WO2022210280A1 - 舶用二重反転プロペラ装置とこれを備えた船舶 - Google Patents

舶用二重反転プロペラ装置とこれを備えた船舶 Download PDF

Info

Publication number
WO2022210280A1
WO2022210280A1 PCT/JP2022/014075 JP2022014075W WO2022210280A1 WO 2022210280 A1 WO2022210280 A1 WO 2022210280A1 JP 2022014075 W JP2022014075 W JP 2022014075W WO 2022210280 A1 WO2022210280 A1 WO 2022210280A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
rotating
stern
air
drain
Prior art date
Application number
PCT/JP2022/014075
Other languages
English (en)
French (fr)
Inventor
政宏 清水
正史 中家
才貴 西山
Original Assignee
ジャパン マリンユナイテッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジャパン マリンユナイテッド株式会社 filed Critical ジャパン マリンユナイテッド株式会社
Priority to CN202280017275.9A priority Critical patent/CN116917200A/zh
Priority to KR1020237030840A priority patent/KR20230142840A/ko
Publication of WO2022210280A1 publication Critical patent/WO2022210280A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/06Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from a single propulsion power unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/36Shaft tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/74Sealings of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/54Other sealings for rotating shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N31/00Means for collecting, retaining, or draining-off lubricant in or on machines or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H5/00Arrangements on vessels of propulsion elements directly acting on water
    • B63H5/07Arrangements on vessels of propulsion elements directly acting on water of propellers
    • B63H5/08Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller
    • B63H5/10Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type
    • B63H2005/106Arrangements on vessels of propulsion elements directly acting on water of propellers of more than one propeller of coaxial type, e.g. of counter-rotative type with drive shafts of second or further propellers co-axially passing through hub of first propeller, e.g. counter-rotating tandem propellers with co-axial drive shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/02Transmitting power from propulsion power plant to propulsive elements with mechanical gearing
    • B63H23/06Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from a single propulsion power unit
    • B63H2023/062Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from a single propulsion power unit comprising means for simultaneously driving two or more main transmitting elements, e.g. drive shafts
    • B63H2023/067Transmitting power from propulsion power plant to propulsive elements with mechanical gearing for transmitting drive from a single propulsion power unit comprising means for simultaneously driving two or more main transmitting elements, e.g. drive shafts the elements being formed by two or more coaxial shafts, e.g. counter-rotating shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H23/00Transmitting power from propulsion power plant to propulsive elements
    • B63H23/32Other parts
    • B63H23/321Bearings or seals specially adapted for propeller shafts
    • B63H2023/327Sealings specially adapted for propeller shafts or stern tubes

Definitions

  • the present invention relates to a marine contra-rotating propeller device having a shaft seal device and a ship provided with the same.
  • a marine contra-rotating propeller device is a propeller device in which a front propeller and a rear propeller are coaxially arranged and rotated in opposite directions.
  • This marine contra-rotating propeller device is provided with a stern tube seal and a stern contra-rotating seal at positions in contact with seawater.
  • the stern stern tube seal is provided between the outer shaft and the stern to seal therebetween.
  • the aft counter-rotating seal is provided between the inner shaft and the outer shaft to seal therebetween.
  • the air seal device consists of an upstream route that supplies seal air between the seawater side seal and the lubricating oil side seal, which are in contact with seawater (stern tube seal and stern counter-rotating seal), and a It has a downstream passage for discharging seal air and condensate.
  • the upstream path and the downstream path are called "shield drain recovery path”.
  • the seal air supply port is arranged at a high position and the discharge port is arranged at a low position so that the drain smoothly flows together with the seal air. That is, the discharge port of the shield drain recovery circuit is arranged at a position lower than the lower end of the seal ring.
  • This allows the condensate to flow down to the condensate recovery unit, albeit with a weak seal air flow. Therefore, in the case of normal shafts such as fixed pitch propellers (FPP) and controllable pitch propellers (CPP), the seal casing is attached to the stern (fixed part), so the position does not change regardless of whether the shaft rotates or stops.
  • a shield drain recovery path can be formed without any problem.
  • the contra-rotating propeller device includes a contra-rotating gear device that reversely rotates the inner shaft and the outer shaft. If this counter-rotating gear device is of a planetary gear type, for example, the inner and outer shafts are interlocked and their rotational speeds are different. Therefore, the rotational positions of the inner and outer shafts match only once every several hundred rotations. positioning) required a long period of turning.
  • the present invention was created to solve the problems described above. SUMMARY OF THE INVENTION It is an object of the present invention to provide a marine contra-rotating propeller device having an air seal device and capable of stopping a shield drain recovery path at an optimum position, and a ship having the same.
  • a hollow outer shaft having a front propeller attached to its rear end and supported by a stern tube bearing so as to be rotatable about its axis; an inner shaft having a rear propeller attached to its rear end and supported by a stern-side counter-rotating bearing so as to be rotatable about the axial center; a stern tube seal provided on the sea side of the stern tube bearing and sealing therebetween; a stern-side counter-rotating seal provided on the sea side of the stern-side counter-rotating bearing and sealing therebetween; a shield drain recovery device for supplying seal air to the stern tube seal or the stern counter-rotating seal and recovering drain together with the seal air; and a rotational position sensor for detecting the rotational position of the outer shaft or the inner shaft.
  • the seal air is supplied to one or both of the stern stern tube seal, the stern counter-rotating seal, and one or both of them, and the shield drain recovery device for discharging drainage together with the seal air is provided.
  • a shaft seal device (air seal device) of the type can be constructed. Further, since a rotational position sensor for detecting the rotational position of the outer shaft or the inner shaft is provided, the outer shaft and the inner shaft can be stopped by the detection signal, and the shield drain recovery path can be stopped at the optimum position.
  • FIG. 1 is a view of a first embodiment of a marine contra-rotating propeller device of the present invention
  • FIG. FIG. 2 is a partially enlarged view of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line AA of FIG. 2 when the air drain outlet is located near the lower end
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG. 2 when the air drain outlet is located near the upper end
  • FIG. 2 is a view of a second embodiment of the marine contra-rotating propeller device of the present invention
  • 5 is a partially enlarged view of FIG. 4
  • FIG. FIG. 6 is a cross-sectional view taken along line BB of FIG. 5 when the air drain outlet is located at the lower end
  • FIG. 6 is a cross-sectional view taken along line BB of FIG. 5 when the air drain outlet is located at the upper end;
  • a ship according to the present invention comprises a marine contra-rotating propeller device 100 according to the present invention.
  • FIG. 1 is a diagram of a first embodiment of a marine contra-rotating propeller device 100 of the present invention.
  • 1 is the front propeller
  • 2 is the rear propeller
  • 3 is the stern
  • 4 is the drive shaft
  • 5 is the bow side counter-rotating bearing
  • 6 is the thrust bearing
  • 7 is the stern side counter-rotating bearing
  • 8 is the outer shaft.
  • Distributor, 10 is a propeller cap.
  • the outer shaft distribution device 8 is connected to the bow-side counter-rotating bearing 5, the thrust bearing 6, the stern-side counter-rotating seal 50 (described later), and the stern-side stern tube seal 40 (described later) via a path indicated by a dashed line in the drawing. , and lubricates the stern tube bearing 16 .
  • a marine contra-rotating propeller device 100 includes an outer shaft 12 , an inner shaft 14 , a contra-rotating gear device 20 and a driving device 30 .
  • the outer shaft 12 is a hollow outer propeller shaft having the front propeller 1 attached to its rear end and supported by a stern tube bearing 16 so as to be rotatable about the axis ZZ.
  • the inner shaft 14 is an inner propeller shaft to which the rear propeller 2 is attached at the rear end and supported by counter-rotating bearings 5 and 7 so as to be rotatable about the axis ZZ.
  • the counter-rotating gear device 20 is a gear mechanism that synchronizes the rotation directions of the outer shaft 12 and the inner shaft 14 in opposite directions.
  • the counter-rotating gearing 20 is a planetary gearing or a parallel gearing. Even if the parallel gear device has one input shaft and two output shafts (1 input - 2 outputs), it has two input shafts and two output shafts (2 inputs - 2 outputs). good too.
  • the drive device 30 is a drive source that drives the counter-rotating gear device 20 .
  • the driving device 30 is an internal combustion engine or an electric motor that rotationally drives the input shaft of the counter-rotating gear device 20 . Further, the driving device 30 preferably includes a turning device (not shown) that rotationally drives the input shaft of the counter-rotating gear device 20 together with the internal combustion engine.
  • the marine contra-rotating propeller device 100 further includes a stern tube seal 40 , a stern contra-rotating seal 50 , and a shield drain recovery device 60 .
  • the stern-side stern tube seal 40 is provided on the sea side of the stern tube bearing 16 to seal therebetween.
  • the stern counter-rotating seal 50 is provided on the sea side of the stern counter-rotating bearing 7 and seals therebetween.
  • the shield drain recovery device 60 supplies the seal air A to the stern tube seal 40 or the counter-rotating seal 50 on the stern side and recovers the drains D1 and D2 together with the seal air A.
  • FIG. 2 is a partially enlarged view of FIG. 1.
  • the aft stern tube seal 40 prevents seawater from entering the stern tube bearing 16 .
  • the aft stern tube seal 40 has a forward seal casing 42a, a forward seal liner 42b and a plurality of forward seal members 42c.
  • Front seal member 42c is preferably a lip seal.
  • the forward seal casing 42a is a stationary member fixed to the stern 3 and has a circular opening centered on the axis ZZ.
  • the front seal liner 42b is fixed to the rear end of the outer shaft 12 or the boss of the front propeller 1 in this example, positioned inside the front seal casing 42a, and rotates together with the outer shaft 12. As shown in FIG.
  • a plurality (four in this example) of the front seal members 42c are axially divided between and axially spaced between the front seal casing 42a and the front seal liner 42b to seal therebetween.
  • Three or more (three in this example) front annular chambers 43 are formed.
  • the three front annular chambers 43 are hereinafter referred to as a front first chamber 43a, a front second chamber 43b, and a front third chamber 43c from the seawater side (left side in the figure).
  • the shield drain recovery device 60 has an upstream path 60A and a downstream path 60B.
  • a solid line indicates the upstream path 60A and the downstream path 60B.
  • the upstream passage 60A supplies seal air A between the seawater side seal and the lubricant side seal of the stern tube seal 40 or the counter-rotating seal 50 on the stern side.
  • the upstream path 60A has a front air flow path 61 that introduces seal air A into the front first chamber 43a.
  • a forward air flow path 61 is provided through the stern tube bearing 16 and the forward seal casing 42a.
  • lubricating oil is introduced from the outer shaft distribution device 8 into the front second chamber 43b through the above-described route indicated by the broken line.
  • the downstream path 60B recovers drains D1 and D2 together with the seal air A from the lower end of the stern tube seal 40 or the counter-rotating seal 50 on the stern side into the ship.
  • the downstream path 60B has a first drain flow path 65 that collects the front drain D1 generated in the front first chamber 43a to the inside of the ship.
  • the seal air A can be supplied to the front first chamber 43a, and the front drain D1 can be independently recovered from the lower end of the front first chamber 43a.
  • the front drain D1 is a mixture of seawater and lubricating oil that has entered the front first chamber 43a.
  • the pressure of the seal air A in the front first chamber 43a is adjusted to be higher than the seawater pressure corresponding to the water depth. Therefore, even if there is a leak in the front seal member 42c that contacts seawater, the seal air A flows to the seawater side, preventing seawater from flowing into the pressurized air side. Also, the pressure of the lubricating oil supplied to the front second chamber 43b is adjusted to be higher than the pressure of the seal air A in the front first chamber 43a. Therefore, even if there is leakage from the front seal member 42c that contacts the lubricating oil, the lubricating oil flows to the air side and the seal air A does not flow into the lubricating oil.
  • the aft counter-rotating seal 50 includes an aft seal casing 54a, an aft seal liner 54b, and a plurality of aft seal members 54c.
  • the rear seal casing 54a is fixed to the front propeller 1, has a circular opening about the axis ZZ, and rotates integrally with the outer shaft 12.
  • the rear seal liner 54b is fixed to the rear end of the inner shaft 14 or the boss of the rear propeller 2, positioned inside the rear seal casing 54a, and rotates integrally with the inner shaft 14. As shown in FIG.
  • a plurality of (three in this example) rear seal members 54c are axially separated from each other by two or more axially spaced apart seals between the rear seal casing 54a and the rear seal liner 54b.
  • a rear annular chamber 55 (two in this example) is formed.
  • the two rear annular chambers 55 are hereinafter referred to as a rear first chamber 55a and a rear second chamber 55b from the seawater side (left side in the drawing).
  • the upstream passage 60A described above further has a rear air flow path 62 that introduces seal air A from the front first chamber 43a into the rear first chamber 55a.
  • Rear air flow path 62 is provided through front seal liner 42b, front propeller 1, and rear seal casing 54a in FIG.
  • lubricating oil is introduced from the outer shaft distribution device 8 into the second rear chamber 55b through the above-described route indicated by the broken line.
  • the downstream path 60B has a second drain passage 66 for collecting the rear drain D2 of the front third chamber 43c into the ship.
  • the rear drain D2 is a mixture of seawater and lubricating oil that has entered the rear first chamber 55a.
  • the front third chamber 43c is separated from the front first chamber 43a by two front sealing members 42c.
  • the downstream path 60B further has a third drain passage 67 that discharges the rear drain D2 generated in the rear first chamber 55a to the front third chamber 43c.
  • the third drain passage 67 communicates from the lower end of the rear first chamber 55a through the boss of the front propeller 1 to the front third chamber 43c.
  • seal air A can be supplied from the front first chamber 43a to the rear first chamber 55a in the order of symbols ab shown in FIG.
  • the rear drain D2 can be separated from the front drain D1 from the lower end of the rear first chamber 55a through the front third chamber 43c and recovered into the ship in the order of bc.
  • a is called an air inlet
  • c is called an air drain outlet.
  • the air inlet a and the air drain outlet c are separated in the axial direction in the front seal liner 42b, and separated by the front seal member 42c. Further, it is preferable that the air inlet a and the air drain outlet c are positioned symmetrically with respect to the axis ZZ.
  • the pressure of the seal air A in the rear first chamber 55a is adjusted to be higher than the seawater pressure corresponding to the water depth. Therefore, even if there is a leak in the rear seal member 54c that contacts the seawater, the seal air A flows to the seawater side, preventing the seawater from flowing into the pressurized air side. Also, the pressure of the lubricating oil supplied to the rear second chamber 55b is adjusted to be higher than the pressure of the seal air A in the rear first chamber 55a. Therefore, even if there is leakage from the rear seal member 54c that contacts the lubricating oil, the lubricating oil flows to the air side and the seal air A does not flow into the lubricating oil. Therefore, with the above-described configuration, it is possible to prevent seawater from mixing with the lubricating oil at the counter-rotating seal 54 on the stern side, and to prevent the lubricating oil from flowing out into the seawater.
  • the marine contra-rotating propeller device 100 further includes a rotation position sensor 70 and a rotation control device 80.
  • a rotational position sensor 70 detects the rotational position of the outer shaft 12 .
  • the rotational position sensor 70 has, for example, a marker 72 provided on the outer surface of a member that is connected to the outer shaft 12 and rotates integrally, and a non-contact sensor 74 that detects the marker.
  • the marker 72 is, for example, a protrusion or recess.
  • the non-contact sensor 74 is, for example, a photoelectric sensor, a magnetic sensor, a laser sensor, or the like that detects the marker 72 in a non-contact manner.
  • the rotational position sensor 70 is preferably set to detect when the air drain outlet c provided in the front seal liner 42b is positioned at the lower end in the vertical direction in FIG.
  • the circumferential position of the marker 72 is preferably the same circumferential position as the air drain outlet c, but may be other positions.
  • the rotation control device 80 stops the driving device 30 in response to the detection signal of the rotation position sensor 70 .
  • the driving device 30 includes an internal combustion engine and a turning gear, it is preferable to rotate the outer shaft 12 by the turning gear with the internal combustion engine unloaded, and to stop the turning gear by the detection signal of the rotational position sensor 70 .
  • the driving device 30 is an electric motor, the electric motor may be stopped directly.
  • the driving device 30 includes only an internal combustion engine, the clutch provided in the internal combustion engine may be disengaged.
  • FIG. 3A is a cross-sectional view along AA in FIG. 2 when the air drain outlet c is near the lower end
  • FIG. 3B is a cross-sectional view along AA in FIG. 2 when the air drain outlet c is near the upper end. .
  • front seal casing 42a and its inner front first chamber 43a are stationary, and the outer shaft 12 and the inner shaft 14 rotate in opposite directions.
  • Front seal liner 42 b also rotates with outer shaft 12 .
  • Seal air A enters the front first chamber 43a from the top of the front seal casing 42a, passes through a single air inlet a in the front seal liner 42b, passes through the rear air passage 62, and enters the rear first chamber 43a. 55a.
  • the seal air A and the rear drain D2 in the rear first chamber 55a pass through the third drain passage 67 and flow from the single air drain outlet c provided in the front seal liner 42b to the front third chamber 43c (Fig. 2), and is collected in the ship through the second drain passage 66 from the bottom (lower end) thereof. Therefore, in the state of FIG. 3A when the ship is stopped, the air inlet a is near the upper end and the air drain outlet c is near the lower end, so the rear drain D2 between the air inlet a and the air drain outlet c is Due to its own weight and the flow of seal air A, it is possible to flow in the order of abc.
  • the rotation control device 80 can stop the drive device 30 according to the detection signal of the rotation position sensor 70 so that the air drain outlet c stops at the lowest end or near the lower end when the ship is stopped. . Therefore, when the ship is stopped, the air drain outlet c is positioned at the lowest end or near the lower end, so that the rear drain D2 can be collected in the order of abc by its own weight and the flow of the seal air A.
  • the front seal casing 42a is fixed to the stern 3, and the first drain passage 65 collects the front drain D1 from the lower end of the front first chamber 43a. The drain D1 can be collected by its own weight.
  • FIG. 4 is a view of a second embodiment of a marine contra-rotating propeller device 100 of the present invention
  • FIG. 5 is a partially enlarged view of FIG.
  • the members that are connected to the outer shaft 12 and rotate integrally are hatched. Differences from the first embodiment will be described below.
  • the inner shaft 14 is directly connected to the drive shaft 4 of the drive device 30 and rotates at the same speed.
  • the counter-rotating gear device 20 rotates the outer shaft 12 and the members connected thereto in synchronism with the direction of rotation of the inner shaft 14 by means of a gear mechanism (not shown).
  • an inner shaft distribution device 9 fixed to the bow side of the contra-rotating gear device 20 is provided in addition to the outer shaft distribution device 8.
  • Lubricating oil is introduced into the stern tube seal 40 from the bow side of the stern 3 along the route indicated by the dashed line.
  • lubricating oil is introduced from the outer shaft distribution device 8 to the thrust bearing 6 and the stern side counter-rotating bearing 7 through the route indicated by the dashed line.
  • lubricating oil is introduced from the inner shaft distribution device 9 to the stern counter-rotating seal 50 through the route indicated by the dashed line.
  • the upstream path 60A has a front air flow path 61 and a rear air flow path 63
  • the downstream path 60B has a first drain flow path 65 and a fourth drain flow path 68.
  • Seal air A is introduced into the front first chamber 43a of the stern tube seal 40 from the bow side of the stern 3 through the front air flow path 61 indicated by the solid line, and the first drain is discharged from the lower end of the front first chamber 43a.
  • the seal air A and the forward drain D1 are collected on the bow side of the stern 3 via the flow path 65 .
  • seal air A is introduced from the inner shaft distribution device 9 into the rear first chamber 55a of the stern side counter-rotating seal 50 through the rear air flow path 63 indicated by the solid line, and is discharged from the lower end of the rear first chamber 55a to the fourth drain.
  • the seal air A and the rear drain D2 are recovered to the inner shaft distribution device 9 via the flow path 68 .
  • the forward seal casing 42a is fixed to the stern 3 (stationary part) and the first drain passage 65 collects the forward drain D1 from the lower end of the forward first chamber 43a, so that always The front drain D1 can be recovered under its own weight.
  • a rotational position sensor 70 detects the rotational position of the inner shaft 14 .
  • the marker 72 is provided, for example, on the outer surface of a member that is connected to the inner shaft 14 and rotates integrally.
  • FIG. 6A is a cross-sectional view along BB in FIG. 5 when the air drain outlet c is at the lower end
  • FIG. 6B is a cross-sectional view along BB in FIG. 5 when the air drain outlet c is at the upper end.
  • the air inlet a and the air drain outlet c are axially separated from each other at the inner shaft 14 and the inner shaft distribution seal liner 9b, and are partitioned by a seal member therebetween. Further, it is preferable that the air inlet a and the air drain outlet c are positioned symmetrically with respect to the axis ZZ.
  • the inner shaft distribution device 9 and its inner inner shaft distribution chamber 9a are fixed, inside which the inner shaft 14 rotates.
  • the inner shaft distribution seal liner 9b also rotates together with the inner shaft 14.
  • Seal air A enters the inner shaft distribution chamber 9a at the top of the inner shaft distributor 9 and enters the rear air passage 63 through a single air inlet a in the inner shaft distribution seal liner 9b and the inner shaft 14; It is supplied to the rear first chamber 55a through the rear air channel 63.
  • FIG. 6A the inner shaft distribution device 9 and its inner inner shaft distribution chamber 9a are fixed, inside which the inner shaft 14 rotates.
  • the inner shaft distribution seal liner 9b also rotates together with the inner shaft 14.
  • Seal air A enters the inner shaft distribution chamber 9a at the top of the inner shaft distributor 9 and enters the rear air passage 63 through a single air inlet a in the inner shaft distribution seal liner 9b and the inner shaft 14; It is supplied to the rear first chamber 55a through the rear air channel 63.
  • the seal air A and the rear drain D2 in the rear first chamber 55a pass through the fourth drain passage 68 and are distributed from the single air drain outlet c provided in the inner shaft distribution seal liner 9b and the inner shaft 14. It enters the chamber 9a and is collected inside the ship from the bottom (lower end) of the inner shaft distributor 9. Therefore, in the state shown in FIG. 6A when the ship is stopped, the air inlet a is at the upper end and the air drain outlet c is at the lower end. can flow.
  • the rotation control device 80 can stop the driving device 30 according to the detection signal of the rotation position sensor 70 so that the air drain outlet c stops at the lowest end when the ship is stopped. Therefore, when the ship is stopped, the air drain outlet c is positioned at the lowest end, so that the rear drain D2 can be collected in the order of abc by its own weight and the flow of the seal air A.
  • the rotational position sensor 70 described above detects the rotational position of the outer shaft 12 in the first embodiment, and detects the rotational position of the inner shaft 14 in the second embodiment.
  • the present invention is not limited to this, and the rotational positions of both the outer shaft 12 and the inner shaft 14 may be separately detected by a plurality of rotational position sensors 70 .
  • the rotational positions of both the outer shaft 12 and the inner shaft 14 are detected, even if the counter-rotating gear device 20 is, for example, a planetary gear type, and the inner shaft 14 and the outer shaft 12 are interlocked and their rotational speeds are different, It is possible to detect and stop when the rotational positions of the inner shaft 14 and the outer shaft 12 match.
  • the turning time can be greatly reduced during maintenance (for example, condition setting for wear-down measurement, which is periodic observation of bearings, and at this time, both shafts are positioned at the top).
  • the seal air A is supplied to the stern tube seal 40, the counter-rotating seal 50, and one or both of them, and the seal air A and the drains D1 and D2 are discharged.
  • a len recovery device 60 is provided. Therefore, a dry-seal type shaft sealing device (air sealing device) can be constructed from these. Further, since a rotational position sensor 70 for detecting the rotational position of the outer shaft 12 or the inner shaft 14 is provided, the outer shaft 12 and the inner shaft 14 are stopped by the detection signal to stop the shield drain recovery path at the optimum position. can be done.
  • a pressurized air (seal air), a air inlet, c air drain outlet, D1 front drain, D2 rear drain, ZZ axis center, 1 front propeller, 2 rear propeller, 3 stern, 4 drive shaft, 5 bow side counter-rotating bearing, 6 thrust bearing, 7 stern side counter-rotating bearing, 8 outer shaft distribution device, 9 inner shaft distribution device, 9a inner shaft distribution chamber, 9b inner shaft distribution seal liner, 10 propeller cap, 12 outer shaft (outer propeller shaft), 14 inner shaft (inner propeller shaft), 16 stern tube bearing, 20 counter-rotating gear device, 30 drive device, 40 stern tube seal, 42a front seal casing, 42b front seal liner, 42c front sealing member, 43 front annular chamber, 43a front first chamber, 43b front second chamber, 43c front third chamber, 53c front third chamber, 50 aft counter-rotating seal, 54a aft seal casing, 54b rear seal liner, 54c rear seal member, 55 rear annular chamber, 55a rear first chamber,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sealing Of Bearings (AREA)
  • Sealing Devices (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

舶用二重反転プロペラ装置(100)が、外軸(12)、内軸(14)、駆動装置(30)を備える。外軸は、後端部に前プロペラ(1)が取り付けられ、船尾管軸受(16)で回転可能に支持される。内軸は、後端部に後プロペラ(2)が取り付けられ二重反転軸受(5,7)で回転可能に支持される。船尾側船尾管シール(40)は、船尾管軸受(16)の海側に設けられその間をシールする。船尾側二重反転シール(50)は、船尾側二重反転軸受(7)の海側に設けられその間をシールする。シールドレン回収装置(60)は、船尾側船尾管シール又は船尾側二重反転シールにシールエア(A)を供給しシールエアと共にドレン(D1,D2)を回収する。さらに、外軸又は内軸の回転位置を検出する回転位置センサ(70)と、回転位置センサの検出信号により駆動装置を停止させる回転制御装置(80)と、を備える。

Description

舶用二重反転プロペラ装置とこれを備えた船舶
 本発明は、軸封装置を有する舶用二重反転プロペラ装置とこれを備えた船舶に関する。
 舶用二重反転プロペラ装置は、前プロペラと後プロペラを同軸に配置し、それぞれを互に逆方向に回転させるプロペラ装置である。この舶用二重反転プロペラ装置には、海水と接する位置に、船尾側船尾管シールと船尾側二重反転シールが設けられている。
 船尾側船尾管シールは、外軸と船尾の間に設けられその間をシールする。船尾側二重反転シールは、内軸と外軸の間に設けられその間をシールする。
 かかる船尾側船尾管シールと船尾側二重反転シールの潤滑油内への海水混入を防止しかつ潤滑油の海水への漏洩を防止するために、圧縮空気(シールエア)を用いたドライシール型の軸封装置(以下、「エアシール装置」)が提案されている(例えば、特許文献1)。
特許第6532927号公報
 エアシール装置は、海水と接する位置(船尾側船尾管シールと船尾側二重反転シール)の海水側シールと潤滑油側シールの間にシールエアを供給する上流側経路と、海水と接する位置から船内にシールエアとドレンを排出する下流側経路とを有する。
 この上流側経路と下流側経路を「シールドレン回収経路」と呼ぶ。
 シールドレン回収経路は、シールエアに同伴されてドレンが円滑に流れるように、シールエアの供給口が高い位置に配置され、排出口が低い位置に配置される。
 すなわち、シールドレン回収回路の排出口はシールリングの下端より低い位置に配置される。これにより、シールエアの流れは弱いものの、ドレン回収ユニットまでドレンが流れ落ちることができる。
 従って、固定ピッチプロペラ(FPP)や可変ピッチプロペラ(CPP)などの通常軸の場合、シールケーシングは船尾(固定部分)に取り付けられるので、軸の回転・停止にかかわらず位置が変わることがなく、問題なくシールドレン回収経路を形成することができる。
 一方、二重反転プロペラ装置(CRP)の場合、シールドレン回収経路の一部が内軸又は外軸と共に回転するため、1回転のうちほとんどにおいて経路の大部分が排出口より高い位置に位置する。
 この場合、運転中(軸が回転している間)は1回転に一度は天地位置が揃い、かつ遠心力も作用するので、問題なくドレン回収ユニットまでドレンが流れて回収できる。
 しかし、停船時にはシールドレン回収経路の大部分が排出口よりも高い位置にあり、遠心力も作用しないため、ドレンの自重では排出されず、シールドレン回収経路内にドレンが滞留したままとなる。
 その結果、シールの経年劣化や異常の際にドレンが増加し、また、特に停泊期間が長い船の場合には停泊中にシールチャンバ内にドレンが溢れ、海水中への漏洩リスクが高まる。
 また、二重反転プロペラ装置は、内軸と外軸を逆回転させる二重反転歯車装置を備える。この二重反転歯車装置が例えば遊星歯車式の場合、内軸と外軸が連動しかつその回転速度が異なる。
 そのため、内軸と外軸の回転位置が一致するのは数百回転に一回という割合となり、メンテナンス(例えば、軸受の定期観測であるウェアダウン計測の条件出し、この時、両軸ともに頂部に位置を合わせる)の際に、長時間のターニングが必要であった。
 本発明は上述した問題点を解決するために創案されたものである。すなわち本発明の目的は、エアシール装置を備え、かつシールドレン回収経路を最適位置に停止させることができる舶用二重反転プロペラ装置とこれを備えた船舶を提供することにある。
 本発明によれば、後端部に前プロペラが取り付けられ船尾管軸受で軸心を中心に回転可能に支持された中空状の外軸と、
 後端部に後プロペラが取り付けられ船尾側二重反転軸受で前記軸心を中心に回転可能に支持された内軸と、
 前記船尾管軸受の海側に設けられその間をシールする船尾側船尾管シールと、
 前記船尾側二重反転軸受の海側に設けられその間をシールする船尾側二重反転シールと、
 前記船尾側船尾管シール又は前記船尾側二重反転シールにシールエアを供給し該シールエアと共にドレンを回収するシールドレン回収装置と、
 前記外軸又は前記内軸の回転位置を検出する回転位置センサと、を備えた、舶用二重反転プロペラ装置が提供される。
 上記本発明の構成によれば、船尾側船尾管シール、船尾側二重反転シール、及びその一方又は両方にシールエアを供給しシールエアと共にドレンを排出するシールドレン回収装置を備えるので、これらによりドライシール型の軸封装置(エアシール装置)を構成することができる。
 また、外軸又は内軸の回転位置を検出する回転位置センサを備えるので、その検出信号により外軸及び内軸を停止させて、シールドレン回収経路を最適位置に停止させることができる。
本発明の舶用二重反転プロペラ装置の第1実施形態図である。 図1の部分拡大図である。 エアドレン流出口が下端近傍にある場合の図2のA-A断面図である。 エアドレン流出口が上端近傍にある場合の図2のA-A断面図である。 本発明の舶用二重反転プロペラ装置の第2実施形態図である。 図4の部分拡大図である。 エアドレン流出口が下端にある場合の図5のB-B断面図である。 エアドレン流出口が上端にある場合の図5のB-B断面図である。
 以下、本発明の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
 本発明による船舶は、本発明による舶用二重反転プロペラ装置100を備える。
(第1実施形態)
 図1は、本発明の舶用二重反転プロペラ装置100の第1実施形態図である。
 この図において、1は前プロペラ、2は後プロペラ、3は船尾、4は駆動軸、5は船首側二重反転軸受、6はスラスト軸受、7は船尾側二重反転軸受、8は外軸分配装置、10はプロペラキャップである。
 外軸分配装置8は、図に破線で示す経路を介して船首側二重反転軸受5、スラスト軸受6、船尾側二重反転シール50(後述する)、船尾側船尾管シール40(後述する)、及び、船尾管軸受16を潤滑する。
 図1において、舶用二重反転プロペラ装置100は、外軸12、内軸14、二重反転歯車装置20、及び、駆動装置30を備える。
 外軸12は、中空状であり、後端部に前プロペラ1が取り付けられ、船尾管軸受16で軸心Z-Zを中心に回転可能に支持された外側プロペラ軸である。
 内軸14は、後端部に後プロペラ2が取り付けられ二重反転軸受5,7で軸心Z-Zを中心に回転可能に支持された内側プロペラ軸である。
 二重反転歯車装置20は、外軸12と内軸14の回転方向を互に逆方向に同期させる歯車機構である。
 二重反転歯車装置20は、遊星歯車装置、又は、並行ギヤ装置である。並行ギヤ装置は入力軸が1軸と出力軸が2軸の(1入力-2出力)であっても、入力軸が2軸と出力軸が2軸の(2入力-2出力)であってもよい。
 駆動装置30は、二重反転歯車装置20を駆動する駆動源である。駆動装置30は、二重反転歯車装置20の入力軸を回転駆動する内燃機関又は電動モータである。また、駆動装置30は、内燃機関と共に二重反転歯車装置20の入力軸を回転駆動するターニング装置(図示せず)を備えることが好ましい。
 図1において、舶用二重反転プロペラ装置100は、さらに、船尾側船尾管シール40、船尾側二重反転シール50、及び、シールドレン回収装置60を備える。
 船尾側船尾管シール40は、船尾管軸受16の海側に設けられその間をシールする。
 船尾側二重反転シール50は、船尾側二重反転軸受7の海側に設けられその間をシールする。
 シールドレン回収装置60は、船尾側船尾管シール40又は船尾側二重反転シール50にシールエアAを供給しシールエアAと共にドレンD1,D2を回収する。
 図2は、図1の部分拡大図である。
 この図において、外軸12と連結され一体的に回転する部材に斜線を付している。
 船尾側船尾管シール40は、船尾管軸受16に海水が侵入するのを防止する。
 船尾側船尾管シール40は、前部シールケーシング42a、前部シールライナ42b、及び複数の前部シール部材42cを有する。前部シール部材42cは、リップシールであることが好ましい。
 前部シールケーシング42aは、船尾3に固定された静止部材であり、軸心Z-Zを中心とする円形開口を有する。
 前部シールライナ42bは、この例では外軸12の後端部又は前プロペラ1のボスに固定され、前部シールケーシング42aの内側に位置し、外軸12と一体的に回転する。
 複数(この例では4つ)の前部シール部材42cは、前部シールケーシング42aと前部シールライナ42bとの間に軸方向に間隔を隔てて位置しその間をシールして軸方向に分割された3以上(この例では3つ)の前部環状チャンバ43を形成する。
 この例で3つの前部環状チャンバ43を、以下、海水に接する側(図で左側)から、前部第1チャンバ43a、前部第2チャンバ43b、及び、前部第3チャンバ43cと呼ぶ。
 図1において、シールドレン回収装置60は、上流側経路60Aと下流側経路60Bを有する。上流側経路60Aと下流側経路60Bを実線で示す。
 上流側経路60Aは、船尾側船尾管シール40又は船尾側二重反転シール50の海水側シールと潤滑油側シールの間にシールエアAを供給する。
 図2において、上流側経路60Aは、前部第1チャンバ43aにシールエアAを導入する前部空気流路61を有する。前部空気流路61は、船尾管軸受16と前部シールケーシング42aを通して設けられている。
 また、この図において、前部第2チャンバ43bには外軸分配装置8から上述した破線で示す経路で潤滑油が導入されている。
 図1において、下流側経路60Bは、船尾側船尾管シール40又は船尾側二重反転シール50の下端から船内にシールエアAと共にドレンD1,D2を回収する。
 図2において、下流側経路60Bは、前部第1チャンバ43aで発生する前部ドレンD1を船内まで回収する第1ドレン流路65を有する。
 上述した構成により、前部第1チャンバ43aにシールエアAを供給し、かつ前部第1チャンバ43aの下端から前部ドレンD1を単独に回収することができる。
 前部ドレンD1は、前部第1チャンバ43aに侵入した海水と潤滑油の混合液である。
 前部第1チャンバ43aにおけるシールエアAの圧力は、水深に相当する海水圧力より高く調整されている。従って、海水と接する前部シール部材42cに漏れがある場合でも、海水側にシールエアAが流れ、海水が加圧空気側に流入しないようになっている。
 また、前部第2チャンバ43bに供給される潤滑油の圧力は、前部第1チャンバ43aにおけるシールエアAの圧力より高く調整されている。従って、潤滑油と接する前部シール部材42cに漏れがある場合でも、空気側に潤滑油が流れ、シールエアAが潤滑油に流入しないようになっている。
 従って、上述した構成により、船尾側船尾管シール40において、潤滑油に海水が混入するのを防止するとともに、海水中に潤滑油が流出するのを防止することができる。
 また、海水と接する前部シール部材42cが損傷するとシールエアAの圧力が低下して海水が前部第1チャンバ43aに流入し、前部ドレンD1に含まれる海水が多くなる。
 同様に、潤滑油と接する前部シール部材42cが損傷すると、空気側に潤滑油が流入し、前部ドレンD1に含まれる潤滑油が多くなる。
 従って、上述した構成により、前部ドレンD1に含まれる海水と潤滑油の量と比率から、前部第1チャンバ43aを構成するどちらの前部シール部材42cが損傷したかを判別することができる。
 図2において、船尾側二重反転シール50は、後部シールケーシング54a、後部シールライナ54b、及び複数の後部シール部材54cを有する。
 後部シールケーシング54aは、前プロペラ1に固定され軸心Z-Zを中心とする円形開口を有し、外軸12と一体的に回転する。
 後部シールライナ54bは、内軸14の後端部又は後プロペラ2のボスに固定され、後部シールケーシング54aの内側に位置し、内軸14と一体的に回転する。
 複数(この例では3つ)の後部シール部材54cは、後部シールケーシング54aと後部シールライナ54bとの間に軸方向に間隔を隔てて位置しその間をシールして軸方向に分割された2以上(この例では2つ)の後部環状チャンバ55を形成する。
 2つの後部環状チャンバ55を、以下、海水に接する側(図で左側)から、後部第1チャンバ55a、後部第2チャンバ55bと呼ぶ。
 上述した上流側経路60Aは、さらに、後部第1チャンバ55aに、前部第1チャンバ43aからシールエアAを導入する後部空気流路62を有する。後部空気流路62は、図2において、前部シールライナ42b、前プロペラ1、及び、後部シールケーシング54aを通して設けられている。
 また、この図において、後部第2チャンバ55bには外軸分配装置8から上述した破線で示す経路で潤滑油が導入されている。
 図2において、下流側経路60Bは、前部第3チャンバ43cの後部ドレンD2を船内に回収する第2ドレン流路66を有する。
 後部ドレンD2は、後部第1チャンバ55aに侵入した海水と潤滑油の混合液である。
 前部第3チャンバ43cは、2つの前部シール部材42cにより前部第1チャンバ43aと分離されている。
 下流側経路60Bは、さらに、後部第1チャンバ55aで発生する後部ドレンD2を前部第3チャンバ43cに排出する第3ドレン流路67を有する。第3ドレン流路67は、後部第1チャンバ55aの下端から前プロペラ1のボスを通って前部第3チャンバ43cに連通する。
 上述した構成により、図2に示す符号a-bの順で、前部第1チャンバ43aから後部第1チャンバ55aにシールエアAを供給することができる。また、符号b-cの順で、後部第1チャンバ55aの下端から前部第3チャンバ43cを介して後部ドレンD2を前部ドレンD1と分離して船内に回収することができる。
 以下、aをエア流入口、cをエアドレン流出口と呼ぶ。
 図2において、エア流入口aとエアドレン流出口cは、前部シールライナ42bにおいて軸方向に離れており、その間を前部シール部材42cで仕切られている。また、エア流入口aとエアドレン流出口cは、軸心Z-Zに対して対称に位置することが好ましい。
 図2において、エア流入口aから後部第1チャンバ55a(符号b)までは連続した1本の流路(管路)で構成され、後部第1チャンバ55a(符号b)の下端からエアドレン流出口cまでも連続した1本の流路(管路)で構成されている。従って、シールエアAは船内からa-b-cの順序で流れ、船内に戻るように構成されている。
 後部第1チャンバ55aにおけるシールエアAの圧力は、水深に相当する海水圧力より高くなるように調整されている。従って、海水と接する後部シール部材54cに漏れがある場合でも、海水側にシールエアAが流れ、海水が加圧空気側に流入しないようになっている。
 また、後部第2チャンバ55bに供給される潤滑油の圧力は、後部第1チャンバ55aにおけるシールエアAの圧力より高くなるように調整されている。従って、潤滑油と接する後部シール部材54cに漏れがある場合でも、空気側に潤滑油が流れ、シールエアAが潤滑油に流入しないようになっている。
 従って、上述した構成により、船尾側の二重反転シール54において潤滑油に海水が混入するのを防止するとともに、海水中に潤滑油が流出するのを防止することができる。
 また、海水と接する後部シール部材54cが損傷するとシールエアAの圧力が低下して海水が後部第1チャンバ55aに流入し、後部ドレンD2に含まれる海水が多くなる。
 同様に、潤滑油と接する後部シール部材54cが損傷すると、空気側に潤滑油が流入し、後部ドレンD2に含まれる潤滑油が多くなる。
 従って、上述した構成により、後部ドレンD2に含まれる海水と潤滑油の量と比率から、後部第1チャンバ55aを構成するどちらの後部シール部材54cが損傷したかを判別することができる。
 図1において、舶用二重反転プロペラ装置100は、さらに、回転位置センサ70、及び、回転制御装置80を備える。
 回転位置センサ70は、外軸12の回転位置を検出する。回転位置センサ70は、例えば外軸12と連結され一体的に回転する部材外面に設けられたマーカ72と、これを検出する非接触センサ74と、を有する。
 マーカ72は、例えば凸部又は凹部である。また、非接触センサ74は、例えばマーカ72を非接触で検出する光電センサ、磁気センサ、レーザセンサ、などである。
 回転位置センサ70は、この例では、図2において、前部シールライナ42bに設けられたエアドレン流出口cが、鉛直方向下端に位置するときを検出するように設定するのがよい。なお、この場合のマーカ72の周方向の設置位置は、エアドレン流出口cと同じ周方向位置であることが好ましいが、その他の位置でもよい。
 回転制御装置80は、回転位置センサ70の検出信号により駆動装置30を停止させる。
 駆動装置30が、内燃機関とターニング装置を備えている場合、内燃機関を無負荷にしてターニング装置で外軸12を回転させ、回転位置センサ70の検出信号によりターニング装置を停止させるのがよい。
 また、駆動装置30が、電動モータである場合、電動モータを直接停止させてもよい。
 また、駆動装置30が、内燃機関のみを備えている場合、内燃機関に設けられたクラッチを切断してもよい。
 図3Aは、エアドレン流出口cが下端近傍にある場合の図2のA-A断面図であり、図3Bはエアドレン流出口cが上端近傍にある場合の図2のA-A断面図である。
 図3Aにおいて、前部シールケーシング42aとその内側の前部第1チャンバ43aは静止しており、外軸12と内軸14は互いに逆方向に回転する。また前部シールライナ42bは、外軸12と共に回転する。
 シールエアAは、前部シールケーシング42aの頂部から前部第1チャンバ43aに入り、前部シールライナ42bに設けられた単一のエア流入口aから後部空気流路62を通って後部第1チャンバ55aまで供給される。
 また、後部第1チャンバ55aのシールエアAと後部ドレンD2は、第3ドレン流路67を通り、前部シールライナ42bに設けられた単一のエアドレン流出口cから前部第3チャンバ43c(図2参照)に入り、その底部(下端)から第2ドレン流路66を通って船内に回収される。
 従って、停船時に図3Aの状態である場合、エア流入口aが上端近傍にあり、エアドレン流出口cが下端近傍にあるので、エア流入口aからエアドレン流出口cまでの間の後部ドレンD2を自重とシールエアAの流れにより、a-b-cの順に流すことができる。
 しかし、停船時に図3Bの状態である場合、エア流入口aが下端近傍にあり、エアドレン流出口cが上端近傍にあるので、エア流入口aからエアドレン流出口cまでの間の後部ドレンD2が、a-b-cの順に流れず、滞留又は逆流する。
 上述した第1実施形態によれば、回転制御装置80により、回転位置センサ70の検出信号により、停船時にエアドレン流出口cが最下端又は下端近傍に止まるように駆動装置30を停止させることができる。
 従って、停船時にエアドレン流出口cが最下端又は下端近傍に位置することで、後部ドレンD2を自重とシールエアAの流れとにより、a-b-cの順に流して回収することができる。
 なお、この例では、前部シールケーシング42aは、船尾3に固定されており、第1ドレン流路65は、前部第1チャンバ43aの下端から前部ドレンD1を回収するので、常に前部ドレンD1を自重で回収することができる。
(第2実施形態)
 図4は本発明の舶用二重反転プロペラ装置100の第2実施形態図であり、図5は図4の部分拡大図である。図4において、外軸12と連結され一体的に回転する部材に斜線を付している。
 以下、第1実施形態との相違点を説明する。
 図4において、内軸14は、駆動装置30の駆動軸4と直結され、同一速度で回転する。
 二重反転歯車装置20は、図示しない歯車機構により、外軸12とこれに連結された部材を内軸14の回転方向に対し逆方向に同期して回転する。
 この例では、外軸分配装置8の他に、二重反転歯車装置20の船首側に固定された内軸分配装置9を備える。
 船尾3の船首側から破線で示す経路で潤滑油が船尾側船尾管シール40に導入されている。
 また、外軸分配装置8から破線で示す経路で潤滑油がスラスト軸受6と船尾側二重反転軸受7に導入されている。
 さらに、内軸分配装置9から破線で示す経路で潤滑油が船尾側二重反転シール50に導入されている。
 図5において、上流側経路60Aは、前部空気流路61と後部空気流路63を有し、下流側経路60Bは、第1ドレン流路65と第4ドレン流路68を有する、
 船尾3の船首側から実線で示す前部空気流路61を介して船尾側船尾管シール40の前部第1チャンバ43aにシールエアAが導入され、前部第1チャンバ43aの下端から第1ドレン流路65を介して船尾3の船首側にシールエアAと前部ドレンD1が回収される。
 また、内軸分配装置9から実線で示す後部空気流路63を介して船尾側二重反転シール50の後部第1チャンバ55aにシールエアAが導入され、後部第1チャンバ55aの下端から第4ドレン流路68を介して内軸分配装置9にシールエアAと後部ドレンD2が回収される。
 上述した構成により、船尾側船尾管シール40と船尾側二重反転シール50において、潤滑油に海水が混入するのを防止するとともに、海水中に潤滑油が流出するのを防止することができ、かつ前部ドレンD1と後部ドレンD2を別個に回収することができる。
 この例において、前部シールケーシング42aは、船尾3(静止部分)に固定されており、第1ドレン流路65は、前部第1チャンバ43aの下端から前部ドレンD1を回収するので、常に前部ドレンD1を自重で回収することができる。
 図4において、回転位置センサ70は、内軸14の回転位置を検出する。
 マーカ72は、この例では、例えば内軸14と連結され一体的に回転する部材外面に設けられる。
 図6Aはエアドレン流出口cが下端にある場合の図5のB-B断面図であり、図6Bはエアドレン流出口cが上端にある場合の図5のB-B断面図である。
 図5、図6A、図6Bにおいて、エア流入口aとエアドレン流出口cは、内軸14と内軸分配シールライナ9bにおいて軸方向に離れており、その間をシール部材で仕切られている。また、エア流入口aとエアドレン流出口cは、軸心Z-Zに対して対称に位置することが好ましい。
 図6Aにおいて、内軸分配装置9とその内側の内軸分配チャンバ9aは固定されており、その内側で内軸14が回転する。また内軸分配シールライナ9bは、内軸14と共に回転する。
 シールエアAは、内軸分配装置9の頂部から内軸分配チャンバ9aに入り、内軸分配シールライナ9bと内軸14に設けられた単一のエア流入口aから後部空気流路63に入り、後部空気流路63を通って後部第1チャンバ55aまで供給される。
 また、後部第1チャンバ55aのシールエアAと後部ドレンD2は、第4ドレン流路68を通り、内軸分配シールライナ9bと内軸14に設けられた単一のエアドレン流出口cから内軸分配チャンバ9aに入り、内軸分配装置9の底部(下端)から船内に回収される。
 従って、停船時に図6Aの状態の場合、エア流入口aが上端にあり、エアドレン流出口cが下端にあるので、後部ドレンD2を自重とシールエアAの流れとにより、a-b-cの順に流すことができる。
 逆に、停船時に図6Bの状態の場合、エア流入口aが下端にあり、エアドレン流出口cが上端にあるので、エア流入口aからエアドレン流出口cまでの間の後部ドレンD2が、a-b-cの順に流れず、滞留又は逆流する。
 上述した第2実施形態によれば、回転制御装置80により、回転位置センサ70の検出信号により、停船時にエアドレン流出口cが最下端に止まるように駆動装置30を停止させることができる。
 従って、停船時にエアドレン流出口cが最下端に位置することで、後部ドレンD2を自重とシールエアAの流れとにより、a-b-cの順に流して回収することができる。
 上述した回転位置センサ70は、第1実施形態では外軸12の回転位置を検出し、第2実施形態では内軸14の回転位置を検出する。しかし、本発明はこれらに限定されず、外軸12及び内軸14の両方の回転位置を複数の回転位置センサ70で別個に検出してもよい。
 外軸12及び内軸14の両方の回転位置を検出する場合、二重反転歯車装置20が例えば遊星歯車式であり、内軸14と外軸12が連動しかつその回転速度が異なる場合でも、内軸14と外軸12の回転位置が一致する時点を検出して停止することができる。これにより、メンテナンス(例えば、軸受の定期観測であるウェアダウン計測の条件出し、この時、両軸ともに頂部に位置を合わせる)の際に、ターニング時間を大幅に短縮できる。
 上述したように、本発明の構成によれば、船尾側船尾管シール40、船尾側二重反転シール50、及びその一方又は両方にシールエアAを供給しシールエアAと共にドレンD1,D2を排出するシールドレン回収装置60を備える。従ってこれらによりドライシール型の軸封装置(エアシール装置)を構成することができる。
 また、外軸12又は内軸14の回転位置を検出する回転位置センサ70を備えるので、その検出信号により外軸12及び内軸14を停止させて、シールドレン回収経路を最適位置に停止させることができる。
 なお本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
A 加圧空気(シールエア)、a エア流入口、c エアドレン流出口、
D1 前部ドレン、D2 後部ドレン、Z-Z 軸心、
1 前プロペラ、2 後プロペラ、3 船尾、4 駆動軸、
5 船首側二重反転軸受、6 スラスト軸受、7 船尾側二重反転軸受、
8 外軸分配装置、9 内軸分配装置、9a 内軸分配チャンバ、
9b 内軸分配シールライナ、10 プロペラキャップ、
12 外軸(外側プロペラ軸)、14 内軸(内側プロペラ軸)、16 船尾管軸受、
20 二重反転歯車装置、30 駆動装置、40 船尾側船尾管シール、
42a 前部シールケーシング、42b 前部シールライナ、
42c 前部シール部材、43 前部環状チャンバ、43a 前部第1チャンバ、
43b 前部第2チャンバ、43c 前部第3チャンバ、53c 前部第3チャンバ、
50 船尾側二重反転シール、54a 後部シールケーシング、
54b 後部シールライナ、54c 後部シール部材、55 後部環状チャンバ、
55a 後部第1チャンバ、55b 後部第2チャンバ、
60 シールドレン回収装置、60A 上流側経路、60B 下流側経路、
61 前部空気流路、62 後部空気流路、63 後部空気流路、
65 第1ドレン流路、66 第2ドレン流路、67 第3ドレン流路、
68 第4ドレン流路、70 回転位置センサ、72 マーカ、
74 非接触センサ、80 回転制御装置、100 舶用二重反転プロペラ装置
 
 

Claims (7)

  1.  後端部に前プロペラが取り付けられ船尾管軸受で軸心を中心に回転可能に支持された中空状の外軸と、
     後端部に後プロペラが取り付けられ船尾側二重反転軸受で前記軸心を中心に回転可能に支持された内軸と、
     前記船尾管軸受の海側に設けられその間をシールする船尾側船尾管シールと、
     前記船尾側二重反転軸受の海側に設けられその間をシールする船尾側二重反転シールと、
     前記船尾側船尾管シール又は前記船尾側二重反転シールにシールエアを供給し該シールエアと共にドレンを回収するシールドレン回収装置と、
     前記外軸又は前記内軸の回転位置を検出する回転位置センサと、を備えた、舶用二重反転プロペラ装置。
  2.  前記回転位置センサは、前記外軸又は前記内軸と連結され一体的に回転する部材外面に設けられたマーカと、該マーカを非接触で検出する非接触センサと、を有する、請求項1に記載の舶用二重反転プロペラ装置。
  3.  前記外軸と前記内軸の回転方向を互に逆方向に同期させる二重反転歯車装置と、
     前記二重反転歯車装置を駆動する駆動装置と、
     前記回転位置センサの検出信号により前記駆動装置を停止させる回転制御装置と、を備える、請求項1に記載の舶用二重反転プロペラ装置。
  4.  前記駆動装置は、前記二重反転歯車装置の入力軸を回転駆動する内燃機関又は電動モータである、請求項3に記載の舶用二重反転プロペラ装置。
  5.  前記シールドレン回収装置は、前記船尾側船尾管シール又は前記船尾側二重反転シールに前記シールエアを供給する上流側経路と、前記船尾側船尾管シール又は前記船尾側二重反転シールの下端から船内に前記シールエアと共に前記ドレンを回収する下流側経路と、を有する、請求項1に記載の舶用二重反転プロペラ装置。
  6.  前記シールドレン回収装置は、前記船尾側船尾管シールで発生する前部ドレンと、前記船尾側二重反転シールで発生する後部ドレンを別個に回収する、請求項1に記載の舶用二重反転プロペラ装置。
  7.  請求項1に記載の舶用二重反転プロペラ装置を備えた、船舶。
PCT/JP2022/014075 2021-04-01 2022-03-24 舶用二重反転プロペラ装置とこれを備えた船舶 WO2022210280A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280017275.9A CN116917200A (zh) 2021-04-01 2022-03-24 船舶用双重反转螺旋桨装置和具备它的船舶
KR1020237030840A KR20230142840A (ko) 2021-04-01 2022-03-24 선박용 이중 반전 프로펠러 장치 및 그것을 구비한 선박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021062968A JP2022158217A (ja) 2021-04-01 2021-04-01 舶用二重反転プロペラ装置とこれを備えた船舶
JP2021-062968 2021-04-01

Publications (1)

Publication Number Publication Date
WO2022210280A1 true WO2022210280A1 (ja) 2022-10-06

Family

ID=83458872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014075 WO2022210280A1 (ja) 2021-04-01 2022-03-24 舶用二重反転プロペラ装置とこれを備えた船舶

Country Status (4)

Country Link
JP (1) JP2022158217A (ja)
KR (1) KR20230142840A (ja)
CN (1) CN116917200A (ja)
WO (1) WO2022210280A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251795A (ja) * 1994-03-15 1995-10-03 Mitsubishi Heavy Ind Ltd 二重反転プロペラ船用船尾管シール装置のドレン排水方法およびドレン排水管構造
JP2009113578A (ja) * 2007-11-05 2009-05-28 Honda Motor Co Ltd 二重反転式動力装置
KR20150074688A (ko) * 2013-12-24 2015-07-02 현대중공업 주식회사 선박용 추진장치
JP2019093788A (ja) * 2017-11-20 2019-06-20 ジャパンマリンユナイテッド株式会社 舶用二重反転プロペラ装置の軸封装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106738B2 (ja) 1988-07-19 1995-11-15 株式会社インターナショナル三興 シール装置の高さ調節構造

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251795A (ja) * 1994-03-15 1995-10-03 Mitsubishi Heavy Ind Ltd 二重反転プロペラ船用船尾管シール装置のドレン排水方法およびドレン排水管構造
JP2009113578A (ja) * 2007-11-05 2009-05-28 Honda Motor Co Ltd 二重反転式動力装置
KR20150074688A (ko) * 2013-12-24 2015-07-02 현대중공업 주식회사 선박용 추진장치
JP2019093788A (ja) * 2017-11-20 2019-06-20 ジャパンマリンユナイテッド株式会社 舶用二重反転プロペラ装置の軸封装置

Also Published As

Publication number Publication date
JP2022158217A (ja) 2022-10-17
CN116917200A (zh) 2023-10-20
KR20230142840A (ko) 2023-10-11

Similar Documents

Publication Publication Date Title
CN111356631B (zh) 船舶用双重反转螺旋桨装置的轴封装置
US8641463B2 (en) Contra-rotating propeller marine propulsion device
US7387556B1 (en) Exhaust system for a marine propulsion device having a driveshaft extending vertically through a bottom portion of a boat hull
US4174672A (en) Ship's propeller shaft sealing assembly
JP5033664B2 (ja) 二重反転軸受潤滑構造及び舶用推進装置の潤滑油供給装置
US5902160A (en) Twin propeller marine propulsion unit
JP2009161050A (ja) 二重反転プロペラ式舶用推進装置
WO2022210280A1 (ja) 舶用二重反転プロペラ装置とこれを備えた船舶
US6042337A (en) Sealing system for a hydraulic machine
EP3647180B1 (en) Marine propulsion system supported by a strut
CN117043060A (zh) 推力间隙测量装置、推力间隙测量方法以及船舶
JP2909948B2 (ja) 船尾管軸封装置
JPH04501835A (ja) 船舶推進システムの操舵機構
WO2022210282A1 (ja) 潤滑油フローセンサとこれを備えた船舶
GB2167722A (en) Apparatus for supplying air to a ship's propeller
JPH0411597A (ja) 舶用二重反転プロペラー軸のシール潤滑装置
JPH07205887A (ja) 舶用二重反転プロペラ軸のシール潤滑装置
JP2716674B2 (ja) ウオータジェット推進器のシール装置
JPH0698953B2 (ja) 二重反転プロペラ式推進装置
KR101571423B1 (ko) 선박용 추진장치 및 이를 갖춘 선박
KR101574284B1 (ko) 해수 유입 감지용 유체 탱크를 갖는 선수추진기 실링장치
JP2023041476A (ja) シール構造及び船舶用推進器
KR101608190B1 (ko) 선박용 추진장치 및 이를 갖춘 선박

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22780494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017275.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237030840

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030840

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22780494

Country of ref document: EP

Kind code of ref document: A1