WO2023182414A1 - ペースト - Google Patents

ペースト Download PDF

Info

Publication number
WO2023182414A1
WO2023182414A1 PCT/JP2023/011447 JP2023011447W WO2023182414A1 WO 2023182414 A1 WO2023182414 A1 WO 2023182414A1 JP 2023011447 W JP2023011447 W JP 2023011447W WO 2023182414 A1 WO2023182414 A1 WO 2023182414A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste
group
meth
heating
component
Prior art date
Application number
PCT/JP2023/011447
Other languages
English (en)
French (fr)
Inventor
友章 吉山
亮輔 西
飛 程
Original Assignee
株式会社バルカー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社バルカー filed Critical 株式会社バルカー
Publication of WO2023182414A1 publication Critical patent/WO2023182414A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • One embodiment of the present invention relates to a paste.
  • Paste also called grease
  • a heat radiating (thermally conductive) material is used between a heat generating element and a heat radiating part in an electronic component or the like in order to efficiently transfer heat from the heat generating element to the heat radiating part.
  • heat dissipation materials There are mainly two types of heat dissipation materials: sheet type and paste type. Sheet types have poor compatibility with other surfaces such as heating elements and heat dissipation parts, and require a certain amount of thickness for the sheet itself. Because of this, the contact thermal resistance increases. For this reason, a paste type is used as a heat dissipation material because it can be made into a thin film during coating, has good compatibility with the mating surface, and has excellent heat dissipation performance.
  • the paste has a low viscosity during painting, workability such as paintability and productivity will improve, and it will be easier to place a predetermined amount, especially a small amount of paste, in a predetermined place. Since it is possible to reduce the thickness of the paste layer and improve heat dissipation performance, it is required that the viscosity at the time of coating be low.
  • the paste is also required to remain in place in order to achieve its required purpose.
  • a silicone paste using a silicone compound as a base oil is known (Patent Documents 1 and 2).
  • JP2013-227374A Japanese Patent Application Publication No. 2017-165791
  • paste formed at a predetermined location may be heated and thickened before use in order to prevent it from flowing out from that location.
  • pastes with low viscosity during coating have problems such as being easy to pump out even after being heated and thickened in this way, making it difficult to maintain desired performance over a long period of time.
  • An embodiment of the present invention provides a paste that does not solidify even after heating and thickening, and can suppress pump-out even when heating and thickening at a relatively low heating temperature, despite having a low initial viscosity. do.
  • the initial viscosity here refers to the viscosity at the time of paste preparation, the viscosity before the paste is heated and thickened, and is usually the viscosity at the time of coating.
  • a configuration example of the present invention is as follows.
  • the paste does not solidify even after heating and thickening (does not solidify, remains paste-like), and although the initial viscosity is low, the heating temperature is relatively low (e.g. It is possible to provide a paste that can suppress pump-out even when heated and thickened due to the 1-minute half-life temperature of the radical initiator. Further, according to an embodiment of the present invention, it is possible to provide a paste having heat resistance (e.g., heat resistance of 150°C or higher), and for example, if stored at room temperature, the pot life is almost negligible. (extremely long) paste. Since the paste according to one embodiment of the present invention does not solidify even at high temperatures and is in a paste form, it is possible to maintain the performance required of the member in which the paste is used for a long period of time even at high temperatures.
  • heat resistance e.g., heat resistance of 150°C or higher
  • the paste according to an embodiment of the present invention has a thickness of 200 ⁇ m or less when 0.2 g of the paste is made into 5 mm squares and compressed at 23° C. with a pressure of 1.0 MPa. defined. Since the paste according to one embodiment of the present invention is a paste that does not solidify even after heating and thickening, it is heated and cured for 10 minutes at a temperature corresponding to the 1-minute half-life of the radical initiator (C). It is preferable that the paste has a thickness of 200 ⁇ m or less when 0.2 g of the paste is made into a 5 mm square and then compressed at 23° C. and a pressure of 1.0 MPa. The method for measuring the thickness is specifically as described in the Examples below.
  • the paste according to one embodiment of the present invention (hereinafter also referred to as “this paste”) is a polysiloxane (A) having a mercapto group [hereinafter also referred to as “component (A)”].
  • component (A) a mercapto group
  • a compound (B) containing a group having two or more ethylenically unsaturated bonds in one molecule and a radical initiator (C).
  • Component (A) is not particularly limited as long as it is a polysiloxane having a mercapto group (-SH).
  • the paste has excellent heat resistance and does not solidify even after heating and thickening, and although the initial viscosity is low, it can be heated and thickened at a relatively low heating temperature. It is also possible to easily obtain a paste that can suppress pump-out.
  • the number of components (A) used in this paste may be one or two or more.
  • the bonding position of the mercapto group is not particularly limited, and it may be a so-called side chain type, a terminal type (including one terminal type and a double terminal type), or a side chain both terminal type.
  • a side chain type or both terminal type is preferable, and a side chain type is more preferable.
  • Component (A) is an organopolysiloxane in which an organic group is bonded to a silicon atom, and is preferably a polysiloxane having a mercapto group in at least a portion of the organopolysiloxane.
  • Examples of the organic group bonded to a silicon atom include a linear alkyl group, a branched alkyl group, a cyclic alkyl group, an aryl group, an aralkyl group, a halogenated alkyl group, and an alkoxy group.
  • Examples of the straight-chain alkyl group include groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, such as methyl, ethyl, propyl, hexyl, octyl, and decyl.
  • Examples of the branched alkyl group include groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, such as isopropyl group, isobutyl group, t-butyl group, and 2-ethylhexyl group.
  • Examples of the cyclic alkyl group include groups having 3 to 20 carbon atoms such as a cyclopentyl group and a cyclohexyl group.
  • Examples of the aryl group include groups having 6 to 20 carbon atoms such as phenyl group and tolyl group.
  • Examples of the aralkyl group include groups having 7 to 20 carbon atoms, such as benzyl group, 2-phenylethyl group, and 2-methyl-2-phenylethyl group.
  • halogenated alkyl group examples include a 3,3,3-trifluoropropyl group, a 2-(nonafluorobutyl)ethyl group, and a 2-(heptadecafluorooctyl)ethyl group having 1 to 20 carbon atoms, preferably Examples include groups having 1 to 6 carbon atoms.
  • alkoxy group examples include groups having 1 to 20 carbon atoms, preferably 1 to 6 carbon atoms, such as methoxy and ethoxy groups.
  • the organic group bonded to the silicon atom is preferably a linear alkyl group or an aryl group, more preferably a linear alkyl group or aryl group having 1 to 6 carbon atoms, and particularly preferably a methyl group or a phenyl group. That is, the organopolysiloxane other than the mercapto group-containing structure preferably has at least one polysiloxane structure selected from dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane. is more preferable.
  • the mercapto group may be bonded directly to the silicon atom, or may be bonded to the silicon atom via an organic group bonded to the silicon atom.
  • component (A) is not particularly limited, and examples thereof include linear, branched, partially branched linear, and dendritic (dendrimer), preferably linear and partially branched. It has a straight chain shape.
  • Component (A) may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture of two or more of these polymers. You can.
  • component (A) include polysiloxane represented by the following formula (2).
  • R 1 and R 2 are each independently an unsubstituted or substituted monovalent hydrocarbon group, a mercapto group, an alkoxy group, or an alkylmercapto group having 1 to 6 carbon atoms, and a and b The sum is an integer from 2 to 500. However, at least one of R 1 and R 2 in formula (2) contains a mercapto group or an alkylmercapto group having 1 to 6 carbon atoms, and each of the plurality of R 1s present in formula (2) is the same. However, they may be different, and the plurality of R 2s present in formula (2) may be the same or different. ]
  • the unsubstituted or substituted monovalent hydrocarbon group in R 1 and R 2 is preferably an unsubstituted or substituted monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • Examples of the bonded organic group include the same groups as those exemplified (other than alkoxy groups). Among these, monovalent hydrocarbon groups having 1 to 6 carbon atoms are preferred, and alkyl groups and aryl groups having 1 to 6 carbon atoms are more preferred.
  • Examples of the alkoxy group in R 1 and R 2 include the same groups as the alkoxy group exemplified as the organic group bonded to the silicon atom.
  • the alkylmercapto group having 1 to 6 carbon atoms in R 1 and R 2 is a group represented by -R-SH (R is an alkylene group having 1 to 6 carbon atoms), and as R, the above-mentioned Examples of the organic group bonded to a silicon atom include groups obtained by removing one hydrogen atom from the exemplified groups (groups other than halogenated alkyl groups and alkoxy groups).
  • component (A) those synthesized by conventionally known methods may be used, or commercially available products may be used.
  • the shear viscosity of component (A) at 23°C measured with a cone-plate viscometer is preferably 0.005 Pa ⁇ s or more, more preferably 0.01 Pa ⁇ s or more, and preferably 60.00 Pa ⁇ s or less, More preferably, it is 5.00 Pa ⁇ s or less.
  • a paste with low initial viscosity and excellent coating properties can be easily obtained.
  • a paste with a low initial viscosity is a heat dissipation paste, it is possible to easily form a thin paste layer at a predetermined location, such as between a heating element and a heat dissipation part, for example. Since it is possible to easily form a paste layer that is compatible with a mating surface such as a part, the thermal resistance due to the paste layer can be reduced, and electronic components and the like having excellent heat dissipation characteristics can be easily obtained.
  • the functional group (mercapto group) equivalent of component (A) has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening, and it is easy to obtain a paste that remains in the form of a paste. From the viewpoint of the ability to produce the desired amount, it is preferably 1,000 g/mol or more, more preferably 1,500 g/mol or more, and preferably 50,000 g/mol or less, more preferably 35,000 g/mol or less.
  • the component (A) has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening, and it is possible to easily obtain a paste that remains in the form of a paste.
  • polysiloxane (A1) having a functional group equivalent of preferably 1000 to 5000 g/mol, more preferably 1500 to 5000 g/mol and a functional group equivalent of preferably 15000 g/mol or more, more preferably 20000 g/mol It is desirable to use polysiloxane (A2) having a mol or more, preferably 50,000 g/mol or less, more preferably 35,000 g/mol or less.
  • the proportion of polysiloxane (A2) relative to the total of 100% by mass is preferably 50.0% by mass or more, more preferably 75.0% by mass. % or more, preferably 99.5% by mass or less, more preferably 99.0% by mass or less.
  • the number average molecular weight (Mn) of component (A) measured by gel permeation chromatography (GPC) shows that, despite its low initial viscosity, pump-out is suppressed even when the viscosity is increased by heating at a relatively low heating temperature. It is preferably 3,000 or more, more preferably 15,000 or more, and preferably 50,000 or less, more preferably 25,000 or less, from the viewpoint of easily obtaining a paste.
  • the content of component (A) in this paste is determined from the viewpoint that it is possible to easily obtain a paste that is excellent in heat resistance, low initial viscosity, and pump-out suppressing property in a well-balanced manner. It is preferably 40.0% by mass or more, more preferably 70.0% by mass or more, even more preferably 85.0% by mass or more, and preferably 99.0% by mass or more, based on the total 100% by mass of (A) and (B). It is 0% by mass or less, more preferably 98.5% by mass or less.
  • the components in the present paste may be The content of (A) is preferably 40.0% by mass or more, more preferably 60.0% by mass or more, and preferably 95.0% by mass or less, more preferably 90% by mass, based on 100% by mass of the present paste. .0% by mass or less.
  • the content of component (A) in this paste is preferably 5.0% by mass or more, more preferably 5.0% by mass or more based on 100% by mass of this paste. is 10.0% by mass or more, preferably 30.0% by mass or less, more preferably 20.0% by mass or less.
  • Component (B) is not particularly limited as long as it is a compound containing a group having two or more ethylenically unsaturated bonds in one molecule other than the component (A), and may be a conventionally known compound (co-crosslinking agent). can be used.
  • component (B) it is possible to easily obtain a paste that is excellent in suppressing pump-out after heating and thickening.
  • the number of components (B) used in this paste may be one or two or more.
  • the number of groups having an ethylenically unsaturated bond in component (B) may be two, but from the viewpoint of being able to further suppress pump-out, etc., it is preferably three or more, and more preferably There are 3 to 6 pieces.
  • the groups having two or more ethylenically unsaturated bonds contained in the component (B) may be the same or different. That is, component (B) may contain a group having two or more types of ethylenically unsaturated bonds.
  • Examples of the group having an ethylenically unsaturated bond include a group having 2 to 8 carbon atoms such as a vinyl group, a methylvinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, a pentenyl group, a hexenyl group, and a heptenyl group.
  • Examples include alkenyl group, vinylphenyl group, (meth)acryloyl group, allyloxy group, styryl group, propargyl group, and maleimide group.
  • alkenyl groups having 2 to 8 carbon atoms and (meth)acryloyl groups are preferred, alkenyl groups having 2 to 4 carbon atoms and (meth)acryloyl groups are more preferred, and vinyl groups, allyl groups, and (meth)acryloyl groups are preferred. is particularly preferred.
  • component (B) for example, a polysiloxane containing a group having two or more ethylenically unsaturated bonds in one molecule; Ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, butylene glycol di(meth)acrylate, hexanediol di(meth)acrylate, cyclohexanedimethanol Di(meth)acrylate, Bisphenol A alkylene oxide di(meth)acrylate, Bisphenol F alkylene oxide di(meth)acrylate, Trimethylolpropane tri(meth)acrylate, Ditrimethylolpropane tetra(meth)acrylate, Glycerin tri(meth)acrylate , pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dip
  • Acid esters Ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, propylene glycol diallyl ether, butylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, bisphenol F alkylene oxide diallyl ether, trimethylolpropane triallyl ether, Ditrimethylolpropane tetraallyl ether, diallyl phthalate, glycerin triallyl ether, pentaerythritol tetraallyl ether, dipentaerythritol pentaallyl ether, dipentaerythritol hexaallyl ether, ethylene oxide added trimethylolpropane triallyl ether, ethylene oxide added ditrimethylolpropane tetraallyl ether Polyfunctional allyl compounds such as allyl ether, ethylene oxide-
  • Allyl group-containing (meth)acrylic esters such as allyl (meth)acrylate; Polyfunctional (meth)acrylamide compounds such as N,N-ethylenebis(meth)acrylamide; Polyfunctional propargyl compounds such as dipropargyl terephthalate; Polyfunctional maleimide compounds such as N,N'-m-phenylene bismaleimide; Reaction of polyfunctional isocyanates such as tolylene diisocyanate, isophorone diisocyanate, and xylylene diisocyanate with hydroxyl group-containing (meth)acrylic acid esters such as 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate.
  • Polyfunctional urethane (meth)acrylates obtained from; Polyfunctional aromatic vinyls such as divinylbenzene; can be mentioned.
  • polyfunctional (meth)acrylate compounds polyfunctional allyl compounds, and polyfunctional (meth)acrylamide compounds are preferred because they have excellent reactivity and can easily produce a paste with excellent heat resistance.
  • Trifunctional or higher polyfunctional (meth)acrylate compounds and trifunctional or higher functional allyl compounds are more preferred, and triallylisocyanurate and trimethylolpropane tri(meth)acrylate are particularly preferred.
  • Examples of the polysiloxane containing a group having two or more ethylenically unsaturated bonds in one molecule include dimethylpolysiloxane with dimethylvinylsiloxy groups blocked at both ends of the molecular chain, and dimethyl blocked with methylphenylvinylsiloxy groups at both ends of the molecular chain.
  • a specific example of the polysiloxane containing a group having two or more ethylenically unsaturated bonds in one molecule includes a compound represented by the following formula (3).
  • R 3 is each independently an unsubstituted or substituted monovalent hydrocarbon group
  • R 4 is each independently an alkyl group, an alkoxyalkyl group, an alkenyl group, or an acyl group
  • the sum of c and d is an integer from 2 to 1000
  • e is an integer from 1 to 3.
  • at least two of R 3 and R 4 in formula (3) contain the group having the ethylenically unsaturated bond, and each of the plurality of R 3s present in formula (3) may be the same or different.
  • the plurality of R 4s present in formula (3) may be the same or different.
  • R 3 is each independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and examples thereof include the same groups as the organic group bonded to the silicon atom. and alkenyl groups. Among these, monovalent hydrocarbon groups having 1 to 6 carbon atoms are preferred, and alkenyl groups, aryl groups, and alkyl groups having 1 to 3 carbon atoms are more preferred.
  • Examples of the alkyl group for R 4 include linear alkyl groups, branched alkyl groups, and cyclic alkyl groups similar to those exemplified as the organic group bonded to the silicon atom.
  • Examples of the alkoxyalkyl group for R 4 include groups having 2 to 10 carbon atoms such as methoxyethyl group and methoxypropyl group.
  • Examples of the alkenyl group in R 3 and R 4 include the same alkenyl groups as those exemplified as the ethylenically unsaturated bond-containing group.
  • Examples of the acyl group for R 4 include groups having 2 to 10 carbon atoms such as an acetyl group and an octanoyl group. The sum of c and d is preferably an integer of 10 to 50, and e is preferably 1.
  • the functional group (ethylenically unsaturated bond) equivalent of component (B) has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening and maintains a paste-like paste. From the standpoint of being easily obtainable, it is preferably 4 g/mol or more, more preferably 50 g/mol or more, even more preferably 75 g/mol or more, and preferably 25000 g/mol or less, more preferably 130 g/mol or less. It is.
  • Component (B) has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening, and it is possible to easily obtain a paste that remains in the form of a paste.
  • the functional group ratio represented by the following formula (1) is preferably 3 or less, more preferably 2 or less, even more preferably 1 or less, particularly preferably 0.45 or less, more preferably 0.01 or more, even more preferably It is preferable to use it so that it is 0.015 or more, particularly preferably 0.02 or more.
  • Functional group ratio (amount of component (A) blended/functional group equivalent of component (A))/(amount of component (B) blended/functional group equivalent of component (B))...(1)
  • component (A) for example, when component (A) with a functional group equivalent ag/mol is used in a blending amount x 1% by mass, and component (A) with a functional group equivalent bg/mol is used in a blending amount x 2% by mass.
  • the numerator of the formula (1) is "(x1/a+x2/b)". The same applies when two or more types of components (A) and (B) are used.
  • the content of component (B) based on 100% by mass of this paste is preferably such that it satisfies the above formula (1), but it is preferable that the content of component (B) in this paste is as small as possible. From this point and the fact that it is possible to easily obtain a paste that has a viscosity sufficient to suppress pump-out after heating and thickening, but does not solidify and remains paste-like even after heating and thickening, etc. Preferably 0.2% by mass or more, more preferably 0.3% by mass or more, even more preferably 0.5% by mass or more, preferably 50% by mass or less, more preferably 15% by mass or less, still more preferably 5% by mass or less. .5% by mass or less.
  • Component (C) is not particularly limited as long as it is a radical initiator, and conventionally known radical initiators can be used.
  • a paste with suppressed pump-out can be created without using the platinum catalyst used in conventional pastes. For example, if stored at room temperature, a paste with almost no (extremely long) pot life can be easily obtained.
  • the number of component (C) used in this paste may be one or two or more.
  • Component (C) includes, for example, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, 2,4-dichlorobenzoyl peroxide, di-t-butyl peroxide.
  • t-butyl dicumyl peroxide t-butylperoxy-2-ethylhexanoate
  • benzoyl peroxide 2,5-dimethyl-2,5-(t-butylperoxy)hexyne-3,2,5 -dimethyl-2,5-di(benzoylperoxy)hexane, ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, t-butylperoxyisopropyl carbonate, di-(4-t-butyl) Peroxides such as cyclohexyl) peroxydicarbonate, p-chlorobenzoyl peroxide, t-butyl peroxy-2-ethylhexanoate, t-butyl perbenzoate, 2,2'-azobis(2-methylpropyl) nitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis(2-
  • the content of component (C) in this paste is such that it has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening, and it is possible to easily obtain a paste that remains paste-like. From the point of view that it is possible to produce
  • the amount is at least 30 parts by mass, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less.
  • the content of component (C) is preferable for the content of component (C) to be as low as possible based on 100% by mass of this paste, so in this respect, it has a viscosity sufficient to suppress pump-out after heating and thickening, but it does not solidify even after heating and thickening.
  • the content of component (C) in 100% by mass of the present paste is preferably 0.4% by mass or more, more preferably 0.5%, from the viewpoint of easily obtaining a paste that remains pasty. It is at least 1% by mass, more preferably at least 1% by mass, preferably at most 15% by mass, more preferably at most 9% by mass, even more preferably at most 7.5% by mass.
  • the present paste preferably contains component (D).
  • component (D) is used in the present paste, the number of components (D) used may be one or two or more.
  • two or more types of components (D) with different materials may be used, or two or more types of components (D) with different shapes, average particle diameters, etc. may be used. .
  • component (D) it is preferable to use a filler having a thermal conductivity of 1 W/m ⁇ K or more.
  • component (D) include metal powder, metal oxide powder, metal nitride powder, metal hydroxide powder, metal oxynitride powder, metal carbide powder, and carbon materials.
  • metal powder metal oxide powder, metal oxide powder, metal nitride powder, metal hydroxide powder, metal oxynitride powder, metal carbide powder, and carbon materials.
  • Al 2 O 3 aluminum oxide
  • magnesium oxide MgO
  • BeO beryllium oxide
  • ZnO zinc oxide
  • boron nitride e.g. Examples include hexagonal BN and cubic BN), aluminum nitride (AlN), silicon carbide (SiC), graphite, diamond, and carbon nanotubes.
  • the shape of component (D) is not particularly limited, and examples thereof include granular, scaly, and acicular shapes, but granular is preferable because it allows for higher density packing.
  • the average particle diameter of the granular component (D) is, for example, 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, and, for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the average particle size is the value of d50 in the particle size distribution obtained by laser diffraction/scattering method (Microtrack method).
  • the content of the component (D) is determined by the volume of 100 volumes of the present paste, from the viewpoints that a paste with low initial viscosity and excellent heat dissipation properties can be easily obtained.
  • % preferably 30 volume % or more, more preferably 50 volume % or more, and preferably 80 volume % or less, more preferably 70 volume % or less.
  • the amount of component (D) when the amount of component (D) was increased, the initial viscosity increased and workability decreased (difficult to form a paste in a predetermined place by painting or pouring). In this case, it was not possible to blend a large amount of component (D).
  • the present paste since the present paste has a low initial viscosity, the workability is unlikely to deteriorate even if the amount of component (D) is increased.
  • component (D) is preferably added to 40% by volume or more, more preferably 50% by volume, based on 100% by volume of the present paste. Even if the amount is at least 80% by volume, more preferably at most 70% by volume, a paste with low initial viscosity and excellent workability can be obtained.
  • This paste may contain plasticizers such as fluorine-based or silicone oils; silane coupling agents; surfactants; crosslinking accelerators; solvents; dispersants; anti-aging agents, as long as they do not impair the effects of the present invention. It may contain other components other than the above-mentioned components (A) to (D), such as; an antioxidant; a flame retardant; and a pigment. These other components may be used alone or in combination of two or more.
  • the present paste preferably does not contain a platinum-based catalyst, since it is possible to obtain a paste with almost no (extremely long) pot life if stored at room temperature, for example.
  • Conventional pastes use platinum-based catalysts, but when platinum-based catalysts are used, the pot life is short and the paste cannot be stored for a long time.
  • not containing a platinum-based catalyst means that the content of the platinum-based catalyst is, for example, 0.0001 parts by mass or less with respect to a total of 100 parts by mass of components (A) and (B), and the lower limit is preferably It is 0 parts by mass.
  • the present paste can be prepared by mixing the components (A) to (C), the component (D) used as necessary, and the other components, and kneading and dispersing the mixture using a mixer, rolls, or the like.
  • the initial shear viscosity (this viscosity refers to the initial viscosity) of this paste at 23°C measured with a cone-plate viscometer is preferably low, and specifically, preferably 500 Pa ⁇ s or less, or more. It is preferably 300 Pa ⁇ s or less, particularly preferably 250 Pa ⁇ s or less, and preferably 1 Pa ⁇ s or more.
  • the initial viscosity of the present paste is within the above range, it is possible to easily obtain a paste that has excellent workability (the paste can be easily formed in a predetermined location by painting, pouring, etc.).
  • a paste with a low initial viscosity is a heat dissipation paste
  • pastes with low initial viscosity tend to pump out even when heated and thickened, but according to the present paste, even if the initial viscosity is low, pumping out can be suppressed after heating and thickening.
  • viscosity after heating/initial viscosity is preferably 3 times or more, more preferably 4 times or more, still more preferably 5 times or more.
  • the viscosity after heating is preferably such that the ratio of the viscosity after heating to the initial viscosity is within the above range, but from the viewpoint of suppressing pump-out, it is preferably 40 Pa ⁇ s or more, more preferably 50 Pa. s or more, and when this paste is used for applications where suppression of pump-out is extremely important, examples of specific numerical values of the viscosity after heating are preferably 500 Pa-s or more, more preferably 1000 Pa-s or more, Particularly preferably, it is 1500 Pa ⁇ s or more. When the viscosity after heating is within the above range, pump-out can be easily suppressed after heating and thickening due to flow resistance.
  • This paste can be used without restriction in applications for which conventional pastes have been used, but it may be exposed to high temperatures (e.g. 200°C or higher) in order to better demonstrate the effects of the present invention.
  • the present paste containing the component (D) may be used as a heat dissipation paste used between a heat generating element and a heat dissipation part in electronic components and the like. Examples of applications in which suppression of pump-out is extremely important include the heat dissipation paste.
  • the present paste containing the component (D) has a low initial viscosity, and after heating, it is a paste that suppresses pump-out, base oil removal, solidification, dripping, etc., and has good heat dissipation (thermal conductivity). ) can be maintained for a long period of time, so it can be suitably used for devices, equipment, parts, etc. that have heating elements. By using this paste in these, devices, equipment, parts, etc. that have excellent long-term reliability can be manufactured. Obtainable.
  • the paste has a low initial viscosity and is compatible with the heating element and the heat radiation part, so a thin paste layer can be formed between the heating element and the heat radiation part, reducing thermal resistance due to the paste layer.
  • thermoelectric paste provided between a heating element and a heat dissipation part.Furthermore, it does not solidify, is difficult to crack, and can absorb (suppress) vibrations, so it can be used for semiconductor devices such as power modules. It is suitably used as a heat dissipation paste for cars, vehicles such as automobiles, and particularly suitably used as a heat dissipation paste for power modules.
  • Examples of methods for forming the paste at a predetermined location include applying the paste to a predetermined location using a conventionally known coating method and pouring the paste into a predetermined location.
  • pressure may be applied while heating as described below if necessary.
  • the thinner the thickness of the formed present paste (layer) is, the better, in consideration of thermal resistance. Therefore, in this case, it is preferable to form the present paste between the heating element and the heat radiating section and then apply pressure to spread the present paste.
  • the heating temperature at this time may be appropriately set according to each component used in the preparation of the present paste, and in particular, may be appropriately set according to the type of component (C) used, but preferably 80°C or higher, more preferably 80°C or higher.
  • the temperature is preferably 100°C or higher, preferably 200°C or lower, and more preferably 170°C or lower.
  • Examples 1 to 21 and Comparative Examples 1 to 6 A paste was prepared by mixing each compounding component in Table 1 or 2 at the compounding ratio shown in Table 1 or 2 (the unit of numerical value is parts by mass). Each component in Tables 1 and 2 is as follows.
  • ⁇ Polysiloxane A-1 "KF-2001” manufactured by Shin-Etsu Chemical Co., Ltd. (polysiloxane having a mercapto group, functional group equivalent: 1900 g/mol)
  • ⁇ Polysiloxane A-2 “KF-2004” manufactured by Shin-Etsu Chemical Co., Ltd. (polysiloxane having a mercapto group, functional group equivalent: 30000 g/mol)
  • ⁇ Polysiloxane A-3 "X-22-167C” manufactured by Shin-Etsu Chemical Co., Ltd.
  • Compound B-1 “DMS-V25” manufactured by Gelest (polysiloxane containing a group having two ethylenically unsaturated bonds in one molecule, functional group equivalent: 8600 g/mol)
  • Compound B-2 “DMS-V35” manufactured by Gelest (polysiloxane containing a group having two ethylenically unsaturated bonds in one molecule, functional group equivalent: 24,750 g/mol)
  • Compound B-3 “KE-1950-10A” manufactured by Shin-Etsu Chemical Co., Ltd.
  • the sample was compressed to 1.0 MPa by stretching 0.2 g of the sample into a 5 mm square on a metal disc with a threaded part, sandwiching it between another metal disc, and tightening the screw into the threaded part with a torque wrench. This was done by applying a load of
  • the thickness was measured as follows. The length of both ends of the two metal disks under a load of 1 MPa (length without sample) after 3 minutes have elapsed since 1 MPa was applied by stacking two metal disks in advance and tightening the screws (length without sample) ) was measured. Next, 0.2 g of the sample was stretched into a 5 mm square on a metal disk, and then sandwiched between another metal disk, a screw was tightened, and a load of 1.0 MPa was applied to the sample. Thereafter, to unclog the screw, the screw was loosened and the sample was removed from the metal disk. One cycle consisted of the steps from stretching 0.2 g of the sample onto the metal disk into a 5 mm square to removing the sample from the metal disk.
  • the length of both ends of the two metal discs under a load of 1 MPa (sample The length of the dovetail) was measured.
  • the thickness of the sample was calculated by subtracting the length without the sample from the length with the sample, and the paste properties were evaluated based on the thickness of the sample. The reason why the thickness was measured at the 5th cycle as described above is that due to the characteristics of the measuring jig, a part of the fluid sample that should be discharged remains (clogged) in the threaded part, and the thickness is not properly measured. This is to prevent the condition from becoming impossible to measure.
  • the metal disk used was made of SUS304 and had a diameter of 14 mm, a thickness of 3 mm, and a surface roughness Ra of 0.2.
  • the pastes obtained in Examples 1 to 21 remained pastes without solidifying even after heating and thickening, and despite their low initial viscosity, they did not pump out even when heating and thickening at relatively low heating temperatures. It was a paste that could be suppressed.
  • the paste obtained in Comparative Example 2 could not suppress pump-out even after heating and thickening, and the pastes obtained in Comparative Examples 1 and 3 to 6 could not be called pastes after heating and curing ( There was no liquidity).
  • the present paste contains the components (A) to (C) described above, it exhibits the above effects.
  • the following can be considered as an example of the reason why such an effect is produced.
  • the component (A) reacts during heat curing (heat thickening), and plays the role of promoting crosslinking while acting as an appropriate plasticizer.
  • heat thickening since it is difficult to bleed out, it is thought that the viscosity can be increased while maintaining the paste state.
  • Comparative Examples 3 to 6 when polysiloxane containing a group having an ethylenically unsaturated bond or general silicone oil is used without component (A), appropriate thickening cannot be achieved. (Thickening does not proceed) or silicone oil bleeds out, making it impossible to maintain paste properties after heating and curing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Paints Or Removers (AREA)

Abstract

メルカプト基を有するポリシロキサン(A)、1分子中に2個以上のエチレン性不飽和結合を有する基を含む化合物(B)およびラジカル開始剤(C)を含むペースト。

Description

ペースト
 本発明の一実施形態はペーストに関する。
 摺動部材やブレーキ部材、振動抑制・吸収部材などの部材には、これら部材の所定の動き、耐摩耗性、耐焼付き性等を確保するために、各部材間にペースト(グリースともいう。)が用いられている。
 また、電子部品等における発熱体と放熱部との間には、発熱体からの熱を効率よく放熱部に伝達するために、放熱(熱伝導性)材料が使用されている。この放熱材料としては、主に、シートタイプとペーストタイプの2種類の形態があるが、シートタイプは、発熱体や放熱部などの相手面との馴染みの悪さやシート自体にある程度の厚みが必要である等の点から、接触熱抵抗が大きくなる。このため、塗工時に薄膜化でき、相手面との馴染みもよく、放熱性能に優れる等の点から、放熱材料としては、ペーストタイプが用いられている。
 前記ペーストは、塗装時の粘度が低ければ、塗装性などの作業性や生産性が向上し、所定量、特に少量のペーストを所定の場所に配置しやすいため、例えば、前記放熱材料の場合、ペースト層の厚みを薄くでき、放熱性能を向上させることができることから、塗装時の粘度が低いことが求められている。
 一方で、前記ペーストには、該ペーストに要求される目的を達成するために、所定の場所に留まることも求められている。
 このようなペーストとして、例えば、シリコーン系の化合物を基油としたシリコーン系ペーストが知られている(特許文献1および2)。
特開2013-227374号公報 特開2017-165791号公報
 しかしながら、従来のペーストは、温度が高くなると粘度が低くなり、所定の場所から流出しやすく(以下「ポンプアウト」ともいう。)、このポンプアウトにより、または、高温下において、ペースト自体の劣化や固化が起こることにより、ペーストに要求される目的を達成できなかった。
 なお、所定の場所に形成したペーストは、その場所からの流出を抑制するために、一度加熱増粘させて使用される場合もある。
 しかしながら、塗装時の粘度が低いペーストは、このように加熱増粘させた後であってもポンプアウトしやすく、長期にわたる所定の性能の維持が困難であるなどの問題があった。
 本発明の一実施形態は、加熱増粘後においても固化しないペーストであり、初期粘度が低いにもかかわらず、比較的低い加熱温度による加熱増粘であってもポンプアウトを抑制できるペーストを提供する。
 なお、ここで初期粘度とは、ペースト調製時の粘度であり、ペーストを加熱増粘する前の粘度であり、通常、塗装時の粘度である。
 本発明の構成例は以下の通りである。
 [1] メルカプト基を有するポリシロキサン(A)、1分子中に2個以上のエチレン性不飽和結合を有する基を含む化合物(B)およびラジカル開始剤(C)を含むペースト。
 [2] 下記式(1)で表される官能基比が3以下である、[1]に記載のペースト。
 官能基比=(前記ポリシロキサン(A)の配合量/前記ポリシロキサン(A)の官能基当量)/(前記化合物(B)の配合量/前記化合物(B)の官能基当量) ・・・(1)
 [3] 下記要件(I)を満たす、[1]または[2]に記載のペースト。
 要件(I):前記ラジカル開始剤(C)の1分間半減期の温度で、10分間加熱硬化を行い、該加熱硬化後のペースト0.2gを5mm角にした後、23℃、1.0MPaの圧力で圧縮した際の厚みが200μm以下である
 [4] 23℃における初期剪断粘度が500Pa・s以下である、[1]~[3]のいずれかに記載のペースト。
 [5] 前記ペーストの、23℃における初期剪断粘度に対する、前記ペーストをラジカル開始剤(C)の1分間半減期温度で10分間加熱した後、23℃まで降温させた後の加熱後剪断粘度の比が3倍以上である、[1]~[4]のいずれかに記載のペースト。
 [6] 熱伝導性フィラー(D)を含む、[1]~[5]のいずれかに記載のペースト。
 [7] 熱伝導性フィラー(D)の含有量が、ペースト100体積%に対し、30~80体積%である、[6]に記載のペースト。
 本発明の一実施形態によれば、加熱増粘後においても固化しない(固化せず、あくまでペースト状である)ペーストであり、初期粘度が低いにもかかわらず、比較的低い加熱温度(例:ラジカル開始剤の1分間半減期温度)による加熱増粘であってもポンプアウトを抑制できるペーストを提供することができる。
 また、本発明の一実施形態によれば、耐熱性(例:150℃以上の耐熱性)を有するペーストを提供することができ、例えば、常温下での保管環境であれば、ポットライフがほとんどない(極めて長い)ペーストを提供することができる。
 このような本発明の一実施形態に係るペーストは、高温下でも固化せず、ペースト状であるため、高温下でも、ペーストが用いられる部材に要求される性能を長期にわたって維持することができる。
 本発明の一実施形態に係るペーストは、該ペースト0.2gを5mm角にした後、23℃下、1.0MPaの圧力で圧縮した際に、該ペーストの厚みが200μm以下になるものとしてとして定義される。
 本発明の一実施形態に係るペーストは、加熱増粘後においても固化しないペーストであるため、前記ラジカル開始剤(C)の1分間半減期の温度で、10分間加熱硬化を行い、該加熱硬化後のペースト0.2gを5mm角にした後、23℃、1.0MPaの圧力で圧縮した際の厚みが200μm以下のペーストであることが好ましい。
 前記厚みの測定方法は、具体的には、下記実施例に記載の通りである。
≪ペースト≫
 本発明の一実施形態に係るペースト(以下「本ペースト」ともいう。)は、メルカプト基を有するポリシロキサン(A)[以下「成分(A)」ともいう。他の成分についても同様。]、1分子中に2個以上のエチレン性不飽和結合を有する基を含む化合物(B)およびラジカル開始剤(C)を含む。
<ポリシロキサン(A)>
 成分(A)は、メルカプト基(-SH)を有するポリシロキサンであれば特に制限されない。
 このような成分(A)を用いることで、耐熱性に優れ、加熱増粘後においても固化しないペーストであり、初期粘度が低いにもかかわらず、比較的低い加熱温度による加熱増粘であってもポンプアウトを抑制できるペーストを容易に得ることができる。
 本ペーストに用いる成分(A)は、1種でもよく、2種以上でもよい。
 前記メルカプト基の結合位置は特に制限されず、所謂、側鎖型であってもよく、末端型(片末端型、両末端型を含む)であってもよく、側鎖両末端型であってもよいが、側鎖型または両末端型であることが好ましく、側鎖型であることがより好ましい。
 成分(A)としては、ケイ素原子に有機基が結合したオルガノポリシロキサンであり、該オルガノポリシロキサンの少なくとも一部にメルカプト基を有するポリシロキサンであることが好ましい。
 ケイ素原子に結合した有機基としては、例えば、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、ハロゲン化アルキル基、アルコキシ基が挙げられる。
 直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基、デシル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、t-ブチル基、2-エチルヘキシル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等の炭素数3~20の基が挙げられる。
 アリール基としては、例えば、フェニル基、トリル基等の炭素数6~20の基が挙げられる。
 アラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、2-メチル-2-フェニルエチル基等の炭素数7~20の基が挙げられる。
 ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基等の炭素数1~20、好ましくは炭素数1~6の基が挙げられる。
 前記ケイ素原子に結合した有機基としては、直鎖状アルキル基、アリール基が好ましく、炭素数1~6の直鎖状アルキル基、アリール基がより好ましく、メチル基、フェニル基が特に好ましい。
 つまり、前記オルガノポリシロキサンにおけるメルカプト基を有する部分以外の構造としては、ジメチルポリシロキサン、メチルフェニルポリシロキサンおよびジフェニルポリシロキサンから選ばれる少なくとも1種のポリシロキサン構造を有することが好ましく、ジメチルポリシロキサン構造がより好ましい。
 前記メルカプト基は、直接ケイ素原子に結合していてもよく、前記ケイ素原子に結合した有機基を介してケイ素原子に結合していてもよい。
 成分(A)の分子構造は特に限定されず、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、樹枝状(デンドリマー状)が挙げられ、好ましくは直鎖状、一部分岐を有する直鎖状である。成分(A)は、これらの分子構造を有する単一の重合体であってもよく、これらの分子構造を有する共重合体であってもよく、これらの重合体の2種以上の混合物であってもよい。
 成分(A)としては、具体的には、下記式(2)で表されるポリシロキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000001
[式(2)中、R1およびR2はそれぞれ独立に、非置換または置換の1価の炭化水素基、メルカプト基、アルコキシ基または炭素数1~6のアルキルメルカプト基であり、aとbとの和は、2~500の整数である。但し、式(2)中のR1およびR2のうち少なくとも1つは、メルカプト基または炭素数1~6のアルキルメルカプト基を含み、式(2)中に存在する複数のR1はそれぞれ同一でも異なっていてもよく、式(2)中に存在する複数のR2はそれぞれ同一でも異なっていてもよい。]
 R1およびR2における、非置換または置換の1価の炭化水素基としては、非置換または置換の炭素数1~20の1価の炭化水素基が好ましく、その例としては、前記ケイ素原子に結合した有機基として例示した基(アルコキシ基以外)と同様の基が挙げられる。これらの中では、炭素数1~6の1価の炭化水素基が好ましく、炭素数1~6のアルキル基、アリール基がより好ましい。
 R1およびR2における、アルコキシ基の例としては、前記ケイ素原子に結合した有機基として例示したアルコキシ基と同様の基が挙げられる。
 R1およびR2における、炭素数1~6のアルキルメルカプト基は、-R-SH(Rは炭素数1~6のアルキレン基である)で表される基であり、該Rとしては、前記ケイ素原子に結合した有機基として例示した基(ハロゲン化アルキル基およびアルコキシ基以外の基)から水素原子を1つ除いた基等が挙げられる。
 成分(A)としては、従来公知の方法で合成したものを用いてもよく、市販品を用いてもよい。
 成分(A)のコーンプレート型粘度計で測定した23℃における剪断粘度は、好ましくは0.005Pa・s以上、より好ましくは0.01Pa・s以上であり、好ましくは60.00Pa・s以下、より好ましくは5.00Pa・s以下である。
 成分(A)の粘度が前記範囲にあると、初期粘度が低く、塗装性に優れるペーストを容易に得ることができる。また、このような初期粘度が低いペーストが放熱ペーストである場合、例えば、発熱体と放熱部の間などの所定の場所に厚みの薄いペースト層を容易に形成することができ、発熱体や放熱部などの相手面と馴染みやすいペースト層を容易に形成することができるため、該ペースト層による熱抵抗を低減することができ、放熱特性に優れる電子部品等を容易に得ることができる。
 成分(A)の官能基(メルカプト基)当量は、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、好ましくは1000g/mol以上、より好ましくは1500g/mol以上であり、好ましくは50000g/mol以下、より好ましくは35000g/mol以下である。
 また、成分(A)としては、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、官能基当量が、好ましくは1000~5000g/mol、より好ましくは1500~5000g/molであるポリシロキサン(A1)と、官能基当量が、好ましくは15000g/mol以上、より好ましくは20000g/mol以上、好ましくは50000g/mol以下、より好ましくは35000g/mol以下であるポリシロキサン(A2)とを用いることが望ましい。
 このようなポリシロキサン(A1)と(A2)とを用いる場合、これらの合計100質量%に対する、ポリシロキサン(A2)の割合は、好ましくは50.0質量%以上、より好ましくは75.0質量%以上であり、好ましくは99.5質量%以下、より好ましくは99.0質量%以下である。
 成分(A)のゲルパーミエーションクロマトグラフィー(GPC)により測定した数平均分子量(Mn)は、初期粘度が低いにもかかわらず、比較的低い加熱温度による加熱増粘であってもポンプアウトを抑制できるペーストを容易に得ることができる等の点から、好ましくは3000以上、より好ましくは15000以上であり、好ましくは50000以下、より好ましくは25000以下である。
 本ペースト中の成分(A)の含有量は、耐熱性と、低い初期粘度と、ポンプアウトの抑制性とにバランスよく優れるペーストを容易に得ることができる等の点から、本ペースト中の成分(A)および(B)の合計100質量%に対し、好ましくは40.0質量%以上、より好ましくは70.0質量%以上、さらに好ましくは85.0質量%以上であり、好ましくは99.0質量%以下、より好ましくは98.5質量%以下である。
 耐熱性と、低い初期粘度と、ポンプアウトの抑制性とにバランスよく優れるペーストを容易に得ることができる等の点から、本ペーストが下記成分(D)を含有しない場合、本ペースト中の成分(A)の含有量は、本ペースト100質量%に対し、好ましくは40.0質量%以上、より好ましくは60.0質量%以上であり、好ましくは95.0質量%以下、より好ましくは90.0質量%以下である。
 同様の理由から、本ペーストが下記成分(D)を含有する場合、本ペースト中の成分(A)の含有量は、本ペースト100質量%に対し、好ましくは5.0質量%以上、より好ましくは10.0質量%以上であり、好ましくは30.0質量%以下、より好ましくは20.0質量%以下である。
<化合物(B)>
 成分(B)は、前記成分(A)以外の、1分子中に2個以上のエチレン性不飽和結合を有する基を含む化合物であれば特に制限されず、従来公知の化合物(共架橋剤)を用いることができる。
 成分(B)を用いることで、加熱増粘後のポンプアウトの抑制性に優れるペーストを容易に得ることができる。
 本ペーストに用いる成分(B)は、1種でもよく、2種以上でもよい。
 成分(B)におけるエチレン性不飽和結合を有する基の数は2個であってもよいが、ポンプアウトをより抑制することができる等の点から、好ましくは3個以上であり、より好ましくは3~6個である。
 前記成分(B)に含まれる2個以上のエチレン性不飽和結合を有する基は、それぞれ同一でも異なっていてもよい。つまり、成分(B)は、2種以上のエチレン性不飽和結合を有する基を含んでいてもよい。
 前記エチレン性不飽和結合を有する基としては、例えば、ビニル基、メチルビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等の炭素数2~8のアルケニル基、ビニルフェニル基、(メタ)アクリロイル基、アリルオキシ基、スチリル基、プロパルギル基、マレイミド基が挙げられる。これらの中でも、炭素数2~8のアルケニル基、(メタ)アクリロイル基が好ましく、炭素数2~4のアルケニル基、(メタ)アクリロイル基がより好ましく、ビニル基、アリル基、(メタ)アクリロイル基が特に好ましい。
 成分(B)としては、例えば、1分子中に2個以上のエチレン性不飽和結合を有する基を含むポリシロキサン;
 エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、ビスフェノールFアルキレンオキシドジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加ジトリメチロールプロパンテトラ(メタ)アクリレート、プロピレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、プロピレンオキシド付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン付加トリメチロールプロパントリ(メタ)アクリレート、ε-カプロラクトン付加ジトリメチロールプロパンテトラ(メタ)アクリレート、ε-カプロラクトン付加ペンタエリスリトールテトラ(メタ)アクリレート、ε-カプロラクトン付加ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートコハク酸変性物、ペンタエリスリトールトリ(メタ)アクリレートコハク酸変性物、ジペンタエリスリトールペンタ(メタ)アクリレートフタル酸変性物、ペンタエリスリトールトリ(メタ)アクリレートフタル酸変性物、トリ((メタ)アクリロイルオキシエチル)イソシアヌレート、アルキレンオキシド付加トリ((メタ)アクリロイルオキシエチル)イソシアヌレート等の多官能(メタ)アクリレート化合物;
 エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ブチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、ビスフェノールFアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル、エチレンオキシド付加トリメチロールプロパントリビニルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラビニルエーテル、エチレンオキシド付加ペンタエリスリトールテトラビニルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサビニルエーテル等の多官能ビニルエーテル類;
 (メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸3-ビニロキシプロピル、(メタ)アクリル酸1-メチル-2-ビニロキシエチル、(メタ)アクリル酸2-ビニロキシプロピル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸4-ビニロキシシクロヘキシル、(メタ)アクリル酸5-ビニロキシペンチル、(メタ)アクリル酸6-ビニロキシヘキシル、(メタ)アクリル酸4-ビニロキシメチルシクロヘキシルメチル、(メタ)アクリル酸p-ビニロキシメチルフェニルメチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル、(メタ)アクリル酸2-(ビニロキシエトキシエトキシエトキシ)エチル等のビニルエーテル基含有(メタ)アクリル酸エステル類;
 エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、プロピレングリコールジアリルエーテル、ブチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、ビスフェノールFアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル、ジアリルフタレート、グリセリントリアリルエーテル、ペンタエリスリトールテトラアリルエーテル、ジペンタエリスリトールペンタアリルエーテル、ジペンタエリスリトールヘキサアリルエーテル、エチレンオキシド付加トリメチロールプロパントリアリルエーテル、エチレンオキシド付加ジトリメチロールプロパンテトラアリルエーテル、エチレンオキシド付加ペンタエリスリトールテトラアリルエーテル、エチレンオキシド付加ジペンタエリスリトールヘキサアリルエーテル、トリアリルイソシアヌレート、トリアリルシアヌレート、トリアリルホルマール、トリアリルトリメリテート、テトラアリルテレフタルアミド等の多官能アリル化合物;
 (メタ)アクリル酸アリル等のアリル基含有(メタ)アクリル酸エステル類;
 N,N-エチレンビス(メタ)アクリルアミド等の多官能(メタ)アクリルアミド化合物;
 ジプロパルギルテレフタレート等の多官能プロパルギル化合物;
 N,N'-m-フェニレンビスマレイミド等の多官能マレイミド化合物;
 トリレンジイソシアネート、イソホロンジイソシアネート、キシリレンジイソシアネート等の多官能イソシアネートと、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル等の水酸基含有(メタ)アクリル酸エステル類との反応で得られる多官能ウレタン(メタ)アクリレート類;
 ジビニルベンゼン等の多官能芳香族ビニル類;
が挙げられる。
 これらの中では、反応性に優れ、耐熱性に優れるペーストを容易に得ることができる等の点から、多官能(メタ)アクリレート化合物、多官能アリル化合物、多官能(メタ)アクリルアミド化合物が好ましく、3官能以上の多官能(メタ)アクリレート化合物、3官能以上の多官能アリル化合物がより好ましく、トリアリルイソシアヌレート、トリメチロールプロパントリ(メタ)アクリレートが特に好ましい。
 前記1分子中に2個以上のエチレン性不飽和結合を有する基を含むポリシロキサンとしては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32(CH2=CH)SiO1/2で表されるシロキサン単位と式:CH3SiO3/2で表されるシロキサン単位と式:(CH32SiO2/2で表されるシロキサン単位とからなるオルガノシロキサン共重合体が挙げられる。
 前記1分子中に2個以上のエチレン性不飽和結合を有する基を含むポリシロキサンの具体例としては、下記式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000002
[式(3)中、R3はそれぞれ独立に、非置換または置換の1価の炭化水素基であり、R4はそれぞれ独立に、アルキル基、アルコキシアルキル基、アルケニル基またはアシル基であり、cとdとの和は2~1000の整数であり、eは1~3の整数である。但し、式(3)中のR3およびR4のうち少なくとも2つは、前記エチレン性不飽和結合を有する基を含み、式(3)中に存在する複数のR3はそれぞれ同一でも異なっていてもよく、式(3)中に存在する複数のR4はそれぞれ同一でも異なっていてもよい。]
 R3はそれぞれ独立に、非置換または置換の、好ましくは炭素数1~10の1価の炭化水素基であり、その例としては、前記ケイ素原子に結合した有機基として例示した基と同様の基およびアルケニル基が挙げられる。これらの中では、炭素数1~6の1価の炭化水素基が好ましく、アルケニル基、アリール基、炭素数1~3のアルキル基がより好ましい。
 R4におけるアルキル基としては、例えば、前記ケイ素原子に結合した有機基として例示した基と同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。
 R4におけるアルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基等の炭素数2~10の基が挙げられる。
 R3およびR4におけるアルケニル基としては、例えば、前記エチレン性不飽和結合を有する基として例示した基と同様のアルケニル基が挙げられる。
 R4におけるアシル基としては、例えば、アセチル基、オクタノイル基等の炭素数2~10の基が挙げられる。
 cとdとの和は、好ましくは10~50の整数であり、eは、好ましくは1である。
 成分(B)の官能基(エチレン性不飽和結合)当量は、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、好ましくは4g/mol以上、より好ましくは50g/mol以上、さらに好ましくは75g/mol以上であり、好ましくは25000g/mol以下、より好ましくは130g/mol以下である。
 成分(B)は、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、下記式(1)で表される官能基比が、好ましくは3以下、より好ましくは2以下、さらに好ましくは1以下、特に好ましくは0.45以下、より好ましくは0.01以上、さらに好ましくは0.015以上、特に好ましくは0.02以上となるように用いることが好ましい。
 官能基比=(成分(A)の配合量/成分(A)の官能基当量)/(成分(B)の配合量/成分(B)の官能基当量) ・・・(1)
 なお、成分(A)として、例えば、官能基当量ag/molの成分(A)を配合量x1質量%で用い、官能基当量bg/molの成分(A)を配合量x2質量%で用いる場合、前記式(1)の分子は、「(x1/a+x2/b)」となる。成分(A)や(B)として2種類以上を用いる場合も同様である。
 本ペースト100質量%に対する成分(B)の含有量は、前記式(1)を満たすような量であることが好ましいが、本ペースト中の成分(B)の含有量はできるだけ少ない方が好ましいため、この点と、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点からは、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは50質量%以下、より好ましくは15質量%以下、さらに好ましくは5.5質量%以下である。
<ラジカル開始剤(C)>
 成分(C)はラジカル開始剤であれば特に制限されず、従来公知のラジカル開始剤を用いることができる。
 成分(A)と(B)とを、成分(C)を用いて反応(架橋)させることで、従来のペーストに用いられている白金系触媒を用いることなく、ポンプアウトが抑制されたペーストを得ることができ、例えば、常温下での保管環境であれば、ポットライフがほとんどない(極めて長い)ペーストを容易に得ることができる。
 本ペーストに用いる成分(C)は、1種でもよく、2種以上でもよい。
 成分(C)としては、例えば、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルジクミルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、ベンゾイルパーオキサイド、2,5-ジメチル-2,5-(t-ブチルパーオキシ)ヘキシン-3、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、α,α'-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、t-ブチルパーオキシイソプロピルカーボネート、ジ-(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、p-クロロベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーベンゾエート等の過酸化物、2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソバレロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、4,4’-アゾビス(4-シアノバレリックアシッド)、1,1’-アゾビス(シクロヘキサンカルボニトリル)、2,2’-アゾビス(2-メチルプロパン)、2,2’-アゾビス(イソ酪酸ジメチル)、2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩等のアゾ化合物が挙げられる。
 本ペースト中の成分(C)の含有量は、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、本ペースト中の成分(A)および(B)の合計100質量部に対し、好ましくは0.05質量部以上、より好ましくは0.5質量部以上、特に好ましくは1質量部以上であり、好ましくは30質量部以下、より好ましくは20質量部以下、特に好ましくは10質量部以下である。
 本ペースト100質量%に対する成分(C)の含有量はできるだけ少ない方が好ましいため、この点と、加熱増粘後にはポンプアウトを抑制できるだけの粘度を有するが、加熱増粘後においても固化せず、ペースト状であり続けるペーストを容易に得ることができる等の点から、本ペースト100質量%中の成分(C)の含有量は、好ましくは0.4質量%以上、より好ましくは0.5質量%以上、さらに好ましくは1質量%以上であり、好ましくは15質量%以下、より好ましくは9質量%以下、さらに好ましくは7.5質量%以下である。
<熱伝導性フィラー(D)>
 本ペーストを放熱ペーストとして用いる場合、本ペーストは、成分(D)を含有することが好ましい。
 本ペーストに成分(D)を用いる場合、用いる成分(D)は、1種でもよく、2種以上でもよい。2種以上の成分(D)を用いる場合、材質の異なる2種以上の成分(D)を用いてもよく、形状や平均粒子径等の異なる2種以上の成分(D)を用いてもよい。
 成分(D)としては、熱伝導率が1W/m・K以上のフィラーを用いることが好ましい。
 このような成分(D)としては、例えば、金属粉、金属酸化物粉、金属窒化物粉、金属水酸化物粉、金属酸窒化物粉、金属炭化物粉、炭素材料が挙げられ、具体的には、酸化アルミニウム(Al23)、酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、酸化ベリリウム(BeO)、酸化亜鉛(ZnO)、窒化ケイ素(Si34)、窒化ホウ素(例:六方晶BNや立方晶BN)、窒化アルミニウム(AlN)、炭化ケイ素(SiC)、グラファイト、ダイヤモンド、カーボンナノチューブが挙げられる。
 成分(D)の形状は特に制限されず、例えば、粒状、鱗片状、針状が挙げられるが、より高密度充填できることから粒状であることが好ましい。
 粒状である成分(D)の平均粒子径は、例えば0.1μm以上であり、好ましくは0.5μm以上であり、例えば100μm以下であり、好ましくは50μm以下である。該平均粒子径は、レーザー回折・散乱法(マイクロトラック法)により得られる粒径分布におけるd50の値である。
 本ペーストが成分(D)を含有する場合、該成分(D)の含有量は、初期粘度が低く、かつ、放熱性により優れるペーストを容易に得ることができる等の点から、本ペースト100体積%に対し、好ましくは30体積%以上、より好ましくは50体積%以上であり、好ましくは80体積%以下、より好ましくは70体積%以下である。
 なお、成分(D)の配合量が多いほど、ペーストを例えば放熱材料として用いた場合に、熱特性に優れる(例:熱拡散値の増加、熱抵抗値の低下)傾向にあるため、用途によっては、成分(D)を多く配合したい場合がある。しかし、従来のペーストにおいて、成分(D)の配合量を多くすると、初期粘度が高くなり、作業性が低下(塗装や流し込みなどにより所定の場所にペーストを形成し難い)していたため、従来ペーストでは、成分(D)を多く配合することはできなかった。
 一方、本ペーストは、初期粘度が低いため、本ペーストによれば、成分(D)の配合量を多くしても、作業性が低下し難い。
 従って、本発明の一実施形態によれば、熱特性に特に優れるペーストを得ることを目的として、本ペースト100体積%に対し、成分(D)を、好ましくは40体積%以上、より好ましくは50体積%以上、好ましくは80体積%以下、より好ましくは70体積%以下配合しても、初期粘度が低く、作業性に優れるペーストを得ることができる。
<その他の成分>
 本ペーストは、必要に応じて、本発明の効果を損なわない限り、フッ素系やシリコーン系オイル等の可塑剤;シランカップリング剤;界面活性剤;架橋促進剤;溶剤;分散剤;老化防止剤;酸化防止剤;難燃剤;顔料等の、前記成分(A)~(D)以外のその他の成分を含んでもよい。
 該その他の成分はそれぞれ、1種を用いてもよく、2種以上を用いてもよい。
 本ペーストは、例えば、常温下での保管環境であれば、ポットライフがほとんどない(極めて長い)ペーストを得ることができる等の点から、白金系触媒を含まないことが好ましい。
 従来のペーストは、白金系触媒を用いていたが、白金系触媒を用いると、ポットライフが短く、ペーストの長期保存ができなかった。
 なお、白金系触媒を含まないとは、成分(A)および(B)の合計100質量部に対する白金系触媒の含有量が、例えば0.0001質量部以下であることをいい、下限は好ましくは0質量部である。
<本ペーストの調製方法>
 本ペーストは、前記成分(A)~(C)および必要により用いられる前記成分(D)や前記その他の成分を混合し、ミキサーやロール等を用いて混練分散させることにより調製することができる。
<本ペーストの物性>
 本ペーストのコーンプレート型粘度計で測定した23℃における初期剪断粘度(この粘度は、初期粘度のことである。)は、低いことが好ましく、具体的には、好ましくは500Pa・s以下、より好ましくは300Pa・s以下、特に好ましくは250Pa・s以下であり、好ましくは1Pa・s以上である。
 本ペーストの初期粘度が前記範囲にあると、作業性に優れる(塗装や流し込みなどにより所定の場所にペーストを形成しやすい)ペーストを容易に得ることができる。また、このような初期粘度が低いペーストが放熱ペーストである場合、例えば、発熱体と放熱部の間などの所定の場所に厚みの薄いペースト層を容易に形成することができ、発熱体や放熱部などの相手面と馴染みやすいため、該ペースト層による熱抵抗を低減することができ、放熱特性に優れる電子部品等を容易に得ることができる。
 通常、初期粘度の低いペーストは、加熱増粘したとしてもポンプアウトしやすかったが、本ペーストによれば、初期粘度が低くても、加熱増粘後にはポンプアウトを抑制することができる。
 本ペーストを成分(C)の1分間半減期温度で10分間加熱した後、23℃まで降温させた際のコーンプレート型粘度計で測定した加熱後剪断粘度(以下「加熱後粘度」ともいう。)の、前記初期粘度に対する比(加熱後粘度/初期粘度)は、好ましくは3倍以上、より好ましくは4倍以上、さらに好ましくは5倍以上である。
 初期粘度に対する加熱後粘度の比が前記範囲にあると、低い初期粘度と、ポンプアウトの抑制性とにバランスよく優れるペーストを容易に得ることができる。
 前記加熱後粘度は、初期粘度に対する加熱後粘度の比が前記範囲となるような粘度であることが好ましいが、ポンプアウトを抑制できる等の点から、好ましくは40Pa・s以上、より好ましくは50Pa・s以上であり、ポンプアウトの抑制が極めて重要な用途に本ペーストを用いる場合、加熱後粘度の具体的な数値の例としては、好ましくは500Pa・s以上、より好ましくは1000Pa・s以上、特に好ましくは1500Pa・s以上である。
 加熱後粘度が前記範囲にあると、流動抵抗により、加熱増粘後にはポンプアウトを容易に抑制することができる。
 <本ペーストの用途>
 本ペーストは、従来のペーストが用いられてきた用途に制限なく用いることができるが、本発明の効果がより発揮される等の点から、高温(例:200℃以上)下に曝される可能性のある用途、温度がかかっても(加熱下でも)所定の場所にペースト状で留まることが求められている用途、特に、塗装や流し込みなどにより所定の場所にペーストを形成する際には粘度が低く、温度がかかっても(加熱下でも)所定の場所にペースト状で留まることが求められている用途に好適に用いることができる。
 前記用途としては、具体的には、摺動部材やブレーキ部材、振動抑制・吸収部材などの部材用等が挙げられる。また、前記成分(D)を含む本ペーストの用途としては、電子部品等における発熱体と放熱部との間などに用いられる放熱ペースト用等が挙げられる。前記ポンプアウトの抑制が極めて重要な用途としては、該放熱ペースト用が挙げられる。
 特に、前記成分(D)を含む本ペーストは、初期粘度が低く、かつ、加熱後には、ポンプアウト、基油抜け、固化、タレ落ち等が抑制されたペーストであり、放熱性(熱伝導性)を長期にわたって維持することができるため、発熱体を有する装置、機器、部品等に好適に用いることができ、これらに本ペーストを用いることで、長期信頼性に優れる装置、機器、部品等を得ることができる。特に、該ペーストは、初期粘度が低く、発熱体や放熱部との馴染みがよいため、発熱体と放熱部との間に薄いペースト層を形成することができ、該ペースト層による熱抵抗を低減できるため、発熱体と放熱部との間に設けられる放熱ペーストとして好適に用いられ、さらには、固化せず、割れ難く、振動を吸収(抑制)することができるため、パワーモジュール等の半導体デバイス用の放熱ペースト、自動車等の乗り物用の放熱ペーストとして好適に用いられ、パワーモジュール用の放熱ペーストとして特に好適に用いられる。
 本ペーストを所定の場所に形成する方法としては、例えば、従来公知の塗装方法により本ペーストを所定の場所に塗布することや、本ペーストを所定の場所に流し込む方法が挙げられる。2つの部材間に本ペーストを形成する場合、これら部材間に本ペーストを塗布または流し込んだ後、必要により下記加熱をしながら、圧力をかけてもよい。例えば、発熱体と放熱部との間に本ペーストを形成する場合、熱抵抗を考慮すると、形成される本ペースト(層)の厚みは薄い方が好ましい。従って、この場合には、発熱体と放熱部との間に本ペーストを形成した後、圧力をかけて、本ペーストを伸ばすことが好ましい。
 前記のように所定の場所に形成した本ペーストを加熱(加熱増粘)することで、該ペーストを形成した所定の場所から移動しないようにすることができる。
 この際の加熱温度としては本ペーストの調製に用いる各成分に応じて適宜設定すればよく、特に、用いる成分(C)の種類に応じて適宜設定すればよいが、好ましくは80℃以上、より好ましくは100℃以上であり、好ましくは200℃以下、より好ましくは170℃以下である。
 以下、実施例を挙げて本発明の一実施形態をより詳細に説明するが、本発明はこれら実施例に限定されない。
[実施例1~21および比較例1~6]
 表1または2に示す配合比率(数値の単位は質量部である)で、表1または2の各配合成分を混合することでペーストを調製した。
 表1および2中の各成分は、以下の通りである。
 ・ポリシロキサンA-1:信越化学工業(株)製の「KF-2001」(メルカプト基を有するポリシロキサン、官能基当量:1900g/mol)
 ・ポリシロキサンA-2:信越化学工業(株)製の「KF-2004」(メルカプト基を有するポリシロキサン、官能基当量:30000g/mol)
 ・ポリシロキサンA-3:信越化学工業(株)製の「X-22-167C」(メルカプト基を有するポリシロキサン、官能基当量:2300g/mol)
 ・ポリシロキサンA’:信越化学工業(株)製の「KF-96-100CS」(ジメチルポリシロキサン)
 ・化合物B-1:Gelest社製の「DMS-V25」(1分子中に2個のエチレン性不飽和結合を有する基を含むポリシロキサン、官能基当量:8600g/mol)
 ・化合物B-2:Gelest社製の「DMS-V35」(1分子中に2個のエチレン性不飽和結合を有する基を含むポリシロキサン、官能基当量:24750g/mol)
 ・化合物B-3:信越化学工業(株)製の「KE-1950-10A」(1分子中に2個のエチレン性不飽和結合を有する基を含むポリシロキサン、官能基当量:55350g/mol)
 ・化合物B-4:精工化学(株)製の「ハイクロスM」(トリメチロールプロパントリメタクリレート、官能基当量:112g/mol)
 ・化合物B-5:三菱ケミカル(株)製の「TAIC」(トリアリルイソシアヌレート、官能基当量:83g/mol)
 ・化合物B-6:Sigma-Aldrich社製の「ポリ(エチレングリコールジビニルエーテル)」(官能基当量:125g/mol)
 ・HEMA:2-ヒドロキシエチルメタクリレート
 ・開始剤C-1:日油(株)製の「パーキュアO」
 ・開始剤C-2:2,2’-アゾビス(2-メチルブチロニトリル)
 ・開始剤C-3:2,2’-アゾビス(イソ酪酸ジメチル)
 ・開始剤C-4:日油(株)製の「パーヘキサ25B」
 ・フィラーD-1:住友化学(株)製の「アドバンスドアルミナ AA-1.5(アルミナ粉末)
<初期粘度>
 調製したペーストの23℃における粘度(初期粘度)を、コーンプレート型粘度計(Brookfield社製)を用いて測定した。結果を表1および2に示す。
 なお、実施例1~10、比較例1~3および比較例5では、回転数を200rpmとして測定し、比較例4では、回転数を100rpmとして測定し、実施例11~21および比較例6では、回転数を1.5rpmとして測定した。
<加熱後粘度>
 調製したペーストを、各ペーストに用いたラジカル開始剤(C)の1分間半減期温度で10分間加熱した後、23℃まで降温させた際の粘度(加熱後粘度)を、コーンプレート型粘度計(Brookfield社製)を用いて測定した。結果を表1および2に示す。
 なお、実施例1~2および比較例2では、回転数を200rpmとして測定し、実施例8では、回転数を100rpmとして測定し、実施例4~7および実施例9では、回転数を10rpmとして測定し、実施例10、比較例1および比較例3~5では、回転数を1.5rpmとして測定し、実施例3では、回転数を0.5rpmとして測定し、実施例11~21および比較例6では、回転数を0.1rpmとして測定した。
 また、前記で測定した初期粘度に対する加熱後剪断粘度の比(加熱後粘度/初期粘度)を表1および2に示す。
<ペースト性状>
 調製したペーストを、各ペーストに用いたラジカル開始剤(C)の1分間半減期の温度で、10分間加熱硬化した。次いで、23℃まで降温させて得られた加熱硬化後のサンプル0.2gを5mm角にした後、以下の方法に基づき、23℃下、1.0MPaの圧力で圧縮した際の該サンプルの厚みを測定した。結果を表1および2に示す。
 サンプルの圧縮は、ねじ部を有する金属円盤上に、サンプル0.2gを5mm角に引き延ばした後、もう一枚の金属円盤によって挟み込み、トルクレンチでねじ部にねじを締めこむことによって1.0MPaの荷重をサンプルに負荷することで行った。
 厚みの測定は、以下のようにして行った。
 前もって金属円盤2枚を重ね、ねじを締めこむことによって1MPaを負荷してから3分経過後の、1MPaの荷重を負荷した状態における、2枚の金属円盤両端の長さ(サンプルなしの長さ)を測定した。
 次いで、金属円盤上に、サンプル0.2gを5mm角に引き延ばした後、もう一枚の金属円盤によって挟み込み、ねじを締めて、該サンプルに1.0MPaの荷重を負荷した。その後、ねじ部の目詰まりを解消するため、ねじを緩めてサンプルを金属円盤上から取り除いた。前記金属円盤上にサンプル0.2gを5mm角に引き延ばすことから、サンプルを金属円盤上から取り除くまでの工程を1サイクルとした。この1サイクルを5回行った後の、該5サイクル目における1MPaの荷重を負荷してから3分経過後の、1MPaの荷重を負荷した状態における、2枚の金属円盤両端の長さ(サンプルありの長さ)を測定した。
 前記サンプルありの長さから、前記サンプルなしの長さを引くことで、サンプルの厚みを算出し、このサンプルの厚みにより、ペースト性状を評価した。
 なお、前記のように5サイクル目の厚みを測定したのは、測定治具の特性上、排出されるべき流動性サンプルの一部が、前記ねじ部で滞留(目詰まり)し、適切な厚みを測定できない状態になることを防ぐためである。
 前記圧力をかける際には、Pressure sample holder(ネッチジャパン(株)製、フラッシュアナライザLFA467アクセサリ)とトルクレンチとを用い、厚みの測定は、ライトマチックVL-50((株)ミツトヨ製)を用いた。金属円盤としては、材質がSUS304であり、直径14mm、厚み3mm、表面粗さRa0.2の金属円盤を使用した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例1~21で得られたペーストは、加熱増粘後においても固化せずペーストであり、初期粘度が低いにもかかわらず、比較的低い加熱温度による加熱増粘であってもポンプアウトを抑制できるペーストであった。
 一方、比較例2で得られたペーストは、加熱増粘後でもポンプアウトを抑制できず、比較例1および3~6で得られたペーストは、加熱硬化後には、ペーストとはいえなかった(流動性はなかった)。
 本ペーストは、前記成分(A)~(C)を含有するため、前記効果を奏する。このような効果を奏する理由の一例としては、以下のことが考えられる。
 本ペーストでは、特に、前記成分(A)を用いることで、加熱硬化(加熱増粘)の際に、該成分(A)が反応し、適度な可塑剤として作用しながら、架橋を進める役割も担っており、また、ブリードアウトし難いため、ペースト状態を維持しながら増粘できると考えられる。
 一方で、比較例3~6のように、成分(A)を用いず、エチレン性不飽和結合を有する基を含むポリシロキサンや一般的なシリコンオイルを用いた場合は、適切な増粘ができない(増粘が進まない)、または、シリコンオイルがブリードアウトすることにより、加熱硬化後にペースト性状を維持できないと考えられる。

Claims (7)

  1.  メルカプト基を有するポリシロキサン(A)、1分子中に2個以上のエチレン性不飽和結合を有する基を含む化合物(B)およびラジカル開始剤(C)を含むペースト。
  2.  下記式(1)で表される官能基比が3以下である、請求項1に記載のペースト。
     官能基比=(前記ポリシロキサン(A)の配合量/前記ポリシロキサン(A)の官能基当量)/(前記化合物(B)の配合量/前記化合物(B)の官能基当量) ・・・(1)
  3.  下記要件(I)を満たす、請求項1に記載のペースト:
     要件(I);前記ラジカル開始剤(C)の1分間半減期の温度で、10分間加熱硬化を行い、該加熱硬化後のペースト0.2gを5mm角にした後、23℃、1.0MPaの圧力で圧縮した際の厚みが200μm以下である。
  4.  23℃における初期剪断粘度が500Pa・s以下である、請求項1~3のいずれか1項に記載のペースト。
  5.  前記ペーストの、23℃における初期剪断粘度に対する、前記ペーストをラジカル開始剤(C)の1分間半減期温度で10分間加熱した後、23℃まで降温させた後の加熱後剪断粘度の比が3倍以上である、請求項1~3のいずれか1項に記載のペースト。
  6.  熱伝導性フィラー(D)を含む、請求項1~3のいずれか1項に記載のペースト。
  7.  熱伝導性フィラー(D)の含有量が、ペースト100体積%に対し、30~80体積%である、請求項6に記載のペースト。
PCT/JP2023/011447 2022-03-25 2023-03-23 ペースト WO2023182414A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050328 2022-03-25
JP2022-050328 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182414A1 true WO2023182414A1 (ja) 2023-09-28

Family

ID=88101658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011447 WO2023182414A1 (ja) 2022-03-25 2023-03-23 ペースト

Country Status (1)

Country Link
WO (1) WO2023182414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190331A1 (ja) * 2023-03-16 2024-09-19 株式会社バルカー ペースト

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227374A (ja) 2012-04-24 2013-11-07 Shin-Etsu Chemical Co Ltd 加熱硬化型熱伝導性シリコーングリース組成物
JP2017502102A (ja) * 2013-11-11 2017-01-19 ダウ コーニング コーポレーションDow Corning Corporation Uv硬化性シリコーン組成物、その硬化生成物、及びその使用方法
JP2017165791A (ja) 2016-03-14 2017-09-21 信越化学工業株式会社 付加一液加熱硬化型熱伝導性シリコーングリース組成物及びその硬化物の製造方法
JP2018510946A (ja) * 2015-03-27 2018-04-19 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド シリコーン系親水性コポリマーおよびそれを含むヒドロゲル組成物
WO2020170114A1 (en) * 2019-02-18 2020-08-27 3M Innovative Properties Company Radiation-curable composition containing mercapto-functional polyorganosiloxanes for additive-manufacturing technology

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227374A (ja) 2012-04-24 2013-11-07 Shin-Etsu Chemical Co Ltd 加熱硬化型熱伝導性シリコーングリース組成物
JP2017502102A (ja) * 2013-11-11 2017-01-19 ダウ コーニング コーポレーションDow Corning Corporation Uv硬化性シリコーン組成物、その硬化生成物、及びその使用方法
JP2018510946A (ja) * 2015-03-27 2018-04-19 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド シリコーン系親水性コポリマーおよびそれを含むヒドロゲル組成物
JP2017165791A (ja) 2016-03-14 2017-09-21 信越化学工業株式会社 付加一液加熱硬化型熱伝導性シリコーングリース組成物及びその硬化物の製造方法
WO2020170114A1 (en) * 2019-02-18 2020-08-27 3M Innovative Properties Company Radiation-curable composition containing mercapto-functional polyorganosiloxanes for additive-manufacturing technology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024190331A1 (ja) * 2023-03-16 2024-09-19 株式会社バルカー ペースト

Similar Documents

Publication Publication Date Title
KR102542191B1 (ko) 열전도성 폴리오르가노실록산 조성물
JP5832983B2 (ja) シリコーン組成物
JP2021138961A (ja) 熱伝導性ポリオルガノシロキサン組成物
JP2008038137A (ja) 熱伝導性シリコーングリース組成物およびその硬化物
WO2023182414A1 (ja) ペースト
KR20200108060A (ko) 실리콘 조성물
JP2020002236A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
TWI796457B (zh) 矽酮組成物
JP2022157070A (ja) 硬化性組成物及び硬化物
CN116004015A (zh) 导热性有机硅组合物
WO2023026615A1 (ja) 熱伝導性組成物
WO2022209230A1 (ja) 硬化性組成物及び硬化物
WO2021187294A1 (ja) ペースト
WO2024190331A1 (ja) ペースト
CN118922474A (zh) 糊料
WO2022032277A1 (en) Low viscosity thermally conductive paste
JP2021105116A (ja) 熱伝導性シリコーン樹脂組成物
JP7577046B2 (ja) 熱伝導性シリコーン組成物
WO2024089957A1 (ja) シリコーン樹脂組成物
WO2024195843A1 (ja) 2液型硬化性組成物、及び硬化物
EP4361207A1 (en) Thermally conductive silicone composition
WO2024171646A1 (ja) 二液硬化型組成物セット、硬化物及び電子機器
WO2022118631A1 (ja) 2液型硬化性組成物及び硬化物
WO2024204621A1 (ja) 硬化性組成物及び硬化物
KR20240011681A (ko) 열전도성 실리콘 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775008

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509203

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023775008

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023775008

Country of ref document: EP

Effective date: 20241025