WO2022209146A1 - パッチアンテナ、方法、及び非一時的なコンピュータ可読媒体 - Google Patents
パッチアンテナ、方法、及び非一時的なコンピュータ可読媒体 Download PDFInfo
- Publication number
- WO2022209146A1 WO2022209146A1 PCT/JP2022/001186 JP2022001186W WO2022209146A1 WO 2022209146 A1 WO2022209146 A1 WO 2022209146A1 JP 2022001186 W JP2022001186 W JP 2022001186W WO 2022209146 A1 WO2022209146 A1 WO 2022209146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- patch antenna
- liquid crystal
- microstrip line
- line
- input impedance
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 63
- 230000005540 biological transmission Effects 0.000 claims description 30
- 230000008878 coupling Effects 0.000 claims description 9
- 238000010168 coupling process Methods 0.000 claims description 9
- 238000005859 coupling reaction Methods 0.000 claims description 9
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
- H01Q9/045—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means
- H01Q9/0457—Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular feeding means electromagnetically coupled to the feed line
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
Definitions
- the present disclosure relates to patch antennas, methods, and programs, and more particularly to patch antennas, methods, and programs that can easily match the input impedance of the patch antenna at a predetermined frequency.
- the first method is to change the shape of the antenna to match the impedance.
- a dipole antenna has the property that the matching frequency changes by bending the straight portion of the antenna.
- the input impedance is matched to a predetermined frequency by optimizing the bending position and angle of the dipole antenna.
- the first method when changing the frequency to be matched to a predetermined frequency, it is necessary to physically change the bending position of the antenna, etc., and it is difficult to easily change the frequency to be matched.
- the second method is to change the feeding point of the antenna to match the impedance.
- the second method also has the problem that it is difficult to easily change the frequency to be matched because it is necessary to physically change the feeding point of the antenna when changing the frequency to be matched to a predetermined frequency.
- the third is a method of matching impedances using a matching box. Specifically, a matching device is provided between the antenna and the feeding cable, and the impedance of the matching device is changed to match the impedance of the antenna.
- the third method has the problem that the area around the antenna is increased by the size of the matching box, and the cost is increased by the size of the matching box.
- the circuit that constitutes the matching box is sometimes called a matching circuit.
- Paragraphs 0019 and 0020 of Patent Document 1 state that "the power supply unit is arranged on the first surface of the matching circuit board on which the antenna unit is arranged, and the power supply unit is connected to the antenna unit via a transmission line.
- the transmission line is arranged on the first surface of the matching circuit board, the transmission line extends linearly, for example, and is arranged between the power supply section and the antenna section.
- the dielectric constant control unit includes, for example, a power supply unit and a control circuit, the positive electrode of which is electrically connected to the dielectric constant variable unit through an application electrode, and the dielectric constant A voltage is applied to the variable section, whereby the permittivity control section performs variable control of the permittivity of the permittivity variable section.
- the permittivity of the permittivity variable section can be controlled.
- Patent Document 1 does not describe transmitting a high-frequency signal from a microstrip line to a patch antenna element by electromagnetic coupling, optimizing the voltage applied to the liquid crystal, and matching the input impedance at a predetermined frequency. .
- An object of the present disclosure is to provide a patch antenna, method, and program that solve any of the above problems.
- a patch antenna includes: a microstrip line provided on the liquid crystal, extending in the first direction, and transmitting a signal; a dielectric provided on the microstrip line; a patch antenna element provided on the dielectric for acquiring and radiating the signal from the microstrip line by electromagnetic coupling; a control unit that matches the input impedance of the patch antenna at a predetermined frequency by changing the dielectric constant of the liquid crystal based on the voltage applied to the liquid crystal; Prepare.
- a method includes: A microstrip line provided on a liquid crystal, extending in a first direction, for transmitting a signal, a dielectric provided on the microstrip line, and a patch for acquiring and radiating the signal from the microstrip line by electromagnetic coupling.
- a method of controlling the input impedance of a patch antenna comprising: changing the dielectric constant of the liquid crystal based on the voltage applied to the liquid crystal; matching the input impedance of the patch antenna at a given frequency by varying the dielectric constant of the liquid crystal; Prepare.
- the program according to the present disclosure is A microstrip line provided on a liquid crystal, extending in a first direction, for transmitting a signal, a dielectric provided on the microstrip line, and a patch for acquiring and radiating the signal from the microstrip line by electromagnetic coupling.
- a program for controlling the input impedance of a patch antenna including an antenna element, changing the dielectric constant of the liquid crystal based on the voltage applied to the liquid crystal; matching the input impedance of the patch antenna at a given frequency by varying the dielectric constant of the liquid crystal; run on the computer.
- FIG. 1 is a perspective view illustrating a patch antenna according to Embodiment 1;
- FIG. 1 is a schematic diagram illustrating the configuration of a patch antenna according to Embodiment 1;
- FIG. 5 is a graph illustrating the operation of the patch antenna according to Embodiment 1;
- 5 is a graph illustrating the operation of the patch antenna according to Embodiment 1;
- 3 is a schematic diagram illustrating the configuration of a patch antenna according to a comparative example of Embodiment 1;
- FIG. 8 is a perspective view illustrating a transmission line of a patch antenna according to Embodiment 2;
- FIG. 8 is a perspective view illustrating a transmission line of a patch antenna according to Embodiment 2;
- FIG. 11 is a perspective view illustrating a patch antenna according to Embodiment 2;
- FIG. 11 is a perspective view illustrating a transmission line of a patch antenna according to Embodiment 3;
- 10 is a graph illustrating the operation of the patch antenna according to Embodiment 3;
- 10 is a graph illustrating the operation of the patch antenna according to Embodiment 3;
- FIG. 1 is a perspective view illustrating a patch antenna according to Embodiment 1.
- FIG. FIG. 2 is a schematic diagram illustrating the configuration of the patch antenna according to Embodiment 1.
- FIG. 2 separates the dielectric and the liquid crystal in order to show the configuration of the patch antenna 10 according to the first embodiment in more detail. That is, the dielectric and liquid crystal of the patch antenna 10 are originally in contact as shown in FIG.
- the patch antenna 10 includes a liquid crystal 11, a microstrip line 12, a dielectric 13, a patch antenna element 14, and a controller 15.
- the microstrip line 12 is provided on the liquid crystal 11.
- the microstrip line 12 extends in the first direction D1, and signals are transmitted through the microstrip line 12 . Since a high-frequency signal is transmitted in the signal, this signal is also called a high-frequency signal. Also, the microstrip line is sometimes simply referred to as a transmission line.
- a dielectric 13 is provided on the microstrip line 12 .
- the patch antenna element 14 is provided on the dielectric 13 .
- the patch antenna element 14 acquires a signal from the microstrip line 12 by electromagnetic coupling and radiates the acquired signal from its own patch antenna element 14 .
- the control unit 15 changes the dielectric constant of the liquid crystal 11 based on the voltage applied to the liquid crystal 11 .
- the control unit 15 changes the dielectric constant of the liquid crystal 11 to match the input impedance of the patch antenna 10 at a predetermined frequency.
- the control unit 15 determines that the input impedance is matched. Matching is sometimes called matching.
- a method of applying a voltage to the liquid crystal 11 will be described.
- a negative electrode 16 provided so as to be in contact with the lower surface of the liquid crystal 11 and a positive electrode 17 provided so as to be connected to the microstrip line 12 are provided.
- the control unit 15 generates a voltage using the positive electrode 17 and the negative electrode 16 and applies the voltage to the liquid crystal 11 .
- the negative electrode is sometimes called the ground.
- ⁇ Antenna operation> 3 is a graph illustrating the operation of the patch antenna according to Embodiment 1.
- FIG. The horizontal axis shown in FIG. 3 indicates the frequency, and the vertical axis indicates the input reflection coefficient S11.
- 4 is a graph illustrating the operation of the patch antenna according to Embodiment 1.
- FIG. The horizontal axis shown in FIG. 4 indicates the frequency, and the vertical axis indicates the input reflection coefficient S11.
- 3 and 4 show frequency characteristics of the input reflection coefficient S11 when the voltage applied to the liquid crystal 11 is changed.
- impedance matching is indicated as input reflection coefficient S11 being equal to or less than a predetermined reflection coefficient.
- the patch antenna 10 controls the frequency at which the input impedance of the patch antenna 10 is matched over the frequency range BW by changing the voltage applied to the liquid crystal 11 by the control unit 15. (See Figure 3).
- the control unit 15 desires the input reflection coefficient S11 as shown in the graph G31, it sets the voltage applied to the liquid crystal 11 to the voltage V31.
- the control unit 15 desires the input reflection coefficient S11 as shown in the graph G32, the control unit 15 sets the voltage applied to the liquid crystal 11 to the voltage V32.
- the control unit 15 desires the input reflection coefficient S11 as shown in the graph G33, the control unit 15 sets the voltage to be applied to the liquid crystal 11 to the voltage V33.
- Embodiment 1 it is possible to realize a wideband antenna corresponding to the frequency range BW without using a matching device. As a result, it is possible to provide a patch antenna, method, and program capable of easily matching the input impedance of the patch antenna at a predetermined frequency.
- Embodiment 1 when the control unit 15 desires the input reflection coefficient S11 as shown in the graph G41, that is, when the input reflection coefficient S11 is equal to or less than the predetermined input reflection coefficient When the range of frequencies for which is the frequency range BW1, the voltage applied to the liquid crystal 11 is set to the voltage V41. Further, when the control unit 15 desires the input reflection coefficient S11 as shown in the graph G42, that is, when the frequency range in which the input reflection coefficient S11 is equal to or less than the predetermined input reflection coefficient is the frequency range BW2, the liquid crystal 11 The voltage to be applied is set to voltage V42.
- Embodiment 1 it is possible to realize an antenna that supports dual bands in the frequency range BW1 or the frequency range BW2 without using a matching box.
- one patch antenna 10 does not simultaneously support the frequency range BW1 and the frequency range BW2.
- the device including the patch antenna 10 can be made smaller, and the cost can be reduced by the amount of not using the matching box.
- the patch antenna 10 can match the impedance at a desired frequency by putting the liquid crystal 11 under the microstrip line 12 (transmission line) and applying a voltage to the liquid crystal 11 to change the dielectric constant of the liquid crystal 11. .
- the patch antenna 10 transmits a high-frequency signal from the microstrip line 12 to the patch antenna element 14 by electromagnetic coupling, optimizes the voltage applied to the liquid crystal 11, and matches the input impedance at a predetermined frequency.
- FIG. 5 is a schematic diagram illustrating a configuration of a patch antenna according to a comparative example of Embodiment 1.
- FIG. 5 is a schematic diagram illustrating a configuration of a patch antenna according to a comparative example of Embodiment 1.
- the patch antenna 50 according to the comparative example mounts a dielectric 51 under the microstrip line 12 instead of the liquid crystal 11, unlike the patch antenna 10 according to the first embodiment. is different.
- the permittivity of the dielectric 51 cannot be changed. Since the patch antenna 50 cannot change the dielectric constant, the impedance frequency characteristics cannot be changed, and it is difficult to match the input impedance at a predetermined frequency. Also, it is difficult to achieve a wide band. As a result, it is difficult to provide a patch antenna that can easily match the input impedance of the patch antenna at a given frequency.
- FIG. 6 is a perspective view illustrating transmission lines of the patch antenna according to the second embodiment.
- FIG. 7 is a perspective view illustrating a transmission line of a patch antenna according to Embodiment 2.
- FIG. 6 and 7, the dielectric 13 and the patch antenna element 14 are omitted for simplicity.
- the patch antenna 20 according to the second embodiment differs from the patch antenna 10 according to the first embodiment in that a meandering transmission line 12m is used instead of the microstrip line 12. .
- the patch antenna 20 according to the second embodiment uses a spiral transmission line 12s instead of the microstrip line 12, unlike the patch antenna 10 according to the first embodiment. is different.
- FIG. 8 is a perspective view illustrating a patch antenna according to Embodiment 2.
- FIG. FIG. 8 separates the dielectric and the liquid crystal in order to show the configuration of the patch antenna 20 according to the second embodiment in more detail.
- FIG. 8 omits the control unit 15, the negative electrode 16, and the positive electrode 17 for simplicity.
- FIG. 8 shows a meandering transmission line 12m as a signal transmission line.
- the patch antenna 20 according to Embodiment 2 may have at least one or more meandering transmission lines 12m. Also, the number of spiral transmission lines 12s may be at least one or more.
- the patch antenna 20 according to Embodiment 2 may have a number of patch antenna elements 14 other than four and a number of meander-type transmission lines 12m other than four.
- the transmission line according to the second embodiment may be a planar transmission line other than the microstrip line 12, the meander transmission line 12m, and the spiral transmission line 12s.
- FIG. 9 is a perspective view illustrating a transmission line of a patch antenna according to Embodiment 3.
- FIG. 9 omits the dielectric 13 and the patch antenna element 14 for simplicity.
- the patch antenna 30 according to Embodiment 3 differs from the patch antenna 10 according to Embodiment 1 in that it further includes a first ground line 121 and a second ground line 122 .
- a line including the microstrip line 12, the first ground line 121, and the second ground line 122 is called a coplanar line 12c.
- the first ground line 121 is provided on the liquid crystal 11 and in a second direction D2 intersecting the first direction D1 of the microstrip line 12, and extends in the first direction D1. That is, the first ground line 121 is provided substantially parallel to the microstrip line 12 .
- the length of the first ground line 121 in the first direction D1 is shorter than the length of the microstrip line 12 in the first direction D1.
- First ground line 121 and negative electrode 16 are electrically connected.
- the second ground line 122 is provided on the liquid crystal 11 in the direction opposite to the second direction D2 of the microstrip line 12 and extends in the first direction D1. That is, the second ground line 122 is provided substantially parallel to the microstrip line 12 .
- the length of the second ground line 122 in the first direction D1 is shorter than the length of the microstrip line 12 in the first direction D1.
- the second ground line 122 and the negative electrode 16 are electrically connected.
- the difference between the length of the first ground line 121 in the first direction D1 and the length of the second ground line 122 in the first direction D1 is set to a predetermined length or less. That is, the length of the first ground line 121 and the length of the second ground line 122 are set to be approximately the same.
- the coplanar line 12c can obtain the same effect as a coaxial cable by the microstrip line 12, the first ground line 121 and the second ground line 122, and the feeding point P shown in FIG. 9 serves as a pseudo feeding point. Become.
- the position of the pseudo feeding point P of the coplanar line 12c can be changed by changing the lengths of the first ground line 121 and the second ground line 122. FIG. By changing the position of the feed point P, it is possible to change the frequency at which impedances are matched. Therefore, by using the coplanar line 12c, impedance matching can be performed more easily.
- microstrip line 12 corresponds to the inner conductor of the coaxial cable
- first ground line 121 and the second ground line 122 correspond to the outer conductor of the coaxial cable.
- FIG. 10 is a graph illustrating the operation of the patch antenna according to Embodiment 3.
- FIG. The horizontal axis shown in FIG. 10 indicates the frequency, and the vertical axis indicates the input reflection coefficient S11.
- FIG. 10 shows frequency characteristics of the input reflection coefficient S11 when the length L (see FIG. 9) of the first ground line 121 and the second ground line 122 is changed.
- the graph G101 shifts to the graph G102.
- the input reflection coefficient S11 becomes lower, and the frequency range in which the input reflection coefficient is less than or equal to the predetermined input reflection coefficient is expanded.
- FIG. 11 is a graph illustrating the operation of the patch antenna according to Embodiment 3.
- FIG. The horizontal axis shown in FIG. 11 indicates the frequency, and the vertical axis indicates the input reflection coefficient S11.
- FIG. 11 shows frequency characteristics of the input reflection coefficient S11 when the voltage applied to the liquid crystal 11 is changed.
- the graph G111 shifts to the graph G112.
- the input reflection coefficient S11 becomes lower, and the frequency range in which the reflection coefficient is equal to or less than the predetermined reflection coefficient is expanded.
- the voltage applied to the liquid crystal 11 is the voltage V112.
- the present invention has been described as a hardware configuration in the above embodiment, the present invention is not limited to this.
- the present invention can also be realized by causing a CPU (Central Processing Unit) to execute a computer program to process each component.
- a CPU Central Processing Unit
- Non-transitory computer readable media include various types of tangible storage media.
- Examples of non-transitory computer-readable media include magnetic recording media (specifically flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (specifically magneto-optical discs), CD-ROMs (Read Only Memory ), CD-R, CD-R/W, semiconductor memory (specifically, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM)), flash ROM, and RAM (Random Access Memory).
- the program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.
- patch antenna 11 liquid crystal 12: microstrip line 12m: meander transmission line 12s: spiral transmission line 12c: coplanar line 121: first ground line 122: second ground line 13: dielectric 14: patch antenna element 15: control unit 16: negative electrode 17: positive electrode 51: dielectric D1: first direction D2: second direction D3: third direction BW, BW1, BW2: frequency range G31, G32, G33, G41, G42, G101, G102, G111, G112, G113: Graphs V31, V32, V33, V41, V42, V112, V113: Voltage S11: Input reflection coefficient P: Pseudo feed point L, L101, L102: Length
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Waveguide Aerials (AREA)
Abstract
Description
液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、
前記マイクロストリップ線路上に設けられた誘電体と、
前記誘電体上に設けられ、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることで、所定の周波数において自パッチアンテナの入力インピーダンスを整合させる制御部と、
を備える。
液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、前記マイクロストリップ線路上に設けられた誘電体と、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、を含むパッチアンテナの入力インピーダンスを制御する方法であって、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることと、
前記液晶の誘電率を変化させることで、所定の周波数において前記パッチアンテナの入力インピーダンスを整合させることと、
を備える。
液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、前記マイクロストリップ線路上に設けられた誘電体と、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、を含むパッチアンテナの入力インピーダンスを制御するプログラムであって、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることと、
前記液晶の誘電率を変化させることで、所定の周波数において前記パッチアンテナの入力インピーダンスを整合させることと、
をコンピュータに実行させる。
<アンテナの構成>
図1は、実施の形態1に係るパッチアンテナを例示する斜視図である。
図2は、実施の形態1に係るパッチアンテナの構成を例示する模式図である。
図2は、実施の形態1に係るパッチアンテナ10の構成をより詳細に示すため、誘電体と液晶とを分離している。すなわち、パッチアンテナ10の誘電体と液晶とは、本来は図1に示すように接触している。
印加方法は、図2に示すように、液晶11の下面と接触するように設けられたマイナス電極16と、マイクロストリップ線路12に接続するように設けられたプラス電極17と、を設ける。制御部15が、プラス電極17とマイナス電極16とを使用して電圧を発生させ液晶11に電圧を印加する。尚、マイナス電極をグランドと称することもある。
図3は、実施の形態1に係るパッチアンテナの動作を例示するグラフである。
図3に示す横軸は周波数を示し、縦軸は入力反射係数S11を示す。
図4は、実施の形態1に係るパッチアンテナの動作を例示するグラフである。
図4に示す横軸は周波数を示し、縦軸は入力反射係数S11を示す。
図3及び図4は、液晶11に印加する電圧を変化させた場合における入力反射係数S11の周波数特性を示す。
ここで、実施の形態1に係るパッチアンテナ10の特徴を以下に示す。
パッチアンテナ10は、マイクロストリップ線路12(伝送線路)の下に液晶11を入れ、液晶11に電圧を印加して液晶11の誘電率を変えることで、所望の周波数においてインピーダンスをマッチングさせることができる。
図5は、実施の形態1の比較例に係るパッチアンテナの構成を例示する模式図である。
<アンテナの構成>
図6は、実施の形態2に係るパッチアンテナの伝送線路を例示する斜視図である。
図7は、実施の形態2に係るパッチアンテナの伝送線路を例示する斜視図である。
図6と図7では、簡単のため、誘電体13とパッチアンテナ素子14とを省略している。
図8は、実施の形態2に係るパッチアンテナ20の構成をより詳細に示すため、誘電体と液晶とを分離している。図8は、簡単のため、制御部15とマイナス電極16とプラス電極17を省略している。図8は、信号の伝送線路としてメアンダ型伝送線路12mを示す。
<アンテナの構成>
図9は、実施の形態3に係るパッチアンテナの伝送線路を例示する斜視図である。
図9は、簡単のため、誘電体13とパッチアンテナ素子14とを省略している。
図10は、実施の形態3に係るパッチアンテナの動作を例示するグラフである。
図10に示す横軸は周波数を示し、縦軸は入力反射係数S11を示す。
図10は、第1接地線路121及び第2接地線路122の長さL(図9参照)を変化させた場合における入力反射係数S11の周波数特性を示す。
図11に示す横軸は周波数を示し、縦軸は入力反射係数S11を示す。
図11は、液晶11に印加する電圧を変化させた場合における入力反射係数S11の周波数特性を示す。
11:液晶
12:マイクロストリップ線路
12m:メアンダ型伝送線路
12s:渦巻型伝送線路
12c:コプレーナ線路
121:第1接地線路
122:第2接地線路
13:誘電体
14:パッチアンテナ素子
15:制御部
16:マイナス電極
17:プラス電極
51:誘電体
D1:第1方向
D2:第2方向
D3:第3方向
BW、BW1、BW2:周波数範囲
G31、G32、G33、G41、G42、G101、G102、G111、G112、G113:グラフ
V31、V32、V33、V41、V42、V112、V113:電圧
S11:入力反射係数
P:疑似的な給電点
L、L101、L102:長さ
Claims (9)
- 液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、
前記マイクロストリップ線路上に設けられた誘電体と、
前記誘電体上に設けられ、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることで、所定の周波数において自パッチアンテナの入力インピーダンスを整合させる制御手段と、
を備えるパッチアンテナ。 - 前記制御手段は、前記所定の周波数において自パッチアンテナの前記入力インピーダンスが前記所定のインピーダンスの範囲内にある場合、前記入力インピーダンスが前記整合したと判断する、
請求項1に記載のパッチアンテナ。 - 前記液晶の下面と接触するように設けられたマイナス電極と、
前記マイクロストリップ線路に接続するように設けられたプラス電極と、
をさらに備え、
前記制御手段は、前記プラス電極と前記マイナス電極とを使用して前記液晶に前記電圧を印加する、
請求項1又は2に記載のパッチアンテナ。 - 前記マイクロストリップ線路の代わりに、メアンダ型伝送線路、又は渦巻型伝送線路を使用する、
請求項1から3のいずれか1つに記載のパッチアンテナ。 - 前記メアンダ型伝送線路の数は少なくとも1つ以上であり、
前記渦巻型伝送線路の数は少なくとも1つ以上である、
請求項4に記載のパッチアンテナ。 - 前記液晶上であって前記マイクロストリップ線路の前記第1方向と交差する第2方向に設けられ、前記第1方向に延びる第1接地線路と、
前記液晶上であって前記マイクロストリップ線路の前記第2方向の逆方向に設けられ、前記第1方向に延びる第2接地線路と、
をさらに備え、
前記第1接地線路の前記第1方向の長さは、前記マイクロストリップ線路の前記第1方向の長さよりも短く、
前記第2接地線路の前記第1方向の長さは、前記マイクロストリップ線路の前記第1方向の長さよりも短い、
請求項1から3のいずれか1つに記載のパッチアンテナ。 - 前記第1接地線路の前記第1方向の長さと、前記第2接地線路の前記第1方向の長さと、の差分は、所定の長さ以下である、
請求項6に記載のパッチアンテナ。 - 液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、前記マイクロストリップ線路上に設けられた誘電体と、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、を含むパッチアンテナの入力インピーダンスを制御する方法であって、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることと、
前記液晶の誘電率を変化させることで、所定の周波数において前記パッチアンテナの入力インピーダンスを整合させることと、
を備える方法。 - 液晶上に設けられ、第1方向に延び、信号が伝送するマイクロストリップ線路と、前記マイクロストリップ線路上に設けられた誘電体と、前記信号を電磁結合で前記マイクロストリップ線路から取得し放射するパッチアンテナ素子と、を含むパッチアンテナの入力インピーダンスを制御するプログラムであって、
前記液晶に印加する電圧に基づいて前記液晶の誘電率を変化させることと、
前記液晶の誘電率を変化させることで、所定の周波数において前記パッチアンテナの入力インピーダンスを整合させることと、
をコンピュータに実行させるプログラムが格納される非一時的なコンピュータ可読媒体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023510496A JPWO2022209146A5 (ja) | 2022-01-14 | パッチアンテナ、方法、及びプログラム | |
US18/278,983 US20240154308A1 (en) | 2021-03-30 | 2022-01-14 | Patch antenna, method, and non-transitory computer-readable medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-057098 | 2021-03-30 | ||
JP2021057098 | 2021-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209146A1 true WO2022209146A1 (ja) | 2022-10-06 |
Family
ID=83458538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/001186 WO2022209146A1 (ja) | 2021-03-30 | 2022-01-14 | パッチアンテナ、方法、及び非一時的なコンピュータ可読媒体 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240154308A1 (ja) |
WO (1) | WO2022209146A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002344100A (ja) * | 2001-05-21 | 2002-11-29 | Sumitomo Electric Ind Ltd | 基板用誘電体材料及びその製造方法 |
JP2006174378A (ja) * | 2004-12-20 | 2006-06-29 | Kyocera Corp | 液晶部品モジュールおよび誘電率制御方法 |
JP2020150496A (ja) * | 2019-03-15 | 2020-09-17 | 株式会社ジャパンディスプレイ | アンテナ装置及びフェーズドアレイアンテナ装置 |
-
2022
- 2022-01-14 WO PCT/JP2022/001186 patent/WO2022209146A1/ja active Application Filing
- 2022-01-14 US US18/278,983 patent/US20240154308A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002344100A (ja) * | 2001-05-21 | 2002-11-29 | Sumitomo Electric Ind Ltd | 基板用誘電体材料及びその製造方法 |
JP2006174378A (ja) * | 2004-12-20 | 2006-06-29 | Kyocera Corp | 液晶部品モジュールおよび誘電率制御方法 |
JP2020150496A (ja) * | 2019-03-15 | 2020-09-17 | 株式会社ジャパンディスプレイ | アンテナ装置及びフェーズドアレイアンテナ装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240154308A1 (en) | 2024-05-09 |
JPWO2022209146A1 (ja) | 2022-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6913690B2 (ja) | 一体型ガラス遷移部を有する広帯域rf放射状導波路給電部 | |
JP4212046B2 (ja) | 指向性可変アンテナおよび該アンテナを用いた電子機器、ならびに該アンテナを用いたアンテナ指向性制御方法 | |
JPWO2016121375A1 (ja) | 周波数選択表面、無線通信装置およびレーダ装置 | |
JPH08195617A (ja) | 円偏波ループアンテナ | |
US9837724B2 (en) | Antenna system | |
US12034233B2 (en) | System and method of optical antenna tuning | |
JP6340690B2 (ja) | アンテナ装置 | |
US11349184B2 (en) | Phase shifter including first and second boards having rails thereon and configured to be rotatable with respect to each other and an antenna formed therefrom | |
US10230161B2 (en) | Low-band reflector for dual band directional antenna | |
JP2015046846A (ja) | アンテナ装置設計方法及びアンテナ装置 | |
EP1575127B1 (en) | Antenna device | |
JP2002026639A (ja) | アンテナ装置 | |
KR101880971B1 (ko) | 빔형성 방법 및 장치 | |
KR20150080927A (ko) | 쿼드리필러 헬릭스 안테나 | |
WO2022209146A1 (ja) | パッチアンテナ、方法、及び非一時的なコンピュータ可読媒体 | |
TWI450446B (zh) | 一種天線結構 | |
KR101751123B1 (ko) | 소형화된 구조의 반사형 셀 어레이 안테나 | |
CN105098367A (zh) | 一种角锥喇叭天线及其设计方法 | |
EP3878051A1 (en) | Mitigation of polarization mismatch between reflector and feed antennas by feed predistortion | |
JP2008113314A (ja) | スロットアンテナ装置 | |
JP6721354B2 (ja) | アンテナ素子、アレーアンテナ及び平面アンテナ | |
JP4204994B2 (ja) | アンテナ装置及び無線通信装置 | |
CN108666767B (zh) | 微带天线及通信系统 | |
KR101189507B1 (ko) | 무선 통신 시스템에서 신호의 반사 계수를 제어하는 장치 및 그의 제조 방법 | |
CN113659306B (zh) | 天线装置和电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22779378 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023510496 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18278983 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22779378 Country of ref document: EP Kind code of ref document: A1 |