the alumina crystal grains can be suppressed. It becomes easier to control the size and number. As described above, since the sintering time can be set to 12 hours or less in the main sintering step, it is not necessary to perform a long-time heat treatment sintering step of 20 hours as disclosed in Patent Document 1.
  • the reason why the sintering time of the sintering process is short in the present invention is mainly because the total amount of sintering aid powder and sintering aid component impurities in the degreased plate-like molded body is appropriate. It is believed that there is.
  • the plate-shaped molded body produced from the slurry or granulated powder and degreased has a sintering aid component impurity contained in the alumina powder in a total amount of 100 mass% of the alumina powder and the sintering aid powder.
  • the total amount M A + M S of the mass M A converted into a sintering aid and the mass M S of the sintering aid is 0.5% by mass or less.
  • the plate-shaped molded body produced from the slurry or granulated powder and degreased has an amount M of the sintering aid component impurities taken in from the alumina ball mill.
  • M A + M S + M B including B is included in an amount of 0.5% by mass or less.
  • At least one of the sintering aid powder and the sintering aid component impurity contains an Na component, and if necessary, further contains at least one component selected from an Si component and an Fe component.
  • the component functions as a sintering aid.
  • the high-purity alumina substrate is sintered using only alumina powder without using a sintering aid.
  • the sintering temperature can be lowered by about 20 to 50 ° C., and the sintering time can be shortened to 12 hours or less.
  • the sintering temperature can be lowered or the sintering time can be shortened, so that growth of alumina crystal grains due to sintering can be suppressed.
  • an alumina substrate obtained is alumina crystal grains is reduced, variation of the crystal grain size D c of alumina crystal grains is reduced, it is possible to suppress the occurrence of voids, reducing the size of the generated voids be able to.
  • the obtained alumina substrate has an average crystal grain size of alumina crystal grains of usually 20 ⁇ m or less, preferably 10 ⁇ m or less, and a ratio N A / N t showing variation in crystal grain size D c is usually 80 % Or more.
  • the resulting alumina substrate has an average void diameter of 10 ⁇ m or less, preferably 5 ⁇ m or less, and a void area ratio of usually 10% or less.
  • the alumina substrate obtained through the above steps is bonded to the metal circuit board.
  • a circuit is formed on the metal circuit board bonded to the alumina substrate by appropriately using etching or the like.
  • both a metal circuit board on which a circuit is not formed and a metal circuit board on which a circuit is formed are simply referred to as a metal circuit board.
  • the obtained alumina substrate is appropriately subjected to a process of removing dust on the surface by a honing process and a process of polishing the surface as a process before being bonded to the metal circuit board.
  • the metal circuit board is bonded onto the alumina substrate.
  • the metal circuit board is a concept including both a metal circuit board in which a circuit is formed using etching or the like and a metal circuit board in which a circuit is not formed.
  • the alumina substrate and the metal circuit board are bonded by a method such as a direct bonding method (DBC method) or an active metal method.
  • the direct bonding method refers to, for example, using a reaction in which copper and oxygen of a metal circuit board form a eutectic compound (Cu—O eutectic) to connect the alumina substrate and the metal circuit board. It is a method of joining.
  • the active metal method is a method of joining an alumina substrate and a metal circuit board using an active metal joining brazing paste.
  • the metal circuit board is bonded to the alumina substrate by a method such as a direct bonding method or an active metal method.
  • a metal circuit board is bonded to an alumina substrate by a direct bonding method
  • a copper circuit board made of copper is usually used as the metal circuit board. Since the bonding method between the alumina substrate and the metal circuit board is a direct bonding method, the copper circuit board is bonded to the alumina substrate by a Cu—O eutectic compound. The thickness of the copper circuit board is usually 0.1 to 0.5 mm.
  • the copper circuit board is preferably made of tough pitch electrolytic copper containing 100 to 1000 ppm by mass of oxygen. By using such a copper circuit board, the bonding strength with the alumina substrate is increased.
  • the copper circuit board preferably contains 0.1 to 1.0% by mass of carbon.
  • the copper material constituting such a copper circuit board include tough pitch copper and oxygen-free copper. Since carbon functions as a deoxidizer, oxygen in the copper circuit board is moved to the surface of the copper circuit board. In addition, the oxygen that has moved to the surface of the copper circuit board is used to form a Cu—O eutectic compound when performing the direct bonding method.
  • the carbon content of the copper circuit board is less than 0.1% by mass, there is no effect of carbon content, and when the carbon content exceeds 1.0% by mass, the carbon content increases too much and the conductivity of the copper circuit board is increased. Reduce sex.
  • the copper circuit board When a copper circuit board having an oxygen content of less than 100 ppm by mass is used as the copper circuit board, the copper circuit board is bonded to the alumina substrate by forming a copper oxide film on the bonding surface side of the copper circuit board with the alumina substrate. Strength can be increased.
  • Examples of a method for forming a copper oxide film on the surface of a copper circuit board include a method of directly oxidizing a copper circuit board by heat treatment, a method of applying a copper oxide powder paste, and the like.
  • Direct oxidation method As a method for direct oxidation, for example, a copper oxide film is formed on the surface of a copper circuit board by performing a surface oxidation treatment in which the copper circuit board is heated in the atmosphere at a temperature of 150 to 360 ° C. for 20 to 120 seconds. Is used.
  • the copper oxide film has a thickness of usually 1 to 10 ⁇ m, preferably 2 to 5 ⁇ m.
  • the thickness of the copper oxide film is less than 1 ⁇ m, the amount of Cu—O eutectic compound generated is reduced, and the unbonded portion between the alumina substrate and the copper circuit board is increased, thereby improving the bonding strength. Becomes smaller.
  • the thickness of the copper oxide film exceeds 10 ⁇ m, the effect of improving the bonding strength is small, and on the contrary, the conductive characteristics of the copper circuit board are hindered.
  • Method of applying copper oxide powder paste for example, a paste containing copper oxide powder having an average particle diameter of 1 to 5 ⁇ m is used, and the paste is applied on a copper circuit board to have a thickness of 1 to 10 ⁇ m. After the layer is formed, a method of forming a copper oxide film on the surface of the copper circuit board by drying or heat treatment is used.
  • the metal circuit board includes copper, aluminum, iron, nickel, chromium, silver, molybdenum, cobalt alone, alloys thereof, and cladding materials thereof. Is used. Among these, a copper plate and an aluminum plate are preferable because of good bonding properties.
  • the thickness of the metal circuit board is determined in consideration of the current carrying capacity and the thickness of the alumina substrate. Specifically, when the thickness of the alumina substrate is 0.25 to 1.2 mm, the thickness of the metal circuit board is preferably 0.1 to 0.5 mm. When the thickness of the alumina substrate is 0.25 to 0.38 mm, the thermal resistance is reduced and the heat dissipation of the ceramic circuit board can be improved.
  • Examples of the active metal bonding brazing paste used in the active metal method include 15 to 35% by mass of Cu and 1 to 10% by mass of at least one active metal selected from Ti, Zr, and Hf.
  • An active metal bonding braze paste prepared by dispersing a bonding composition substantially consisting of Ag in the balance in an organic solvent is used.
  • the active metal compounded in the active metal bonding brazing paste improves the wettability and reactivity of the active metal bonding brazing material to the alumina substrate.
  • the compounding amount of the active metal in the active metal joining brazing paste is 1 to 10% by mass with respect to 100% by mass of the joining composition contained in the active metal joining brazing paste.
  • an Ag—Cu based brazing material containing at least one active metal selected from Ti, Zr and Hf and having an appropriate composition ratio is used, and this Ag—Cu based brazing material is used as an organic solvent.
  • a bonding composition paste is prepared by dispersing in, and this bonding composition paste is screen-printed on the surface of the alumina substrate, and a copper plate as a metal circuit board is superimposed on the surface of the alumina substrate, and heated. An alumina substrate and a metal circuit board can be joined.
  • the joining interface between the alumina substrate and the metal circuit board has an intricate structure in which the surface of the metal circuit board is deformed along the irregular shape of the surface of the alumina substrate. Specifically, the bonding interface between the alumina substrate and the metal circuit board is a curve along the surface of the alumina substrate when the cross section of the ceramic circuit board is observed.
  • the contact ratio (hereinafter referred to as “bonding interface contact ratio”) is usually 95% or more, preferably 99% or more, and more preferably 100%.
  • the bonding interface contact ratio is an index indicating the followability of the metal circuit board to the irregularities on the surface of the alumina substrate. For example, when the alumina substrate and the metal circuit board are bonded together without any gap, the bonding interface contact ratio is 100%. Further, when the alumina substrate and the metal circuit board are completely separated, the bonding interface contact ratio is 0%.
  • the calculation method of the bonding interface contact ratio is as follows. That is, first, when the cross section of the ceramic circuit board is observed, an enlarged photograph of the bonded cross section is taken.
  • the enlarged photograph of the bonded cross section is preferably 1000 times or more.
  • the enlarged photograph is taken over a length of 100 ⁇ m at the bonding interface. If a length of 100 ⁇ m cannot be photographed in one field of view, photographing may be performed every 20 to 50 ⁇ m, and a total of 100 ⁇ m may be photographed.
  • the length L A of the curve along the unevenness of the surface of the alumina substrate at the bonding interface and the length L M of the curve along the surface of the metal circuit board at the bonding interface are measured. Then, to calculate the L M / L A obtained by dividing the L M with L A as a joining interfacial contact ratio.
  • the bonding interface contact ratio tends to decrease when deep voids are exposed on the surface of the alumina substrate. If deep voids are exposed on the surface of the alumina substrate, the bonding ratio of the interface contact tends to decrease because the metal circuit plate is less likely to follow the surface of the alumina substrate when the alumina substrate is bonded to the metal circuit plate. .
  • the ceramic circuit board of the present invention there is substantially no exposure of deep voids on the surface of the alumina substrate, and the alumina substrate and the metal circuit board are bonded under specific conditions. The metal circuit board follows and enters.
  • the ceramic circuit board of the present invention has a high bonding interface contact ratio of usually 95% or more, and has a structure in which the surface of the alumina substrate and the metal circuit board are intricate, resulting in an anchor effect and high bonding strength. .
  • the ceramic circuit board is manufactured by bonding an alumina substrate and a metal circuit board.
  • a direct bonding method (DBC method) or an active metal method is used as the method for bonding the alumina substrate and the metal circuit board.
  • ⁇ Direct bonding method> In the direct bonding method, first, a copper circuit board as a metal circuit board is disposed on an alumina substrate. When an oxide film (copper oxide film) is formed on the copper plate, the oxide film is disposed on the alumina substrate side. Next, when heated to, for example, 1065 to 1085 ° C. in an inert gas atmosphere, a ceramic circuit board in which a copper circuit board is bonded onto an alumina substrate is obtained.
  • active metal method In the active metal method, first, an active metal bonding brazing paste is applied on an alumina substrate by a method such as screen printing. Next, when a metal circuit board is placed on the surface of the alumina substrate on which the active metal bonding brazing material paste is applied and heated, a ceramic circuit board in which the copper circuit board is bonded onto the alumina substrate is obtained.
  • the alumina purity is 99.5% or more and the alumina substrate containing a predetermined amount of sodium or the like is used, compared with the conventional high-purity alumina substrate having a purity of 99.5% or more.
  • the sintering time can be shortened or the sintering temperature can be lowered, so that the manufacturing cost can be greatly reduced.
  • the alumina substrate is dense and there are few surface defects derived from voids, even when the substrate thickness is reduced, the withstand voltage characteristic is hardly lowered and the occurrence of dielectric breakdown (withstand voltage leak) is suppressed.
  • the joint strength of a metal circuit board can be improved by making the surface defect (surface unevenness
  • Example 1 Na 2 O as a sintering aid is added to a high-purity alumina powder composed of ⁇ -alumina crystals having an average particle size of 1.5 ⁇ m (less than 0.8 ⁇ m is 15% by mass) and having a purity of 99.9%. 0.1% by mass, 0.2% by mass of SiO 2 and 0.05% by mass of Fe 2 O 3 were added, and an organic binder was added, and a raw material mixed paste was prepared by a ball mill (using 96% purity alumina balls) did. Each raw material mixed paste was formed into a sheet by a doctor blade method to prepare a plate-shaped molded body, and this molded body was heated in a vacuum of 10 ⁇ 4 Torr at 800 ° C. for 8 hours for complete degreasing. This degreased body was sintered at a temperature of 1580 ° C. for 8 hours to prepare an alumina substrate having a length of 29 mm ⁇ width of 69 mm ⁇ thickness of 0.32 mm.
  • Comparative Example 1 As Comparative Example 1, a high-purity alumina powder consisting of ⁇ -alumina crystals having an average particle size of 1.5 ⁇ m (0.8 ⁇ m or less is 35 mass%) and having a purity of 99.9% is used, and Na 2 O is not added. Except for this, an alumina substrate was prepared in the same manner as in Example 1.
  • Comparative Example 2 An alumina substrate was prepared in the same manner as in Comparative Example 1 except that the sintering conditions were 1600 ° C. ⁇ 20 hours.
  • an enlarged photograph having a unit area of 200 ⁇ m ⁇ 200 ⁇ m was taken, the area of each void in the enlarged photograph was measured, and the number obtained by dividing the total area by 200 ⁇ m ⁇ 200 ⁇ m was defined as the void area ratio. Moreover, the value measured so that a diameter might become the largest about each void was made into the maximum diameter, and the average value for 100 voids was made into the void average diameter. Further, the number of voids was measured at four locations per unit area of 100 ⁇ m ⁇ 100 ⁇ m, and the minimum number and the maximum number were shown.
  • the average grain size of the alumina crystal grains is such that the length of the line segment selected so that the diameter of each alumina crystal grain is the largest is the major axis L1, and the vertical axis is drawn from the center of the minor axis L2. And (L1 + L2) / 2 was defined as the particle size. This operation was performed 100 grains, and the average value was defined as the average grain diameter. As for the variation in the crystal grain size of the alumina crystal grains, the ratio (%) of the number of crystal grains falling within the range of A ⁇ (0.3 to 1.7) with respect to the average crystal grain size A ⁇ m was obtained.
  • FIG. 5 is a schematic cross-sectional view of the bonding interface of the ceramic circuit board according to the first embodiment. As shown in FIG.
  • the alumina substrate 2 of the ceramic circuit board 1 has voids 23 a in the alumina substrate 2 and voids 23 b on the joint surface with the metal circuit board (copper circuit board) 3. It was.
  • the metal circuit board (copper circuit board) 3 is in close contact with the surface of the alumina substrate 2 at the interface between the alumina substrate 2 of the ceramic circuit board 1 and the metal circuit board (copper circuit board) 3.
  • the alumina substrate according to this example exhibited the same characteristics as those of Comparative Example 2 which is a high-purity material. Moreover, even if it was a high purity material like the comparative example 1, many voids generate
  • Examples 2 to 5 An alumina substrate was prepared in the same manner as in Example 1 except that the amount of sintering aid and the sintering conditions were changed as shown in Table 1, and the same measurement as in Example 1 was performed. These results are shown in Tables 1 to 3.
  • the alumina substrate according to this example showed excellent characteristics even when the sintering time was 10 hours or less.
  • Examples 1B to 6B, Comparative Examples 1B to 3B Ceramic circuit boards were prepared using the alumina substrates and copper plates of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the copper plate was prepared by heat-treating to form a 4 ⁇ m thick copper oxide film on the bonding surface side.
  • Copper plates (one is a copper plate for a metal circuit board and the other is a back copper plate) are arranged on both sides of the alumina substrate, and are heated by a direct bonding method in a nitrogen atmosphere at 1075 ° C. for 1 minute.
  • the copper plate for metal circuit boards was unified with a thickness of 0.3 mm, and the back copper plate with a thickness of 0.4 mm.
  • Examples 1B to 5B were prepared with a carbon content in the copper plate in the range of 0.2 to 0.8 mass%, and 6B with no carbon contained (below the detection limit).
  • both ends of the circuit pattern surface on the front side are supported by a support span of 30 mm, and a load is applied to one point in the center of the back copper plate on the back side to obtain three points.
  • the bending strength was measured, and the maximum amount of deflection with respect to the plane including both edges of the alumina substrate was measured.
  • the bending strength value of each ceramic circuit board has shown the load value at the time of an alumina substrate fracture
  • the maximum amount of deflection was measured as the amount of deflection when the alumina substrate broke. Table 4 shows the measurement results.
  • Examples 1B to 6B were found to have the same measurement results as the ceramic circuit board (DBC circuit board) using the high-purity alumina substrate of Comparative Example 2. On the other hand, the strength of the DBC circuit boards according to Comparative Example 1B and Comparative Example 3B decreased. Next, the bonding strength and the bonding interface state of the copper circuit boards of the ceramic circuit boards of Examples 1B to 6B and Comparative Examples 1B to 3B were examined. The bonding strength was determined by a peel test. In addition, an enlarged photograph (2000 times) of the bonding interface between the alumina substrate and the copper circuit board was taken at the bonding interface, and this work was taken for 100 ⁇ m of the bonding interface. It was investigated how the copper circuit board was bonded so as to cover the surface irregularities of the alumina substrate at the bonding interface. The results are shown in Table 5.
  • Example 1B As can be seen from the table, the ceramic circuit board according to this example was excellent in bonding strength. Further, when Example 1B and Example 6B were compared, Example 1B was superior in bonding strength. This is presumably because oxygen contained in the copper plate moved to the surface of the copper plate and contributed to the Cu—O eutectic reaction by containing a predetermined amount of carbon in the copper plate. For this reason, it is considered that the ratio of the copper circuit board covering the surface irregularities of the alumina substrate at the bonding interface has increased.
  • Ceramic circuit board 2 Alumina substrate 3 Metal circuit board (copper circuit board) 4 Back metal plate (back copper plate) 22 Alumina crystal grains 23a, 23b Void

Abstract

A ceramic circuit board having a metal circuit board joined onto an alumina substrate, wherein the alumina substrate contains at least 99.5 mass% of alumina (Al2O3) and less than 0.5 mass% of a sintering aid-derived component generated from a sintering aid admixed before sintering, the sintering aid-derived component is an inorganic oxide containing sodium, the sodium in terms of sodium oxide (Na2O) in the sintering aid-derived component is contained at 0.001-0.1 mass% for every 100 mass% of the alumina substrate, and the alumina substrate has a maximum void size of no greater than 12 μm, an average void size of no greater than 10 μm, and a Vickers hardness of at least 1500.

Description

セラミックス回路基板Ceramic circuit board
 本発明は、アルミナ基板を用いたセラミックス回路基板に関する。 The present invention relates to a ceramic circuit board using an alumina substrate.
 近年、パワートランジスタモジュール用基板やスイッチング電源モジュール用基板等の回路基板として、セラミックス基板上に銅板、アルミニウム板、各種クラッド板等の金属板が接合されたセラミックス回路基板が広く用いられている。また、上記セラミックス基板としては、安価で汎用性が高いアルミナ(Al)基板、電気絶縁性を有すると共に熱伝導性に優れた窒化アルミニウム(AlN)基板、または高強度の窒化けい素(Si)基板等が一般的に用いられている。これらのセラミックス基板中でアルミナ基板は安価で汎用性の高いことが利点になっている。 In recent years, ceramic circuit boards in which metal plates such as a copper plate, an aluminum plate, and various clad plates are bonded on a ceramic substrate are widely used as circuit substrates such as a power transistor module substrate and a switching power supply module substrate. As the ceramic substrate, an inexpensive and highly versatile alumina (Al 2 O 3 ) substrate, an aluminum nitride (AlN) substrate having electrical insulation and excellent thermal conductivity, or high-strength silicon nitride ( A Si 3 N 4 ) substrate or the like is generally used. Among these ceramic substrates, an alumina substrate is advantageous in that it is inexpensive and highly versatile.
 ここで、セラミックス回路基板の構造について説明する。図1は、セラミックス回路基板のパターン面側の構成の一例を示す平面図である。図2は、図1に示すセラミックス回路基板のA-A線に沿った断面図である。図3は、図1に示すセラミックス回路基板の裏面側の構成の一例を示す底面図である。 Here, the structure of the ceramic circuit board will be described. FIG. 1 is a plan view showing an example of a configuration on the pattern surface side of a ceramic circuit board. FIG. 2 is a cross-sectional view taken along line AA of the ceramic circuit board shown in FIG. FIG. 3 is a bottom view showing an example of the configuration of the back side of the ceramic circuit board shown in FIG.
 セラミックス回路基板1は、例えば、図1~ 図3に示すように、セラミックス基板2の一方の表面に銅板等の金属回路板3を接合または形成するとともに、セラミックス基板2の裏面である他方の表面に銅板等の裏金属板4を接合することにより形成される。
 金属回路板3は、セラミックス基板2の表面に接合された各種金属板またはセラミックス基板2の表面に形成された金属層からなる。
As shown in FIGS. 1 to 3, for example, the ceramic circuit board 1 has a metal circuit board 3 such as a copper plate bonded or formed on one surface of the ceramic board 2 and the other surface being the back surface of the ceramic board 2. It is formed by joining a back metal plate 4 such as a copper plate.
The metal circuit board 3 is composed of various metal plates bonded to the surface of the ceramic substrate 2 or a metal layer formed on the surface of the ceramic substrate 2.
 セラミックス基板2の表面に各種金属板または金属層を一体に形成する手法としては、例えば、下記のような直接接合法、 高融点金属メタライズ法、活性金属法等が用いられている。 As a method of integrally forming various metal plates or metal layers on the surface of the ceramic substrate 2, for example, the following direct bonding method, high melting point metal metallization method, active metal method and the like are used.
 直接接合法は、例えば、セラミックス基板2と金属回路板3との界面に共晶液相を生成することにより、セラミックス基板2と金属回路板3とを直接接合する方法である。
 直接接合法について、金属回路板3が銅回路板である場合を例にとり具体的に説明する。はじめに、セラミックス基板2上に、所定形状に打ち抜いた銅回路板3を接触配置して加熱し、接合界面にCu-CuO、Cu-O等の共晶液相を生成させて、この共晶液相によりセラミックス基板2と銅回路板3との濡れ性を高める。次に、この共晶液相を冷却固化させると、セラミックス基板2と銅回路板3とが直接接合することによりセラミックス回路基板1が得られる。この方法は、いわゆる銅直接接合法(DBC法: Direct Bonding Copper法)である。
The direct bonding method is, for example, a method of directly bonding the ceramic substrate 2 and the metal circuit board 3 by generating a eutectic liquid phase at the interface between the ceramic substrate 2 and the metal circuit board 3.
The direct bonding method will be specifically described by taking as an example the case where the metal circuit board 3 is a copper circuit board. First, a copper circuit board 3 punched into a predetermined shape is placed in contact with a ceramic substrate 2 and heated to generate a eutectic liquid phase such as Cu—Cu 2 O or Cu—O at the bonding interface. The wettability between the ceramic substrate 2 and the copper circuit board 3 is enhanced by the crystal phase. Next, when this eutectic liquid phase is cooled and solidified, the ceramic substrate 2 and the copper circuit board 3 are directly joined together to obtain the ceramic circuit board 1. This method is a so-called direct copper bonding method (DBC method: Direct Bonding Copper method).
 また、高融点金属メタライズ法は、Mo、W等の高融点金属をセラミックス基板2の表面に焼き付けることにより、セラミックス基板2と金属回路層とを一体化してセラミックス回路基板1を得る方法である。
 さらに、活性金属法は、例えば、Ti、Zr、Hf等の4A族元素のような活性を有する金属を含むAg-Cuろう材層を介してセラミックス基板2上に銅回路板等の金属板3を一体に接合することによりセラミックス回路基板1を得る方法である。この活性金属法によれば、ろう材層のCuおよびAg成分によりろう材層と銅回路板3との接合強度が高まる上、Ti、Zr、Hf成分によりろう材層とセラミックス基板2との接合強度が高まる。
The refractory metal metallization method is a method of obtaining the ceramic circuit substrate 1 by integrating the ceramic substrate 2 and the metal circuit layer by baking a refractory metal such as Mo or W onto the surface of the ceramic substrate 2.
Further, the active metal method is such that, for example, a metal plate 3 such as a copper circuit board is placed on the ceramic substrate 2 via an Ag—Cu brazing material layer containing an active metal such as a group 4A element such as Ti, Zr, and Hf. Is a method of obtaining the ceramic circuit board 1 by integrally bonding the two. According to this active metal method, the bonding strength between the brazing material layer and the copper circuit board 3 is increased by the Cu and Ag components of the brazing material layer, and the bonding between the brazing material layer and the ceramic substrate 2 is performed by the Ti, Zr, and Hf components. Strength increases.
 また、得られたセラミックス回路基板1の金属回路板3に回路を形成する方法としては、予めプレス加工やエッチング加工によりパターニングした銅板を用いる方法、接合後にエッチング等の手法によりパターニングする方法等の方法が知られている。 In addition, as a method of forming a circuit on the metal circuit board 3 of the obtained ceramic circuit board 1, a method using a copper plate previously patterned by pressing or etching, a method of patterning by a technique such as etching after bonding, or the like It has been known.
 上記のように直接接合法や活性金属ろう付け法により得られるセラミックス回路基板1は、いずれもセラミックス基板2と金属回路板3との接合強度が高く、単純な構造を有する。このため、セラミックス回路基板1は、小型高実装化が可能であり、また製造工程も短縮できる等の効果が得られ、大電流型や高集積型の半導体チップに対応できる等の利点を有している。 As described above, the ceramic circuit board 1 obtained by the direct bonding method or the active metal brazing method has a high bonding strength between the ceramic substrate 2 and the metal circuit board 3 and has a simple structure. For this reason, the ceramic circuit board 1 is advantageous in that it can be miniaturized and highly mounted, has the effect of shortening the manufacturing process, and can be applied to a large current type or highly integrated semiconductor chip. ing.
 ところで、近年、セラミックス回路基板1を用いた半導体装置の高出力化や半導体素子の高集積化が急速に進行しているため、セラミックス回路基板1に繰り返して作用する熱応力や熱負荷が増加する傾向にある。このため、セラミックス回路基板1には、増加した熱応力が与えられてもセラミックス基板2と金属回路板3との接合強度が十分に高いとともに、熱サイクルが多く与えられてもセラミックス基板2と金属回路板3との接合を維持できる耐久性が要求されている。 By the way, in recent years, high output of semiconductor devices using the ceramic circuit board 1 and high integration of semiconductor elements are rapidly progressing, so that thermal stress and thermal load that repeatedly act on the ceramic circuit board 1 increase. There is a tendency. For this reason, even if the increased thermal stress is given to the ceramic circuit board 1, the bonding strength between the ceramic board 2 and the metal circuit board 3 is sufficiently high, and even if many thermal cycles are given, the ceramic board 2 and the metal Durability that can maintain the connection with the circuit board 3 is required.
 増大した熱負荷に対処するとともに回路基板の耐久性を向上させたセラミックス回路基板1としては、たとえば、セラミックス基板2の厚さを0.25~0.38mm程度に薄肉化して熱抵抗を低減するとともに、セラミックス基板2のたわみ性を改良して金属回路板3の剥れの発生を防止するセラミックス回路基板1が知られている。
 また、増大した熱負荷に対処するとともに回路基板の耐久性を向上させた他のセラミックス回路基板1としては、セラミックス基板2として純度が96%程度と比較的純度が高いアルミナ基板を用い、このアルミナ基板に、前記直接接合法または活性金属法により金属回路板3(回路層)を一体に接合したセラミックス回路基板1が知られている。
As the ceramic circuit board 1 which copes with the increased heat load and improves the durability of the circuit board, for example, the thickness of the ceramic board 2 is reduced to about 0.25 to 0.38 mm to reduce the thermal resistance. A ceramic circuit board 1 that improves the flexibility of the ceramic board 2 and prevents the metal circuit board 3 from peeling off is known.
Further, as another ceramic circuit board 1 which copes with the increased heat load and improves the durability of the circuit board, an alumina substrate having a purity as high as about 96% is used as the ceramic substrate 2, and this alumina is used. There is known a ceramic circuit board 1 in which a metal circuit board 3 (circuit layer) is integrally bonded to a substrate by the direct bonding method or the active metal method.
 さらに、特許第3833410号公報(特許文献1)では、純度99.5%以上の高純度アルミナ基板を用いたセラミックス回路基板が開示されている。特許文献1では、アルミナ純度を99.8%にすることにより、強度やビッカース硬度等の特性が優れたセラミックス回路基板が得られている。 Furthermore, Japanese Patent No. 3833410 (Patent Document 1) discloses a ceramic circuit board using a high-purity alumina substrate having a purity of 99.5% or more. In Patent Document 1, a ceramic circuit board having excellent properties such as strength and Vickers hardness is obtained by setting the alumina purity to 99.8%.
特許第3833410号公報Japanese Patent No. 3833410 特開2005-281063号公報JP 2005-281063 A
 しかしながら、特許文献1に記載されたセラミックス回路基板は、高純度アルミナを原料としているため焼結性が悪く、1600℃で20時間もの長時間焼結する必要があった。
 このため、特許文献1に記載されたセラミックス回路基板は、製造コストが高く、安価であるというアルミナ基板のメリットを十分に発揮できていないという課題があった。
However, since the ceramic circuit board described in Patent Document 1 uses high-purity alumina as a raw material, the sinterability is poor, and it has been necessary to sinter at 1600 ° C. for as long as 20 hours.
For this reason, the ceramic circuit board described in Patent Document 1 has a problem in that the merit of the alumina substrate, which is high in manufacturing cost and low in price, cannot be sufficiently exhibited.
 本発明は、上記事情に鑑みてなされたものであり、セラミックス基板として高純度でない安価なアルミナ基板を用いて、接合強度やビッカース硬度等の特性が優れたセラミックス回路基板を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a ceramic circuit board excellent in characteristics such as bonding strength and Vickers hardness by using an inexpensive alumina substrate which is not highly pure as a ceramic substrate. To do.
 本願発明者らは、アルミナ粉末と、少なくともナトリウム酸化物を含む焼結助剤とを原料として焼桔して得られたアルミナ基板であって、焼結助剤から生成された焼結助剤由来成分を少量含む高純度なアルミナ基板によれば、焼結性が高く、コストダウンを図れ、ビッカース硬度が高いアルミナ基板が得られることを見出した。また、本願発明者らは、このアルミナ基板を用いると、接合強度が優れたセラミックス回路基板が得られることを見出して、本発明を完成するに至った。 The inventors of the present application are alumina substrates obtained by cauterization using alumina powder and a sintering aid containing at least sodium oxide as a raw material, and are derived from the sintering aid generated from the sintering aid. It has been found that according to a high-purity alumina substrate containing a small amount of components, an alumina substrate having high sinterability, cost reduction, and high Vickers hardness can be obtained. The inventors of the present application have found that a ceramic circuit board having excellent bonding strength can be obtained by using this alumina substrate, and have completed the present invention.
 本発明のセラミックス回路基板は、上記課題を解決するものであり、アルミナ基板上に金属回路板が接合されたセラミックス回路基板において、前記アルミナ基板は、アルミナAlを99.5質量%以上、および焼結前に配合された焼結助剤から生成された焼結助剤由来成分を0.5質量%未満含み、前記焼結助剤由来成分はナトリウムを含む無機酸化物であり、前記焼結助剤由来成分中のナトリウムは酸化ナトリウムNaOに換算した質量で前記アルミナ基板100質量%中に0.001~0.1質量%含まれ、前記アルミナ基板は、ボイドの最大径が12μm以下であり、ボイド平均径が10μm以下であり、ビッカース硬度が1500以上であることを特徴とする。 The ceramic circuit board of the present invention solves the above-mentioned problem. In the ceramic circuit board in which a metal circuit board is bonded to an alumina substrate, the alumina substrate contains 99.5% by mass or more of alumina Al 2 O 3. And containing less than 0.5% by mass of a component derived from a sintering aid produced from a sintering aid blended before sintering, the component derived from a sintering aid is an inorganic oxide containing sodium, Sodium in the sintering aid-derived component is contained in an amount of 0.001 to 0.1% by mass in 100% by mass of the alumina substrate in terms of mass converted to sodium oxide Na 2 O, and the alumina substrate has a maximum void diameter. It is 12 μm or less, the void average diameter is 10 μm or less, and the Vickers hardness is 1500 or more.
 本発明のセラミックス回路基板は、前記焼結助剤由来成分はケイ素をさらに含む無機酸化物であり、前記焼結助剤由来成分中のケイ素は酸化ケイ素SiOに換算した質量で前記アルミナ基板100質量%中に0.001~0.2質量%含まれることが好ましい。 In the ceramic circuit board of the present invention, the component derived from the sintering aid is an inorganic oxide further containing silicon, and the silicon in the component derived from the sintering aid is the mass of the alumina substrate 100 in terms of mass converted to silicon oxide SiO 2. It is preferable that 0.001 to 0.2 mass% is contained in the mass%.
 本発明のセラミックス回路基板は、前記焼結助剤由来成分は鉄をさらに含む無機酸化物であり、前記焼結助剤由来成分中の鉄は酸化鉄Feに換算した質量で前記アルミナ基板100質量%中に0.001~0.05質量%含まれることが好ましい。 In the ceramic circuit board of the present invention, the sintering auxiliary agent-derived component is an inorganic oxide further containing iron, and the iron in the sintering auxiliary agent-derived component is the alumina in a mass converted to iron oxide Fe 2 O 3. It is preferable that 0.001 to 0.05% by mass is contained in 100% by mass of the substrate.
 本発明のセラミックス回路基板は、前記アルミナ基板は、アルミナ結晶粒の平均結晶粒径が20μm以下であることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has an average crystal grain size of alumina crystal grains of 20 μm or less.
 本発明のセラミックス回路基板は、前記アルミナ基板は、このアルミナ基板に存在するボイドの体積の比率であるボイド体積率が3体積%以下であることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has a void volume ratio, which is a volume ratio of voids existing in the alumina substrate, of 3% by volume or less.
 本発明のセラミックス回路基板は、前記アルミナ基板は、断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が2~30個であることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has 2 to 30 voids per unit area of 100 μm × 100 μm calculated by cross-sectional observation.
 本発明のセラミックス回路基板は、前記アルミナ基板は、このアルミナ基板の断面におけるボイドの面積の比率であるボイド面積率が10%以下であることが好ましい。 In the ceramic circuit board of the present invention, it is preferable that the alumina substrate has a void area ratio, which is a void area ratio in a cross section of the alumina substrate, of 10% or less.
 本発明のセラミックス回路基板は、前記アルミナ基板は、絶縁耐圧が25KV/mm以上であることが好ましい。 In the ceramic circuit board of the present invention, it is preferable that the alumina substrate has a withstand voltage of 25 KV / mm or more.
 本発明のセラミックス回路基板は、前記アルミナ基板は、靭性値が3.2 MPa・m1/2以上であることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has a toughness value of 3.2 MPa · m 1/2 or more.
 本発明のセラミックス回路基板は、前記アルミナ基板は、熱伝導率が28W/m・K以上であることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has a thermal conductivity of 28 W / m · K or more.
 本発明のセラミックス回路基板は、前記アルミナ基板は、抗折強度が400MPa以上であることが好ましい。 In the ceramic circuit board of the present invention, it is preferable that the alumina substrate has a bending strength of 400 MPa or more.
 本発明のセラミックス回路基板は、前記金属回路板は、直接接合法により前記アルミナ基板に接合されたことが好ましい。 In the ceramic circuit board of the present invention, it is preferable that the metal circuit board is bonded to the alumina substrate by a direct bonding method.
 本発明のセラミックス回路基板は、前記金属回路板は銅回路板であり、この銅回路板はCu-O共晶化合物により前記アルミナ基板に接合されていることが好ましい。 In the ceramic circuit board of the present invention, the metal circuit board is preferably a copper circuit board, and the copper circuit board is preferably bonded to the alumina substrate by a Cu—O eutectic compound.
 本発明のセラミックス回路基板は、前記金属回路板は銅回路板であり、この銅回路板は炭素を0.1~1.0質量%含むことが好ましい。 In the ceramic circuit board of the present invention, the metal circuit board is a copper circuit board, and the copper circuit board preferably contains 0.1 to 1.0% by mass of carbon.
 本発明のセラミックス回路基板は、前記アルミナ基板と前記金属回路板との接合界面は、前記セラミックス回路基板の断面観察を行ったときに、前記金属回路板の表面に沿った曲線が前記アルミナ基板の表面の凹凸に沿った曲線に接する割合が95%以上である入り組んだ構造になっていることが好ましい。 In the ceramic circuit board according to the present invention, when the cross section of the ceramic circuit board is observed at the bonding interface between the alumina board and the metal circuit board, the curve along the surface of the metal circuit board is It is preferable to have an intricate structure in which the ratio of contact with the curve along the surface irregularities is 95% or more.
 本発明のセラミックス回路基板は、前記アルミナ基板は、厚さが0.25~1.2mmであることが好ましい。 In the ceramic circuit board of the present invention, the alumina substrate preferably has a thickness of 0.25 to 1.2 mm.
 本発明のセラミックス回路基板は、前記金属回路板は、厚さが0.1~0.5mmであることが好ましい。 In the ceramic circuit board of the present invention, the metal circuit board preferably has a thickness of 0.1 to 0.5 mm.
 本発明に係るセラミックス回路基板によれば、アルミナ純度が99.5質量%以上の高純度なアルミナ基板ではあるものの、焼結助剤として添加したナトリウム酸化物により焼結性が向上し、焼結時間が短くて済むため、大幅なコストダウンが可能となる。また、本発明に係るセラミックス回路基板によれば、ナトリウムを含む焼結助剤由来成分を所定量含むため、接合強度等の特性も高い。 According to the ceramic circuit board of the present invention, although the alumina purity is a high-purity alumina substrate having a purity of 99.5% by mass or more, the sinterability is improved by the sodium oxide added as a sintering aid. Since the time is short, the cost can be significantly reduced. In addition, according to the ceramic circuit board according to the present invention, since a predetermined amount of the sintering aid-derived component containing sodium is included, characteristics such as bonding strength are also high.
セラミックス回路基板のパターン面側の構成の一例を示す平面図。The top view which shows an example of a structure by the side of the pattern surface of a ceramic circuit board. 図1に示すセラミックス回路基板のA-A線に沿った断面図。FIG. 2 is a cross-sectional view of the ceramic circuit board shown in FIG. 1 along the line AA. 図1に示すセラミックス回路基板の裏面側の構成の一例を示す底面図。The bottom view which shows an example of the structure of the back surface side of the ceramic circuit board shown in FIG. アルミナ結晶粒の平均結晶粒径の求め方を示す図。The figure which shows how to obtain | require the average crystal grain diameter of an alumina crystal grain. 実施例1に係るセラミックス回路基板の接合界面の模式的な断面図。1 is a schematic cross-sectional view of a bonding interface of a ceramic circuit board according to Example 1. FIG.
 本発明のセラミックス回路基板について説明する。 The ceramic circuit board of the present invention will be described.
[セラミックス回路基板]
 本発明のセラミックス回路基板は、アルミナ基板上に金属回路板が接合されたセラミックス回路基板である。
 本発明のセラミックス回路基板は、たとえば、図1に示されるように、アルミナ基板2の一方の表面上に金属回路板3が接合されたセラミックス回路基板1になっている。
 なお、図1には、アルミナ基板2の他方の表面上、すなわち裏面側の表面上に銅板等の裏金属板4が接合されている例を示すが、本発明のセラミックス回路基板は、アルミナ基板2の一方の表面上および他方の表面上の両面に金属回路板3が接合されていてもよい。
[Ceramic circuit board]
The ceramic circuit board of the present invention is a ceramic circuit board in which a metal circuit board is bonded on an alumina substrate.
The ceramic circuit board of the present invention is, for example, a ceramic circuit board 1 in which a metal circuit board 3 is bonded on one surface of an alumina substrate 2 as shown in FIG.
FIG. 1 shows an example in which a back metal plate 4 such as a copper plate is bonded to the other surface of the alumina substrate 2, that is, the surface on the back surface side. The ceramic circuit substrate of the present invention is an alumina substrate. The metal circuit board 3 may be joined to both surfaces on one surface of 2 and the other surface.
(アルミナ基板)
 アルミナ基板は、アルミナAlを99.5質量%以上、および焼結前に配合された焼結助剤から生成された焼結助剤由来成分を、0.5質量%未満、好ましくは0.3質量%以下含む。
 本発明で用いられるアルミナ基板は、多くのアルミナ結晶粒からなる多結晶体であり、焼結助剤由来成分は、アルミナ結晶粒の粒界に存在するガラス相である。
(Alumina substrate)
The alumina substrate contains 99.5% by mass or more of alumina Al 2 O 3 and a sintering aid-derived component produced from a sintering aid blended before sintering, preferably less than 0.5% by mass, preferably Including 0.3% by mass or less.
The alumina substrate used in the present invention is a polycrystal composed of many alumina crystal grains, and the sintering aid-derived component is a glass phase present at the grain boundaries of the alumina crystal grains.
 アルミナ基板は、アルミナAlと焼結助剤由来成分との合計量が実質的に100質量%であることが好ましい。
 焼結助剤由来成分は、後述のように、焼結助剤成分以外の成分である不可避不純物成分を含むことがある。焼結助剤成分および不可避不純物成分については、後に詳述するが、焼結助剤成分とは、Na、SiおよびFeを焼結助剤と同じ酸化物に換算した物質である。焼結助剤成分としては、たとえば、NaO、SiOおよびFeが挙げられる。また、不可避不純物成分とは、焼結助剤由来成分から焼結助剤成分を除いた残部である。
 焼結助剤由来成分中に含まれる不可避不純物成分は、アルミナ基板100質量%中に、0.05質量%以下の量で含まれていてもよい。
In the alumina substrate, the total amount of the alumina Al 2 O 3 and the sintering aid-derived component is preferably substantially 100% by mass.
As described later, the sintering auxiliary agent-derived component may contain inevitable impurity components that are components other than the sintering auxiliary component. The sintering aid component and the inevitable impurity component will be described in detail later. The sintering aid component is a substance obtained by converting Na, Si, and Fe into the same oxide as the sintering aid. Examples of the sintering aid component include Na 2 O, SiO 2 and Fe 2 O 3 . Moreover, an inevitable impurity component is the remainder remove | excluding the sintering adjuvant component from the sintering adjuvant origin component.
The inevitable impurity component contained in the sintering aid-derived component may be contained in an amount of 0.05% by mass or less in 100% by mass of the alumina substrate.
<焼結助剤由来成分>
 アルミナ基板に含まれる焼結助剤由来成分とは、本発明のアルミナ基板の原料として、焼結前にアルミナ粉末とともに配合された焼結助剤が、焼結時の熱処理により液相になった後、固化してガラス相になった無機酸化物を意味する。
<Sintering aid-derived component>
The sintering aid-derived component contained in the alumina substrate is a raw material of the alumina substrate of the present invention, and the sintering aid blended with the alumina powder before sintering became a liquid phase by heat treatment during sintering. Later, it means an inorganic oxide that has solidified into a glass phase.
 焼結助剤由来成分は、アルミナ基板中に、0.5質量%未満、好ましくは0.3質量%以下含まれる。 The sintering aid-derived component is contained in the alumina substrate at less than 0.5% by mass, preferably 0.3% by mass or less.
 アルミナ基板に含まれる焼結助剤由来成分は、少なくともナトリウムを含む無機酸化物である。
 結助剤由来成分中のナトリウムは、酸化ナトリウムNaOに換算した質量でアルミナ基板100質量%中に0.001~0.1質量%(10~1000質量ppm)含まれる。
 酸化ナトリウムNaOに換算した質量が、アルミナ基板100質量%中に0.001~0.1質量%(10~1000質量ppm)含まれると、ナトリウム成分が焼結助剤として機能し、ボイドの発生を抑制することができる。
The sintering aid-derived component contained in the alumina substrate is an inorganic oxide containing at least sodium.
Sodium in the binder-derived component is contained in an amount of 0.001 to 0.1 mass% (10 to 1000 mass ppm) in 100 mass% of the alumina substrate in terms of mass converted to sodium oxide Na 2 O.
When the mass converted to sodium oxide Na 2 O is 0.001 to 0.1 mass% (10 to 1000 mass ppm) in 100 mass% of the alumina substrate, the sodium component functions as a sintering aid and voids Can be suppressed.
 酸化ナトリウムNaOに換算した質量が、アルミナ基板100質量%中で0.001質量%未満であると、ナトリウムを含む焼結助剤の作用が不十分になり、アルミナ基板の機械的強度が低下しやすい。
 また、酸化ナトリウムNaOに換算した質量が、アルミナ基板100質量%中で0.1質量%を超えると、ボイド径が大型化したり、ビッカース硬度が低下したりしやすい。
When the mass converted to sodium oxide Na 2 O is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing sodium becomes insufficient, and the mechanical strength of the alumina substrate is reduced. It tends to decline.
The mass in terms of sodium oxide Na 2 O is more than 0.1 mass% in 100 mass% alumina substrate, or large voids diameter, Vickers hardness is easily lowered.
 なお、アルミナ粉末と焼結助剤とを含む混合粉末を用い、焼結してアルミナ基板を製造する場合において、焼結助剤として添加した酸化ナトリウムNaOや、アルミナ粉末中に不純物として含まれる酸化ナトリウムNaO、金属Na、水酸化ナトリウム等のナトリウム成分は、水中に添加したときや、焼結時に溶け出しやすい。
 例えば、アルミナ粉末と焼結助剤とを含む造粒粉を作製する造粒工程中に純水を用いた場合、造粒中の酸化ナトリウムNaO、水酸化ナトリウムNaOH等から純水中にNaイオンが溶け出す。
When a mixed powder containing alumina powder and a sintering aid is used to sinter and produce an alumina substrate, sodium oxide Na 2 O added as a sintering aid or contained as an impurity in the alumina powder Sodium components such as sodium oxide Na 2 O, metallic Na, and sodium hydroxide are easily dissolved when added to water or during sintering.
For example, when pure water is used during the granulation process for producing a granulated powder containing alumina powder and a sintering aid, it is converted into pure water from sodium oxide Na 2 O, sodium hydroxide NaOH, etc. during granulation. Na ions melt out.
 また、金属Naの融点は98℃、酸化ナトリウムNaOの融点は1132℃、水酸化ナトリウムNaOHの融点は318℃である。これに対し、アルミナ基板を製造する際の焼結工程での焼結温度は1200~1700℃程度と高いため、焼結中にナトリウム成分が溶け出す。ナトリウム成分の溶け出し量が多くなるとボイドの形成が進行し、得られるアルミナ基板に10μmを超える大きなボイドが多数形成されやすい。 Metal Na has a melting point of 98 ° C., sodium oxide Na 2 O has a melting point of 1132 ° C., and sodium hydroxide NaOH has a melting point of 318 ° C. On the other hand, since the sintering temperature in the sintering process when manufacturing the alumina substrate is as high as about 1200 to 1700 ° C., the sodium component starts to melt during the sintering. As the amount of sodium component dissolved out increases, the formation of voids proceeds, and many large voids exceeding 10 μm are likely to be formed on the resulting alumina substrate.
 このように、ナトリウム成分は、アルミナ基板の製造時に消失しやすい。
 これに対し、特許文献2によれば、アルミナ基板の製造原料として用いられる純度99.5質量%以上の高純度アルミナ粉末は、ナトリウム含有量が約30質量ppm(0.003質量%)以下と少ない。
 このため、アルミナ基板を製造する際には、高純度アルミナ粉末に焼結助剤として適量のナトリウム成分を添加することが好ましい。
 このナトリウム成分の添加量は、得られたアルミナ基板の助剤由来成分中のナトリウムが、上記のようにナトリウムNaOに換算した質量でアルミナ基板100質量%中に0.001~0.1質量%(10~1000質量ppm)含まれるようにする。
 なお、アルミナ基板の製造時にナトリウム成分を添加する方法としては、たとえば、ナトリウム成分を積極添加する方法、アルミナ原料粉末中の不純物ナトリウム成分を利用する方法、アルミナ造粒工程にてアルミナボール(純度96%アルミナ)を用いてアルミナボール中のナトリウム成分を混入させる方法等を用いることができる。
Thus, the sodium component tends to disappear during the production of the alumina substrate.
On the other hand, according to Patent Document 2, a high-purity alumina powder having a purity of 99.5% by mass or more used as a raw material for producing an alumina substrate has a sodium content of about 30 ppm by mass (0.003% by mass) or less. Few.
For this reason, when manufacturing an alumina substrate, it is preferable to add an appropriate amount of a sodium component as a sintering aid to high-purity alumina powder.
The added amount of the sodium component is 0.001 to 0.1 in 100% by mass of the alumina substrate in which the sodium in the auxiliary component derived from the obtained alumina substrate is converted to sodium Na 2 O as described above. It should be contained in mass% (10 to 1000 mass ppm).
In addition, as a method of adding a sodium component at the time of manufacturing an alumina substrate, for example, a method of positively adding a sodium component, a method of using an impurity sodium component in an alumina raw material powder, an alumina ball (purity 96 % Alumina) and a method of mixing the sodium component in the alumina balls can be used.
 アルミナ基板に含まれる焼結助剤由来成分は、ナトリウムに加え、ケイ素をさらに含む無機酸化物であると好ましい。
 焼結助剤由来成分中のケイ素は、酸化ケイ素SiOに換算した質量でアルミナ基板100質量%中に通常0.001~0.2質量%含まれる。
The sintering aid-derived component contained in the alumina substrate is preferably an inorganic oxide further containing silicon in addition to sodium.
Silicon in the sintering aid-derived component is usually contained in an amount of 0.001 to 0.2% by mass in 100% by mass of the alumina substrate in terms of mass converted to silicon oxide SiO 2 .
 ケイ素を酸化ケイ素SiOに換算した質量が、アルミナ基板100質量%中で0.001質量%未満であると、ケイ素を含む焼結助剤の作用が不十分になり、アルミナ基板の機械的強度が低下しやすい。
 また、ケイ素を酸化ケイ素SiOに換算した質量が、アルミナ基板100質量%中で0.2質量%を超えると、高純度アルミナの特性を活かせなくなり、ビッカース硬度が低下しやすい。
When the mass of silicon converted to silicon oxide SiO 2 is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing silicon becomes insufficient, and the mechanical strength of the alumina substrate Is prone to decline.
The mass in terms of silicon oxide, silicon SiO 2 is more than 0.2 mass% in 100 mass% of alumina substrate, will not capitalize the characteristics of high purity alumina, the Vickers hardness tends to decrease.
 アルミナ基板に含まれる焼結助剤由来成分は、ナトリウムに加え、またはナトリウムおよびケイ素に加え、鉄をさらに含む無機酸化物であると好ましい。
 焼結助剤由来成分中の鉄は、酸化鉄Feに換算した質量でアルミナ基板100質量%中に通常0.001~0.05質量%含まれる。
The component derived from the sintering aid contained in the alumina substrate is preferably an inorganic oxide further containing iron in addition to sodium or sodium and silicon.
Iron in the sintering aid-derived component is usually contained in an amount of 0.001 to 0.05% by mass in 100% by mass of the alumina substrate in terms of mass converted to iron oxide Fe 2 O 3 .
 鉄を酸化鉄Feに換算した質量が、アルミナ基板100質量%中で0.001質量%未満であると、鉄を含む焼結助剤の作用が不十分になり、アルミナ基板の機械的強度が低下しやすい。
 また、鉄を酸化鉄Feに換算した質量が、アルミナ基板100質量%中で0.05質量%を超えると、高純度アルミナの特性を活かせなくなり、ビッカース硬度が低下しやすい。
When the mass of iron converted to iron oxide Fe 2 O 3 is less than 0.001% by mass in 100% by mass of the alumina substrate, the action of the sintering aid containing iron becomes insufficient, and the alumina substrate machine The mechanical strength tends to decrease.
The mass obtained by converting the iron oxide iron Fe 2 O 3 is more than 0.05 mass% in 100 mass% of alumina substrate, will not capitalize the characteristics of high purity alumina, the Vickers hardness tends to decrease.
 焼結助剤由来成分が、ナトリウム(Na)に加えて、ケイ素(Si)および鉄(Fe)から選ばれる1種以上の元素をさらに含む無機酸化物であると、焼結助剤由来成分がナトリウム(Na)のみを含む無機酸化物である場合に比べて、焼結性がより向上したアルミナ基板になる。
 すなわち、焼結助剤由来成分の焼結前の状態である焼結助剤が、Na酸化物に加えて、Si酸化物およびFe酸化物から選ばれる1種以上の酸化物をさらに含むと、粒界相となるガラス相を形成し易くなる。
When the sintering aid-derived component is an inorganic oxide further containing at least one element selected from silicon (Si) and iron (Fe) in addition to sodium (Na), the sintering aid-derived component is Compared with the case of an inorganic oxide containing only sodium (Na), an alumina substrate with improved sinterability is obtained.
That is, when the sintering aid in the state before sintering of the sintering aid-derived component further contains one or more oxides selected from Si oxide and Fe oxide in addition to Na oxide, It becomes easy to form a glass phase that becomes a grain boundary phase.
 また、焼結助剤由来成分が、ナトリウム(Na)、ケイ素(Si)および鉄(Fe)に加えて、カルシウム(Ca)およびマグネシウム(Mg)から選ばれる1種以上の元素をさらに含む無機酸化物であってもよい。 In addition, the sintering auxiliary agent-derived component further contains at least one element selected from calcium (Ca) and magnesium (Mg) in addition to sodium (Na), silicon (Si) and iron (Fe). It may be a thing.
 焼結助剤由来成分が、ナトリウム(Na)、ケイ素(Si)および鉄(Fe)をすべて含む無機酸化物であると、焼結助剤由来成分が均質なガラス相を非常に形成し易くなるため、最も好ましい。 When the sintering auxiliary agent-derived component is an inorganic oxide containing all of sodium (Na), silicon (Si) and iron (Fe), the sintering auxiliary agent-derived component is very easy to form a homogeneous glass phase. Therefore, it is most preferable.
 なお、焼結助剤由来成分のうち、Na、SiおよびFe、ならびにこれらの元素の化合物を焼結助剤と同じ酸化物に換算した物質を、焼結助剤成分という。たとえば、焼結助剤由来成分がNa、SiおよびFe、ならびにこれらの元素の化合物を含む無機酸化物である場合、これらの元素を焼結助剤と同じ酸化物に換算した物質であるNaO、SiO、およびFeが、焼結助剤成分である。
 また、焼結助剤由来成分のうち、焼結助剤成分以外の成分を不可避不純物成分という。
In addition, the substance which converted Na, Si, and Fe and the compound of these elements into the same oxide as a sintering auxiliary agent among sintering auxiliary agent origin components is called a sintering auxiliary agent component. For example, when the sintering aid-derived component is an inorganic oxide containing Na, Si and Fe, and compounds of these elements, Na 2 is a substance obtained by converting these elements into the same oxide as the sintering aid. O, SiO 2 , and Fe 2 O 3 are sintering aid components.
In addition, components other than the sintering aid component among the sintering aid-derived components are referred to as inevitable impurity components.
<アルミナ結晶粒>
 アルミナ基板のアルミナ結晶粒は、平均結晶粒径が、通常20μm以下、好ましくは13μm以下である。本発明で用いられるアルミナ基板は、焼結性が高いため、アルミナ結晶粒の平均結晶粒径が20μm以下のように小さくなる。
<Alumina crystal grains>
The alumina crystal grains of the alumina substrate have an average crystal grain size of usually 20 μm or less, preferably 13 μm or less. Since the alumina substrate used in the present invention has high sinterability, the average crystal grain size of the alumina crystal grains becomes as small as 20 μm or less.
 ここで、平均結晶粒径とは、アルミナ基板の断面観察により観察された複数個のアルミナ結晶粒から下記のようにして算出される結晶粒径Dの平均値である。
 すなわち、図4に示されるように1個のアルミナ結晶粒22が観察された場合において、はじめに、アルミナ結晶粒22の直径が最も大きくなるように選んだ線分の長さを長径L1とする。次に、この長径L1を構成する線分に対して垂直でありかつ長径L1を構成する線分の中点を通る垂直線を引き、この垂直線のうちアルミナ結晶粒の直径を表す部分の長さを短径L2とする。さらに、(L1+L2)/2により、1個のアルミナ結晶粒22の結晶粒径Dを算出する。そして、この作業をアルミナ基板の断面観察の視野内の100個のアルミナ結晶粒について行い、100個の結晶粒径Dの平均値をアルミナ結晶粒の平均結晶粒径と規定する。
Here, the average and the crystal grain size is the average value of the grain diameter D c calculated from a plurality of alumina crystal grains observed by cross-sectional observation of the alumina substrate as follows.
That is, as shown in FIG. 4, when one alumina crystal grain 22 is observed, first, the length of the line segment selected so that the diameter of the alumina crystal grain 22 is the largest is taken as the major axis L1. Next, a vertical line perpendicular to the line segment constituting the major axis L1 and passing through the midpoint of the line segment constituting the major axis L1 is drawn, and the length of the portion representing the diameter of the alumina crystal grain in the vertical line is drawn. The short diameter is L2. Furthermore, the (L1 + L2) / 2, to calculate the grain size D c of one of the alumina grains 22. Then, this operation is performed for 100 alumina crystal grains in the field of view of the cross section of the alumina substrate, and the average value of the 100 crystal grain diameters D c is defined as the average crystal grain diameter of the alumina crystal grains.
 アルミナ基板のアルミナ結晶粒は、結晶粒径Dのばらつきが小さい。すなわち、アルミナ基板は、アルミナ結晶粒の結晶粒径Dのばらつきの小ささを示す指標である下記の比率N/Nが、通常80%以上であり、結晶粒径Dのばらつきが小さい。
 ここで、比率N/Nとは、アルミナ基板の断面観察により単位面積200μm×200μmの観察範囲内で観察されるアルミナ結晶粒の全個数Nに対する、前記観察範囲内で観察され、アルミナ結晶粒の平均結晶粒径をAμmとしたときに0.3A~1.7Aの範囲内にあるアルミナ結晶粒の個数Nの比率N/Nを意味する。
Alumina crystal grains of alumina substrate, variation of the crystal grain size D c is small. That is, in the alumina substrate, the following ratio N A / N t which is an index indicating the small variation in the crystal grain size D c of the alumina crystal grains is usually 80% or more, and the variation in the crystal grain size D c is small.
Here, the ratio N A / N t is observed within the observation range with respect to the total number N t of alumina crystal grains observed within the observation range of unit area 200 μm × 200 μm by cross-sectional observation of the alumina substrate. This means the ratio N A / N t of the number N A of alumina crystal grains within the range of 0.3 A to 1.7 A when the average crystal grain size of the crystal grains is A μm.
 本発明で用いられるアルミナ基板は、上記のように、アルミナ結晶粒の平均結晶粒径が20μm以下と小さい上、アルミナ結晶粒の結晶粒径Dのばらつきが小さいことにより、ボイド発生の原因となるアルミナ結晶粒間の3重点が小さくなっており、ボイド数が少なく、ボイドの大きさも小さい。ここで、アルミナ結晶粒間の3重点とは、3個のアルミナ結晶粒に囲まれた粒界部分を意味する。 As described above, the alumina substrate used in the present invention has a small average crystal grain size of alumina crystal grains of 20 μm or less and a small variation in the crystal grain size D c of the alumina crystal grains. The triple point between the alumina crystal grains is small, the number of voids is small, and the size of the voids is small. Here, the triple point between alumina crystal grains means a grain boundary part surrounded by three alumina crystal grains.
<アルミナ基板のボイド>
 アルミナ基板のボイドは、通常、アルミナ結晶粒間の3重点に発生する空隙または窪みである。
 アルミナ基板は、ボイドの平均径が10μm以下、好ましくは5μm以下である。
 また、アルミナ基板は、ボイドの最大径が、12μm以下、好ましくは10μm以下である。ボイドは、アルミナ結晶粒子同士の隙間に形成されるものである。ボイドの最大径が12μmを超えると、アルミナ基板に部分的に緻密化が不十分な領域ができるためアルミナ基板の機械的強度や絶縁耐圧が低下するおそれがある。
<Void of alumina substrate>
The voids of the alumina substrate are usually voids or depressions generated at the triple point between the alumina crystal grains.
The alumina substrate has an average void diameter of 10 μm or less, preferably 5 μm or less.
The alumina substrate has a maximum void diameter of 12 μm or less, preferably 10 μm or less. A void is formed in the gap between alumina crystal particles. When the maximum diameter of the void exceeds 12 μm, there is a possibility that the mechanical strength and dielectric strength of the alumina substrate may be lowered because a partially densified region is formed on the alumina substrate.
 ここで、ボイドの平均径とは、アルミナ基板の断面観察により観察された100個のボイドから下記のようにして算出されるボイドの直径Dの平均値を意味する。
 すなわち、はじめに、アルミナ基板の断面について、単位面積200μm×200μmまたは100μm×100μmの観察範囲を得られる拡大写真を撮り、この観察範囲内に存在する個々のボイドにつき直径が最も大きくなるように測定した値を個々のボイドの直径Dとする。次に、このボイドの直径Dの測定を前記観察範囲内でランダムに選んだ100個のボイドについて行い、100個のボイドの直径Dの平均値をボイドの平均径と規定する。
Here, the average diameter of the void refers to the average value of the diameter D v of the void calculated from 100 voids observed by cross-sectional observation of the alumina substrate as follows.
That is, first, with respect to the cross section of the alumina substrate, an enlarged photograph capable of obtaining an observation range of a unit area of 200 μm × 200 μm or 100 μm × 100 μm was taken and measured so that the diameter of each void existing in the observation range was the largest. the value and individual void diameter D v. Then performed for 100 voids measurements randomly chosen within the observation range of the diameter D v of the void, to define the average value of 100 void of diameter D v and the average diameter of the void.
 また、ボイドの最大径とは、アルミナ基板の断面観察により観察された100個のボイドから上記のようにして算出されたボイドの直径Dの最大値を意味する。 Further, the maximum diameter of the voids, means the maximum value of the diameter D v of the void calculated from 100 voids observed by cross-sectional observation of the alumina substrate as described above.
 アルミナ基板の断面観察に用いられる拡大写真はSEM写真の二次電子像を使うことが好ましい。また、拡大写真の倍率は250倍以上、さらには500倍以上であることが好ましい。 It is preferable to use a secondary electron image of an SEM photograph as an enlarged photograph used for cross-sectional observation of the alumina substrate. The magnification of the enlarged photograph is preferably 250 times or more, and more preferably 500 times or more.
 なお、アルミナ基板の断面観察のためにアルミナ基板の断面を切り出す際に、断面からアルミナ結晶が脱粒する場合がある。しかし、脱粒はアルミナ粒子がそのまま抜け落ちる現象であるため、アルミナ基板の断面観察においてアルミナ結晶粒子の脱粒とボイドとは区別可能である。 Note that when the cross section of the alumina substrate is cut out for observing the cross section of the alumina substrate, the alumina crystal may be shed from the cross section. However, degranulation is a phenomenon in which the alumina particles fall off as they are, so that the crystallization of alumina crystal particles and voids can be distinguished in the cross-sectional observation of the alumina substrate.
 アルミナ基板は、断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が、通常2~30個、好ましくは5~20個である。
 アルミナ基板の断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が2~30個であると、アルミナ基板が高強度であるとともに、金属回路板との接合強度が高い。
In the alumina substrate, the number of voids per unit area 100 μm × 100 μm calculated by cross-sectional observation is usually 2 to 30, preferably 5 to 20.
When the number of voids per unit area 100 μm × 100 μm calculated by cross-sectional observation of the alumina substrate is 2 to 30, the alumina substrate has high strength and high bonding strength with the metal circuit board.
 アルミナ基板と金属回路板との接合強度は、アルミナ基板の表面の凹凸と金属回路板の表面とが入り組んだ形状、すなわち、アルミナ基板の表面の凹凸に金属回路板の表面が追従して変形した形状をとることにより、アンカー効果が生じて高くなると考えられる。このアルミナ基板の表面の凹凸は、アルミナ結晶粒の表面形状、焼結助剤由来成分の表面形状、ボイドの形状によって形成されるが、アルミナ基板の表面の凹凸の大きさは、通常、ボイドの形状による凹凸が最も大きくなる。このため、アルミナ基板の表面に、単位面積100μm×100μmあたりのボイドの個数が2個以上であると、アルミナ基板と金属回路板との接合強度が高くなりやすい。 The bonding strength between the alumina substrate and the metal circuit board is a shape in which the unevenness of the surface of the alumina substrate and the surface of the metal circuit board are complicated, that is, the surface of the metal circuit board is deformed following the unevenness of the surface of the alumina substrate. By taking the shape, it is considered that the anchor effect occurs and becomes high. The unevenness on the surface of the alumina substrate is formed by the surface shape of the alumina crystal grains, the surface shape of the component derived from the sintering aid, and the shape of the void. The size of the unevenness on the surface of the alumina substrate is usually that of the void. The unevenness due to the shape becomes the largest. For this reason, if the number of voids per unit area of 100 μm × 100 μm is two or more on the surface of the alumina substrate, the bonding strength between the alumina substrate and the metal circuit board tends to be high.
 ここで、断面観察で算出される単位面積100μm×100μmあたりのボイドの個数とは、下記のようにして算出されるボイドの個数Nを意味する。
 すなわち、はじめに、アルミナ基板の断面について、単位面積200μm×200μmまたは100μm×100μmの観察範囲を得られる拡大写真を撮り、この観察範囲内に存在するボイドの総数NvTを数える。次に、このボイドの総数NvTを100μm×100μmあたりの個数に換算して100μm×100μmあたりのボイドの個数Nv100を算出する。そして、この100μm×100μmあたりのボイドの個数Nv100の算出を、アルミナ基板の断面の4箇所で行い、この4個のボイドの個数Nv100の平均値をボイドの個数Nと規定する。
Here, the void number of per unit area 100 [mu] m × 100 [mu] m calculated by the cross-section observation, means the number N v of the voids is calculated as follows.
That is, first, an enlarged photograph capable of obtaining an observation range having a unit area of 200 μm × 200 μm or 100 μm × 100 μm is taken for the cross section of the alumina substrate, and the total number N vT of voids existing in the observation range is counted. Next, the total number N vT of voids is converted into the number per 100 μm × 100 μm, and the number N v100 of voids per 100 μm × 100 μm is calculated. Then, the calculation of the number N v100 of voids per this 100 [mu] m × 100 [mu] m, conducted at four points of the cross-section of the alumina substrate, to define the average value of the number N v100 of the four voids and the number N v of the void.
 なお、アルミナ基板の断面観察が単位面積200μm×200μmの部分で行われる場合には、この単位面積200μm×200μmの部分が、単位面積100μm×100μmの部分を4個含むといえる。このため、単位面積200μm×200μmの1箇所のボイドの総数NvTを100μm×100μmあたりの個数に換算したボイドの個数Nv100を、そのままボイドの個数Nとしてもよい。 In addition, when the cross-sectional observation of the alumina substrate is performed in a unit area of 200 μm × 200 μm, it can be said that the unit area of 200 μm × 200 μm includes four parts of the unit area of 100 μm × 100 μm. Thus, the voids of the number N v100 obtained by converting the total number N vT void at one location of a unit area 200 [mu] m × 200 [mu] m in number per 100 [mu] m × 100 [mu] m, may be as it is as the number of voids N v.
 なお、アルミナ基板の断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が2個未満であると、金属回路板との接合強度が低くなるおそれがある。
 また、アルミナ基板の断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が30個を超えると、アルミナ基板の表面欠陥となり、アルミナ基板の機械的強度、絶縁耐圧や熱伝導率が低下しやすい。
If the number of voids per unit area 100 μm × 100 μm calculated by cross-sectional observation of the alumina substrate is less than 2, the bonding strength with the metal circuit board may be lowered.
In addition, if the number of voids per unit area 100 μm × 100 μm calculated by cross-sectional observation of the alumina substrate exceeds 30, surface defects of the alumina substrate occur, and the mechanical strength, dielectric strength and thermal conductivity of the alumina substrate decrease. It's easy to do.
 アルミナ基板は、このアルミナ基板に存在するボイドの体積の比率であるボイド率が3体積%以下である。
 ここで、ボイド率とは、アルキメデス法により算出したアルミナ基板中の空洞の体積である。
The alumina substrate has a void ratio of 3% by volume or less, which is a ratio of the volume of voids present in the alumina substrate.
Here, the void ratio is the volume of the cavity in the alumina substrate calculated by the Archimedes method.
 アルミナ基板は、このアルミナ基板の断面観察により算出されたボイドの面積の比率であるボイド面積率が、通常10%以下、好ましくは5%以下、さらに好ましくは3%以下である。
 ボイド面積率が10%を超えると、アルミナ基板の機械的強度が低くなるおそれがある。
In the alumina substrate, the void area ratio, which is the void area ratio calculated by observing the cross section of the alumina substrate, is usually 10% or less, preferably 5% or less, and more preferably 3% or less.
If the void area ratio exceeds 10%, the mechanical strength of the alumina substrate may be lowered.
 ここで、ボイド面積率とは、下記のようにして算出されるボイドの面積率RSを意味する。
 すなわち、はじめに、アルミナ基板の断面について、単位面積200μm×200μmまたは100μm×100μmの観察範囲を得られる拡大写真を撮り、この観察範囲内に存在するボイドの面積を合計してボイドの総面積SvTを算出する。次に、このボイドの総面積SvTを単位面積で割った1μmあたりの値をボイド面積率RS(%)と規定する。
Here, the void area ratio means an area ratio RS v of voids is calculated as follows.
That is, first, an enlarged photograph capable of obtaining an observation range having a unit area of 200 μm × 200 μm or 100 μm × 100 μm is taken with respect to the cross section of the alumina substrate, and the total area of the voids S vT Is calculated. Next, a value per 1 μm 2 obtained by dividing the total area S vT of the voids by the unit area is defined as a void area ratio RS v (%).
<アルミナ基板の特性>
 アルミナ基板は、ビッカース硬度が1500以上である。ここで、ビッカース硬度とは、JIS-R-1610に規定されるビッカース硬度を意味する。
 アルミナ基板は、絶縁耐圧が通常25KV/mm以上である。ここで、絶縁耐圧とは、各セラミックス回路基板を絶縁油(商品名フロリナート)中に浸漬し、セラミックス基板の両面に接合した金属回路板にそれぞれ電極を配置し、この電極間に毎分10kVの電圧上昇速度で交流電圧を印加する。そして、10pC(ピコクーロン)の電荷量を放電する際の印加電圧を部分放電開始電圧とし、基板の単位厚さ当たりの部分放電開始電圧を絶縁耐圧とする。
 アルミナ基板は、破壊靭性値が3.2 MPa・m1/2以上である。ここで、破壊靭性値とは、JIS-R-1607に規定される破壊靭性値を意味する。
 アルミナ基板は、熱伝導率が通常28W/m・K以上である。ここで、熱伝導率とは、JIS-R-1611に準ずるレーザフラッシュ法で測定される熱伝導率を意味する。
 アルミナ基板は、抗折強度(3点曲げ強度)が、通常400MPa以上である。ここで、抗折強度(3点曲げ強度)とは、JIS-R-1601に規定される絶縁耐圧を意味する。
<Characteristics of alumina substrate>
The alumina substrate has a Vickers hardness of 1500 or more. Here, the Vickers hardness means the Vickers hardness defined in JIS-R-1610.
The alumina substrate usually has a withstand voltage of 25 KV / mm or more. Here, the withstand voltage is that each ceramic circuit board is immersed in insulating oil (trade name Fluorinert), electrodes are arranged on metal circuit boards bonded to both surfaces of the ceramic board, and 10 kV / min between these electrodes. AC voltage is applied at the rate of voltage rise. An applied voltage when discharging a charge amount of 10 pC (picocoulomb) is defined as a partial discharge start voltage, and a partial discharge start voltage per unit thickness of the substrate is defined as a withstand voltage.
The alumina substrate has a fracture toughness value of 3.2 MPa · m 1/2 or more. Here, the fracture toughness value means a fracture toughness value defined in JIS-R-1607.
The alumina substrate usually has a thermal conductivity of 28 W / m · K or more. Here, the thermal conductivity means a thermal conductivity measured by a laser flash method according to JIS-R-1611.
The alumina substrate usually has a bending strength (three-point bending strength) of 400 MPa or more. Here, the bending strength (three-point bending strength) means a dielectric strength specified by JIS-R-1601.
 アルミナ基板は、厚さが、通常0.25~1.2mmである。 The thickness of the alumina substrate is usually 0.25 to 1.2 mm.
<アルミナ基板の製造方法>
 次に、アルミナ基板の製造方法について説明する。
 アルミナ基板は、たとえば、アルミナ粉末と焼結助剤とを用意した後、スラリー調整工程または造粒工程を行い、成形工程を行い、脱脂工程を行い、焼結工程を行うことにより製造することができる。
<Alumina substrate manufacturing method>
Next, the manufacturing method of an alumina substrate is demonstrated.
For example, an alumina substrate can be manufactured by preparing an alumina powder and a sintering aid, performing a slurry adjustment process or a granulation process, performing a molding process, performing a degreasing process, and performing a sintering process. it can.
  [アルミナ粉末]
 アルミナ粉末は、アルミナの純度が、通常99.5~99.9質量%である。
[Alumina powder]
The purity of the alumina powder is usually 99.5 to 99.9% by mass.
 アルミナ粉末にはアルミナ以外の成分として、通常、Na、SiおよびFe、またはこれら以外の元素を含む物質等が含まれる。
 本発明において、アルミナ粉末に含まれる物質のうち、Na、SiおよびFe、ならびにこれらの元素の化合物は、焼結助剤と同じ元素からなる物質であるため、焼結助剤成分不純物という。
 また、アルミナ粉末に含まれる物質のうち、アルミナおよび焼結助剤成分不純物以外の物質を、不可避不純物という。
 焼結助剤成分不純物は、焼結助剤と同じ元素からなる物質であるため、焼結工程において焼結助剤として機能する。このため、アルミナ粉末に含まれる焼結助剤成分不純物は、焼結助剤の一部として扱うことが好ましい。
The alumina powder usually contains Na, Si and Fe, or substances containing other elements as components other than alumina.
In the present invention, among the substances contained in the alumina powder, Na, Si and Fe, and compounds of these elements are substances consisting of the same elements as the sintering aid, and hence are referred to as sintering aid component impurities.
Of the substances contained in the alumina powder, substances other than alumina and sintering aid component impurities are referred to as inevitable impurities.
Since the sintering aid component impurity is a substance composed of the same elements as the sintering aid, it functions as a sintering aid in the sintering process. For this reason, it is preferable to handle the sintering aid component impurities contained in the alumina powder as part of the sintering aid.
 焼結助剤成分不純物を焼結助剤の一部として扱う方法としては、焼結助剤成分不純物の質量を、焼結助剤に換算した質量とし、この換算した質量を焼結助剤の質量の一部とする方法が用いられる。具体的には、焼結助剤成分不純物が、Na、SiおよびFe、ならびにこれらの元素の化合物である場合は、これらをそれぞれ焼結助剤であるNaO、SiO、およびFeに換算した後、これらの酸化物の質量を焼結助剤の質量として取り扱う。たとえば、アルミナ粉末に含まれる焼結助剤成分不純物中のSi成分から換算したSiOがAgであり、このアルミナ粉末に焼結助剤として添加したSiOがBgである場合は、焼結助剤であるSiOの合計の質量はA+Bgとなる。 As a method of handling the sintering aid component impurity as a part of the sintering aid, the mass of the sintering aid component impurity is the mass converted to the sintering aid, and this converted mass is used as the sintering aid. A method of making part of the mass is used. Specifically, when the sintering aid component impurities are Na, Si, and Fe, and compounds of these elements, these are used as the sintering aids Na 2 O, SiO 2 , and Fe 2 O, respectively. After converting to 3 , the mass of these oxides is handled as the mass of the sintering aid. For example, when SiO 2 converted from the Si component in the sintering aid component impurities contained in the alumina powder is Ag, and SiO 2 added as a sintering aid to this alumina powder is Bg, the sintering aid The total mass of the SiO 2 agent is A + Bg.
 アルミナ粉末は、平均粒径が、通常1~4μmである。
 また、アルミナ粉末は、0.8μm以下の粒径のアルミナ粉末を2~30質量%含むものであると、得られるアルミナ基板のボイドサイズを小さくしたり、ボイドの個数を減らしたりすることができるため、好ましい。この理由は以下のとおりである。ボイドはアルミナ結晶粒同士の隙間に発生する。0.8μm以下の粒径のアルミナ粉末を2~30質量%含むアルミナ粉末は、大きな粉末と小さな粉末が適度に分布したものとなることから、焼結前のアルミナ粉末を、大きなアルミナ粉末同士の隙間に小さなアルミナ粉末が入り込む構造にすることができる。このため、このような構造のアルミナ粉末から得られるアルミナ基板は、ボイドサイズが小さくなったり、ボイドの個数が少なくなったりする。
The average particle size of the alumina powder is usually 1 to 4 μm.
Further, if the alumina powder contains 2 to 30% by mass of alumina powder having a particle size of 0.8 μm or less, the void size of the resulting alumina substrate can be reduced or the number of voids can be reduced. preferable. The reason for this is as follows. Voids are generated in the gaps between the alumina crystal grains. An alumina powder containing 2 to 30% by mass of an alumina powder having a particle diameter of 0.8 μm or less has a moderate distribution of large and small powders. A structure can be adopted in which small alumina powder enters the gap. For this reason, the alumina substrate obtained from the alumina powder having such a structure has a small void size and a small number of voids.
  [焼結助剤]
 アルミナ基板の原料としては、アルミナ粉末に加えて焼結助剤が用いられる。
 焼結助剤としては、少なくとも酸化ナトリウム(NaO)を用いる。焼結助剤は、酸化ナトリウム(NaO)に加えて、酸化ケイ素(SiO)および酸化鉄(Fe)から選ばれる1種以上の酸化物を含んでいてもよい。
 焼結助剤は、酸化ナトリウム(NaO)、酸化ケイ素(SiO)および酸化鉄(Fe)のすべてを含むと好ましい。
[Sintering aid]
As a raw material for the alumina substrate, a sintering aid is used in addition to the alumina powder.
As a sintering aid, at least sodium oxide (Na 2 O) is used. The sintering aid may contain one or more oxides selected from silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ) in addition to sodium oxide (Na 2 O).
The sintering aid preferably contains all of sodium oxide (Na 2 O), silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ).
 また、焼結助剤は、酸化ナトリウム(NaO)、酸化ケイ素(SiO)および酸化鉄(Fe)に加えて、酸化カルシウム(CaO)および酸化マグネシウム(MgO)から選ばれる1種以上の酸化物をさらに含んでいてもよい。
 焼結助剤としては、粉末状のものを用いる。
The sintering aid is selected from calcium oxide (CaO) and magnesium oxide (MgO) in addition to sodium oxide (Na 2 O), silicon oxide (SiO 2 ) and iron oxide (Fe 2 O 3 ). It may further contain an oxide of seeds or more.
As a sintering aid, a powdery one is used.
 焼結助剤は、後のスラリー調整工程または造粒工程において、アルミナ粉末と混合される。アルミナ粉末と焼結助剤とからなる混合粉末は、アルミナ粉末に含まれる焼結助剤成分不純物を焼結助剤に換算した質量Mと、焼結助剤の質量Mとの合計量M+Mを、0.5質量%以下含むようにする。 The sintering aid is mixed with the alumina powder in the subsequent slurry adjustment step or granulation step. The total amount of the mixed powder of alumina powder and sintering aid, and the mass M A converted sintering aid component impurities contained in the alumina powder sintering aid, and the mass M S sintering aids M A + M S is contained at 0.5 mass% or less.
 また、後のスラリー調整工程でアルミナボールミルを用いてボールミル処理をする場合は、アルミナボールミルから取り込まれる焼結助剤成分不純物の量Mを勘案して、焼結助剤の配合量を定める。すなわち、アルミナ粉末と焼結助剤とからなる混合粉末中に、M+M+Mが0.5質量%以下含まれるようにする。ここで、アルミナボールミルから取り込まれる焼結助剤成分不純物とは、アルミナ粉末に含まれる焼結助剤成分不純物と同様の物質である。 In addition, when the ball milling using alumina balls mill in slurry adjusting process after, in consideration of the amount M B of the sintering auxiliary component impurities incorporated from the alumina balls mill, determine the amount of sintering aid. That is, the mixed powder of alumina powder and sintering aid, is M A + M S + M B to be included 0.5 mass%. Here, the sintering aid component impurity taken in from the alumina ball mill is the same material as the sintering aid component impurity contained in the alumina powder.
 このように原料粉末の混合や造粒工程にて混入される不純物Na、Si、Fe量を考慮した上で、焼結助剤として酸化ナトリウムを混合粉末中で0.001~0.1質量%になるように添加する。また、必要に応じ、酸化ケイ素を混合粉末中で0.001~0.2質量%になるように、酸化鉄を混合粉末中で0.001~0.05質量%になるように添加する。 Thus, in consideration of the amount of impurities Na, Si, Fe mixed in the raw material powder mixing and granulation process, 0.001 to 0.1% by mass of sodium oxide as a sintering aid in the mixed powder Add to be. Further, if necessary, iron oxide is added so as to be 0.001 to 0.2 mass% in the mixed powder, and iron oxide is added to 0.001 to 0.05 mass% in the mixed powder.
  [スラリー調整工程]
 スラリー調整工程は、アルミナ粉末と焼結助剤粉末とを混合してスラリーを調製する工程である。スラリーは、たとえば、純水または有機溶媒中にアルミナ粉末と焼結助剤粉末とを添加し、必要によりさらにPVA(ポリビニルアルコール)等のバインダを添加した上、湿式ボールミルで、アルミナ粉末および焼結助剤粉末を粉砕することにより調製することができる。
 ボールミルで用いられるボールは、アルミナ製であることが好ましい。ただし、アルミナ製のアルミナボールは、通常、アルミナ純度が96%程度であり、Na、Si、Fe等の不純物を比較的多く含む。このため、アルミナボールを用いたボールミル処理では、アルミナボールからスラリーに混入するNa、Si、Fe等の不純物を考慮した量の焼結助剤粉末をアルミナ粉末に配合することが好ましい。
 アルミナ基板の製造方法では、上記のスラリー調整工程または下記の造粒工程を選択して行う。
[Slurry adjustment process]
The slurry adjustment step is a step of preparing a slurry by mixing alumina powder and sintering aid powder. For the slurry, for example, alumina powder and sintering aid powder are added in pure water or an organic solvent, and a binder such as PVA (polyvinyl alcohol) is further added as necessary. It can be prepared by pulverizing the auxiliary powder.
The balls used in the ball mill are preferably made of alumina. However, alumina balls made of alumina usually have an alumina purity of about 96% and contain a relatively large amount of impurities such as Na, Si, and Fe. For this reason, in the ball mill treatment using the alumina balls, it is preferable to mix the sintering powder with an amount of the sintering aid powder taking into account impurities such as Na, Si and Fe mixed in the slurry from the alumina balls.
In the method for producing an alumina substrate, the above-described slurry adjustment step or the following granulation step is selected and performed.
  [造粒工程]
 造粒工程は、アルミナ粉末と焼結助剤粉末とを混合して造粒する工程である。
 造粒で得られる造粒粉は、たとえば、純水または有機溶媒中にアルミナ粉末と焼結助剤粉末とを添加し、必要によりさらにPVA(ポリビニルアルコール)等のバインダを添加した上、湿式ボールミルで、アルミナ粉末および焼結助剤粉末を粉砕し、さらに湿式造粒機で造粒することにより作製することができる。
[Granulation process]
The granulation step is a step of mixing and granulating alumina powder and sintering aid powder.
The granulated powder obtained by granulation is, for example, a wet ball mill after adding alumina powder and sintering aid powder in pure water or an organic solvent, and further adding a binder such as PVA (polyvinyl alcohol) if necessary. Thus, the alumina powder and the sintering aid powder can be pulverized and further granulated with a wet granulator.
  [成形工程]
 スラリー調整工程または造粒工程を行った後は、成形工程を行う。
 成形工程は、スラリー調整工程で得られたスラリー、または造粒工程で得られた造粒粉を用いて、成形体を作製する工程である。
 スラリーを用いる場合、成形工程は、たとえば、ドクターブレード法を用いて板状の成形体を作製する。造粒粉を用いる場合、成形工程は、たとえば、金型成型法を用いて板状の成形体を作製する。
 板状の成形体の厚さが1mm以下である場合は、ドクターブレード法を用いることが好ましい。
[Molding process]
After performing the slurry adjusting step or the granulating step, the forming step is performed.
The molding step is a step of producing a molded body using the slurry obtained in the slurry adjustment step or the granulated powder obtained in the granulation step.
When using a slurry, a shaping | molding process produces a plate-shaped molded object, for example using a doctor blade method. When using granulated powder, a shaping | molding process produces a plate-shaped molded object, for example using a metal mold | die molding method.
When the thickness of the plate-shaped molded body is 1 mm or less, it is preferable to use a doctor blade method.
  [脱脂工程]
 脱脂工程は、得られた板状の成形体を脱脂する工程である。
 脱脂工程は、通常400~900℃で熱処理して板状の成形体を脱脂させる。
[Degreasing process]
A degreasing process is a process of degreasing the obtained plate-shaped molded object.
In the degreasing step, the plate-shaped molded body is degreased by heat treatment usually at 400 to 900 ° C.
  [焼結工程]
 焼結工程は、脱脂された板状の成形体を焼結させる工程である。
 焼結工程は、常圧で焼結させる場合は、通常1200~1700℃で2~12時間、好ましくは1200~1680℃で5~12熱処理して、焼結させる。
 また、0.5MPa以上の加圧下で焼結させる場合は、通常1200~1700℃で2~6時間、好ましくは1200~1680℃で2~5時間熱処理して、焼結させることもできる。
[Sintering process]
A sintering process is a process of sintering the degreased plate-shaped molded object.
In the sintering step, when sintering at normal pressure, the sintering is usually performed by heat treatment at 1200 to 1700 ° C. for 2 to 12 hours, preferably 1200 to 1680 ° C. for 5 to 12 hours.
In the case of sintering under a pressure of 0.5 MPa or more, it can be sintered by heat treatment usually at 1200 to 1700 ° C. for 2 to 6 hours, preferably 1200 to 1680 ° C. for 2 to 5 hours.
 また、焼結工程は、熱処理の温度範囲を変えた2段階の熱処理を行なうようにしてもよい。
 たとえば、温度範囲1450~1650℃で4~7時間熱処理した後、1450℃未満で2~3時間熱処理するようにしてもよい。
 このように、焼結工程を、高温で長時間焼結し続けるのではなく、一定時間焼結した後、少し低温で焼結させることにより、アルミナ結晶粒の粒成長を抑制できるため、ボイドのサイズや個数の制御を行い易くなる。
 このように、本焼結工程は、焼結時間を12時間以下にすることができるため、特許文献1に示されるような20時間という長時間の熱処理の焼結工程を行う必要がない。
Further, the sintering process may be performed in two stages with different temperature ranges for the heat treatment.
For example, after heat treatment at a temperature range of 1450 to 1650 ° C. for 4 to 7 hours, heat treatment may be performed at less than 1450 ° C. for 2 to 3 hours.
In this way, since the sintering process does not continue to sinter for a long time at a high temperature, but after sintering for a certain period of time, by sintering at a slightly low temperature, the grain growth of the alumina crystal grains can be suppressed. It becomes easier to control the size and number.
As described above, since the sintering time can be set to 12 hours or less in the main sintering step, it is not necessary to perform a long-time heat treatment sintering step of 20 hours as disclosed in Patent Document 1.
 本発明において焼結工程の焼結時間が短い理由は、主に、脱脂された板状の成形体中の、焼結助剤粉末および焼結助剤成分不純物の合計量が適切であるからであると考えられる。 The reason why the sintering time of the sintering process is short in the present invention is mainly because the total amount of sintering aid powder and sintering aid component impurities in the degreased plate-like molded body is appropriate. It is believed that there is.
 すなわち、スラリーまたは造粒粉から作製され、脱脂された板状の成形体は、アルミナ粉末と焼結助剤粉末との合計量100質量%中に、アルミナ粉末に含まれる焼結助剤成分不純物を焼結助剤に換算した質量Mと、焼結助剤の質量Mとの合計量M+Mを、0.5質量%以下含む。 That is, the plate-shaped molded body produced from the slurry or granulated powder and degreased has a sintering aid component impurity contained in the alumina powder in a total amount of 100 mass% of the alumina powder and the sintering aid powder. The total amount M A + M S of the mass M A converted into a sintering aid and the mass M S of the sintering aid is 0.5% by mass or less.
 また、スラリー調整工程でアルミナボールミルを用いてボールミル処理した場合は、スラリーまたは造粒粉から作製され、脱脂された板状の成形体は、アルミナボールミルから取り込まれる焼結助剤成分不純物の量Mを含めたM+M+Mを0.5質量%以下含むようになっている。 In addition, when ball milling is performed using an alumina ball mill in the slurry adjustment step, the plate-shaped molded body produced from the slurry or granulated powder and degreased has an amount M of the sintering aid component impurities taken in from the alumina ball mill. M A + M S + M B including B is included in an amount of 0.5% by mass or less.
 ここで、焼結助剤粉末および焼結助剤成分不純物の少なくとも一方には、Na成分が含まれ、必要により、Si成分およびFe成分から選ばれる少なくとも1種の成分がさらに含まれ、これらの成分は焼結助剤として機能する。 Here, at least one of the sintering aid powder and the sintering aid component impurity contains an Na component, and if necessary, further contains at least one component selected from an Si component and an Fe component. The component functions as a sintering aid.
 このため、本発明のアルミナAlを99.5質量%以上含む高純度なアルミナ基板の焼結工程は、焼結助剤を用いずにアルミナ粉末のみを用いて高純度アルミナ基板を焼結する場合に比較して、焼結温度を20~50℃程度低くすることができ、かつ、焼結時間も12時間以下と短くすることができる。 For this reason, in the sintering process of a high-purity alumina substrate containing 99.5% by mass or more of the alumina Al 2 O 3 of the present invention, the high-purity alumina substrate is sintered using only alumina powder without using a sintering aid. Compared with the case of sintering, the sintering temperature can be lowered by about 20 to 50 ° C., and the sintering time can be shortened to 12 hours or less.
 このように、焼結工程において、焼結温度を低くしたり、焼結時間を短くしたりすることができることから、焼結によるアルミナ結晶粒の成長を抑制することができる。このため、得られるアルミナ基板は、アルミナ結晶粒が小さくなり、アルミナ結晶粒の結晶粒径Dのばらつきが小さくなり、ボイドの発生を抑制することができ、発生したボイドの大きさを小さくすることができる。
 具体的には、得られるアルミナ基板は、アルミナ結晶粒の平均結晶粒径が、通常20μm以下、好ましくは10μm以下となり、結晶粒径Dのばらつきを示す比率N/Nが、通常80%以上となる。
 また、得られるアルミナ基板は、ボイドの平均径が10μm以下、好ましくは5μm以下であり、ボイド面積率が、通常10%以下となる。
Thus, in the sintering step, the sintering temperature can be lowered or the sintering time can be shortened, so that growth of alumina crystal grains due to sintering can be suppressed. Thus, an alumina substrate obtained is alumina crystal grains is reduced, variation of the crystal grain size D c of alumina crystal grains is reduced, it is possible to suppress the occurrence of voids, reducing the size of the generated voids be able to.
Specifically, the obtained alumina substrate has an average crystal grain size of alumina crystal grains of usually 20 μm or less, preferably 10 μm or less, and a ratio N A / N t showing variation in crystal grain size D c is usually 80 % Or more.
The resulting alumina substrate has an average void diameter of 10 μm or less, preferably 5 μm or less, and a void area ratio of usually 10% or less.
 以上の各工程を経て得られたアルミナ基板は、金属回路板と接合される。アルミナ基板と接合された金属回路板は、適宜エッチング等を用いて回路が形成される。本発明では、回路が形成されていない金属回路板、および回路が形成された金属回路板の両方を含めて、単に金属回路板と称する。
 得られたアルミナ基板は、金属回路板と接合される前の処理として、適宜、ホーニング加工により表面のごみを除去する処理や、表面を研磨加工する処理が行われる。なお、アルミナ基板と金属回路板との接合方法として直接接合法を用いる場合は、ホーニング加工により表面のごみを除去するだけとすることが好ましい。
The alumina substrate obtained through the above steps is bonded to the metal circuit board. A circuit is formed on the metal circuit board bonded to the alumina substrate by appropriately using etching or the like. In the present invention, both a metal circuit board on which a circuit is not formed and a metal circuit board on which a circuit is formed are simply referred to as a metal circuit board.
The obtained alumina substrate is appropriately subjected to a process of removing dust on the surface by a honing process and a process of polishing the surface as a process before being bonded to the metal circuit board. In addition, when using a direct joining method as a joining method of an alumina substrate and a metal circuit board, it is preferable to only remove the surface dust by a honing process.
(金属回路板)
 金属回路板は、アルミナ基板上に接合される。ここで、金属回路板とは、エッチング等を用いて回路が形成された金属回路板、および回路が形成されていない金属回路板の両方を含む概念である。
(Metal circuit board)
The metal circuit board is bonded onto the alumina substrate. Here, the metal circuit board is a concept including both a metal circuit board in which a circuit is formed using etching or the like and a metal circuit board in which a circuit is not formed.
 アルミナ基板と金属回路板とは、たとえば、直接接合法(DBC法)、活性金属法等の方法により接合される。
 ここで、直接接合法(DBC法)とは、たとえば、金属回路板の銅と酸素とが共晶化合物(Cu-O共晶)を形成する反応を利用してアルミナ基板と金属回路板とを接合する方法である。
 また、活性金属法とは、活性金属接合ろう材ペーストを用いてアルミナ基板と金属回路板とを接合する方法である。
The alumina substrate and the metal circuit board are bonded by a method such as a direct bonding method (DBC method) or an active metal method.
Here, the direct bonding method (DBC method) refers to, for example, using a reaction in which copper and oxygen of a metal circuit board form a eutectic compound (Cu—O eutectic) to connect the alumina substrate and the metal circuit board. It is a method of joining.
The active metal method is a method of joining an alumina substrate and a metal circuit board using an active metal joining brazing paste.
 本発明のセラミックス回路基板では、金属回路板が、直接接合法、活性金属法等の方法によりアルミナ基板に接合されたものになっている。 In the ceramic circuit board of the present invention, the metal circuit board is bonded to the alumina substrate by a method such as a direct bonding method or an active metal method.
<金属回路板が直接接合法によりアルミナ基板に接合された場合>
 金属回路板が直接接合法によりアルミナ基板に接合される場合、金属回路板としては、通常、銅からなる銅回路板が用いられる。
 アルミナ基板と金属回路板との接合方法が直接接合法であるため、銅回路板は、Cu-O共晶化合物によりアルミナ基板に接合される。
 銅回路板は、厚さが、通常0.1~0.5mmである。
<When a metal circuit board is bonded to an alumina substrate by a direct bonding method>
When the metal circuit board is bonded to the alumina substrate by a direct bonding method, a copper circuit board made of copper is usually used as the metal circuit board.
Since the bonding method between the alumina substrate and the metal circuit board is a direct bonding method, the copper circuit board is bonded to the alumina substrate by a Cu—O eutectic compound.
The thickness of the copper circuit board is usually 0.1 to 0.5 mm.
 銅回路板としては、酸素を100~1000質量ppm含有するタフピッチ電解銅からなることが好ましい。このような銅回路板を用いることにより、アルミナ基板との接合強度が高くなる。 The copper circuit board is preferably made of tough pitch electrolytic copper containing 100 to 1000 ppm by mass of oxygen. By using such a copper circuit board, the bonding strength with the alumina substrate is increased.
 銅回路板は、炭素を0.1~1.0質量%含むことが好ましい。このような銅回路板を構成する銅材としては、たとえば、タフピッチ銅、無酸素銅等が挙げられる。
 炭素は脱酸剤として機能するため、銅回路板中の酸素を銅回路板の表面に移動させる。また、銅回路板の表面に移動した酸素は、直接接合法を行う際のCu-O共晶化合物を形成するために用いられる。
 なお、銅回路板の炭素含有量が0.1質量%未満であると炭素含有の効果がなく、炭素含有量が1.0質量%を超えると炭素含有量が増えすぎて銅回路板の導電性を低下させる。
The copper circuit board preferably contains 0.1 to 1.0% by mass of carbon. Examples of the copper material constituting such a copper circuit board include tough pitch copper and oxygen-free copper.
Since carbon functions as a deoxidizer, oxygen in the copper circuit board is moved to the surface of the copper circuit board. In addition, the oxygen that has moved to the surface of the copper circuit board is used to form a Cu—O eutectic compound when performing the direct bonding method.
In addition, when the carbon content of the copper circuit board is less than 0.1% by mass, there is no effect of carbon content, and when the carbon content exceeds 1.0% by mass, the carbon content increases too much and the conductivity of the copper circuit board is increased. Reduce sex.
 なお、銅回路板として、酸素含有量が100質量ppm未満の銅回路板を用いる場合は、銅回路板のアルミナ基板との接合面側に酸化銅膜を形成することにより、アルミナ基板との接合強度を高くすることができる。 When a copper circuit board having an oxygen content of less than 100 ppm by mass is used as the copper circuit board, the copper circuit board is bonded to the alumina substrate by forming a copper oxide film on the bonding surface side of the copper circuit board with the alumina substrate. Strength can be increased.
 銅回路板の表面に酸化銅膜を形成する方法としては、銅回路板を熱処理して直接酸化する方法や酸化銅粉末のペーストを塗布する方法等が挙げられる。 Examples of a method for forming a copper oxide film on the surface of a copper circuit board include a method of directly oxidizing a copper circuit board by heat treatment, a method of applying a copper oxide powder paste, and the like.
  [直接酸化する方法]
 直接酸化する方法としては、たとえば、銅回路板を、大気中において温度150~360℃の範囲で20~120秒間加熱する表面酸化処理を行うことにより、銅回路板の表面に酸化銅膜を形成する方法が用いられる。
[Direct oxidation method]
As a method for direct oxidation, for example, a copper oxide film is formed on the surface of a copper circuit board by performing a surface oxidation treatment in which the copper circuit board is heated in the atmosphere at a temperature of 150 to 360 ° C. for 20 to 120 seconds. Is used.
 直接酸化する方法を用いる場合、酸化銅膜は、厚さが、通常1~10μm、好ましくは2~5μmである。
 酸化銅膜の厚さが1μm未満であると、Cu-O共晶化合物の発生量が少なくなることから、アルミナ基板と銅回路板との未接合部分が多くなるため、接合強度を向上させる効果が小さくなる。
 一方、酸化銅膜の厚さが10μmを超えると、接合強度の改善効果が少なく、却って銅回路板の導電特性を阻害することになる。
When the direct oxidation method is used, the copper oxide film has a thickness of usually 1 to 10 μm, preferably 2 to 5 μm.
When the thickness of the copper oxide film is less than 1 μm, the amount of Cu—O eutectic compound generated is reduced, and the unbonded portion between the alumina substrate and the copper circuit board is increased, thereby improving the bonding strength. Becomes smaller.
On the other hand, when the thickness of the copper oxide film exceeds 10 μm, the effect of improving the bonding strength is small, and on the contrary, the conductive characteristics of the copper circuit board are hindered.
  [酸化銅粉末のペーストを塗布する方法]
 酸化銅粉末のペーストを塗布する方法としては、たとえば、平均粒径1~5μmの酸化銅粉末を含むペーストを用い、銅回路板の上にペーストを塗布して厚さ1~10μmの酸化銅ペースト層を形成した後、乾燥または熱処理することにより、銅回路板の表面に酸化銅膜を形成する方法が用いられる。
[Method of applying copper oxide powder paste]
As a method of applying the copper oxide powder paste, for example, a paste containing copper oxide powder having an average particle diameter of 1 to 5 μm is used, and the paste is applied on a copper circuit board to have a thickness of 1 to 10 μm. After the layer is formed, a method of forming a copper oxide film on the surface of the copper circuit board by drying or heat treatment is used.
<金属回路板が活性金属法によりアルミナ基板に接合された場合>
 金属回路板が活性金属法によりアルミナ基板に接合される場合、金属回路板としては、銅、アルミニウム、鉄、ニッケル、クロム、銀、モリブデン、コバルトの単体、これらの合金、およびこれらのクラッド材等が用いられる。これらの中、銅板やアルミニウム板は、接合性がよいため好ましい。
<When a metal circuit board is bonded to an alumina substrate by an active metal method>
When the metal circuit board is bonded to the alumina substrate by the active metal method, the metal circuit board includes copper, aluminum, iron, nickel, chromium, silver, molybdenum, cobalt alone, alloys thereof, and cladding materials thereof. Is used. Among these, a copper plate and an aluminum plate are preferable because of good bonding properties.
 金属回路板の厚さは、通電容量やアルミナ基板の厚さ等を勘案して決定される。具体的には、アルミナ基板の厚さが0.25~1.2mmの場合には、金属回路板の厚さを0.1~0.5mmとすることが好ましい。なお、アルミナ基板の厚さを0.25~0.38mmとすると、熱抵抗が低減され、セラミックス回路基板の放熱性を改善することができる。 The thickness of the metal circuit board is determined in consideration of the current carrying capacity and the thickness of the alumina substrate. Specifically, when the thickness of the alumina substrate is 0.25 to 1.2 mm, the thickness of the metal circuit board is preferably 0.1 to 0.5 mm. When the thickness of the alumina substrate is 0.25 to 0.38 mm, the thermal resistance is reduced and the heat dissipation of the ceramic circuit board can be improved.
 活性金属法に用いられる活性金属接合ろう材ペーストとしては、たとえば、Cuを15~35質量%、およびTi、Zr、Hfから選択される少なくとも1種の活性金属を1~10質量%含むとともに、残部が実質的にAgからなる接合用組成物を有機溶媒中に分散して調製した活性金属接合ろう材ペーストが用いられる。
 活性金属接合ろう材ペーストに配合される活性金属は、アルミナ基板に対する活性金属接合ろう材の濡れ性および反応性を改善する。活性金属接合ろう材ペースト中の活性金属の配合量は、活性金属接合ろう材ペーストに含まれる接合用組成物100質量%に対して1~10質量%とする。
Examples of the active metal bonding brazing paste used in the active metal method include 15 to 35% by mass of Cu and 1 to 10% by mass of at least one active metal selected from Ti, Zr, and Hf. An active metal bonding braze paste prepared by dispersing a bonding composition substantially consisting of Ag in the balance in an organic solvent is used.
The active metal compounded in the active metal bonding brazing paste improves the wettability and reactivity of the active metal bonding brazing material to the alumina substrate. The compounding amount of the active metal in the active metal joining brazing paste is 1 to 10% by mass with respect to 100% by mass of the joining composition contained in the active metal joining brazing paste.
 活性金属法は、たとえば、Ti、ZrおよびHfから選択される少なくとも1種の活性金属を含有し適切な組成比を有するAg-Cu系ろう材を用い、このAg-Cu系ろう材を有機溶媒中に分散させて接合用組成物ペーストを調製し、この接合用組成物ペーストをアルミナ基板の表面にスクリーン印刷し、アルミナ基板の表面に金属回路板としての銅板を重ね合わせ、加熱することにより、アルミナ基板と金属回路板とを接合することができる。 In the active metal method, for example, an Ag—Cu based brazing material containing at least one active metal selected from Ti, Zr and Hf and having an appropriate composition ratio is used, and this Ag—Cu based brazing material is used as an organic solvent. A bonding composition paste is prepared by dispersing in, and this bonding composition paste is screen-printed on the surface of the alumina substrate, and a copper plate as a metal circuit board is superimposed on the surface of the alumina substrate, and heated. An alumina substrate and a metal circuit board can be joined.
(アルミナ基板と金属回路板との接合界面)
 アルミナ基板と金属回路板との接合界面は、金属回路板の表面がアルミナ基板の表面の凹凸形状に沿って変形した入り組んだ構造になっている。具体的には、アルミナ基板と金属回路板との接合界面は、セラミックス回路基板の断面観察を行ったときに、金属回路板の表面に沿った曲線が、アルミナ基板の表面の凹凸に沿った曲線に接する割合(以下、「接合界面接触割合」という)が、通常95%以上、好ましくは99%以上、さらに好ましくは100%である入り組んだ構造になっている。
(Junction interface between alumina substrate and metal circuit board)
The joining interface between the alumina substrate and the metal circuit board has an intricate structure in which the surface of the metal circuit board is deformed along the irregular shape of the surface of the alumina substrate. Specifically, the bonding interface between the alumina substrate and the metal circuit board is a curve along the surface of the alumina substrate when the cross section of the ceramic circuit board is observed. The contact ratio (hereinafter referred to as “bonding interface contact ratio”) is usually 95% or more, preferably 99% or more, and more preferably 100%.
 接合界面接触割合は、アルミナ基板の表面の凹凸への金属回路板の追従性を示す指標である。
 たとえば、アルミナ基板と金属回路板とが全く隙間がなく接合している場合、接合界面接触割合は100%である。また、アルミナ基板と金属回路板とが完全に剥離している場合、接合界面接触割合は0%である。
The bonding interface contact ratio is an index indicating the followability of the metal circuit board to the irregularities on the surface of the alumina substrate.
For example, when the alumina substrate and the metal circuit board are bonded together without any gap, the bonding interface contact ratio is 100%. Further, when the alumina substrate and the metal circuit board are completely separated, the bonding interface contact ratio is 0%.
 接合界面接触割合の算出方法は、以下のとおりである。
 すなわち、はじめに、セラミックス回路基板の断面観察を行ったときに、接合断面の拡大写真を撮影する。接合断面の拡大写真は、1000倍以上であることが好ましい。
 拡大写真は、接合界面を長さ100μmに亘って撮影する。なお、一視野で長さ100μmを撮影できないときは、20~50μmずつ撮影し、合計で100μm撮影するようにしてもよい。
 次に、拡大写真から、接合界面におけるアルミナ基板の表面の凹凸に沿った曲線の長さLと、接合界面における金属回路板の表面に沿った曲線との長さLを測定する。
 そして、LをLで除したL/Lを接合界面接触割合として算出する。
The calculation method of the bonding interface contact ratio is as follows.
That is, first, when the cross section of the ceramic circuit board is observed, an enlarged photograph of the bonded cross section is taken. The enlarged photograph of the bonded cross section is preferably 1000 times or more.
The enlarged photograph is taken over a length of 100 μm at the bonding interface. If a length of 100 μm cannot be photographed in one field of view, photographing may be performed every 20 to 50 μm, and a total of 100 μm may be photographed.
Next, from the enlarged photograph, the length L A of the curve along the unevenness of the surface of the alumina substrate at the bonding interface and the length L M of the curve along the surface of the metal circuit board at the bonding interface are measured.
Then, to calculate the L M / L A obtained by dividing the L M with L A as a joining interfacial contact ratio.
 接合界面接触割合は、アルミナ基板の表面に深いボイドが露出している場合に低下しやすい。アルミナ基板の表面に深いボイドが露出していると、アルミナ基板と金属回路板とを接合した際に、金属回路板がアルミナ基板の表面に追従しにくくなるため、接合界面接触割合が低下しやすい。
 本発明のセラミックス回路基板では、アルミナ基板の表面に深いボイドが露出することが実質的にない上、アルミナ基板と金属回路板とを特定の条件で接合させているため、アルミナ基板の表面のボイドに金属回路板が追従して入り込む。このため、本発明のセラミックス回路基板は、接合界面接触割合が通常95%以上と高く、アルミナ基板の表面と金属回路板とが入り組んだ構造になっており、アンカー効果が生じて接合強度が高い。
The bonding interface contact ratio tends to decrease when deep voids are exposed on the surface of the alumina substrate. If deep voids are exposed on the surface of the alumina substrate, the bonding ratio of the interface contact tends to decrease because the metal circuit plate is less likely to follow the surface of the alumina substrate when the alumina substrate is bonded to the metal circuit plate. .
In the ceramic circuit board of the present invention, there is substantially no exposure of deep voids on the surface of the alumina substrate, and the alumina substrate and the metal circuit board are bonded under specific conditions. The metal circuit board follows and enters. For this reason, the ceramic circuit board of the present invention has a high bonding interface contact ratio of usually 95% or more, and has a structure in which the surface of the alumina substrate and the metal circuit board are intricate, resulting in an anchor effect and high bonding strength. .
(セラミックス回路基板の製造方法)
 セラミックス回路基板は、アルミナ基板と金属回路板とを接合することにより製造される。アルミナ基板と金属回路板との接合方法は、上記のとおり、たとえば、直接接合法(DBC法)、活性金属法等の方法が用いられる。
(Manufacturing method of ceramic circuit board)
The ceramic circuit board is manufactured by bonding an alumina substrate and a metal circuit board. As described above, for example, a direct bonding method (DBC method) or an active metal method is used as the method for bonding the alumina substrate and the metal circuit board.
<直接接合法>
 直接接合法では、はじめに、アルミナ基板上に、金属回路板としての銅回路板を配置する。銅板に酸化膜(酸化銅膜)を形成した場合は、酸化膜がアルミナ基板側になるように配置する。次に、不活性ガス雰囲気中で、たとえば、1065~1085℃に加熱すると、アルミナ基板上に銅回路板が接合されたセラミックス回路基板が得られる。
<Direct bonding method>
In the direct bonding method, first, a copper circuit board as a metal circuit board is disposed on an alumina substrate. When an oxide film (copper oxide film) is formed on the copper plate, the oxide film is disposed on the alumina substrate side. Next, when heated to, for example, 1065 to 1085 ° C. in an inert gas atmosphere, a ceramic circuit board in which a copper circuit board is bonded onto an alumina substrate is obtained.
<活性金属法>
 活性金属法では、はじめに、アルミナ基板上にスクリーン印刷等の方法で活性金属接合ろう材ペーストを塗布する。次に、アルミナ基板の活性金属接合ろう材ペーストが塗布された面に、金属回路板を配置し、加熱すると、アルミナ基板上に銅回路板が接合されたセラミックス回路基板が得られる。
<Active metal method>
In the active metal method, first, an active metal bonding brazing paste is applied on an alumina substrate by a method such as screen printing. Next, when a metal circuit board is placed on the surface of the alumina substrate on which the active metal bonding brazing material paste is applied and heated, a ceramic circuit board in which the copper circuit board is bonded onto the alumina substrate is obtained.
 上記構成のセラミックス回路基板によれば、アルミナ純度が99.5%以上であるとともにナトリウム等を所定量含むアルミナ基板を用いることにより、従来の純度99.5%以上の高純度アルミナ基板と比較して、強度などの基板としての特性を維持した上で、焼結時間を短くしたり、焼結温度を下げたりすることができるため製造コストを大幅に下げることができる。 According to the ceramic circuit board having the above configuration, the alumina purity is 99.5% or more and the alumina substrate containing a predetermined amount of sodium or the like is used, compared with the conventional high-purity alumina substrate having a purity of 99.5% or more. In addition, while maintaining the characteristics of the substrate such as strength, the sintering time can be shortened or the sintering temperature can be lowered, so that the manufacturing cost can be greatly reduced.
 また、アルミナ基板が緻密であり、ボイドに由来する表面欠陥も少ないため、基板厚さを薄くした場合においても、耐電圧特性の低下が少なく、絶縁破壊(耐圧リーク)の発生が抑制される。また、ボイドに由来する表面欠陥(表面凹凸)を所定の範囲内のものとすることにより、金属回路板の接合強度を向上させることができる。 Also, since the alumina substrate is dense and there are few surface defects derived from voids, even when the substrate thickness is reduced, the withstand voltage characteristic is hardly lowered and the occurrence of dielectric breakdown (withstand voltage leak) is suppressed. Moreover, the joint strength of a metal circuit board can be improved by making the surface defect (surface unevenness | corrugation) originating in a void into a predetermined range.
 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。 Examples are shown below, but the present invention is not limited to these examples.
(実施例1)
 平均粒径1.5μm(0.8μm以下が15質量%)のα-アルミナ結晶から成り、純度が99.9%の高純度アルミナ粉末に対して、焼結助剤としてのNaOを0.1質量%、SiOを0.2質量%、Feを0.05質量%添加し、さらに有機結合剤を添加してボールミル(純度96%アルミナボール使用)により原料混合ペーストを調製した。各原料混合ペーストをドクターブレード法によりシート成形して板状の成形体を調製し、この成形体を10-4Torr の真空中で800℃で8時間加熱して完全に脱脂した。この脱脂体を温度1580℃で8時間焼結することにより、縦29mm×横69mm×厚さ0.32 mmのアルミナ基板を調製した。
Example 1
Na 2 O as a sintering aid is added to a high-purity alumina powder composed of α-alumina crystals having an average particle size of 1.5 μm (less than 0.8 μm is 15% by mass) and having a purity of 99.9%. 0.1% by mass, 0.2% by mass of SiO 2 and 0.05% by mass of Fe 2 O 3 were added, and an organic binder was added, and a raw material mixed paste was prepared by a ball mill (using 96% purity alumina balls) did. Each raw material mixed paste was formed into a sheet by a doctor blade method to prepare a plate-shaped molded body, and this molded body was heated in a vacuum of 10 −4 Torr at 800 ° C. for 8 hours for complete degreasing. This degreased body was sintered at a temperature of 1580 ° C. for 8 hours to prepare an alumina substrate having a length of 29 mm × width of 69 mm × thickness of 0.32 mm.
(比較例1)
 比較例1として、平均粒径1.5μm(0.8μm以下が35質量%)のα-アルミナ結晶から成り、純度が99.9%の高純度アルミナ粉末を用いるとともに、NaOを添加しないこと以外は実施例1と同様にして、アルミナ基板を調製した。
(Comparative Example 1)
As Comparative Example 1, a high-purity alumina powder consisting of α-alumina crystals having an average particle size of 1.5 μm (0.8 μm or less is 35 mass%) and having a purity of 99.9% is used, and Na 2 O is not added. Except for this, an alumina substrate was prepared in the same manner as in Example 1.
(比較例2)
 焼結条件を1600℃×20時間とした以外は比較例1と同様にして、アルミナ基板を調製した。
(Comparative Example 2)
An alumina substrate was prepared in the same manner as in Comparative Example 1 except that the sintering conditions were 1600 ° C. × 20 hours.
(比較例3)
 NaOの添加量を0.3質量%にした以外は実施例1と同様にして、アルミナ基板を調製した。
(Comparative Example 3)
An alumina substrate was prepared in the same manner as in Example 1 except that the amount of Na 2 O added was 0.3% by mass.
[実施例1、比較例1~比較例3のアルミナ基板の評価]
 各アルミナ基板のAl純度、平均結晶粒径、結晶粒径のばらつき、ボイドの面積率、ボイド平均径、ボイドの最大径、ボイドの個数、絶縁耐圧、抗折強度、破壊靭性値、熱伝導率およびビッカース硬度をそれぞれ測定して表1に示す結果を得た。
 ボイド率、ボイド平均径、平均結晶粒径および結晶粒径のばらつきはアルミナ基板の断面観察により測定した。
 すなわち、単位面積200μm×200μmの拡大写真を撮り、この拡大写真に写る個々のボイドの面積を測定し、合計面積を200μm×200μmで割った数字をボイドの面積率とした。
 また、個々のボイドにつき直径が最も大きくなるように測定した値を最大径とし、ボイド100個分の平均値をボイド平均径とした。また、ボイドの個数は単位面積100μm×100μmあたりの個数を4か所分測定し、その最小個数と最大個数を示した。
 また、アルミナ結晶粒の平均結晶粒径は、個々のアルミナ結晶粒において直径が最も大きくなるように選んだ線分の長さを長径L1とし、その中心から垂直線を引いたときを短径L2とし、(L1+L2)/2を粒径とした。この作業を100粒行い、その平均値を平均粒径とした。
 また、アルミナ結晶粒の結晶粒径のばらつきは、平均結晶粒径Aμmに対し、A×(0.3~1.7)の範囲に入る結晶粒の個数割合(%)を求めた。
 絶縁耐圧、抗折強度(3点曲げ強度)、熱伝導率、破壊靭性値およびビッカース硬度は、JIS-R-1601(抗折強度)、JIS-R-1607(破壊靭性値)、JIS-R-1610(ビッカース硬度)、JIS-R-1611(熱伝導率)等に記載された方法で求めた。また、絶縁耐圧は、前述の通り、絶縁油(商品名フロリナート)を用いた部分放電開始電圧を用いた方法で行った。
 これらの結果を表1~3に示す。
 図5は、実施例1に係るセラミックス回路基板の接合界面の模式的な断面図である。図5に示されるように、セラミックス回路基板1のアルミナ基板2は、アルミナ基板2中にボイド23aが存在するとともに、金属回路板(銅回路板)3との接合面にボイド23bが存在していた。また、セラミックス回路基板1のアルミナ基板2と金属回路板(銅回路板)3の界面において、金属回路板(銅回路板)3はアルミナ基板2の表面に密着している。
[Evaluation of alumina substrates of Example 1 and Comparative Examples 1 to 3]
Al 2 O 3 purity of each alumina substrate, average crystal grain size, variation in crystal grain size, void area ratio, void average diameter, maximum void diameter, number of voids, dielectric strength, bending strength, fracture toughness value, The thermal conductivity and Vickers hardness were measured and the results shown in Table 1 were obtained.
The void ratio, void average diameter, average crystal grain size, and variation in crystal grain size were measured by observing the cross section of the alumina substrate.
That is, an enlarged photograph having a unit area of 200 μm × 200 μm was taken, the area of each void in the enlarged photograph was measured, and the number obtained by dividing the total area by 200 μm × 200 μm was defined as the void area ratio.
Moreover, the value measured so that a diameter might become the largest about each void was made into the maximum diameter, and the average value for 100 voids was made into the void average diameter. Further, the number of voids was measured at four locations per unit area of 100 μm × 100 μm, and the minimum number and the maximum number were shown.
The average grain size of the alumina crystal grains is such that the length of the line segment selected so that the diameter of each alumina crystal grain is the largest is the major axis L1, and the vertical axis is drawn from the center of the minor axis L2. And (L1 + L2) / 2 was defined as the particle size. This operation was performed 100 grains, and the average value was defined as the average grain diameter.
As for the variation in the crystal grain size of the alumina crystal grains, the ratio (%) of the number of crystal grains falling within the range of A × (0.3 to 1.7) with respect to the average crystal grain size A μm was obtained.
Dielectric strength, bending strength (3-point bending strength), thermal conductivity, fracture toughness value and Vickers hardness are JIS-R-1601 (bending strength), JIS-R-1607 (fracture toughness value), JIS-R. It was determined by the method described in -1610 (Vickers hardness), JIS-R-1611 (thermal conductivity) and the like. Moreover, the withstand voltage was performed by the method using the partial discharge start voltage using insulating oil (trade name Florinart) as described above.
These results are shown in Tables 1 to 3.
FIG. 5 is a schematic cross-sectional view of the bonding interface of the ceramic circuit board according to the first embodiment. As shown in FIG. 5, the alumina substrate 2 of the ceramic circuit board 1 has voids 23 a in the alumina substrate 2 and voids 23 b on the joint surface with the metal circuit board (copper circuit board) 3. It was. The metal circuit board (copper circuit board) 3 is in close contact with the surface of the alumina substrate 2 at the interface between the alumina substrate 2 of the ceramic circuit board 1 and the metal circuit board (copper circuit board) 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本実施例に係るアルミナ基板は、高純度材である比較例2と同等の特性を示した。また、比較例1のように高純度材であっても焼結時間が短いとボイドが多く発生した。これは焼結性が悪いためである。また、比較例3のようにNaOを添加し過ぎても焼結性は低下した。 The alumina substrate according to this example exhibited the same characteristics as those of Comparative Example 2 which is a high-purity material. Moreover, even if it was a high purity material like the comparative example 1, many voids generate | occur | produced when sintering time was short. This is because the sinterability is poor. Moreover, even if Na 2 O was added excessively as in Comparative Example 3, the sinterability decreased.
(実施例2~5)
 焼結助剤量および焼結条件を表1に示すように変えた以外は実施例1と同様にしてアルミナ基板を調製し、実施例1と同様の測定を行った。これらの結果を表1~3に示す。
(Examples 2 to 5)
An alumina substrate was prepared in the same manner as in Example 1 except that the amount of sintering aid and the sintering conditions were changed as shown in Table 1, and the same measurement as in Example 1 was performed. These results are shown in Tables 1 to 3.
 本実施例に係るアルミナ基板は焼結時間を10時間以下にしたとしても優れた特性を示した。 The alumina substrate according to this example showed excellent characteristics even when the sintering time was 10 hours or less.
(実施例1B~6B、比較例1B~3B)
 実施例1~5および比較例1~3のアルミナ基板と銅板とを用いて、セラミックス回路基板を調製した。銅板は熱処理して接合面側に厚さ4μmの酸化銅膜を形成したものを用意した。アルミナ基板の両面に銅板(一方が金属回路基板用銅板、もう一方が裏銅板)を配置し、窒素雰囲気中1075℃×1分間加熱して直接接合法により接合した。なお、金属回路板用銅板は厚さ0.3mm、裏銅板は厚さ0.4mmで統一した。また、実施例1B~5Bは銅板中の炭素含有量は0.2~0.8質量%の範囲内のもの、6Bは炭素が含有されていないもの(検出限界以下)のものを用意した。
(Examples 1B to 6B, Comparative Examples 1B to 3B)
Ceramic circuit boards were prepared using the alumina substrates and copper plates of Examples 1 to 5 and Comparative Examples 1 to 3. The copper plate was prepared by heat-treating to form a 4 μm thick copper oxide film on the bonding surface side. Copper plates (one is a copper plate for a metal circuit board and the other is a back copper plate) are arranged on both sides of the alumina substrate, and are heated by a direct bonding method in a nitrogen atmosphere at 1075 ° C. for 1 minute. In addition, the copper plate for metal circuit boards was unified with a thickness of 0.3 mm, and the back copper plate with a thickness of 0.4 mm. Examples 1B to 5B were prepared with a carbon content in the copper plate in the range of 0.2 to 0.8 mass%, and 6B with no carbon contained (below the detection limit).
 次に得られたセラミックス回路基板の金属回路板をエッチングして、図1に示した回路パターンを形成した。 Next, the metal circuit board of the ceramic circuit board obtained was etched to form the circuit pattern shown in FIG.
 上記のように調製した各セラミックス回路基板について、表面側の回路パターン面の両端部を30mmの支持スパンで支持する一方、背面側の裏銅板の中央部の1点に荷重を付加して3点曲げ強度を測定するとともに、アルミナ基板の両縁部を含む平面に対する最大たわみ量を測定した。なお、各セラミックス回路基板の抗折強度値はアルミナ基板破断時の荷重値をアルミナ基板単体に対する応力値として示している。また、最大たわみ量は、アルミナ基板が破断した時点でのたわみ量として測定した。各測定結果を表4に示す。 For each ceramic circuit board prepared as described above, both ends of the circuit pattern surface on the front side are supported by a support span of 30 mm, and a load is applied to one point in the center of the back copper plate on the back side to obtain three points. The bending strength was measured, and the maximum amount of deflection with respect to the plane including both edges of the alumina substrate was measured. In addition, the bending strength value of each ceramic circuit board has shown the load value at the time of an alumina substrate fracture | rupture as a stress value with respect to an alumina substrate single-piece | unit. The maximum amount of deflection was measured as the amount of deflection when the alumina substrate broke. Table 4 shows the measurement results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施例1B~6Bは、比較例2の高純度アルミナ基板を用いたセラミックス回路基板(DBC回路基板)と同等の測定結果を有していることが分かった。一方、比較例1Bおよび比較例3Bに係るDBC回路基板は強度が低下した。
 次に実施例1B~6B、比較例1B~3Bのセラミックス回路基板の銅回路板の接合強度および接合界面の状態について調べた。接合強度はピール試験により求めた。
 また、接合界面は、アルミナ基板と銅回路板の接合界面の拡大写真(2000倍)を撮影し、この作業を接合界面100μm分撮影した。接合界面において、アルミナ基板の表面凹凸をどれだけ覆うように銅回路板が接合されているかを調べた。この結果を表5に示す。
Examples 1B to 6B were found to have the same measurement results as the ceramic circuit board (DBC circuit board) using the high-purity alumina substrate of Comparative Example 2. On the other hand, the strength of the DBC circuit boards according to Comparative Example 1B and Comparative Example 3B decreased.
Next, the bonding strength and the bonding interface state of the copper circuit boards of the ceramic circuit boards of Examples 1B to 6B and Comparative Examples 1B to 3B were examined. The bonding strength was determined by a peel test.
In addition, an enlarged photograph (2000 times) of the bonding interface between the alumina substrate and the copper circuit board was taken at the bonding interface, and this work was taken for 100 μm of the bonding interface. It was investigated how the copper circuit board was bonded so as to cover the surface irregularities of the alumina substrate at the bonding interface. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表から分かる通り、本実施例に係るセラミックス回路基板は接合強度に優れていた。また、実施例1Bと実施例6Bを比較すると実施例1Bの方が接合強度が優れていた。これは銅板中に所定量の炭素を含有させることにより、銅板中の酸素が銅板表面に移動し、Cu-O共晶反応に寄与したためと考えられる。このため、接合界面におけるアルミナ基板の表面凹凸を銅回路板が覆う割合が増大したためと考えられる。 As can be seen from the table, the ceramic circuit board according to this example was excellent in bonding strength. Further, when Example 1B and Example 6B were compared, Example 1B was superior in bonding strength. This is presumably because oxygen contained in the copper plate moved to the surface of the copper plate and contributed to the Cu—O eutectic reaction by containing a predetermined amount of carbon in the copper plate. For this reason, it is considered that the ratio of the copper circuit board covering the surface irregularities of the alumina substrate at the bonding interface has increased.
1 セラミックス回路基板
2 アルミナ基板
3 金属回路板(銅回路板)
4 裏金属板(裏銅板)
22 アルミナ結晶粒
23a、23b ボイド
1 Ceramic circuit board 2 Alumina substrate 3 Metal circuit board (copper circuit board)
4 Back metal plate (back copper plate)
22 Alumina crystal grains 23a, 23b Void

Claims (17)

  1. アルミナ基板上に金属回路板が接合されたセラミックス回路基板において、
     前記アルミナ基板は、アルミナAlを99.5質量%以上、および焼結前に配合された焼結助剤から生成された焼結助剤由来成分を0.5質量%未満含み、
     前記焼結助剤由来成分はナトリウムを含む無機酸化物であり、前記焼結助剤由来成分中のナトリウムは酸化ナトリウムNaOに換算した質量で前記アルミナ基板100質量%中に0.001~0.1質量%含まれ、
     前記アルミナ基板は、ボイドの最大径が12μm以下であり、ボイド平均径が10μm以下であり、ビッカース硬度が1500以上であることを特徴とするセラミックス回路基板。
    In a ceramic circuit board in which a metal circuit board is bonded on an alumina substrate,
    The alumina substrate contains 99.5% by mass or more of alumina Al 2 O 3 and less than 0.5% by mass of a sintering aid-derived component generated from a sintering aid blended before sintering,
    The component derived from the sintering aid is an inorganic oxide containing sodium, and sodium in the component derived from the sintering aid is 0.001 to 100% by mass in terms of sodium oxide Na 2 O in 100% by mass of the alumina substrate. Contained 0.1% by weight,
    The alumina substrate has a maximum void diameter of 12 μm or less, an average void diameter of 10 μm or less, and a Vickers hardness of 1500 or more.
  2. 前記焼結助剤由来成分はケイ素をさらに含む無機酸化物であり、前記焼結助剤由来成分中のケイ素は酸化ケイ素SiOに換算した質量で前記アルミナ基板100質量%中に0.001~0.2質量%含まれることを特徴とする請求項1記載のセラミックス回路基板。 The component derived from the sintering aid is an inorganic oxide further containing silicon, and the silicon in the component derived from the sintering aid is 0.001 to 100% by mass in terms of silicon oxide SiO 2 in 100% by mass of the alumina substrate. The ceramic circuit board according to claim 1, wherein the ceramic circuit board is contained in an amount of 0.2% by mass.
  3. 前記焼結助剤由来成分は鉄をさらに含む無機酸化物であり、前記焼結助剤由来成分中の鉄は酸化鉄Feに換算した質量で前記アルミナ基板100質量%中に0.001~0.05質量%含まれることを特徴とする請求項1または請求項2に記載のセラミックス回路基板。 The component derived from the sintering aid is an inorganic oxide further containing iron, and the iron in the component derived from the sintering aid is a mass converted to iron oxide Fe 2 O 3 in a mass of 100% by mass of the alumina substrate. The ceramic circuit board according to claim 1, wherein the ceramic circuit board is contained in an amount of 001 to 0.05 mass%.
  4. 前記アルミナ基板は、アルミナ結晶粒の平均結晶粒径が20μm以下であることを特徴とする請求項1ないし請求項3のいずれか1項に記載のセラミックス回路基板。 4. The ceramic circuit board according to claim 1, wherein the alumina substrate has an alumina crystal grain having an average crystal grain size of 20 μm or less. 5.
  5. 前記アルミナ基板は、このアルミナ基板に存在するボイドの体積の比率であるボイド体積率が3体積%以下であることを特徴とする請求項1ないし請求項4のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit according to any one of claims 1 to 4, wherein the alumina substrate has a void volume ratio, which is a volume ratio of voids existing in the alumina substrate, of 3% by volume or less. substrate.
  6. 前記アルミナ基板は、断面観察で算出される単位面積100μm×100μmあたりのボイドの個数が2~30個であることを特徴とする請求項1ないし請求項5のいずれか1項に記載のセラミックス回路基板。 6. The ceramic circuit according to claim 1, wherein the alumina substrate has 2 to 30 voids per unit area of 100 μm × 100 μm calculated by cross-sectional observation. substrate.
  7. 前記アルミナ基板は、このアルミナ基板の断面におけるボイドの面積の比率であるボイド面積率が10%以下であることを特徴とする請求項1ないし請求項6のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 6, wherein the alumina substrate has a void area ratio, which is a ratio of an area of voids in a cross section of the alumina substrate, of 10% or less. .
  8. 前記アルミナ基板は、絶縁耐圧が25KV/mm以上であることを特徴とする請求項1ないし請求項7のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 7, wherein the alumina substrate has a withstand voltage of 25 KV / mm or more.
  9. 前記アルミナ基板は、靭性値が3.2 MPa・m1/2以上であることを特徴とする請求項1ないし請求項8のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 8, wherein the alumina substrate has a toughness value of 3.2 MPa · m 1/2 or more.
  10. 前記アルミナ基板は、熱伝導率が28W/m・K以上であることを特徴とする請求項1ないし請求項9のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 9, wherein the alumina substrate has a thermal conductivity of 28 W / m · K or more.
  11. 前記アルミナ基板は、抗折強度が400MPa以上であることを特徴とする請求項1ないし請求項10のいずれか1項に記載のセラミックス回路基板。 11. The ceramic circuit board according to claim 1, wherein the alumina substrate has a bending strength of 400 MPa or more.
  12. 前記金属回路板は、直接接合法により前記アルミナ基板に接合されたことを特徴とする請求項1ないし請求項11のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to claim 1, wherein the metal circuit board is bonded to the alumina substrate by a direct bonding method.
  13. 前記金属回路板は銅回路板であり、この銅回路板はCu-O共晶化合物により前記アルミナ基板に接合されていることを特徴とする請求項1ないし請求項12のいずれか1項に記載のセラミックス回路基板。 13. The metal circuit board is a copper circuit board, and the copper circuit board is bonded to the alumina substrate by a Cu—O eutectic compound. Ceramic circuit board.
  14. 前記金属回路板は銅回路板であり、この銅回路板は炭素を0.1~1.0質量%含むことを特徴とする請求項1ないし請求項13のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit according to any one of claims 1 to 13, wherein the metal circuit board is a copper circuit board, and the copper circuit board contains 0.1 to 1.0 mass% of carbon. substrate.
  15. 前記アルミナ基板と前記金属回路板との接合界面は、前記セラミックス回路基板の断面観察を行ったときに、前記金属回路板の表面に沿った曲線が前記アルミナ基板の表面の凹凸に沿った曲線に接する割合が95%以上である入り組んだ構造になっていることを特徴とする請求項1ないし請求項14のいずれか1項に記載のセラミックス回路基板。 The bonding interface between the alumina substrate and the metal circuit board is such that when the cross section of the ceramic circuit board is observed, the curve along the surface of the metal circuit board becomes a curve along the unevenness of the surface of the alumina substrate. The ceramic circuit board according to any one of claims 1 to 14, wherein the ceramic circuit board has an intricate structure with a contact ratio of 95% or more.
  16. 前記アルミナ基板は、厚さが0.25~1.2mmであることを特徴とする請求項1ないし請求項15のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 15, wherein the alumina substrate has a thickness of 0.25 to 1.2 mm.
  17. 前記金属回路板は、厚さが0.1~0.5mmであることを特徴とする請求項1ないし請求項16のいずれか1項に記載のセラミックス回路基板。 The ceramic circuit board according to any one of claims 1 to 16, wherein the metal circuit board has a thickness of 0.1 to 0.5 mm.
PCT/JP2012/067957 2011-07-14 2012-07-13 Ceramic circuit board WO2013008920A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137027479A KR101522806B1 (en) 2011-07-14 2012-07-13 Ceramic circuit board
JP2013524003A JP6129738B2 (en) 2011-07-14 2012-07-13 Ceramic circuit board
CN201280019672.6A CN103503130B (en) 2011-07-14 2012-07-13 Ceramic circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011156160 2011-07-14
JP2011-156160 2011-07-14

Publications (1)

Publication Number Publication Date
WO2013008920A1 true WO2013008920A1 (en) 2013-01-17

Family

ID=47506195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067957 WO2013008920A1 (en) 2011-07-14 2012-07-13 Ceramic circuit board

Country Status (4)

Country Link
JP (1) JP6129738B2 (en)
KR (1) KR101522806B1 (en)
CN (1) CN103503130B (en)
WO (1) WO2013008920A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208766A1 (en) * 2015-06-26 2016-12-29 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
CN108698935A (en) * 2016-02-26 2018-10-23 贺利氏德国有限两合公司 Copper-ceramic complexes
WO2019167330A1 (en) * 2018-03-01 2019-09-06 株式会社村田製作所 Layered substrate
EP3419952B1 (en) 2016-02-26 2020-04-01 Heraeus Deutschland GmbH & Co. KG Copper- ceramic composite
CN112573903A (en) * 2019-09-30 2021-03-30 国网河南省电力公司桐柏县供电公司 Aluminum oxide composite substrate material and preparation method thereof
US11021407B2 (en) * 2016-02-26 2021-06-01 Heraeus Deutschland GmbH & Co. KG Copper/ceramic composite
WO2021112187A1 (en) * 2019-12-03 2021-06-10 日本碍子株式会社 Bonded substrate and method for manufacturing bonded substrate

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3210956B1 (en) * 2016-02-26 2018-04-11 Heraeus Deutschland GmbH & Co. KG Copper ceramic composite
DE102016203030A1 (en) * 2016-02-26 2017-08-31 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE102016203058B3 (en) * 2016-02-26 2017-05-18 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite and module
WO2019073783A1 (en) * 2017-10-12 2019-04-18 住友電気工業株式会社 Ceramic substrate, laminate, and saw device
JP7180607B2 (en) 2017-10-12 2022-11-30 住友電気工業株式会社 Ceramic substrates, laminates and SAW devices
CN114031375A (en) * 2021-11-26 2022-02-11 潮州市三泰陶瓷有限公司 High-hardness ceramic material based on high-temperature sintering and preparation process thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483512A (en) * 1987-09-24 1989-03-29 Showa Denko Kk Low soda alumina
JP2000277662A (en) * 1999-03-26 2000-10-06 Toshiba Corp Ceramic circuit board
JP2006298703A (en) * 2005-04-21 2006-11-02 Nishimura Togyo Kk Ceramic heat-radiable solid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100361113B1 (en) * 1994-08-18 2003-02-05 닛뽕도구슈우도오교오가부시끼가이샤 Alumina-based sintered material for ceramic heater
TW579372B (en) * 1998-07-29 2004-03-11 Sumitomo Chemical Co Process for producing alumina sintered body
JP4214074B2 (en) * 2004-03-30 2009-01-28 電気化学工業株式会社 Method for producing high purity spherical alumina powder
JP2006199584A (en) * 2006-02-17 2006-08-03 Toshiba Corp Method for producing ceramic circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483512A (en) * 1987-09-24 1989-03-29 Showa Denko Kk Low soda alumina
JP2000277662A (en) * 1999-03-26 2000-10-06 Toshiba Corp Ceramic circuit board
JP2006298703A (en) * 2005-04-21 2006-11-02 Nishimura Togyo Kk Ceramic heat-radiable solid

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208766A1 (en) * 2015-06-26 2016-12-29 京セラ株式会社 Ceramic substrate and mounting substrate using same, and electronic device
JPWO2016208766A1 (en) * 2015-06-26 2018-04-19 京セラ株式会社 Ceramic substrate, mounting substrate using the same, and electronic device
CN108698935A (en) * 2016-02-26 2018-10-23 贺利氏德国有限两合公司 Copper-ceramic complexes
EP3419952B1 (en) 2016-02-26 2020-04-01 Heraeus Deutschland GmbH & Co. KG Copper- ceramic composite
US11021407B2 (en) * 2016-02-26 2021-06-01 Heraeus Deutschland GmbH & Co. KG Copper/ceramic composite
US11498878B2 (en) 2016-02-26 2022-11-15 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
WO2019167330A1 (en) * 2018-03-01 2019-09-06 株式会社村田製作所 Layered substrate
US11212906B2 (en) 2018-03-01 2021-12-28 Murata Manufacturing Co., Ltd. Laminated substrate
CN112573903A (en) * 2019-09-30 2021-03-30 国网河南省电力公司桐柏县供电公司 Aluminum oxide composite substrate material and preparation method thereof
WO2021112187A1 (en) * 2019-12-03 2021-06-10 日本碍子株式会社 Bonded substrate and method for manufacturing bonded substrate

Also Published As

Publication number Publication date
CN103503130A (en) 2014-01-08
JP6129738B2 (en) 2017-05-17
KR101522806B1 (en) 2015-05-26
KR20130137029A (en) 2013-12-13
JPWO2013008920A1 (en) 2015-02-23
CN103503130B (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP5972875B2 (en) Ceramic circuit board
JP6129738B2 (en) Ceramic circuit board
JP5673106B2 (en) Method for manufacturing silicon nitride substrate, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP3629783B2 (en) Circuit board
JP3115238B2 (en) Silicon nitride circuit board
WO2013054852A1 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
WO1996029736A1 (en) Silicon nitride circuit substrate
US8029903B2 (en) Silicon nitride substrate, silicon nitride circuit board utilizing the same, and use thereof
CN113348046B (en) Method for producing copper-ceramic joined body, method for producing insulated circuit board, copper-ceramic joined body, and insulated circuit board
CN113632217A (en) Silicon nitride substrate, silicon nitride-metal composite, silicon nitride circuit substrate, and semiconductor package
EP2282334A1 (en) Substrate for power module, power module, and method for producing substrate for power module
JP2002201075A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP5667045B2 (en) Aluminum nitride substrate, aluminum nitride circuit substrate, and semiconductor device
JP5172738B2 (en) Semiconductor module and electronic device using the same
JPH0969672A (en) Silicon nitride circuit board
JP2023126262A (en) Method for producing silicon nitride substrate
JPH1093244A (en) Multilayer silicon nitride circuit board
JP2006069887A (en) Silicon nitride ceramic substrate and silicon nitride ceramic circuit board using it
JP3973407B2 (en) Method for producing aluminum nitride sintered body
JP2003192462A (en) Silicon nitride circuit board and method of producing the same
JP2006199584A (en) Method for producing ceramic circuit board
JP3180100B2 (en) Semiconductor module
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate
JP2001019576A (en) Substrate and its production
JPH0517236A (en) Aluminum nitride sintered body and joined body using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810627

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013524003

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027479

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810627

Country of ref document: EP

Kind code of ref document: A1