WO2022202814A1 - ピリミジン化合物の製造方法 - Google Patents

ピリミジン化合物の製造方法 Download PDF

Info

Publication number
WO2022202814A1
WO2022202814A1 PCT/JP2022/013174 JP2022013174W WO2022202814A1 WO 2022202814 A1 WO2022202814 A1 WO 2022202814A1 JP 2022013174 W JP2022013174 W JP 2022013174W WO 2022202814 A1 WO2022202814 A1 WO 2022202814A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound represented
salt
alkyl
production method
Prior art date
Application number
PCT/JP2022/013174
Other languages
English (en)
French (fr)
Inventor
宏臣 紅林
勇一郎 中野
Original Assignee
住友ファーマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ファーマ株式会社 filed Critical 住友ファーマ株式会社
Priority to JP2023509198A priority Critical patent/JPWO2022202814A1/ja
Publication of WO2022202814A1 publication Critical patent/WO2022202814A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/46Two or more oxygen, sulphur or nitrogen atoms
    • C07D239/48Two nitrogen atoms
    • C07D239/49Two nitrogen atoms with an aralkyl radical, or substituted aralkyl radical, attached in position 5, e.g. trimethoprim

Definitions

  • the present invention relates to a method for producing a pyrimidine compound useful as a medicine. More specifically, it relates to a method for producing a pyrimidine compound useful as a therapeutic or prophylactic agent for diseases such as cancer, allergic diseases, autoimmune diseases, and viral diseases.
  • Patent Document 1 discloses a pyrimidine compound according to the present invention and a method for producing the same. However, although Patent Document 1 discloses production on a laboratory scale, it does not disclose a method for producing a pyrimidine compound suitable for the industrial scale of the present invention, which will be described later.
  • the problem to be solved by the present invention is to provide a novel method for producing a pyrimidine compound useful as a medicine as described above, which is industrially advantageous with less environmental impact and fewer steps.
  • the present inventors have found that the use of chlorobenzene is avoided, the reaction time is shortened, the concentration process is reduced, and the extraction process is reduced.
  • the present inventors have found that it is industrially advantageous because of the small amount of the pyrimidine compound, and that the pyrimidine compound can be produced efficiently, thereby completing the present invention.
  • R 1 is hydrogen, C 1-4 alkyl, C 1-3 alkyl-(CH 2 )— (wherein the C 1-3 alkyl moiety is substituted with 1, 2 or 3 fluorine atoms), represents C 1-4 alkyl, C 1-3 alkoxy-C 2-4 alkyl, C 3-6 cycloalkyl, C 1-4 alkylcarbonyl, or formyl substituted with cyano;
  • R 2 represents hydrogen, hydroxymethyl or 2-hydroxyethyl, m represents 1 or 2, n represents 1 or 2]
  • the reaction temperature is 150°C or higher, and the amount of anisole solvent is 8 to 10 times the weight of the compound represented by (4) or (4a). , the production method according to any one of items 1 to 9.
  • step 11 a step of performing extraction under acidic conditions after the completion of the reaction to dissolve the compound (1) or (1a) of the product in the aqueous layer, followed by neutralizing the aqueous layer ( Item 11.
  • R 1 is hydrogen, C 1-4 alkyl, C 1-3 alkyl-(CH 2 )— (wherein the C 1-3 alkyl moiety is substituted with 1, 2 or 3 fluorine atoms), represents C 1-4 alkyl, C 1-3 alkoxy-C 2-4 alkyl, C 3-6 cycloalkyl, C 1-4 alkylcarbonyl, or formyl substituted with cyano;
  • R 2 represents hydrogen, hydroxymethyl or 2-hydroxyethyl, m represents 1 or 2, n represents 1 or 2]
  • a compound represented by or a salt thereof is reacted in an anisole solvent in the presence of an
  • the reaction temperature is 150°C or higher, and the amount of anisole solvent is 8 to 10 times the weight of the compound represented by (4) or (4a). , the production method according to any one of items 12 to 19.
  • step 21 a step of extracting under acidic conditions after the completion of the reaction to dissolve the compound (1) or (1a) of the product in the aqueous layer, followed by neutralizing the aqueous layer ( Item 21.
  • the reaction time of each process is short, the extraction process and concentration process are reduced, the environmental load is small, the solvent such as chlorobenzene, which is highly irritating, is not required, and the purpose is simple, high yield, and high purity. It has become possible to provide a new industrially advantageous method for producing a pyrimidine compound that can obtain a product.
  • C 1-4 alkyl and “C 1-3 alkyl” mean a linear or branched saturated hydrocarbon group having 1 to 4 carbon atoms and 1 to 3 carbon atoms, respectively.
  • C 1-4 alkyl includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl and structural isomers thereof
  • C 1-3 alkyl includes methyl, ethyl, propyl. , isopropyl and their structural isomers.
  • C 3-6 cycloalkyl means a cyclic saturated hydrocarbon group having 3 to 6 carbon atoms, including partially crosslinked structures.
  • C 3-6 cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and the like.
  • C 1-4 alkoxy means an oxy group substituted with the above “C 1-4 alkyl”.
  • C 1-4 alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, 1-methylethoxy, n-butoxy, sec-butoxy, tert-butoxy, 1-methylpropoxy, 2-methylpropoxy.
  • Preferred C 1-4 alkoxy include, for example, methoxy, ethoxy, propoxy.
  • C 1-4 alkylcarbonyl means a group in which carbonyl is bonded to the above “C 1-4 alkyl”. Examples include methylcarbonyl, ethylcarbonyl, propylcarbonyl, 1-methylethylcarbonyl, butylcarbonyl, 1,1-dimethylethylcarbonyl, 1-methylpropylcarbonyl, 2-methylpropylcarbonyl and the like.
  • Halogen includes, for example, fluorine, chlorine, bromine or iodine. Fluorine or chlorine is preferred.
  • C 1-4 alkylsulfonate means a sulfonate group substituted with a straight or branched chain saturated hydrocarbon having 1 to 4 carbon atoms.
  • C 1-4 alkylsulfonate includes methylsulfonate and ethylsulfonate. Methylsulfonate is preferred.
  • C 6-10 arylsulfonate means a sulfonate group substituted with an aromatic hydrocarbon having 6 to 10 carbon atoms.
  • C 6-10 arylsulfonate includes phenylsulfonate, naphthylsulfonate. Phenylsulfonate is preferred.
  • Substituents of the aryl portion in the C 6-10 arylsulfonate include halogen, C 1-4 alkyl and C 1-4 alkoxy, preferably methyl, ethyl.
  • Preferred C 6-10 arylsulfonates include p-toluenesulfonate.
  • Substituents for the phenyl moiety in benzyl include halogen, nitro, C 1-4 alkyl and C 1-4 alkoxy, preferably nitro, methyl and methoxy.
  • Benzyl is preferably unsubstituted benzyl.
  • Salts in raw materials or intermediates include acid addition salts and base addition salts.
  • acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, nitrate, and phosphate; acetate, propionate, trifluoroacetate, tartaric acid; organic acid salts such as salts, citrates, fumarates, maleates, succinates, methanesulfonates, benzenesulfonates, formates, toluenesulfonates;
  • base addition salts include inorganic base salts such as sodium salts, potassium salts, calcium salts and magnesium salts, and organic base salts such as triethylamine salts and pyridine salts.
  • R 1 is preferably hydrogen, C 1-4 alkyl, C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is substituted with 1, 2 or 3 fluorine atoms) , or C 1-3 alkoxy-C 2-4 alkyl.
  • R 1 is more preferably C 1-3 alkyl-(CH 2 )- (wherein the C 1-3 alkyl is substituted with 1, 2 or 3 fluorine atoms), more preferably , CHF 2 —CH 2 — or CF 3 —CH 2 —, and more preferably CF 3 —CH 2 —.
  • R 2 preferably includes hydrogen, hydroxymethyl, or 2-hydroxyethyl.
  • R 2 is more preferably hydroxymethyl or 2-hydroxyethyl, still more preferably 2-hydroxyethyl.
  • the configuration at the carbon atom to which R 2 is bonded is preferably S configuration.
  • R 3 is preferably chlorine, bromine, iodine, C 1-4 alkylsulfonate or C 6-10 arylsulfonate (wherein the aryl moiety in said arylsulfonate is halogen, C 1-4 alkyl and C 1-4 optionally substituted with 1 to 5 substituents independently selected from the group consisting of alkoxy).
  • R 3 is more preferably chlorine or bromine, still more preferably chlorine.
  • R 4 is preferably C 1-4 alkyl or benzyl (the phenyl moiety in said benzyl is 1-5 independently selected from the group consisting of halogen, nitro, C 1-4 alkyl and C 1-4 alkoxy may be substituted with one substituent).
  • R 4 is more preferably tert-butyl.
  • m is preferably 1 or 2, more preferably 1.
  • n is preferably 1 or 2, more preferably 1.
  • R 1a preferably includes CHF 2 —CH 2 — or CF 3 —CH 2 —, more preferably CF 3 —CH 2 —.
  • a base for producing the compound represented by formula (4) by reacting the compound represented by formula (2) or a salt thereof with the compound represented by formula (3) or a salt thereof in the presence of a base Preferred are sodium carbonate, sodium hydrogen carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, potassium-tert-butoxide, triethylamine, N,N-diisopropylethylamine, pyridine and sodium hydride. Sodium carbonate and potassium carbonate are more preferred, and sodium carbonate is even more preferred. In this reaction, it is preferable to add potassium iodide. Acetonitrile is preferred as the solvent for this reaction, and the reaction temperature is preferably 70°C to 80°C, more preferably 75°C.
  • the amount of the solvent used is preferably 3 to 6 times the weight of the compound represented by (2), more preferably 3 to 5 times the weight, still more preferably 4 times the weight. is.
  • an acid for producing a compound represented by formula (6) by reacting a compound represented by formula (4) or a salt thereof with a compound represented by formula (5) or a salt thereof in the presence of an acid Preferred are trifluoroacetic acid, trifluoromethanesulfonic acid and p-toluenesulfonic acid. Trifluoroacetic acid and trifluoromethanesulfonic acid are more preferred, and trifluoroacetic acid is even more preferred.
  • the solvent for this reaction is preferably anisole, and the reaction temperature is preferably 150°C or higher, more preferably 155°C. Anisole has a higher boiling point than chlorobenzene used in conventional production methods, and reaction time can be shortened by reacting at high temperatures.
  • chlorobenzene is a solvent that is highly irritating to the skin and eyes
  • anisole which is less irritating to the skin and eyes
  • the amount of the solvent used is preferably 7 to 11 times the weight of the compound represented by (4), more preferably 8 to 10 times the weight, still more preferably 9 times the weight. be.
  • the acidic by-product was removed by extraction under basic conditions, and then column chromatography was performed.
  • column chromatography is performed using basic silica gel. By performing, the extraction step can be omitted.
  • an acid is used to Deprotection is preferred, and preferred acids in that case include hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, formic acid, acetic acid, trifluoroacetic acid, methanesulfonic acid and p-toluenesulfonic acid. Hydrochloric acid and hydrobromic acid are more preferred, and hydrochloric acid is even more preferred.
  • the reaction After completion of the reaction, it is preferable to obtain an aqueous layer by liquid separation under acidic conditions, and to obtain the precipitated compound of formula (1) by adding a base to the aqueous layer for neutralization.
  • the compound of formula (1) is obtained by neutralizing after the completion of the reaction, liquid separation, and concentrating the organic layer, but the compound of formula (1) precipitated from the aqueous layer is obtained. By doing so, the conventional step of concentrating the organic layer can be omitted.
  • R 1 is hydrogen, C 1-4 alkyl, C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is 1, 2 or substituted with 3 fluorine atoms), or C 1-3 alkoxy-C 2-4 alkyl
  • R 2 is hydrogen, hydroxymethyl, or 2-hydroxyethyl
  • m is 1 or 2 and n is 1 or 2.
  • R 1 is C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is substituted with 1, 2 or 3 fluorine atoms) ), R 2 is hydroxymethyl or 2-hydroxyethyl, m is 1, and n is 1.
  • R 1 is CHF 2 —CH 2 — or CF 3 —CH 2 —, R 2 is 2-hydroxyethyl, and m is 1; and n is 1.
  • R 1 is CF 3 —CH 2 —
  • R 2 is 2-hydroxyethyl
  • m is 1
  • n is 1 compound.
  • R 1 is CHF 2 —CH 2 —
  • R 2 is 2-hydroxyethyl
  • m is 1
  • n is 1 compound.
  • One embodiment of compounds of formula (2) includes compounds wherein R 3 is chlorine, bromine, iodine, C 1-4 alkylsulfonate, or C 6-10 arylsulfonate.
  • Another embodiment of compounds of formula (2) includes compounds wherein R 3 is chlorine.
  • R 1 is C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is 1, 2 or 3 substituted with a fluorine atom), R 4 is C 1-4 alkyl or benzyl, and n is 1.
  • R 1 is CHF 2 —CH 2 — or CF 3 —CH 2 —
  • R 4 is tert-butyl
  • n is 1.
  • Another embodiment of compounds of formula (3) and formula (4) include compounds wherein R 1 is CF 3 —CH 2 —, R 4 is tert-butyl, and n is 1. be done.
  • Another embodiment of compounds of formula (3) and formula (4) include compounds wherein R 1 is CHF 2 —CH 2 —, R 4 is tert-butyl, and n is 1. be done.
  • One embodiment of compounds of formula (5) includes compounds wherein R 2 is hydrogen, hydroxymethyl, or 2-hydroxyethyl and m is 1.
  • Another embodiment of compounds of formula (5) include compounds wherein R 2 is hydroxymethyl or 2-hydroxyethyl and m is 1.
  • Another embodiment of compounds of formula (5) includes compounds wherein R 2 is 2-hydroxyethyl and m is 1.
  • R 1 is hydrogen, C 1-4 alkyl, C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is 1, 2 or substituted with 3 fluorine atoms), or C 1-3 alkoxy-C 2-4 alkyl
  • R 2 is hydrogen, hydroxymethyl, or 2-hydroxyethyl
  • R 4 is C 1 -4 alkyl or benzyl
  • m is 1 and n is 1.
  • R 1 is C 1-3 alkyl-(CH 2 )- (wherein C 1-3 alkyl is substituted with 1, 2 or 3 fluorine atoms) ), R 2 is hydroxymethyl or 2-hydroxyethyl, R 4 is tert-butyl, m is 1, and n is 1.
  • R 1 is CHF 2 —CH 2 — or CF 3 —CH 2 —
  • R 2 is 2-hydroxyethyl
  • R 4 is tert -butyl
  • m is 1
  • n is 1.
  • R 1 is CF 3 —CH 2 —
  • R 2 is 2-hydroxyethyl
  • R 4 is tert-butyl
  • m is 1 and n is 1.
  • R 1 is CHF 2 —CH 2 —
  • R 2 is 2-hydroxyethyl
  • R 4 is tert-butyl
  • m is 1 and n is 1.
  • each compound is a concept that includes all tautomers, geometric isomers, and stereoisomers, depending on the type of substituent, and may be a mixture thereof.
  • each compound may be a salt such as an acid addition salt or a base addition salt, or may be a hydrate or a solvate such as an ethanolate.
  • Pharmaceutically acceptable salts of the compounds represented by formula (1) are conventional non-toxic salts and organic acid salts (e.g. acetates, propionates, trifluoroacetates, maleates, fumarates). acid, citrate, succinate, tartrate, methanesulfonate, benzenesulfonate, formate, toluenesulfonate) or inorganic acid salts (e.g. hydrochloride, hydrobromide, hydrogen iodide acid addition salts such as acid salts, sulfates, nitrates, phosphates), salts with amino acids (e.g. alginic acid, aspartic acid, glutamic acid), alkali metal salts (e.g.
  • Metal salts such as salts (e.g. calcium salts, magnesium salts), ammonium salts, or organic base salts (e.g. trimethylamine salts, triethylamine salts, pyridine salts, picoline salts, dicyclohexylamine salts, N,N'-dibenzylethylenediamine salts) mentioned.
  • Step i-1) Amino Group Introduction Reaction Compound (4) is obtained by reacting a compound having a leaving group at the benzylic position represented by compound (2) with an amine represented by compound (3).
  • a suitable inert solvent optionally in the presence of a base, optionally in the presence of an iodide salt, at a temperature ranging from about ⁇ 20° C. to the boiling point of the solvent used. It can be carried out by reacting for minutes to 48 hours.
  • Examples of the base include organic bases such as triethylamine and pyridine; inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride and potassium hydride; sodium methoxide and potassium tert-butoxide.
  • organic bases such as triethylamine and pyridine
  • inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, potassium hydroxide, sodium hydride and potassium hydride
  • sodium methoxide and potassium tert-butoxide sodium methoxide and potassium tert-butoxide.
  • metal alkoxides such as Examples of iodide salts include potassium iodide and sodium iodide.
  • inert solvents include aromatic hydrocarbons such as benzene and toluene; ether solvents such as diethyl ether, tetrahydrofuran (THF) and 1,4-dioxane; lower alcohols such as methanol, ethanol and isopropanol; Examples include aprotic polar solvents such as dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and acetonitrile, and mixed solvents thereof. Acetonitrile etc. are mentioned as a more preferable solvent.
  • aprotic polar solvents such as dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP) and acetonitrile, and mixed solvents thereof.
  • DMF dimethylformamide
  • NMP N-methyl-2-pyrrolidone
  • acetonitrile etc. are mentioned as a more preferable solvent.
  • Step i-2 Amino Group Introduction Reaction
  • Compound (6) can be obtained by reacting compound (4) with an amine represented by compound (5).
  • the reaction can be carried out in the presence of an acid, if necessary, in a suitable inert solvent at a temperature ranging from about 50° C. to the boiling point of the solvent used for 10 minutes to 48 hours.
  • acids include trifluoroacetic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid and the like.
  • inert solvents include aromatic hydrocarbons such as anisole and chlorobenzene, ether solvents such as 1,4-dioxane, alcohol solvents such as butanol, N,N-dimethylformamide (DMF), N-methyl-2 -Aprotic polar solvents such as pyrrolidone (NMP) and propionitrile, or mixed solvents thereof. More preferred solvents include anisole, propionitrile and the like.
  • Step i-3) Deprotection Reaction of Carboxylic Acid Protecting Group (Ester Group)
  • Compound (1) can be produced by deprotecting the ester moiety of compound (6) in an inert solvent.
  • R 4 is C 1-4 alkyl
  • R 4 can be hydrolyzed in the presence of a base.
  • R 4 is tert-butyl
  • R 4 can be hydrolyzed in the presence of acid.
  • R 4 is benzyl (even if the phenyl moiety in said benzyl is substituted with 1 to 5 substituents independently selected from the group consisting of halogen, nitro, C 1-4 alkyl and C 1-4 alkoxy; good), R4 can be deprotected by catalytic reduction using a metal catalyst and hydrogen.
  • the base include inorganic bases such as sodium hydroxide, potassium hydroxide and lithium hydroxide. Acids include hydrochloric acid (0.1 to 10 mol/L), sulfuric acid (0.1 to 5 mol/L), trifluoroacetic acid and the like. Hydrochloric acid (1 to 5 mol/L) is preferred.
  • the inert solvent for deprotection under basic conditions should be appropriately selected according to the type of starting compound, etc.
  • Examples include aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, tetrahydrofuran, Ethers such as dioxane and cyclopentyl methyl ether, and alcohols such as methanol and ethanol can be mentioned, and these solvents may be used alone or in combination of two or more.
  • the reaction temperature for deprotection under basic conditions is usually about 0°C to about 40°C.
  • the inert solvent for deprotection under acidic conditions should be appropriately selected according to the type of starting compound, etc.
  • Examples include aromatic hydrocarbons such as benzene, toluene and xylene, diethyl ether, tetrahydrofuran, dioxane, , and cyclopentyl methyl ether, and these solvents may be used alone or in combination of two or more.
  • the reaction temperature for deprotection under acidic conditions is usually about 0°C to about 100°C.
  • Metal catalysts for deprotection by catalytic reduction include palladium-based catalysts such as palladium-carbon, rhodium-based catalysts such as rhodium-carbon, platinum-based catalysts such as platinum-carbon, ruthenium-based catalysts such as ruthenium-carbon, and Raney nickel. and nickel-based catalysts such as
  • Step 1 2-amino-5- ⁇ [4-(chloromethyl)-2-methoxyphenyl]methyl ⁇ -6-methylpyrimidin-4-yl 2,4,6-tri(propan-2-yl)benzene at room temperature -1-sulfonate (683 g), acetonitrile (2392 g), sodium carbonate (388.07 g), potassium iodide (60.75 g) and tert-butyl N-(2,2,2-trifluoroethyl)glycinate ( 311.89 g) was added.
  • a weighing container of tert-butyl N-(2,2,2-trifluoroethyl)glycinate was washed with acetonitrile (342.21 g) and added. The temperature was raised to 75° C. and kept at that temperature for 8 hours. Cooled to room temperature and stirred for 12 hours. At room temperature, toluene (5464 g) and water (3416 g) were added and separated. The organic layer was washed with 2% brine (3463 g) and separated. Further, it was washed with 2% saline (3470 g) and separated. The organic layer was concentrated under reduced pressure while maintaining the external temperature at 40°C.
  • Heptane (934 g) was added, and the mixture was again concentrated under reduced pressure at an external temperature of 40°C.
  • Toluene (296.02 g) and heptane (4673 g) were added and the temperature was raised to 75°C. After confirmation of dissolution, the mixture was cooled to 25°C. It was cooled to 5°C over 2 hours and kept warm for 2 hours.
  • Step 2 Anisole (2984 g) was added to the compound (351.16 g) obtained in step 1 and stirred at room temperature to confirm dissolution. (3S)-3-Aminohexan-1-ol (112.02 g) was added and anisole (105.04 g) was added to rinse the weighing vessel. Trifluoroacetic acid (27.22 g) was added and the weighing vessel was rinsed with anisole (70.24 g) and added. The internal temperature was raised to 155° C. and kept for 5 hours. Cooled to room temperature and stirred for 12 hours.
  • reaction solution was purified by column chromatography using toluene (5400 g) and a mixed solvent of toluene/ethyl acetate (10664 g/5546 g) and basic silica gel.
  • the eluate was concentrated under reduced pressure at an external temperature of 40° C., and tert-butyl N-( ⁇ 4-[(2-amino-4- ⁇ [(3S)-1-hydroxyhexan-3-yl]amino ⁇ -6-methyl pyrimidin-5-yl)methyl]-3-methoxyphenyl ⁇ methyl)-N-(2,2,2-trifluoroethyl)glycinate (260 g, yield: 96%, HPLC purity: 96.17 area%) Obtained.
  • Step 3 3 mol/L hydrochloric acid (2868 g) was heated to an internal temperature of 50°C.
  • the compound (259 g) obtained in step 2 was dissolved in toluene (646 g) and added dropwise to aqueous hydrochloric acid while maintaining the internal temperature at 50°C.
  • the dropping funnel was washed with toluene (215.29 g) and added. After keeping the temperature at 50° C. for 2 hours, the mixture was cooled to room temperature and separated. The aqueous layer was filtered and cooled to 15°C. Ethanol (1628 g) cooled to 15° C. was added. A 5 mol/L sodium hydroxide aqueous solution (1921 g) cooled to 15° C.
  • the compound represented by formula (1) can be produced efficiently by an operation that enables large-scale synthesis. Therefore, it is possible to provide a production method that is applicable to industrial production with a small environmental load and a small number of steps.

Abstract

本発明は、医薬として有用な式(1)のピリミジン化合物(式中、RはC1-4アルキル等であり、Rは水素等であり、mおよびnは1等の数である)の製造方法に関する。

Description

ピリミジン化合物の製造方法
 本発明は、医薬として有用なピリミジン化合物の製造方法に関する。より詳しくは、癌、アレルギー疾患、自己免疫疾患、ウイルス性疾患等の疾患の治療薬又は予防薬として有用なピリミジン化合物の製造方法に関する。
 特許文献1には、本発明に係るピリミジン化合物およびその製造方法が開示されている。しかし、特許文献1には実験室スケールでの製造は開示されているものの、後述の本発明の工業化スケールに適したピリミジン化合物の製造方法は開示されていない。
国際公開第2013/172479号
 本発明が解決しようとする課題は、上述のとおり医薬として有用なピリミジン化合物の新規な製造方法で、環境負荷および工程数が少なく工業的に有利な製造方法を提供することにある。
 本発明者らは、ピリミジン化合物の工業的製法への適応について鋭意研究を重ねた結果、クロロベンゼン使用の回避、反応時間の短縮、濃縮工程の削減、抽出工程の削減等から、環境負荷および工程数が少なく工業的に有利であり、ピリミジン化合物を効率よく製造できることを見出し、本発明を完成した。
 即ち本発明は、
〔項1〕式(1): 
Figure JPOXMLDOC01-appb-C000021
[式中、
 Rは、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキル部分は1、2または3個のフッ素原子で置換されている)、シアノで置換されたC1-4アルキル、C1-3アルコキシ-C2-4アルキル、C3-6シクロアルキル、C1-4アルキルカルボニル、またはホルミルを表し、
 Rは、水素、ヒドロキシメチル、または2-ヒドロキシエチルを表し、
 mは、1または2を表し、
 nは、1または2を表す]
で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~3を含む製造方法;
(工程1)式(2):
Figure JPOXMLDOC01-appb-C000022
[式中、Rは、塩素、臭素、ヨウ素、C1-4アルキルスルホナート、またはC6-10アリールスルホナート(該アリールスルホナートにおけるアリール部分は、ハロゲン、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)を表す]
で表される化合物またはその塩と式(3):
Figure JPOXMLDOC01-appb-C000023
[式中、Rは、C1-4アルキル、またはベンジル(該ベンジルにおけるフェニル部分は、ハロゲン、ニトロ、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)を表し、Rおよびnは、上記と同じ基を表す]
で表される化合物またはその塩を塩基存在下で反応させて、式(4):
Figure JPOXMLDOC01-appb-C000024
[式中、R、Rおよびnは、上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程2)式(4)で表される化合物またはその塩と式(5):
Figure JPOXMLDOC01-appb-C000025
[式中、Rおよびmは、上記と同じ基を表す]
で表される化合物またはその塩を酸存在下アニソール溶媒中で反応させて、式(6):
Figure JPOXMLDOC01-appb-C000026
[式中、R、R、R、mおよびnは、上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程3)式(6)で表される化合物またはその塩のカルボン酸保護基を脱保護して、式(1)で表される化合物またはその製薬学的に許容される塩を製造する工程。
〔項2〕Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)である、項1に記載の製造方法。
〔項3〕Rが、CHF-CH-またはCF-CH-である、項1に記載の製造方法。
〔項4〕Rが、ヒドロキシメチルまたは2-ヒドロキシエチルである、項1~3のいずれかに記載の製造方法。
〔項5〕Rが、2-ヒドロキシエチルである、項1~3のいずれかに記載の製造方法。
〔項6〕Rが、塩素である、項1~5のいずれかに記載の製造方法。
〔項7〕Rが、tert-ブチルである、項1~6のいずれかに記載の製造方法。
〔項8〕mおよびnが、1である、項1~7のいずれかに記載の製造方法。
〔項9〕式(1a):
Figure JPOXMLDOC01-appb-C000027
[式中、R1aは、CHF-CH-またはCF-CH-を表す]
で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~3を含む製造方法;
(工程1)式(2a):
Figure JPOXMLDOC01-appb-C000028
で表される化合物またはその塩と式(3a):
Figure JPOXMLDOC01-appb-C000029
[式中、R1aは上記と同じ基を表す]
で表される化合物またはその塩をアセトニトリル溶媒中炭酸ナトリウム存在下で反応させて、式(4a):
Figure JPOXMLDOC01-appb-C000030
[式中、R1aは上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程2)式(4a)で表される化合物またはその塩と式(5a):
Figure JPOXMLDOC01-appb-C000031
で表される化合物またはその塩をトリフルオロ酢酸存在下アニソール溶媒中で反応させて、式(6a):
Figure JPOXMLDOC01-appb-C000032
[式中、R1aは上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程3)式(6a)で表される化合物またはその塩のカルボン酸保護基を、塩酸を用いて脱保護して、式(1a)で表される化合物またはその製薬学的に許容される塩を製造する工程。
〔項10〕上記工程2において、反応温度が150℃以上であり、アニソール溶媒の量が、(4)または(4a)で表される化合物の重量に対して8倍~10倍の重量である、項1~9のいずれかに記載の製造方法。
〔項11〕上記工程3において、反応終了後に酸性条件で抽出を行い、生成物の(1)または(1a)の化合物を水層に溶解させる工程、続いて水層を中和する事により(1)または(1a)の化合物を水層から得る工程を含む、項1~10のいずれかに記載の製造方法。
〔項12〕式(1):
Figure JPOXMLDOC01-appb-C000033
[式中、
 Rは、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキル部分は1、2または3個のフッ素原子で置換されている)、シアノで置換されたC1-4アルキル、C1-3アルコキシ-C2-4アルキル、C3-6シクロアルキル、C1-4アルキルカルボニル、またはホルミルを表し、
 Rは、水素、ヒドロキシメチル、または2-ヒドロキシエチルを表し、
 mは、1または2を表し、
 nは、1または2を表す]
で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~2を含む製造方法;
(工程1)式(4):
Figure JPOXMLDOC01-appb-C000034
[式中、R、Rおよびnは、上記と同じ基を表す]
で表される化合物またはその塩と式(5):
Figure JPOXMLDOC01-appb-C000035
[式中、Rおよびmは、上記と同じ基を表す]
で表される化合物またはその塩を酸存在下アニソール溶媒中で反応させて、式(6):
Figure JPOXMLDOC01-appb-C000036
[式中、R、R、R、mおよびnは、上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程2)式(6)で表される化合物またはその塩のカルボン酸保護基を脱保護して、式(1)で表される化合物またはその製薬学的に許容される塩を製造する工程。
〔項13〕Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)である、項12に記載の製造方法。
〔項14〕Rが、CHF-CH-またはCF-CH-である、項12に記載の製造方法。
〔項15〕Rが、ヒドロキシメチルまたは2-ヒドロキシエチルである、項12~14のいずれかに記載の製造方法。
〔項16〕Rが、2-ヒドロキシエチルである、項12~14のいずれかに記載の製造方法。
〔項17〕Rが、tert-ブチルである、項12~16のいずれかに記載の製造方法。
〔項18〕mおよびnが、1である、項12~17のいずれかに記載の製造方法。
〔項19〕式(1a):
Figure JPOXMLDOC01-appb-C000037
[式中、
1aは、CHF-CH-またはCF-CH-を表す]
で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~2を含む製造方法;
(工程1)式(4a):
Figure JPOXMLDOC01-appb-C000038
[式中、R1aは上記と同じ基を表す]
で表される化合物またはその塩と式(5a):
Figure JPOXMLDOC01-appb-C000039
で表される化合物またはその塩をトリフルオロ酢酸存在下アニソール溶媒中で反応させて、式(6a):
Figure JPOXMLDOC01-appb-C000040
[式中、R1aは上記と同じ基を表す]
で表される化合物またはその塩を製造する工程、
(工程2)式(6a)で表される化合物またはその塩のカルボン酸保護基を、塩酸を用いて脱保護して、式(1a)で表される化合物またはその製薬学的に許容される塩を製造する工程。
〔項20〕上記工程1において、反応温度が150℃以上であり、アニソール溶媒の量が、(4)または(4a)で表される化合物の重量に対して8倍~10倍の重量である、項12~19のいずれかに記載の製造方法。
〔項21〕上記工程2において、反応終了後に酸性条件で抽出を行い、生成物の(1)または(1a)の化合物を水層に溶解させる工程、続いて水層を中和する事により(1)または(1a)の化合物を水層から得る工程を含む、項12~20のいずれかに記載の製造方法。
 本発明により、各工程の反応時間が短く、抽出工程や濃縮工程を削減し、環境負荷が小さく、刺激性の強いクロロベンゼン等の溶媒を必要としない、簡便で収率が高く、高純度の目的物を得ることができる工業的に有利なピリミジン化合物の新規製造方法を提供することが可能になった。
 本明細書における用語を以下に説明する。
 「C1-4アルキル」、「C1-3アルキル」とは、それぞれ炭素数1~4個、1~3個の直鎖状または分枝鎖状の飽和炭化水素基を意味する。例えば、C1-4アルキルとしてはメチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、sec-ブチル、tert-ブチルならびにそれらの構造異性体が挙げられ、C1-3アルキルとしてはメチル、エチル、プロピル、イソプロピルならびにそれらの構造異性体が挙げられる。
 「C3-6シクロアルキル」とは、とは、炭素原子数が3~6の環状の飽和炭化水素基を意味し、一部架橋された構造のものも含まれる。例えば、C3-6シクロアルキルとしては、シクロプロピル、シクロブチル、シクロペンチル、シクロへキシル等が挙げられる。
 「C1-4アルコキシ」とは、前記「C1-4アルキル」で置換されたオキシ基を意味する。例えば、C1-4アルコキシとしては、メトキシ、エトキシ、プロポキシ、イソプロポキシ、1-メチルエトキシ、n-ブトキシ、sec-ブトキシ、tert-ブトキシ、1-メチルプロポキシ、2-メチルプロポキシが挙げられる。好ましいC1-4アルコキシとしては、例えば、メトキシ、エトキシ、プロポキシが挙げられる。
 「C1-4アルキルカルボニル」とは、上記「C1-4アルキル」にカルボニルが結合した基を意味する。例えば、メチルカルボニル、エチルカルボニル、プロピルカルボニル、1-メチルエチルカルボニル、ブチルカルボニル、1,1-ジメチルエチルカルボニル、1-メチルプロピルカルボニル、2-メチルプロピルカルボニル等が挙げられる。
 「ハロゲン」としては、例えばフッ素、塩素、臭素またはヨウ素等が挙げられる。好ましくは、フッ素または塩素である。
 「C1-4アルキルスルホナート」とは、炭素数1~4個の直鎖状または分枝鎖状の飽和炭化水素で置換されたスルホナート基を意味する。例えば、C1-4アルキルスルホナートとしてはメチルスルホナート、エチルスルホナートが挙げられる。好ましくは、メチルスルホナートが挙げられる。
 「C6-10アリールスルホナート」とは、炭素数6~10個を有する芳香族炭化水素で置換されたスルホナート基を意味する。例えば、C6-10アリールスルホナートとしてはフェニルスルホナート、ナフチルスルホナートが挙げられる。好ましくは、フェニルスルホナートが挙げられる。C6-10アリールスルホナートにおけるアリール部分の置換基としては、ハロゲン、C1-4アルキルおよびC1-4アルコキシが挙げられ、好ましくは、メチル、エチルが挙げられる。C6-10アリールスルホナートとして好ましくは、p-トルエンスルホナートが挙げられる。
 ベンジルにおけるフェニル部分の置換基としては、ハロゲン、ニトロ、C1-4アルキルおよびC1-4アルコキシが挙げられ、好ましくは、ニトロ、メチル、メトキシが挙げられる。ベンジルとして好ましくは、無置換のベンジルが挙げられる。
 原料または中間体における「塩」としては、酸付加塩および塩基付加塩が挙げられる。例えば、酸付加塩としては、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩、酢酸塩、プロピオン酸塩、トリフルオロ酢酸塩、酒石酸塩、クエン酸塩、フマル酸塩、マレイン酸塩、コハク酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、ギ酸塩、トルエンスルホン塩等の有機酸塩が挙げられる。塩基付加塩としては、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩等の無機塩基塩、トリエチルアミン塩、ピリジン塩等の有機塩基塩等が挙げられる。
 以下に本発明の好ましい態様について、詳細に説明する。
 Rとして好ましくは、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)、またはC1-3アルコキシ-C2-4アルキルが挙げられる。Rとしてより好ましくは、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)が挙げられ、更に好ましくは、CHF-CH-またはCF-CH-が挙げられ、更により好ましくは、CF-CH-が挙げられる。
 Rとして好ましくは水素、ヒドロキシメチル、または2-ヒドロキシエチルが挙げられる。Rとしてより好ましくは、ヒドロキシメチルまたは2-ヒドロキシエチルが挙げられ、更に好ましくは、2-ヒドロキシエチルが挙げられる。ここで、Rがヒドロキシメチルまたは2-ヒドロキシエチルの場合、Rが結合する炭素原子における立体は、S配置が好ましい。
 Rとして好ましくは、塩素、臭素、ヨウ素、C1-4アルキルスルホナート、またはC6-10アリールスルホナート(該アリールスルホナートにおけるアリール部分は、ハロゲン、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)が挙げられる。Rとしてより好ましくは、塩素または臭素が挙げられ、更に好ましくは、塩素が挙げられる。
 Rとして好ましくは、C1-4アルキル、またはベンジル(該ベンジルにおけるフェニル部分は、ハロゲン、ニトロ、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)が挙げられる。Rとしてより好ましくは、tert-ブチルが挙げられる。
 mとして好ましくは、1または2が挙げられ、より好ましくは、1が挙げられる。
 nとして好ましくは、1または2が挙げられ、より好ましくは、1が挙げられる。
 R1aとして好ましくは、CHF-CH-またはCF-CH-が挙げられ、より好ましくは、CF-CH-が挙げられる。
 式(2)で表される化合物またはその塩と、式(3)で表される化合物またはその塩を塩基存在下で反応させて式(4)で表される化合物を製造する際の塩基として好ましくは、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、カリウム-tert-ブトキシド、トリエチルアミン、N,N-ジイソプロピルエチルアミン、ピリジン、水素化ナトリウムが挙げられる。より好ましくは、炭酸ナトリウム、炭酸カリウムが挙げられ、更に好ましくは、炭酸ナトリウムが挙げられる。本反応においては、ヨウ化カリウムを添加することが好ましい。
 また、本反応を行う際の用いる溶媒としてはアセトニトリルが好ましく、反応温度としては70℃~80℃が好ましく、75℃がより好ましい。用いる溶媒の量は、(2)で表される化合物の重量に対して3倍~6倍の重量が好ましく、より好ましくは3倍~5倍の重量であり、更に好ましくは、4倍の重量である。反応溶媒の量を少量である3倍~6倍の重量にすることで、反応時間を短縮することができ、また廃液を削減することができる。
 式(4)で表される化合物またはその塩と、式(5)で表される化合物またはその塩を酸存在下で反応させて式(6)で表される化合物を製造する際の酸として好ましくは、トリフルオロ酢酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸が挙げられる。より好ましくは、トリフルオロ酢酸、トリフルオロメタンスルホン酸が挙げられ、更に好ましくは、トリフルオロ酢酸が挙げられる。
 また、本反応を行う際の溶媒はアニソールが好ましく、反応温度としては150℃以上が好ましく、155℃がより好ましい。従来の製造方法で用いられていたクロロベンゼンと比較してアニソールは沸点が高く、高温で反応させることにより、反応時間を短縮することができる。また、クロロベンゼンは皮膚や眼への刺激性が強い溶媒であるため、皮膚や眼への刺激性が弱いアニソールを用いることにより、刺激性の強い溶媒の使用を回避した安全な製造方法となる。用いる溶媒量は、(4)で表される化合物の重量に対して7倍~11倍の重量が好ましく、より好ましくは8倍~10倍の重量であり、更に好ましくは、9倍の重量である。反応溶媒の量を(4)で表される化合物の重量に対して7倍~11倍の重量にする事により反応選択性が向上し、副生成物の量が減少し、高収率で(6)で表される化合物を製造する事ができる。
 本反応終了後に、塩基性シリカゲルを用いてカラムクロマトグラフィーを行うことにより、酸性の副生成物を除去することができる。従来の製造方法では、塩基性条件で抽出することで酸性の副生成物を除去し、その後カラムクロマトグラフィーを行っていたが、本発明の製造方法においては、塩基性シリカゲルを用いてカラムクロマトグラフィーを行うことにより、抽出の工程を省略することができる。
 式(6)で表される化合物のカルボン酸保護基を脱保護して式(1)で表される化合物(以下、式(1)の化合物という)を製造する工程においては、酸を用いて脱保護するのが好ましく、その際の酸として好ましくは、塩酸、臭化水素酸、硝酸、硫酸、ギ酸、酢酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸が挙げられる。より好ましくは、塩酸、臭化水素酸が挙げられ、更に好ましくは、塩酸が挙げられる。
 反応終了後は、酸性条件のままで分液して水層を取得し、水層に塩基を添加して中和して、析出した式(1)の化合物を取得することが好ましい。従来の製造方法では、反応終了後に中和してから分液し、有機層を濃縮することで式(1)の化合物を得ているが、水層から析出した式(1)の化合物を取得することで、従来の有機層を濃縮する工程を省略する事ができる。
 式(1)の化合物の一つの態様としては、Rが、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)、またはC1-3アルコキシ-C2-4アルキルであり、Rが、水素、ヒドロキシメチル、または2-ヒドロキシエチルであり、mが、1または2であり、nが、1または2である化合物が挙げられる。
 式(1)の化合物の別の態様としては、Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)であり、Rが、ヒドロキシメチルまたは2-ヒドロキシエチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(1)の化合物の別の態様としては、Rが、CHF-CH-または、CF-CH-であり、Rが、2-ヒドロキシエチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(1)の化合物の別の態様としては、Rが、CF-CH-であり、Rが、2-ヒドロキシエチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(1)の化合物の別の態様としては、Rが、CHF-CH-であり、Rが、2-ヒドロキシエチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(2)の化合物の一つの態様としては、Rが、塩素、臭素、ヨウ素、C1-4アルキルスルホナート、またはC6-10アリールスルホナートである化合物が挙げられる。
 式(2)の化合物の別の態様としては、Rが、塩素である化合物が挙げられる。
 式(3)および式(4)の化合物の一つの態様としては、Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)であり、Rが、C1-4アルキルまたはベンジルであり、nが、1である化合物が挙げられる。
 式(3)および式(4)の化合物の別の態様としては、Rが、CHF-CH-または、CF-CH-であり、Rが、tert-ブチルであり、nが、1である化合物が挙げられる。
 式(3)および式(4)の化合物の別の態様としては、Rが、CF-CH-であり、Rが、tert-ブチルであり、nが、1である化合物が挙げられる。
 式(3)および式(4)の化合物の別の態様としては、Rが、CHF-CH-であり、Rが、tert-ブチルであり、nが、1である化合物が挙げられる。
 式(5)の化合物の一つの態様としては、Rが、水素、ヒドロキシメチル、または2-ヒドロキシエチルであり、mが、1である化合物が挙げられる。
 式(5)の化合物の別の態様としては、Rが、ヒドロキシメチル、または2-ヒドロキシエチルであり、mが、1である化合物が挙げられる。
 式(5)の化合物の別の態様としては、Rが、2-ヒドロキシエチルであり、mが、1である化合物が挙げられる。
 式(6)の化合物の一つの態様としては、Rが、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)、またはC1-3アルコキシ-C2-4アルキルであり、Rが、水素、ヒドロキシメチル、または2-ヒドロキシエチルであり、Rが、C1-4アルキルまたはベンジルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(6)の化合物の別の態様としては、Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)であり、Rが、ヒドロキシメチルまたは2-ヒドロキシエチルであり、Rが、tert-ブチルであり、mが、1であり、nが、1である化合物が挙げられる。
式(6)の化合物の別の態様としては、Rが、CHF-CH-または、CF-CH-であり、Rが、2-ヒドロキシエチルであり、Rが、tert-ブチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(6)の化合物の別の態様としては、Rが、CF-CH-であり、Rが、2-ヒドロキシエチルであり、Rが、tert-ブチルであり、mが、1であり、nが、1である化合物が挙げられる。
 式(6)の化合物の別の態様としては、Rが、CHF-CH-であり、Rが、2-ヒドロキシエチルであり、Rが、tert-ブチルであり、mが、1であり、nが、1である化合物が挙げられる。
 各化合物は、置換基の種類によっては、全ての互変異性体、幾何異性体、立体異性体を含む概念であり、それらの混合物であってもよい。また、各化合物は、酸付加塩または塩基付加塩などの塩であってもよく、水和物、またはエタノール和物等の溶媒和物であってもよい。
 式(1)で表される化合物の製薬学的に許容される塩は、慣用の無毒性塩であり、有機酸塩(例えば酢酸塩、プロピオン酸塩、トリフルオロ酢酸塩、マレイン酸塩、フマル酸塩、クエン酸塩、コハク酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、ギ酸塩、トルエンスルホン酸塩)もしくは無機酸塩(例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩)のような酸付加塩、アミノ酸(例えばアルギニン酸、アスパラギン酸、グルタミン酸)との塩、アルカリ金属塩(例えばナトリウム塩、カリウム塩)もしくはアルカリ土類金属塩(例えばカルシウム塩、マグネシウム塩)などの金属塩、アンモニウム塩、または有機塩基塩(例えばトリメチルアミン塩、トリエチルアミン塩、ピリジン塩、ピコリン塩、ジシクロヘキシルアミン塩、N,N’-ジベンジルエチレンジアミン塩)が挙げられる。
 以下に本発明の製造方法を説明する。なお、以下に記載のない出発原料は、市販されているか、或いは当業者に公知の方法またはそれに準じた方法に従い製造することができる。
(製造方法1)
Figure JPOXMLDOC01-appb-C000041
[式中、R、R、R、R、m、およびnは、項1と同義である。]
 以下に製造方法1における工程(i-1)~工程(i-3)について具体的に説明する。
(工程i-1)アミノ基の導入反応
 化合物(4)は、化合物(2)で表されるベンジル位に脱離基のついた化合物を、化合物(3)で表されるアミンと反応させることにより得ることができる。該反応は、必要に応じ塩基の存在下、また、必要に応じヨウ化物塩の存在下、適当な不活性溶媒中で約-20℃から、用いた溶媒の沸点までの範囲の温度で、10分間~48時間反応させることにより行うことができる。
 塩基としては、例えばトリエチルアミン、ピリジン等の有機塩基、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、水素化カリウム等の無機塩基、ナトリウムメトキシド、カリウムtert-ブトキシド等の金属アルコキシド等が挙げられる。
 ヨウ化物塩としては、例えばヨウ化カリウム、ヨウ化ナトリウムなどが挙げられる。
 不活性溶媒としては、例えばベンゼン、トルエン等の芳香族炭化水素、ジエチルエーテル、テトラヒドロフラン(THF)、1,4-ジオキサン等のエーテル系溶媒、メタノール、エタノール、イソプロパノール等の低級アルコール、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)およびアセトニトリル等の非プロトン性極性溶媒もしくはこれらの混合溶媒が挙げられる。より好ましい溶媒としてはアセトニトリル等が挙げられる。
(工程i-2)アミノ基の導入反応
 化合物(6)は、化合物(4)を化合物(5)で表されるアミンと反応させることにより得ることができる。該反応は、必要に応じ酸の存在下、適当な不活性溶媒中で約50℃から、用いた溶媒の沸点までの範囲の温度で、10分間~48時間反応させることにより行うことができる。
 酸としては、例えばトリフルオロ酢酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等が挙げられる。
 不活性溶媒としては、例えばアニソール、クロロベンゼン等の芳香族炭化水素、1,4-ジオキサン等のエーテル系溶媒、ブタノール等のアルコール系溶媒、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)およびプロピオニトリル等の非プロトン性極性溶媒もしくはこれらの混合溶媒が挙げられる。より好ましい溶媒としてはアニソール、プロピオニトリル等が挙げられる。
(工程i-3)カルボン酸保護基(エステル基)の脱保護反応
 化合物(1)は、化合物(6)のエステル部分を不活性溶媒中で脱保護することにより製造することができる。RがC1-4アルキルである場合、Rは、塩基の存在下で加水分解することができる。Rがtert-ブチルである場合、Rは、酸の存在下で加水分解することができる。Rがベンジル(該ベンジルにおけるフェニル部分は、ハロゲン、ニトロ、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)である場合、Rは金属触媒と水素を用いた接触還元反応で脱保護することができる。
 塩基の具体例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等の無機塩基が挙げられる。
 酸としては、塩酸(0.1~10mol/L)、硫酸(0.1~5mol/L)、トリフルオロ酢酸等が挙げられる。好ましくは、塩酸(1~5mol/L)が挙げられる。
 塩基性条件で脱保護する場合の不活性溶媒としては、原料化合物の種類等に従って適宜選択されるべきであるが、例えばベンゼン、トルエン、キシレンのような芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテルのようなエーテル類、メタノール、エタノール等のアルコール類が挙げられ、これらの溶媒はそれぞれ単独で、或いは2種以上混合して用いられる。
 塩基性条件で脱保護する場合の反応温度は、通常約0℃~約40℃である。
 酸性条件で脱保護する場合の不活性溶媒としては、原料化合物の種類等に従って適宜選択されるべきであるが、例えばベンゼン、トルエン、キシレンのような芳香族炭化水素類、ジエチルエーテル、テトラヒドロフラン、ジオキサン、シクロペンチルメチルエーテルのようなエーテル類が挙げられ、これらの溶媒はそれぞれ単独で、或いは2種以上混合して用いられる。
 酸性条件で脱保護する場合の反応温度は、通常約0℃~約100℃である。
 接触還元反応で脱保護する場合の金属触媒は、パラジウム炭素等のパラジウム系の触媒、ロジウム炭素等のロジウム系の触媒、白金炭素等の白金系の触媒、ルテニウム炭素等のルテニウム系の触媒、ラネーニッケル等のニッケル系の触媒が挙げられる。
 化合物(2)、(3)、および(5)は、特許文献1(国際公開第2013/172479号)に記載の方法で製造することができる。
 以下に参考例および実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。化合物は、核磁気共鳴吸収スペクトル(H-NMRスペクトル)を用いて同定をした。
 以下の参考例および実施例において、記載の簡略化のために次の略号を使用することもある。
 Me:メチル、Et:エチル、Bu:tert-ブチル、Boc:tert-ブトキシカルボニル、Ms:メタンスルホニル、THF:テトラヒドロフラン、NMP:N-メチルピロリドン、s:単一線、d:二重線、t:三重線、q:四重線、dd:二個の二重線、td:三個の二重線、m:多重線、J:結合定数。
実施例1
N-({4-[(2-アミノ-4-{[(3S)-1-ヒドロキシヘキサン-3-イル]アミノ}-6-メチルピリミジン-5-イル)メチル]-3-メトキシフェニル}メチル)-N-(2,2,2-トリフルオロエチル)グリシンの製造:
Figure JPOXMLDOC01-appb-C000042
(工程1)
 室温にて、2-アミノ-5-{[4-(クロロメチル)-2-メトキシフェニル]メチル}-6-メチルピリミジン-4-イル 2,4,6-トリ(プロパン-2-イル)ベンゼン-1-スルホナート(683g)に対し、アセトニトリル(2392g)、炭酸ナトリウム(388.07g)、ヨウ化カリウム(60.75g)とtert-ブチル N-(2,2,2-トリフルオロエチル)グリシナート(311.89g)を加えた。tert-ブチル N-(2,2,2-トリフルオロエチル)グリシナートの計量容器をアセトニトリル(342.21g)で洗浄し、加えた。75℃に昇温し、8時間保温した。室温に冷却し、12時間撹拌した。室温にて、トルエン(5464g)と水(3416g)を加え、分液した。有機層を2%食塩水(3463g)で洗浄し、分液した。さらに2%食塩水(3470g)で洗浄し、分液した。有機層を外温40℃に保ちつつ減圧濃縮した。ヘプタン(934g)を加え、再び外温40℃で減圧濃縮した。トルエン(296.02g)とヘプタン(4673g)を加え、75℃に昇温した。溶解したことを確認し、25℃に冷却した。2時間かけて5℃まで冷却し、2時間保温した。析出物をろ取し、5℃に冷却したトルエン(56.46g)とヘプタン(890g)の混液で洗浄した後乾燥させ、tert-ブチル N-({4-[(2-アミノ-4-メチル-6-{[2,4,6-トリ(プロパン-2-イル)ベンゼン-1-スルホニル]オキシ}ピリミジン-5-イル)メチル]-3-メトキシフェニル}メチル)-N-(2,2,2-トリフルオロエチル)グリシナート(715g、収率:80%、HPLC純度:81.81面積%)を得た。
1H-NMR (300 MHz, CDCl3) δ:7.16 (2H, s), 6.88 (1H, d, J = 1.2 Hz), 6.79 (1H, d, J = 7.6 Hz), 6.71 (1H, dd, J = 7.6 Hz, 1.2 Hz), 4.73 (2H, brs), 4.15 (2H, septet, J = 6.8 Hz), 3.92 (2H, s), 3.82 (2H, s), 3.80 (3H, s), 3.39-3.32 (4H, m), 2.91 (1H, septet, J = 7.2 Hz), 2.25 (3H, s), 1.47 (9H, s), 1.25 (6H, d, J = 6.8 Hz), 1.19 (12H, d, J = 6.4 Hz)
(工程2)
 工程1で得られた化合物(351.16g)に対し、アニソール(2984g)を加え、室温にて撹拌し、溶解したことを確認した。(3S)-3-アミノヘキサン-1-オール(112.02g)を加え、アニソール(105.04g)で計量容器を洗浄し、加えた。トリフルオロ酢酸(27.22g)を加え、計量容器をアニソール(70.24g)で洗浄し、加えた。内温155℃に昇温し、5時間保温した。室温に冷却し、12時間撹拌した。反応液をトルエン(5400g)とトルエン/酢酸エチル混合溶媒(10664g/5546g)を用いて、塩基性シリカゲルを用いてカラムクロマトグラフィー精製した。溶出液を外温40℃で減圧濃縮し、tert-ブチル N-({4-[(2-アミノ-4-{[(3S)-1-ヒドロキシヘキサン-3-イル]アミノ}-6-メチルピリミジン-5-イル)メチル]-3-メトキシフェニル}メチル)-N-(2,2,2-トリフルオロエチル)グリシナート(260g、収率:96%、HPLC純度:96.17面積%)を得た。
1H-NMR (300 MHz, CD3OD) δ: 7.01 (1H, s), 6.87-6.85 (1H, m), 6.81-6.78 (1H, m), 4.23-4.20 (1H, m), 3.92 (2H, s), 3.90 (3H, s), 3.72 (2H, s), 3.44-3.30 (6H, m), 2.24 (3H, s), 1.85-1.70 (1H, m), 1.46-1.30 (13H, m), 1.23-1.08 (2H, m), 0.81-0.77 (3H, m)
(工程3)
 3mol/L塩酸(2868g)を内温50℃に昇温した。工程2で得られた化合物(259g)をトルエン(646g)に溶解させ、内温50℃を保ちつつ塩酸水に滴下した。滴下ロートをトルエン(215.29g)で洗浄し、加えた。50℃で2時間保温した後、室温に冷却し、分液した。水層をろ過し、15℃に冷却した。15℃に冷却したエタノール(1628g)を加えた。15℃に冷却した5mol/L水酸化ナトリウム水溶液(1921g)を滴下してpH7に調整した。5℃に冷却した後、3時間保温した。析出物をろ取し、水(740g)で洗浄した後乾燥させ、表題の化合物(152.1g)を粗生成物として得た。当該粗生成物に対しメタノール(2298g)を加え、70℃に昇温した。2-プロパノール(1132g)を加えた後、5℃に冷却し、終夜保温した。析出物をろ取し、メタノール/2-プロパノール混合溶媒(306g/150g)で洗浄した後乾燥させ、表題の化合物(126.4g、収率:54%、HPLC純度:98.86面積%)を得た。
1H-NMR (DMSO) δ: 6.90 (1H, s), 6.71 (2H, s), 5.79 (2H, brs), 5.52 (1H, d), 4.17-4.10 (1H, m), 3.87 (2H, s), 3.81 (3H, s), 3.58 (2H, s), 3.54-3.44 (2H, m), 3.23-3.17 (2H, m), 2.95 (2H, s), 2.03 (3H, s), 1.59-1.50 (1H, m), 1.45-1.23 (3H, m), 1.14-1.05 (2H, m), 0.76 (3H, t)
 本発明により、式(1)で表される化合物を効率よく、さらに大量合成も可能な操作により製造することができる。従って環境負荷および工程数が少なく工業的な生産にも適応可能な製造方法を提供することができる。

Claims (17)

  1.  式(1): 
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Rは、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキル部分は1、2または3個のフッ素原子で置換されている)、シアノで置換されたC1-4アルキル、C1-3アルコキシ-C2-4アルキル、C3-6シクロアルキル、C1-4アルキルカルボニル、またはホルミルを表し、
     Rは、水素、ヒドロキシメチル、または2-ヒドロキシエチルを表し、
     mは、1または2を表し、
     nは、1または2を表す]
    で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~3を含む製造方法;
    (工程1)式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rは、塩素、臭素、ヨウ素、C1-4アルキルスルホナート、またはC6-10アリールスルホナート(該アリールスルホナートにおけるアリール部分は、ハロゲン、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)を表す]
    で表される化合物またはその塩と式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは、C1-4アルキル、またはベンジル(該ベンジルにおけるフェニル部分は、ハロゲン、ニトロ、C1-4アルキルおよびC1-4アルコキシからなる群から独立して選択される1~5個の置換基で置換されていてもよい)を表し、Rおよびnは、上記と同じ基を表す]
    で表される化合物またはその塩を塩基存在下で反応させて、式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、R、Rおよびnは、上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程2)式(4)で表される化合物またはその塩と式(5):
    Figure JPOXMLDOC01-appb-C000005
    [式中、Rおよびmは、上記と同じ基を表す]
    で表される化合物またはその塩を酸存在下アニソール溶媒中で反応させて、式(6):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R、R、R、mおよびnは、上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程3)式(6)で表される化合物またはその塩のカルボン酸保護基を脱保護して、式(1)で表される化合物またはその製薬学的に許容される塩を製造する工程。
  2.  Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)である、請求項1に記載の製造方法。
  3.  Rが、CHF-CH-またはCF-CH-である、請求項1に記載の製造方法。
  4.  Rが、ヒドロキシメチルまたは2-ヒドロキシエチルである、請求項1~3のいずれかに記載の製造方法。
  5.  Rが、2-ヒドロキシエチルである、請求項1~3のいずれかに記載の製造方法。
  6.  Rが、塩素である、請求項1~5のいずれかに記載の製造方法。
  7.  Rが、tert-ブチルである、請求項1~6のいずれかに記載の製造方法。
  8.  mおよびnが、1である、請求項1~7のいずれかに記載の製造方法。
  9.  式(1a):
    Figure JPOXMLDOC01-appb-C000007
    [式中、R1aは、CHF-CH-またはCF-CH-を表す]
    で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~3を含む製造方法;
    (工程1)式(2a):
    Figure JPOXMLDOC01-appb-C000008
    で表される化合物またはその塩と式(3a):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R1aは上記と同じ基を表す]
    で表される化合物またはその塩をアセトニトリル溶媒中炭酸ナトリウム存在下で反応させて、式(4a):
    Figure JPOXMLDOC01-appb-C000010
    [式中、R1aは上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程2)式(4a)で表される化合物またはその塩と式(5a):
    Figure JPOXMLDOC01-appb-C000011
    で表される化合物またはその塩をトリフルオロ酢酸存在下アニソール溶媒中で反応させて、式(6a):
    Figure JPOXMLDOC01-appb-C000012
    [式中、R1aは上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程3)式(6a)で表される化合物またはその塩のカルボン酸保護基を、塩酸を用いて脱保護して、式(1a)で表される化合物またはその製薬学的に許容される塩を製造する工程。
  10.  式(1):
    Figure JPOXMLDOC01-appb-C000013
    [式中、
     Rは、水素、C1-4アルキル、C1-3アルキル-(CH)-(ここで、C1-3アルキル部分は1、2または3個のフッ素原子で置換されている)、シアノで置換されたC1-4アルキル、C1-3アルコキシ-C2-4アルキル、C3-6シクロアルキル、C1-4アルキルカルボニル、またはホルミルを表し、
     Rは、水素、ヒドロキシメチル、または2-ヒドロキシエチルを表し、
     mは、1または2を表し、
     nは、1または2を表す]
    で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~2を含む製造方法;
    (工程1)式(4):
    Figure JPOXMLDOC01-appb-C000014
    [式中、R、Rおよびnは、上記と同じ基を表す]
    で表される化合物またはその塩と式(5):
    Figure JPOXMLDOC01-appb-C000015
    [式中、Rおよびmは、上記と同じ基を表す]
    で表される化合物またはその塩を酸存在下アニソール溶媒中で反応させて、式(6):
    Figure JPOXMLDOC01-appb-C000016
    [式中、R、R、R、mおよびnは、上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程2)式(6)で表される化合物またはその塩のカルボン酸保護基を脱保護して、式(1)で表される化合物またはその製薬学的に許容される塩を製造する工程。
  11.  Rが、C1-3アルキル-(CH)-(ここで、C1-3アルキルは1、2または3個のフッ素原子で置換されている)である、請求項10に記載の製造方法。
  12.  Rが、CHF-CH-またはCF-CH-である、請求項10に記載の製造方法。
  13.  Rが、ヒドロキシメチルまたは2-ヒドロキシエチルである、請求項10~12のいずれかに記載の製造方法。
  14.  Rが、2-ヒドロキシエチルである、請求項10~12のいずれかに記載の製造方法。
  15.  Rが、tert-ブチルである、請求項10~14のいずれかに記載の製造方法。
  16.  mおよびnが、1である、請求項10~15のいずれかに記載の製造方法。
  17.  式(1a):
    Figure JPOXMLDOC01-appb-C000017
    [式中、
    1aは、CHF-CH-またはCF-CH-を表す]
    で表される化合物またはその製薬学的に許容される塩の製造方法であって、下記の工程1~2を含む製造方法;
    (工程1)式(4a):
    Figure JPOXMLDOC01-appb-C000018
    [式中、R1aは上記と同じ基を表す]
    で表される化合物またはその塩と式(5a):
    Figure JPOXMLDOC01-appb-C000019
    で表される化合物またはその塩をトリフルオロ酢酸存在下アニソール溶媒中で反応させて、式(6a):
    Figure JPOXMLDOC01-appb-C000020
    [式中、R1aは上記と同じ基を表す]
    で表される化合物またはその塩を製造する工程、
    (工程2)式(6a)で表される化合物またはその塩のカルボン酸保護基を、塩酸を用いて脱保護して、式(1a)で表される化合物またはその製薬学的に許容される塩を製造する工程。
PCT/JP2022/013174 2021-03-23 2022-03-22 ピリミジン化合物の製造方法 WO2022202814A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023509198A JPWO2022202814A1 (ja) 2021-03-23 2022-03-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048383 2021-03-23
JP2021-048383 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202814A1 true WO2022202814A1 (ja) 2022-09-29

Family

ID=83395624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013174 WO2022202814A1 (ja) 2021-03-23 2022-03-22 ピリミジン化合物の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022202814A1 (ja)
WO (1) WO2022202814A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134020A (ja) * 2007-11-29 2009-06-18 Frontier Carbon Corp レジスト組成物及びパターン形成方法
JP2015520729A (ja) * 2012-05-18 2015-07-23 大日本住友製薬株式会社 カルボン酸化合物
US20210024535A1 (en) * 2019-07-23 2021-01-28 Arianegroup Sas Process for producing chromenes by catalysis with copper salts intended for the preparation of thermosetting resins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134020A (ja) * 2007-11-29 2009-06-18 Frontier Carbon Corp レジスト組成物及びパターン形成方法
JP2015520729A (ja) * 2012-05-18 2015-07-23 大日本住友製薬株式会社 カルボン酸化合物
US20210024535A1 (en) * 2019-07-23 2021-01-28 Arianegroup Sas Process for producing chromenes by catalysis with copper salts intended for the preparation of thermosetting resins

Also Published As

Publication number Publication date
JPWO2022202814A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
KR101420892B1 (ko) 이마티닙 및 그들의 중간체 및 그 제조방법
CN113272290A (zh) 用于沃塞洛托合成的方法和中间体
KR20230137282A (ko) 프로테인 카이네이즈에 대한 선택적 억제제의 합성에 유용한 중간체 및 이의 제조방법
JP7025411B2 (ja) インドールカルボキサミド化合物の製造方法
JP6985367B2 (ja) 新規化合物および方法
WO2017071419A1 (zh) 洛昔替尼的制备方法
ES2635037T3 (es) Proceso para la preparación y purificación de apixaban
KR20120117831A (ko) 2-아미노-4-트리플루오로메틸피리딘류의 제조 방법
KR101803499B1 (ko) 싸이에노피리미딘 화합물의 신규 제조방법 및 이에 사용되는 중간체
WO2022202814A1 (ja) ピリミジン化合物の製造方法
EP3356372B1 (en) Novel process for preparing thienopyrimidine compound and intermediates used therein
US9840468B1 (en) Methods for the preparation of 6-aminoisoquinoline
TWI389912B (zh) 用於製備n-〔5-(3-二甲胺基-丙烯醯基)-2-氟苯基〕-n-甲基-乙醯胺之方法
JP4032861B2 (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
TW202104164A (zh) 製造經取代之2-[2-(苯基)乙胺]烷醯胺衍生物之方法
JP5516567B2 (ja) 4−アミノ−2−アルキルチオ−5−ピリミジンカルバルデヒドの製法
JP5205971B2 (ja) テトラヒドロピラン化合物の製造方法
KR19990045165A (ko) 시클로프로판환 함유 퓨린 유도체
IT201800007398A1 (it) Processo per la sintesi di netarsudil dimesilato
JP5034277B2 (ja) 3−(n−アシルアミノ)−3−(4−テトラヒドロピラニル)−2−オキソプロパン酸エステル及び3−(n−アシルアミノ)−3−(4−テトラヒドロピラニル)−2−オキソプロパノヒドラジドの製造方法
KR100929414B1 (ko) 트로스피움 클로라이드의 제조방법
TW202104170A (zh) 製造經取代之2-[2-(苯基)乙胺]烷醯胺衍生物之方法
JP2016511761A (ja) 4−ピペリジン−4−イル−ベンゼン−1,3−ジオール及びその塩の合成方法、並びに新規化合物tert−ブチル4−(2,4−ジヒドロキシ−フェニル)−4−ヒドロキシ−ピペリジン−1−カルボキシレート
JP2024509995A (ja) リスジプラムを調製するための方法
JPH0692964A (ja) ビスヒドロキシメチルシクロペンタン誘導体の新規製造法及びその中間体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775597

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509198

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775597

Country of ref document: EP

Kind code of ref document: A1