WO2024111483A1 - Ceramic sintered body, method for producing same, bonded body, and power module - Google Patents

Ceramic sintered body, method for producing same, bonded body, and power module Download PDF

Info

Publication number
WO2024111483A1
WO2024111483A1 PCT/JP2023/041108 JP2023041108W WO2024111483A1 WO 2024111483 A1 WO2024111483 A1 WO 2024111483A1 JP 2023041108 W JP2023041108 W JP 2023041108W WO 2024111483 A1 WO2024111483 A1 WO 2024111483A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
ceramic sintered
ceramic
less
powder
Prior art date
Application number
PCT/JP2023/041108
Other languages
French (fr)
Japanese (ja)
Inventor
江 尹
勝博 小宮
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2024111483A1 publication Critical patent/WO2024111483A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Definitions

  • This disclosure relates to a ceramic sintered body and its manufacturing method, a bonded body, and a power module.
  • Known ceramic sintered bodies are composed of nitrides, carbides, borides, silicides, etc.
  • sintering aids are used to promote sintering.
  • Patent Document 2 proposes using Si powder, MgO powder, and Y 2 O 3 powder when producing a silicon nitride sintered substrate.
  • This disclosure provides a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a manufacturing method thereof, and a joined body.
  • This disclosure provides a power module that has excellent reliability by including such a ceramic sintered body.
  • One aspect of the present disclosure provides the following ceramic sintered body:
  • a ceramic sintered body containing ceramic particles in which in a cross section, the average number of coarse pores having a size of 10 ⁇ m or more is less than 1 pore/ mm2 , and the average number of micropores having a size of less than 10 ⁇ m is less than 400 pores/ mm2 , and the flexural strength is 640 MPa or more.
  • the above-mentioned ceramic sintered body has a sufficiently small number of both coarse pores and micropores in the cross section, and has high flexural strength.
  • a ceramic sintered body is joined to a different material such as a metal plate, internal stress occurs when there is a temperature change, which causes insulation breakdown.
  • the above-mentioned ceramic sintered body has high flexural strength, and the number of coarse pores and micropores is sufficiently reduced. Therefore, when internal stress occurs due to a temperature change, the occurrence and progression of cracks can be sufficiently suppressed. Therefore, it has excellent heat cycle resistance and excellent insulation reliability at high temperatures.
  • the ceramic sintered body of [1] above may be the following [2] or [3].
  • the ceramic sintered body of [2] above has a maximum pore size of 6 ⁇ m or less, which sufficiently suppresses the occurrence of cracks due to temperature changes. This results in even better insulation reliability.
  • the ceramic sintered body of [3] above can be made to have sufficiently high durability in a heat cycle environment.
  • One aspect of the present disclosure provides the following method for producing a ceramic sintered body.
  • the above manufacturing method includes a step of pulverizing the sintering aid raw material with a pulverizer to obtain a sintering aid powder with a median diameter of 0.5 to 1.0 ⁇ m.
  • a sintering aid powder has a sufficiently small particle diameter and agglomeration is sufficiently suppressed.
  • the grain growth of the ceramic powder proceeds uniformly and smoothly, and a ceramic sintered body having a sufficiently reduced number of pores and high flexural strength can be obtained.
  • Such a ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs with temperature changes. This results in excellent heat cycle resistance and excellent insulation reliability at high temperatures.
  • the method for producing the ceramic sintered body described above in [4] may be the following [5].
  • the average number of coarse pores having a size of 10 ⁇ m or more may be less than 1 pore/ mm2
  • the average number of micropores having a size of less than 10 ⁇ m may be less than 400 pores/ mm2 .
  • Such a ceramic sintered body has even better insulation reliability.
  • a joint comprising the plate-shaped ceramic sintered body described in any one of [1] to [3] above, a metal plate, and a brazing layer joining the main surface of the ceramic sintered body to the main surface of the metal plate.
  • the bonded body includes the ceramic sintered body.
  • This ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs due to temperature changes. Therefore, the bonded body has excellent heat cycle resistance and also excellent insulation reliability at high temperatures.
  • the joint of [6] above may be the joint of [7] or [8] below.
  • One aspect of the present disclosure provides the following power module:
  • a joined body including the plate-shaped ceramic sintered body according to any one of [1] to [3] above, a metal plate, and a brazing material layer joining a main surface of the ceramic sintered body and a main surface of the metal plate; a semiconductor element electrically connected to the metal plate of the joint body.
  • the power module includes the ceramic sintered body as an insulator for the joint through which heat generated by the semiconductor element is transferred.
  • the ceramic sintered body has excellent heat cycle resistance and excellent insulation reliability at high temperatures. Therefore, the power module has excellent reliability.
  • the present disclosure can provide a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a manufacturing method thereof, and a bonded body.
  • the present disclosure can provide a power module that has excellent reliability by including such a ceramic sintered body.
  • FIG. 1 is an enlarged cross-sectional view showing a schematic view of a part of a cross section of a ceramic sintered body.
  • FIG. 2 is a cross-sectional view of the bonded body taken along the thickness direction.
  • FIG. 3 is a cross-sectional view of the power module.
  • FIG. 4 is a diagram showing an example of a volume-based particle size distribution of a sintering additive powder obtained by a laser diffraction/scattering method.
  • FIG. 5 is a diagram showing an example of an image of grain growth as sintering progresses in one example of a manufacturing method.
  • FIG. 6 is a photograph (200x) showing an example of a cross section taken by a scanning electron microscope.
  • FIG. 7 is a photograph (1000x) showing an example of a cross section taken by a scanning electron microscope.
  • FIG. 8 is a diagram showing a schematic diagram of an example of an inspection device for inspecting for dielectric breakdown.
  • FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method.
  • FIG. 10 is a photograph (magnification: 200) taken by a scanning electron microscope of a cross section of a conventional molded body (ceramic green sheet) and an agglomerate of sintering additive powder contained in the cross section.
  • FIG. 11 is a scanning electron microscope photograph (200x) of a cross section of a conventional ceramic sintered body.
  • FIG. 12 is a diagram showing an example of a particle size distribution of a conventional sintering additive powder by a laser diffraction/scattering method.
  • FIG. 13 is a photograph (200x) showing an example of a conventional cross section taken by a scanning electron microscope.
  • FIG. 14 is a photograph (1000x) showing an example of a conventional cross section taken by a scanning electron microscope.
  • the ceramic sintered body includes ceramic particles.
  • the ceramic sintered body may include pores.
  • the number and size of the pores included in the ceramic sintered body affect the heat cycle resistance and insulating reliability at high temperatures of the ceramic sintered body.
  • the pores include coarse pores and micropores. The coarse pores and micropores have different sizes, and the pore size is measured as follows.
  • FIG. 1 is a diagram that shows a schematic example of an image of a portion of a cross section of a ceramic sintered body observed with a scanning electron microscope.
  • cross section 10C of the ceramic sintered body contains ceramic particles and pores 20.
  • pores 20 are shown enlarged and schematic. Note that cross section 10C contains a large number of ceramic particles, but for convenience, the ceramic particles are not shown in FIG. 1.
  • the size of a pore 20 is the length of the line segment L connecting two points selected to maximize the distance between them on the outer edge of the pore 20. Pores are classified as “coarse pores”, “micropores”, and other pores according to the length of this line segment L. If the length of the line segment L of the pore 20 shown in FIG. 1 is 0.05 ⁇ m or more and less than 10 ⁇ m, it is classified as a "micropore”. On the other hand, pores whose length of the line segment L measured in a similar manner is 10 ⁇ m or more are classified as "coarse pores". The length of the line segment L of other pores is less than 0.05 ⁇ m.
  • the bending strength of a ceramic sintered body varies greatly depending on the average number of coarse pores and the average number of micropores.
  • the average number of coarse pores P1 of the ceramic sintered body of this embodiment is less than 1 pore/ mm2 .
  • the average number of coarse pores P1 is calculated by the following formula based on the total number of coarse pores included in each field of view obtained by observing the cross section (magnification: 200 times) in five or more fields of view using a scanning electron microscope.
  • Average number of coarse pores P 1 Total number of coarse pores/Number of fields/Area per field
  • the average number P1 of coarse pores may be less than 0.8 pores/ mm2 , less than 0.6 pores/ mm2 , less than 0.5 pores/ mm2 , or less than 0.1 pores/ mm2 .
  • the lower limit of the average number P1 of coarse pores may be 0 pores/ mm2 .
  • the average number P1 of coarse pores can be adjusted, for example, by changing the particle size or degree of aggregation of the sintering aid powder.
  • the average number P2 of micropores in the ceramic sintered body of this embodiment is less than 400 pores/ mm2 .
  • the average number P2 of micropores is calculated by observing the cross section (magnification: 1000 times) in five or more visual fields using a scanning electron microscope, and adding up the total number of micropores contained in each visual field, using the following calculation formula. The size and number of micropores can be counted using image processing software such as ImageJ.
  • Average number of micropores P2 Total number of micropores/Number of fields/Area per field
  • the average number P2 of micropores may be less than 350 pcs/ mm2 , less than 320 pcs/ mm2 , less than 290 pcs/ mm2 , or less than 210 pcs/ mm2 .
  • the average number P2 of micropores may be 10 pcs/ mm2 or more, 50 pcs/ mm2 or more, or 100 pcs/ mm2 or more.
  • the average number P2 of micropores can be adjusted, for example, by changing the particle size or degree of aggregation of the sintering aid powder.
  • the average number P1 of coarse pores may be 0/ mm2 , and the maximum size of the pores contained in the cross section of the ceramic sintered body may be 6 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less. This can further increase the bending strength of the ceramic sintered body.
  • the maximum size of the pores contained in the cross section of the ceramic sintered body may be 0.5 ⁇ m or more, 1.0 ⁇ m or more, or 1.2 ⁇ m or more. The maximum size of the pores is determined from the measured value of the size of all pores detected when observing the cross section (magnification: 200 times) in five or more visual fields using a scanning electron microscope.
  • the average size of the micropores contained in the cross section of the ceramic sintered body may be 1.0 ⁇ m or less, and the standard deviation of the size may be 0.6 ⁇ m or less. In some examples, the average size of the micropores contained in the cross section of the ceramic sintered body may be 0.7 ⁇ m or less, and the standard deviation of the size may be 0.5 ⁇ m or less. In other examples, the average size of the micropores contained in the cross section of the ceramic sintered body may be 0.6 ⁇ m or less, and the standard deviation of the size may be 0.47 ⁇ m or less.
  • the average size of the micropores contained in the cross section of the ceramic sintered body may be 0.1 ⁇ m or more.
  • the average size of the micropores is obtained in the same manner as when obtaining the average number P2 described above. That is, it is obtained as the arithmetic average of the sizes of the micropores contained in five or more visual fields.
  • the standard deviation of the sizes of the micropores is also obtained as the standard deviation of the sizes of the micropores contained in five or more visual fields.
  • the cross section 10C may contain a sintering aid phase.
  • the average area ratio of the ceramic particles (ceramic phase) in the cross section 10C may be 70-90%, or 75-85%.
  • the average area ratio of the sintering aid phase in the cross section 10C may be 10-25%, or 14-22%.
  • a ceramic sintered body having a cross section 10C containing ceramic particles and a sintering aid phase in such an area ratio has sufficiently high thermal conductivity and flexural strength.
  • the number of ceramic particles having a major axis of 20 ⁇ m or more contained in the cross section of the ceramic sintered body is large. This allows both flexural strength and thermal conductivity to be achieved at a high level.
  • the number of ceramic particles having a major axis length of 20 ⁇ m or more is measured using an image (field area: 0.02 mm 2 ) magnified 1000 times using a scanning electron microscope.
  • the length of the major axis of the ceramic particle can be measured in the same manner as the size of the pores 20. In other words, the length of the major axis of the ceramic particle is the length of the line segment (major axis) connecting two points selected so that the distance between them is the largest on the outer edge of the ceramic particle.
  • the measurements are performed in five or more visual fields, and the average number is the average number of ceramic particles whose major axis length is 20 ⁇ m or more in each visual field.
  • the average number of ceramic particles having a major axis of 20 ⁇ m or more may be 10 or more, 15 or more, or 17 or more.
  • the average number of ceramic particles having a major axis of 20 ⁇ m or more may be 50 or less, 45 or less, or 40 or less.
  • the standard deviation of the number of ceramic particles having a major axis of 20 ⁇ m or more may be less than 0.6 ⁇ m or less than 0.5 ⁇ m.
  • the standard deviation of the number of ceramic particles having a major axis of 20 ⁇ m or more may be 0.1 ⁇ m or more, or 0.15 ⁇ m or more.
  • Such a ceramic sintered body has a highly uniform microstructure. This makes it highly reliable.
  • the aspect ratio of ceramic particles having a major axis (size) of 20 ⁇ m or more may be 3 or more, or may be 4 or more.
  • the number of ceramic particles having such shapes and sizes can be increased by smooth grain growth during sintering.
  • the aspect ratio is the ratio of the length of the major axis to the length of the minor axis.
  • the minor axis is the line segment connecting two points selected to have the greatest spacing at the outer edge of the ceramic particle in a direction perpendicular to the major axis.
  • the ceramic particles constituting the ceramic sintered body may contain at least one selected from the group consisting of silicon nitride particles, aluminum nitride particles, and alumina particles.
  • Ceramic sintered bodies include silicon nitride sintered bodies containing silicon nitride particles as the main component, aluminum nitride sintered bodies containing aluminum nitride particles as the main component, and alumina sintered bodies containing alumina particles as the main component.
  • composite sintered bodies containing multiple types of ceramic particles may also be used.
  • the flexural strength of the ceramic sintered body is 640 MPa or more. Such a ceramic sintered body has excellent reliability.
  • the flexural strength of the ceramic sintered body may be 670 MPa or more, 690 MPa or more, or 720 MPa or more. This flexural strength is measured by the method described in the Examples.
  • a ceramic sintered body having such a high flexural strength has high insulation properties. In addition to such flexural strength, the average number of coarse pores and micropores is sufficiently small, so that the ceramic sintered body has excellent heat cycle resistance and excellent insulation reliability at high temperatures.
  • Such a ceramic sintered body can be suitably used, for example, as an insulating substrate for a power module.
  • the upper limit of the flexural strength of the ceramic sintered body may be, for example, 950 MPa. Note that the uses of the ceramic sintered body are not limited to this.
  • the bonded body includes a plate-shaped ceramic sintered body (ceramic plate), a metal plate, and a brazing material layer that bonds a main surface of the ceramic sintered body to a main surface of the metal plate.
  • the ceramic plate may be the ceramic sintered body according to the above embodiment. This ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs due to temperature change. Therefore, the bonded body has excellent heat cycle resistance and also excellent insulation reliability at high temperatures.
  • FIG. 2 is a cross-sectional view along the thickness direction showing an example of the bonded body of this embodiment.
  • the bonded body 100 of FIG. 2 includes a ceramic plate 10, a metal plate 41 bonded to one main surface 10A of the ceramic plate 10 via a brazing material layer 51, and a metal plate 42 bonded to the other main surface 10B of the ceramic plate 10 via a brazing material layer 51.
  • the metal plate 41 is patterned and functions, for example, as a circuit. In this specification, such a patterned object is also referred to as a metal plate.
  • the metal plate 42 is not patterned and functions, for example, as a heat sink.
  • the ceramic plate 10 is composed of the above-mentioned ceramic sintered body.
  • the metal plates 41, 42 may be, for example, copper plates. From the viewpoint of improving heat dissipation performance and electrical conductivity, the thickness of the metal plates 41, 42 may be 0.3 mm or more, or 0.4 mm or more. From the viewpoint of reducing internal stress generated in the ceramic plate 10 due to temperature changes, the thickness of the metal plates 41, 42 may be 0.8 mm or less, or 0.7 mm or less. An example of the thickness range of the metal plates 41, 42 is 0.3 to 0.8 mm.
  • the thickness of the ceramic plate 10 may be 0.2 mm or more, or may be 0.3 mm or more, from the viewpoint of improving insulation.
  • the thickness of the ceramic plate 10 may be 0.8 mm or less, or may be 0.6 mm or less, from the viewpoint of making the joined body 100 thinner.
  • the brazing material layers 51, 52 are layers that join the ceramic plate 10 and the metal plates 41, 42, and contain brazing material components.
  • the brazing material layers may contain, for example, silver derived from the brazing material, or silver and copper.
  • the brazing material layers 51, 52 may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material. In the brazing material layers 51, 52, the two or more metals may be alloyed.
  • the active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
  • the silver and copper contained in the brazing material layers 51, 52 may be contained as an alloy, such as an Ag-Cu eutectic alloy.
  • the silver content in the brazing material layers 51, 52 may be 45 to 95 mass% in Ag equivalent, or may be 50 to 95 mass%.
  • the total content of silver and copper in the brazing layers 51 and 52 may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% converted to Ag and Cu, respectively.
  • the thickness and composition of the brazing layers 51 and 52 may be the same as or different from each other.
  • the metal plates bonded to both main surfaces of the ceramic plate may be of the same shape.
  • the bonded assembly may be one in which the circuit pattern has not yet been formed.
  • multiple metal plates may be bonded to one main surface of the ceramic plate.
  • Metal plates may be bonded to only one main surface of the ceramic plate.
  • the power module includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint.
  • the joint may be the joint 100 described above or a modified version thereof.
  • the descriptions regarding the ceramic sintered body, the joint, and their modified versions apply to the power module of this embodiment.
  • Such a power module includes a joint having a ceramic plate that has excellent heat cycle resistance and also excellent insulation reliability at high temperatures. Therefore, high performance can be maintained even when used in an environment where the temperature fluctuates greatly. In this way, the power module has excellent reliability.
  • FIG. 3 is a cross-sectional view showing an example of a power module.
  • the description of this example is not limited to this example, and is also applicable to other examples of power modules.
  • the power module 200 in FIG. 3 includes a base plate 90 and a joint body 100 that is joined to one side of the base plate 90 via solder 82.
  • a metal plate 42 (heat sink) on one side of the joint body 100 is joined to the base plate 90 via solder 82.
  • a semiconductor element 80 is attached to the metal plate 41 (circuit pattern) on the other side of the joint body 100 via solder 81.
  • the semiconductor element 80 is connected to a predetermined location of the metal plate 41 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 41 are electrically connected.
  • a metal wire 84 such as an aluminum wire.
  • the semiconductor element 80 and the metal plate 41 are electrically connected.
  • one of the metal plates 41, metal plate 41a is connected to an electrode 83 that penetrates the housing 86 via solder 85.
  • a housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint body 100.
  • the housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95.
  • the resin 95 seals the joint body 100 and the semiconductor element 80.
  • the resin may be, for example, a thermosetting resin or a photocurable resin.
  • a cooling fin 92 which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90.
  • the base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
  • the metal plates 41 and 42 are electrically insulated by the ceramic plate 10 (plate-shaped ceramic sintered body).
  • the metal plate 41 (41a) may form an electric circuit.
  • the metal plates 41 and 42 are respectively joined to the main surface 10A and the main surface 10B of the ceramic plate 10 by a brazing material layer (not shown) containing a brazing material component.
  • the power module 200 has excellent reliability because it includes the joint 100.
  • the method for producing a ceramic sintered body includes a grinding process in which a sintering aid raw material is ground in a grinder to obtain a sintering aid powder having a D50 (median diameter) of 0.5 to 1.0 ⁇ m, a mixing process in which a mixed raw material containing ceramic powder and sintering aid powder is prepared, and a firing process in which a compact of the mixed raw material is fired.
  • the sintering aid powder contains at least two selected from the group consisting of alkaline earth metal oxides, rare earth oxides, transition metal oxides different from the rare earth oxides, silica, and alumina.
  • the sintering aid powder may contain at least three selected from the group.
  • the alkaline earth metal oxide has an alkaline earth metal and oxygen as constituent elements.
  • the alkaline earth metal oxide may include at least one selected from the group consisting of magnesium oxide, calcium oxide, and strontium oxide.
  • the rare earth oxide has a rare earth element and oxygen as constituent elements.
  • the rare earth oxide may include, for example, at least one selected from the group consisting of yttrium oxide and cerium oxide.
  • the transition metal oxide different from the rare earth oxide has a transition metal different from the rare earth and oxygen as constituent elements.
  • Such a transition metal oxide may include, for example, iron oxide.
  • An example of a sintering aid powder includes magnesium oxide, rare earth oxide, and silica.
  • the content of the rare earth oxide may be 30 to 80 parts by mass, or may be 40 to 70 parts by mass.
  • the content of the magnesium oxide may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
  • the content of the silica may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
  • the D50 (median diameter) of the sintering aid powder in the grinding process may be prepared, for example, by grinding the sintering aid raw material with a grinder.
  • a bead mill type grinder may be used as the grinder.
  • the particle size distribution of the sintering aid powder may be adjusted by changing at least one condition selected from the group consisting of the diameter of the beads of the bead mill type grinder, the peripheral speed, and the grinding time.
  • the diameter of the beads may be 0.1 to 0.3 mm.
  • the peripheral speed of the rotor may be 8 to 12 m/sec.
  • the D50 of the sintering aid powder exceeds 1.0 ⁇ m, the number and size of pores will increase, and the flexural strength will decrease. If the D50 of the sintering aid powder is less than 0.5 ⁇ m, the crushed particles will tend to aggregate due to the relationship between the input energy applied to the sintering aid raw material from the crusher and the crushing ratio. This is thought to be due to the fact that the frequency of contact between crushed particles increases as crushing progresses, and that the potential energy becomes more attractive.
  • the D50 of the sintering aid powder is determined based on the volumetric particle size distribution measured by a particle size distribution measuring device using the laser diffraction/scattering method.
  • the particles contained in the sintering aid powder are sufficiently small, and the particles can be prevented from agglomerating together. This makes it possible to prevent the occurrence of pores caused by the particles and agglomerates of the sintering aid powder when producing a ceramic sintered body.
  • the grain growth of the ceramic particles can proceed with high uniformity.
  • Figures 4 and 12 are diagrams showing examples of volumetric particle size distribution of sintering aid powders by laser diffraction and scattering.
  • the horizontal axis is particle size [ ⁇ m] in logarithmic scale, and the vertical axis is frequency [volume %].
  • the particle size distribution in this disclosure is measured in accordance with the method described in JIS Z 8825:2013 "Particle size analysis - laser diffraction and scattering method".
  • LS-13 320 product name manufactured by Beckman Coulter can be used.
  • the measurement conditions are a particle refractive index of 2.2 and a solvent refractive index of 1.33.
  • the sintering aid powder may have only one peak in the particle size distribution (frequency %) as shown in FIG. 4. Such sintering aid powder has more suppressed aggregation than powders with multiple peaks as shown in FIG. 12. This allows the size and number of pores in the ceramic sintered body to be sufficiently reduced.
  • the peak in the particle size distribution may be sharp.
  • the D100 of the sintering aid powder may be less than 5.5 ⁇ m, or may be less than 5 ⁇ m.
  • the ratio of D100 to D50 may be 5 or less.
  • An example of the lower limit of D100 is 2 ⁇ m.
  • An example of the lower limit of the ratio of D100 to D50 is 2.
  • the sintering aid powder obtained by pulverization is mixed with the ceramic powder and, if necessary, additives, and mixed using, for example, a ball mill.
  • additives include binders, plasticizers, dispersion media, and release agents.
  • binders include methylcellulose-based binders that have plasticity or surface activity, and acrylic ester-based binders that have excellent thermal decomposition properties.
  • plasticizers include glycerin.
  • dispersion media include ion-exchanged water and ethanol.
  • the ceramic powder for example, silicon nitride powder, aluminum nitride powder, or aluminum oxide powder can be used.
  • the D50 (median diameter) of the ceramic powder may be 0.1 to 6 ⁇ m, or may be 0.5 to 4 ⁇ m. This allows a sufficiently densified ceramic sintered body to be obtained.
  • the D50 of the ceramic powder is determined in the same manner as the D50 of the sintering aid powder.
  • the number of peaks in the particle size distribution (frequency %) of the ceramic powder may also be one.
  • the mass ratio of the sintering aid powder to the ceramic powder may be 0.03 to 0.12, or may be 0.05 to 0.1. This makes it easier to densify the ceramic sintered body, and allows the flexural strength to be sufficiently high.
  • the mixed raw material obtained in the mixing step is applied to a release film at a specified thickness by a doctor blade method, a calendar method, an extrusion method, or the like, and then dried and molded to obtain a molded body.
  • the molding pressure may be 3 to 30 MPa.
  • the molded body may be produced by uniaxial pressing or by CIP. It may also be fired while being molded by hot pressing.
  • the ceramic green sheet substrate may be punched out using a mold equipped with a die and a punch to obtain a molded body.
  • the solid content of the ceramic green sheet substrate when punched with a die may be 65 to 85% by mass, or 75 to 85% by mass.
  • the solid content may be adjusted by carrying out a drying process to dry the ceramic green sheet substrate before punching with a die.
  • the molded body may be degreased before being sintered in the sintering step.
  • the degreasing method is not particularly limited, and may be performed, for example, by heating the molded body to 300 to 700°C in air or a non-oxidizing atmosphere such as nitrogen.
  • the heating time may be, for example, 1 to 10 hours.
  • the ceramic sintered body can be obtained by firing the molded body.
  • the atmosphere, temperature, time, etc. during firing can be set appropriately depending on the type of ceramic sintered body.
  • a silicon nitride sintered body as the ceramic sintered body it may be performed in an inert gas atmosphere such as nitrogen gas or argon gas.
  • the pressure during firing may be 0.7 to 1 MPa.
  • the firing temperature may be 1800 to 2100°C, 1800 to 2000°C, or 1800 to 1900°C.
  • the firing time at the firing temperature may be 3 to 20 hours, or 4 to 16 hours.
  • the firing temperature may be, for example, 1760 to 1840°C.
  • the holding time in the temperature range of 1760 to 1840°C may be, for example, 1 to 10 hours.
  • Firing may be carried out under atmospheric pressure.
  • the sintering conditions may be appropriately set so that the sintered body is sufficiently densified.
  • FIG. 5 is a diagram showing an image of grain growth as sintering progresses in an example of the manufacturing method of this embodiment.
  • fine sintering aid powder 32 is dispersed with high uniformity in ceramic particles 12 in the molded body.
  • the liquefied sintering aid phase 32a diffuses to the grain boundaries by capillary action as shown in FIG. 5(b).
  • the shrinkage of the molded body (ceramic sintered body) progresses, and the pores 22 disappear as shown in FIG. 5(c).
  • the ceramic particles 12 melt into the sintering aid phase 32a, and columnar ceramic particles 14 are generated as shown in FIG. 5(d).
  • the pores 22 disappear sufficiently with the smooth grain growth of the ceramic particles, so that the pores contained in the ceramic sintered body can be sufficiently reduced.
  • a part of the sintering aid phase 32a may remain in the ceramic sintered body.
  • FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method.
  • aggregates 132 of sintering aid powder are contained in ceramic particles 112.
  • FIG. 10 A cross-sectional photograph of such a conventional molded body is shown in FIG. 10.
  • the liquefied sintering aid phase 132a diffuses from the aggregates 132 to the grain boundaries by capillary action starting from the aggregates 132.
  • pores 122 are formed in the aggregates 132 because of the large size of the aggregates 132.
  • FIG. 11 shows a cross section 110C of the conventional ceramic sintered body obtained in this way.
  • the cross section 110C contains pores 122 originating from the aggregates 132.
  • the particles of the sintering aid powder are sufficiently fine, and the aggregation of the particles is suppressed, compared to the conventional manufacturing method. Therefore, the pores remaining as traces of the sintering aid powder can be reduced. This reduces the number of pores generated during the sintering process and reduces the size of the pores. The number of pores in the ceramic sintered body obtained in this manner is sufficiently reduced, and the size of the pores is sufficiently reduced.
  • this ceramic sintered body has a high flexural strength of 640 MPa or more. As described above, the flexural strength of the ceramic sintered body may be 670 MPa or more, 690 MPa or more, or 720 MPa or more.
  • the average numbers P 1 and P 2 of the coarse pores and micropores contained in the ceramic sintered body are also as described above.
  • Such a ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs with a change in temperature. Therefore, it has excellent heat cycle resistance and excellent insulation reliability at high temperatures.
  • FIG. 8 is a schematic diagram showing an example of an inspection device that measures the leakage current of a joint (circuit board) to inspect for dielectric breakdown.
  • the inspection device 400 includes an AC power source 60 and a voltage resistance tester 50 connected to the AC power source 60.
  • One terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72a that contacts the metal plate 41 joined to the ceramic plate 10.
  • the other terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72b that contacts the metal plate 42 via an electrode 70 that is disposed in a storage tank 77 that stores insulating oil 76.
  • the electrode 70 is arranged along the bottom surface and one side surface of the storage tank 77. As shown in FIG. 8, the electrode 70 has an L-shape when viewed in vertical cross section.
  • Two insulating support parts 74 are provided on the electrode 70 adjacent to the conductive support part 72b. The two insulating support parts 74 each contact the metal plate 42, and support the assembly 100 in the insulating oil 76.
  • the electrode 70 and the conductive support parts 72a, 72b may be made of, for example, oxygen-free copper.
  • the insulating oil 76 may be, for example, a fluorine-based inert liquid.
  • the voltage resistance tester 50 may be a commercially available product. In this inspection device 400, a voltage of, for example, about 10 to 15 kV is applied between the metal plates 41, 42 that sandwich the ceramic plate 10, and the voltage resistance tester 50 measures the presence or absence of leakage current. By heating the insulating oil 76, the insulating performance of the ceramic plate 10 in the bonded body 100 at high temperatures, for example, above 100°C, may be evaluated.
  • the inspection device is not limited to the configuration shown in FIG. 8, and can be used without any particular restrictions as long as it is an inspection device that can measure leakage current when a voltage is applied between metal plates 41 and 42 at a temperature of, for example, 100°C or higher.
  • the present disclosure is in no way limited to the above-described embodiments.
  • the contents of the description regarding the embodiments of the ceramic sintered body also apply to the bonded body, the power module, and the manufacturing method of the ceramic sintered body.
  • the contents of the description regarding the embodiments of the manufacturing method of the ceramic sintered body also apply to the ceramic sintered body.
  • sintering aid powder [Preparation of sintering aid powder] (Comparative Examples 1 to 5, Examples 1 to 3)
  • the mixed powder was pulverized using a bead mill type pulverizer (manufactured by Ashizawa Finetech Co., Ltd., device name: Star Mill LMZ) to obtain a sintering aid powder.
  • the pulverization conditions (bead diameter, rotor circumferential speed, and pulverization time) of the bead mill type pulverizer were changed as shown in Tables 1 and 2 to prepare multiple types of sintering aid powders with different pulverization conditions.
  • the volumetric particle size distribution of each sintering aid powder was measured using a particle size distribution measuring device using the laser diffraction/scattering method (manufactured by Nikkiso Co., Ltd., device name: particle size distribution measuring device MT3000II). From the particle size distribution measurement results, D50 (median size) and D100 (maximum particle size) were calculated. The results are shown in Tables 1 and 2. Tables 1 and 2 also show the ratio of D100 to D50. The particle size distributions (frequency %) of Examples 1 to 3 all had only one peak, as shown in Figure 4.
  • Comparative Examples 1 to 3 in Table 1 confirm that the D50 and D100 of the sintering aid can be reduced by reducing the diameter of the beads. Furthermore, the results of Comparative Examples 3 and 4 and Example 1 confirm that the D50 and/or D100 can be reduced by increasing the circumferential speed of the rotor. The results of Examples 1 and 2 confirm that the D50 and D100 can be reduced by extending the grinding time. On the other hand, the results of Examples 2 and 3 and Comparative Example 5 confirm that the D50 and D100 increase when the grinding time is too long. This is thought to be due to the aggregation of the ground powder.
  • Example 4 Commercially available silicon nitride powder (D50: 0.7 ⁇ m), the sintering aid powder of Example 2, and an additive (solvent-based binder) were mixed in a bead mill to prepare a raw material slurry.
  • the above-mentioned raw material slurry was applied to a release film by a doctor blade method to prepare a green sheet.
  • the above laminate was placed in an electric furnace equipped with a carbon heater and heated in air at 500 ° C for 20 hours to degrease.
  • the degreased molded body was placed in a sintering furnace, the pressure in the furnace was reduced to less than 100 Pa, and the temperature was raised to 900°C. Nitrogen gas was then introduced into the furnace, and the temperature was raised to 1500°C under a pressure of approximately 0.9 MPa and held at that temperature for 4 hours. After that, the temperature was raised to 1830°C and held at 1830°C for 5 hours. In this way, a silicon nitride plate with a thickness of 3 mm was obtained.
  • Example 5 A silicon nitride sintered body was obtained in the same manner as in Example 4, except that the sintering aid powder of Example 1 was used instead of the sintering aid powder of Example 2.
  • Example 6 A silicon nitride sintered body was obtained in the same manner as in Example 4, except that the sintering aid powder of Example 3 was used instead of the sintering aid powder of Example 2.
  • Example 6 Commercially available yttrium oxide powder, magnesium oxide powder and silica powder were blended in the same mass ratio as in Example 1 to obtain a mixed powder.
  • This mixed powder was blended with the silicon nitride powder and additives used in Example 4 as a sintering aid powder without being pulverized in a bead mill type pulverizer. These were mixed using a ball mill to prepare a raw material slurry. A silicon nitride sintered body was obtained in the same manner as in Example 4, except that this raw material slurry was used.
  • the particle size distribution of the mixed powder (sintering aid powder) before being put into the ball mill was measured using the particle size distribution measuring device used in Example 1.
  • the "number of particles" in Table 5 is the result of measurement in one visual field, but when a similar measurement was performed in 10 visual fields, the number of silicon nitride particles in each visual field with a major axis length of 20 ⁇ m or more was 15 or more in all cases in Examples 4 to 6.
  • a brazing filler metal was prepared containing 89.5 parts by mass of Ag powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Ag-HWQ, average particle diameter D50: 2.5 ⁇ m, specific surface area: 0.4 m2 /g), 9.5 parts by mass of Cu powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Cu-HWQ, average particle diameter D50: 3.0 ⁇ m, specific surface area: 0.4 m2/g), and 1.0 part by mass of Sn powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd.: Sn-HPN, average particle diameter D50: 3 ⁇ m, specific surface area: 0.1 m2/g) for a total of 100 parts by mass, and 3.5 parts by mass of titanium hydride powder (manufactured by Toho Tech Co., Ltd.,
  • a copper plate for forming a circuit was placed on the brazing material layer on one main surface of a plate-shaped silicon nitride sintered body (silicon nitride plate), and a copper plate for forming a heat sink (C1020 oxygen-free copper plate with a thickness of 0.8 mm and a purity of 99.60% by mass) was placed on the brazing material layer on the other main surface to obtain a laminate.
  • This laminate was heated under conditions of 830° C. and 30 minutes in a vacuum of 1.0 ⁇ 10 ⁇ 3 Pa or less to obtain a bonded body.
  • An etching resist was printed on the bonded copper plate for forming a circuit, and the copper plate for forming a circuit was etched with a ferric chloride solution to form a circuit pattern. Furthermore, an excess brazing material layer was removed with an ammonium fluoride/hydrogen peroxide solution. In this way, a circuit board was produced.
  • the fabricated circuit board was subjected to a heat cycle test in which 2,500 cycles were repeated, with one cycle consisting of 15 minutes at -55°C, 15 minutes at 25°C, 15 minutes at 175°C, and 15 minutes at 25°C.
  • the circuit pattern and the copper plate used to form the heat sink were removed by etching using a ferric chloride solution and an ammonium fluoride/hydrogen peroxide solution to obtain a silicon nitride plate.
  • the three-point bending strength of the silicon nitride plate thus obtained was measured.
  • the measurement method and number of measurement samples were the same as those used before the heat cycle test.
  • the average, maximum, and minimum measured values were as shown in Table 7.
  • the silicon nitride plates of Examples 4 to 6 had higher flexural strength than the silicon nitride plate of Comparative Example 6. Comparing the values in Tables 6 and 7, the degree of decrease in flexural strength due to the heat cycle test was smaller in Examples 4 to 6 than in Comparative Example 6. This shows that the silicon nitride plates of Examples 4 to 6 have excellent heat cycle resistance. The reason for this is thought to be that the number of coarse pores and micropores is smaller in Examples 4 to 6 than in Comparative Example 6, which suppresses the occurrence and progression of cracks due to internal stresses caused by thermal expansion and contraction.
  • Circuit boards were produced using the silicon nitride sintered bodies of Examples 4 to 6 and Comparative Example 6 in the same procedure as that for measuring the flexural strength.
  • an AC 20 kV voltage resistance tester (model: 7473) manufactured by Keisoku Gijutsu Kenkyusho Co., Ltd. was used.
  • Perfluorocarbon manufactured by 3M Japan Ltd., product name: Fluorinert, model number: FC-3283
  • FC-3283 Perfluorocarbon
  • the electrode 70 was made of oxygen-free copper
  • the conductive support parts 72a, 72b were made of carbon tool steel (SK material) plated with rhodium.
  • the insulating oil in the testing device was heated to 120°C, and the circuit board was placed in the insulating oil.
  • the voltage was increased to 9 kV at a rate of 0.1 kV/sec and held there for 60 seconds. Thereafter, the voltage was increased at a rate of 0.1 kV/sec. In this manner, the voltage was increased up to 15 kV by repeatedly holding at 1 kV for 60 seconds and increasing at 0.1 kV/sec. Before reaching 15 kV, if a current flowed that was equal to or greater than the threshold for the current interruption current amount, it was judged to be insulation breakdown.
  • the threshold was set to 9.99 mA. The results are shown in Table 8.
  • Example 4 no insulation breakdown occurred even when the voltage reached 15 kV. This confirmed that the circuit board of Example 4 has the best insulation reliability at high temperatures. It was also confirmed that the circuit boards of Examples 5 and 6 have better insulation reliability at high temperatures than the circuit board of Comparative Example 6.
  • the present disclosure provides a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a method for producing the same, and a bonded body.
  • the present disclosure provides a power module that has excellent reliability by including such a ceramic sintered body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a ceramic sintered body comprising ceramic particles, wherein the cross-section has an average number of less than 1 per mm2 of coarse voids having a size of 10 μm or larger and an average number of less than 400 per mm2 of fine voids having a size of at least 0.05 μm but less than 10 μm, and the flexural strength is at least 640 MPa.

Description

セラミック焼結体及びその製造方法、接合体、並びにパワーモジュールCeramic sintered body, manufacturing method thereof, bonded body, and power module
 本開示は、セラミック焼結体及びその製造方法、接合体、並びにパワーモジュールに関する。 This disclosure relates to a ceramic sintered body and its manufacturing method, a bonded body, and a power module.
 近年、モーター等の産業機器、及び電気自動車等の製品には、大電力制御用のパワーモジュールが用いられている。このようなパワーモジュールには、半導体素子から発生する熱を効率的に拡散するとともに、漏れ電流を抑制するため、セラミック板を備える回路基板等が用いられている(例えば、特許文献1参照)。このようなセラミック板に用いられるセラミック焼結体は、通常、セラミック原料粉末を所定形状に成形してセラミック成形体とした後に、セラミック成形体を焼成することで製造される。 In recent years, power modules for controlling large amounts of power have been used in industrial equipment such as motors, and in products such as electric vehicles. In these power modules, circuit boards equipped with ceramic plates are used to efficiently diffuse heat generated by semiconductor elements and suppress leakage current (see, for example, Patent Document 1). The ceramic sintered bodies used in these ceramic plates are usually manufactured by forming ceramic raw material powder into a predetermined shape to form a ceramic compact, and then firing the ceramic compact.
 セラミック焼結体としては、窒化物、炭化物、硼化物、又は珪化物等で構成されるものが知られている。このようなセラミック焼結体を製造する際には、焼結を促進するため、焼結助剤が用いられる。例えば、特許文献2では、窒化ケイ素焼結基板を製造する際に、Si粉末、MgO粉末及びY粉末を用いることが提案されている。 Known ceramic sintered bodies are composed of nitrides, carbides, borides, silicides, etc. When producing such ceramic sintered bodies, sintering aids are used to promote sintering. For example, Patent Document 2 proposes using Si powder, MgO powder, and Y 2 O 3 powder when producing a silicon nitride sintered substrate.
国際公開第2019/022133号International Publication No. 2019/022133 国際公開第2017/170247号International Publication No. 2017/170247
 パワーモジュール等の電子部品は、高性能化とともに小型化及び薄型化が図られている。これに伴って、電子部品に用いられる各種製品の信頼性の要求レベルが益々高くなっていくと考えられる。本開示は、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れるセラミック焼結体及びその製造方法、並びに接合体を提供する。本開示は、そのようなセラミック焼結体を備えることによって信頼性に優れるパワーモジュールを提供する。 Electronic components such as power modules are becoming smaller and thinner while improving their performance. As a result, it is expected that the level of reliability required for various products used in electronic components will continue to increase. This disclosure provides a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a manufacturing method thereof, and a joined body. This disclosure provides a power module that has excellent reliability by including such a ceramic sintered body.
 本開示の一側面は、以下のセラミック焼結体を提供する。 One aspect of the present disclosure provides the following ceramic sintered body:
[1]セラミック粒子を含むセラミック焼結体であって、断面において、10μm以上のサイズを有する粗大気孔の平均個数が1個/mm未満、且つ、10μm未満のサイズを有する微小気孔の平均個数が400個/mm未満であり、抗折強度が640MPa以上である、セラミック焼結体。 [1] A ceramic sintered body containing ceramic particles, in which in a cross section, the average number of coarse pores having a size of 10 μm or more is less than 1 pore/ mm2 , and the average number of micropores having a size of less than 10 μm is less than 400 pores/ mm2 , and the flexural strength is 640 MPa or more.
 上記セラミック焼結体は、断面における粗大気孔及び微小気孔の両方の個数が十分に小さく、且つ高い抗折強度を有する。このようなセラミック焼結体は、金属板等などの異種の材料と接合された場合に、温度変化がある場合に内部応力が生じ、これが原因となって絶縁破壊が生じる。上記セラミック焼結体は、高い抗折強度を有しているうえに、粗大気孔及び微小気孔の個数が十分に低減されている。このため、温度変化に伴って内部応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。このため、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性にも優れる。 The above-mentioned ceramic sintered body has a sufficiently small number of both coarse pores and micropores in the cross section, and has high flexural strength. When such a ceramic sintered body is joined to a different material such as a metal plate, internal stress occurs when there is a temperature change, which causes insulation breakdown. The above-mentioned ceramic sintered body has high flexural strength, and the number of coarse pores and micropores is sufficiently reduced. Therefore, when internal stress occurs due to a temperature change, the occurrence and progression of cracks can be sufficiently suppressed. Therefore, it has excellent heat cycle resistance and excellent insulation reliability at high temperatures.
 上記[1]のセラミック焼結体は、以下の[2]又は[3]であってもよい。 The ceramic sintered body of [1] above may be the following [2] or [3].
[2]前記断面における気孔のサイズの最大値が6μm以下である、[1]に記載のセラミック焼結体。
[3]前記微小気孔のサイズの平均値が1.0μm以下であり、標準偏差が0.6μm以下である、[1]又は[2]に記載のセラミック焼結体。
[2] The ceramic sintered body according to [1], wherein the maximum pore size in the cross section is 6 μm or less.
[3] The ceramic sintered body according to [1] or [2], wherein the average size of the micropores is 1.0 μm or less and the standard deviation is 0.6 μm or less.
 上記[2]のセラミック焼結体は、気孔のサイズの最大値が6μm以下であることによって、温度変化に伴うクラックの発生を十分に抑制することができる。したがって、絶縁信頼性に一層優れる。上記[3]のセラミック焼結体は、ヒートサイクルの環境下における耐久性を十分に高くすることができる。 The ceramic sintered body of [2] above has a maximum pore size of 6 μm or less, which sufficiently suppresses the occurrence of cracks due to temperature changes. This results in even better insulation reliability. The ceramic sintered body of [3] above can be made to have sufficiently high durability in a heat cycle environment.
 本開示の一側面は、以下のセラミック焼結体の製造方法を提供する。 One aspect of the present disclosure provides the following method for producing a ceramic sintered body.
[4]焼結助剤原料を粉砕機で粉砕してメジアン径が0.5~1.0μmの焼結助剤粉末を得る工程と、
 セラミック粉末と前記焼結助剤粉末とを含む混合原料を調製する工程と、
 前記混合原料の成形体を焼成して、抗折強度が640MPa以上であるセラミック焼結体を得る工程と、を有する、セラミック焼結体の製造方法。
[4] A step of pulverizing the sintering aid raw material with a pulverizer to obtain a sintering aid powder having a median diameter of 0.5 to 1.0 μm;
preparing a mixed raw material containing a ceramic powder and the sintering aid powder;
and firing the compact of the mixed raw material to obtain a ceramic sintered body having a flexural strength of 640 MPa or more.
 上記製造方法は、焼結助剤原料を粉砕機で粉砕してメジアン径が0.5~1.0μmの焼結助剤粉末を得る工程を有する。このような焼結助剤粉末は、粒子径が十分に小さく、且つ凝集が十分に抑制されている。このような焼結助剤を含む混合原料を用いることによって、セラミック粉末の粒成長が均一且つ円滑に進行し、十分に気孔が低減されるともに高い抗折強度を有するセラミック焼結体を得ることができる。このようなセラミック焼結体は、温度変化に伴って内部応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。このため、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れる。 The above manufacturing method includes a step of pulverizing the sintering aid raw material with a pulverizer to obtain a sintering aid powder with a median diameter of 0.5 to 1.0 μm. Such sintering aid powder has a sufficiently small particle diameter and agglomeration is sufficiently suppressed. By using a mixed raw material containing such a sintering aid, the grain growth of the ceramic powder proceeds uniformly and smoothly, and a ceramic sintered body having a sufficiently reduced number of pores and high flexural strength can be obtained. Such a ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs with temperature changes. This results in excellent heat cycle resistance and excellent insulation reliability at high temperatures.
 上記[4]のセラミック焼結体の製造方法は、以下の[5]であってもよい。 The method for producing the ceramic sintered body described above in [4] may be the following [5].
 [5]上記セラミック焼結体の断面において、10μm以上のサイズを有する粗大気孔の平均個数が1個/mm未満、且つ、10μm未満のサイズを有する微小気孔の平均個数が400個/mm未満であってよい。このようなセラミック焼結体は、一層優れた絶縁信頼性を有する。 [5] In a cross section of the ceramic sintered body, the average number of coarse pores having a size of 10 μm or more may be less than 1 pore/ mm2 , and the average number of micropores having a size of less than 10 μm may be less than 400 pores/ mm2 . Such a ceramic sintered body has even better insulation reliability.
 本開示の一側面は、以下の接合体を提供する。 One aspect of the present disclosure provides the following conjugate:
[6]上記[1]~[3]のいずれか一つに記載の板状の前記セラミック焼結体と、金属板と、前記セラミック焼結体の主面と前記金属板の主面とを接合するろう材層と、を備える接合体。 [6] A joint comprising the plate-shaped ceramic sintered body described in any one of [1] to [3] above, a metal plate, and a brazing layer joining the main surface of the ceramic sintered body to the main surface of the metal plate.
 上記接合体は、上記セラミック焼結体を備える。このセラミック焼結体は、温度変化に伴って内部応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。したがって、上記接合体は、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性にも優れる。 The bonded body includes the ceramic sintered body. This ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs due to temperature changes. Therefore, the bonded body has excellent heat cycle resistance and also excellent insulation reliability at high temperatures.
 上記[6]の接合体は、以下の[7]又は[8]であってもよい。 The joint of [6] above may be the joint of [7] or [8] below.
[7]前記金属板の厚みが0.8mm以下である、[6]に記載の接合体。
[8]前記ろう材層は、銀、銅、錫、及び活性金属を含み、前記活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含む、[6]又は[7]に記載の接合体。
[7] The joined body according to [6], wherein the metal plate has a thickness of 0.8 mm or less.
[8] The joined body according to [6] or [7], wherein the brazing material layer contains silver, copper, tin, and an active metal, and the active metal contains one or more selected from the group consisting of titanium, hafnium, zirconium, and niobium.
 本開示の一側面は、以下のパワーモジュールを提供する。 One aspect of the present disclosure provides the following power module:
[9]上記[1]~[3]のいずれか一つに記載の板状の前記セラミック焼結体と、金属板と、前記セラミック焼結体の主面と前記金属板の主面とを接合するろう材層と、を備える接合体と、
 当該接合体の前記金属板に電気的に接続される半導体素子と、を備えるパワーモジュール。
[9] A joined body including the plate-shaped ceramic sintered body according to any one of [1] to [3] above, a metal plate, and a brazing material layer joining a main surface of the ceramic sintered body and a main surface of the metal plate;
a semiconductor element electrically connected to the metal plate of the joint body.
 上記パワーモジュールは、半導体素子で発生した熱が伝わる接合体の絶縁体として上記セラミック焼結体を備える。上記セラミック焼結体は、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れる。したがって、上記パワーモジュールは信頼性に優れる。 The power module includes the ceramic sintered body as an insulator for the joint through which heat generated by the semiconductor element is transferred. The ceramic sintered body has excellent heat cycle resistance and excellent insulation reliability at high temperatures. Therefore, the power module has excellent reliability.
 本開示は、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れるセラミック焼結体及びその製造方法、並びに接合体を提供することができる。本開示は、そのようなセラミック焼結体を備えることによって信頼性に優れるパワーモジュールを提供することができる。 The present disclosure can provide a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a manufacturing method thereof, and a bonded body. The present disclosure can provide a power module that has excellent reliability by including such a ceramic sintered body.
図1は、セラミック焼結体の断面の一部を模式的に示す拡大断面図である。FIG. 1 is an enlarged cross-sectional view showing a schematic view of a part of a cross section of a ceramic sintered body. 図2は、接合体の厚さ方向に沿う断面図である。FIG. 2 is a cross-sectional view of the bonded body taken along the thickness direction. 図3は、パワーモジュールの断面図である。FIG. 3 is a cross-sectional view of the power module. 図4は、レーザー回折・散乱法による焼結助剤粉末の体積基準の粒子径分布の一例を示す図である。FIG. 4 is a diagram showing an example of a volume-based particle size distribution of a sintering additive powder obtained by a laser diffraction/scattering method. 図5は、製造方法の一例において焼結が進行するときの粒成長のイメージ例を示す図である。FIG. 5 is a diagram showing an example of an image of grain growth as sintering progresses in one example of a manufacturing method. 図6は、走査型電子顕微鏡による断面の一例を示す写真(200倍)である。FIG. 6 is a photograph (200x) showing an example of a cross section taken by a scanning electron microscope. 図7は、走査型電子顕微鏡による断面の一例を示す写真(1000倍)である。FIG. 7 is a photograph (1000x) showing an example of a cross section taken by a scanning electron microscope. 図8は、絶縁破壊を検査する検査装置の一例を模式的に示す図である。FIG. 8 is a diagram showing a schematic diagram of an example of an inspection device for inspecting for dielectric breakdown. 図9は、従来の製造方法において焼結が進行するときの粒成長のイメージを示す図である。FIG. 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method. 図10は、走査型電子顕微鏡による、従来の成形体(セラミックグリーンシート)の断面(200倍)と、当該断面に含まれる焼結助剤粉末の凝集体の写真である。FIG. 10 is a photograph (magnification: 200) taken by a scanning electron microscope of a cross section of a conventional molded body (ceramic green sheet) and an agglomerate of sintering additive powder contained in the cross section. 図11は、走査型電子顕微鏡による従来のセラミック焼結体の断面の写真(200倍)である。FIG. 11 is a scanning electron microscope photograph (200x) of a cross section of a conventional ceramic sintered body. 図12は、レーザー回折・散乱法による従来の焼結助剤粉末の粒子径分布の一例を示す図である。FIG. 12 is a diagram showing an example of a particle size distribution of a conventional sintering additive powder by a laser diffraction/scattering method. 図13は、走査型電子顕微鏡による従来の断面の一例を示す写真(200倍)である。FIG. 13 is a photograph (200x) showing an example of a conventional cross section taken by a scanning electron microscope. 図14は、走査型電子顕微鏡による従来の断面の一例を示す写真(1000倍)である。FIG. 14 is a photograph (1000x) showing an example of a conventional cross section taken by a scanning electron microscope.
 以下、場合により図面を参照して、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。なお、「~」の記号で示される数値範囲は、下限値及び上限値を含む。すなわち、「A~B」で示される数値範囲は、A以上且つB以下を意味する。上限値のみを有する数値範囲と下限値のみを有する数値範囲を組み合わせた数値範囲も本開示に含まれる。各数値範囲の上限又は下限をいずれかの実施例の数値で置き換えたものも、本開示に含まれる。複数の材料が例示されている場合、そのうちの一種を単独で用いてもよいし、複数を組み合わせて用いてもよい。 Below, embodiments of the present disclosure will be described, with reference to the drawings where necessary. However, the following embodiments are merely examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following content. Note that the numerical ranges indicated with the symbol "to" include the lower limit and the upper limit. In other words, the numerical range indicated by "A to B" means A or more and B or less. This disclosure also includes numerical ranges that combine a numerical range having only an upper limit with a numerical range having only a lower limit. This disclosure also includes numerical ranges in which the upper or lower limit of each numerical range is replaced with the numerical value of any of the examples. When multiple materials are exemplified, one of the materials may be used alone, or multiple materials may be used in combination.
 一実施形態に係るセラミック焼結体は、セラミック粒子を含む。セラミック焼結体は気孔を含んでもよい。セラミック焼結体に含まれる気孔の個数及びサイズは、セラミック焼結体の耐ヒートサイクル性及び高温における絶縁信頼性に影響を与える。気孔には、粗大気孔と微小気孔とが含まれる。粗大気孔と微小気孔は、それぞれのサイズが互いに異なっており、気孔のサイズは以下のようにして測定される。 The ceramic sintered body according to one embodiment includes ceramic particles. The ceramic sintered body may include pores. The number and size of the pores included in the ceramic sintered body affect the heat cycle resistance and insulating reliability at high temperatures of the ceramic sintered body. The pores include coarse pores and micropores. The coarse pores and micropores have different sizes, and the pore size is measured as follows.
 図1は、セラミック焼結体の断面の一部を走査型電子顕微鏡で観察したときの画像の一例を模式的に示す図である。図1に示されるようにセラミック焼結体の断面10Cは、セラミック粒子と気孔20とを含む。図1では、気孔20を模式的に拡大して示している。なお、断面10Cには多数のセラミック粒子が含まれているが、図1では、便宜上、セラミック粒子の表示を省略している。 FIG. 1 is a diagram that shows a schematic example of an image of a portion of a cross section of a ceramic sintered body observed with a scanning electron microscope. As shown in FIG. 1, cross section 10C of the ceramic sintered body contains ceramic particles and pores 20. In FIG. 1, pores 20 are shown enlarged and schematic. Note that cross section 10C contains a large number of ceramic particles, but for convenience, the ceramic particles are not shown in FIG. 1.
 本開示では、気孔20のサイズは、気孔20の外縁において間隔が最も大きくなるように選択される2点を結ぶ線分Lの長さである。そして、この線分Lの長さに応じて、「粗大気孔」と「微小気孔」とそれ以外の気孔に分類される。図1に示される気孔20の線分Lの長さが0.05μm以上且つ10μm未満であれば、「微小気孔」に分類される。一方、同様の方法で測定される線分Lの長さが10μm以上である気孔は、「粗大気孔」に分類される。それ以外の気孔の線分Lの長さは0.05μm未満である。 In this disclosure, the size of a pore 20 is the length of the line segment L connecting two points selected to maximize the distance between them on the outer edge of the pore 20. Pores are classified as "coarse pores", "micropores", and other pores according to the length of this line segment L. If the length of the line segment L of the pore 20 shown in FIG. 1 is 0.05 μm or more and less than 10 μm, it is classified as a "micropore". On the other hand, pores whose length of the line segment L measured in a similar manner is 10 μm or more are classified as "coarse pores". The length of the line segment L of other pores is less than 0.05 μm.
 セラミック焼結体の抗折強度は、粗大気孔の平均個数及び微小気孔の平均個数によって大きく変動する。本実施形態のセラミック焼結体の粗大気孔の平均個数Pは1個/mm未満である。粗大気孔の平均個数Pは、走査型電子顕微鏡による断面(倍率:200倍)を5箇所以上の視野において観察し、それぞれの視野に含まれる粗大気孔を足し合わせた合計個数に基づいて、以下の計算式で求められる。
 粗大気孔の平均個数P=粗大気孔の合計個数/視野数/1視野当たりの面積
The bending strength of a ceramic sintered body varies greatly depending on the average number of coarse pores and the average number of micropores. The average number of coarse pores P1 of the ceramic sintered body of this embodiment is less than 1 pore/ mm2 . The average number of coarse pores P1 is calculated by the following formula based on the total number of coarse pores included in each field of view obtained by observing the cross section (magnification: 200 times) in five or more fields of view using a scanning electron microscope.
Average number of coarse pores P 1 =Total number of coarse pores/Number of fields/Area per field
 セラミック焼結体の耐ヒートサイクル性及び高温における絶縁信頼性を十分に高くする観点から、粗大気孔の平均個数Pは、0.8個/mm未満であってよく、0.6個/mm未満であってよく、0.5個/mm未満であってよく、0.1個/mm未満であってもよい。粗大気孔の平均個数Pの下限値は、0個/mmであってもよい。粗大気孔の平均個数Pは、例えば、焼結助剤粉末の粒子径又は凝集度を変えることで調整することができる。 From the viewpoint of sufficiently increasing the heat cycle resistance and the insulation reliability at high temperatures of the ceramic sintered body, the average number P1 of coarse pores may be less than 0.8 pores/ mm2 , less than 0.6 pores/ mm2 , less than 0.5 pores/ mm2 , or less than 0.1 pores/ mm2 . The lower limit of the average number P1 of coarse pores may be 0 pores/ mm2 . The average number P1 of coarse pores can be adjusted, for example, by changing the particle size or degree of aggregation of the sintering aid powder.
 本実施形態のセラミック焼結体の微小気孔の平均個数Pは400個/mm未満である。微小気孔の平均個数Pは、走査型電子顕微鏡による断面(倍率:1000倍)を5箇所以上の視野において観察し、それぞれの視野に含まれる微小気孔を足し合わせた合計個数に基づいて、以下の計算式で求められる。なお、微小気孔のサイズ及び個数は、ImageJ等の画像処理ソフトウエアを用いてカウントすることができる。
  微小気孔の平均個数P=微小気孔の合計個数/視野数/1視野当たりの面積
The average number P2 of micropores in the ceramic sintered body of this embodiment is less than 400 pores/ mm2 . The average number P2 of micropores is calculated by observing the cross section (magnification: 1000 times) in five or more visual fields using a scanning electron microscope, and adding up the total number of micropores contained in each visual field, using the following calculation formula. The size and number of micropores can be counted using image processing software such as ImageJ.
Average number of micropores P2 = Total number of micropores/Number of fields/Area per field
 セラミック焼結体の耐ヒートサイクル性及び高温における絶縁信頼性を十分に高くする観点から、微小気孔の平均個数Pは、350個/mm未満であってよく、320個/mm未満であってよく、290個/mm未満であってよく、210個/mm未満であってもよい。微小気孔の平均個数Pは、10個/mm以上であってもよく、50個/mm以上であってもよく、100個/mm以上であってもよい。微小気孔の平均個数Pは、例えば、焼結助剤粉末の粒子径又は凝集度を変えることで調整することができる。 From the viewpoint of sufficiently increasing the heat cycle resistance and the insulating reliability at high temperatures of the ceramic sintered body, the average number P2 of micropores may be less than 350 pcs/ mm2 , less than 320 pcs/ mm2 , less than 290 pcs/ mm2 , or less than 210 pcs/ mm2 . The average number P2 of micropores may be 10 pcs/ mm2 or more, 50 pcs/ mm2 or more, or 100 pcs/ mm2 or more. The average number P2 of micropores can be adjusted, for example, by changing the particle size or degree of aggregation of the sintering aid powder.
 粗大気孔の平均個数Pは0個/mmであってよく、セラミック焼結体の断面に含まれる気孔のサイズの最大値は、6μm以下であってよく、5μm以下であってよく、3μm以下であってもよい。これによって、セラミック焼結体の抗折強度を一層高くすることができる。セラミック焼結体の断面に含まれる気孔のサイズの最大値は、0.5μm以上であってよく、1.0μm以上であってよく、1.2μm以上であってよい。気孔のサイズの最大値は、走査型電子顕微鏡による断面(倍率:200倍)を5箇所以上の視野において観察したときに検出される全気孔のサイズの測定値から求められる。 The average number P1 of coarse pores may be 0/ mm2 , and the maximum size of the pores contained in the cross section of the ceramic sintered body may be 6 μm or less, 5 μm or less, or 3 μm or less. This can further increase the bending strength of the ceramic sintered body. The maximum size of the pores contained in the cross section of the ceramic sintered body may be 0.5 μm or more, 1.0 μm or more, or 1.2 μm or more. The maximum size of the pores is determined from the measured value of the size of all pores detected when observing the cross section (magnification: 200 times) in five or more visual fields using a scanning electron microscope.
 耐ヒートサイクル性及び高温における絶縁信頼性を一層向上する観点から、セラミック焼結体の断面に含まれる微小気孔のサイズの平均値は1.0μm以下であり、当該サイズの標準偏差は0.6μm以下であってよい。幾つかの例では、セラミック焼結体の断面に含まれる微小気孔のサイズの平均値は0.7μm以下であってよく、当該サイズの標準偏差は0.5μm以下であってよい。別の幾つかの例では、セラミック焼結体の断面に含まれる微小気孔のサイズの平均値は0.6μm以下であってよく、当該サイズの標準偏差は0.47μm以下であってよい。セラミック焼結体の断面に含まれる微小気孔のサイズの平均値は0.1μm以上であってよい。微小気孔のサイズの平均値は、上述の平均個数Pを求めるときと同様の方法で求められる。すなわち、5箇所以上の視野に含まれる微小気孔のサイズの算術平均として求められる。微小気孔のサイズの標準偏差も5箇所以上の視野に含まれる微小気孔のサイズの標準偏差として求められる。 From the viewpoint of further improving the heat cycle resistance and the insulation reliability at high temperatures, the average size of the micropores contained in the cross section of the ceramic sintered body may be 1.0 μm or less, and the standard deviation of the size may be 0.6 μm or less. In some examples, the average size of the micropores contained in the cross section of the ceramic sintered body may be 0.7 μm or less, and the standard deviation of the size may be 0.5 μm or less. In other examples, the average size of the micropores contained in the cross section of the ceramic sintered body may be 0.6 μm or less, and the standard deviation of the size may be 0.47 μm or less. The average size of the micropores contained in the cross section of the ceramic sintered body may be 0.1 μm or more. The average size of the micropores is obtained in the same manner as when obtaining the average number P2 described above. That is, it is obtained as the arithmetic average of the sizes of the micropores contained in five or more visual fields. The standard deviation of the sizes of the micropores is also obtained as the standard deviation of the sizes of the micropores contained in five or more visual fields.
 断面10Cは、気孔20及びセラミック粒子の他に、焼結助剤相を含んでよい。断面10Cにおけるセラミック粒子(セラミック相)の面積比率の平均値は、70~90%であってよく、75~85%であってもよい。断面10Cにおける焼結助剤相の面積比率の平均値は、10~25%であってよく、14~22%であってよい。セラミック粒子及び焼結助剤相をこのような面積比率で含む断面10Cを有するセラミック焼結体は、十分に高い熱伝導率と抗折強度を有する。 In addition to the pores 20 and ceramic particles, the cross section 10C may contain a sintering aid phase. The average area ratio of the ceramic particles (ceramic phase) in the cross section 10C may be 70-90%, or 75-85%. The average area ratio of the sintering aid phase in the cross section 10C may be 10-25%, or 14-22%. A ceramic sintered body having a cross section 10C containing ceramic particles and a sintering aid phase in such an area ratio has sufficiently high thermal conductivity and flexural strength.
 セラミック焼結体の断面に含まれる、20μm以上の長軸を有するセラミック粒子の個数は多い方が好ましい。これによって、抗折強度と熱伝導率とを高い水準で両立することができる。長軸の長さが20μm以上であるセラミック粒子の個数の測定は、走査型電子顕微鏡を用いて1000倍に拡大して示す画像(視野面積:0.02mm)を用いて行う。セラミック粒子の長軸の長さは、気孔20のサイズと同様にして測定することができる。すなわち、セラミック粒子の長軸の長さは、セラミック粒子の外縁において間隔が最も大きくなるように選択される2点を結ぶ線分(長軸)の長さである。 It is preferable that the number of ceramic particles having a major axis of 20 μm or more contained in the cross section of the ceramic sintered body is large. This allows both flexural strength and thermal conductivity to be achieved at a high level. The number of ceramic particles having a major axis length of 20 μm or more is measured using an image (field area: 0.02 mm 2 ) magnified 1000 times using a scanning electron microscope. The length of the major axis of the ceramic particle can be measured in the same manner as the size of the pores 20. In other words, the length of the major axis of the ceramic particle is the length of the line segment (major axis) connecting two points selected so that the distance between them is the largest on the outer edge of the ceramic particle.
 測定は、5箇所以上の視野において行い、各視野で長軸の長さが20μm以上であるセラミック粒子の個数の平均値を平均個数とする。20μm以上の長軸を有するセラミック粒子の平均個数は10個以上であってよく、15個以上であってよく、17個以上であってもよい。20μm以上の長軸を有するセラミック粒子の平均個数は、50個以下であってよく、45個以下であってよく、40個以下であってもよい。20μm以上の長軸を有するセラミック粒子の個数の標準偏差は0.6μm未満であってよく、0.5μm未満であってもよい。20μm以上の長軸を有するセラミック粒子の個数の標準偏差は0.1μm以上であってよく、0.15μm以上であってよい。このようなセラミック焼結体は均一性の高い微細組織を有する。このため、信頼性に優れる。 The measurements are performed in five or more visual fields, and the average number is the average number of ceramic particles whose major axis length is 20 μm or more in each visual field. The average number of ceramic particles having a major axis of 20 μm or more may be 10 or more, 15 or more, or 17 or more. The average number of ceramic particles having a major axis of 20 μm or more may be 50 or less, 45 or less, or 40 or less. The standard deviation of the number of ceramic particles having a major axis of 20 μm or more may be less than 0.6 μm or less than 0.5 μm. The standard deviation of the number of ceramic particles having a major axis of 20 μm or more may be 0.1 μm or more, or 0.15 μm or more. Such a ceramic sintered body has a highly uniform microstructure. This makes it highly reliable.
 20μm以上の長軸(サイズ)を有するセラミック粒子のアスペクト比は、3以上であってよく、4以上であってもよい。このような形状及びサイズを有するセラミック粒子の個数は、焼結の際の粒成長を円滑に進行させることによって増やすことができる。アスペクト比は、短軸の長さに対する長軸の長さの比である。短軸は、長軸に直交する方向において、セラミック粒子の外縁において間隔が最も大きくなるように選択される2点を結ぶ線分である。 The aspect ratio of ceramic particles having a major axis (size) of 20 μm or more may be 3 or more, or may be 4 or more. The number of ceramic particles having such shapes and sizes can be increased by smooth grain growth during sintering. The aspect ratio is the ratio of the length of the major axis to the length of the minor axis. The minor axis is the line segment connecting two points selected to have the greatest spacing at the outer edge of the ceramic particle in a direction perpendicular to the major axis.
 セラミック焼結体を構成するセラミック粒子は、窒化ケイ素粒子、窒化アルミニウム粒子及びアルミナ粒子からなる群より選ばれる少なくとも一つを含有していてもよい。 The ceramic particles constituting the ceramic sintered body may contain at least one selected from the group consisting of silicon nitride particles, aluminum nitride particles, and alumina particles.
 セラミック焼結体としては、主成分として窒化ケイ素粒子を含む窒化ケイ素焼結体、主成分として窒化アルミニウム粒子を含む窒化アルミニウム焼結体、及び、主成分としてアルミナ粒子を含むアルミナ焼結体が挙げられる。また、複数種類のセラミック粒子を含む複合焼結体であってもよい。 Examples of ceramic sintered bodies include silicon nitride sintered bodies containing silicon nitride particles as the main component, aluminum nitride sintered bodies containing aluminum nitride particles as the main component, and alumina sintered bodies containing alumina particles as the main component. In addition, composite sintered bodies containing multiple types of ceramic particles may also be used.
 セラミック焼結体の抗折強度は、640MPa以上である。このようなセラミック焼結体は、信頼性に優れる。セラミック焼結体の抗折強度は、670MPa以上、690MPa以上、又は720MPa以上であってもよい。この抗折強度は、実施例に記載の方法によって測定される。このように高い抗折強度を有するセラミック焼結体は高い絶縁性を有する。このような抗折強度とともに、粗大気孔及び微小気孔の平均個数が十分に小さいことから、耐ヒートサイクル性に優れるとともに、高温での絶縁信頼性に優れる。このようなセラミック焼結体は、例えば、パワーモジュール用の絶縁基板として好適に用いることができる。セラミック焼結体の抗折強度の上限は、例えば950MPaであってよい。なお、セラミック焼結体の用途はこれに限定されない。 The flexural strength of the ceramic sintered body is 640 MPa or more. Such a ceramic sintered body has excellent reliability. The flexural strength of the ceramic sintered body may be 670 MPa or more, 690 MPa or more, or 720 MPa or more. This flexural strength is measured by the method described in the Examples. A ceramic sintered body having such a high flexural strength has high insulation properties. In addition to such flexural strength, the average number of coarse pores and micropores is sufficiently small, so that the ceramic sintered body has excellent heat cycle resistance and excellent insulation reliability at high temperatures. Such a ceramic sintered body can be suitably used, for example, as an insulating substrate for a power module. The upper limit of the flexural strength of the ceramic sintered body may be, for example, 950 MPa. Note that the uses of the ceramic sintered body are not limited to this.
 一実施形態に係る接合体は、板状のセラミック焼結体(セラミック板)と、金属板と、セラミック焼結体の主面と金属板の主面とを接合するろう材層と、を備える。セラミック板は、上記実施形態に係るセラミック焼結体であってよい。このセラミック焼結体は、温度変化に伴って内部応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。したがって、上記接合体は、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性にも優れる。 The bonded body according to one embodiment includes a plate-shaped ceramic sintered body (ceramic plate), a metal plate, and a brazing material layer that bonds a main surface of the ceramic sintered body to a main surface of the metal plate. The ceramic plate may be the ceramic sintered body according to the above embodiment. This ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs due to temperature change. Therefore, the bonded body has excellent heat cycle resistance and also excellent insulation reliability at high temperatures.
 図2は本実施形態の接合体の一例を示す、厚さ方向に沿う断面図である。ただし、この例の説明内容は本例に限定されず、接合体の他の例にも適用される。図2の接合体100は、セラミック板10と、セラミック板10の一方の主面10Aにろう材層51を介して接合された金属板41と、セラミック板10の他方の主面10Bにろう材層51を介して接合された金属板42と、を備える。金属板41は、パターン形成されており、例えば回路として機能する。本明細書では、このようにパターン形成されたものも金属板と称する。金属板42はパターン形成されておらず、例えば放熱板として機能する。セラミック板10は、上述のセラミック焼結体で構成される。 FIG. 2 is a cross-sectional view along the thickness direction showing an example of the bonded body of this embodiment. However, the description of this example is not limited to this example, and is also applicable to other examples of the bonded body. The bonded body 100 of FIG. 2 includes a ceramic plate 10, a metal plate 41 bonded to one main surface 10A of the ceramic plate 10 via a brazing material layer 51, and a metal plate 42 bonded to the other main surface 10B of the ceramic plate 10 via a brazing material layer 51. The metal plate 41 is patterned and functions, for example, as a circuit. In this specification, such a patterned object is also referred to as a metal plate. The metal plate 42 is not patterned and functions, for example, as a heat sink. The ceramic plate 10 is composed of the above-mentioned ceramic sintered body.
 金属板41,42は、例えば銅板であってよい。金属板41,42の厚みは、放熱性能の向上及び導電性向上の観点から、0.3mm以上であってよく、0.4mm以上であってもよい。金属板41,42の厚みは、温度変化に伴ってセラミック板10に生じる内部応力を低減する観点から、0.8mm以下であってよく、0.7mm以下であってよい。金属板41,42の厚み範囲の一例は、0.3~0.8mmである。 The metal plates 41, 42 may be, for example, copper plates. From the viewpoint of improving heat dissipation performance and electrical conductivity, the thickness of the metal plates 41, 42 may be 0.3 mm or more, or 0.4 mm or more. From the viewpoint of reducing internal stress generated in the ceramic plate 10 due to temperature changes, the thickness of the metal plates 41, 42 may be 0.8 mm or less, or 0.7 mm or less. An example of the thickness range of the metal plates 41, 42 is 0.3 to 0.8 mm.
 セラミック板10の厚みは、絶縁性向上の観点から、0.2mm以上であってよく、0.3mm以上であってもよい。セラミック板10の厚みは、接合体100を薄型化する観点から、0.8mm以下であってよく、0.6mm以下であってもよい。 The thickness of the ceramic plate 10 may be 0.2 mm or more, or may be 0.3 mm or more, from the viewpoint of improving insulation. The thickness of the ceramic plate 10 may be 0.8 mm or less, or may be 0.6 mm or less, from the viewpoint of making the joined body 100 thinner.
 ろう材層51,52は、セラミック板10と金属板41,42とを接合する層であり、ろう材成分を含む。ろう材層は、例えば、ろう材に由来する銀、又は銀及び銅を含んでよい。ろう材層51,52は、さらに、ろう材に由来する錫及び活性金属からなる群より選ばれる一種又は二種以上の金属を含有してよい。ろう材層51,52において、二種以上の金属は合金となっていてもよい。活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含んでいてよい。ろう材層51,52に含まれる銀及び銅は、例えばAg-Cu共晶合金等の合金として含まれていてもよい。ろう材層51,52における銀の含有量は、Ag換算で45~95質量%であってよく、50~95質量%であってもよい。ろう材層51,52における銀及び銅の合計含有量は、それぞれAg及びCuに換算して65~100質量%であってよく、70~99質量%であってよく、90~98質量%であってもよい。ろう材層51,52の厚み及び組成は、互いに同一であってもよいし、互いに異なっていてもよい。 The brazing material layers 51, 52 are layers that join the ceramic plate 10 and the metal plates 41, 42, and contain brazing material components. The brazing material layers may contain, for example, silver derived from the brazing material, or silver and copper. The brazing material layers 51, 52 may further contain one or more metals selected from the group consisting of tin and active metals derived from the brazing material. In the brazing material layers 51, 52, the two or more metals may be alloyed. The active metal may contain one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium. The silver and copper contained in the brazing material layers 51, 52 may be contained as an alloy, such as an Ag-Cu eutectic alloy. The silver content in the brazing material layers 51, 52 may be 45 to 95 mass% in Ag equivalent, or may be 50 to 95 mass%. The total content of silver and copper in the brazing layers 51 and 52 may be 65 to 100 mass%, 70 to 99 mass%, or 90 to 98 mass% converted to Ag and Cu, respectively. The thickness and composition of the brazing layers 51 and 52 may be the same as or different from each other.
 接合体の変形例では、セラミック板の両方の主面に接合されるそれぞれの金属板が同じ形状であってもよい。例えば、回路がパターン形成される前の接合体であってもよい。別の変形例では、セラミック板の一方の主面に接合される金属板が複数であってもよい。セラミック板の一方の主面のみに金属板が接合されていてもよい。 In a modified version of the bonded assembly, the metal plates bonded to both main surfaces of the ceramic plate may be of the same shape. For example, the bonded assembly may be one in which the circuit pattern has not yet been formed. In another modified version, multiple metal plates may be bonded to one main surface of the ceramic plate. Metal plates may be bonded to only one main surface of the ceramic plate.
 一実施形態に係るパワーモジュールは、接合体(回路基板)と、接合体の金属板に電気的に接続される半導体素子と、を備える。接合体は、上述の接合体100又はその変形例であってよい。セラミック焼結体、接合体、及びこれらの変形例に関する説明内容は、本実施形態のパワーモジュールに適用される。このようなパワーモジュールは、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性にも優れるセラミック板を有する接合体を備える。したがって、温度が大きく変動する環境下で使用しても、高い性能を維持することができる。このように、上記パワーモジュールは信頼性に優れる。 The power module according to one embodiment includes a joint (circuit board) and a semiconductor element electrically connected to the metal plate of the joint. The joint may be the joint 100 described above or a modified version thereof. The descriptions regarding the ceramic sintered body, the joint, and their modified versions apply to the power module of this embodiment. Such a power module includes a joint having a ceramic plate that has excellent heat cycle resistance and also excellent insulation reliability at high temperatures. Therefore, high performance can be maintained even when used in an environment where the temperature fluctuates greatly. In this way, the power module has excellent reliability.
 図3は、パワーモジュールの一例を示す断面図である。この例の説明内容は本例に限定されず、パワーモジュールの他の例にも適用される。図3のパワーモジュール200は、ベース板90と、ハンダ82を介してベース板90の一方面と接合される接合体100とを備える。接合体100の一方面側における金属板42(放熱板)がハンダ82を介してベース板90と接合している。 FIG. 3 is a cross-sectional view showing an example of a power module. The description of this example is not limited to this example, and is also applicable to other examples of power modules. The power module 200 in FIG. 3 includes a base plate 90 and a joint body 100 that is joined to one side of the base plate 90 via solder 82. A metal plate 42 (heat sink) on one side of the joint body 100 is joined to the base plate 90 via solder 82.
 接合体100の他方面側における金属板41(回路パターン)には、ハンダ81を介して半導体素子80が取り付けられている。半導体素子80は、アルミワイヤ(アルミ線)等の金属ワイヤ84で金属板41の所定箇所に接続されている。このようにして、半導体素子80と金属板41とは電気的に接続されている。筐体86の外部と金属板41とを電気的に接続するため、金属板41の一つである金属板41aは、ハンダ85を介して筐体86を貫通して設けられる電極83に接続されている。 A semiconductor element 80 is attached to the metal plate 41 (circuit pattern) on the other side of the joint body 100 via solder 81. The semiconductor element 80 is connected to a predetermined location of the metal plate 41 with a metal wire 84 such as an aluminum wire. In this way, the semiconductor element 80 and the metal plate 41 are electrically connected. To electrically connect the outside of the housing 86 to the metal plate 41, one of the metal plates 41, metal plate 41a, is connected to an electrode 83 that penetrates the housing 86 via solder 85.
 ベース板90の一方の主面上には、当該主面と一体になって接合体100を収容する筐体86が配置されている。ベース板90の一方の主面と筐体86とで形成される収容空間には樹脂95が充填されている。樹脂95は、接合体100及び半導体素子80を封止している。樹脂は、例えば、熱硬化型樹脂であってよく、光硬化型樹脂であってもよい。 A housing 86 is disposed on one of the main surfaces of the base plate 90, and is integrated with the main surface to house the joint body 100. The housing space formed by the one of the main surfaces of the base plate 90 and the housing 86 is filled with resin 95. The resin 95 seals the joint body 100 and the semiconductor element 80. The resin may be, for example, a thermosetting resin or a photocurable resin.
 ベース板90の他方の主面には、グリース94を介して放熱部材をなす冷却フィン92が接合されている。ベース板90の端部には冷却フィン92をベース板90に固定するネジ93が取り付けられている。ベース板90及び冷却フィン92はアルミニウムで構成されていてもよい。ベース板90及び冷却フィン92は、高い熱伝導率を有することによって放熱部として良好に機能する。 A cooling fin 92, which serves as a heat dissipation member, is joined to the other main surface of the base plate 90 via grease 94. Screws 93 are attached to the ends of the base plate 90 to secure the cooling fin 92 to the base plate 90. The base plate 90 and the cooling fin 92 may be made of aluminum. The base plate 90 and the cooling fin 92 function well as heat dissipation parts due to their high thermal conductivity.
 セラミック板10(板状のセラミック焼結体)によって、金属板41と金属板42は電気的に絶縁される。金属板41(41a)は電気回路を構成していてよい。金属板41及び金属板42は、ろう材成分を含むろう材層(不図示)によってセラミック板10の主面10A及び主面10Bにそれぞれ接合されている。パワーモジュール200は接合体100を備えることから信頼性に優れる。 The metal plates 41 and 42 are electrically insulated by the ceramic plate 10 (plate-shaped ceramic sintered body). The metal plate 41 (41a) may form an electric circuit. The metal plates 41 and 42 are respectively joined to the main surface 10A and the main surface 10B of the ceramic plate 10 by a brazing material layer (not shown) containing a brazing material component. The power module 200 has excellent reliability because it includes the joint 100.
 一実施形態に係るセラミック焼結体の製造方法は、焼結助剤原料を粉砕機で粉砕してD50(メジアン径)が0.5~1.0μmの焼結助剤粉末を得る粉砕工程と、セラミック粉末と焼結助剤粉末とを含む混合原料を調製する混合工程と、混合原料の成形体を焼成する焼成工程と、を有する。 The method for producing a ceramic sintered body according to one embodiment includes a grinding process in which a sintering aid raw material is ground in a grinder to obtain a sintering aid powder having a D50 (median diameter) of 0.5 to 1.0 μm, a mixing process in which a mixed raw material containing ceramic powder and sintering aid powder is prepared, and a firing process in which a compact of the mixed raw material is fired.
 焼結助剤粉末は、アルカリ土類金属酸化物、希土類酸化物、当該希土類酸化物とは異なる遷移金属酸化物、シリカ及びアルミナからなる群より選ばれる少なくとも二つを含む。焼結助剤粉末は、当該群から選ばれる少なくとも三つを含んでよい。 The sintering aid powder contains at least two selected from the group consisting of alkaline earth metal oxides, rare earth oxides, transition metal oxides different from the rare earth oxides, silica, and alumina. The sintering aid powder may contain at least three selected from the group.
 アルカリ土類金属酸化物は、構成元素としてアルカリ土類金属と酸素とを有する。アルカリ土類金属酸化物は、酸化マグネシウム、酸化カルシウム及び酸化ストロンチウムからなる群より選ばれる少なくとも一つを含んでよい。希土類酸化物は、構成元素として希土類元素と酸素とを有する。希土類酸化物は、例えば、酸化イットリウム及び酸化セリウムからなる群より選ばれる少なくとも一つを含んでよい。当該希土類酸化物とは異なる遷移金属酸化物は、構成元素として、希土類とは異なる遷移金属と酸素とを有する。このような遷移金属酸化物は、例えば、酸化鉄を含んでよい。 The alkaline earth metal oxide has an alkaline earth metal and oxygen as constituent elements. The alkaline earth metal oxide may include at least one selected from the group consisting of magnesium oxide, calcium oxide, and strontium oxide. The rare earth oxide has a rare earth element and oxygen as constituent elements. The rare earth oxide may include, for example, at least one selected from the group consisting of yttrium oxide and cerium oxide. The transition metal oxide different from the rare earth oxide has a transition metal different from the rare earth and oxygen as constituent elements. Such a transition metal oxide may include, for example, iron oxide.
 焼結助剤粉末の一例は、酸化マグネシウム、希土類酸化物、及びシリカを含む。この場合、焼結助剤粉末の全体を100質量部としたときに、希土類酸化物の含有量は、30~80質量部であってよく、40~70質量部であってもよい。このとき、酸化マグネシウムの含有量は5~40質量部であってよく、10~30質量部であってもよい。このとき、シリカの含有量は5~40質量部であってよく、10~30質量部であってもよい。 An example of a sintering aid powder includes magnesium oxide, rare earth oxide, and silica. In this case, when the total amount of the sintering aid powder is 100 parts by mass, the content of the rare earth oxide may be 30 to 80 parts by mass, or may be 40 to 70 parts by mass. In this case, the content of the magnesium oxide may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass. In this case, the content of the silica may be 5 to 40 parts by mass, or may be 10 to 30 parts by mass.
 粉砕工程における焼結助剤粉末のD50(メジアン径)は、例えば、焼結助剤原料を粉砕機で粉砕して調製してもよい。粉砕機としては、ビーズミル式粉砕機を用いることができる。ビーズミル式粉砕機のビーズの直径、周速及び粉砕時間からなる群より選ばれる少なくとも一つの条件を変更することで、焼結助剤粉末の粒子径分布を調整してもよい。ビーズの直径は0.1~0.3mmであってよい。ロータの周速は8~12m/秒であってよい。粉砕時間は5~20分間であってよい。ビーズミル式粉砕機以外の粉砕機としては、ボールミル、振動ミル、及びポットミル等が挙げられる。 The D50 (median diameter) of the sintering aid powder in the grinding process may be prepared, for example, by grinding the sintering aid raw material with a grinder. A bead mill type grinder may be used as the grinder. The particle size distribution of the sintering aid powder may be adjusted by changing at least one condition selected from the group consisting of the diameter of the beads of the bead mill type grinder, the peripheral speed, and the grinding time. The diameter of the beads may be 0.1 to 0.3 mm. The peripheral speed of the rotor may be 8 to 12 m/sec. The grinding time may be 5 to 20 minutes. Examples of grinders other than the bead mill type grinder include a ball mill, a vibration mill, and a pot mill.
 焼結助剤粉末のD50が1.0μmを超えると気孔の個数及びサイズが増大して、抗折強度が低下する。焼結助剤粉末のD50は0.5μm未満になると、粉砕機から焼結助剤原料に加えられる入力エネルギーと粉砕比の関係性により、粉砕された粒子が凝集する傾向にある。この要因としては、粉砕が進むと粉砕された粒子同士の接触頻度が増加すること、及び、ポテンシャルエネルギーが引力リッチになることが考えられる。 If the D50 of the sintering aid powder exceeds 1.0 μm, the number and size of pores will increase, and the flexural strength will decrease. If the D50 of the sintering aid powder is less than 0.5 μm, the crushed particles will tend to aggregate due to the relationship between the input energy applied to the sintering aid raw material from the crusher and the crushing ratio. This is thought to be due to the fact that the frequency of contact between crushed particles increases as crushing progresses, and that the potential energy becomes more attractive.
 焼結助剤粉末のD50は、レーザー回折・散乱法による粒子径分布測定装置によって測定される体積基準の粒子径分布に基づいて求められる。焼結助剤粉末のD50が上記範囲であることによって、焼結助剤粉末に含まれる粒子が十分に小さく、且つ粒子同士が凝集することを抑制できる。これによって、セラミック焼結体を作製する際に、焼結助剤粉末の粒子及び凝集体に起因する気孔の発生を抑制することができる。また、セラミック粒子の粒成長を高い均一性で進行させることができる。 The D50 of the sintering aid powder is determined based on the volumetric particle size distribution measured by a particle size distribution measuring device using the laser diffraction/scattering method. By having the D50 of the sintering aid powder within the above range, the particles contained in the sintering aid powder are sufficiently small, and the particles can be prevented from agglomerating together. This makes it possible to prevent the occurrence of pores caused by the particles and agglomerates of the sintering aid powder when producing a ceramic sintered body. In addition, the grain growth of the ceramic particles can proceed with high uniformity.
 図4及び図12は、レーザー回折・散乱法による焼結助剤粉末の体積基準の粒子径分布の例を示す図である。横軸は、対数目盛の粒径[μm]であり、縦軸は頻度[体積%]である。本開示における粒子径分布は、JIS Z 8825:2013「粒子径解析-レーザー回折・散乱法」に記載の方法に準拠して測定される。粒子径分布測定には、ベックマンコールター社製のLS-13 320(商品名)を用いることができる。測定条件としては、粒子屈折率を2.2、溶媒の屈折率を1.33とする。 Figures 4 and 12 are diagrams showing examples of volumetric particle size distribution of sintering aid powders by laser diffraction and scattering. The horizontal axis is particle size [μm] in logarithmic scale, and the vertical axis is frequency [volume %]. The particle size distribution in this disclosure is measured in accordance with the method described in JIS Z 8825:2013 "Particle size analysis - laser diffraction and scattering method". For particle size distribution measurement, LS-13 320 (product name) manufactured by Beckman Coulter can be used. The measurement conditions are a particle refractive index of 2.2 and a solvent refractive index of 1.33.
 焼結助剤粉末は、図4に示されるように、粒子径分布(頻度%)におけるピークが一つのみであってよい。このような焼結助剤粉末は、図12に示すようにピークを複数あるものよりも凝集が十分に抑制されている。このため、セラミック焼結体における気孔のサイズ及び個数を十分に低減することができる。粒子径分布におけるピークは、シャープであってよい。例えば、焼結助剤粉末のD100は、5.5μm未満であってよく、5μm未満であってもよい。例えば、D50に対するD100の比は、5以下であってよい。D100の下限の一例は2μmである。D50に対するD100の比の下限の一例は2である。 The sintering aid powder may have only one peak in the particle size distribution (frequency %) as shown in FIG. 4. Such sintering aid powder has more suppressed aggregation than powders with multiple peaks as shown in FIG. 12. This allows the size and number of pores in the ceramic sintered body to be sufficiently reduced. The peak in the particle size distribution may be sharp. For example, the D100 of the sintering aid powder may be less than 5.5 μm, or may be less than 5 μm. For example, the ratio of D100 to D50 may be 5 or less. An example of the lower limit of D100 is 2 μm. An example of the lower limit of the ratio of D100 to D50 is 2.
 混合工程では、粉砕によって得られた焼結助剤粉末と、セラミック粉末、及び、必要に応じて添加剤を配合し、例えばボールミル等を用いて混合する。このようにして、焼結助剤粉末とセラミック粉末を含む混合原料を調製する。添加剤としては、バインダ、可塑剤、分散媒、及び離型剤等が挙げられる。バインダとしては、例えば、可塑性又は界面活性効果を有するメチルセルロース系のもの、熱分解性に優れたアクリル酸エステル系のものが挙げられる。可塑剤としては、例えばグリセリンが挙げられる。分散媒としては、イオン交換水及びエタノール等が挙げられる。 In the mixing process, the sintering aid powder obtained by pulverization is mixed with the ceramic powder and, if necessary, additives, and mixed using, for example, a ball mill. In this way, a mixed raw material containing the sintering aid powder and the ceramic powder is prepared. Examples of additives include binders, plasticizers, dispersion media, and release agents. Examples of binders include methylcellulose-based binders that have plasticity or surface activity, and acrylic ester-based binders that have excellent thermal decomposition properties. Examples of plasticizers include glycerin. Examples of dispersion media include ion-exchanged water and ethanol.
 セラミック粉末としては、例えば、窒化ケイ素粉末、窒化アルミニウム粉末、又は酸化アルミニウム粉末等を用いることができる。セラミック粉末のD50(メジアン径)は、0.1~6μmであってよく、0.5~4μmであってもよい。これによって、十分に緻密化したセラミック焼結体を得ることができる。セラミック粉末のD50は、焼結助剤粉末のD50と同じ方法で求められる。セラミック粉末の粒子径分布(頻度%)のピークの数も一つであってよい。 As the ceramic powder, for example, silicon nitride powder, aluminum nitride powder, or aluminum oxide powder can be used. The D50 (median diameter) of the ceramic powder may be 0.1 to 6 μm, or may be 0.5 to 4 μm. This allows a sufficiently densified ceramic sintered body to be obtained. The D50 of the ceramic powder is determined in the same manner as the D50 of the sintering aid powder. The number of peaks in the particle size distribution (frequency %) of the ceramic powder may also be one.
 セラミック粉末に対する焼結助剤粉末の質量基準の配合比は、0.03~0.12であってよく、0.05~0.1であってもよい。これによって、セラミック焼結体が緻密化し易くなり、抗折強度を十分に高くすることができる。 The mass ratio of the sintering aid powder to the ceramic powder may be 0.03 to 0.12, or may be 0.05 to 0.1. This makes it easier to densify the ceramic sintered body, and allows the flexural strength to be sufficiently high.
 混合工程で得られた混合原料を、ドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布して乾燥し、成形して成形体を得る。成形圧力は3~30MPaであってよい。成形体は一軸加圧して作製してもよいし、CIPによって作製してもよい。また、ホットプレスによって成形しながら焼成してもよい。例えば、ドクターブレード法等の上記方法によってセラミックグリーンシート基材を作製した後、ダイとパンチを備える金型を用いてセラミックグリーンシート基材を打ち抜いて成形体を得てもよい。 The mixed raw material obtained in the mixing step is applied to a release film at a specified thickness by a doctor blade method, a calendar method, an extrusion method, or the like, and then dried and molded to obtain a molded body. The molding pressure may be 3 to 30 MPa. The molded body may be produced by uniaxial pressing or by CIP. It may also be fired while being molded by hot pressing. For example, after producing a ceramic green sheet substrate by the above-mentioned methods such as the doctor blade method, the ceramic green sheet substrate may be punched out using a mold equipped with a die and a punch to obtain a molded body.
 金型で打ち抜かれる際のセラミックグリーンシート基材の固形分の含有量は、65~85質量%であってよく、75~85質量%であってもよい。固形分の含有量は、金型で打ち抜く前に、セラミックグリーンシート基材を乾燥する乾燥工程を行って調節してもよい。 The solid content of the ceramic green sheet substrate when punched with a die may be 65 to 85% by mass, or 75 to 85% by mass. The solid content may be adjusted by carrying out a drying process to dry the ceramic green sheet substrate before punching with a die.
 焼成工程で成形体を焼成する前に、成形体の脱脂を行ってもよい。脱脂方法は特に限定されず、例えば、成形体を空気中又は窒素等の非酸化雰囲気中で300~700℃に加熱して行ってよい。加熱時間は、例えば1~10時間であってよい。 The molded body may be degreased before being sintered in the sintering step. The degreasing method is not particularly limited, and may be performed, for example, by heating the molded body to 300 to 700°C in air or a non-oxidizing atmosphere such as nitrogen. The heating time may be, for example, 1 to 10 hours.
 セラミック焼結体は、成形体を焼成して得ることができる。焼成時の雰囲気、温度及び時間等は、セラミック焼結体の種類に応じて適宜設定することができる。セラミック焼結体として窒化ケイ素焼結体を製造する場合、窒素ガス又はアルゴンガス等の不活性ガス雰囲気中で行ってよい。焼成時の圧力は、0.7~1MPaであってよい。焼成温度は1800~2100℃、1800~2000℃、又は1800~1900℃であってよい。当該焼成温度における焼成時間は3~20時間であってよく、4~16時間であってよい。 The ceramic sintered body can be obtained by firing the molded body. The atmosphere, temperature, time, etc. during firing can be set appropriately depending on the type of ceramic sintered body. When producing a silicon nitride sintered body as the ceramic sintered body, it may be performed in an inert gas atmosphere such as nitrogen gas or argon gas. The pressure during firing may be 0.7 to 1 MPa. The firing temperature may be 1800 to 2100°C, 1800 to 2000°C, or 1800 to 1900°C. The firing time at the firing temperature may be 3 to 20 hours, or 4 to 16 hours.
 セラミック焼結体として窒化アルミニウム焼結体を製造する場合、焼成温度は例えば1760~1840℃であってよい。1760~1840℃の温度範囲における保持時間は、例えば1~10時間であってよい。焼成は大気圧下で行ってよい。窒化ケイ素焼結体及び窒化アルミニウム焼結体以外のセラミック焼結体(例えば、及び酸化アルミニウム焼結体)を製造する場合、焼結体の緻密化が十分に進行するような焼結条件を適宜設定すればよい。 When producing an aluminum nitride sintered body as the ceramic sintered body, the firing temperature may be, for example, 1760 to 1840°C. The holding time in the temperature range of 1760 to 1840°C may be, for example, 1 to 10 hours. Firing may be carried out under atmospheric pressure. When producing a ceramic sintered body other than a silicon nitride sintered body or an aluminum nitride sintered body (for example, and an aluminum oxide sintered body), the sintering conditions may be appropriately set so that the sintered body is sufficiently densified.
 図5は、本実施形態の製造方法の一例において焼結が進行するときの粒成長のイメージを示す図である。この例では、図5の(a)に示されるように、成形体において、微細な焼結助剤粉末32がセラミック粒子12中に高い均一性で分散している。このような成形体を焼成すると、図5の(b)に示されるように液化した焼結助剤相32aが毛細管現象によって粒界に拡散する。焼結助剤相32aが拡散すると成形体(セラミック焼結体)の収縮が進行し、図5の(c)のように気孔22が消滅する。加熱を継続すると、セラミック粒子12が焼結助剤相32a中に溶けて、図5の(d)に示されるように柱状のセラミック粒子14が生成する。このように、液相焼結が進行する際に、セラミック粒子の円滑な粒成長に伴って気孔22が十分に消滅するため、セラミック焼結体に含まれる気孔を十分に低減することができる。焼結助剤相32aの一部はセラミック焼結体に残存してもよい。 5 is a diagram showing an image of grain growth as sintering progresses in an example of the manufacturing method of this embodiment. In this example, as shown in FIG. 5(a), fine sintering aid powder 32 is dispersed with high uniformity in ceramic particles 12 in the molded body. When such a molded body is fired, the liquefied sintering aid phase 32a diffuses to the grain boundaries by capillary action as shown in FIG. 5(b). When the sintering aid phase 32a diffuses, the shrinkage of the molded body (ceramic sintered body) progresses, and the pores 22 disappear as shown in FIG. 5(c). When heating is continued, the ceramic particles 12 melt into the sintering aid phase 32a, and columnar ceramic particles 14 are generated as shown in FIG. 5(d). In this way, as liquid phase sintering progresses, the pores 22 disappear sufficiently with the smooth grain growth of the ceramic particles, so that the pores contained in the ceramic sintered body can be sufficiently reduced. A part of the sintering aid phase 32a may remain in the ceramic sintered body.
 図9は、従来の製造方法において焼結が進行するときの粒成長のイメージを示す図である。従来の製造方法では、図9の(a)に示されるように、成形体において、焼結助剤粉末の凝集体132がセラミック粒子112中に含まれている。そのような従来の成形体の断面写真が図10に示されている。このような成形体を焼成すると、図9の(b)に示されるように液化した焼結助剤相132aが凝集体132を起点に毛細管現象によって粒界に拡散する。毛細管現象による拡散が進行すると、凝集体132のサイズが大きいため、凝集体132の部分に気孔122が生じる。気孔122は大きいサイズを有するため、成形体が収縮しても消滅せず、図9の(c)に示されるように気孔122がセラミック焼結体中に残存する。このようにして、セラミック焼結体中に含まれるサイズの大きな気孔の個数が増加する。図11は、このようにして得られる従来のセラミック焼結体の断面110Cを示している。断面110Cには凝集体132に由来する気孔122が含まれている。 9 is a diagram showing an image of grain growth as sintering progresses in a conventional manufacturing method. In the conventional manufacturing method, as shown in FIG. 9(a), in the molded body, aggregates 132 of sintering aid powder are contained in ceramic particles 112. A cross-sectional photograph of such a conventional molded body is shown in FIG. 10. When such a molded body is fired, as shown in FIG. 9(b), the liquefied sintering aid phase 132a diffuses from the aggregates 132 to the grain boundaries by capillary action starting from the aggregates 132. As diffusion by capillary action progresses, pores 122 are formed in the aggregates 132 because of the large size of the aggregates 132. Since the pores 122 are large in size, they do not disappear even when the molded body shrinks, and the pores 122 remain in the ceramic sintered body as shown in FIG. 9(c). In this way, the number of large pores contained in the ceramic sintered body increases. FIG. 11 shows a cross section 110C of the conventional ceramic sintered body obtained in this way. The cross section 110C contains pores 122 originating from the aggregates 132.
 従来の製造方法に対し、本実施形態の製造方法では、焼結助剤粉末の粒子が十分に微細であり、且つ粒子同士の凝集が抑制されている。このため、焼結助剤粉末の痕跡として残存する気孔を低減できる。これによって、焼結過程で生じる気孔の個数を低減するとともに、気孔のサイズを小さくすることができる。このようにして得られるセラミック焼結体の気孔の個数は十分に低減されるとともに、気孔のサイズは十分に低減されている。またこのセラミック焼結体は640MPa以上という高い抗折強度を有する。セラミック焼結体の抗折強度は、上述したとおり、670MPa以上、690MPa以上、又は720MPa以上であってもよい。セラミック焼結体に含まれる粗大気孔及び微小気孔の平均個数P,Pも上述したとおりである。このようなセラミック焼結体は、温度変化に伴って内部応力が発生したときに、クラックの発生及び進展を十分に抑制することができる。このため、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れる。 In the manufacturing method of the present embodiment, the particles of the sintering aid powder are sufficiently fine, and the aggregation of the particles is suppressed, compared to the conventional manufacturing method. Therefore, the pores remaining as traces of the sintering aid powder can be reduced. This reduces the number of pores generated during the sintering process and reduces the size of the pores. The number of pores in the ceramic sintered body obtained in this manner is sufficiently reduced, and the size of the pores is sufficiently reduced. In addition, this ceramic sintered body has a high flexural strength of 640 MPa or more. As described above, the flexural strength of the ceramic sintered body may be 670 MPa or more, 690 MPa or more, or 720 MPa or more. The average numbers P 1 and P 2 of the coarse pores and micropores contained in the ceramic sintered body are also as described above. Such a ceramic sintered body can sufficiently suppress the occurrence and progression of cracks when internal stress occurs with a change in temperature. Therefore, it has excellent heat cycle resistance and excellent insulation reliability at high temperatures.
 図8は、接合体(回路基板)の漏れ電流を測定して絶縁破壊を検査する検査装置の一例を模式的に示す図である。検査装置400は、交流電源60と、交流電源60に接続された耐電圧試験器50とを備える。耐電圧試験器50の一方の端子は、セラミック板10に接合された金属板41に接触する導電性支持部72aと電気的に接続される。耐電圧試験器50の他方の端子は、絶縁油76を貯留する貯留槽77内に配置される電極70を介して、金属板42に接触する導電性支持部72bと電気的に接続される。 FIG. 8 is a schematic diagram showing an example of an inspection device that measures the leakage current of a joint (circuit board) to inspect for dielectric breakdown. The inspection device 400 includes an AC power source 60 and a voltage resistance tester 50 connected to the AC power source 60. One terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72a that contacts the metal plate 41 joined to the ceramic plate 10. The other terminal of the voltage resistance tester 50 is electrically connected to a conductive support part 72b that contacts the metal plate 42 via an electrode 70 that is disposed in a storage tank 77 that stores insulating oil 76.
 電極70は、貯留槽77の底面及び一側面に沿って配置されている。電極70は、図8に示されるように、鉛直方向断面でみたときにL字型形状を有している。電極70には、導電性支持部72bに隣接して、2つの絶縁性支持部74が設置されている。2つの絶縁性支持部74は、金属板42とそれぞれ接し、接合体100を絶縁油76中において支持している。 The electrode 70 is arranged along the bottom surface and one side surface of the storage tank 77. As shown in FIG. 8, the electrode 70 has an L-shape when viewed in vertical cross section. Two insulating support parts 74 are provided on the electrode 70 adjacent to the conductive support part 72b. The two insulating support parts 74 each contact the metal plate 42, and support the assembly 100 in the insulating oil 76.
 電極70及び導電性支持部72a,72bとしては、例えば無酸素銅製のものを用いることができる。絶縁油76としては、例えばフッ素系不活性液体が用いることができる。耐電圧試験器50としては市販のものを用いることができる。このような検査装置400では、セラミック板10を挟む金属板41,42の間に例えば10~15kV程度の電圧を印加し、耐電圧試験器50において漏れ電流の有無を測定する。絶縁油76を加熱することによって、例えば100℃以上の高温下における接合体100におけるセラミック板10の絶縁性能を評価することができる。 The electrode 70 and the conductive support parts 72a, 72b may be made of, for example, oxygen-free copper. The insulating oil 76 may be, for example, a fluorine-based inert liquid. The voltage resistance tester 50 may be a commercially available product. In this inspection device 400, a voltage of, for example, about 10 to 15 kV is applied between the metal plates 41, 42 that sandwich the ceramic plate 10, and the voltage resistance tester 50 measures the presence or absence of leakage current. By heating the insulating oil 76, the insulating performance of the ceramic plate 10 in the bonded body 100 at high temperatures, for example, above 100°C, may be evaluated.
 検査装置は図8の構成に限定されず、例えば100℃以上の温度下で、金属板41,42間に電圧を印加したときの漏れ電流を測定可能な検査装置であれば、特に制限なく用いることができる。 The inspection device is not limited to the configuration shown in FIG. 8, and can be used without any particular restrictions as long as it is an inspection device that can measure leakage current when a voltage is applied between metal plates 41 and 42 at a temperature of, for example, 100°C or higher.
 以上、本開示の実施形態を説明したが、本開示は上記実施形態に何ら限定されるものではない。セラミック焼結体の実施形態に関する説明内容は、接合体、パワーモジュール、及びセラミック焼結体の製造方法にも適用される。セラミック焼結体の製造方法の実施形態に関する説明内容は、セラミック焼結体にも適用される。 Although the embodiments of the present disclosure have been described above, the present disclosure is in no way limited to the above-described embodiments. The contents of the description regarding the embodiments of the ceramic sintered body also apply to the bonded body, the power module, and the manufacturing method of the ceramic sintered body. The contents of the description regarding the embodiments of the manufacturing method of the ceramic sintered body also apply to the ceramic sintered body.
 上記各実施形態で具体的に記載された数値範囲の上限値及び下限値を任意に組み合わせた数値範囲も、本開示に含まれる。また、数値範囲の上限値及び/又は下限値を、以下に説明する実施例の値で置換したものも本開示に含まれる。  Numerical ranges that combine the upper and lower limit values of the numerical ranges specifically described in each of the above embodiments are also included in the present disclosure. In addition, numerical ranges in which the upper and/or lower limit values are replaced with the values of the examples described below are also included in the present disclosure.
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の具体例に限定されるものではない。 The contents of this disclosure will be explained in more detail with reference to examples and comparative examples, but this disclosure is not limited to the specific examples below.
[焼結助剤粉末の調製]
(比較例1~5、実施例1~3)
 焼結助剤粉末の原料として、市販の酸化イットリウム粉末、酸化マグネシウム粉末及びシリカ粉末を準備した。これらを、Y:MgO:SiO=5:2:2の質量比となるように配合して混合粉末を得た。ビーズミル式粉砕機(アシザワ・ファインテック株式会社製、装置名:スターミルLMZ)を用いて混合粉末を粉砕し、焼結助剤粉末を得た。ビーズミル式粉砕機による粉砕条件(ビーズの直径、ロータの周速及び粉砕時間)を表1及び表2に示すとおりに変更して、粉砕条件が互いに異なる複数種類の焼結助剤粉末を調製した。
[Preparation of sintering aid powder]
(Comparative Examples 1 to 5, Examples 1 to 3)
As raw materials for the sintering aid powder, commercially available yttrium oxide powder, magnesium oxide powder, and silica powder were prepared. These were mixed in a mass ratio of Y2O3 :MgO: SiO2 = 5:2:2 to obtain a mixed powder. The mixed powder was pulverized using a bead mill type pulverizer (manufactured by Ashizawa Finetech Co., Ltd., device name: Star Mill LMZ) to obtain a sintering aid powder. The pulverization conditions (bead diameter, rotor circumferential speed, and pulverization time) of the bead mill type pulverizer were changed as shown in Tables 1 and 2 to prepare multiple types of sintering aid powders with different pulverization conditions.
 レーザー回折・散乱法による粒子径分布測定装置(日機装株式会社製、装置名:粒子径分布測定器 MT3000II)を用いて、各焼結助剤粉末の体積基準の粒子径分布を測定した。これらの粒子径分布の測定結果から、D50(メジアン径)、及び、D100(最大粒子径)を求めた。結果は、表1及び表2に示すとおりであった。表1及び表2には、D50に対するD100の比も示した。実施例1~3の粒子径分布(頻度%)は、図4に示すようにいずれもピークを一つのみ有していた。 The volumetric particle size distribution of each sintering aid powder was measured using a particle size distribution measuring device using the laser diffraction/scattering method (manufactured by Nikkiso Co., Ltd., device name: particle size distribution measuring device MT3000II). From the particle size distribution measurement results, D50 (median size) and D100 (maximum particle size) were calculated. The results are shown in Tables 1 and 2. Tables 1 and 2 also show the ratio of D100 to D50. The particle size distributions (frequency %) of Examples 1 to 3 all had only one peak, as shown in Figure 4.
 表1の比較例1~3の結果から、ビーズの直径を小さくすることによって、焼結助剤のD50及びD100を小さくできることが確認された。また、比較例3,4及び実施例1の結果から、ロータの周速を大きくすることによって、D50及び/又はD100を小さくできることが確認された。実施例1,2の結果から、粉砕時間を長くするとD50及びD100を小さくできることが確認された。一方、実施例2,3及び比較例5の結果から、粉砕時間を長くし過ぎると、D50及びD100が大きくなることが確認された。これは、粉砕粉が凝集することに起因すると考えられる。 The results of Comparative Examples 1 to 3 in Table 1 confirm that the D50 and D100 of the sintering aid can be reduced by reducing the diameter of the beads. Furthermore, the results of Comparative Examples 3 and 4 and Example 1 confirm that the D50 and/or D100 can be reduced by increasing the circumferential speed of the rotor. The results of Examples 1 and 2 confirm that the D50 and D100 can be reduced by extending the grinding time. On the other hand, the results of Examples 2 and 3 and Comparative Example 5 confirm that the D50 and D100 increase when the grinding time is too long. This is thought to be due to the aggregation of the ground powder.
[窒化ケイ素板の作製]
(実施例4)
 市販の窒化ケイ素粉末(D50:0.7μm)、実施例2の焼結助剤粉末、及び添加剤(溶剤系のバインダ)を、ビーズミルに入れて混合し、原料スラリーを調製した。窒化ケイ素粉末と焼結助剤粉末の配合比は、窒化ケイ素粉末:焼結助剤粉末=91:9とした。次に、離型フィルム上にドクターブレード法によって、上述の原料スラリーを塗布してグリーンシートを作製した。作製したセラミックグリーンシートを、縦×横=250mm×180mmとなるように切断し、70枚積層して積層体を得た。上記積層体を、カーボンヒータを備える電気炉中に配置し、空気中、500℃で20時間加熱して脱脂した。
[Preparation of silicon nitride plate]
Example 4
Commercially available silicon nitride powder (D50: 0.7 μm), the sintering aid powder of Example 2, and an additive (solvent-based binder) were mixed in a bead mill to prepare a raw material slurry. The compounding ratio of the silicon nitride powder and the sintering aid powder was silicon nitride powder: sintering aid powder = 91:9. Next, the above-mentioned raw material slurry was applied to a release film by a doctor blade method to prepare a green sheet. The prepared ceramic green sheet was cut to a length x width = 250 mm x 180 mm, and 70 sheets were stacked to obtain a laminate. The above laminate was placed in an electric furnace equipped with a carbon heater and heated in air at 500 ° C for 20 hours to degrease.
 脱脂後の成形体を焼成炉内に置いて、焼成炉内を100Pa以下に減圧し、900℃まで昇温した。その後、焼成炉内に窒素ガスを導入し、約0.9MPaの加圧下で1500℃まで昇温し、4時間保持した。保持後、1830℃まで昇温し、1830℃で5時間保持した。このようにして厚さ3mmの窒化ケイ素板を得た。 The degreased molded body was placed in a sintering furnace, the pressure in the furnace was reduced to less than 100 Pa, and the temperature was raised to 900°C. Nitrogen gas was then introduced into the furnace, and the temperature was raised to 1500°C under a pressure of approximately 0.9 MPa and held at that temperature for 4 hours. After that, the temperature was raised to 1830°C and held at 1830°C for 5 hours. In this way, a silicon nitride plate with a thickness of 3 mm was obtained.
(実施例5)
 実施例2の焼結助剤粉末に代えて、実施例1の焼結助剤粉末を用いたこと以外は、実施例4と同様にして窒化ケイ素焼結体を得た。
Example 5
A silicon nitride sintered body was obtained in the same manner as in Example 4, except that the sintering aid powder of Example 1 was used instead of the sintering aid powder of Example 2.
(実施例6)
 実施例2の焼結助剤粉末に代えて、実施例3の焼結助剤粉末を用いたこと以外は、実施例4と同様にして窒化ケイ素焼結体を得た。
Example 6
A silicon nitride sintered body was obtained in the same manner as in Example 4, except that the sintering aid powder of Example 3 was used instead of the sintering aid powder of Example 2.
(比較例6)
 市販の酸化イットリウム粉末、酸化マグネシウム粉末及びシリカ粉末を、実施例1と同じ質量比で配合して混合粉末を得た。この混合粉末を、ビーズミル式粉砕機で粉砕することなく焼結助剤粉末として実施例4で用いた窒化ケイ素粉末及び添加剤と配合した。ボールミルを用いてこれらを混合して原料スラリーを調製した。この原料スラリーを用いたこと以外は、実施例4と同様にして窒化ケイ素焼結体を得た。実施例1で用いた粒子径分布測定装置を用いて、ボールミルに入れる前の混合粉末(焼結助剤粉末)の粒子径分布を測定した。この粒子径分布の測定結果から、D50(メジアン径)、及び、D100(最大粒子径)を求めた。その結果、D50は3.171μm、D100は497.7μmであった。また、比較例6で用いた焼結助剤粉末の粒子径分布は図12と同様に2つのピークを有していた。このように2つのピークがあるのは、焼結助剤粉末に粒子の凝集体が含まれていることによるものである。
(Comparative Example 6)
Commercially available yttrium oxide powder, magnesium oxide powder and silica powder were blended in the same mass ratio as in Example 1 to obtain a mixed powder. This mixed powder was blended with the silicon nitride powder and additives used in Example 4 as a sintering aid powder without being pulverized in a bead mill type pulverizer. These were mixed using a ball mill to prepare a raw material slurry. A silicon nitride sintered body was obtained in the same manner as in Example 4, except that this raw material slurry was used. The particle size distribution of the mixed powder (sintering aid powder) before being put into the ball mill was measured using the particle size distribution measuring device used in Example 1. From the measurement results of this particle size distribution, D50 (median size) and D100 (maximum particle size) were obtained. As a result, D50 was 3.171 μm and D100 was 497.7 μm. In addition, the particle size distribution of the sintering aid powder used in Comparative Example 6 had two peaks as in FIG. 12. The presence of two peaks is due to the presence of particle aggregates in the sintering aid powder.
[窒化ケイ素焼結体の評価]
<密度の測定>
 各実施例及び比較例で得られた板状の窒化ケイ素焼結体の密度を測定した。具体的には、各実施例及び比較例で得られた窒化ケイ素焼結体を5つずつ任意に選び、アルキメデス法によって密度を測定した。結果は、表3に示すとおりであった。表3に示すとおり、各実施例及び比較例の窒化ケイ素焼結体の密度は同等であった。このことから、密度に基づいて、粗大気孔及び微小気孔の平均個数を推測することは難しいと考えられる。
[Evaluation of silicon nitride sintered body]
<Density measurement>
The density of the plate-shaped silicon nitride sintered body obtained in each Example and Comparative Example was measured. Specifically, five silicon nitride sintered bodies obtained in each Example and Comparative Example were randomly selected, and the density was measured by Archimedes' method. The results were as shown in Table 3. As shown in Table 3, the density of the silicon nitride sintered bodies in each Example and Comparative Example was the same. From this, it is considered difficult to estimate the average number of coarse pores and micropores based on the density.
<粗大気孔の測定>
 各実施例及び比較例で得られた窒化ケイ素焼結体を厚さ方向に沿って切断し、各切断面を研磨した。走査型電子顕微鏡(SEM)を用いて、切断面を200倍に拡大して観察した。図6及び図13に示すような各切断面において、24視野(1視野あたりの面積:0.74mm)を観察して、粗大気孔のサイズと合計個数を測定した。上述したとおり、一つの気孔の外縁において間隔が最も大きくなるように選択される2点を結ぶ線分の長さが10μm以上のものを粗大気孔とした。これらの測定結果に基づいて、粗大気孔の平均個数Pを求めた。結果は表4に示すとおりであった。
<Measurement of coarse pores>
The silicon nitride sintered body obtained in each Example and Comparative Example was cut along the thickness direction, and each cut surface was polished. The cut surface was observed at 200 times magnification using a scanning electron microscope (SEM). In each cut surface as shown in Figures 6 and 13, 24 fields of view (area per field: 0.74 mm2 ) were observed to measure the size and total number of coarse pores. As described above, a line segment connecting two points selected so that the interval between them is the largest on the outer edge of one pore and has a length of 10 μm or more was defined as a coarse pore. Based on these measurement results, the average number P1 of coarse pores was determined. The results are shown in Table 4.
<微小気孔の測定>
 上記窒化ケイ素板の各切断面を1000倍に拡大して観察した。図7及び図14に示すようなSEM写真に含まれる微小気孔のサイズと個数を、画像処理ソフトウエア(ImageJ)を用いて測定した。粗大気孔の測定と同様に、各切断面において24視野(1視野あたりの面積:0.02mm)で行って、微小気孔のサイズと合計個数を測定した。上述したとおり、一つの気孔の外縁において間隔が最も大きくなるように選択される2点を結ぶ線分の長さが0.05μm以上且つ10μm未満ものを微小気孔とした。測定結果に基づいて、微小気孔の平均個数P、微小気孔のサイズ(当該線分)の最大値、平均値、最小値及び標準偏差を求めた。結果は、表5に示すとおりであった。
<Measurement of Micropores>
Each cut surface of the silicon nitride plate was observed at a magnification of 1000 times. The size and number of micropores contained in the SEM photographs shown in Figures 7 and 14 were measured using image processing software (ImageJ). As in the measurement of coarse pores, the size and total number of micropores were measured in 24 fields of view (area per field: 0.02 mm 2 ) in each cut surface. As described above, a line segment connecting two points selected so that the distance between them is the largest on the outer edge of one pore was defined as a micropore having a length of 0.05 μm or more and less than 10 μm. Based on the measurement results, the average number P 2 of micropores, the maximum value, average value, minimum value and standard deviation of the size of the micropores (the line segment) were obtained. The results were as shown in Table 5.
<窒化ケイ素粒子の測定>
 各実施例及び比較例の断面(1視野あたりの面積:0.02mm)のSEM写真(1000倍)に含まれる窒化ケイ素粒子のうち、その外縁において間隔が最も大きくなるように選択される2点を結ぶ線分(長軸)の長さが20μm以上である窒化ケイ素粒子の個数を計測した。結果は、表5の「粒子の個数」の欄に示すとおりであった。
<Measurement of Silicon Nitride Particles>
Among the silicon nitride particles contained in SEM photographs (1000x) of the cross sections (area per field of view: 0.02 mm2 ) of each Example and Comparative Example, the number of silicon nitride particles whose length of the line segment (major axis) connecting two points selected so that the distance between them is the greatest on their outer edges was 20 μm or more was counted. The results are shown in the "Number of particles" column in Table 5.
 表5に示すとおり、微小気孔のサイズの平均値は、各実施例及び比較例6で大きな違いはなかった。一方で、微小気孔のサイズのばらつきは、各実施例の方が比較例6よりも小さかった。また、各実施例の方が比較例よりも窒化ケイ素粒子の粒成長が十分に進んでいることが確認された。各実施例の窒化ケイ素板に含まれる、上記線分の長さが20μm以上である窒化ケイ素粒子はいずれも4以上のアスペクト比を有していた。表5の「粒子の個数」は、1視野での測定結果であるが、10視野で同様の測定を行ったところ、実施例4~6では、各視野における、長軸の長さが20μm以上である窒化ケイ素粒子の個数はいずれも15個以上であった。 As shown in Table 5, there was no significant difference in the average size of the micropores between each Example and Comparative Example 6. On the other hand, the variation in the size of the micropores was smaller in each Example than in Comparative Example 6. It was also confirmed that the grain growth of the silicon nitride particles had progressed more sufficiently in each Example than in the Comparative Example. All of the silicon nitride particles in the silicon nitride plates of each Example, in which the length of the line segment was 20 μm or more, had an aspect ratio of 4 or more. The "number of particles" in Table 5 is the result of measurement in one visual field, but when a similar measurement was performed in 10 visual fields, the number of silicon nitride particles in each visual field with a major axis length of 20 μm or more was 15 or more in all cases in Examples 4 to 6.
<抗折強度の測定(ヒートサイクル試験前)>
 各実施例及び比較例6の窒化ケイ素板の3点曲げ抗折強度を測定した。測定は、JIS R 1601:2008に準拠し、市販の抗折強度計(株式会社島津製作所製、装置名:AG-2000)を用いて行った。各実施例及び比較例6において測定試料を20個ずつ作製して測定を行った(N=20)。測定値の平均値、最大値及び最小値は表6に示すとおりであった。
<Measurement of bending strength (before heat cycle test)>
The three-point bending flexural strength of the silicon nitride plates of each Example and Comparative Example 6 was measured. The measurement was performed in accordance with JIS R 1601:2008 using a commercially available flexural strength meter (manufactured by Shimadzu Corporation, device name: AG-2000). For each Example and Comparative Example 6, 20 measurement samples were prepared and measured (N=20). The average, maximum and minimum values of the measured values were as shown in Table 6.
 表6に示すとおり、比較例6に比べて各実施例の窒化ケイ素焼結体の方が高い抗折強度を有していた。 As shown in Table 6, the silicon nitride sintered bodies of each Example had higher flexural strength than Comparative Example 6.
<抗折強度の測定(ヒートサイクル試験後)>
 Ag粉末(福田金属箔粉工業株式会社製、商品名:Ag-HWQ、平均粒子径D50:2.5μm、比表面積0.4m/g)89.5質量部、Cu粉末(福田金属箔粉工業株式会社製、商品名:Cu-HWQ、平均粒子径D50:3.0μm、比表面積:0.4m/g、)9.5質量部、Sn粉末(福田金属箔粉工業株式会社製:Sn-HPN、平均粒子径D50:3μm、比表面積0.1m2/g)1.0質量部の合計100質量部に対して、水素化チタン粉末(トーホーテック株式会社製、商品名:TCH-100)を3.5質量部含むろう材を調製した。このろう材を、塗布量8mg/cmとなるように、実施例4,5,6及び比較例6の両主面の上にスクリーン印刷法で塗布した。
<Measurement of bending strength (after heat cycle test)>
A brazing filler metal was prepared containing 89.5 parts by mass of Ag powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Ag-HWQ, average particle diameter D50: 2.5 μm, specific surface area: 0.4 m2 /g), 9.5 parts by mass of Cu powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd., product name: Cu-HWQ, average particle diameter D50: 3.0 μm, specific surface area: 0.4 m2/g), and 1.0 part by mass of Sn powder (manufactured by Fukuda Metal Foil & Powder Co., Ltd.: Sn-HPN, average particle diameter D50: 3 μm, specific surface area: 0.1 m2/g) for a total of 100 parts by mass, and 3.5 parts by mass of titanium hydride powder (manufactured by Toho Tech Co., Ltd., product name: TCH-100). This brazing filler metal was applied by screen printing to both main surfaces of Examples 4, 5, and 6 and Comparative Example 6 to a coating amount of 8 mg/ cm2 .
 板状の窒化ケイ素焼結体(窒化ケイ素板)の一方の主面のろう材層の上に回路形成用銅板を、他方の主面のろう材層の上に放熱板形成用銅板(いずれも厚さ0.8mm、純度99.60質量%のC1020無酸素銅板)を重ね合わせて積層体を得た。この積層体を、1.0×10-3Pa以下の真空中にて830℃且つ30分間の条件で加熱して、接合体を得た。接合した回路形成用銅板にエッチングレジストを印刷し、塩化第二鉄溶液で回路形成用銅板をエッチングして回路パターンを形成した。さらに、フッ化アンモニウム/過酸化水素溶液で、余分なろう材層を除去した。このようにして回路基板を作製した。 A copper plate for forming a circuit was placed on the brazing material layer on one main surface of a plate-shaped silicon nitride sintered body (silicon nitride plate), and a copper plate for forming a heat sink (C1020 oxygen-free copper plate with a thickness of 0.8 mm and a purity of 99.60% by mass) was placed on the brazing material layer on the other main surface to obtain a laminate. This laminate was heated under conditions of 830° C. and 30 minutes in a vacuum of 1.0×10 −3 Pa or less to obtain a bonded body. An etching resist was printed on the bonded copper plate for forming a circuit, and the copper plate for forming a circuit was etched with a ferric chloride solution to form a circuit pattern. Furthermore, an excess brazing material layer was removed with an ammonium fluoride/hydrogen peroxide solution. In this way, a circuit board was produced.
 作製した回路基板を、-55℃にて15分間、25℃にて15分間、175℃にて15分間、25℃にて15分間を1サイクルとして、2500サイクル繰り返すヒートサイクル試験を行った。ヒートサイクル試験後、塩化第二鉄溶液、及びフッ化アンモニウム/過酸化水素溶液を用いたエッチングで回路パターン及び放熱板形成用銅板を除去して、窒化ケイ素板を得た。このようにして得られた窒化ケイ素板の3点曲げ抗折強度を測定した。測定方法及び測定試料の数は、ヒートサイクル試験前の測定と同じとした。測定値の平均値、最大値及び最小値は表7に示すとおりであった。 The fabricated circuit board was subjected to a heat cycle test in which 2,500 cycles were repeated, with one cycle consisting of 15 minutes at -55°C, 15 minutes at 25°C, 15 minutes at 175°C, and 15 minutes at 25°C. After the heat cycle test, the circuit pattern and the copper plate used to form the heat sink were removed by etching using a ferric chloride solution and an ammonium fluoride/hydrogen peroxide solution to obtain a silicon nitride plate. The three-point bending strength of the silicon nitride plate thus obtained was measured. The measurement method and number of measurement samples were the same as those used before the heat cycle test. The average, maximum, and minimum measured values were as shown in Table 7.
 ヒートサイクル試験後も、実施例4~6の窒化ケイ素板の方が比較例6の窒化ケイ素板よりも高い抗折強度を有していた。表6と表7の数値を対比すると、ヒートサイクル試験による抗折強度の低下度合いが実施例4~6の方が比較例6よりも小さかった。このことは、実施例4~6の窒化ケイ素板が耐ヒートサイクル性に優れることを示している。この理由としては、粗大気孔及び微小気孔の個数が実施例4~6の方が比較例6よりも少ないために、熱膨張及び熱収縮に伴って生じる内部応力によるクラックの発生及び進展が抑制されることが考えられる。 Even after the heat cycle test, the silicon nitride plates of Examples 4 to 6 had higher flexural strength than the silicon nitride plate of Comparative Example 6. Comparing the values in Tables 6 and 7, the degree of decrease in flexural strength due to the heat cycle test was smaller in Examples 4 to 6 than in Comparative Example 6. This shows that the silicon nitride plates of Examples 4 to 6 have excellent heat cycle resistance. The reason for this is thought to be that the number of coarse pores and micropores is smaller in Examples 4 to 6 than in Comparative Example 6, which suppresses the occurrence and progression of cracks due to internal stresses caused by thermal expansion and contraction.
<高温絶縁性の評価>
 抗折強度を測定するときと同じ手順で、実施例4~6及び比較例6の窒化ケイ素焼結体を用いて回路基板を作製した。図8に示すような検査装置を用いて、JIS C2110-1:2010に準拠して各回路基板の耐電圧検査を行った(N=3)。この検査には、株式会社計測技術研究所製のAC20kV耐電圧試験器(型式:7473)を用いた。絶縁油としては、パーフルオロカーボン(スリーエムジャパン株式会社製、商品名:フロリナート、型番:FC-3283)を用いた。貯留槽77、電極70、導電性支持部72a,72b、及び絶縁性支持部74として、大西電子株式会社製の検査治具を用いた。電極70は無酸素銅製のものを、導電性支持部72a,72bは炭素工具鋼鋼材(SK材)にロジウムめっきが施されたものを、それぞれ用いた。
<Evaluation of high temperature insulation>
Circuit boards were produced using the silicon nitride sintered bodies of Examples 4 to 6 and Comparative Example 6 in the same procedure as that for measuring the flexural strength. Using an inspection device as shown in FIG. 8, a voltage resistance test was performed on each circuit board in accordance with JIS C2110-1:2010 (N=3). For this test, an AC 20 kV voltage resistance tester (model: 7473) manufactured by Keisoku Gijutsu Kenkyusho Co., Ltd. was used. Perfluorocarbon (manufactured by 3M Japan Ltd., product name: Fluorinert, model number: FC-3283) was used as the insulating oil. An inspection tool manufactured by Onishi Electronics Co., Ltd. was used as the reservoir 77, the electrode 70, the conductive support parts 72a, 72b, and the insulating support part 74. The electrode 70 was made of oxygen-free copper, and the conductive support parts 72a, 72b were made of carbon tool steel (SK material) plated with rhodium.
 検査装置の絶縁油を120℃に加熱し、当該絶縁油中に回路基板をセットした。0.1kV/秒の速さで9kVに昇圧し、60秒間キープした。その後、0.1kV/秒の速さで昇圧した。このように、1kV毎に60秒間キープ及び0.1kV/秒で昇圧を繰り返しながら、15kVまで昇圧した。15kVに到達するまでに、電流遮断電流量の閾値以上の電流が流れた場合を絶縁破壊と判定した。閾値は9.99mAとした。結果は、表8に示すとおりであった。 The insulating oil in the testing device was heated to 120°C, and the circuit board was placed in the insulating oil. The voltage was increased to 9 kV at a rate of 0.1 kV/sec and held there for 60 seconds. Thereafter, the voltage was increased at a rate of 0.1 kV/sec. In this manner, the voltage was increased up to 15 kV by repeatedly holding at 1 kV for 60 seconds and increasing at 0.1 kV/sec. Before reaching 15 kV, if a current flowed that was equal to or greater than the threshold for the current interruption current amount, it was judged to be insulation breakdown. The threshold was set to 9.99 mA. The results are shown in Table 8.
 実施例4では、15kVに到達しても、絶縁破壊しなかった。このことから、実施例4の回路基板は、高温での絶縁信頼性に最も優れることが確認された。実施例5,6の回路基板も、比較例6の回路基板よりも高温での絶縁信頼性に優れることが確認された。 In Example 4, no insulation breakdown occurred even when the voltage reached 15 kV. This confirmed that the circuit board of Example 4 has the best insulation reliability at high temperatures. It was also confirmed that the circuit boards of Examples 5 and 6 have better insulation reliability at high temperatures than the circuit board of Comparative Example 6.
 本開示によれば、耐ヒートサイクル性に優れるとともに、高温における絶縁信頼性に優れるセラミック焼結体及びその製造方法、並びに接合体が提供される。本開示は、そのようなセラミック焼結体を備えることによって信頼性に優れるパワーモジュールが提供される。 The present disclosure provides a ceramic sintered body that has excellent heat cycle resistance and excellent insulation reliability at high temperatures, a method for producing the same, and a bonded body. The present disclosure provides a power module that has excellent reliability by including such a ceramic sintered body.
 10A,10B…主面、10C,110C…断面、10…セラミック板、12,14,112…セラミック粒子、20,22,122…気孔、32…焼結助剤粉末、32a,132a…焼結助剤相、41,41a,42…金属板、50…耐電圧試験器、51,52…ろう材層、60…交流電源、70…電極、72a,72b…導電性支持部、74…絶縁性支持部、76…絶縁油、77…貯留槽、80…半導体素子、81,82,85…ハンダ、83…電極、84…金属ワイヤ、86…筐体、90…ベース板、92…冷却フィン、93…ネジ、94…グリース、95…樹脂、100…接合体、132…凝集体、200…パワーモジュール、400…検査装置。

 
10A, 10B...Main surface, 10C, 110C...Cross section, 10...Ceramic plate, 12, 14, 112...Ceramic particles, 20, 22, 122...Pores, 32...Sintering aid powder, 32a, 132a...Sintering aid phase, 41, 41a, 42...Metal plate, 50...Voltage resistance tester, 51, 52...Brazing layer, 60...AC power source, 70...Electrode, 72a, 72b...Conductive support portion, 74...Insulating support portion, 76...Insulating oil, 77...Storage tank, 80...Semiconductor element, 81, 82, 85...Solder, 83...Electrode, 84...Metal wire, 86...Housing, 90...Base plate, 92...Cooling fin, 93...Screw, 94...Grease, 95...Resin, 100...Joint, 132...Aggregate, 200...Power module, 400...Inspection device.

Claims (9)

  1.  セラミック粒子を含むセラミック焼結体であって、
     断面において、10μm以上のサイズを有する粗大気孔の平均個数が1個/mm未満であり、0.05μm以上且つ10μm未満のサイズを有する微小気孔の平均個数が400個/mm未満であり、
     抗折強度が640MPa以上である、セラミック焼結体。
    A ceramic sintered body comprising ceramic particles,
    In a cross section, the average number of coarse pores having a size of 10 μm or more is less than 1 pore/ mm2 , and the average number of micropores having a size of 0.05 μm or more and less than 10 μm is less than 400 pores/ mm2 ;
    A ceramic sintered body having a flexural strength of 640 MPa or more.
  2.  前記断面における気孔のサイズの最大値が6μm以下である、請求項1に記載のセラミック焼結体。 The ceramic sintered body according to claim 1, wherein the maximum pore size in the cross section is 6 μm or less.
  3.  前記微小気孔のサイズの平均値が1.0μm以下であり、標準偏差が0.6μm以下である、請求項1に記載のセラミック焼結体。 The ceramic sintered body according to claim 1, wherein the average size of the micropores is 1.0 μm or less and the standard deviation is 0.6 μm or less.
  4.  焼結助剤原料を粉砕機で粉砕してメジアン径が0.5~1.0μmの焼結助剤粉末を得る工程と、
     セラミック粉末と前記焼結助剤粉末とを含む混合原料を調製する工程と、
     前記混合原料の成形体を焼成して、抗折強度が640MPa以上であるセラミック焼結体を得る工程と、を有する、セラミック焼結体の製造方法。
    A step of pulverizing the sintering aid raw material with a pulverizer to obtain a sintering aid powder having a median diameter of 0.5 to 1.0 μm;
    preparing a mixed raw material containing a ceramic powder and the sintering aid powder;
    and firing the compact of the mixed raw material to obtain a ceramic sintered body having a flexural strength of 640 MPa or more.
  5.  前記セラミック焼結体の断面において、10μm以上のサイズを有する粗大気孔の平均個数が1個/mm未満、且つ、10μm未満のサイズを有する微小気孔の平均個数が400個/mm未満である、請求項4に記載のセラミック焼結体の製造方法。 5. The method for producing a ceramic sintered body according to claim 4, wherein in a cross section of the ceramic sintered body, the average number of coarse pores having a size of 10 μm or more is less than 1 pore/ mm2 , and the average number of micropores having a size of less than 10 μm is less than 400 pores/ mm2 .
  6.  請求項1~3のいずれか一つに記載の板状の前記セラミック焼結体と、金属板と、前記セラミック焼結体の主面と前記金属板の主面とを接合するろう材層と、を備える、接合体。 A joint comprising the plate-shaped ceramic sintered body according to any one of claims 1 to 3, a metal plate, and a brazing layer that joins a main surface of the ceramic sintered body to a main surface of the metal plate.
  7.  前記金属板の厚みが0.8mm以下である、請求項6に記載の接合体。 The joint body according to claim 6, wherein the thickness of the metal plate is 0.8 mm or less.
  8.  前記ろう材層は、銀、銅、錫、及び活性金属を含み、
     前記活性金属は、チタン、ハフニウム、ジルコニウム、及びニオブからなる群より選ばれる一種又は二種以上を含む、請求項6に記載の接合体。
    the braze layer includes silver, copper, tin, and an active metal;
    7. The joined body according to claim 6, wherein the active metal comprises one or more metals selected from the group consisting of titanium, hafnium, zirconium, and niobium.
  9.  請求項1~3のいずれか一つに記載の板状の前記セラミック焼結体と、金属板と、前記セラミック焼結体の主面と前記金属板の主面とを接合するろう材層と、を備える接合体と、
     当該接合体の前記金属板に電気的に接続される半導体素子と、を備える、パワーモジュール。

     
    A joint body including the plate-shaped ceramic sintered body according to any one of claims 1 to 3, a metal plate, and a brazing material layer joining a main surface of the ceramic sintered body and a main surface of the metal plate;
    a semiconductor element electrically connected to the metal plate of the joint body.

PCT/JP2023/041108 2022-11-25 2023-11-15 Ceramic sintered body, method for producing same, bonded body, and power module WO2024111483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-188485 2022-11-25
JP2022188485 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111483A1 true WO2024111483A1 (en) 2024-05-30

Family

ID=91195653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041108 WO2024111483A1 (en) 2022-11-25 2023-11-15 Ceramic sintered body, method for producing same, bonded body, and power module

Country Status (1)

Country Link
WO (1) WO2024111483A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314161A (en) * 2003-04-21 2004-11-11 Hitachi Metals Ltd Brazing material for ceramic substrates, and ceramic circuit board using the same
JP2006036554A (en) * 2004-07-22 2006-02-09 Toshiba Corp Silicon nitride sintered compact and its manufacturing method
JP2008285349A (en) * 2007-05-16 2008-11-27 Toshiba Corp Silicon nitride sintered compact and sliding member using the same
WO2011034075A1 (en) * 2009-09-15 2011-03-24 株式会社 東芝 Ceramic circuit board and process for producing same
WO2014069268A1 (en) * 2012-10-30 2014-05-08 株式会社東芝 Silicon nitride sintered body and wear resistant member using same
WO2016163263A1 (en) * 2015-04-07 2016-10-13 株式会社東芝 Sintered silicon nitride object and high-temperature-durable member comprising same
WO2019022133A1 (en) * 2017-07-25 2019-01-31 デンカ株式会社 Ceramic circuit board and production method therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004314161A (en) * 2003-04-21 2004-11-11 Hitachi Metals Ltd Brazing material for ceramic substrates, and ceramic circuit board using the same
JP2006036554A (en) * 2004-07-22 2006-02-09 Toshiba Corp Silicon nitride sintered compact and its manufacturing method
JP2008285349A (en) * 2007-05-16 2008-11-27 Toshiba Corp Silicon nitride sintered compact and sliding member using the same
WO2011034075A1 (en) * 2009-09-15 2011-03-24 株式会社 東芝 Ceramic circuit board and process for producing same
WO2014069268A1 (en) * 2012-10-30 2014-05-08 株式会社東芝 Silicon nitride sintered body and wear resistant member using same
WO2016163263A1 (en) * 2015-04-07 2016-10-13 株式会社東芝 Sintered silicon nitride object and high-temperature-durable member comprising same
WO2019022133A1 (en) * 2017-07-25 2019-01-31 デンカ株式会社 Ceramic circuit board and production method therefor

Similar Documents

Publication Publication Date Title
JP5673847B2 (en) Silicon nitride substrate and method for manufacturing silicon nitride substrate
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP5666748B1 (en) Cooling plate, manufacturing method thereof, and member for semiconductor manufacturing apparatus
EP2377839B1 (en) Silicon nitride substrate manufacturing method
JP6529999B2 (en) Method of manufacturing silicon nitride substrate
CN109690760B (en) Heat sink and method for manufacturing the same
JP5366859B2 (en) Silicon nitride substrate and semiconductor module using the same
JP7317397B2 (en) COPPER OXIDE PASTE AND METHOD FOR MANUFACTURING ELECTRONIC COMPONENT
WO2024111483A1 (en) Ceramic sintered body, method for producing same, bonded body, and power module
JP7064065B1 (en) How to improve the electrical insulation of ceramic sintered bodies, substrates, and ceramic sintered bodies
WO2024111484A1 (en) Bonded body and power module
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP7203286B2 (en) Aluminum nitride sintered body and its manufacturing method, circuit board, and jointed board
WO2021261452A1 (en) Aluminum nitride sintered body, and substrate
WO2020203683A1 (en) Silicon nitride sintered body, method for producing same, multilayer body and power module
TW202432501A (en) Sintered ceramic body, manufacturing method thereof, joining body, and power module
TW202432281A (en) Bonded body and power module
JP7429825B2 (en) Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board
JP3683067B2 (en) Aluminum nitride sintered body
JP7401718B1 (en) Silicon nitride sintered body and sintering aid powder
WO2024190346A1 (en) Aluminum nitride sintered body, and method for manufacturing aluminum nitride sintered body
JP2013182983A (en) Silicon nitride circuit board and module using the same
WO2023171510A1 (en) Ceramic sintered body, method for manufacturing same, and sintering aid powder
JP7223917B2 (en) Laminate, heat dissipation structure and semiconductor module
JP4868641B2 (en) Method for manufacturing aluminum nitride substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23894492

Country of ref document: EP

Kind code of ref document: A1