WO2017033855A1 - Aluminum nitride sintered body and method for producing same - Google Patents

Aluminum nitride sintered body and method for producing same Download PDF

Info

Publication number
WO2017033855A1
WO2017033855A1 PCT/JP2016/074212 JP2016074212W WO2017033855A1 WO 2017033855 A1 WO2017033855 A1 WO 2017033855A1 JP 2016074212 W JP2016074212 W JP 2016074212W WO 2017033855 A1 WO2017033855 A1 WO 2017033855A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum nitride
sintered body
main surface
aln
raw material
Prior art date
Application number
PCT/JP2016/074212
Other languages
French (fr)
Japanese (ja)
Inventor
基 永沢
秀行 大国
英章 粟田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2017033855A1 publication Critical patent/WO2017033855A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Definitions

  • the present invention relates to an aluminum nitride sintered body and a method for producing the same.
  • This application claims priority based on Japanese Patent Application No. 2015-164958 filed on August 24, 2015, and cites all the contents described in the above Japanese application.
  • the aluminum nitride sintered body has high heat dissipation due to high thermal conductivity, it is suitably used as a substrate for semiconductor devices, a substrate for semiconductor device circuits, and the like.
  • Patent Document 1 has 15 to 30 AlN crystal particles included in a linear distance of 50 ⁇ m, and has a thermal conductivity of 200 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more, Disclosed is a highly abrasive AlN sintered body having a surface roughness Ra of 0.01 ⁇ m or less and 5 or less degranulation traces having a maximum diameter of 5 ⁇ m or more contained per unit area of 50 ⁇ m ⁇ 50 ⁇ m on the surface.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-249379 has aluminum nitride as a main component, rare earth metal element in an oxide conversion of 0.4 mol% to 2.0 mol, and aluminum oxide in an amount of 0.5 mol% to 2.0 mol.
  • an aluminum nitride sintered body that contains no more than%, Si content is not more than 80 ppm, and the average particle size of aluminum nitride particles is not more than 3 ⁇ m, which is resistant to degranulation and has a relatively high thermal conductivity.
  • Patent Document 3 discloses that in a method for producing an aluminum nitride sintered body, the surface of the sintered body has a concentration of 15 to 15 prepared with an abrasive having JIS abrasive grain size # 240 to # 320. It is disclosed that defects on the surface of a sintered body can be reduced by spraying 30 vol% polishing slurry at 0.3 to 0.5 MPa and polishing the surface.
  • Patent Document 4 describes an oriented carbonization in which ⁇ -type silicon carbide particles and a solvent are mixed to prepare a raw material slurry, and this raw material slurry is solidified by a magnetic field of 1 T or more and sintered.
  • a method for producing a silicon sintered body is disclosed.
  • Such a slurry can generally have a pH of 9 or more.
  • the pH is about 9 to 12 as an aqueous slurry.
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-193672 is characterized in that a non-ferromagnetic powder having a crystal structure other than equiaxed crystals is dispersed in a solvent, and the slurry is solidified and molded in a magnetic field and then sintered. A method for producing an oriented ceramic sintered body is disclosed.
  • the aluminum nitride sintered body of the present disclosure has one main surface and includes a plurality of aluminum nitride crystal particles.
  • the aluminum nitride crystal particles are the (11-20) plane of all the aluminum nitride crystal particles, or a part of the aluminum nitride crystal particles.
  • the (11-20) plane of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one principal plane.
  • the method for producing an aluminum nitride sintered body of the present disclosure includes a step of forming a raw material slurry by dispersing a raw material powder containing an aluminum nitride powder in a solvent, and after adjusting the pH of the raw material slurry to 1 to 6
  • a step of forming a molded body including a step of forming a molded body having one principal surface by slip casting in a magnetic field and a step of forming an aluminum nitride sintered body by sintering the molded body.
  • the magnetic field is applied in a direction parallel to one main surface of the compact.
  • FIG. 1 is a schematic cross-sectional view showing an example of a molding apparatus used for manufacturing an aluminum nitride sintered body according to an aspect of the present invention.
  • FIG. 2 is a schematic diagram showing an example of the orientation of aluminum nitride crystal grains in an aluminum nitride sintered body according to an aspect of the present invention.
  • FIG. 3 is a schematic diagram showing another example of the orientation of aluminum nitride crystal grains in an aluminum nitride sintered body according to an aspect of the present invention.
  • FIG. 4 is a flowchart showing an example of a method for manufacturing an aluminum nitride sintered body according to another aspect of the present invention.
  • Patent Document 1 Since the AlN sintered body disclosed in Japanese Patent Laid-Open No. 2002-201072 (Patent Document 1) has degranulation traces with a maximum diameter of 5 ⁇ m or more, the maximum height roughness Rz becomes large and is attached to the AlN sintered body. There are problems such as peeling of semiconductor devices to be combined and generation of electric discharge.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-249379
  • Patent Document 3 In the method for producing an aluminum nitride sintered body disclosed in Japanese Patent Application Laid-Open No. 2002-293637 (Patent Document 3), since the polishing is performed using an abrasive of JIS abrasive grain size # 240 to # 320, degranulation occurs and the maximum There is a problem that the height roughness Rz becomes large and a problem that polishing unevenness occurs because a polishing slurry having a concentration of 15 to 30% by volume is sprayed at a low spraying pressure of 0.3 to 0.5 MPa.
  • the pH of the raw material slurry is set to 9 or more, and nitriding as a raw material of the aluminum nitride sintered body is performed.
  • the pH of the aluminum powder slurry is 9 or more, hydrolysis of the surface of the aluminum nitride crystal particles occurs, the viscosity of the slurry rises, and the aluminum nitride in the aluminum nitride powder in a magnetic field during molding of the slurry.
  • oxygen remains in the sintered body after sintering and the thermal conductivity of the sintered body is lowered.
  • the aluminum nitride formed body and the aluminum nitride particles in the aluminum nitride sintered body are:
  • the (0001) plane of some grains and the (000-1) plane of the remaining grains are oriented parallel to the principal plane, and the aluminum atomic plane that is the (0001) plane is a (000-1) plane that is difficult to be polished. Since the nitrogen atom surface is easily polished, there is a problem that the surface roughness of the main surface of the aluminum nitride sintered body after polishing increases.
  • an object of the present invention is to provide an aluminum nitride sintered body in which the main surface is easily mirror-finished by reducing the surface roughness of the main surface by polishing, and a method for producing the same.
  • An aluminum nitride sintered body has a principal surface and includes a plurality of aluminum nitride crystal particles.
  • the aluminum nitride crystal particles are (11-20) of all the aluminum nitride crystal particles. ) Plane, or the (11-20) plane of some aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one principal plane.
  • the aluminum nitride sintered body of the present embodiment can easily be mirror-finished on the main surface.
  • the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface is 10 nm or less, and the maximum height specified in JIS B0601: 2013 on one main surface
  • the roughness Rz can be 100 nm or less.
  • a method of manufacturing an aluminum nitride sintered body includes a step of forming a raw material slurry by dispersing a raw material powder containing an aluminum nitride powder in a solvent, and a pH of the raw material slurry at its pH
  • a step of forming a molded body having one principal surface by slip casting in a magnetic field after adjusting the thickness to 1 or more and 6 or less a step of forming an aluminum nitride sintered body by sintering the molded body,
  • the magnetic field is applied in a direction parallel to one main surface of the molded body. According to the method for manufacturing an aluminum nitride sintered body of the present embodiment, an aluminum nitride sintered body whose main surface can be easily mirror-finished can be obtained.
  • the method for manufacturing an aluminum nitride sintered body according to this embodiment may further include a step of mirror-finishing one main surface of the aluminum nitride sintered body. Thereby, the aluminum nitride sintered compact by which the main surface was mirror-finished is obtained.
  • the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface is set to 10 nm or less for the aluminum nitride sintered body after the mirror-finishing step.
  • regulated to JISB0601: 2013 of one main surface can be 100 nm or less.
  • the pH of the polishing slurry used for polishing can be 1 or more and 6 or less in the mirror-finishing step of the manufacturing method of the aluminum nitride sintered body of the present embodiment. Thereby, the aluminum nitride sintered compact by which the main surface was mirror-finished is obtained.
  • the aluminum nitride sintered body 11 of the present embodiment has a main surface 11 m and includes a plurality of aluminum nitride crystal particles 11 p, and the aluminum nitride crystal particles 11 p are all aluminum nitride.
  • the (11-20) face 11pa of the crystal grain 11p, or the (11-20) face 11pa of a part of the aluminum nitride crystal grain 11p and the (10-10) face 11pm of the remaining aluminum nitride crystal grain 11p are mainly used. It is oriented parallel to the surface 11m.
  • the aluminum nitride sintered body 11 of the present embodiment can easily mirror the main surface.
  • the plurality of aluminum nitride crystal particles 11p are (11-20) face 11pa of all the aluminum nitride crystal particles 11p, or (11 of a part of the aluminum nitride crystal particles 11p. ⁇ 20)
  • the face 11pa and the (10-10) face 11pm of the remaining aluminum nitride crystal grain 11p are oriented parallel to the one principal face 11m.
  • polishing is performed since the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particles 11p are nonpolar planes and the density of atoms contained in the plane is also very close, polishing is performed.
  • the aluminum nitride sintered body 11 has a (11-20) plane 11pa or a plane parallel to the plane formed by the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particle 11p. Since one main surface 11m is uniformly polished, mirror processing of one main surface 11m is easy.
  • the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particles 11p are measured and identified by the X-ray diffraction method.
  • the (11-20) plane 11pa of all the aluminum nitride crystal grains 11p is oriented in parallel to one principal surface 11m”.
  • all means “substantially all” in which no other crystal plane is measured and identified in X-ray diffraction.
  • aluminum nitride crystal particles contained in the aluminum nitride sintered body 11 This corresponds to 95% by volume or more of the entire 11p.
  • the (11-20) plane 11pa of some of the aluminum nitride crystal particles 11p and the (10-10) plane 11pm of the remaining aluminum nitride crystal particles 11p are oriented in parallel to one principal surface 11m”.
  • Partial and “remainder” mean that the total of the part and the remainder is “substantially all” in which no other crystal plane is measured and identified in X-ray diffraction.
  • the sum of “partial aluminum nitride crystal particles” and “remaining aluminum nitride crystal particles” corresponds to 95% by volume or more of the entire aluminum nitride crystal particles 11p included in the aluminum nitride sintered body 11. .
  • the aluminum nitride sintered body 11 of the present embodiment has an arithmetic average roughness Ra specified in JIS B0601: 2013 of one main surface 11m of 10 nm or less, and a maximum specified in JIS B0601: 2013 of one main surface 11m.
  • a mirror surface having a height roughness Rz of 100 nm or less is preferred.
  • the arithmetic average roughness Ra of one principal surface 11m is preferably 10 nm or less, more preferably 5 nm or less, from the viewpoint that the one principal surface 11m is a flatter mirror surface. The following is more preferable.
  • the maximum height roughness Rz of one principal surface 11m is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
  • the arithmetic average roughness Ra and the maximum height roughness Rz of one principal surface 11m are measured by a three-dimensional optical profiler (Zygo New View 7300 manufactured by Canon Inc.).
  • the aluminum nitride sintered body 11 of the present embodiment has one main surface 11m. It is sufficient if it has at least one main surface 11m, and it may have a plurality of main surfaces, and the shape and size thereof are not limited.
  • the thermal conductivity of the aluminum nitride sintered body 11 of the present embodiment is not particularly limited, and the high heat radiation point of view, preferably 130W ⁇ m -1 ⁇ K -1 or more, 150W ⁇ m -1 ⁇ K - 1 or more is more preferable, and 170 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more is more preferable.
  • the thermal conductivity of the aluminum nitride sintered body 11 is measured by a laser flash method thermal constant measuring device (TC-9000, manufactured by Advance Riko Co., Ltd.).
  • the relative density of the aluminum nitride sintered body 11 of the present embodiment is preferably 98% or more, and more preferably 99% or more, from the viewpoint of improving the workability and thermal conductivity of the sintered body.
  • the relative density means the percentage of the actual mass with respect to the true mass of the substance, and is measured by the Archimedes method.
  • the aluminum nitride sintered body 11 of the present embodiment includes aluminum nitride crystal particles 11p.
  • the average particle diameter of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, from the viewpoint of easy mirror finishing of one main surface 11 m. From the viewpoint of improving the workability and thermal conductivity of the bonded body, it is preferably 1 ⁇ m or more, and more preferably 3 ⁇ m or more.
  • the average particle diameter of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is measured by a scanning electron microscope (SEM) (JSM-6510 manufactured by JEOL Ltd.).
  • the average particle size of the crystal particles is a value calculated by the area measurement method. Specifically, a rectangle is drawn so that at least 50 or more crystal grains are included on the image, and the total area A and the number N A of crystal grains existing in the rectangle are obtained. A value obtained by dividing the area A by the number of crystal grains NA (A / N A ) is an average cross-sectional area a of the crystal grains, and a square root ( ⁇ a) of the average cross-sectional area a of the crystal grains is an average grain diameter d of the crystal grains. .
  • the content of the aluminum nitride crystal particles in the aluminum nitride sintered body 11 is not particularly limited, but is preferably 95% by mass or more and 99% by mass or less from the viewpoint of increasing the density and thermal conductivity of the sintered body. 97 mass% or more and 98 mass% or less are more preferable.
  • the content of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is measured by an inductively coupled plasma (ICP) emission spectrometer (ICPS-7510 manufactured by Shimadzu Corporation).
  • the aluminum nitride sintered body 11 of the present embodiment is a group 2 element as a sintering aid. It preferably contains an oxide, nitride, fluoride or the like of a group 3 element or a group 13 element.
  • Preferred examples of the Group 2 element include magnesium (Mg), calcium (Ca), and strontium (Sr).
  • Group 3 elements include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), and europium (Eu). , Gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and the like.
  • Preferred examples of the group 13 element include aluminum (Al).
  • the content of the sintering aid in the aluminum nitride sintered body 11 is not particularly limited, but the density of the sintered body and the purity of the main phase aluminum nitride are increased by lowering the melting point during sintering. From the viewpoint of doing, 1 mass% or more and 5 mass% or less are preferable, and 2 mass% or more and 3 mass% or less are more preferable.
  • the kind and content of the sintering aid in the aluminum nitride sintered body 11 are measured by an ICP emission analyzer (ICPS-7510 manufactured by Shimadzu Corporation).
  • the method of manufacturing the aluminum nitride sintered body 11 of the present embodiment includes a step S10 of forming a raw material slurry 9 by dispersing a raw material powder containing aluminum nitride powder in a solvent, By adjusting the pH of the raw material slurry 9 to 1 or more and 6 or less and then performing the slip casting in the magnetic field B to form a molded body 10 having one main surface 10m, and sintering the molded body 10 In the step of forming the molded body 10, the magnetic field B is applied in a direction parallel to the one main surface 10 m of the molded body 10. According to the method for manufacturing an aluminum nitride sintered body of the present embodiment, an aluminum nitride sintered body whose main surface can be easily mirror-finished can be obtained.
  • the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment first includes a step S10 of forming a raw material slurry 9 by dispersing a raw material powder containing an aluminum nitride powder in a solvent.
  • the purity of the aluminum nitride powder contained in the raw material powder is not particularly limited, but is preferably 98% by mass or more, and more preferably 99% by mass or more from the viewpoint of increasing the density and thermal conductivity of the sintered body.
  • the content of the aluminum nitride powder in the raw material powder is not particularly limited, but is preferably 95% by mass or more and 99% by mass or less, and 97% by mass or more and 98% by mass from the viewpoint of increasing the density and thermal conductivity of the sintered body. % Or less is more preferable.
  • the average particle size of the aluminum nitride crystal particles is not particularly limited, but is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and more preferably 5 ⁇ m or less from the viewpoint of improving the workability and thermal conductivity of the sintered body. From the viewpoint of increasing the thermal conductivity, 1 ⁇ m or more is preferable, and 3 ⁇ m or more is more preferable.
  • the average particle diameter of the aluminum nitride crystal particles in the aluminum nitride powder is measured by SEM (JSM-6510 manufactured by JEOL Ltd.).
  • the raw material powder preferably further contains oxides, nitrides, fluorides, etc. of Group 2, 3 and 13 elements as sintering aids.
  • the group 2 element Mg, Ca, Sr and the like are preferably exemplified.
  • Preferred examples of the Group 3 element include rare earth elements such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
  • a preferred example of the group 13 element is Al.
  • the content of the sintering aid in the raw material powder is not particularly limited, but from the viewpoint of increasing the density of the sintered body and the purity of the main phase aluminum nitride by lowering the melting point during sintering, 1 mass% or more and 5 mass% or less are preferable, and 2 mass% or more and 3 mass% or less are more preferable.
  • the raw material powder preferably further contains polyvinyl alcohol (PVA), polyvinyl butyral (PVB), acrylic, polyester, and the like as a binder.
  • PVA polyvinyl alcohol
  • PVB polyvinyl butyral
  • acrylic acrylic
  • polyester and the like
  • the content of the binder in the raw material powder is not particularly limited, but from the viewpoint of improving the formability of the molded body and increasing the purity of aluminum nitride as the main phase of the sintered body, it is 15% by mass or more and 35% by mass or less. Is preferable, and 20 mass% or more and 30 mass% or less are more preferable.
  • organic solvent Although there is no restriction
  • Preferred examples of the organic solvent include ethanol, methanol, hexane and the like.
  • the method for dispersing the raw material powder in the solvent is not particularly limited, but from the viewpoint of homogeneously dispersing the raw material powder in the solvent, preferable examples include dispersion by ball mill mixing and ultrasonic dispersion.
  • the main surface 10m is formed by slip casting in the magnetic field B.
  • the process S20 which forms the molded object 10 which has is included.
  • the magnetic field B is applied in a direction parallel to the one main surface 10 m of the molded body 10.
  • Adjustment of pH of raw material slurry The pH of the raw material slurry 9 in which the raw material powder is dispersed in a solvent is adjusted to 1 or more and 6 or less. After the pH of the raw material slurry 9 is set to 1 or more and 6 or less, by applying a magnetic field B in a direction parallel to one main surface 10 m of the molded body 10, (11-20) plane of all aluminum nitride crystal particles, or The (11-20) plane of some of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one major surface 10m of the molded body 10 and From the viewpoint of increasing the density and increasing the thermal conductivity by reducing the remaining impurity oxygen, the pH of the raw slurry 9 is adjusted to 1 or more and 6 or less, preferably 2 or more and 5 or less. Adjustment of the pH of the raw material slurry 9 is not particularly limited, and is performed, for example, by adding an acidic substance such as hydrochloric
  • the pH of the raw material slurry 9 When the pH of the raw material slurry 9 is strongly acidic below 1, it is due to formation of hydrated ions, and when the pH of the raw material slurry 9 is more than 6 neutral or alkaline, it is due to formation of hydroxides due to formation of these networks. Due to the steric hindrance, rotation of the aluminum nitride crystal particles by the magnetic field B is inhibited, and the orientation of the aluminum nitride crystal particles is inhibited. In addition, when the pH of the raw material slurry 9 is less than 1, the sintering aid contained in the raw material slurry 9 is preferentially eluted, so that the content of the sintering aid is reduced and formed during sintering.
  • the liquid phase is reduced, it is difficult to increase the relative density of the sintered body.
  • the pH of the raw material slurry 9 is greater than 6, the viscosity of the raw material slurry 9 is increased by the hydrolysis reaction of the surface of the aluminum nitride crystal particles of the aluminum nitride powder contained in the raw material slurry 9, and the orientation of the aluminum nitride crystal particles is increased. In addition to being hindered, the thermal conductivity decreases due to impurity oxygen remaining after firing.
  • the slip cast molding is a process in which the raw material slurry 9 having a pH adjusted to 1 or more and 6 or less is poured into the porous mold 20 and the solvent in the raw material slurry 9 is absorbed into the porous mold 20 to dry the raw material slurry 9.
  • a molding method for molding is a process in which the raw material slurry 9 having a pH adjusted to 1 or more and 6 or less is poured into the porous mold 20 and the solvent in the raw material slurry 9 is absorbed into the porous mold 20 to dry the raw material slurry 9.
  • the method for applying the magnetic field B is not particularly limited, but from the viewpoint of efficiently applying the magnetic field, a steady magnetic field method, a pulse magnetic field method, a gradient magnetic field method, and the like are preferable.
  • the application direction of the magnetic field B is a direction parallel to one main surface 10 m of the molded body 10. By applying the magnetic field B in such a direction, the (11-20) face 10pa of all the aluminum nitride crystal particles 10p in the compact 10 or the (11-20) face 10pa of the aluminum nitride crystal particles 10p and the remaining part of the aluminum nitride crystal particles 10p.
  • the (10-10) plane 10pm of the aluminum nitride crystal particles 10p is oriented parallel to the one main surface 10m of the molded body 10.
  • the magnetic flux density of the applied magnetic field B is not particularly limited, but is preferably 1T (Tesla) or more and 15T or less, and more preferably 3T or more and 10T or less from the viewpoint of efficiently increasing the orientation of the aluminum nitride crystal particles.
  • the molding apparatus 100 used in the step S20 for forming the molded body 10 is not particularly limited, but from the viewpoint of efficiently slip casting the raw material slurry 9 in a magnetic field, a porous mold having a space for containing the raw material slurry 9 is used. 20 and a magnetic field application unit 30 that applies a magnetic field B in a direction parallel to one main surface 10 m of the molded body 10 formed from the raw slurry 9.
  • the porous mold 20 is not particularly limited as long as it is suitable for the slip casting of the raw material slurry 9, and suitable examples thereof include gypsum and a porous polymer.
  • the magnetic field application unit 30 is not particularly limited as long as it can apply the magnetic field B in a direction parallel to the one main surface 10m of the molded body 10 formed from the raw slurry 9, and includes a high frequency coil unit, a superconducting magnet unit, and the like. Is mentioned.
  • the method for manufacturing the aluminum nitride sintered body 11 of the present embodiment includes the step S30 of forming the aluminum nitride sintered body 11 by sintering the formed body 10. In this step, the aluminum nitride sintered body 11 having the aluminum nitride crystal particles 11p in which the orientation of the aluminum nitride crystal particles 10p in the molded body 10 is maintained is obtained.
  • the molded body 10 in which the (11-20) plane 10pa of the aluminum nitride crystal particles 10p in the molded body 10 is oriented parallel to one main surface 10m of the molded body 10 is sintered, and the aluminum nitride sintered body 11
  • the aluminum nitride sintered body 11 in which the (11-20) plane 11pa of all the aluminum nitride crystal particles 11p is oriented parallel to the one main surface 11m of the aluminum nitride sintered body 11 is obtained.
  • the (11-20) face 10pa of a part of the aluminum nitride crystal particles 10p and the (10-10) face 10pm of the remaining aluminum nitride crystal particles 10p in the compact 10 are the main parts of the compact 10.
  • the compact 10 oriented parallel to the face 10m is sintered, and the (11-20) face 11pa of a part of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 and the remaining aluminum nitride crystal particles 11p ( 10-10)
  • An aluminum nitride sintered body 11 is obtained in which the surface 11pm is oriented parallel to one principal surface 11m of the aluminum nitride sintered body 11.
  • the step S30 for forming the aluminum nitride sintered body 11 by sintering the molded body 10 is not particularly limited, but from the viewpoint of efficiently forming the high-quality aluminum nitride sintered body 11, a binder is included. It is preferable to include a sub-step S31 for debinding the formed body 10 and a sub-step S32 for sintering the de-bindered formed body 10.
  • the sub-step S31 for removing the binder from the molded body 10 means a sub-step for removing the binder contained therein from the molded body 10.
  • the method for removing the binder from the molded body 10 is not particularly limited, but is preferably heat-treated in a nitrogen gas atmosphere or an argon gas atmosphere at 700 ° C. to 900 ° C. for 1 hour to 3 hours.
  • a method for sintering the debindered molded body 10 is not particularly limited, but is 700 ° C. or higher in a nitrogen gas atmosphere or an argon gas atmosphere. It is preferable to perform heat treatment at 900 ° C. or less under conditions of 1 hour or more and 3 hours or less.
  • the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment further includes a step S40 of mirror-finishing one main surface 11m of the aluminum nitride sintered body 11 by polishing. With this process, an aluminum nitride sintered body whose main surface is mirror-finished is obtained.
  • the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface of the aluminum nitride sintered body 11 after the mirror finishing step S40 is 10 nm or less.
  • the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface is preferably 100 nm or less.
  • the arithmetic average roughness Ra of one principal surface 11m is preferably 10 nm or less, more preferably 5 nm or less, from the viewpoint that the one principal surface 11m is a flatter mirror surface. The following is more preferable.
  • the maximum height roughness Rz of one principal surface 11m is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less.
  • the arithmetic average roughness Ra and the maximum height roughness Rz of one main surface 11m of the aluminum nitride sintered body 11 are measured by a three-dimensional optical profiler (Zygo New View 7300 manufactured by Canon Inc.).
  • the pH of the polishing slurry used for polishing is not particularly limited in the step of mirror-finishing the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment, but the aluminum nitride crystal particles 11p in the sintered body at the time of polishing are not limited. 1 to 6 or less is preferable and 2 or more and 5 or less is more preferable from the viewpoint of suppressing the degranulation and maintaining the smoothness by suppressing the roughness of the surface state.
  • the pH of the polishing slurry when mirror-finishing the sintered body is less than 1, the sintering aid contained in the sintered body elutes preferentially, and aluminum nitride in the sintered body during polishing The degranulation of the crystal particles 11p is promoted, and the smoothness of one main surface of the sintered body is lowered. If the pH of the polishing slurry when the sintered body is mirror-finished is greater than 6, surface roughness is promoted by the hydrolysis reaction of the surface of the aluminum nitride crystal particles of the aluminum nitride powder contained in the sintered body. The smoothness of one main surface of the bonded body is lowered.
  • Example 1 Formation of Raw Material Slurry As raw material powder, aluminum nitride (AlN) powder, ytterbium oxide (Yb 2 O 3 ) powder, neodymium oxide (Nd 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder, and polyvinyl alcohol (PVA) ) A mixed powder having a ratio of 72.4% by mass, 0.8% by mass, 1.0% by mass, 0.7% by mass, and 25.1% by mass was prepared.
  • Yb 2 O 3 powder, Nd 2 O 3 powder and Al 2 O 3 powder were sintering aids
  • PVA powder was a binder. 30.0% by mass of the raw material powder was uniformly dispersed in 70.0% by mass of ethanol as a solvent by ball mill mixing to form a raw material slurry.
  • AlN sintered body Formation of Aluminum Nitride Sintered Body
  • the above molded body is first debindered by heat treatment at 800 ° C. for 1 hour in a nitrogen gas atmosphere, and then sintered by heat treatment at 1800 ° C. for 2 hours in a nitrogen gas atmosphere.
  • AlN aluminum nitride
  • the relative density of the AlN sintered body was 99% as measured by the Archimedes method.
  • the crystal phase in the AlN sintered body was analyzed and identified by the X-ray diffraction method, and was an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase.
  • the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 180 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 as measured by a thermal diffusivity measuring device (TC-1200RH manufactured by Advance Riko Co., Ltd.).
  • Example 2 A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form a raw material slurry at the time of forming the molded body, and the pH of the raw material slurry was set to 1. One main surface was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase.
  • the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 175 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 5 nm and 45 nm, respectively. The results are summarized in Table 1.
  • Example 3 A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form the molded body and the pH of the raw material slurry was set to 6. One main surface was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase.
  • the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 173 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 8 nm and 78 nm, respectively. The results are summarized in Table 1.
  • Example 4 Except that the pH of the polishing slurry was set to 1 when polishing one main surface of the AlN sintered body, a raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1, and the AlN sintered body was formed. One main surface of the body was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 180 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 4 nm and 32 nm, respectively. The results are summarized in Table 1.
  • Example 5 A raw material slurry, a molded body and an AlN sintered body are formed in the same manner as in Example 1 except that the pH of the polishing slurry is set to 6 when polishing one main surface of the AlN sintered body. One main surface of the body was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 180 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface of the AlN sintered body after polishing were 9 nm and 93 nm, respectively. The results are summarized in Table 1.
  • Example 6 A raw material slurry, a molded body, and an AlN sintered body are formed in the same manner as in Example 1 except that the magnetic flux density of the magnetic field applied at the time of forming the molded body is 10 T. The surface was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase.
  • the AlN crystal particles in the AlN sintered body are oriented so that the (11-20) plane of some AlN crystal particles and the (10-10) plane of the remaining AlN crystal particles are parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 177 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 5 nm and 62 nm, respectively. The results are summarized in Table 1.
  • Example 1 In the same manner as in Example 1 except that the pH of the raw material slurry was set to 7 using hydrochloric acid and ammonia and no magnetic field was applied during the formation of the green body, the raw material slurry, the green body and the AlN sintered body were obtained. Then, one main surface of the AlN sintered body was polished. The relative density of the AlN sintered body was 92%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, a Yb 2 O 3 phase, an Al 2 O 3 phase, and an AlON phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 22 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 352 nm and 5300 nm, respectively. The results are summarized in Table 2.
  • Example 2 A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form the molded body and the pH of the raw material slurry was set to 0.5. One main surface of the body was polished. The relative density of the AlN sintered body was 83%. The crystal phases in the AlN sintered body were an AlN phase and an Al 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 30 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • Example 3 The raw material slurry, the molded body, and the AlN sintered body were formed in the same manner as in Example 1 except that ammonia was used to adjust the pH of the raw material slurry to 12 when forming the formed body. One main surface was polished. The relative density of the AlN sintered body was 94%.
  • the crystal phases in the AlN sintered body were an AlN phase, an AlON phase, an Al 2 O 3 phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 26 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 155 nm and 1600 nm, respectively. The results are summarized in Table 2.
  • Example 7 A raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1 except that the polishing slurry had a pH of 0.5 when polishing one main surface of the AlN sintered body. One main surface of the sintered body was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 180 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 339 nm and 3500 nm, respectively. The results are summarized in Table 2.
  • Example 8 A raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1 except that the polishing slurry had a pH of 12 when polishing one main surface of the AlN sintered body. One main surface of the body was polished. The relative density of the AlN sintered body was 99%.
  • the crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body.
  • the thermal conductivity of the AlN sintered body was 180 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 .
  • the arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 134 nm and 1500 nm, respectively. The results are summarized in Table 2.
  • the aluminum nitride crystal particles are (11-20) planes of all the aluminum nitride crystal particles, or a part of The aluminum nitride sintered body in which the (11-20) plane of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to the principal plane is obtained by polishing.

Abstract

This aluminum nitride sintered body has one main surface and contains a plurality of aluminum nitride crystal grains. With respect to the aluminum nitride crystal grains, the (11-20) planes of all the aluminum nitride crystal grains, or alternatively, the (11-20) planes of some aluminum nitride crystal grains and the (10-10) planes of the other aluminum nitride crystal grains are oriented to be parallel to the main surface. Consequently, an aluminum nitride sintered body having a main surface that is easy to be mirror finished and a method for producing this aluminum nitride sintered body are provided.

Description

窒化アルミニウム焼結体およびその製造方法Aluminum nitride sintered body and method for producing the same
 本発明は、窒化アルミニウム焼結体およびその製造方法に関する。
 本出願は、2015年8月24日出願の日本出願第2015-164956号に基づく優先権を主張し、上記日本出願に記載された全ての記載内容を引用するものである。
The present invention relates to an aluminum nitride sintered body and a method for producing the same.
This application claims priority based on Japanese Patent Application No. 2015-164958 filed on August 24, 2015, and cites all the contents described in the above Japanese application.
 窒化アルミニウム焼結体は、高い熱伝導率による高い放熱性を有しているために、半導体デバイスの基板、半導体デバイス回路の基板などとして好適に用いられている。 Since the aluminum nitride sintered body has high heat dissipation due to high thermal conductivity, it is suitably used as a substrate for semiconductor devices, a substrate for semiconductor device circuits, and the like.
 特開2002-201072号公報(特許文献1)は、直線距離50μmに含まれるAlN結晶粒子の数が15~30個であり、熱伝導率が200W・m-1・K-1以上であり、表面粗さRaが0.01μm以下であり、その表面における単位面積50μm×50μmあたりに含まれる最大径5μm以上の脱粒痕が5個以下である、研磨性の高いAlN焼結体を開示する。 Japanese Patent Laid-Open No. 2002-201072 (Patent Document 1) has 15 to 30 AlN crystal particles included in a linear distance of 50 μm, and has a thermal conductivity of 200 W · m −1 · K −1 or more, Disclosed is a highly abrasive AlN sintered body having a surface roughness Ra of 0.01 μm or less and 5 or less degranulation traces having a maximum diameter of 5 μm or more contained per unit area of 50 μm × 50 μm on the surface.
 特開2002-249379号公報(特許文献2)は、窒化アルミニウムを主成分とし、希土類金属元素を酸化物換算で0.4mol%以上2.0mol以下、酸化アルミニウムを0.5mol%以上2.0mol%以下含有し、Siの含有量が80ppm以下であり、窒化アルミニウム粒子の平均粒径が3μm以下である、脱粒しにくく熱伝導率が比較的高い窒化アルミニウム焼結体を開示する。 Japanese Patent Application Laid-Open No. 2002-249379 (Patent Document 2) has aluminum nitride as a main component, rare earth metal element in an oxide conversion of 0.4 mol% to 2.0 mol, and aluminum oxide in an amount of 0.5 mol% to 2.0 mol. Disclosed is an aluminum nitride sintered body that contains no more than%, Si content is not more than 80 ppm, and the average particle size of aluminum nitride particles is not more than 3 μm, which is resistant to degranulation and has a relatively high thermal conductivity.
 特開2002-293637号公報(特許文献3)は、窒化アルミニウム焼結体の製造方法において、焼結体の表面に、JIS研磨剤粒度#240~#320の研磨剤で調製された濃度15~30体積%の研磨スラリーを0.3~0.5MPaで吹き付けて表面研磨することにより、焼結体表面の欠陥を低減できることを開示する。 Japanese Patent Laid-Open No. 2002-293637 (Patent Document 3) discloses that in a method for producing an aluminum nitride sintered body, the surface of the sintered body has a concentration of 15 to 15 prepared with an abrasive having JIS abrasive grain size # 240 to # 320. It is disclosed that defects on the surface of a sintered body can be reduced by spraying 30 vol% polishing slurry at 0.3 to 0.5 MPa and polishing the surface.
 特開2004-107096号公報(特許文献4)は、α型炭化ケイ素粒子と溶媒を混合して原料スラリーを調整し、この原料スラリーを1T以上の磁場で固化形成し、焼結する配向性炭化ケイ素焼結体の製造方法を開示する。かかるスラリーは、そのpHが9以上を一般的な目安とすることができ、たとえば、水系スラリーとしてpH9~12程度である。 Japanese Patent Application Laid-Open No. 2004-107096 (Patent Document 4) describes an oriented carbonization in which α-type silicon carbide particles and a solvent are mixed to prepare a raw material slurry, and this raw material slurry is solidified by a magnetic field of 1 T or more and sintered. A method for producing a silicon sintered body is disclosed. Such a slurry can generally have a pH of 9 or more. For example, the pH is about 9 to 12 as an aqueous slurry.
 特開2002-193672号公報(特許文献5)は、等軸晶ではない結晶構造をもつ非強磁性体粉末を溶媒に分散し、そのスラリーを磁場中で固化成形した後に焼結することを特徴とする配向性セラミック焼結体の製造方法を開示する。 Japanese Patent Laid-Open No. 2002-193672 (Patent Document 5) is characterized in that a non-ferromagnetic powder having a crystal structure other than equiaxed crystals is dispersed in a solvent, and the slurry is solidified and molded in a magnetic field and then sintered. A method for producing an oriented ceramic sintered body is disclosed.
特開2002-201072号公報JP 2002-201072 A 特開2002-249379号公報JP 2002-249379 A 特開2002-293637号公報JP 2002-293637 A 特開2004-107096号公報JP 2004-107096 A 特開2002-193672号公報JP 2002-193672 A
 本開示の窒化アルミニウム焼結体は、一主面を有し複数の窒化アルミニウム結晶粒子を含み、窒化アルミニウム結晶粒子は、全部の窒化アルミニウム結晶粒子の(11-20)面、あるいは、一部の窒化アルミニウム結晶粒子の(11-20)面および残部の窒化アルミニウム結晶粒子の(10-10)面が、一主面に平行に配向している。 The aluminum nitride sintered body of the present disclosure has one main surface and includes a plurality of aluminum nitride crystal particles. The aluminum nitride crystal particles are the (11-20) plane of all the aluminum nitride crystal particles, or a part of the aluminum nitride crystal particles. The (11-20) plane of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one principal plane.
 本開示の窒化アルミニウム焼結体の製造方法は、窒化アルミニウム粉末を含む原料粉末を溶媒中に分散することにより原料スラリーを形成する工程と、原料スラリーをそのpHを1以上6以下に調整した後磁場中でスリップキャスト成形することにより一主面を有する成形体を形成する工程と、成形体を焼結することにより窒化アルミニウム焼結体を形成する工程と、を含み、成形体を形成する工程において、磁場は成形体の一主面に平行な方向に印加される。 The method for producing an aluminum nitride sintered body of the present disclosure includes a step of forming a raw material slurry by dispersing a raw material powder containing an aluminum nitride powder in a solvent, and after adjusting the pH of the raw material slurry to 1 to 6 A step of forming a molded body including a step of forming a molded body having one principal surface by slip casting in a magnetic field and a step of forming an aluminum nitride sintered body by sintering the molded body. The magnetic field is applied in a direction parallel to one main surface of the compact.
図1は、本発明のある局面に従う窒化アルミニウム焼結体の製造に用いられる成形装置のある例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a molding apparatus used for manufacturing an aluminum nitride sintered body according to an aspect of the present invention. 図2は、本発明のある局面に従う窒化アルミニウム焼結体における窒化アルミニウム結晶粒子の配向のある例を示す概略図である。FIG. 2 is a schematic diagram showing an example of the orientation of aluminum nitride crystal grains in an aluminum nitride sintered body according to an aspect of the present invention. 図3は、本発明のある局面に従う窒化アルミニウム焼結体における窒化アルミニウム結晶粒子の配向の別の例を示す概略図である。FIG. 3 is a schematic diagram showing another example of the orientation of aluminum nitride crystal grains in an aluminum nitride sintered body according to an aspect of the present invention. 図4は、本発明の別の局面に従う窒化アルミニウム焼結体の製造方法のある例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a method for manufacturing an aluminum nitride sintered body according to another aspect of the present invention.
 <本開示が解決しようとする課題>
 特開2002-201072号公報(特許文献1)で開示されるAlN焼結体は、最大径5μm以上の脱粒痕が存在するため、最大高さ粗さRzが大きくなり、AlN焼結体に貼り合わされる半導体デバイスの剥がれ、放電の発生などの問題点がある。
<Problems to be solved by the present disclosure>
Since the AlN sintered body disclosed in Japanese Patent Laid-Open No. 2002-201072 (Patent Document 1) has degranulation traces with a maximum diameter of 5 μm or more, the maximum height roughness Rz becomes large and is attached to the AlN sintered body. There are problems such as peeling of semiconductor devices to be combined and generation of electric discharge.
 特開2002-249379号公報(特許文献2)で開示される窒化アルミニウム焼結体は、窒化アルミニウム粒子の平均粒径が小さくなるほど粒界が多く存在して熱伝導率が低下するという問題点がある。 The aluminum nitride sintered body disclosed in Japanese Patent Application Laid-Open No. 2002-249379 (Patent Document 2) has a problem that as the average particle diameter of aluminum nitride particles decreases, there are more grain boundaries and the thermal conductivity decreases. is there.
 特開2002-293637号公報(特許文献3)で開示される窒化アルミニウム焼結体の製造方法は、JIS研磨剤粒度#240~#320の研磨剤を用いて研磨することから脱粒が発生し最大高さ粗さRzが大きくなるという問題点、および、濃度15~30体積%の研磨スラリーを0.3~0.5MPaの低い吹き付け圧で吹き付けることから研磨ムラが発生するという問題点がある。 In the method for producing an aluminum nitride sintered body disclosed in Japanese Patent Application Laid-Open No. 2002-293637 (Patent Document 3), since the polishing is performed using an abrasive of JIS abrasive grain size # 240 to # 320, degranulation occurs and the maximum There is a problem that the height roughness Rz becomes large and a problem that polishing unevenness occurs because a polishing slurry having a concentration of 15 to 30% by volume is sprayed at a low spraying pressure of 0.3 to 0.5 MPa.
 特開2004-107096号公報(特許文献4)で開示される配向性炭化ケイ素焼結体の製造方法は、原料スラリーのpHが9以上を目安としており、窒化アルミニウム焼結体の原料となる窒化アルミニウム粉末のスラリーのpHを9以上にすると、窒化アルミニウム結晶粒子の表面の加水分解が発生し、スラリーの粘度が上がって、スラリーの成形の際に、磁場中での窒化アルミニウム粉末中の窒化アルミニウム粒子の配向が困難になるとともに、緻密な成形体が得られないという問題点がる。また、焼結後の焼結体に酸素が残留して、焼結体の熱伝導率が低くなるという問題点がある。 In the method for producing an oriented silicon carbide sintered body disclosed in Japanese Patent Application Laid-Open No. 2004-107096 (Patent Document 4), the pH of the raw material slurry is set to 9 or more, and nitriding as a raw material of the aluminum nitride sintered body is performed. When the pH of the aluminum powder slurry is 9 or more, hydrolysis of the surface of the aluminum nitride crystal particles occurs, the viscosity of the slurry rises, and the aluminum nitride in the aluminum nitride powder in a magnetic field during molding of the slurry. There are problems that it becomes difficult to orient the particles and a dense molded body cannot be obtained. There is also a problem that oxygen remains in the sintered body after sintering and the thermal conductivity of the sintered body is lowered.
 特開2002-193672号公報(特許文献5)で開示される配向性セラミック焼結体の製造方法では、磁束密度が大きいと、窒化アルミニウム成形体および窒化アルミニウム焼結体中の窒化アルミニウム粒子は、一部の粒子の(0001)面および残部の粒子の(000-1)面が主面と平行に配向し、(0001)面であるアルミニウム原子面は研磨され難く(000-1)面である窒素原子面は研磨され易いため、研磨後の窒化アルミニウム焼結体の主面の面粗さが大きくなるという問題点がある。 In the method for producing an oriented ceramic sintered body disclosed in Japanese Patent Laid-Open No. 2002-193672 (Patent Document 5), when the magnetic flux density is large, the aluminum nitride formed body and the aluminum nitride particles in the aluminum nitride sintered body are: The (0001) plane of some grains and the (000-1) plane of the remaining grains are oriented parallel to the principal plane, and the aluminum atomic plane that is the (0001) plane is a (000-1) plane that is difficult to be polished. Since the nitrogen atom surface is easily polished, there is a problem that the surface roughness of the main surface of the aluminum nitride sintered body after polishing increases.
 そこで、研磨により主面の面粗さを小さくすることにより、主面の鏡面加工が容易な窒化アルミニウム焼結体およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an aluminum nitride sintered body in which the main surface is easily mirror-finished by reducing the surface roughness of the main surface by polishing, and a method for producing the same.
 <本開示の効果>
 本開示によれば、研磨により主面の面粗さを小さくすることにより、主面の鏡面加工が容易な窒化アルミニウム焼結体およびその製造方法を提供できる。
<Effects of the present disclosure>
According to the present disclosure, by reducing the surface roughness of the main surface by polishing, it is possible to provide an aluminum nitride sintered body in which the main surface is easily mirror-finished and a method for manufacturing the same.
 <本発明の実施形態の説明>
 最初に本発明の実施形態を列記して説明する。
<Description of Embodiment of the Present Invention>
First, embodiments of the present invention will be listed and described.
 [1]本発明のある実施形態にかかる窒化アルミニウム焼結体は、一主面を有し複数の窒化アルミニウム結晶粒子を含み、窒化アルミニウム結晶粒子は、全部の窒化アルミニウム結晶粒子の(11-20)面、あるいは、一部の窒化アルミニウム結晶粒子の(11-20)面および残部の窒化アルミニウム結晶粒子の(10-10)面が、一主面に平行に配向している。本実施形態の窒化アルミニウム焼結体は、主面の鏡面加工が容易である。 [1] An aluminum nitride sintered body according to an embodiment of the present invention has a principal surface and includes a plurality of aluminum nitride crystal particles. The aluminum nitride crystal particles are (11-20) of all the aluminum nitride crystal particles. ) Plane, or the (11-20) plane of some aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one principal plane. The aluminum nitride sintered body of the present embodiment can easily be mirror-finished on the main surface.
 [2]本実施形態の窒化アルミニウム焼結体において、一主面のJIS B0601:2013に規定する算術平均粗さRaを10nm以下とし、かつ、一主面のJIS B0601:2013に規定する最大高さ粗さRzを100nm以下とすることができる。これにより、主面が鏡面加工がされた窒化アルミニウム焼結体が得られる。 [2] In the aluminum nitride sintered body of this embodiment, the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface is 10 nm or less, and the maximum height specified in JIS B0601: 2013 on one main surface The roughness Rz can be 100 nm or less. As a result, an aluminum nitride sintered body whose main surface is mirror-finished is obtained.
 [3]本発明の別の実施形態にかかる窒化アルミニウム焼結体の製造方法は、窒化アルミニウム粉末を含む原料粉末を溶媒中に分散することにより原料スラリーを形成する工程と、原料スラリーをそのpHを1以上6以下に調整した後磁場中でスリップキャスト成形することにより一主面を有する成形体を形成する工程と、成形体を焼結することにより窒化アルミニウム焼結体を形成する工程と、を含み、成形体を形成する工程において、磁場は成形体の一主面に平行な方向に印加される。本実施形態の窒化アルミニウム焼結体の製造方法によれば、主面の鏡面加工が容易な窒化アルミニウム焼結体が得られる。 [3] A method of manufacturing an aluminum nitride sintered body according to another embodiment of the present invention includes a step of forming a raw material slurry by dispersing a raw material powder containing an aluminum nitride powder in a solvent, and a pH of the raw material slurry at its pH A step of forming a molded body having one principal surface by slip casting in a magnetic field after adjusting the thickness to 1 or more and 6 or less, a step of forming an aluminum nitride sintered body by sintering the molded body, In the step of forming the molded body, the magnetic field is applied in a direction parallel to one main surface of the molded body. According to the method for manufacturing an aluminum nitride sintered body of the present embodiment, an aluminum nitride sintered body whose main surface can be easily mirror-finished can be obtained.
 [4]本実施形態の窒化アルミニウム焼結体の製造方法は、窒化アルミニウム焼結体の一主面を研磨により鏡面加工する工程をさらに含むことができる。これにより、主面が鏡面加工された窒化アルミニウム焼結体が得られる。 [4] The method for manufacturing an aluminum nitride sintered body according to this embodiment may further include a step of mirror-finishing one main surface of the aluminum nitride sintered body. Thereby, the aluminum nitride sintered compact by which the main surface was mirror-finished is obtained.
 [5]本実施形態の窒化アルミニウム焼結体の製造方法において、鏡面加工する工程後の窒化アルミニウム焼結体について、一主面のJIS B0601:2013に規定する算術平均粗さRaを10nm以下とし、かつ、一主面のJIS B0601:2013に規定する最大高さ粗さRzを100nm以下とすることができる。これにより、主面が鏡面加工された窒化アルミニウム焼結体が得られる。 [5] In the method for manufacturing an aluminum nitride sintered body according to the present embodiment, the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface is set to 10 nm or less for the aluminum nitride sintered body after the mirror-finishing step. And the maximum height roughness Rz prescribed | regulated to JISB0601: 2013 of one main surface can be 100 nm or less. Thereby, the aluminum nitride sintered compact by which the main surface was mirror-finished is obtained.
 [6]本実施形態の窒化アルミニウム焼結体の製造方法の鏡面加工する工程において、研磨に用いられる研磨スラリーのpHを1以上6以下とすることができる。これにより、主面が鏡面加工された窒化アルミニウム焼結体が得られる。 [6] The pH of the polishing slurry used for polishing can be 1 or more and 6 or less in the mirror-finishing step of the manufacturing method of the aluminum nitride sintered body of the present embodiment. Thereby, the aluminum nitride sintered compact by which the main surface was mirror-finished is obtained.
 <本発明の実施形態の詳細>
 [実施形態1:窒化アルミニウム焼結体]
 図2および図3に示すように、本実施形態の窒化アルミニウム焼結体11は、一主面11mを有し複数の窒化アルミニウム結晶粒子11pを含み、窒化アルミニウム結晶粒子11pは、全部の窒化アルミニウム結晶粒子11pの(11-20)面11pa、あるいは、一部の窒化アルミニウム結晶粒子11pの(11-20)面11paおよび残部の窒化アルミニウム結晶粒子11pの(10-10)面11pmが、一主面11mに平行に配向している。本実施形態の窒化アルミニウム焼結体11は、主面の鏡面加工が容易である。
<Details of Embodiment of the Present Invention>
[Embodiment 1: Aluminum nitride sintered body]
As shown in FIGS. 2 and 3, the aluminum nitride sintered body 11 of the present embodiment has a main surface 11 m and includes a plurality of aluminum nitride crystal particles 11 p, and the aluminum nitride crystal particles 11 p are all aluminum nitride. The (11-20) face 11pa of the crystal grain 11p, or the (11-20) face 11pa of a part of the aluminum nitride crystal grain 11p and the (10-10) face 11pm of the remaining aluminum nitride crystal grain 11p are mainly used. It is oriented parallel to the surface 11m. The aluminum nitride sintered body 11 of the present embodiment can easily mirror the main surface.
 (窒化アルミニウム結晶粒子の配向)
 本実施形態の窒化アルミニウム焼結体11は、複数の窒化アルミニウム結晶粒子11pが、全部の窒化アルミニウム結晶粒子11pの(11-20)面11pa、あるいは、一部の窒化アルミニウム結晶粒子11pの(11-20)面11paおよび残部の窒化アルミニウム結晶粒子11pの(10-10)面11pmが、一主面11mに平行に配向している。ここで、窒化アルミニウム結晶粒子11pの(11-20)面11paおよび(10-10)面11pmは、無極性面でありかつ面内に含まれる原子の密度も非常に近似しているため、研磨に対する化学的性質および物理的性質が非常に近似している。このため、窒化アルミニウム焼結体11は、その窒化アルミニウム結晶粒子11pの(11-20)面11paあるいは(11-20)面11paおよび(10-10)面11pmにより形成されている面の平行面である一主面11mが均一に研磨されるため、一主面11mの鏡面加工が容易である。ここで、窒化アルミニウム結晶粒子11pの(11-20)面11paおよび(10-10)面11pmは、X線回折法により測定および同定する。
(Orientation of aluminum nitride crystal grains)
In the aluminum nitride sintered body 11 of the present embodiment, the plurality of aluminum nitride crystal particles 11p are (11-20) face 11pa of all the aluminum nitride crystal particles 11p, or (11 of a part of the aluminum nitride crystal particles 11p. −20) The face 11pa and the (10-10) face 11pm of the remaining aluminum nitride crystal grain 11p are oriented parallel to the one principal face 11m. Here, since the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particles 11p are nonpolar planes and the density of atoms contained in the plane is also very close, polishing is performed. The chemical and physical properties for are very close. For this reason, the aluminum nitride sintered body 11 has a (11-20) plane 11pa or a plane parallel to the plane formed by the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particle 11p. Since one main surface 11m is uniformly polished, mirror processing of one main surface 11m is easy. Here, the (11-20) plane 11pa and the (10-10) plane 11pm of the aluminum nitride crystal particles 11p are measured and identified by the X-ray diffraction method.
 なお、本実施形態の窒化アルミニウム焼結体11およびその製造方法において、「全部の窒化アルミニウム結晶粒子11pの(11-20)面11paが、一主面11mに平行に配向している」における「全部」とは、X線回折において他の結晶面が測定および同定されることがない「実質的に全部」との意味であり、たとえば、窒化アルミニウム焼結体11中に含まれる窒化アルミニウム結晶粒子11p全体の95体積%以上が該当する。また、「一部の窒化アルミニウム結晶粒子11pの(11-20)面11paおよび残部の窒化アルミニウム結晶粒子11pの(10-10)面11pmが、一主面11mに平行に配向している」における「一部」および「残部」とは、一部と残部との和である全部が、X線回折において他の結晶面が測定および同定されることがない「実質的に全部」との意味であり、たとえば、「一部の窒化アルミニウム結晶粒子」および「残部の窒化アルミニウム結晶粒子」の和が、窒化アルミニウム焼結体11中に含まれる窒化アルミニウム結晶粒子11p全体の95体積%以上が該当する。 In the aluminum nitride sintered body 11 and the manufacturing method thereof according to the present embodiment, “the (11-20) plane 11pa of all the aluminum nitride crystal grains 11p is oriented in parallel to one principal surface 11m”. The term “all” means “substantially all” in which no other crystal plane is measured and identified in X-ray diffraction. For example, aluminum nitride crystal particles contained in the aluminum nitride sintered body 11 This corresponds to 95% by volume or more of the entire 11p. Further, in “the (11-20) plane 11pa of some of the aluminum nitride crystal particles 11p and the (10-10) plane 11pm of the remaining aluminum nitride crystal particles 11p are oriented in parallel to one principal surface 11m”. “Partial” and “remainder” mean that the total of the part and the remainder is “substantially all” in which no other crystal plane is measured and identified in X-ray diffraction. For example, the sum of “partial aluminum nitride crystal particles” and “remaining aluminum nitride crystal particles” corresponds to 95% by volume or more of the entire aluminum nitride crystal particles 11p included in the aluminum nitride sintered body 11. .
 (窒化アルミニウム焼結体の一主面の粗さ)
 本実施形態の窒化アルミニウム焼結体11は、一主面11mのJIS B0601:2013に規定する算術平均粗さRaが10nm以下であり、かつ、一主面11mのJIS B0601:2013に規定する最大高さ粗さRzが100nm以下の鏡面であることが好ましい。本実施形態の窒化アルミニウム焼結体11は、一主面11mがより平坦な鏡面である観点から、一主面11mの算術平均粗さRaは、10nm以下が好ましく、5nm以下がより好ましく、1nm以下がさらに好ましい。また、一主面11mの最大高さ粗さRzは、100nm以下が好ましく、50nm以下がより好ましく、30nm以下がさらに好ましい。ここで、一主面11mの算術平均粗さRaおよび最大高さ粗さRzは、3次元光学プロファイラー(キャノン株式会社製Zygo New View 7300)により測定する。
(Roughness of one main surface of aluminum nitride sintered body)
The aluminum nitride sintered body 11 of the present embodiment has an arithmetic average roughness Ra specified in JIS B0601: 2013 of one main surface 11m of 10 nm or less, and a maximum specified in JIS B0601: 2013 of one main surface 11m. A mirror surface having a height roughness Rz of 100 nm or less is preferred. In the aluminum nitride sintered body 11 of the present embodiment, the arithmetic average roughness Ra of one principal surface 11m is preferably 10 nm or less, more preferably 5 nm or less, from the viewpoint that the one principal surface 11m is a flatter mirror surface. The following is more preferable. Further, the maximum height roughness Rz of one principal surface 11m is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. Here, the arithmetic average roughness Ra and the maximum height roughness Rz of one principal surface 11m are measured by a three-dimensional optical profiler (Zygo New View 7300 manufactured by Canon Inc.).
 (窒化アルミニウム焼結体の形状および大きさ)
 本実施形態の窒化アルミニウム焼結体11は、一主面11mを有する。少なくとも一主面11mを有していれば足り、複数の主面を有していてもよく、その形状および大きさに制限はない。
(Shape and size of aluminum nitride sintered body)
The aluminum nitride sintered body 11 of the present embodiment has one main surface 11m. It is sufficient if it has at least one main surface 11m, and it may have a plurality of main surfaces, and the shape and size thereof are not limited.
 (窒化アルミニウム焼結体の熱伝導率)
 本実施形態の窒化アルミニウム焼結体11の熱伝導率は、特に制限はないが、放熱性が高い観点から、130W・m-1・K-1以上が好ましく、150W・m-1・K-1以上がより好ましく、170W・m-1・K-1以上がさらに好ましい。ここで、窒化アルミニウム焼結体11の熱伝導率は、レーザーフラッシュ法熱定数測定装置(アドバンス理工株式会社製TC-9000)により測定する。
(Thermal conductivity of sintered aluminum nitride)
The thermal conductivity of the aluminum nitride sintered body 11 of the present embodiment is not particularly limited, and the high heat radiation point of view, preferably 130W · m -1 · K -1 or more, 150W · m -1 · K - 1 or more is more preferable, and 170 W · m −1 · K −1 or more is more preferable. Here, the thermal conductivity of the aluminum nitride sintered body 11 is measured by a laser flash method thermal constant measuring device (TC-9000, manufactured by Advance Riko Co., Ltd.).
 (窒化アルミニウム焼結体の相対密度)
 本実施形態の窒化アルミニウム焼結体11の相対密度は、焼結体の加工性および熱伝導率を高める観点から、98%以上が好ましく、99%以上がより好ましい。ここで、相対密度は、その物質の真質量に対する実際の質量の百分率を意味し、アルキメデス法により測定する。
(Relative density of aluminum nitride sintered body)
The relative density of the aluminum nitride sintered body 11 of the present embodiment is preferably 98% or more, and more preferably 99% or more, from the viewpoint of improving the workability and thermal conductivity of the sintered body. Here, the relative density means the percentage of the actual mass with respect to the true mass of the substance, and is measured by the Archimedes method.
 (窒化アルミニウム結晶粒子)
 本実施形態の窒化アルミニウム焼結体11は、窒化アルミニウム結晶粒子11pを含む。窒化アルミニウム焼結体11中の窒化アルミニウム結晶粒子11pの平均粒径は、特に制限はないが、一主面11mの鏡面加工が容易な観点から、10μm以下が好ましく、5μm以下がより好ましく、焼結体の加工性および熱伝導率を高める観点から、1μm以上が好ましく、3μm以上がより好ましい。ここで、窒化アルミニウム焼結体11中の窒化アルミニウム結晶粒子11pの平均粒径は、走査型電子顕微鏡(SEM)(日本電子株式会社製JSM-6510)により測定する。結晶粒子の平均粒径は面積計量法により算出した値とする。具体的には、画像上に少なくとも50個以上の結晶粒が含まれるように長方形を描き、その長方形内に存在する結晶粒の総面積A及び結晶粒の数NAを求め、結晶粒の総面積Aを結晶粒数NAで除した値(A/NA)を結晶粒の平均断面積aとし、結晶粒の平均断面積aの平方根(√a)を結晶粒の平均粒径dとする。
(Aluminum nitride crystal particles)
The aluminum nitride sintered body 11 of the present embodiment includes aluminum nitride crystal particles 11p. The average particle diameter of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, from the viewpoint of easy mirror finishing of one main surface 11 m. From the viewpoint of improving the workability and thermal conductivity of the bonded body, it is preferably 1 μm or more, and more preferably 3 μm or more. Here, the average particle diameter of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is measured by a scanning electron microscope (SEM) (JSM-6510 manufactured by JEOL Ltd.). The average particle size of the crystal particles is a value calculated by the area measurement method. Specifically, a rectangle is drawn so that at least 50 or more crystal grains are included on the image, and the total area A and the number N A of crystal grains existing in the rectangle are obtained. A value obtained by dividing the area A by the number of crystal grains NA (A / N A ) is an average cross-sectional area a of the crystal grains, and a square root (√a) of the average cross-sectional area a of the crystal grains is an average grain diameter d of the crystal grains. .
 また、窒化アルミニウム焼結体11中の窒化アルミニウム結晶粒子の含有量は、特に制限はないが、焼結体の密度および熱伝導率を高くする観点から、95質量%以上99質量%以下が好ましく、97質量%以上98質量%以下がより好ましい。ここで、窒化アルミニウム焼結体11中の窒化アルミニウム結晶粒子11pの含有量は、誘導結合プラズマ(ICP)発光分析装置(株式会社島津製作所製ICPS-7510)により測定する。 The content of the aluminum nitride crystal particles in the aluminum nitride sintered body 11 is not particularly limited, but is preferably 95% by mass or more and 99% by mass or less from the viewpoint of increasing the density and thermal conductivity of the sintered body. 97 mass% or more and 98 mass% or less are more preferable. Here, the content of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 is measured by an inductively coupled plasma (ICP) emission spectrometer (ICPS-7510 manufactured by Shimadzu Corporation).
 (焼結助剤)
 本実施形態の窒化アルミニウム焼結体11は、焼結時の融点を低くすることにより焼結体の密度および主相の窒化アルミニウムの純度を高くする観点から、焼結助剤として、2族元素、3族元素および13族元素の酸化物、窒化物、フッ化物などを含むことが好ましい。2族元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)などが好適に挙げられる。3族元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)などの希土類元素が好適に挙げられる。13族元素としては、アルミニウム(Al)などが好適に挙げられる。また、窒化アルミニウム焼結体11中の焼結助剤の含有量は、特に制限はないが、焼結時の融点を低くすることにより焼結体の密度および主相の窒化アルミニウムの純度を高くする観点から、1質量%以上5質量%以下が好ましく、2質量%以上3質量%以下がより好ましい。ここで、窒化アルミニウム焼結体11中の焼結助剤の種類および含有量は、ICP発光分析装置(株式会社島津製作所製ICPS-7510)により測定する。
(Sintering aid)
From the viewpoint of increasing the density of the sintered body and the purity of the aluminum nitride of the main phase by lowering the melting point during sintering, the aluminum nitride sintered body 11 of the present embodiment is a group 2 element as a sintering aid. It preferably contains an oxide, nitride, fluoride or the like of a group 3 element or a group 13 element. Preferred examples of the Group 2 element include magnesium (Mg), calcium (Ca), and strontium (Sr). Group 3 elements include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), and europium (Eu). , Gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu) and the like. Preferred examples of the group 13 element include aluminum (Al). Further, the content of the sintering aid in the aluminum nitride sintered body 11 is not particularly limited, but the density of the sintered body and the purity of the main phase aluminum nitride are increased by lowering the melting point during sintering. From the viewpoint of doing, 1 mass% or more and 5 mass% or less are preferable, and 2 mass% or more and 3 mass% or less are more preferable. Here, the kind and content of the sintering aid in the aluminum nitride sintered body 11 are measured by an ICP emission analyzer (ICPS-7510 manufactured by Shimadzu Corporation).
 [実施形態2:窒化アルミニウム焼結体の製造方法]
 図1~図4を参照して、本実施形態の窒化アルミニウム焼結体11の製造方法は、窒化アルミニウム粉末を含む原料粉末を溶媒中に分散することにより原料スラリー9を形成する工程S10と、原料スラリー9をそのpHを1以上6以下に調整した後磁場B中でスリップキャスト成形することにより一主面10mを有する成形体10を形成する工程S20と、成形体10を焼結することにより窒化アルミニウム焼結体11を形成する工程S30と、を含み、成形体10を形成する工程において、磁場Bは成形体10の一主面10mに平行な方向に印加される。本実施形態の窒化アルミニウム焼結体の製造方法によれば、主面の鏡面加工が容易な窒化アルミニウム焼結体が得られる。
[Embodiment 2: Manufacturing method of aluminum nitride sintered body]
With reference to FIGS. 1 to 4, the method of manufacturing the aluminum nitride sintered body 11 of the present embodiment includes a step S10 of forming a raw material slurry 9 by dispersing a raw material powder containing aluminum nitride powder in a solvent, By adjusting the pH of the raw material slurry 9 to 1 or more and 6 or less and then performing the slip casting in the magnetic field B to form a molded body 10 having one main surface 10m, and sintering the molded body 10 In the step of forming the molded body 10, the magnetic field B is applied in a direction parallel to the one main surface 10 m of the molded body 10. According to the method for manufacturing an aluminum nitride sintered body of the present embodiment, an aluminum nitride sintered body whose main surface can be easily mirror-finished can be obtained.
 {原料スラリーを形成する工程}
 本実施形態の窒化アルミニウム焼結体11の製造方法は、まず、窒化アルミニウム粉末を含む原料粉末を溶媒中に分散することにより原料スラリー9を形成する工程S10を含む。
{Process of forming raw material slurry}
The manufacturing method of the aluminum nitride sintered body 11 of the present embodiment first includes a step S10 of forming a raw material slurry 9 by dispersing a raw material powder containing an aluminum nitride powder in a solvent.
 (窒化アルミニウム粉末)
 原料粉末に含まれる窒化アルミニウム粉末の純度は、特に制限はないが、焼結体の密度および熱伝導率を高くする観点から、98質量%以上が好ましく、99質量%以上がより好ましい。原料粉末中の窒化アルミニウム粉末の含有量は、特に制限はないが、焼結体の密度および熱伝導率を高くする観点から、95質量%以上99質量%以下が好ましく、97質量%以上98質量%以下がより好ましい。また、窒化アルミニウム結晶粒子の平均粒径は、特に制限はないが、焼結体の加工性および熱伝導率を高める観点から、10μm以下が好ましく、5μm以下がより好ましく、焼結体の加工性および熱伝導率を高める観点から、1μm以上が好ましく、3μm以上がより好ましい。ここで、窒化アルミニウム粉末中の窒化アルミニウム結晶粒子の平均粒径は、SEM(日本電子株式会社製JSM-6510)により測定する。
(Aluminum nitride powder)
The purity of the aluminum nitride powder contained in the raw material powder is not particularly limited, but is preferably 98% by mass or more, and more preferably 99% by mass or more from the viewpoint of increasing the density and thermal conductivity of the sintered body. The content of the aluminum nitride powder in the raw material powder is not particularly limited, but is preferably 95% by mass or more and 99% by mass or less, and 97% by mass or more and 98% by mass from the viewpoint of increasing the density and thermal conductivity of the sintered body. % Or less is more preferable. The average particle size of the aluminum nitride crystal particles is not particularly limited, but is preferably 10 μm or less, more preferably 5 μm or less, and more preferably 5 μm or less from the viewpoint of improving the workability and thermal conductivity of the sintered body. From the viewpoint of increasing the thermal conductivity, 1 μm or more is preferable, and 3 μm or more is more preferable. Here, the average particle diameter of the aluminum nitride crystal particles in the aluminum nitride powder is measured by SEM (JSM-6510 manufactured by JEOL Ltd.).
 (焼結助剤)
 原料粉末は、高品質の焼結体を形成する観点から、さらに、焼結助剤として、2族元素、3族元素および13族元素の酸化物、窒化物、フッ化物などを含むことが好ましい。2族元素としては、Mg、Ca、Srなどが好適に挙げられる。3族元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luなどの希土類元素が好適に挙げられる。13族元素としては、Alなどが好適に挙げられる。また、原料粉末中の焼結助剤の含有量は、特に制限はないが、焼結時の融点を低くすることにより焼結体の密度および主相の窒化アルミニウムの純度を高くする観点から、1質量%以上5質量%以下が好ましく、2質量%以上3質量%以下がより好ましい。
(Sintering aid)
From the viewpoint of forming a high-quality sintered body, the raw material powder preferably further contains oxides, nitrides, fluorides, etc. of Group 2, 3 and 13 elements as sintering aids. . As the group 2 element, Mg, Ca, Sr and the like are preferably exemplified. Preferred examples of the Group 3 element include rare earth elements such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A preferred example of the group 13 element is Al. In addition, the content of the sintering aid in the raw material powder is not particularly limited, but from the viewpoint of increasing the density of the sintered body and the purity of the main phase aluminum nitride by lowering the melting point during sintering, 1 mass% or more and 5 mass% or less are preferable, and 2 mass% or more and 3 mass% or less are more preferable.
 (バインダー)
 原料粉末は、高品質の焼結体を形成する観点から、さらに、バインダーとして、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、アクリル、ポリエステルなどを含むことが好ましい。また、原料粉末中のバインダーの含有量は、特に制限はないが、成形体の成形性を高めるとともに焼結体の主相の窒化アルミニウムの純度を高める観点から、15質量%以上35質量%以下が好ましく、20質量%以上30質量%以下がより好ましい。
(binder)
From the viewpoint of forming a high-quality sintered body, the raw material powder preferably further contains polyvinyl alcohol (PVA), polyvinyl butyral (PVB), acrylic, polyester, and the like as a binder. Further, the content of the binder in the raw material powder is not particularly limited, but from the viewpoint of improving the formability of the molded body and increasing the purity of aluminum nitride as the main phase of the sintered body, it is 15% by mass or more and 35% by mass or less. Is preferable, and 20 mass% or more and 30 mass% or less are more preferable.
 (溶媒)
 溶媒は、特に制限はないが、原料粉末を均質に分散させ易い観点から、有機溶媒が好ましい。有機溶媒としては、エタノール、メタノール、ヘキサンなどが好適に挙げられる。
(solvent)
Although there is no restriction | limiting in particular in a solvent, From a viewpoint of being easy to disperse | distribute raw material powder uniformly, an organic solvent is preferable. Preferred examples of the organic solvent include ethanol, methanol, hexane and the like.
 (分散方法)
 原料粉末を溶媒中に分散する方法は、特に制限はないが、溶媒中に原料粉末を均質に分散する観点から、ボールミル混合による分散、超音波による分散などが好適に挙げられる。
(Distribution method)
The method for dispersing the raw material powder in the solvent is not particularly limited, but from the viewpoint of homogeneously dispersing the raw material powder in the solvent, preferable examples include dispersion by ball mill mixing and ultrasonic dispersion.
 {成形体を形成する工程}
 本実施形態の窒化アルミニウム焼結体11の製造方法は、次に、原料スラリー9を、そのpHを1以上6以下に調整した後、磁場B中でスリップキャスト成形することにより一主面10mを有する成形体10を形成する工程S20を含む。かかる工程において、磁場Bは、成形体10の一主面10mに平行な方向に印加されている。かかる工程により、全部の窒化アルミニウム結晶粒子の(11-20)面、あるいは一部の窒化アルミニウム結晶粒子の(11-20)面および残部の窒化アルミニウム結晶粒子の(10-10)面が、成形体10の一主面10mに平行に配向した成形体10が得られる。
{Process for forming molded body}
In the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment, next, after adjusting the pH of the raw slurry 9 to 1 or more and 6 or less, the main surface 10m is formed by slip casting in the magnetic field B. The process S20 which forms the molded object 10 which has is included. In this process, the magnetic field B is applied in a direction parallel to the one main surface 10 m of the molded body 10. By this process, the (11-20) plane of all the aluminum nitride crystal grains, or the (11-20) plane of a part of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are formed. A molded body 10 oriented parallel to one main surface 10m of the body 10 is obtained.
 (原料スラリーのpHの調整)
 原料粉末を溶媒に分散させた原料スラリー9のpHを1以上6以下に調整する。原料スラリー9のpHを1以上6以下とした後、成形体10の一主面10mに平行な方向に磁場Bを印加することにより、全部の窒化アルミニウム結晶粒子の(11-20)面、あるいは一部の窒化アルミニウム結晶粒子の(11-20)面および残部の窒化アルミニウム結晶粒子の(10-10)面が、成形体10の一主面10mに平行に配向させるとともに、焼結体の相対密度を高めかつ残存する不純物酸素の低減により熱伝導率を高める観点から、原料スラリー9のpHは、1以上6以下、好ましくは2以上5以下に調整する。原料スラリー9のpHの調整は、特に制限はなく、たとえば、塩酸などの酸性物質を添加することにより行なう。
(Adjustment of pH of raw material slurry)
The pH of the raw material slurry 9 in which the raw material powder is dispersed in a solvent is adjusted to 1 or more and 6 or less. After the pH of the raw material slurry 9 is set to 1 or more and 6 or less, by applying a magnetic field B in a direction parallel to one main surface 10 m of the molded body 10, (11-20) plane of all aluminum nitride crystal particles, or The (11-20) plane of some of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to one major surface 10m of the molded body 10 and From the viewpoint of increasing the density and increasing the thermal conductivity by reducing the remaining impurity oxygen, the pH of the raw slurry 9 is adjusted to 1 or more and 6 or less, preferably 2 or more and 5 or less. Adjustment of the pH of the raw material slurry 9 is not particularly limited, and is performed, for example, by adding an acidic substance such as hydrochloric acid.
 原料スラリー9のpHが1未満の強酸性であると水和イオンの形成により、原料スラリー9のpHが6より大きい中性またはアルカリ性であると水酸化物の形成により、これらのネットワークの形成による立体障害のために、窒化アルミニウム結晶粒子の磁場Bによる回転が阻害され、窒化アルミニウム結晶粒子の配向が阻害される。なお、原料スラリー9のpHが1未満であると、原料スラリー9中に含まれる焼結助剤が優先的に溶出して、焼結助剤の含有量が低減し、焼結時に形成される液相が低減するため、焼結体の相対密度を高くすることが難しくなる。また、原料スラリー9のpHが6より大きいと、原料スラリー9に含まれる窒化アルミニウム粉末の窒化アルミニウム結晶粒子の表面の加水分解反応により原料スラリー9の粘度が高くなり、窒化アルミニウム結晶粒子の配向が阻害されるとともに、焼成後に残留する不純物酸素により熱伝導率が低くなる。 When the pH of the raw material slurry 9 is strongly acidic below 1, it is due to formation of hydrated ions, and when the pH of the raw material slurry 9 is more than 6 neutral or alkaline, it is due to formation of hydroxides due to formation of these networks. Due to the steric hindrance, rotation of the aluminum nitride crystal particles by the magnetic field B is inhibited, and the orientation of the aluminum nitride crystal particles is inhibited. In addition, when the pH of the raw material slurry 9 is less than 1, the sintering aid contained in the raw material slurry 9 is preferentially eluted, so that the content of the sintering aid is reduced and formed during sintering. Since the liquid phase is reduced, it is difficult to increase the relative density of the sintered body. If the pH of the raw material slurry 9 is greater than 6, the viscosity of the raw material slurry 9 is increased by the hydrolysis reaction of the surface of the aluminum nitride crystal particles of the aluminum nitride powder contained in the raw material slurry 9, and the orientation of the aluminum nitride crystal particles is increased. In addition to being hindered, the thermal conductivity decreases due to impurity oxygen remaining after firing.
 (スリップキャスト成形)
 スリップキャスト成形とは、pHを1以上6以下に調整した原料スラリー9を多孔質鋳型20に注ぎ込み、原料スラリー9中の溶媒を多孔質鋳型20に吸収させることにより、原料スラリー9を乾燥させて成形する成形方法をいう。
(Slip cast molding)
The slip cast molding is a process in which the raw material slurry 9 having a pH adjusted to 1 or more and 6 or less is poured into the porous mold 20 and the solvent in the raw material slurry 9 is absorbed into the porous mold 20 to dry the raw material slurry 9. A molding method for molding.
 (磁場の印加)
 磁場Bの印加方法は、特に制限はないが、効率よく磁場を印加する観点から、定常磁場法、パルス磁場法、勾配磁場法などが好適に挙げられる。磁場Bの印加方向は、成形体10の一主面10mに平行な方向である。かかる方向の磁場Bの印加により、成形体10中の全部の窒化アルミニウム結晶粒子10pの(11-20)面10pa、あるいは一部の窒化アルミニウム結晶粒子10pの(11-20)面10paおよび残部の窒化アルミニウム結晶粒子10pの(10-10)面10pmが、成形体10の一主面10mに平行に配向する。印加する磁場Bの磁束密度は、特に制限はないが、効率よく窒化アルミニウム結晶粒子の配向性を高くする観点から、1T(テスラ)以上15T以下が好ましく、3T以上10T以下がより好ましい。
(Application of magnetic field)
The method for applying the magnetic field B is not particularly limited, but from the viewpoint of efficiently applying the magnetic field, a steady magnetic field method, a pulse magnetic field method, a gradient magnetic field method, and the like are preferable. The application direction of the magnetic field B is a direction parallel to one main surface 10 m of the molded body 10. By applying the magnetic field B in such a direction, the (11-20) face 10pa of all the aluminum nitride crystal particles 10p in the compact 10 or the (11-20) face 10pa of the aluminum nitride crystal particles 10p and the remaining part of the aluminum nitride crystal particles 10p. The (10-10) plane 10pm of the aluminum nitride crystal particles 10p is oriented parallel to the one main surface 10m of the molded body 10. The magnetic flux density of the applied magnetic field B is not particularly limited, but is preferably 1T (Tesla) or more and 15T or less, and more preferably 3T or more and 10T or less from the viewpoint of efficiently increasing the orientation of the aluminum nitride crystal particles.
 (成形装置)
 成形体10を形成する工程S20において用いられる成形装置100は、特に制限はないが、原料スラリー9を効率よく磁場中でスリップキャスト成形する観点から、原料スラリー9を入れる空間部を有する多孔質鋳型20と、原料スラリー9から成形される成形体10の一主面10mに平行な方向に磁場Bを印加する磁場印加ユニット30と、を含む。多孔質鋳型20は、原料スラリー9をスリップキャスト成形するのに適したものであれば特に制限はなく、石膏、多孔質ポリマーなどが好適に挙げられる。また、磁場印加ユニット30は、原料スラリー9から成形される成形体10の一主面10mに平行な方向に磁場Bを印加できるものであれば特に制限はなく、高周波コイルユニット、超電導磁石ユニットなどが挙げられる。
(Molding equipment)
The molding apparatus 100 used in the step S20 for forming the molded body 10 is not particularly limited, but from the viewpoint of efficiently slip casting the raw material slurry 9 in a magnetic field, a porous mold having a space for containing the raw material slurry 9 is used. 20 and a magnetic field application unit 30 that applies a magnetic field B in a direction parallel to one main surface 10 m of the molded body 10 formed from the raw slurry 9. The porous mold 20 is not particularly limited as long as it is suitable for the slip casting of the raw material slurry 9, and suitable examples thereof include gypsum and a porous polymer. The magnetic field application unit 30 is not particularly limited as long as it can apply the magnetic field B in a direction parallel to the one main surface 10m of the molded body 10 formed from the raw slurry 9, and includes a high frequency coil unit, a superconducting magnet unit, and the like. Is mentioned.
 {窒化アルミニウム焼結体を形成する工程}
 本実施形態の窒化アルミニウム焼結体11の製造方法は、次に、成形体10を焼結することにより窒化アルミニウム焼結体11を形成する工程S30を含む。かかる工程において、成形体10中の窒化アルミニウム結晶粒子10pの配向性が維持された窒化アルミニウム結晶粒子11pを有する窒化アルミニウム焼結体11が得られる。すなわち、成形体10中の窒化アルミニウム結晶粒子10pの(11-20)面10paが成形体10の一主面10mに平行に配向した成形体10が焼結されて、窒化アルミニウム焼結体11中の全部の窒化アルミニウム結晶粒子11pの(11-20)面11paが窒化アルミニウム焼結体11の一主面11mに平行に配向した窒化アルミニウム焼結体11が得られる。成形体10中の窒化アルミニウム結晶粒子10pの一部の窒化アルミニウム結晶粒子10pの(11-20)面10paおよび残部の窒化アルミニウム結晶粒子10pの(10-10)面10pmが成形体10の一主面10mに平行に配向した成形体10が焼結されて、窒化アルミニウム焼結体11中の一部の窒化アルミニウム結晶粒子11pの(11-20)面11paおよび残部の窒化アルミニウム結晶粒子11pの(10-10)面11pmが、窒化アルミニウム焼結体11の一主面11mに平行に配向した窒化アルミニウム焼結体11が得られる。
{Process for forming aluminum nitride sintered body}
Next, the method for manufacturing the aluminum nitride sintered body 11 of the present embodiment includes the step S30 of forming the aluminum nitride sintered body 11 by sintering the formed body 10. In this step, the aluminum nitride sintered body 11 having the aluminum nitride crystal particles 11p in which the orientation of the aluminum nitride crystal particles 10p in the molded body 10 is maintained is obtained. That is, the molded body 10 in which the (11-20) plane 10pa of the aluminum nitride crystal particles 10p in the molded body 10 is oriented parallel to one main surface 10m of the molded body 10 is sintered, and the aluminum nitride sintered body 11 Thus, the aluminum nitride sintered body 11 in which the (11-20) plane 11pa of all the aluminum nitride crystal particles 11p is oriented parallel to the one main surface 11m of the aluminum nitride sintered body 11 is obtained. The (11-20) face 10pa of a part of the aluminum nitride crystal particles 10p and the (10-10) face 10pm of the remaining aluminum nitride crystal particles 10p in the compact 10 are the main parts of the compact 10. The compact 10 oriented parallel to the face 10m is sintered, and the (11-20) face 11pa of a part of the aluminum nitride crystal particles 11p in the aluminum nitride sintered body 11 and the remaining aluminum nitride crystal particles 11p ( 10-10) An aluminum nitride sintered body 11 is obtained in which the surface 11pm is oriented parallel to one principal surface 11m of the aluminum nitride sintered body 11.
 成形体10を焼結することにより窒化アルミニウム焼結体11を形成する工程S30は、特に制限はないが、高品質の窒化アルミニウム焼結体11を効率よく形成する観点から、バインダーが含まれている成形体10を脱バインダーするサブ工程S31と、脱バインダーされた成形体10を焼結するサブ工程S32と、を含むことが好ましい。 The step S30 for forming the aluminum nitride sintered body 11 by sintering the molded body 10 is not particularly limited, but from the viewpoint of efficiently forming the high-quality aluminum nitride sintered body 11, a binder is included. It is preferable to include a sub-step S31 for debinding the formed body 10 and a sub-step S32 for sintering the de-bindered formed body 10.
 (成形体を脱バインダーするサブ工程)
 成形体10を脱バインダーするサブ工程S31は、成形体10からその中に含まれるバインダーを除去するサブ工程を意味する。成形体10を脱バインダーする方法は、とくに制限はないが、窒素ガス雰囲気中またはアルゴンガス雰囲気中で、700℃以上900℃以下で、1時間以上3時間以下の条件で熱処理することが好ましい。
(Sub-process for debinding the compact)
The sub-step S31 for removing the binder from the molded body 10 means a sub-step for removing the binder contained therein from the molded body 10. The method for removing the binder from the molded body 10 is not particularly limited, but is preferably heat-treated in a nitrogen gas atmosphere or an argon gas atmosphere at 700 ° C. to 900 ° C. for 1 hour to 3 hours.
 (脱バインダーされた成形体を焼結するサブ工程)
 脱バインダーされた成形体10を焼結するサブ工程S32において、脱バインダーされた成形体10を焼結する方法は、とくに制限はないが、窒素ガス雰囲気中またはアルゴンガス雰囲気中で、700℃以上900℃以下で、1時間以上3時間以下の条件で熱処理することが好ましい。
(Sub-process for sintering the debindered compact)
In the sub-step S32 for sintering the debindered molded body 10, a method for sintering the debindered molded body 10 is not particularly limited, but is 700 ° C. or higher in a nitrogen gas atmosphere or an argon gas atmosphere. It is preferable to perform heat treatment at 900 ° C. or less under conditions of 1 hour or more and 3 hours or less.
 {窒化アルミニウム焼結体の一主面を研磨により鏡面加工する工程}
 本実施形態の窒化アルミニウム焼結体11の製造方法は、さらに、窒化アルミニウム焼結体11の一主面11mを研磨により鏡面加工する工程S40を含むことが好ましい。かかる工程により、主面が鏡面加工された窒化アルミニウム焼結体が得られる。
{Process of mirror-finishing one main surface of aluminum nitride sintered body}
It is preferable that the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment further includes a step S40 of mirror-finishing one main surface 11m of the aluminum nitride sintered body 11 by polishing. With this process, an aluminum nitride sintered body whose main surface is mirror-finished is obtained.
 本実施形態の窒化アルミニウム焼結体11の製造方法において、鏡面加工する工程S40後の窒化アルミニウム焼結体11について、一主面のJIS B0601:2013に規定する算術平均粗さRaが10nm以下であり、かつ、一主面のJIS B0601:2013に規定する最大高さ粗さRzが100nm以下であることが好ましい。これにより、主面が鏡面加工された窒化アルミニウム焼結体11が得られる。本実施形態の窒化アルミニウム焼結体11は、一主面11mがより平坦な鏡面である観点から、一主面11mの算術平均粗さRaは、10nm以下が好ましく、5nm以下がより好ましく、1nm以下がさらに好ましい。また、一主面11mの最大高さ粗さRzは、100nm以下が好ましく、50nm以下がより好ましく、30nm以下がさらに好ましい。ここで、窒化アルミニウム焼結体11の一主面11mの算術平均粗さRaおよび最大高さ粗さRzは、3次元光学プロファイラー(キャノン株式会社製Zygo New View 7300)により測定する。 In the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment, the arithmetic average roughness Ra specified in JIS B0601: 2013 on one main surface of the aluminum nitride sintered body 11 after the mirror finishing step S40 is 10 nm or less. In addition, the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface is preferably 100 nm or less. Thereby, the aluminum nitride sintered compact 11 by which the main surface was mirror-finished is obtained. In the aluminum nitride sintered body 11 of the present embodiment, the arithmetic average roughness Ra of one principal surface 11m is preferably 10 nm or less, more preferably 5 nm or less, from the viewpoint that the one principal surface 11m is a flatter mirror surface. The following is more preferable. Further, the maximum height roughness Rz of one principal surface 11m is preferably 100 nm or less, more preferably 50 nm or less, and further preferably 30 nm or less. Here, the arithmetic average roughness Ra and the maximum height roughness Rz of one main surface 11m of the aluminum nitride sintered body 11 are measured by a three-dimensional optical profiler (Zygo New View 7300 manufactured by Canon Inc.).
 本実施形態の窒化アルミニウム焼結体11の製造方法の鏡面加工する工程において、研磨に用いられる研磨スラリーのpHは、特に制限はないが、研磨の際の焼結体中の窒化アルミニウム結晶粒子11pの脱粒を抑制するとともに、表面状態の荒れを抑制して平滑性を維持する観点から、1以上6以下が好ましく、2以上5以下がより好ましい。焼結体を鏡面加工する際の研磨スラリーのpHが1未満であると、焼結体中に含まれる焼結助剤が優先的に溶出して、研磨の際の焼結体中の窒化アルミニウム結晶粒子11pの脱粒が促進され、焼結体の一主面の平滑性が低下する。焼結体を鏡面加工する際の研磨スラリーのpHが6より大きいと、焼結体に含まれる窒化アルミニウム粉末の窒化アルミニウム結晶粒子の表面の加水分解反応により、表面状態の荒れが促進され、焼結体の一主面の平滑性が低下する。 The pH of the polishing slurry used for polishing is not particularly limited in the step of mirror-finishing the manufacturing method of the aluminum nitride sintered body 11 of the present embodiment, but the aluminum nitride crystal particles 11p in the sintered body at the time of polishing are not limited. 1 to 6 or less is preferable and 2 or more and 5 or less is more preferable from the viewpoint of suppressing the degranulation and maintaining the smoothness by suppressing the roughness of the surface state. When the pH of the polishing slurry when mirror-finishing the sintered body is less than 1, the sintering aid contained in the sintered body elutes preferentially, and aluminum nitride in the sintered body during polishing The degranulation of the crystal particles 11p is promoted, and the smoothness of one main surface of the sintered body is lowered. If the pH of the polishing slurry when the sintered body is mirror-finished is greater than 6, surface roughness is promoted by the hydrolysis reaction of the surface of the aluminum nitride crystal particles of the aluminum nitride powder contained in the sintered body. The smoothness of one main surface of the bonded body is lowered.
 (実施例1)
 1.原料スラリーの形成
 原料粉末として、窒化アルミニウム(AlN)粉末、酸化イッテルビウム(Yb23)粉末、酸化ネオジム(Nd23)粉末、酸化アルミニウム(Al23)粉末、およびポリビニルアルコール(PVA)粉末を、それぞれ72.4質量%、0.8質量%、1.0質量%、0.7質量%、および25.1質量%の割合の混合粉末を準備した。ここで、Yb23粉末、Nd23粉末およびAl23粉末は焼結助剤であり、PVA粉末はバインダーであった。かかる原料粉末の30.0質量%を溶媒である70.0質量%のエタノールに、ボールミル混合により、均質に分散させて、原料スラリーを形成した。
Example 1
1. Formation of Raw Material Slurry As raw material powder, aluminum nitride (AlN) powder, ytterbium oxide (Yb 2 O 3 ) powder, neodymium oxide (Nd 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder, and polyvinyl alcohol (PVA) ) A mixed powder having a ratio of 72.4% by mass, 0.8% by mass, 1.0% by mass, 0.7% by mass, and 25.1% by mass was prepared. Here, Yb 2 O 3 powder, Nd 2 O 3 powder and Al 2 O 3 powder were sintering aids, and PVA powder was a binder. 30.0% by mass of the raw material powder was uniformly dispersed in 70.0% by mass of ethanol as a solvent by ball mill mixing to form a raw material slurry.
 2.成形体の形成
 上記の原料スラリーのpHを、塩酸を用いて、3に調整した。3Tの磁束密度の磁場中でスリップキャスト成形することにより、成形体を形成した。ここで、磁場は、成形体の一主面に平行な方向に印加されていた。
2. Formation of Molded Body The pH of the raw material slurry was adjusted to 3 using hydrochloric acid. A compact was formed by slip casting in a magnetic field having a magnetic flux density of 3T. Here, the magnetic field was applied in a direction parallel to one main surface of the compact.
 3.窒化アルミニウム焼結体の形成
 上記の成形体を、まず、窒素ガス雰囲気中800℃で1時間熱処理することにより脱バインダーした後、窒素ガス雰囲気中1800℃で2時間熱処理することにより焼結することにより、窒化アルミニウム(AlN)焼結体を形成した。AlN焼結体の相対密度は、アルキメデス法により測定したところ、99%であった。AlN焼結体中の結晶相は、X線回折法により分析および同定したところ、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、X線回折法により分析したところ、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、熱拡散率測定装置(アドバンス理工株式会社製TC-1200RH)により測定したところ、180W・m-1・K-1であった。
3. Formation of Aluminum Nitride Sintered Body The above molded body is first debindered by heat treatment at 800 ° C. for 1 hour in a nitrogen gas atmosphere, and then sintered by heat treatment at 1800 ° C. for 2 hours in a nitrogen gas atmosphere. Thus, an aluminum nitride (AlN) sintered body was formed. The relative density of the AlN sintered body was 99% as measured by the Archimedes method. The crystal phase in the AlN sintered body was analyzed and identified by the X-ray diffraction method, and was an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. When the AlN crystal particles in the AlN sintered body were analyzed by the X-ray diffraction method, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 180 W · m −1 · K −1 as measured by a thermal diffusivity measuring device (TC-1200RH manufactured by Advance Riko Co., Ltd.).
 4.窒化アルミニウム焼結体の鏡面加工
 AlN焼結体の一主面を平面研削機(株式会社ナガセインテグレックス製SGE520)により研削した後、平均粒径が50nmのダイヤモンド砥粒を含むpHが3の研磨スラリーを用いてポリッシュ研磨機(日本エンギス社製EJW-6101)により研磨した。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、光学計測機器(キャノン株式会社製Zygo New View 7100)により測定したところ、それぞれ3nmおよび28nmであった。結果を表1にまとめた。
4). Mirror surface processing of aluminum nitride sintered body After grinding one main surface of an AlN sintered body with a surface grinding machine (SGE520 manufactured by Nagase Integrex Co., Ltd.), a polishing slurry having a pH of 3 and containing diamond abrasive grains having an average particle diameter of 50 nm Was polished with a polishing machine (EJW-6101 manufactured by Nippon Engis Co., Ltd.). Arithmetic mean roughness Ra and maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of an AlN sintered body are measured by an optical measuring instrument (Zygo New View 7100 manufactured by Canon Inc.). , 3 nm and 28 nm, respectively. The results are summarized in Table 1.
 (実施例2)
 成形体の形成の際に塩酸を用いて原料スラリーのpHを1としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、175W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ5nmおよび45nmであった。結果を表1にまとめた。
(Example 2)
A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form a raw material slurry at the time of forming the molded body, and the pH of the raw material slurry was set to 1. One main surface was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 175 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 5 nm and 45 nm, respectively. The results are summarized in Table 1.
 (実施例3)
 成形体の形成の際に塩酸を用いて原料スラリーのpHを6としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、173W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ8nmおよび78nmであった。結果を表1にまとめた。
(Example 3)
A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form the molded body and the pH of the raw material slurry was set to 6. One main surface was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 173 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 8 nm and 78 nm, respectively. The results are summarized in Table 1.
 (実施例4)
 AlN焼結体の一主面を研磨する際に研磨スラリーのpHを1としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、180W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ4nmおよび32nmであった。結果を表1にまとめた。
Example 4
Except that the pH of the polishing slurry was set to 1 when polishing one main surface of the AlN sintered body, a raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1, and the AlN sintered body was formed. One main surface of the body was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 180 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 4 nm and 32 nm, respectively. The results are summarized in Table 1.
 (実施例5)
 AlN焼結体の一主面を研磨する際に研磨スラリーのpHを6としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、180W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ9nmおよび93nmであった。結果を表1にまとめた。
(Example 5)
A raw material slurry, a molded body and an AlN sintered body are formed in the same manner as in Example 1 except that the pH of the polishing slurry is set to 6 when polishing one main surface of the AlN sintered body. One main surface of the body was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 180 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface of the AlN sintered body after polishing were 9 nm and 93 nm, respectively. The results are summarized in Table 1.
 (実施例6)
 成形体の形成の際に印加する磁場の磁束密度を10Tとしたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、一部のAlN結晶粒子の(11-20)面および残部のAlN結晶粒子の(10-10)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、177W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ5nmおよび62nmであった。結果を表1にまとめた。
(Example 6)
A raw material slurry, a molded body, and an AlN sintered body are formed in the same manner as in Example 1 except that the magnetic flux density of the magnetic field applied at the time of forming the molded body is 10 T. The surface was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. The AlN crystal particles in the AlN sintered body are oriented so that the (11-20) plane of some AlN crystal particles and the (10-10) plane of the remaining AlN crystal particles are parallel to one main surface of the AlN sintered body. Was. The thermal conductivity of the AlN sintered body was 177 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 5 nm and 62 nm, respectively. The results are summarized in Table 1.
 (比較例1)
 成形体の形成の際に塩酸およびアンモニアを用いて原料スラリーのpHを7としかつ磁場を印加しなかったこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、92%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相、Yb23相、Al23相およびAlON相であった。AlN焼結体中のAlN結晶粒子において、AlN焼結体の一主面に平行に配向するAlN結晶粒子の特定の結晶面は無かった。AlN焼結体の熱伝導率は、22W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ352nmおよび5300nmであった。結果を表2にまとめた。
(Comparative Example 1)
In the same manner as in Example 1 except that the pH of the raw material slurry was set to 7 using hydrochloric acid and ammonia and no magnetic field was applied during the formation of the green body, the raw material slurry, the green body and the AlN sintered body were obtained. Then, one main surface of the AlN sintered body was polished. The relative density of the AlN sintered body was 92%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, a Yb 2 O 3 phase, an Al 2 O 3 phase, and an AlON phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 22 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 352 nm and 5300 nm, respectively. The results are summarized in Table 2.
 (比較例2)
 成形体の形成の際に塩酸を用いて原料スラリーのpHを0.5としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、83%であった。AlN焼結体中の結晶相は、AlN相およびAl23相であった。AlN焼結体中のAlN結晶粒子において、AlN焼結体の一主面に平行に配向するAlN結晶粒子の特定の結晶面は無かった。AlN焼結体の熱伝導率は、30W・m-1・K-1であった。ただし、本AlN焼結体は研磨しても鏡面加工が困難であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、いずれも粗すぎて測定できなかった。結果を表2にまとめた。
(Comparative Example 2)
A raw material slurry, a molded body, and an AlN sintered body were formed in the same manner as in Example 1 except that hydrochloric acid was used to form the molded body and the pH of the raw material slurry was set to 0.5. One main surface of the body was polished. The relative density of the AlN sintered body was 83%. The crystal phases in the AlN sintered body were an AlN phase and an Al 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 30 W · m −1 · K −1 . However, even if this AlN sintered body was polished, mirror finishing was difficult. The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were too coarse to measure. The results are summarized in Table 2.
 (比較例3)
 成形体の形成の際にアンモニアを用いて原料スラリーのpHを12としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、94%であった。AlN焼結体中の結晶相は、AlN相、AlON相、Al23相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子において、AlN焼結体の一主面に平行に配向するAlN結晶粒子の特定の結晶面は無かった。AlN焼結体の熱伝導率は、26W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ155nmおよび1600nmであった。結果を表2にまとめた。
(Comparative Example 3)
The raw material slurry, the molded body, and the AlN sintered body were formed in the same manner as in Example 1 except that ammonia was used to adjust the pH of the raw material slurry to 12 when forming the formed body. One main surface was polished. The relative density of the AlN sintered body was 94%. The crystal phases in the AlN sintered body were an AlN phase, an AlON phase, an Al 2 O 3 phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, there was no specific crystal plane of the AlN crystal particles oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 26 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 155 nm and 1600 nm, respectively. The results are summarized in Table 2.
 (実施例7)
 AlN焼結体の一主面を研磨する際に研磨スラリーのpHを0.5としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、180W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ339nmおよび3500nmであった。結果を表2にまとめた。
(Example 7)
A raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1 except that the polishing slurry had a pH of 0.5 when polishing one main surface of the AlN sintered body. One main surface of the sintered body was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 180 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 339 nm and 3500 nm, respectively. The results are summarized in Table 2.
 (実施例8)
 AlN焼結体の一主面を研磨する際に研磨スラリーのpHを12としたこと以外は、実施例1と同様にして、原料スラリー、成形体およびAlN焼結体を形成し、AlN焼結体の一主面を研磨した。AlN焼結体の相対密度は、99%であった。AlN焼結体中の結晶相は、AlN相、NdAlO3相およびYb23相であった。AlN焼結体中のAlN結晶粒子は、AlN結晶粒子の(11-20)面がAlN焼結体の一主面に平行に配向していた。AlN焼結体の熱伝導率は、180W・m-1・K-1であった。AlN焼結体の研磨後の一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzは、それぞれ134nmおよび1500nmであった。結果を表2にまとめた。
(Example 8)
A raw material slurry, a molded body and an AlN sintered body were formed in the same manner as in Example 1 except that the polishing slurry had a pH of 12 when polishing one main surface of the AlN sintered body. One main surface of the body was polished. The relative density of the AlN sintered body was 99%. The crystal phases in the AlN sintered body were an AlN phase, an NdAlO 3 phase, and a Yb 2 O 3 phase. In the AlN crystal particles in the AlN sintered body, the (11-20) plane of the AlN crystal particles was oriented parallel to one main surface of the AlN sintered body. The thermal conductivity of the AlN sintered body was 180 W · m −1 · K −1 . The arithmetic average roughness Ra and the maximum height roughness Rz defined in JIS B0601: 2013 on one main surface after polishing of the AlN sintered body were 134 nm and 1500 nm, respectively. The results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示すように、一主面を有し複数の窒化アルミニウム結晶粒子を含み、窒化アルミニウム結晶粒子が、全部の窒化アルミニウム結晶粒子の(11-20)面、あるいは、一部の窒化アルミニウム結晶粒子の(11-20)面および残部の窒化アルミニウム結晶粒子の(10-10)面が、その一主面に平行に配向している窒化アルミニウム焼結は、研磨によりその一主面を容易に鏡面加工することができ、pHが1以上6以下の研磨スラリーを用いて研磨することにより、その一主面のJIS B0601:2013に規定する算術平均粗さRaおよび最大高さ粗さRzがそれぞれ10nm以下および100nm以下である鏡面が得られた。 As shown in Table 1 and Table 2, it has one main surface and includes a plurality of aluminum nitride crystal particles, and the aluminum nitride crystal particles are (11-20) planes of all the aluminum nitride crystal particles, or a part of The aluminum nitride sintered body in which the (11-20) plane of the aluminum nitride crystal grains and the (10-10) plane of the remaining aluminum nitride crystal grains are oriented parallel to the principal plane is obtained by polishing. Can be easily mirror-finished, and by polishing with a polishing slurry having a pH of 1 or more and 6 or less, the arithmetic average roughness Ra and maximum height roughness specified in JIS B0601: 2013 on one main surface thereof Mirror surfaces having Rz of 10 nm or less and 100 nm or less were obtained.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be considered that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 9 原料スラリー、10 成形体、10m,11m 一主面、10p,11p 窒化アルミニウム結晶粒子、10pa,11pa (11-20)面、10pm,11pm (10-10)面、11 窒化アルミニウム焼結体、20 多孔質鋳型、30 磁場印加ユニット、100 成形装置、B 磁場、S10 原料スラリーを形成する工程、S20 成形体を形成する工程、S30 窒化アルミニウム焼結体を形成する工程、S31 成形体を脱バインダーするサブ工程、S32 脱バインダーされた成形体を焼結するサブ工程、S40 窒化アルミニウム焼結体を鏡面加工する工程。 9 Raw material slurry, 10 molded body, 10m, 11m one main surface, 10p, 11p aluminum nitride crystal particles, 10pa, 11pa (11-20) surface, 10pm, 11pm (10-10) surface, 11 aluminum nitride sintered body, 20 porous mold, 30 magnetic field applying unit, 100 forming apparatus, B magnetic field, S10 forming raw material slurry, S20 forming green body, S30 forming aluminum nitride sintered body, S31 forming body debinding A sub-process of S32, a sub-process of sintering the debindered compact, and a step of mirror-finishing the S40 aluminum nitride sintered body.

Claims (6)

  1.  一主面を有し複数の窒化アルミニウム結晶粒子を含み、
     前記窒化アルミニウム結晶粒子は、全部の前記窒化アルミニウム結晶粒子の(11-20)面、あるいは、一部の前記窒化アルミニウム結晶粒子の(11-20)面および残部の前記窒化アルミニウム結晶粒子の(10-10)面が、前記一主面に平行に配向している窒化アルミニウム焼結体。
    A plurality of aluminum nitride crystal grains having a major surface,
    The aluminum nitride crystal particles are all (11-20) planes of the aluminum nitride crystal particles, or (10-20) planes of a part of the aluminum nitride crystal particles and (10 -10) An aluminum nitride sintered body having a plane oriented parallel to the one principal surface.
  2.  前記一主面のJIS B0601:2013に規定する算術平均粗さRaが10nm以下であり、かつ、前記一主面のJIS B0601:2013に規定する最大高さ粗さRzが100nm以下である請求項1に記載の窒化アルミニウム焼結体。 The arithmetic average roughness Ra defined in JIS B0601: 2013 of the one principal surface is 10 nm or less, and the maximum height roughness Rz defined in JIS B0601: 2013 of the one principal surface is 100 nm or less. 2. The aluminum nitride sintered body according to 1.
  3.  窒化アルミニウム粉末を含む原料粉末を溶媒中に分散することにより原料スラリーを形成する工程と、
     前記原料スラリーを、そのpHを1以上6以下に調整した後、磁場中でスリップキャスト成形することにより一主面を有する成形体を形成する工程と、
     前記成形体を焼結することにより窒化アルミニウム焼結体を形成する工程と、
    を含み、
     前記成形体を形成する工程において、前記磁場は前記成形体の前記一主面に平行な方向に印加される窒化アルミニウム焼結体の製造方法。
    Forming a raw material slurry by dispersing a raw material powder containing aluminum nitride powder in a solvent;
    A step of forming the molded body having one principal surface by adjusting the pH of the raw material slurry to 1 to 6 and then slip casting in a magnetic field;
    Forming an aluminum nitride sintered body by sintering the molded body;
    Including
    In the step of forming the formed body, the magnetic field is applied in a direction parallel to the one main surface of the formed body.
  4.  前記窒化アルミニウム焼結体の一主面を研磨により鏡面加工する工程をさらに含む請求項3に記載の窒化アルミニウム焼結体の製造方法。 The method for producing an aluminum nitride sintered body according to claim 3, further comprising a step of mirror-finishing one main surface of the aluminum nitride sintered body.
  5.  前記鏡面加工する工程後の前記窒化アルミニウム焼結体について、前記一主面のJIS B0601:2013に規定する算術平均粗さRaが10nm以下であり、かつ、前記一主面のJIS B0601:2013に規定する最大高さ粗さRzが100nm以下である請求項4に記載の窒化アルミニウム焼結体の製造方法。 Regarding the aluminum nitride sintered body after the mirror-finishing step, the arithmetic average roughness Ra defined in JIS B0601: 2013 of the one main surface is 10 nm or less, and the JIS B0601: 2013 of the one main surface The method for producing an aluminum nitride sintered body according to claim 4, wherein the maximum height roughness Rz to be defined is 100 nm or less.
  6.  前記鏡面加工する工程において、前記研磨に用いられる研磨スラリーのpHは1以上6以下である請求項4または請求項5に記載の窒化アルミニウム焼結体の製造方法。 6. The method for producing an aluminum nitride sintered body according to claim 4, wherein the polishing slurry used for the polishing has a pH of 1 or more and 6 or less in the mirror finishing step.
PCT/JP2016/074212 2015-08-24 2016-08-19 Aluminum nitride sintered body and method for producing same WO2017033855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015164956A JP2017043502A (en) 2015-08-24 2015-08-24 Aluminum nitride sintered compact and method for producing the same
JP2015-164956 2015-08-24

Publications (1)

Publication Number Publication Date
WO2017033855A1 true WO2017033855A1 (en) 2017-03-02

Family

ID=58100206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074212 WO2017033855A1 (en) 2015-08-24 2016-08-19 Aluminum nitride sintered body and method for producing same

Country Status (3)

Country Link
JP (1) JP2017043502A (en)
TW (1) TW201718437A (en)
WO (1) WO2017033855A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210518A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112974A (en) * 2000-10-18 2003-04-18 National Institute For Materials Science Grain-oriented ceramics sintered compact, and production method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112974A (en) * 2000-10-18 2003-04-18 National Institute For Materials Science Grain-oriented ceramics sintered compact, and production method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.S.SUZUKI ET AL.: "Preparation of oriented bulk 5wt% Y203-AlN ceramics by slip casting in a high magnetic field and sintering", SCRIPTA MATERIALIA, vol. 52, 2004, pages 583 - 586, XP025398326 *
TAKASHI YOSHIOKA ET AL.: "Optimization of Content of Yb203 Sintering Aid in Millimeter- Wave Sintering of AIN", JOURNAL OF THE JAPAN SOCIETY OF POWDER AND POWDER METALLURGY, vol. 51, no. 1, January 2004 (2004-01-01), pages 48 - 53, XP055365588 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210518A1 (en) * 2021-03-31 2022-10-06 デンカ株式会社 Aluminium nitride sintered body, production method for same, circuit board, and laminated substrate
JP7429825B2 (en) 2021-03-31 2024-02-08 デンカ株式会社 Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board

Also Published As

Publication number Publication date
TW201718437A (en) 2017-06-01
JP2017043502A (en) 2017-03-02

Similar Documents

Publication Publication Date Title
TWI394735B (en) Yttrium sintered body and components for plasma process equipment
WO2011122377A1 (en) Corrosion-resistant member for a semiconductor manufacturing device, and manufacturing method therefor
JP6651628B2 (en) High thermal conductivity silicon nitride sintered body and method for producing the same
TWI791473B (en) Rare earth oxyfluoride sintered body and manufacturing method thereof
US6225249B1 (en) Aluminum nitride sintered body, method of producing thereof, electrostatic chuck, susceptor, dummy wafer, clamp ring and particle catcher using the same
WO2017033855A1 (en) Aluminum nitride sintered body and method for producing same
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
JP6121282B2 (en) Transparent polycrystalline sintered body of lutetium aluminum garnet and method for producing the same
CN110892520B (en) Electrostatic chuck
JP7201103B2 (en) Plate-like silicon nitride sintered body and manufacturing method thereof
EP3560905A1 (en) Transparent aln sintered body, and production method therefor
WO2020179296A1 (en) Sintered body
JP4480951B2 (en) Corrosion resistant material
JP4615873B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP7339979B2 (en) Manufacturing method of silicon nitride sintered body
JP7278326B2 (en) Manufacturing method of silicon nitride sintered body
JP7201734B2 (en) Silicon nitride sintered body
WO2024084631A1 (en) Silicon nitride sintered body
WO2022163150A1 (en) Sintered body
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same
JP2016155704A (en) Corrosion-resistant member, method for producing the same and electrostatic chuck member
JP2022094464A (en) Green sheet of silicon nitride and production method thereof
JP2022166445A (en) Silicon nitride sintered body
KR102618403B1 (en) Ceramics material, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2022166444A (en) Sintered silicon nitride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16839202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16839202

Country of ref document: EP

Kind code of ref document: A1