WO2022209230A1 - 硬化性組成物及び硬化物 - Google Patents

硬化性組成物及び硬化物 Download PDF

Info

Publication number
WO2022209230A1
WO2022209230A1 PCT/JP2022/002950 JP2022002950W WO2022209230A1 WO 2022209230 A1 WO2022209230 A1 WO 2022209230A1 JP 2022002950 W JP2022002950 W JP 2022002950W WO 2022209230 A1 WO2022209230 A1 WO 2022209230A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive filler
curable composition
mass
group
Prior art date
Application number
PCT/JP2022/002950
Other languages
English (en)
French (fr)
Inventor
源基 伊藤
隆二 寺内
悟志 渡辺
Original Assignee
コスモ石油ルブリカンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コスモ石油ルブリカンツ株式会社 filed Critical コスモ石油ルブリカンツ株式会社
Priority to CN202280024652.1A priority Critical patent/CN117062845A/zh
Priority to EP22779460.9A priority patent/EP4317212A1/en
Priority to JP2023510541A priority patent/JPWO2022209230A1/ja
Priority to KR1020237032922A priority patent/KR20230152096A/ko
Publication of WO2022209230A1 publication Critical patent/WO2022209230A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1063Esters of polycondensation macromers of alcohol terminated polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1812C12-(meth)acrylate, e.g. lauryl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present disclosure relates to curable compositions and cured products.
  • a problem to be solved by an embodiment of the present disclosure is to provide a curable composition having excellent oil separation resistance.
  • a problem to be solved by another embodiment of the present disclosure is to provide a cured product of a curable composition having excellent oil separation resistance.
  • oil separation resistance means that when the curable composition according to the present disclosure before curing is aged, the thermally conductive filler and the liquid component contained in the curable composition are separated. means to be suppressed.
  • the present disclosure includes the following implementations.
  • ⁇ 1> At least one selected from the group consisting of a thermally conductive filler A having a volume average particle size of 0.3 ⁇ m or more and less than 1 ⁇ m and a thermally conductive filler B having a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m, and volume average particles
  • the content X of the thermally conductive filler A is 0% to 40% by mass
  • the content Y of the thermally conductive filler B is 0% to 40% by mass.
  • the content Z of the thermally conductive filler C is 20% by mass to 60% by mass
  • thermoly conductive filler (A) contains at least one selected from zinc oxide, magnesium oxide and aluminum oxide.
  • thermally conductive filler (A) contains zinc oxide.
  • thermally conductive filler (A) is a surface-treated thermally conductive filler.
  • R 1 represents an alkyl group having 1 to 50 carbon atoms
  • R 2 represents a hydrogen atom or a methyl group.
  • R B1 represents an alkylene group having 1 to 5 carbon atoms
  • R B2 and R B3 each independently represent a hydrogen atom or a methyl group
  • n represents an integer of 4 or more.
  • ⁇ 7> A cured product of the curable composition according to any one of ⁇ 1> to ⁇ 6>.
  • a curable composition with excellent oil separation resistance is provided.
  • a cured product of a curable composition having excellent oil separation resistance is provided.
  • the curable composition and the cured product thereof according to the present disclosure are described in detail below.
  • "-" representing a numerical range represents a range including the numerical values described as the upper and lower limits thereof.
  • the content rate or content of each component in the composition is means the total content or content of
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • each ingredient in the composition means the total amount of the corresponding substances present in the composition when there is more than one of each ingredient in the composition, unless otherwise specified.
  • a combination of two or more preferred aspects is a more preferred aspect.
  • JIS is used as an abbreviation for Japanese Industrial Standards.
  • the curable composition according to the present disclosure includes at least one selected from the group consisting of a thermally conductive filler A having a volume average particle size of 0.3 ⁇ m or more and less than 1 ⁇ m and a thermally conductive filler B having a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m.
  • the amount Y is 0% to 40% by weight, and the content Z of the thermally conductive filler C is 20% to 60% by weight. However, both the content X and the content Y are not 0% by mass. Since the curable composition according to the present disclosure has the above configuration, it is excellent in oil separation resistance.
  • thermally conductive filler A having a volume average particle size of 0.3 ⁇ m or more and less than 1 ⁇ m
  • thermally conductive filler B having a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m
  • thermal conductive filler having a volume average particle size of 10 ⁇ m or more and 15 ⁇ m or less
  • thermally conductive fillers C are simply referred to as thermally conductive fillers A, thermally conductive fillers B, and thermally conductive fillers C, respectively.
  • a curable composition containing solid particles such as a thermally conductive filler is required to have oil separation resistance over time (for example, when stored) after preparation until it is used.
  • the thermally conductive filler settles and requires stirring at the time of use. As a result, the desired viscosity or thermal conductivity may not be obtained, and the uniformity of the coating amount and quality stability may be impaired.
  • the thermally conductive filler contained in the curable composition when the content ratio of the thermally conductive filler with a medium particle size and a large particle size (for example, the volume average particle size is 10 ⁇ m or more) is large, the thermal conductivity increases. However, the thermally conductive filler tends to settle, resulting in a tendency to deteriorate oil separation resistance. When the content ratio of the medium and large particle size thermally conductive fillers is reduced, the oil separation resistance is improved, but the thermal conductivity tends to decrease.
  • the content ratio of the thermally conductive filler with a medium particle size and a large particle size for example, the volume average particle size is 10 ⁇ m or more
  • the curable composition according to the present disclosure includes, as the thermally conductive filler (A), at least one selected from the group consisting of thermally conductive filler A and thermally conductive filler B, and thermally conductive
  • the thermally conductive filler C is included, and the content X of the thermally conductive filler A, the content Y of the thermally conductive filler B, and the content Z of the thermally conductive filler C are set within predetermined ranges, so that oil separation resistance is improved.
  • the thermally conductive filler (A) at least one selected from the group consisting of thermally conductive filler A and thermally conductive filler B, and thermally conductive
  • the thermally conductive filler C is included, and the content X of the thermally conductive filler A, the content Y of the thermally conductive filler B, and the content Z of the thermally conductive filler C are set within predetermined ranges, so that oil separation resistance is improved.
  • the curable composition according to the present disclosure can also have excellent thermal conductivity (specifically, 3 W/m ⁇ K or more). It is presumed that this is because the thermally conductive filler (A) is included in the above configuration, more specifically, the thermally conductive filler C is included at a content Z ratio.
  • the curable composition according to the present disclosure can have a viscosity according to the application (for example, gap filler application). It is presumed that this is because the thermally conductive filler (A) is included in the above configuration, more specifically, the thermally conductive fillers A and B are included in the ratio of the content Y and the content Z, respectively. there is
  • thermally conductive filler (A) is at least one selected from the group consisting of thermally conductive filler A having a volume average particle size of 0.3 ⁇ m or more and less than 1 ⁇ m and thermally conductive filler B having a volume average particle size of 1 ⁇ m or more and less than 10 ⁇ m. and a thermally conductive filler C having a volume average particle size of 10 ⁇ m or more and 15 ⁇ m or less.
  • Each of the thermally conductive filler A, the thermally conductive filler B, and the thermally conductive filler C may be one type of thermally conductive filler having a predetermined volume-average particle size, or may be a predetermined volume-average particle size. There may be two or more types of thermally conductive fillers having diameters.
  • the volume average particle size of the thermally conductive filler A is 0.3 ⁇ m or more and less than 1 ⁇ m, preferably 0.4 ⁇ m to 0.8 ⁇ m.
  • the volume average particle size of the thermally conductive filler B is 1 ⁇ m or more and less than 10 ⁇ m, preferably 3 ⁇ m to 6 ⁇ m.
  • the volume average particle size of the thermally conductive filler C is 10 ⁇ m to 15 ⁇ m, preferably 11 ⁇ m to 13 ⁇ m, from the viewpoint of oil separation resistance and thermal conductivity.
  • the volume average particle size of the thermally conductive filler is measured by a laser diffraction/scattering method in accordance with JIS Z 8825:2013 (corresponding international standard: ISO13320). Specifically, a sample containing thermally conductive filler particles is measured for volume distribution of the thermally conductive filler particles using a laser diffraction/scattering particle size analyzer. Based on the obtained measured value (volume distribution), the volume average particle size of the thermally conductive filler contained in the sample can be obtained.
  • a laser diffraction/scattering particle size analyzer a product name: nanoparticle size distribution analyzer SALD-7500nano manufactured by Shimadzu Corporation can be used.
  • the curable composition contains a thermally conductive filler belonging to thermally conductive filler A, thermally conductive filler B, or thermally conductive filler C is confirmed by a laser diffraction scattering particle size analyzer. can be done. Specifically, it can be confirmed by the following method.
  • the thermally conductive filler is isolated by removing components other than the thermally conductive filler from the curable composition.
  • the volume distribution of a measurement sample prepared from the isolated thermally conductive filler is measured using a laser diffraction scattering particle size analyzer. Based on the measurement results, the presence or absence of filler particles present in the particle size range of the thermally conductive filler A, thermally conductive filler B, or thermally conductive filler C is confirmed.
  • Components other than the thermally conductive filler are removed by the following method.
  • thermally conductive filler After dissolving the curable composition in a solvent such as hexane that does not dissolve the thermally conductive filler, centrifugation is carried out. By repeating the above steps three times or more, the thermally conductive filler and other components are separated. The obtained thermally conductive filler is dried in a constant temperature bath at 150° C. for 90 minutes to remove the residual solvent.
  • the catalog value can be confirmed for the volume average particle size of the thermally conductive filler, the catalog value will be adopted.
  • the thermally conductive filler A and the thermally conductive filler B contained in the thermally conductive filler (A) may be either one or both. From the viewpoint of oil separation resistance, the thermally conductive filler (A) preferably contains both the thermally conductive filler A and the thermally conductive filler B.
  • the content X of the thermally conductive filler A, the content Y of the thermally conductive filler B, and the content Z of the thermally conductive filler C are the thermally conductive fillers (A) obtained from a laser diffraction scattering particle size analyzer. It can be confirmed by calculating the content ratio of the thermally conductive filler A, the thermally conductive filler B, and the thermally conductive filler C based on the measurement result of the particle size distribution.
  • the content X of the thermally conductive filler A is 0% by mass to 40% by mass, preferably 20% by mass to 35% by mass, and 25% by mass to 30% by mass, based on the total mass of the thermally conductive filler (A). % by mass is more preferred.
  • the content Y of the thermally conductive filler B is 0% by mass to 40% by mass, preferably 10% by mass to 30% by mass, and preferably 15% by mass to 25% by mass, based on the total mass of the thermally conductive filler (A). % is more preferred.
  • the content Z of the thermally conductive filler C is 20% by mass to 60% by mass based on the total mass of the thermally conductive filler (A).
  • the content Z can be, for example, 40% by mass to 60% by mass.
  • the content ratio of the thermally conductive filler A and the thermally conductive filler B [A: B] is preferably 30:70 to 80:20, more preferably 50:50 to 70:30, and even more preferably 55:45 to 65:35, on a mass basis.
  • the content ratio of the thermally conductive filler A and the thermally conductive filler B to the thermally conductive filler C [(A+B):C] is from 40:60 on a mass basis from the viewpoint of oil separation resistance and thermal conductivity. 60:40 is preferred, and 45:55 to 55:45 is more preferred.
  • the material of the thermally conductive filler (A) is not particularly limited, and examples thereof include zinc oxide, magnesium oxide, aluminum oxide, boron nitride, aluminum nitride, and carbon. From the viewpoint of oil separation resistance, insulation, high thermal conductivity, and track record of use as a thermally conductive filler, it preferably contains at least one selected from zinc oxide, magnesium oxide, and aluminum oxide, and zinc oxide is more preferable. .
  • the thermally conductive filler (A) preferably contains only thermally conductive fillers A, B, and C from the viewpoint of oil separation resistance, and from the viewpoint of oil separation resistance, viscosity, and high thermal conductivity Therefore, it is more preferable that all of the thermally conductive fillers A, B and C are zinc oxide.
  • the thermally conductive filler (A) may be a surface-treated thermally conductive filler.
  • the surface-treated thermally conductive filler can improve affinity with other components other than the thermally conductive filler, and contribute to improved oil separation resistance, lower viscosity, and improved thermal conductivity.
  • the surface treatment of the thermally conductive filler is not particularly limited, and may be a physical treatment or a chemical treatment, and any known treatment capable of treating the surface of the particles constituting the thermally conductive filler is applied. can do.
  • the surface treatment is preferably a treatment using a surface treatment agent.
  • surface treatment agents include silane-based coupling agents, titanium-based coupling agents, carboxylic acid-based coupling agents, phosphoric acid-based coupling agents, fatty acids, polymer compounds, surfactants, and fats and oils. .
  • the thermally conductive filler (A) is preferably surface-treated using a silane-based coupling agent as a surface treatment agent.
  • the thermally conductive fillers A, B, and C may all be surface-treated thermally conductive fillers, or any one of the thermally conductive fillers may be a surface-treated thermally conductive filler. good too. From the viewpoint of oil separation resistance and thermal conductivity, it is preferable that the thermally conductive filler C contains at least a surface-treated thermally conductive filler.
  • the content of the thermally conductive filler (A) is preferably 80% by mass or more, more preferably 85% to 98% by mass, more preferably 90% to 96% by mass, based on the total mass of the composition. % by mass is more preferred.
  • the content of the thermally conductive filler (A) is preferably 40% by volume or more, more preferably 47% to 80% by volume, and 60% by volume, relative to the total volume of the composition. More preferably ⁇ 80% by volume.
  • a curable composition according to the present disclosure comprises a monomer (B) having a (meth)acryloyl group.
  • the (meth)acryloyl group-containing monomer (B) may be a monomer having one (meth)acrylate group in one molecule, or a monomer having two or more (meth)acrylate groups in one molecule. There may be.
  • the monomer having one (meth)acrylate group in one molecule is not particularly limited, and examples thereof include linear, branched or cyclic alkyl (meth)acrylates, acrylic acid and the like.
  • the monomer having one (meth)acrylate group in one molecule is preferably a linear or branched alkyl (meth)acrylate, represented by the following formula (1) It is further preferable that the compound represented by is included.
  • R 1 represents an alkyl group having 1 to 50 carbon atoms
  • R 2 represents a hydrogen atom or a methyl group.
  • the alkyl group for R 1 may be linear or branched. Moreover, the alkyl group may have a substituent. Examples of substituents include a carboxy group, a hydroxy group, an amino group, an aryl group, and a heterocyclic group, preferably a carboxy group or a hydroxy group, more preferably a hydroxy group.
  • the total carbon number of the alkyl group in R 1 is preferably 2 to 30, more preferably 5 to 25, even more preferably 10 to 25. , a total carbon number of 12 to 24 is particularly preferred.
  • the total number of carbon atoms means the total number of carbon atoms including the number of carbon atoms of the substituent when the above alkyl group has a substituent containing a carbon atom.
  • R 1 is preferably a linear or branched alkyl group or an alkyl group having a total carbon number of 2 to 30 having a substituent. It is more preferably an alkyl group having a total carbon number of 2 to 25 having a linear or branched chain or a hydroxy group, and is preferably a linear or branched unsubstituted alkyl group having 12 to 24 carbon atoms. .
  • Monomers having one (meth)acrylate group in one molecule include, for example, lauryl (meth)acrylate, isostearyl (meth)acrylate, tetradecyl (meth)acrylate, hexadecyl (meth)acrylate, octadecyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-decyltetradecyl (meth)acrylate and the like.
  • R 2 is a hydrogen atom or a methyl group, preferably a methyl group.
  • Examples of monomers having two or more (meth)acrylate groups in one molecule include hexanediol di(meth)acrylate, butanediol di(meth)acrylate (1,3-butanediol di(meth)acrylate, 1, 4-butanediol di(meth)acrylate), ethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol di(meth) Acrylate, pentaerythritol di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol hexa(meth)acrylate, trimethylolpropane tri(meth)acrylate and the like.
  • the monomer having two or more (meth)acrylate groups in one molecule is a compound having two and/or three (meth)acrylate groups in one molecule from the viewpoint of achieving both heat resistance and flexibility.
  • a compound having two (meth)acrylate groups in one molecule is more preferable, and a compound represented by the following formula (2) is even more preferable.
  • R B1 represents an alkylene group having 1 to 5 carbon atoms
  • R B2 and R B3 each independently represent a hydrogen atom or a methyl group
  • n represents an integer of 4 or more.
  • the alkylene group having 1 to 5 carbon atoms represented by R 1 B1 may be linear or branched. From the viewpoint of flexibility, the alkylene group represented by R B1 is preferably a linear or branched alkylene group having 2 to 5 carbon atoms, and a linear or branched alkylene group having 2 carbon atoms. An alkylene group having 1 to 4 carbon atoms is more preferable, and a branched alkylene group having 3 or 4 carbon atoms is even more preferable.
  • R B2 and R B3 are each independently preferably a methyl group.
  • n is preferably 4-25, more preferably 4-10, even more preferably 4-8.
  • R B1 is a linear or branched C 2-5 alkylene group (more preferably a linear or branched an alkylene group having 2 to 4 carbon atoms, more preferably a branched alkylene group having 3 or 4 carbon atoms), R B2 and R B3 are methyl groups, and n is 4 to 25 ( more preferably 4 to 10, still more preferably 4 to 8).
  • the content of the (meth)acryloyl group-containing monomer (B) is preferably 1% by mass to 10% by mass, preferably 2% by mass to 8% by mass, based on the total mass of the composition. more preferred.
  • the monomer (B) having a (meth)acryloyl group may be contained singly or in combination of two or more in the composition.
  • the monomer (B) having a (meth)acryloyl group is at least one selected from monomers having one (meth)acrylate group in one molecule and a (meth)acrylate group in one molecule. preferably contains at least one selected from monomers having two or more of
  • the content ratio (A:B) between the content A of the monomer having one (meth)acrylate group in one molecule and the content B of the monomer having two or more (meth)acrylate groups in one molecule is From the viewpoint of the hardness and curing speed of the cured product, the ratio is preferably 99.5:0.5 to 95:5, more preferably 99:1 to 97:3, based on mass.
  • the (meth)acryloyl group-containing monomer (B) is preferably a monomer having a molecular weight of less than 1,000.
  • a monomer means a polymerizable compound with a molecular weight of less than 1,000
  • a polymerizable polymer means a polymerizable compound with a weight average molecular weight (Mw) of 1,000 or more.
  • Mw weight average molecular weight
  • the concept of "polymerizable polymer" in the present disclosure also includes so-called oligomers.
  • the curable composition according to the present disclosure contains a polymerization initiator (C).
  • the polymerization initiator (C) is a compound that generates polymerization initiation species such as radicals and cations by the energy of light, heat, or both, and may be appropriately selected from known thermal polymerization initiators, known photopolymerization initiators, and the like. It can be selected and used.
  • the polymerization initiator (C) is preferably a radical polymerization initiator, more preferably a peroxide that generates free radicals by heat. More preferred are organic peroxides that generate free radicals.
  • organic peroxides include isobutyl peroxide, ⁇ , ⁇ 'bis(neodecanoylperoxy)diisopropylbenzene, cumyl peroxyneodecanoate, di-n-propylperoxydicarbonate, di-s-butylperoxide, Oxydicarbonate, 1,1,3,3-tetramethylbutyl peroxyneodecanoate, bis(4-t-butylcyclohexyl) peroxydicarbonate, 1-cyclohexyl-1-methylethyl peroxyneodecanoate , di-2-ethoxyethyl peroxydicarbonate, di(ethylhexyl) peroxydicarbonate, t-hexyl peroxyneodecanoate, dimethoxybutyl peroxydicarbonate, di(3-methyl-3-methoxybutyl) per oxydicarbonate, t-butyl
  • organic peroxides include benzoyl peroxide, t-butylperoxy-2-ethylhexyl carbonate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexa It is preferably at least one compound selected from the group consisting of noate and cumene hydroperoxide.
  • the content of the polymerization initiator (C) is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the monomer (B) having a (meth)acryloyl group, and 0.5 parts by mass. It is more preferable that the content is 4 parts by mass or less.
  • a curable composition according to the present disclosure comprises a dispersant (D).
  • the dispersant is not particularly limited, and anionic surfactants, cationic surfactants, nonionic surfactants, amphoteric surfactants, polymeric surfactants, alcohols, compounds having a carboxyl group such as fatty acids. , metal soaps, fatty acid oligomer compounds, fluorine-based surfactants, boron-based surfactants, and the like.
  • the dispersant (D) is preferably at least one compound selected from the group consisting of nonionic surfactants, compounds having a carboxyl group, and metallic soaps.
  • nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene fatty acid esters, sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene sorbitol fatty acid esters, and glycerin fatty acid esters.
  • polyoxyethylene glycerin fatty acid ester polyglycerin fatty acid ester, polyglycerin fatty acid ether, polyglycerin monoalkyl ether, sucrose fatty acid ester, polyoxyethylene alkylamine, polyethylene glycol polypropylene glycol block copolymer, acetylene glycol, acetylene glycol polyoxy Ethylene adducts and the like can be mentioned.
  • the compound having a carboxy group is not particularly limited, and may be a fatty acid having one carboxy group and a hydrocarbon group in one molecule, or a compound having two or more carboxy groups in one molecule. good too.
  • the dispersing agent (D) is more preferably a compound having a carboxy group, more preferably a fatty acid.
  • Examples of compounds having a carboxy group include aromatic carboxylic acids and fatty acids having an aliphatic hydrocarbon group with 12 to 22 carbon atoms.
  • Fatty acids having an aliphatic hydrocarbon group of 12 to 22 carbon atoms include stearic acid, oleic acid, palmitic acid, myristic acid and lauric acid.
  • Examples of compounds having a carboxyl group include oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, adipic acid, and the like. acid), alkylamine salts of polycarboxylic acids, alkylammonium salts, polycarboxylic acid polyaminoamides, polycarboxylic acid sodium salts, polycarboxylic acid ammonium salts, polycarboxylic acid aminoalcohol salts and other polycarboxylic acid salts, polycarboxylic acid systems A copolymer etc. are mentioned.
  • Polycarboxylic acid compounds include alkylamine salts, alkylammonium salts, polycarboxylic acid polyaminoamides, polycarboxylic acid sodium salts, polycarboxylic acid ammonium salts, and polycarboxylic acid aminoalcohol salts.
  • metal soaps include metal salts of higher fatty acids such as calcium stearate, potassium oleate, and calcium oleate.
  • the dispersant (D) preferably contains at least one compound selected from the group consisting of polyglycerin monoalkyl ether compounds, compounds having a carboxy group, and metal soaps. More preferably, it contains at least one compound selected from the group consisting of a monoalkyl ether compound and a fatty acid having an aliphatic hydrocarbon group with 12 to 22 carbon atoms, and a polyglycerin monoalkyl ether compound and 18 carbon atoms. More preferably, it contains at least one compound selected from the group consisting of fatty acids having up to 22 unsaturated hydrocarbon groups.
  • the content of the dispersant (D) is preferably 0.1 parts by mass or more and 3 parts by mass or less, and 0.1 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the thermally conductive filler (A). More preferably, it is particularly preferably 0.2 parts by mass or more and 0.8 parts by mass or less.
  • the curable composition according to the present disclosure preferably contains a plasticizer (E).
  • the plasticizer (E) is not particularly limited, and examples thereof include polymers used as plasticizers, fatty acid ester compounds having unsaturated hydrocarbon groups, aromatic carboxylic acid ester compounds, and fatty acids having unsaturated hydrocarbon groups. and oils containing aromatic carboxylic acids.
  • polymer means a compound having a weight average molecular weight (Mw) of 1,000 or more. In the present disclosure, the concept of "polymer” also includes so-called oligomers.
  • polymers examples include acrylic polymers, polyester polymers, polyurethane polymers, and silicone polymers.
  • Acrylic polymers are preferred from the viewpoint of heat resistance and flexibility.
  • plasticizers examples include acrylic polymers, polyester polymers, polyurethane polymers, and silicone polymers. Acrylic polymers are preferred from the viewpoint of heat resistance and flexibility.
  • the acrylic polymer preferably contains a structural unit formed from an acrylic acid ester.
  • Alkyl (meth)acrylates are preferred as (meth)acrylic esters.
  • Meth)acrylic esters include, for example, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • the alkyl acrylate may be a non-functional alkyl acrylate, or may have a functional group such as a carboxy group or a hydroxy group (hydroxyl group). A hydroxyl group is preferable as the functional group possessed by the alkyl acrylate.
  • the acrylic polymer may be a polymer having a structure represented by the following formula (P AC ).
  • R P represents a hydrogen atom or an alkyl group.
  • the alkyl group may have a substituent.
  • a carboxy group, a hydroxyl group, an amino group, etc. are mentioned as a substituent.
  • the substituent is preferably a carboxy group or a hydroxy group, more preferably a hydroxy group.
  • As the alkyl group a saturated alkyl group is preferable, and an alkyl group having 1 to 4 carbon atoms is more preferable.
  • the glass transition temperature is ⁇ 20° C. or less from the viewpoint of heat resistance and flexibility. It is preferably a polymer, more preferably an acrylic polymer having a glass transition temperature of ⁇ 20° C. or lower.
  • the glass transition temperature is -90 ° C. or higher -20 °C or less, and more preferably an acrylic polymer with a glass transition temperature of -90°C or higher and -20°C or lower.
  • the glass transition temperature (Tg) of a polymer is determined by examining the inflection point of the DSC curve measured using a differential thermal analyzer (DSC).
  • fatty acid ester compounds having an unsaturated hydrocarbon group examples include ester compounds such as palmitoleic acid, oleic acid, linoleic acid, and linolenic acid.
  • aromatic carboxylic acid ester compounds include ester compounds such as phthalic acid, terephthalic acid, benzoic acid and trimellitic acid.
  • the plasticizer (E) preferably contains an aromatic carboxylic acid ester compound, including a trimellitate ester. is preferred.
  • the plasticizer (E) (the total amount when two or more plasticizers (E) are included), from the viewpoint of achieving both heat resistance and flexibility, the plasticizer (E)
  • the content of is preferably 10 parts by mass or more and 60 parts by mass or less, more preferably 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the monomer (B) having a (meth)acryloyl group. It is preferably 30 parts by mass or more and 45 parts by mass or less.
  • One type of plasticizer (E) may be contained alone, or two or more types may be contained.
  • the curable composition according to the present disclosure optionally comprises a thermally conductive filler (A), a (meth)acryloyl group-containing compound (B), a polymerization initiator (C), a dispersant (D), and Components other than the plasticizer (E) (hereinafter also referred to as "other additives") may be included.
  • additives such as a reducing agent (F), antioxidants, corrosion inhibitors, rust inhibitors, rheology control agents (viscosity modifiers), etc. can be appropriately blended.
  • the above additives may be used singly or in combination of two or more.
  • the curable composition according to the present disclosure may optionally contain a reducing agent (F).
  • a reducing agent F
  • one composition preferably contains the reducing agent (F).
  • the reducing agent (F) is not particularly limited as long as it can promote the decomposition of the polymerization initiator (C), and includes known reducing agents used in combination with the polymerization initiator. From the viewpoint of promoting decomposition, it is preferable to use a metal compound-based reducing agent.
  • metal compound reducing agents include stannous oxide, dioctyltin dilaurate, dibutyltin dilaurate, dibutyltin diacetate, zinc naphthenate, antimony trichloride, potassium oleate, sodium O-phenylphenate, bismuth nitrate, chloride ferric iron, tetra-n-butyltin, tetra(2-ethylhexyl) titanate, cobalt 2-ethylhexoate, ferric 2-ethylhexoate and the like.
  • the content of the reducing agent (F) is, relative to 100 parts by mass of the monomer (B) having a (meth)acryloyl group, , preferably 0.5 parts by mass or more and 10 parts by mass or less, more preferably 2 parts by mass or more and 9 parts by mass or less.
  • the reducing agent (F) may be used singly or in combination of two or more.
  • antioxidants include phenol antioxidants, amine antioxidants, phosphite antioxidants, and the like.
  • Corrosion inhibitors include benzotriazole, tolyltriazole, thiadiazole, benzimidazole, and the like.
  • rust preventives include metal sulfonate compounds and sorbitan compounds.
  • rheology control agents refer to additives that impart non-Newtonian properties to shear rate changes.
  • the rheology control agent is an additive that imparts flow characteristics such that the shear viscosity is increased in the low shear rate range and the shear viscosity is reduced in the high shear rate range.
  • the rheology control agent may be an inorganic compound rheology control agent or an organic compound rheology control agent.
  • Inorganic system rheology control agents include fumed silica, bentonite, mica, kaolin, and the like.
  • Examples of organic compound-based rheology control agents include urea-modified polymers, urethane-modified polymers, castor oil wax, polyethylene wax, polyamide wax, and fatty acid amide wax.
  • the rheology control agent is preferably an inorganic compound rheology control agent, more preferably fumed silica or bentonite, and still more preferably bentonite.
  • fumed silica When fumed silica is used, it is preferable to make the surface hydrophobic with a silane coupling agent or other surface modifier.
  • a silane coupling agent or other surface modifier When bentonite is used, organically modified bentonite organically modified with a quaternary ammonium salt or other organic modifier is preferably used.
  • the content of the rheology control agent is not particularly limited and can be set as appropriate.
  • the spreading consistency of the curable composition according to the present disclosure is preferably 100 to 500, more preferably 260 to 340, and 280 to 310, from the viewpoint of viscoelasticity, handleability and defoaming properties. is more preferable.
  • Spreading penetration was measured by inserting 0.05 mL of the sample (curable composition before curing) between two acrylic plates in an environment of 25 ° C., applying a load of 100 g on the plate for 5 seconds, and removing the sample. It is determined by compressing, measuring the spread diameter millimeters of the sample, subtracting 1 from this measurement, and multiplying by 20.
  • Spread consistency (measured value - 1) x 20
  • the curable composition according to the present disclosure is preferably a one-component curable composition that uses one type of curable composition when applied to a substrate, a heating element, or the like.
  • the curable composition according to the present disclosure may be a two-component curable composition that uses a mixture of two curable compositions.
  • the method for producing the curable composition according to the present disclosure is not particularly limited and is not particularly limited.
  • a curable composition according to the present disclosure can be produced, for example, by the following method.
  • the curable composition according to the present disclosure comprises a thermally conductive filler (A), a polymerization initiator (C), and a dispersant (D), optionally a plasticizer (F) and other It can be obtained by putting the additive into a stirring vessel and stirring and mixing.
  • a well-known stirrer etc. can be used for stirring and mixing.
  • additives when adding other additives, it is sufficient to stir only for a period of time during which the additives can be dissolved or dispersed.
  • Other additives may be added to the stirring vessel together with other non-additive components, or may be added to the stirring vessel after mixing of other non-additive components.
  • a cured product according to the present disclosure is a cured product of the curable composition according to the present disclosure.
  • the method for curing the curable composition is not limited and can be appropriately selected from commonly used methods. Examples of the curing method include irradiation with an active energy ray and heating, and a curing method by heating is preferred. When curing by heating, the heating temperature is preferably 60° C. or higher, more preferably 70° C. or higher. Further, the heating time is preferably 1 minute to 120 minutes. Moreover, the curable composition may be cured by reaction with moisture in the air, or may be cured at room temperature.
  • the thermal conductivity of the cured product according to the present disclosure is 0.5 [W/m K] to 50 [W/m] from the viewpoint of flexibility, shape stability, and suppression of changes in thermal conductivity.
  • ⁇ K preferably 1 [W / m ⁇ K] to 20 [W / m ⁇ K]
  • the softness of the cured product according to the present disclosure is preferably 100 or less, more preferably 85 or less in terms of Shore OO hardness, from the viewpoint of stress relaxation to peripheral parts of the cured product.
  • the Asker C hardness is preferably 100 or less, more preferably 85 or less, and even more preferably 75 or less.
  • the Shore OO hardness is determined according to ASTM D2240, and the Asker C hardness is determined according to JIS K 7312:1996.
  • the curable composition according to the present disclosure can be suitably used, for example, as a TIM that fills a concave portion (that is, a gap between a heating element and a radiator) formed in a substrate. Since the curable composition according to the present disclosure is excellent in oil separation resistance, it can maintain the desired quality for a long period of time. In addition, since the curable composition according to the present disclosure is excellent in viscosity and thermal conductivity, the obtained cured product is excellent in manufacturability and thermal conductivity. The cured product obtained from the curable composition according to the present disclosure has excellent flexibility, shape stability, and thermal conductivity, and therefore has excellent followability to the coating surface such as recesses formed on the substrate.
  • the heat can be released efficiently.
  • the curable composition according to the present disclosure can follow the microscopic unevenness of the material on the substrate, heat can be released efficiently, and the followability to the coated surface due to temperature fluctuations is also excellent. From the point of view, it can be suitably applied as a gap filler.
  • the curable composition and cured product according to the present disclosure will be specifically described below with reference to examples.
  • the curable composition and cured product according to the present disclosure are not limited by these examples.
  • Examples 1 to 10 and Comparative Examples 1 to 6 Each raw material was blended in the amount shown in Table 1 or Table 2, and a rotation/revolution mixer (manufactured by Thinky Co., Ltd., product name: Awatori Mixer ARV-310) was used at 2,000 rpm (revolutions per minute). , 2 minutes at atmospheric pressure to prepare a curable composition.
  • a rotation/revolution mixer manufactured by Thinky Co., Ltd., product name: Awatori Mixer ARV-310
  • Table 3 shows the contents (% by mass) of the thermally conductive fillers A, B and C in the total amount (100% by mass) of the thermally conductive filler (A).
  • the curable composition was evaluated to be excellent in oil separation resistance when the oil separation resistance rate [%] shown below was obtained according to each storage period.
  • Storage days (Oil separation resistance rate [%]) 14 days 0.5% or less 28 days 1.0% or less 60 days 1.5% or less
  • ⁇ Viscosity> The curable composition prepared above was measured for shear viscosity ⁇ [Pa ⁇ s] at 25° C. using a dynamic viscoelasticity measuring device (manufactured by Anton Paar, product name: MCR 101). A PP25 parallel plate (25 mm in diameter, manufactured by Anton Paar) was used as a jig for the curable composition to be measured. The measurement is shear viscosity at each shear rate of 0.01 [1/s], 0.1 [1/s], 1 [1/s], 10 [1/s] and 100 [1/s] It was carried out by measuring ⁇ [Pa ⁇ s].
  • Thermal conductivity was measured according to ASTM D5470.
  • the curable composition molded so that the length ⁇ width ⁇ height (thickness) is 10 mm ⁇ 10 mm ⁇ 1 mm is sandwiched between 10 mm ⁇ 10 mm copper plates, and cured at 80 ° C. for 30 minutes in a N 2 purge atmosphere.
  • the thermal resistance (unit: K cm 2 /W) was measured with a thermal resistance measuring device (manufactured by Tsukubarika Seiki Co., Ltd., product name: thermal resistance measuring device) and converted to thermal conductivity. did.
  • a thermal resistance measuring device manufactured by Tsukubarika Seiki Co., Ltd., product name: thermal resistance measuring device
  • ⁇ spread consistency> Spreading penetration was measured by inserting 0.05 mL of the sample (curable composition before curing) between two acrylic plates in an environment of 25 ° C., applying a load of 100 g on the plate for 5 seconds, and removing the sample. Compress and measure the spread diameter millimeters of the sample, subtract 1 from this measurement and multiply by 20 to obtain.
  • Asker C hardness (sample thickness: 6 mm)- The softness of the cured product of the curable composition was measured according to JIS K 7312:1996.
  • the curable composition is molded into a size of 50 mm ⁇ 20 mm ⁇ 6 mm (thickness 6 mm), cured under N 2 purge atmosphere at 80 ° C. for 30 minutes, and tested with an Asker rubber hardness tester C type (manufactured by Kobunshi Keiki Co., Ltd.). was used to measure the Asker C hardness.
  • Tables 1 and 2 Details of each component described in Tables 1 and 2 are as follows. "-" in Tables 1 and 2 indicates that the corresponding component is not included. In Tables 1 and 2, “Filling rate [% by mass]” represents the ratio of the total mass of the thermally conductive filler (A) to the total mass of the composition. In Table 3, “%” indicates “% by mass”.
  • the curable compositions of Examples 1 to 10 are superior to the curable compositions of Comparative Examples 1 to 6 in oil separation resistance.
  • the curable composition and cured product according to the present disclosure can be suitably used as a gap filler.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA及び体積平均粒子径1μm以上10μm未満の熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCを含む熱伝導性フィラー(A)と、(メタ)アクリロイル基を有するモノマー(B)と、重合開始剤(C)と、分散剤(D)と、を含有し、熱伝導性フィラー(A)の合計質量を基準として、熱伝導性フィラーAの含有量Xが0質量%~40質量%、熱伝導性フィラーBの含有量Yが0質量%~40質量%、及び、熱伝導性フィラーCの含有量Zが20質量%~60質量%である(但し、含有量X及び含有量Yの両方が0質量%になることはない)、硬化性組成物、及び、その硬化物の提供。

Description

硬化性組成物及び硬化物
 本開示は、硬化性組成物及び硬化物に関する。
 近年、パソコン、携帯電話、Personal Digital Assistant;PDA等の電子機器、light emitting diode;LED、Electronic Luminescent;EL等の照明及び表示機器等の性能向上は著しく、それは演算素子や発光素子の著しい性能向上によっている。この様に演算素子又は発光素子の性能向上に伴い発熱量も著しく増加し、電子機器、照明、表示機器における放熱をどの様に行うかが重要な課題になっている。熱対策として、演算素子又は発光素子の発生する熱をロスすること無く放熱体に伝え、放熱体を通じて放熱するために、発熱体と放熱体との間にTIM(Thermal Interface Materials;熱伝導性材料)を設ける対策が取れられている。TIMとして一般に用いられるものとして、放熱シート、熱伝導性グリース、ギャップフィラー等が知られており、初期がペースト状で、塗布後硬化し固体となる、ギャップフィラーが注目されている。
 柔軟性、形状安定性、及び、熱伝導性に優れるギャップフィラーとして、例えば、国際公開第2020/149193号には、一分子中に(メタ)アクリレート基を1つ有する化合物(A)と、一分子中に(メタ)アクリレート基を2つ以上有する化合物(B)と、重合開始剤(C)と、分散剤(D)と、酸化亜鉛を含む、熱伝導性フィラー(E)と、を含む硬化性組成物が開示されている。
 本開示の一実施形態が解決しようとする課題は、耐離油性に優れる硬化性組成物を提供することである。
 本開示の他の実施形態が解決しようとする課題は、耐離油性に優れる硬化性組成物の硬化物を提供することである。
 ここで、本開示において「耐離油性」とは、本開示に係る硬化前の硬化性組成物を経時させた際において、熱伝導性フィラーと硬化性組成物が含有する液状成分との分離が抑制されることを意味する。
 本開示には、以下の実施態様が含まれる。
<1> 体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA及び体積平均粒子径1μm以上10μm未満の熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCを含む熱伝導性フィラー(A)と、
 (メタ)アクリロイル基を有するモノマー(B)と、
 重合開始剤(C)と、
 分散剤(D)と、を含有し、
 上記熱伝導性フィラー(A)の合計質量を基準として、上記熱伝導性フィラーAの含有量Xが0質量%~40質量%、上記熱伝導性フィラーBの含有量Yが0質量%~40質量%、及び、上記熱伝導性フィラーCの含有量Zが20質量%~60質量%である(但し、含有量X及び含有量Yの両方が0質量%になることはない。)、
 硬化性組成物。
<2> 上記熱伝導性フィラー(A)が、酸化亜鉛、酸化マグネシウム及び酸化アルミニウムから選択される少なくとも1種を含む、<1>に記載の硬化性組成物。
<3> 上記熱伝導性フィラー(A)が、酸化亜鉛を含む、<2>に記載の硬化性組成物。
<4> 上記熱伝導性フィラー(A)が、表面処理された熱伝導性フィラーである、<1>~<3>のいずれか1つに記載の硬化性組成物。
<5> 上記モノマー(B)が、下記式(1)で表される化合物を含む、<1>~<4>のいずれか1つに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Rは、炭素数1~50のアルキル基を表し、Rは、水素原子又はメチル基を表す。
<6> 上記モノマー(B)が、下記式(2)で表される化合物を含む、<1>~<5>のいずれか1つに記載の硬化性組成物。
Figure JPOXMLDOC01-appb-C000004

 
 式(2)中、RB1は、炭素数1~5のアルキレン基を表し、RB2及びRB3は、それぞれ独立に、水素原子又はメチル基を表し、nは4以上の整数を表す。
<7> <1>~<6>のいずれか1つに記載の硬化性組成物の硬化物。
 本開示の一実施形態によれば、耐離油性に優れる硬化性組成物が提供される。
 本開示の他の実施形態によれば、耐離油性に優れる硬化性組成物の硬化物が提供される。
 以下、本開示に係る硬化性組成物及びその硬化物について詳細に説明する。
 本開示中、数値範囲を現す「~」は、その上限及び下限としてそれぞれ記載されている数値を含む範囲を表す。また、「~」で表される数値範囲において上限値のみ単位が記載されている場合は、下限値も同じ単位であることを意味する。
 本開示において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示中に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
 本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において組成物中の各成分は、組成物中に各成分が複数存在する場合、特に断らない限り、組成物中に存在する該当する複数の物質の合計量を意味する。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、「JIS」は、日本産業規格(Japanese Industrial Standards)の略称として用いる。
(硬化性組成物)
 本開示に係る硬化性組成物は、体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA及び体積平均粒子径1μm以上10μm未満の熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCを含む熱伝導性フィラー(A)と、(メタ)アクリロイル基を有するモノマー(B)と、重合開始剤(C)と、分散剤(D)と、を含有し、熱伝導性フィラー(A)の合計質量を基準として、熱伝導性フィラーAの含有量Xが0質量%~40質量%、熱伝導性フィラーBの含有量Yが0質量%~40質量%、及び、熱伝導性フィラーCの含有量Zが20質量%~60質量%である。但し、含有量X及び含有量Yの両方が0質量%になることはない。
 本開示に係る硬化性組成物が上記構成を有することで、耐離油性に優れる。
 なお、以下では、体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA、体積平均粒子径1μm以上10μm未満の熱伝導性フィラーB、及び、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCのそれぞれを、単に、熱伝導性フィラーA、熱伝導性フィラーB、及び、熱伝導性フィラーCと称する。
 熱伝導性フィラーのような固体粒子を含有する硬化性組成物には、調製後から使用に供されるまで経時(例えば、貯蔵された際)において、耐離油性を有することが求められる。耐離油性に劣る硬化性組成物では、熱伝導性フィラーが沈降して使用時に攪拌が必要になること、貯蔵容器(例えば、シリンジ)内において熱伝導性フィラーの濃度勾配が生じることなどに、起因して所期の粘度又は熱伝導率が得られず、塗布量の均一性や品質安定性が損なわれることがある。
 また、硬化性組成物が含有する熱伝導性フィラーにおいて、中粒径及び大粒径(例えば、体積平均粒子径が10μm以上)の熱伝導性フィラーの含有割合が多い場合、熱伝導率は高まるが、熱伝導性フィラーが沈降し易くなり耐離油性が悪化する傾向となる。中粒径及び大粒径の熱伝導性フィラーの含有割合を低減した場合、耐離油性は向上するが熱伝導率が低下する傾向となる。
 これに対して、本開示に係る硬化性組成物は、熱伝導性フィラー(A)として、熱伝導性フィラーA及び熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、熱伝導性フィラーCを含み、かつ、熱伝導性フィラーAの含有量X、熱伝導性フィラーBの含有量Y、及び熱伝導性フィラーCの含有量Zを所定の範囲としたことで、耐離油性に優れると推定している。
 また、本開示に係る硬化性組成物は、優れた熱伝導率(具体的には、3W/m・K以上)を有することもできる。これは、熱伝導性フィラー(A)を上記構成で含むこと、より具体的には熱伝導フィラーCを含有量Zの割合で含むためであると推定している。
 さらに、本開示に係る硬化性組成物は、用途(例えば、ギャップフィラー用途)に応じた粘度にすることができる。これは、熱伝導性フィラー(A)を上記構成で含むこと、より具体的には熱伝導フィラーA及びBを、それぞれ、含有量Y及び含有量Zの割合で含むためであると推定している。
 以下、本開示に係る硬化性組成物の各構成について説明する。
<熱伝導性フィラー(A)>
 本開示に係る硬化性組成物は、熱伝導性フィラー(A)を含有する。
 熱伝導性フィラー(A)は、体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA及び体積平均粒子径1μm以上10μm未満の熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCを含む。
 熱伝導性フィラーA、熱伝導性フィラーB、及び、熱伝導性フィラーCは、それぞれ、所定の体積平均粒子径を有する1種類の熱伝導性フィラーであってもよいし、所定の体積平均粒子径を有する2種類以上の熱伝導性フィラーであってもよい。
 熱伝導性フィラーAの体積平均粒子径は、耐離油性の観点から、0.3μm以上1μm未満であり、0.4μm~0.8μmが好ましい。
 熱伝導性フィラーBの体積平均粒子径は、耐離油性の観点から、1μm以上10μm未満であり、3μm~6μmが好ましい。
 熱伝導性フィラーCの体積平均粒子径は、耐離油性及び熱伝導率の観点から、10μm~15μmであり、11μm~13μmが好ましい。
 熱伝導性フィラーの体積平均粒子径は、レーザ回折・散乱法により、JIS Z 8825:2013(対応国際規格:ISO13320)に準拠して測定する。
 具体的には、熱伝導性フィラー粒子を含む試料に対して、レーザ回折散乱式粒度測定装置を使用し、熱伝導性フィラー粒子の体積分布を測定する。得られた測定値(体積分布)に基づき、試料に含まれる熱伝導性フィラーの体積平均粒径を求めることができる。
 レーザ回折散乱式粒度測定装置の例としては、(株)島津製作所製、製品名;ナノ粒子径分布測定装置 SALD-7500nanoを用いることができる。
 硬化性組成物が、熱伝導性フィラーA、熱伝導性フィラーB、又は熱伝導性フィラーCのいずれに属する熱伝導性フィラーを含有しているかは、レーザ回折散乱式粒度測定器により確認することができる。
 具体的には、以下の方法により確認することができる。
 硬化性組成物から熱伝導性フィラー以外の成分を除去して、熱伝導性フィラーを単離する。単離された熱伝導性フィラーから調製した測定用試料に対して、レーザ回折散乱式粒度測定器を用いて体積分布を測定する。測定結果に基づき、熱伝導性フィラーA、熱伝導性フィラーB、又は熱伝導性フィラーCの粒子径範囲に存在するフィラー粒子の有無を確認する。熱伝導性フィラー以外の成分の除去は、下記の方法により行う。
-熱伝導性フィラー以外の成分の除去-
 硬化性組成物をヘキサン等の熱伝導性フィラーを溶解しない溶剤により溶解後、遠心分離を実施する。以上の工程を3回以上繰り返すことにより、熱伝導性フィラーとそれ以外の成分を分離する。
 得られた熱伝導性フィラーを、150℃の恒温槽にて90分間乾燥させて残留溶剤を除去する。
 熱伝導性フィラーの体積平均粒子径についてカタログ値が確認できる場合には、カタログ値を採用する。
 熱伝導性フィラー(A)が含む熱伝導性フィラーA及び熱伝導性フィラーBは、いずれか一方のみであってもよいし、両方であってもよい。耐離油性の観点からは、熱伝導性フィラー(A)は、熱伝導性フィラーA及び熱伝導性フィラーBの両方を含むことが好ましい。
 熱伝導性フィラーAの含有量X、熱伝導性フィラーBの含有量Y、及び熱伝導性フィラーCの含有量Zは、レーザ回折散乱式粒度測定装置より得られた熱伝導性フィラー(A)の粒径分布の測定結果に基づいて、熱伝導性フィラーA、熱伝導性フィラーB及び熱伝導性フィラーCの含有割合を算出することにより確認することができる。
 熱伝導性フィラーAの含有量Xは、熱伝導性フィラー(A)の合計質量を基準として、0質量%~40質量%であり、20質量%~35質量%が好ましく、25質量%~30質量%がより好ましい。
 熱伝導性フィラーBの含有量Yは、熱伝導性フィラー(A)の合計質量を基準として、0質量%~40質量%であり、10質量%~30質量%が好ましく15質量%~25質量%がより好ましい。
熱伝導性フィラーCの含有量Zは、熱伝導性フィラー(A)の合計質量を基準として、20質量%~60質量%である。含有量Zは、例えば、40質量%~60質量%とすることができる。
 熱伝導性フィラー(A)が、熱伝導性フィラーA及び熱伝導性フィラーBの両方を含む場合、耐離油性の観点から、熱伝導性フィラーA及び熱伝導性フィラーBの含有比[A:B]は、質量基準で、30:70~80:20が好ましく、50:50~70:30がより好ましく、55:45~65:35がさらに好ましい。
 熱伝導性フィラーA及び熱伝導性フィラーBと熱伝導性フィラ-Cとの含有比[(A+B):C]は、耐離油性及び熱伝導率の観点から、質量基準で、40:60~60:40が好ましく、45:55~55:45がより好ましい。
 熱伝導性フィラー(A)の材質は、特に制限されず、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、窒化ホウ素、窒化アルミニウム、カーボン等が挙げられる。耐離油性、絶縁性、高熱伝導率、及び熱伝導性フィラーとしての使用実績の観点から、酸化亜鉛、酸化マグネシウム及び酸化アルミニウムから選択される少なくとも1種を含むことが好ましく、酸化亜鉛がより好ましい。
 ある実施形態において、熱伝導性フィラー(A)は、耐離油性の観点から、熱伝導性フィラーA、B及びCのみを含有することが好ましく、耐離油性、粘度、及び高熱伝導率の観点から、熱伝導性フィラーA、B及びCの全てが酸化亜鉛であることがより好ましい。
 熱伝導性フィラー(A)は、表面処理された熱伝導性フィラーであってもよい。表面処理された熱伝導性フィラーは、熱伝導性フィラー以外の他の含有成分との親和性を向上させ、耐離油性、低粘度化及び熱伝導率の向上に寄与しうる。
 熱伝導性フィラーに対する表面処理は、特に制限されず、物理的処理であっても、化学的処理であってもよく、熱伝導性フィラーを構成する粒子の表面を処理可能な公知の処理を適用することができる。
 表面処理としては、表面処理剤を用いた処理であることが好ましい。
 表面処理剤としては、例えば、シラン系カップリング剤、チタン系カップリング剤、カルボン酸系カップリング剤、リン酸系カップリング剤、脂肪酸、高分子化合物、界面活性剤、及び、油脂が挙げられる。
 熱伝導性フィラー(A)は、分散性の観点からは、表面処理剤としてシラン系カップリング剤を用いて表面処理されていることが好ましい。
 熱伝導性フィラーA、B及びCは、いずれもが表面処理された熱伝導性フィラーであってもよいし、いずれか1種の熱伝導性フィラーが表面処理された熱伝導性フィラーであってもよい。耐離油性及び熱伝導率の観点からは、熱伝導性フィラーCとして、表面処理された熱伝導性フィラーを、少なくとも含有することが好ましい。
-含有量-
 熱伝導性フィラー(A)の含有量は、組成物の全質量に対して、80質量%以上であることが好ましく、85質量%~98質量%であることがより好ましく、90質量%~96質量%であることが更に好ましい。
 また、熱伝導性フィラー(A)の含有量は、組成物の全体積に対して、40体積%以上であることが好ましく、47体積%~80体積%であることがより好ましく、60体積%~80体積%であることが更に好ましい。
 熱伝導性フィラー(A)の含有量が、上記の範囲であることで、耐離油性をより向上させることができる。
<(メタ)アクリロイル基を有するモノマー(B)>
 本開示に係る硬化性組成物は、(メタ)アクリロイル基を有するモノマー(B)を含む。(メタ)アクリロイル基を有するモノマー(B)は、一分子中に(メタ)アクリレート基を1つ有するモノマーであってもよいし、一分子中に(メタ)アクリレート基を2つ以上有するモノマーであってもよい。
 一分子中に(メタ)アクリレート基を1つ有するモノマーとしては、特に制限されず、例えば、直鎖、分岐鎖又は環状のアルキル(メタ)アクリレート、アクリル酸等が挙げられる。
 耐熱性及び柔軟性を両立する観点から、一分子中に(メタ)アクリレート基を1つ有するモノマーとしては、直鎖又は分岐鎖のアルキル(メタ)アクリレートであることが好ましく、下記式(1)で表される化合物を含むことが更に好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは、炭素数1~50のアルキル基を表し、Rは、水素原子又はメチル基を表す。
 式(1)中、Rにおけるアルキル基は、直鎖状であっても分岐鎖状であってもよい。また、アルキル基は置換基を有していてもよい。
 置換基としては例えば、カルボキシ基、ヒドロキシ基、アミノ基、アリール基、ヘテロ環基等が挙げられるが、カルボキシ基、又は、ヒドロキシ基であることが好ましく、ヒドロキシ基であることがより好ましい。
 耐熱性及び柔軟性を両立する観点から、Rにおけるアルキル基の総炭素数は、2~30であることが好ましく、5~25であることがより好ましく、10~25であることが更に好ましく、総炭素数12~24であることが特に好ましい。
 ここで、総炭素数とは、上記アルキル基が炭素原子を含む置換基を有している場合、その置換基の炭素数を含めた炭素数の総数を意味する。
 耐熱性及び柔軟性を両立する観点から、式(1)中、Rは、直鎖状若しくは分岐鎖状又は置換基を有する総炭素数2~30のアルキル基であることが好ましく、直鎖状若しくは分岐鎖状又はヒドロキシ基を有する総炭素数2~25のアルキル基であることがより好ましく、直鎖状又は分岐鎖状の炭素数12~24の無置換のアルキル基であることが好ましい。
 一分子中に(メタ)アクリレート基を1つ有するモノマーとしては、例えば、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-デシルテトラデシル(メタ)アクリレート等が挙げられる。
 Rは、水素原子又はメチル基であり、メチル基であることが好ましい。
 一分子中に(メタ)アクリレート基を2つ以上有するモノマーとしては、例えば、ヘキサンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート(1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート)、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。
 一分子中に(メタ)アクリレート基を2つ以上有するモノマーとしては、耐熱性及び柔軟性を両立する観点から、一分子中に(メタ)アクリレート基を2つ及び/又は3つ有する化合物であることが好ましく、一分子中に(メタ)アクリレート基を2つ有する化合物であることがより好ましく、下記式(2)で表される化合物であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000006

 
 式(2)中、RB1は、炭素数1~5のアルキレン基を表し、RB2及びRB3は、それぞれ独立に、水素原子又はメチル基を表し、nは4以上の整数を表す。
 RB1で表される炭素数1~5のアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよい。
 柔軟性の観点から、RB1で表されるアルキレン基としては、直鎖状又は分岐鎖状の炭素数2~5のアルキレン基であることが好ましく、直鎖状又は分岐鎖状の炭素数2~4のアルキレン基であることがより好ましく、分岐鎖状の炭素数3又は4のアルキレン基であることが更に好ましい。
 RB2及びRB3は、それぞれ独立に、メチル基であることが好ましい。
 nは4~25であることが好ましく、4~10であることがより好ましく、4~8であることが更に好ましい。
 柔軟性、及び、形状安定性の観点から、式(2)中、RB1は、直鎖状又は分岐鎖状の炭素数2~5のアルキレン基であり(より好ましくは直鎖状又は分岐鎖状の炭素数2~4のアルキレン基であり、更に好ましくは分岐鎖状の炭素数3又は4のアルキレン基である)、RB2及びRB3は、メチル基であり、nは4~25(より好ましくは4~10であり、更に好ましくは4~8である)であることが好ましい。
 (メタ)アクリロイル基を有するモノマー(B)の含有量としては、組成物の全質量に対して、1質量%~10質量%であることが好ましく、2質量%~8質量%であることがより好ましい。
 (メタ)アクリロイル基を有するモノマー(B)は、組成物中に、1種単独で含まれていてもよいし、2種以上含まれていてもよい。
 ある実施形態において、(メタ)アクリロイル基を有するモノマー(B)は、一分子中に(メタ)アクリレート基を1つ有するモノマーから選択される少なくとも1種と、一分子中に(メタ)アクリレート基を2つ以上有するモノマーから選択される少なくとも1種を含むことが好ましい。
 一分子中に(メタ)アクリレート基を1つ有するモノマーの含有量Aと、一分子中に(メタ)アクリレート基を2つ以上有するモノマーの含有量Bとの含有比(A:B)は、硬化物の硬度及び硬化速度の観点から、質量基準で、99.5:0.5~95:5が好ましく、99:1~97:3がより好ましい。
 (メタ)アクリロイル基を有するモノマー(B)は、分子量が1,000未満のモノマーであることが好ましい。
 本開示においてモノマーとは、分子量が1,000未満である重合性化合物を意味し、重合性ポリマーとは、重量平均分子量(Mw)が1000以上である重合性化合物を意味する。
 本開示における「重合性ポリマー」の概念には、いわゆるオリゴマーも包含される。
<重合開始剤(C)>
 本開示に係る硬化性組成物は、重合開始剤(C)を含む。
 重合開始剤(C)としては、光、熱又はその両方のエネルギーによりラジカル、カチオン等の重合開始種を発生する化合物であって、公知の熱重合開始剤、公知の光重合開始剤などを適宜選択して用いることができる。
 重合開始剤(C)としては、(メタ)アクリロイル基を有するモノマー(B)の反応性の観点から、ラジカル重合開始剤が好ましく、熱により遊離ラジカルを発生させる過酸化物がより好ましく、熱により遊離ラジカルを発生させる有機過酸化物が更に好ましい。
 有機過酸化物としては、イソブチルパーオキサイド、α,α’ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、ジ-n-プロピルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ(エチルヘキシル)パーオキシジカーボネート、t-ヘキシルパーオキシネオデカノエート、ジメトキシブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、サクシニックパーオキサイド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)ヘキサン、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、4-メチルベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、m-トルノイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソブチレート、1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサノン、2,2-ビス(4,4-ジブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、過酸化ベンゾイル、過酸化ラウロイル等が挙げられる。
 これらの中でも、反応性の観点から、有機過酸化物としては、過酸化ベンゾイル、t-ブチルパーオキシ-2-エチルヘキシルカーボネート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、及び、クメンハイドロパーオキサイドからなる群より選択される少なくとも1種の化合物であることが好ましい。
-含有量-
 重合開始剤(C)の含有量は、(メタ)アクリロイル基を有するモノマー(B)100質量部に対して、0.5質量部以上10質量部以下であることが好ましく、0.5質量部以上4質量部以下であることがより好ましい。
<分散剤(D)>
 本開示に係る硬化性組成物は、分散剤(D)を含む。
 分散剤としては、特に制限はなく、アニオン性面活性剤、カチオン性界面活性剤、ノニオン系界面活性剤、両性界面活性剤、高分子界面活性剤、アルコール類、脂肪酸等のカルボキシ基を有する化合物、金属せっけん、脂肪酸オリゴマー化合物、フッ素系界面活性剤、ホウ素系界面活性剤などが挙げられる。
 分散剤(D)としては、ノニオン系界面活性剤、カルボキシ基を有する化合物、及び、金属せっけんからなる群より選ばれる少なくとも1種の化合物であることが好ましい。
 ノニオン系界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリグリセリン脂肪酸エーテル、ポリグリセリンモノアルキルエーテル、ショ糖脂肪酸エステル、ポリオキシエチレンアルキルアミン、ポリエチレングリコールポリプロピレングリコールブロックコポリマー、アセチレングリコール、アセチレングリコールのポリオキシエチレン付加物等が挙げられる。
 カルボキシ基を有する化合物は、特に制限はなく、一分子中に1つのカルボキシ基と炭化水素基とを有する脂肪酸であってもよく、一分子中に2つ以上のカルボキシ基を有する化合物であってもよい。ある実施態様において、分散剤(D)として、カルボキシ基を有する化合物がより好ましく、脂肪酸が更に好ましい。
 カルボキシ基を有する化合物としては、芳香族カルボン酸、炭素数12~22の脂肪族炭化水素基を有する脂肪酸等が挙げられる。
 炭素数12~22の脂肪族炭化水素基を有する脂肪酸としては、ステアリン酸、オレイン酸、パルミチン酸、ミリスチン酸、ラウリン酸等が挙げられる。
 また、カルボキシ基を有する化合物としては、シュウ酸、マロン酸、コハク酸、フマル酸、マレイン酸、アジピン酸等の一分子中に2つ以上のカルボキシ基を有する多価カルボン酸(すなわち、ポリカルボン酸)、ポリカルボン酸のアルキルアミン塩、アルキルアンモニウム塩、ポリカルボン酸ポリアミノアマイド、ポリカルボン酸ナトリウム塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アミノアルコール塩等のポリカルボン酸塩、ポリカルボン酸系共重合体などが挙げられる。
 ポリカルボン酸系化合物としては、ポリカルボン酸のアルキルアミン塩、アルキルアンモニウム塩、ポリカルボン酸ポリアミノアマイド、ポリカルボン酸ナトリウム塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸アミノアルコール塩等が挙げられる。
 金属せっけんとしては、例えば、ステアリン酸カルシウム、オレイン酸カリウム、オレイン酸カルシウム等の高級脂肪酸の金属塩などが挙げられる。
 柔軟性の観点から、分散剤(D)としては、ポリグリセリンモノアルキルエーテル化合物、カルボキシ基を有する化合物、及び、金属せっけんからなる群より選ばれる少なくとも1種の化合物を含むことが好ましく、ポリグリセリンモノアルキルエーテル化合物、及び、炭素数12~22の脂肪族炭化水素基を有する脂肪酸からなる群より選ばれる少なくとも1種の化合物を含むことより好ましく、ポリグリセリンモノアルキルエーテル化合物、及び、炭素数18~22の不飽和炭化水素基を有する脂肪酸からなる群より選ばれる少なくとも1種の化合物を含むことが更に好ましい。
-含有量-
 分散剤(D)の含有量は、熱伝導性フィラー(A)100質量部に対して、0.1質量部以上3質量部以下であることが好ましく、0.1質量部以上1質量部以下であることがより好ましく、0.2質量部以上0.8質量部以下であることが特に好ましい。
<可塑剤(E)>
 本開示に係る硬化性組成物は、可塑剤(E)を含むことが好ましい。
 可塑剤(E)としては、特に制限はなく、例えば、可塑剤として使用されるポリマー、不飽和炭化水素基を有する脂肪酸エステル化合物、芳香族カルボン酸エステル化合物等、不飽和炭化水素基を有する脂肪酸及び芳香族カルボン酸を含む油等が挙げられる。
 本開示において「ポリマー」とは、重量平均分子量(Mw)が1,000以上である化合物を意味する。
 本開示において「ポリマー」の概念には、いわゆるオリゴマーも包含される。
 ポリマーとしては、例えば、アクリル系ポリマー、ポリエステル系ポリマー、ポリウレタン系ポリマー、シリコーンポリマー等が挙げられるが、耐熱性及び柔軟性の観点から、アクリル系ポリマーが好ましい。
 可塑剤として使用されるポリマーとしては、例えば、アクリル系ポリマー、ポリエステル系ポリマー、ポリウレタン系ポリマー、シリコーンポリマー等が挙げられるが、耐熱性及び柔軟性の観点から、アクリル系ポリマーが好ましい。
 アクリル系ポリマーとしては、耐熱性の観点から、アクリル酸エステルより形成される構成単位を含むことが好ましい。
 (メタ)アクリルエステルとしては、アルキル(メタ)アクリレートが好ましい。メタ)アクリルエステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、及びイソブチル(メタ)アクリレートが挙げられる。
 また、アルキルアクリレートは、無官能のアルキルアクリレートであってもよいし、例えば、カルボキシ基、ヒドロキシ基(水酸基)等の官能基を有していてもよい。
 アルキルアクリレートが有する官能基としては、ヒドロキシ基であることが好ましい。
 アクリル系ポリマーは、下記式(PAC)で表される構造を有するポリマーであってもよい。
Figure JPOXMLDOC01-appb-C000007
 式(PAC)中、Rは、水素原子又はアルキル基を表す。
式(PAC)中、アルキル基は置換基を有していてもよい。置換基としては、カルボキシ基、水酸基、アミノ基等が挙げられる。置換基としては、カルボキシ基又はヒドロキシ基が好ましく、ヒドロキシ基がより好ましい。
 アルキル基としては、飽和アルキル基が好ましく、炭素数1~4のアルキル基がより好ましい。
 本開示に係る硬化性組成物が、可塑剤(E)を含み、かつ、可塑剤(E)がポリマーである場合、耐熱性及び柔軟性の観点から、ガラス転移温度が-20℃以下であるポリマーであることが好ましく、ガラス転移温度が-20℃以下であるアクリル系ポリマーであることがより好ましい。
 本開示に係る硬化性組成物が、可塑剤(E)を含み、かつ、可塑剤(E)がポリマーである場合、耐熱性及び柔軟性の観点から、ガラス転移温度が-90℃以上-20℃以下であるポリマーであることが好ましく、ガラス転移温度が-90℃以上-20℃以下であるアクリル系ポリマーであることがより好ましい。
 ポリマーのガラス転移温度(Tg)は、示差熱分析装置(DSC)を用いて測定した、DSC曲線の変曲点を調べることで求められる。
 不飽和炭化水素基を有する脂肪酸エステル化合物としては、例えば、パルミトレイン酸、オレイン酸、リノール酸、リノレン酸等のエステル化合物が挙げられる。
 芳香族カルボン酸エステル化合物としては、フタル酸、テレフタル酸、安息香酸、トリメリット酸等のエステル化合物が挙げられる。
 本開示に係る硬化性組成物が可塑剤(E)を含む場合、高温安定性の観点から、可塑剤(E)は、芳香族カルボン酸エステル化合物を含むことが好ましく、トリメリット酸エステルを含むことが好ましい。
-含有量-
 本開示に係る硬化性組成物が可塑剤(E)を含む場合(可塑剤(E)を2種以上含む場合は合計量)、耐熱性及び柔軟性を両立する観点から、可塑剤(E)の含有量は、(メタ)アクリロイル基を有するモノマー(B)100質量部に対して、10質量部以上60質量部以下であることが好ましく、20質量部以上50質量部以下であることがより好ましく、30質量部以上45質量部以下であることが更に好ましい。
 可塑剤(E)は、1種単独で含まれていてもよいし、2種以上含まれていてもよい。
<その他の添加剤>>
 本開示に係る硬化性組成物は、必要に応じて、熱伝導性フィラー(A)、(メタ)アクリロイル基を有する化合物(B)、重合開始剤(C)、分散剤(D)、及び、可塑剤(E)以外の成分(以下、「その他の添加剤」ともいう。)を含むことができる。
 その他の添加剤としては、還元剤(F)、酸化防止剤、腐食防止剤、防錆剤、レオロジーコントロール剤(粘度調整剤)等の添加剤を適宜配合することができる。
 上記添加剤は、1種を単独で又は2種以上を組み合わせてもよい。
<<還元剤(F)>>
 本開示に係る硬化性組成物は、必要に応じて、還元剤(F)を含有してもよい。
 本開示に係る硬化性組成物を、後述の二液型硬化性組成物に適用する場合、一方の組成物に還元剤(F)を含有させることが好ましい。還元剤(F)を添加することで、重合開始剤(C)(例えば、過酸化物)の分解が促進されやすくなり、重合反応が低温条件下でも進行しやすい。
 還元剤(F)としては、重合開始剤(C)の分解を促進可能であれば特に制限はなく、重合開始剤と併用される公知の還元剤が挙げられるが、重合開始剤(C)の分解促進の観点から金属化合物系の還元剤であることが好ましい。
 金属化合物系還元剤としては、例えば、酸化第一錫、ジオクチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ナフテン酸亜鉛、三塩化アンチモン、カリウムオレート、ナトリウムO-フェニルフェネート、硝酸蒼鉛、塩化第二鉄、テトラ-n-ブチルチン、テトラ(2-エチルヘキシル)チタネート、コバルト2-エチルヘキソエート、第二2-エチルヘキソエート鉄等が挙げられる。
-含有量-
 本開示に係る硬化性組成物が還元剤(F)を含む場合、硬化速度の観点から、還元剤(F)の含有量は、(メタ)アクリロイル基を有するモノマー(B)100質量部に対して、0.5質量部以上10質量部以下であることが好ましく、2質量部以上9質量部以下であることがより好ましい。
 還元剤(F)は、1種単独で用いてもよく、2種以上を併用してもよい。
<<酸化防止剤>>
 酸化防止剤としては、フェノール系酸化防止剤、アミン系酸化防止剤、ホスファイト系酸化防止剤等が挙げられる。
<<腐食防止剤>>
 腐食防止剤としては、ベンゾトリアゾール、トリルトリアゾール、チアジアゾール、ベンゾイミダゾール等が挙げられる。
<<防錆剤>>
 防錆剤としては、スルホン酸金属塩系化合物、ソルビタン化合物等が挙げられる。
<<レオロジーコントロール剤>>
 本開示において、レオロジーコントロール剤とは、せん断速度変化に対して非ニュートン性を与える添加剤をさす。具体的には、レオロジーコントロール剤は、低せん断速度域のせん断粘度を高くしつつ、高せん断速度域では、せん断粘度が低くなるような流動特性を付与する添加剤である。
 レオロジーコントロール剤は、無機化合物系のレオロジーコントロール剤であってもよいし、有機化合物系のレオロジーコントロール剤であってもよい。無機化合物の系レオロジーコントロール剤としては、ヒュームドシリカ、ベントナイト、雲母、カオリン等が挙げられる。
 また、有機化合物系のレオロジーコントロール剤としては、ウレア変性ポリマー、ウレタン変性ポリマー、ひまし油ワックス、ポリエチレンワックス、ポリアマイドワックス、脂肪酸アマイドワックス等が挙げられる。
 これらの中でも、レオロジーコントロール剤としては、無機化合物系のレオロジーコントロール剤が好ましく、ヒュームドシリカ、又は、ベントナイトがより好ましく、ベントナイトが更に好ましい。ヒュームドシリカを用いる場合、シランカップリング剤やその他の表面改質剤により表面を疎水性としたものが好ましい。また、ベントナイトを用いる場合、4級アンモニウム塩やその他の有機改質剤により有機修飾した有機化ベントナイトが好ましく用いられる。
 レオロジーコントロール剤の含有量は、とくに制限はなく、適宜設定することができる。
〔硬化性組成物の物性〕
 本開示に係る硬化性組成物の広がりちょう度としては、粘弾性、ハンドリング性及び脱泡性の観点から、100~500であることが好ましく、260~340であることがより好ましく、280~310であることが更に好ましい。
 広がりちょう度は、25℃の環境下でアクリル製の2枚の板の間に試料(硬化前の硬化性組成物)0.05mLを挿入し、荷重100gを5秒間、板の上に加えて試料を圧縮し、試料の広がり直径ミリメートルを測定し、この測定値から1を引いた値に20を掛けて求められる。
 広がりちょう度=(測定値-1)×20
〔硬化性組成物の形態〕
 本開示に係る硬化性組成物は、基板、発熱体等へ塗布する際に、一種類の硬化性組成物を使用する一液型硬化性組成物であることが好ましい。本開示に係る硬化性組成物は、二種類の硬化性組成物を混合して使用する、二液型硬化性組成物であってもよい。
〔硬化性組成物の製造方法〕
 本開示に係る硬化性組成物の製造方法は、特に制限はなく、特に限定されない。本開示に係る硬化性組成物は、例えば、以下の方法によって製造することができる。
 ある実施態様において、本開示に係る硬化性組成物は、熱伝導性フィラー(A)、重合開始剤(C)、及び分散剤(D)、必要に応じて、可塑剤(F)及びその他の添加剤を、攪拌容器に投入し、攪拌、混合することで得られる。
 なお、攪拌及び混合には、公知の撹拌機等を用いることができる。
 硬化性組成物の製造方法において、その他の添加剤を加える場合には、その添加剤が溶解又は分散可能な時間だけ攪拌すればよい。その他の添加剤は、その他の添加剤以外の成分と一緒に攪拌容器に加えてもよいし、その他の添加剤以外の成分の混合後に攪拌容器に加えてもよい。
(硬化物)
 本開示に係る硬化物は、本開示に係る硬化性組成物の硬化物である。硬化性組成物を硬化させる方法としては、制限されず、通常用いられる方法から適宜選択することができる。硬化方法としては、活性エネルギー線の照射、加熱等が挙げられるが、加熱による硬化方法が好ましい。
 加熱により硬化させる場合、加熱温度としては、60℃以上であることが好ましく、70℃以上であることがより好ましい。また、加熱温時間としては、1分~120分であることが好ましい。
 また、上記硬化組成物は、空気中の湿気と反応させて硬化してもよく、室温で硬化させてもよい。
 本開示に係る硬化物の熱伝導率としては、柔軟性、形状安定性、及び、熱伝導性の変化の抑制性の観点から、0.5[W/m・K]~50[W/m・K]であることが好ましく、1[W/m・K]~20[W/m・K]であることが好ましく、3[W/m・K]~20[W/m・K]であることがより好ましい。
 本開示に係る硬化物の柔らかさとしては、硬化物の周辺部品への応力緩和の観点から、ショアOO硬度で100以下であることが好ましく、85以下であることがより好ましい。
 同様にアスカーC硬度が、100以下であることが好ましく、85以下であることがより好ましく、75以下であることが更に好ましい。
 本開示に係る硬化物の柔らかさは、ショアOO硬度はASTM D2240に準拠して、アスカーC硬度はJIS K 7312:1996に準拠して求められる。
<用途>
 本開示に係る硬化性組成物は、例えば、基板に形成された凹部(即ち、発熱体と放熱体との隙間)に充填されるTIMとして、好適に用いることができる。
 本開示に係る硬化性組成物は、耐離油性に優れることから、所期の品質を長期間に亘り維持することができる。また、本開示に係る硬化性組成物は、粘度及び熱伝導率にも優れることから、得られる硬化物の製造性及び熱伝導性にも優れる。
 本開示に係る硬化性組成物から得られた硬化物は、柔軟性、形状安定性、及び、熱伝導性に優れる点から、基板に形成された凹部等の塗布面に対する追従性に優れるので、基板上に高さの異なる部品があった場合でも、効率的に熱を逃がすことができる。また、本開示に係る硬化性組成物は、基板上のミクロな材料の凹凸にも追従できるため、熱を効率的に逃がすことができ、また、温度変動に伴う塗布面に対する追従性にも優れる点から、ギャップフィラーとして好適に適用することができる。
 以下、本開示に係る硬化性組成及び硬化物を実施例により具体的に説明する。なお、本開示に係る硬化性組成及び硬化物は、これらの実施例により何ら限定されるものではない。
(実施例1~10及び比較例1~6)
 各原料を表1又は表2に記載の量で配合し、自転・公転ミキサー((株)シンキー製、製品名;あわとり練太郎ARV-310)を用いて、2,000rpm(revolutions per minute)、2分、大気圧下で混合し、硬化性組成物を調製した。
 熱伝導性フィラー(A)全量(100質量%)中の熱伝導性フィラーA、B及びCの含有量(質量%)を、表3に示す。
 実施例1~10及び比較例1~6で調製した硬化性組成物を用いて、以下の評価を行った。結果を表1及び表2に示す。
-評価-
<耐離油性>
 上記で調製した硬化性組成物200gを収容容器(ハイレジスト容器、製品名:BHR-150、近畿容器株式会社製)に密封し、10℃の環境下に、14日間、28日間、又は60日間、静置して保管した。
 所定の保管日数が経過後の各硬化性組成物について、組成物中から離油した液状成分を取り除いた後、質量[g]を測定し、下記式Aに基づき、耐離油率[%]を算出した。
 (式A)
 耐離油率[%]=(離油成分量[g]/保管前の硬化性組成物が含有する液状成分量[g])×100
 本評価では、各保管日数に応じて、下記に示す耐離油率[%]である場合に、硬化性組成物が耐離油性に優れると評価した。
 (保管日数) (耐離油率[%])
  14日間   0.5%以下
  28日間   1.0%以下
  60日間   1.5%以下
<粘度>
 上記で調製した硬化性組成物について、動的粘弾性測定装置(Anton Paar社製、製品名:MCR 101)を用いて、25℃におけるせん断粘度η[Pa・s]を測定した。
 測定対象である硬化性組成物の治具として、PP25パラレルプレート(直径25mm、Anton Paar社製)を使用した。
 測定は、せん断速度0.01[1/s]、0.1[1/s]、1[1/s]、10[1/s]及び100[1/s]の各せん断速度におけるせん断粘度η[Pa・s]を測定することで行った。
<熱伝導率[W/m・K]>
 熱伝導率は、ASTM D5470に準拠して測定した。
 縦×横×高さ(厚み)が10mm×10mm×1mmになるように成型した硬化性組成物の上下を10mm×10mmの銅板で挟み、Nパージ雰囲気下において、80℃、30分の硬化条件で硬化させた後、熱抵抗測定装置(ツクバリカセイキ(株)製、製品名;熱抵抗測定装置)で熱抵抗(単位;K・cm/W)を測定し、熱伝導率に換算した。
 本評価では、熱伝導率が3W/m・K以上である場合に、熱伝導率に優れると評価した。
<広がりちょう度>
広がりちょう度は、25℃の環境下でアクリル製の2枚の板の間に試料(硬化前の硬化性組成物)0.05mLを挿入し、荷重100gを5秒間、板の上に加えて試料を圧縮し、試料の広がり直径ミリメートルを測定し、この測定値から1を引いた値に20を掛けて求めた。
<硬度:形状安定性>
-硬化後の柔らかさ:ショアOO硬度(試料厚み;6mm)-
 ASTM D2240に準拠して硬化性組成物の硬化物の柔らかさの測定を行った。
 硬化性組成物を50mm×20mm×6mm(厚み6mm)に成型、Nパージ雰囲気下において、80℃、30分の硬化条件で硬化した後、デュロメーター(製品名;GS-754G、(株)テクロック製)とアスカーゴム硬度計を用いて、ショアOO硬度の測定を行った。
-硬化後の柔らかさ:アスカーC硬度(試料厚み;6mm)-
 JIS K 7312:1996に準拠して硬化性組成物の硬化物の柔らかさの測定を行った。
 硬化性組成物を50mm×20mm×6mm(厚み6mm)に成型、Nパージ雰囲気下において、80℃、30分の硬化条件で硬化した後、アスカーゴム硬度計C型(高分子計器株式会社製)を用いて、アスカーC硬度を測定した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000010
 表1及び表2中に記載された各成分の詳細は、以下のとおりである。
 表1及び表2中の「-」は、該当する成分を含まないことを示す。
 表1及び表2中、「充填率、[質量%]」は、組成物の全質量に対する熱伝導性フィラー(A)の全質量の比率を表している。
 表3中、「%」は「質量%」を示す。
<<(メタ)アクリロイル基を有するモノマー(B)>>
・ITEC:2-デシルテトラデシルメタクリレート;新中村化学工業(株)製
・ライトエステルL:ラウリルメタクリレート;共栄社化学(株)製、製品名;LMA
・9PG(2官能モノマー):ポリプロピレングリコールジメタクリレート;新中村化学工業(株)製、製品名;9PG
<<可塑剤(E)>>
・C-880:アデカサイザーC-880(製品名);トリメリット酸混合直鎖アルキルエステル;(株)ADEKA製
<<重合開始剤(C)>>
・パーオクタO:1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート;日油(株)製
<<分散剤(D)>>
・オレイン酸:日本油脂(株)製、製品名;オレイン酸
<<熱伝導性フィラー(A)>>
(酸化亜鉛)
・酸化亜鉛1種:体積平均粒子径;0.6μm、堺化学工業(株)製
・焼成亜鉛華1:体積平均粒子径;4μm、ハクスイテック(株)製
・焼成亜鉛華2:体積平均粒子径;11μm、ハクスイテック(株)製
・焼成亜鉛華3(表面処理品):シランカップリング剤処理、体積平均粒子径;12μm、ハクスイテック(株)製
・焼成亜鉛華4:体積平均粒子径;19μm、ハクスイテック(株)製
(酸化マグネシウム)
・RF-10CS-SC:製品名、体積平均粒子径;10μm、宇部マテリアルズ(株)製)
(酸化アルミニウム)
・AA-10:製品名:、体積平均粒子径;13.5μm、住友化学(株)製)
 表1及び表2の結果に示すとおり、実施例1~実施例10の硬化性組成物は、比較例1~6の硬化性組成物に比べて、耐離油性に優れることが分かる。
 以上より、本開示に係る硬化性組成物及び硬化物は、ギャップフィラーとして好適に用いることができる。
 2021年3月31日に出願された日本国特許出願2021-061631号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。

Claims (7)

  1.  体積平均粒子径0.3μm以上1μm未満の熱伝導性フィラーA及び体積平均粒子径1μm以上10μm未満の熱伝導性フィラーBからなる群から選択される少なくとも1種、並びに、体積平均粒子径10μm以上15μm以下の熱伝導性フィラーCを含む熱伝導性フィラー(A)と、
     (メタ)アクリロイル基を有するモノマー(B)と、
     重合開始剤(C)と、
     分散剤(D)と、を含有し、
     前記熱伝導性フィラー(A)の合計質量を基準として、前記熱伝導性フィラーAの含有量Xが0質量%~40質量%、前記熱伝導性フィラーBの含有量Yが0質量%~40質量%、及び、前記熱伝導性フィラーCの含有量Zが20質量%~60質量%である(但し、含有量X及び含有量Yの両方が0質量%になることはない。)、
     硬化性組成物。
  2.  前記熱伝導性フィラー(A)が、酸化亜鉛、酸化マグネシウム及び酸化アルミニウムから選択される少なくとも1種を含む、請求項1に記載の硬化性組成物。
  3.  前記熱伝導性フィラー(A)が、酸化亜鉛を含む、請求項2に記載の硬化性組成物。
  4.  前記熱伝導性フィラー(A)が、表面処理された熱伝導性フィラーである、請求項1~請求項3のいずれか1項に記載の硬化性組成物。
  5.  前記モノマー(B)が、下記式(1)で表される化合物を含む、請求項1~請求項4のいずれか1項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001

     
     式(1)中、Rは、炭素数1~50のアルキル基を表し、Rは、水素原子又はメチル基を表す。
  6.  前記モノマー(B)が、下記式(2)で表される化合物を含む、請求項1~請求項5のいずれか1項に記載の硬化性組成物。
    Figure JPOXMLDOC01-appb-C000002

     
     式(2)中、RB1は、炭素数1~5のアルキレン基を表し、RB2及びRB3は、それぞれ独立に、水素原子又はメチル基を表し、nは4以上の整数を表す。
  7.  請求項1~請求項6のいずれか1項に記載の硬化性組成物の硬化物。
PCT/JP2022/002950 2021-03-31 2022-01-26 硬化性組成物及び硬化物 WO2022209230A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280024652.1A CN117062845A (zh) 2021-03-31 2022-01-26 固化性组合物及固化物
EP22779460.9A EP4317212A1 (en) 2021-03-31 2022-01-26 Curable composition, and cured product
JP2023510541A JPWO2022209230A1 (ja) 2021-03-31 2022-01-26
KR1020237032922A KR20230152096A (ko) 2021-03-31 2022-01-26 경화성 조성물 및 경화물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021061631 2021-03-31
JP2021-061631 2021-03-31

Publications (1)

Publication Number Publication Date
WO2022209230A1 true WO2022209230A1 (ja) 2022-10-06

Family

ID=83458710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002950 WO2022209230A1 (ja) 2021-03-31 2022-01-26 硬化性組成物及び硬化物

Country Status (6)

Country Link
EP (1) EP4317212A1 (ja)
JP (1) JPWO2022209230A1 (ja)
KR (1) KR20230152096A (ja)
CN (1) CN117062845A (ja)
TW (1) TW202302737A (ja)
WO (1) WO2022209230A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524363B1 (de) * 2020-10-30 2022-06-15 Anton Paar Gmbh Messgerät mit elektrothermischem Wandler zum Einstellen eines thermischen Widerstandes, und Betriebsverfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188297A (ja) * 2015-03-30 2016-11-04 日本ゼオン株式会社 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び、電子機器
WO2020149193A1 (ja) 2019-01-15 2020-07-23 コスモ石油ルブリカンツ株式会社 硬化性組成物及び硬化物
JP2021038318A (ja) * 2019-09-03 2021-03-11 信越化学工業株式会社 マレイミド樹脂フィルム及びマレイミド樹脂フィルム用組成物
JP2021061631A (ja) 2014-01-03 2021-04-15 ドルビー ラボラトリーズ ライセンシング コーポレイション 少なくとも一つのフィードバック遅延ネットワークを使ったマルチチャネル・オーディオに応答したバイノーラル・オーディオの生成

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021061631A (ja) 2014-01-03 2021-04-15 ドルビー ラボラトリーズ ライセンシング コーポレイション 少なくとも一つのフィードバック遅延ネットワークを使ったマルチチャネル・オーディオに応答したバイノーラル・オーディオの生成
JP2016188297A (ja) * 2015-03-30 2016-11-04 日本ゼオン株式会社 熱伝導性感圧接着剤組成物、熱伝導性感圧接着性シート状成形体、これらの製造方法、及び、電子機器
WO2020149193A1 (ja) 2019-01-15 2020-07-23 コスモ石油ルブリカンツ株式会社 硬化性組成物及び硬化物
JP2021038318A (ja) * 2019-09-03 2021-03-11 信越化学工業株式会社 マレイミド樹脂フィルム及びマレイミド樹脂フィルム用組成物

Also Published As

Publication number Publication date
EP4317212A1 (en) 2024-02-07
TW202302737A (zh) 2023-01-16
CN117062845A (zh) 2023-11-14
KR20230152096A (ko) 2023-11-02
JPWO2022209230A1 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
JP7460552B2 (ja) 硬化性組成物及び硬化物
JP5318733B2 (ja) 熱伝導性グリース
JP6219042B2 (ja) 高熱伝導性エポキシ樹脂系組成物
JP2022157070A (ja) 硬化性組成物及び硬化物
JP4652085B2 (ja) 高熱伝導性コンパウンド
JP4667882B2 (ja) 高熱伝導性コンパウンド
WO2022209230A1 (ja) 硬化性組成物及び硬化物
WO2023182414A1 (ja) ペースト
US20240368319A1 (en) Curable Composition, and Cured Product
JP2008019319A (ja) 高熱伝導性コンパウンド
WO2024204621A1 (ja) 硬化性組成物及び硬化物
JP5228443B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
WO2022118631A1 (ja) 2液型硬化性組成物及び硬化物
JP2023145071A (ja) 2液型硬化性組成物及び硬化物
WO2024195843A1 (ja) 2液型硬化性組成物、及び硬化物
JP2018065977A (ja) 熱伝導性組成物および熱伝導性部材
JP5228419B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JP6561410B2 (ja) 熱伝導性組成物および熱伝導性部材
WO2024106434A1 (ja) 硬化性樹脂組成物、硬化物、及び、ギャップフィラー
JP2019081842A (ja) 熱伝導性グリース
WO2024190331A1 (ja) ペースト
WO2024190746A1 (ja) 熱伝導性グリース組成物
WO2024190747A1 (ja) 熱伝導性グリース組成物
JP5459288B2 (ja) 樹脂組成物及び樹脂組成物を使用して作製した半導体装置
JPWO2019097886A1 (ja) ラジカル硬化型接着組成物、接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22779460

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510541

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237032922

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280024652.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022779460

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022779460

Country of ref document: EP

Effective date: 20231031

NENP Non-entry into the national phase

Ref country code: DE