WO2022202680A1 - 複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体 - Google Patents

複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体 Download PDF

Info

Publication number
WO2022202680A1
WO2022202680A1 PCT/JP2022/012689 JP2022012689W WO2022202680A1 WO 2022202680 A1 WO2022202680 A1 WO 2022202680A1 JP 2022012689 W JP2022012689 W JP 2022012689W WO 2022202680 A1 WO2022202680 A1 WO 2022202680A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite resin
mass
particles
resin particles
ethylene
Prior art date
Application number
PCT/JP2022/012689
Other languages
English (en)
French (fr)
Inventor
皓樹 大脇
Original Assignee
積水化成品工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化成品工業株式会社 filed Critical 積水化成品工業株式会社
Priority to US18/283,094 priority Critical patent/US20240166790A1/en
Priority to CN202280023258.6A priority patent/CN117043257A/zh
Priority to EP22775467.8A priority patent/EP4317227A1/en
Priority to JP2023509132A priority patent/JPWO2022202680A1/ja
Publication of WO2022202680A1 publication Critical patent/WO2022202680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • C08F255/04Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms on to ethene-propene copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/024Preparation or use of a blowing agent concentrate, i.e. masterbatch in a foamable composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/036Use of an organic, non-polymeric compound to impregnate, bind or coat a foam, e.g. fatty acid ester
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Definitions

  • the present invention relates to composite resin particles, expanded composite resin particles, expanded molded articles, and the like.
  • Foam molded products made of polystyrene resin are known to be excellent in rigidity, heat insulation, lightness, water resistance and foam moldability, but have low chemical resistance and impact resistance.
  • a composite resin foam molded article obtained from composite resin particles of a polystyrene resin and a polyolefin resin is used.
  • Composite resin particles are generally manufactured by using a base resin of polyolefin resin such as polyethylene resin as seed particles (also referred to as core particles), adding a styrene monomer to the seed particles, and then polymerizing the particles. It is This polymerization is also called seed polymerization.
  • Composite resin particles are generally expanded (also referred to as pre-expansion) after foaming gas is blended into them to become expanded particles (expanded particles). A foam molded article is produced.
  • the properties of the composite resin foam can be changed.
  • the use of polypropylene-based resin improves heat resistance
  • the use of linear low-density polyethylene improves impact resistance.
  • Composite resin foam moldings with high heat resistance are in demand mainly for automobile parts, and composite resin foam moldings with excellent heat resistance obtained from composite resin particles composed of polypropylene resin and polystyrene resin are used.
  • Patent Document 1 if the pressure of the steam used for foam molding is not high, foaming will be insufficient and it will be difficult to obtain a molded article having desired properties such as shape and density.
  • the pressure of steam required for foam molding is high, a large amount of energy is required for molding, and it is necessary to use a molding machine corresponding to the pressure, which increases the cost required for molding.
  • composite resin particles obtained by combining a base resin made of high-density polyethylene and an ethylene copolymer (e.g., ethylene-vinyl acetate copolymer) with a polystyrene-based resin by seed polymerization are used as substitutes.
  • ethylene copolymer e.g., ethylene-vinyl acetate copolymer
  • foam molding was possible without increasing the steam pressure so much (Patent Documents 2 and 3). Since flame retardancy is often required for foam molded articles used as automobile members, flame retardants have been added to these foam molded articles.
  • the inventor of the present invention has found that when a flame retardant is added to a composite resin in which a base resin composed of high-density polyethylene and an ethylene-vinyl acetate copolymer is combined with a polystyrene-based resin by seed polymerization, the foamed molded product has storage stability. A reddish coloration was noticed in the accelerated test.
  • the present inventors have achieved storage stability by foam-molding composite resin particles containing a polypropylene resin, an ethylene-vinyl acetate copolymer, and a polystyrene resin, and foamed resin particles obtained therefrom. It was found that a non-colored foamed molded product can be obtained in the accelerated test of , and that this foamed molded product has high flame resistance and excellent heat resistance (low heat dimensional change rate) brought about by polypropylene resin. I completed the present invention.
  • the present invention typically includes the following aspects.
  • Item 1 Composite resin particles containing a polypropylene resin, an ethylene-vinyl acetate copolymer, and a polystyrene resin.
  • Item 2. With respect to the total mass of the composite resin particles, the content of the polypropylene resin is 2 to 35% by mass, the content of the ethylene-vinyl acetate copolymer is 3 to 50% by mass, and the polystyrene resin Item 2.
  • Item 3. Item 3.
  • the content of the ethylene-vinyl acetate copolymer in the composite resin particles is 10 to 60 parts by mass with respect to 100 parts by mass of the polypropylene resin content
  • the polystyrene-based resin contains a resin component derived from a (meth)acrylic acid ester and a resin component derived from a styrene-based monomer, and the resin component derived from the (meth)acrylic acid ester is derived from a styrene-based monomer.
  • the composite resin particle according to item 1 or 2 containing 0.05 to 5.00% by mass of the mass of the resin component.
  • Item 5 Any of Items 1 to 4, wherein the total mass content of the polypropylene resin and the ethylene-vinyl acetate copolymer in the composite resin particles/the mass content of the polystyrene resin in the composite resin particles is 5/95 to 60/40.
  • the composite resin particles according to 1. Item 6.
  • Item 8. The composite resin particle according to any one of Items 1 to 7, wherein the ethylene-vinyl acetate copolymer has a melt flow rate of 0.5 g/10 minutes to 10 g/10 minutes.
  • Item 11. Item 10. The composite resin according to any one of Items 1 to 10, wherein the composite resin particles further contain a flame retardant, and the content thereof is 0.5 to 10% by mass of the composite resin particle mass excluding the flame retardant. particle.
  • Item 12. Item 12. The composite resin particles according to Item 11, wherein the flame retardant is a halogen flame retardant.
  • Item 13 Item 13.
  • Item 14. Item 14.
  • Item 15. The composite resin particle according to any one of Items 1 to 14, which is a seed polymer particle obtained by impregnating and polymerizing a styrene-based monomer into a seed particle containing the polypropylene-based resin and the ethylene-vinyl acetate copolymer.
  • Item 16. Item 16. Expanded particles comprising the composite resin particles according to any one of items 1 to 15. Item 17.
  • Item 18. Item 18.
  • a foam molded article comprising the foamed particles according to Item 16 or 17.
  • Item 19. Item 19.
  • Item 20. 20. An automotive member containing the foamed molded article according to Item 18 or
  • the composite resin particles and composite foamed beads of the present invention it is possible to provide a foamed molded article that is not colored in an accelerated storage stability test.
  • INDUSTRIAL APPLICABILITY According to the composite resin particles and composite foamed particles of the present invention, it is possible to provide a foam molded article having high flame retardancy and excellent heat resistance (low heat dimensional change rate) brought about by a polypropylene-based resin.
  • the amount of powder also simply referred to as "amount of powder” in this specification
  • the amount of powder also simply referred to as "amount of powder" in this specification
  • foam molding can be performed with a high heat fusion rate even with a low vapor pressure medium (eg, water vapor), so that the energy required for foam molding can be reduced. Therefore, the equipment required for foam molding can be simplified, and the cost required for foam molding can be reduced. Therefore, the composite resin particles and expanded composite resin particles of the present invention are excellent in productivity of foamed articles. According to the composite resin particles and composite foamed particles of the present invention, it is possible to provide a foamed molded article having excellent bending strength. According to the composite resin particles and composite expanded beads of the present invention, it is possible to provide a foamed molded article having excellent impact resistance.
  • a low vapor pressure medium eg, water vapor
  • a composite resin particle is typically obtained by impregnating a base resin particle (seed particle) with a styrene-based monomer and polymerizing the styrene-based monomer.
  • the base resin contains at least a polypropylene resin and an ethylene-vinyl acetate copolymer.
  • the total content of the polypropylene resin and the ethylene-vinyl acetate copolymer in the seed particles is, for example, 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, 95 to 100% by mass with respect to the total mass of the seed particles. It may be mass % or the like.
  • polypropylene resin The polypropylene-based resin is not particularly limited, and known resins can be used. Polypropylene-based resins include homopolymers, random copolymers, block copolymers, etc., and have high moldability (that is, foam molding is possible due to low vapor pressure and high fusion bonding, and the expansion ratio during foaming tends to be high). Random copolymers are preferred.
  • a recycled product for example, a recycled resin obtained by collecting and recycling polypropylene-based resin used as a packing material or the like can be used.
  • Copolymers may contain olefins other than propylene (eg, ethylene, butene, etc.).
  • examples of random copolymers include ethylene-propylene random copolymers, propylene-butene random copolymers, ethylene-propylene-butene random copolymers, and the like.
  • block copolymers include ethylene-propylene block copolymers, propylene-butene block copolymers, ethylene-propylene-butene block copolymers, and the like.
  • the ratio of components derived from olefins other than propylene in the copolymer is, for example, 0.01 to 10% by mass, 0.01 to 8% by mass, 0.1 to 7% by mass, 0.1 to 6% by mass, etc. preferably 1 to 7% by mass, more preferably 2 to 6% by mass.
  • a commercially available resin can be used as the polypropylene resin. For example, it is available from Prime Polymer Co., SunAllomer Co., Sumitomo Chemical Co., and the like.
  • the melting point of the polypropylene resin is not particularly limited, it can be, for example, 130 to 165°C, preferably 130 to 150°C, more preferably 130 to 145°C, and even more preferably 130 to 134°C.
  • the melting point is within the above range, it is advantageous in that the moldability (high fusion rate) at low steam pressure is improved or the expansion ratio during foaming tends to be high.
  • the melting point can be specified by the method described in the Examples.
  • the melt mass flow rate (also referred to as MFR in this specification) of the polypropylene resin is not particularly limited, but is preferably 0.1 g/10 minutes to 20.0 g/10 minutes, and 1 g/10 minutes to 10 g/10 minutes. minutes are more preferred, with 4 g/10 min to 8 g/10 min being particularly preferred.
  • MFR melt mass flow rate
  • MFR can be identified by the method described in the Examples.
  • Polypropylene-based resins may have a density of 880 kg/m 3 to 950 kg/m 3 .
  • a density within this range is advantageous in terms of impact resistance and moldability.
  • the density is preferably 890 kg/m 3 to 930 kg/m 3 , more preferably 890 kg/m 3 to 920 kg/m 3 , particularly preferably 890 kg/m 3 to 910 kg/m 3 .
  • Density can be determined in the following way. (Density of polypropylene resin) The density of the polypropylene resin is measured by the density gradient tube method in accordance with JIS K6922-1:1998.
  • the content of the polypropylene resin in the seed particles is, for example, 10 to 77% by mass, 10 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, 18 to 70% by mass with respect to the total mass of the seed particles. 18 to 60% by mass is preferable, 18 to 50% by mass is more preferable, and 18 to 40% by mass is even more preferable.
  • the content of the polypropylene-based resin in the seed particles is, for example, 10 to 95% by mass, 10 to 90% by mass, based on the total mass of the seed particles.
  • the content of the polypropylene-based resin in the composite resin particles can be, for example, 2 to 35% by mass, preferably 4 to 30% by mass, more preferably 5 to 20% by mass, relative to the total mass of the composite resin particles. be.
  • the polystyrene resin contains a resin component derived from (meth)acrylic acid ester
  • the content of the polypropylene resin in the composite resin particles can be, for example, 2 to 35% by mass with respect to the total mass of the composite resin particles.
  • the content of the polypropylene-based resin in the seed particles or the composite resin particles is within the above range, it is advantageous in that the rate of dimensional change upon heating is small and that the flame retardancy is retarded.
  • Ethylene-vinyl acetate copolymers are copolymers of ethylene and vinyl acetate. Ethylene-vinyl acetate copolymers are better than copolymers of ethylene and other ester-based monomers (e.g. alkyl acrylates, alkyl methacrylates, aliphatic saturated vinyl monocarboxylates (excluding vinyl acetate)). are also excellent in that the amount of powder generated during the production of the composite resin expanded beads is small or the dimensional change rate upon heating is small. As the ethylene-vinyl acetate copolymer, it is also possible to use a recycled resin obtained by collecting and recycling ethylene-vinyl acetate copolymer used as a recycled product, for example, as a packing material.
  • a recycled resin obtained by collecting and recycling ethylene-vinyl acetate copolymer used as a recycled product, for example, as a packing material.
  • the ratio of the vinyl acetate-derived component in the ethylene-vinyl acetate copolymer is preferably 1 to 20% by mass, more preferably 1 to 14% by mass, and even more preferably 1 to 10% by mass.
  • the melting point of the ethylene-vinyl acetate copolymer is not particularly limited. be. When the melting point is within the above range, it is advantageous in that the heat dimensional change rate of the foamed molded product is small and that the compatibility with the polypropylene-based resin is good, so that the melt adhesion during foam molding is excellent.
  • the melting point can be specified by the method described in the Examples.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) of the ethylene-vinyl acetate copolymer to the number average molecular weight (Mn) of the ethylene-vinyl acetate copolymer is not particularly limited, but is, for example, 1.0 to 7.5. and preferably 1.0 to 7.0. When Mw/Mn is within the above range, it is advantageous in that the strength of the foam molded article is high or the impact resistance is improved. Mw/Mn is more preferably 3.0 to 6.0, more preferably 3.5 to 5.5.
  • the number average molecular weight and weight average molecular weight can be specified by the methods described in the Examples.
  • the MFR of the ethylene-vinyl acetate copolymer is not particularly limited, it can be, for example, 0.3 g/10 minutes to 5.0 g/10 minutes, preferably 0.5 g/10 minutes to 5.0 g/10 minutes.
  • MFR is more preferably 0.5 g/10 minutes to 4.0 g/10 minutes, more preferably 0.5 g/10 minutes to 3.0 g/10 minutes, and 0.7 g/10 minutes to 3.0 g/10 minutes. 0 g/10 min is particularly preferred.
  • MFR can be identified by the method described in the Examples.
  • the content of the ethylene-vinyl acetate copolymer in the seed particles is, for example, 27 to 90% by mass, 30 to 90% by mass, 40 to 90% by mass, 50 to 85% by mass, 30% by mass, relative to the total mass of the seed particles. to 82% by mass, preferably 40 to 82% by mass, more preferably 50 to 82% by mass, and even more preferably 60 to 82% by mass.
  • the content ratio of the ethylene-vinyl acetate copolymer in the seed particles is, with respect to the total mass of the seed particles, For example, 5 to 90% by mass, 10 to 90% by mass, 20 to 80% by mass, 20 to 70% by mass, etc., preferably 10 to 82% by mass, more preferably 20 to 82% by mass, 20 ⁇ 70% by weight is more preferred.
  • the content of the ethylene-vinyl acetate copolymer in the composite resin particles can be, for example, 3 to 50% by mass, preferably 5 to 40% by mass, and 10 to 30% by mass, relative to the total mass of the composite resin particles.
  • the content ratio of the ethylene-vinyl acetate copolymer in the composite resin particles is the total mass of the composite resin particles. For example, it can be 3 to 50% by mass, preferably 3 to 40% by mass, more preferably 3 to 30% by mass.
  • the content of the ethylene-vinyl acetate copolymer in the seed particles or the composite resin particles is within the above range, it is advantageous in terms of moldability and retardation.
  • the content of the ethylene-vinyl acetate copolymer in the seed particles or the composite resin particles can be, for example, 60 to 1000 parts by mass, 80 to 1000 parts by mass, and 100 to 1000 parts by mass with respect to 100 parts by mass of the polypropylene resin content. parts are preferred, 120 to 1000 parts by weight are more preferred, and 130 to 1000 parts by weight are even more preferred.
  • the ethylene-vinyl acetate copolymer content in the seed particles or composite resin particles is, with respect to 100 parts by mass of the polypropylene resin content, for example 10 to 1000 parts by mass, 10 to 500 parts by mass, etc., preferably 20 to 500 parts by mass, more preferably 20 to 300 parts by mass.
  • the content of the ethylene-vinyl acetate copolymer is within the above range, it is advantageous in terms of improving the moldability at a low steam pressure (increasing the fusion rate).
  • the seed particles may contain an inorganic component in addition to the polypropylene resin and the ethylene-vinyl acetate copolymer.
  • an inorganic component When the seed particles or the composite resin particles contain an inorganic component, the air bubbles are easily made finer.
  • inorganic components include inorganic cell control agents such as talc, silica, calcium silicate, calcium carbonate, sodium borate and zinc borate, and talc and silica are preferable because they facilitate uniform cell size.
  • the inorganic component can be, for example, 0.01 to 5% by mass, preferably 0.1 to 1% by mass, based on the total mass of the polypropylene resin and the ethylene-vinyl acetate copolymer.
  • the inorganic component may be added when mixing the polypropylene resin and the ethylene-vinyl acetate copolymer, or may be added to the mixed resin in which the polypropylene resin and the ethylene-vinyl acetate copolymer are mixed. .
  • the seed particles may contain a carbon component in addition to the polypropylene resin and the ethylene-vinyl acetate copolymer.
  • Carbon components include, for example, furnace black, ketjen black, channel black, thermal black, acetylene black, graphite, and carbon fiber.
  • the carbon component added to the seed particles is preferably particulate, and its average particle size may be 5 nm to 100 nm, preferably 15 nm to 35 nm.
  • the average particle diameter of the carbon component is the average diameter of particles observed with an electron microscope.
  • the carbon component is carbon black
  • the average particle size of the carbon black is measured by electron micrographs of the small spherical components (having contours of microcrystals that cannot be separated) that make up the carbon black aggregates. , is the mean value of the calculated particle diameters.
  • the carbon component is preferably contained in an amount of 1 to 8% by mass with respect to the total mass of the polypropylene resin and the ethylene-vinyl acetate copolymer. When the amount of carbon compounded in the composite resin particles is within the above range, the foam molded article has a sufficient black color and sufficient mechanical strength.
  • the seed particles may contain other components in addition to the polypropylene resin and the ethylene-vinyl acetate copolymer.
  • Other ingredients include colorants, nucleating agents, stabilizers, fillers (reinforcing materials), higher fatty acid metal salts, antistatic agents, lubricants, natural or synthetic oils, waxes, UV absorbers, weather stabilizers, and anti-fogging agents. agents, anti-blocking agents, slip agents, coating agents, neutron shielding agents and the like.
  • the content thereof may be 0.001 to 10% by mass, preferably 0.001 to 5% by mass or less, relative to the total mass of the seed particles. , 0.001 to 3 mass % is more preferred.
  • the seed particles can be obtained by a known method used for producing seed particles for forming foamed molded articles.
  • a base resin polyethylene resin, ethylene copolymer, etc.
  • the resin components may be mixed by a mixer before being charged to the extruder.
  • the seed particles may have any known shape, but are preferably cylindrical, ellipsoidal (oval) or spherical. Further, the shape is more preferably oval or spherical from the viewpoint that the expanded particles obtained from the seed particles can be easily filled into a mold.
  • the seed particles preferably have an average particle size of 0.5 to 1.4 mm.
  • the composite resin particles contain, as resin components, a polypropylene-based resin and an ethylene-based copolymer derived from the base resin, and a polystyrene-based resin derived from a styrene-based monomer.
  • the total content of the polypropylene resin, ethylene-vinyl acetate copolymer, and polystyrene resin in the composite resin particles is, for example, 80 to 100% by mass, 85 to 100% by mass, 90 to 100% by mass, based on the total mass of the composite resin particles. It may be 100% by mass, 95 to 100% by mass, or the like.
  • the composite resin particles can be produced, for example, by a seed polymerization method (impregnating and polymerizing seed particles with a styrene-based monomer).
  • the amount of the styrene monomer used is such that the total mass of the polypropylene resin mass and the ethylene-vinyl acetate copolymer contained in the seed particles/the amount of the styrene monomer used is 5/95 to 60/40. is preferred.
  • the content of the polystyrene-based resin in the composite resin particles is an amount corresponding to the amount of the styrene-based monomer used. Therefore, the ratio of the total content of the polypropylene resin and the ethylene-vinyl acetate copolymer in the composite resin particles/the content of the polystyrene resin in the composite resin particles is preferably 5/95 to 60/40.
  • the amount of the styrene-based monomer used or the content of the polystyrene-based resin is within the above range, the moldability (high fusion rate) at low steam pressure is improved, the amount of powder is reduced, and the foamed molded product is improved. It is advantageous in that the strength is improved, or the impact resistance of the foam molded article is improved.
  • the range is more preferably 5/95 to 55/45, more preferably 10/90 to 50/50, even more preferably 20/80 to 45/55, 20/80 to 30/ 70 is particularly preferred.
  • polystyrene resins include polymers derived from styrene monomers such as styrene, ⁇ -methylstyrene, p-methylstyrene, and t-butylstyrene.
  • the styrenic polymer may be a polymer formed from a styrenic monomer and another monomer copolymerizable with the styrenic monomer.
  • examples of other monomers include polyfunctional monomers such as divinylbenzene, and (meth)acrylic acid esters having no benzene ring in the structure such as butyl (meth)acrylate.
  • the resin component derived from these other monomers may be contained in the styrenic polymer within a range not exceeding 5% by mass.
  • a polystyrene resin obtained by copolymerizing a (meth)acrylic ester with a styrene monomer is composed of a constituent component derived from the (meth)acrylic ester and a constituent component derived from the styrene monomer. Become.
  • the component derived from this (meth)acrylic acid ester is also referred to as a resin component derived from the (meth)acrylic acid ester.
  • the (meth)acrylic acid ester may be an acrylic acid ester or a methacrylic acid ester, but an acrylic acid ester is preferable.
  • (Meth)acrylates include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate. , 2-ethylhexyl (meth)acrylate, etc., and methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate, hexyl acrylate, and 2-ethylhexyl acrylate are preferred. Butyl acrylate is more preferred.
  • the content of the resin component derived from the acrylic acid ester may be 0.05 to 5.00% by mass, and 0.05 to 3.00, relative to the mass of the resin component derived from the styrene monomer. % by weight is preferred.
  • 300 g of styrene monomer, 20 g of butyl acrylate, and 1080 g of styrene monomer are used as the polystyrene resin, so the content of the resin component derived from butyl acrylate is 1.45%. (20/(300+1080) ⁇ 100).
  • the composite resin particles may contain a flame retardant.
  • the composite resin particles may not contain a flame retardant (eg, a halogen-based flame retardant).
  • Flame retardants include known halogen-based flame retardants, phosphorus-based flame retardants, inorganic flame retardants, and the like.
  • a flame retardant may be used individually by 1 type, and may use 2 or more types together.
  • halogen-based flame retardants such as brominated flame retardants, chlorine-based flame retardants, and chlorine-bromine-containing flame retardants can be used as the flame retardant. It is preferable from the viewpoint that it can be imparted.
  • Halogenated flame retardants include, for example, tetrabromobisphenol A, derivatives thereof (eg, tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis(2,3-dibromo propyl ether), tetrabromobisphenol A-bis(allyl ether)), triallyl isocyanurate hexabromide, tris(2,3-dibromopropyl) isocyanurate, tetrabromocyclooctane, hexabromocyclododecane and the like.
  • tetrabromobisphenol A derivatives thereof (eg, tetrabromobisphenol A-bis(2,3-dibromo-2-methylpropyl ether), tetrabromobisphenol A-bis(2,3-dibromo propyl ether), te
  • the flame retardancy of the foamed molded product is improved, but the heat resistance of the foamed molded product tends to decrease.
  • the expansion molded article of the present invention has a low dimensional change rate upon heating, and thus a decrease in heat resistance is small.
  • the flame retardant can be, for example, 1.5 to 6.0% by mass, preferably 1.5 to 4.0% by mass, and 2.0 to 3.0% by mass, based on the mass of the composite resin particles excluding the flame retardant. 0.5% by weight is more preferred.
  • the content of the flame retardant is within the above range, it is advantageous in that both flame retardancy and heat resistance of the foamed molded product can be achieved at a high level.
  • the composite resin particles When the composite resin particles contain a flame retardant, the composite resin particles preferably contain a flame retardant aid. By including the flame retardant aid, the flame retardancy provided by the flame retardant can be further enhanced.
  • Flame retardant aids include organic peroxides such as dicumyl peroxide (DCP), cumene hydroperoxide, diacyl peroxide, 2,3-dimethyl-2,3-diphenylbutane (also known as biscumyl), 3,4 -dimethyl-3,4-diphenylhexane and the like.
  • DCP dicumyl peroxide
  • cumene hydroperoxide diacyl peroxide
  • 2,3-dimethyl-2,3-diphenylbutane also known as biscumyl
  • 3,4 -dimethyl-3,4-diphenylhexane and the like.
  • the flame retardant auxiliary is preferably contained in an amount of, for example, 50 parts by mass or less, preferably 10 to 40 parts by mass, and more preferably 15 to 25 parts by mass with respect to 100 parts by mass of the flame retardant.
  • the content of the flame retardant auxiliary is within the above range, the decrease in impact resistance and heat resistance of the foam molded product is suppressed.
  • the shape of the composite resin particles may be any known shape, but cylindrical, substantially spherical, and spherical shapes are preferable, and the foamed composite resin particles formed from the composite resin particles can be easily filled into a mold. , substantially spherical or spherical is more preferred.
  • the average particle diameter of the composite resin particles is preferably from 0.6 mm to 1.8 mm in terms of good filling properties of the expanded composite resin particles into a mold.
  • the method for producing the composite resin particles is not particularly limited as long as the composite resin particles described above can be obtained.
  • composite resin particles can be obtained by the following production method. That is, the composite resin particles can be obtained by polymerizing the styrenic monomer with which the seed particles are impregnated. This method is a so-called seed polymerization method.
  • seed particles, a styrenic monomer, and, if necessary, a polymerization initiator are dispersed in an aqueous suspension.
  • a polymerization initiator you may mix a styrene-type monomer and a polymerization initiator previously, and may use it.
  • polymerization initiator those generally used as an initiator for suspension polymerization of styrenic monomers can be preferably used.
  • Dicumyl peroxide can also act as a flame retardant aid.
  • the aqueous medium that constitutes the aqueous suspension include water and a mixed medium of water and a water-soluble solvent (eg, lower alcohol).
  • the amount of the polymerization initiator used is preferably 0.01 to 0.9 parts by mass, more preferably 0.1 to 0.5 parts by mass, based on 100 parts by mass of the styrene-based monomer.
  • a dispersant may be added to the aqueous suspension as needed.
  • the dispersant is not particularly limited, and any known dispersant can be used. Specific examples include sparingly soluble inorganic substances such as calcium phosphate, magnesium pyrophosphate, sodium pyrophosphate and magnesium oxide. Additionally, surfactants such as sodium dodecylbenzenesulfonate may be used.
  • the obtained dispersion is heated to a temperature at which the styrene-based monomer is not substantially polymerized to impregnate the seed particles with the styrene-based monomer.
  • the time for impregnating the seed particles with the styrene-based monomer is not particularly limited, and can be, for example, 1 minute to 24 hours, preferably 20 minutes to 4 hours, more preferably 30 minutes to 2 hours.
  • the styrene-based monomer is polymerized.
  • Polymerization is not particularly limited, but is preferably carried out at 115 to 150° C., preferably 120 to 140° C., for 1.5 to 5 hours. Polymerization is usually carried out in a pressurizable closed vessel.
  • the polymerization may be performed while impregnating the seed particles with the styrene-based monomer instead of starting the polymerization after the seed particles are impregnated with the styrene-based monomer.
  • the styrene-based monomer is added at a rate of 0.001 to 0.1 part by mass per second with respect to 100 parts by mass of the seed particles. It is preferred to do so.
  • a composite resin particle containing a flame retardant and a flame retardant aid can be produced by a method of impregnating a seed particle with a flame retardant and a flame retardant aid together with a styrene-based monomer, a method of impregnating particles after polymerization, or the like.
  • the expandable particles contain the composite resin particles and a blowing agent.
  • foaming agents include organic gases such as propane, n-butane, isobutane, n-pentane, isopentane, cyclopentane, n-hexane, and isohexane, and inorganic gases such as carbon dioxide, nitrogen, helium, argon, and air. can be used. These foaming agents can be used alone or in combination of two or more.
  • the organic gas n-butane, isobutane, n-pentane, isopentane, or a combination thereof is suitable.
  • the content of the foaming agent in the expandable particles is preferably 5 to 25 parts by mass with respect to 100 parts by mass of the composite resin particles.
  • Expanded beads that have been pre-expanded have reduced foam moldability due to gas escape, so it was sometimes impossible to secure a long time from the production of expanded beads to the filling of the mold with the expanded beads.
  • n-pentane, isopentane, cyclopentane, n-hexane, isohexane, etc. are used as blowing agents, the release of gas from the expanded beads is suppressed. can take longer to complete.
  • the expanded beads of the present invention contain n-pentane, isopentane, cyclopentane, n-hexane, isohexane, or the like as a blowing agent, the time required for filling can be lengthened, and the residual blowing agent can provide a foamed molded product. It has the advantage of ensuring the desired flame retardancy even if the flame retardancy is lowered. In other words, the use of the composite resin particles of the present invention increases the degree of freedom in selecting the type and amount of the blowing agent.
  • Expandable particles can be obtained, for example, by impregnating composite resin particles during or after polymerization with a foaming agent. Impregnation can be carried out by methods known per se. For example, impregnation during polymerization can be carried out by carrying out the polymerization reaction in a closed container and forcing the foaming agent into the container. The impregnation after completion of the polymerization can be performed, for example, by pressurizing the foaming agent into a sealed container containing the composite resin particles.
  • Expanded particles are particles obtained by pre-expanding composite resin particles.
  • expanded particles can be obtained by expanding expandable particles impregnated with a blowing agent.
  • the foamed beads produced from the composite resin particles fuse together in a medium with a low vapor pressure (e.g., water vapor), so the energy required for foaming can be reduced, and the equipment required for foaming can be simplified. It is possible to reduce the cost required for foam molding.
  • the bulk density of the expanded particles is preferably 15 kg/m 3 to 200 kg/m 3 , more preferably 20 kg/m 3 to 100 kg/m 3 , and even more preferably 20 kg/m 3 to 50 kg/m 3 . .
  • the bulk density is within this range, it is advantageous in that the strength of the foamed molded article is high and the foamed molded article is lightweight.
  • the shape of the expanded particles is preferably spherical or approximately spherical.
  • the average particle diameter is preferably 1.0 mm to 9.0 mm, more preferably 2.0 mm to 6.4 mm.
  • Expanded particles can be obtained by expanding expandable particles to a desired bulk density by a known method. Foaming can be obtained by expanding the expandable particles using heated steam at a gauge pressure of preferably 0.05 MPa to 0.20 MPa, more preferably 0.06 MPa to 0.15 MPa.
  • the foamed molded article is a foamed body composed of a fused body of expanded particles, and is obtained, for example, by foaming the expanded particles. Since the foam molded article uses the composite resin particles as a raw material, it is excellent in bending strength, impact resistance, or heat resistance.
  • the density of the foam molded product is preferably 15 kg/m 3 to 200 kg/m 3 , more preferably 20 kg/m 3 to 100 kg/m 3 , and even more preferably 20 kg/m 3 to 50 kg/m 3 . . When the density is within the above range, both lightness and strength are excellent.
  • the density of the foam molded article can be specified by the method described in Examples.
  • the bending strength of the foam molded product can be, for example, 0.35 MPa or more, 0.35 MPa to 0.60 MPa, 0.38 MPa to 0.60 MPa, 0.40 MPa to 0.50 MPa, etc., and 0.40 MPa to 0.45 MPa is preferable. is. Flexural strength can be determined by the method described in the Examples.
  • the bending breaking point of the foam molded product can be, for example, 15 mm or more, 15 mm to 50 mm, 15 mm to 40 mm, etc., preferably 20 mm to 40 mm, more preferably 20 mm to 30 mm.
  • the bending breaking point can be specified by the method described in the Examples.
  • the heat dimensional change rate of the foam molded product can be, for example, 1.5% or less, 1.2% or less, 1.1% or less, 0.5 to 1.5%, 0.5 to 1.2%, etc. 0.5 to 1.1% is preferred.
  • the heating dimensional change rate can be specified by the method described in the Examples.
  • the falling ball impact value of the foam molded product can be, for example, 25 cm or more, 31 cm or more, 25 cm to 60 cm, 31 cm to 50 cm, etc., preferably 32.5 cm to 50 cm, more preferably 35 cm to 50 cm.
  • the falling ball impact value can be determined by the method described in the Examples.
  • the flame retardancy of the foam molded product is preferably 80 mm/min or less, and preferably 40 mm/min or less, as specified by the method described in the Examples, in accordance with the US automobile safety standard FMVSS 302. More preferably, it is 0 mm/min (self-extinguishing property).
  • a foam molded article can be obtained by filling the mold of a foam molding machine with foamed particles, heating the foamed particles to expand them, and heat-sealing the foamed particles to each other. Water vapor can be preferably used as the heating medium.
  • the expanded composite resin particles of the present invention can be used at low pressure (eg, gauge pressure 0.05 MPa to 0.16 MPa, 0.05 MPa to 0.15 MPa, 0.05 MPa to 0.12 MPa, or 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.12 MPa, 0.05 MPa to 0.11 MPa, 0.05 MPa to 0.12 MPa, or 0.05 MPa to 0.11 MPa.
  • low pressure eg, gauge pressure 0.05 MPa to 0.16 MPa, 0.05 MPa to 0.15 MPa,
  • 05 MPa to 0.10 MPa) medium e.g., steam
  • a medium e.g., steam
  • the energy required for foam molding can be reduced, the equipment required for foam molding can be simplified, and as a result, the cost required for foam molding can be reduced. can be reduced (that is, productivity is improved).
  • Other manufacturing conditions such as process temperature, process pressure and process time in each manufacturing process are appropriately set according to the manufacturing equipment, raw materials and the like to be used.
  • the foamed molded article can be used, for example, as automobile members, cushioning materials, packing materials, building materials, shoe members, sporting goods, and the like.
  • tire core materials for bicycles, wheelchairs, etc. interior materials for transport equipment such as automobiles, railway vehicles, and airplanes, seat core materials, shock absorbing members (e.g., bumper core materials), vibration absorbing members, etc.; midsole member, insole member or outsole member; core material of hitting tools for sports equipment such as rackets and bats; protective gear for sports equipment such as pads and protectors; medical care, nursing care, welfare or health such as pads and protectors Fenders; floats; toys; underfloor materials; wall materials; beds; cushions; Preferably, it is an automobile interior material, a shock absorbing member, a vibration absorbing member, or a parts packaging material.
  • MFR of polypropylene resin and ethylene-vinyl acetate polymer MFR was measured at 190° C. under a load of 2.16 kg according to JIS K6922-1:1998.
  • the melting point was measured by the method described in JIS K7122:1987 "Method for measuring transition heat of plastic". That is, using a differential scanning calorimeter RDC220 type (manufactured by Seiko Electronics Industries Co., Ltd.), 7 mg of the sample was filled in the measurement container, and the nitrogen gas flow rate was 30 mL / min. The temperature was raised, lowered, and raised according to the rate of temperature elevation and temperature decrease, and the melting peak temperature of the DSC curve at the time of the second temperature increase was taken as the melting point. When there are two or more melting peaks, the peak temperature on the lower side was taken as the melting point.
  • the standard polystyrene was measured in advance, and the average molecular weights (Mn, Mw) of the sample were obtained from the prepared standard polystyrene calibration curve.
  • Equipment used "HLC-8321GPC/HT" manufactured by Tosoh Corporation
  • Gel permeation chromatography guard column TSKgel guardcolumn HHR (30) HT2 manufactured by Tosoh Corporation (7.5 mmI.D. ⁇ 7.5 cm ⁇ 1 column): Tosoh ( Co., Ltd. TSKgel GMHHR-H(20)HT2 (7.8 mmI.D.
  • A (8,420,000, 1,090,000, 190,000, 17,400, 1,013), B (5,480,000, 706,000, 96,400, 5,060,589) and C (2,110,000, 427,000, 37,900, 2,550), 10 mg each of A was weighed and dissolved in 30 mL of O-dichlorobenzene. 10 mg each of B and C were also weighed and dissolved in 30 mL of O-dichlorobenzene.
  • a standard polystyrene calibration curve was obtained by injecting 300 ⁇ L of each of the A, B and C solutions and constructing a calibration curve (cubic equation) from the retention times obtained after measurement. The average molecular weight was calculated using the calibration curve.
  • the amount of powder generated during manufacturing of composite resin foam particles 5 kg of the expanded composite resin particles pre-expanded so as to have a bulk density of 0.025 g/cm 3 were classified using a sieve with a nominal opening of 0.9 mm.
  • the mass (D (g)) of the powder that passed through an opening of 0.9 mm was measured, and the amount of powder (P) for 5 kg of expanded composite resin particles was calculated by the following formula.
  • P (%) D / (5 x 1000) x 100 Since the powder may shorten the life of the mold, the smaller the amount of powder, the better.
  • the amount of powder is desirably 0.04% or less, more desirably 0.03% or less, and even more desirably 0.02% or less.
  • the mass (a) and volume (b) of a test piece (75 mm ⁇ 300 mm ⁇ 35 mm) cut out from a foamed molded product (dried at 50 ° C. for 4 hours or more after molding) should be at least three significant figures. , and the density (g/cm 3 ) of the foamed molded product was determined by the formula (a)/(b).
  • Bending strength and bending breaking point of foam molded article Bending strength (average maximum bending strength) and bending breaking point were measured according to the method described in JIS K7221-1:2006 "Rigid Foamed Plastic-Bending Test-Part 1: Determination of Flexibility". That is, using Tensilon universal testing machine UCT-10T (manufactured by Orientec) and universal testing machine data processing software UTPS-237 (manufactured by Softbrain), the size of a rectangular parallelepiped test piece is 25 mm in width ⁇ 130 mm in length ⁇ 20 mm in thickness.
  • the test speed is 10 mm / min
  • the pressure wedge is 5R
  • the support base is 5R
  • the distance between fulcrums is 100mm
  • the surface without the skin of the test piece is applied. Pressed and measured.
  • the number of test pieces is 5, and the symbol "23/50" (temperature 23 ° C., relative humidity 50%) of JIS K7100: 1999 "Plastics - Standard atmosphere for conditioning and testing", Class 2 After conditioning for 16 hours under a standard atmosphere of , the above measurements were carried out under the same standard atmosphere. Bending strength (MPa) was calculated by the following formula.
  • R (1.5F R ⁇ L/bd 2 ) ⁇ 10 3
  • R bending strength (MPa)
  • F R Maximum load (kN)
  • L Distance between fulcrums (mm)
  • b Width of test piece (mm)
  • d Thickness of test piece (mm)
  • a bending strength of 0.35 MPa or more is desirable, and a bending strength of 0.40 MPa or more can be evaluated as excellent bending strength.
  • the break detection sensitivity is set to 0.5%, and when the decrease exceeds the set value of 0.5% (deflection amount: 30 mm) compared to the previous load sampling point, the previous sampling point is The bending breaking point displacement amount (mm) was measured, and the average of 5 tests was obtained to obtain the bending breaking point (mm).
  • a bending breaking point of 15 mm or more is desirable, and a bending breaking point of 20 mm or more can be evaluated as having excellent flexibility.
  • the heat dimensional change rate of the foamed molded product was measured by B method described in JIS K 6767: 1999 "Foamed plastic-Polyethylene-Test method”. A test piece measuring 150 mm long, 150 mm wide, and 20 mm high was cut out from the foam molded article. On the surface of the test piece, three vertical straight lines with a length of 50 mm are drawn parallel to each other at intervals of 50 mm, and three horizontal straight lines with a length of 50 mm are drawn parallel to each other at intervals of 50 mm. Entered for each interval.
  • the test piece was left in a hot air circulating dryer at 80°C for 168 hours, then taken out and left in a place under standard conditions (20 ⁇ 2°C, humidity 65 ⁇ 5%) for 1 hour. did.
  • the lengths of the six straight lines drawn on the surface of the test piece were measured, and the arithmetic mean value L1 of the lengths of the six straight lines was calculated.
  • Burning speed (mm/min) was measured by a method conforming to US automobile safety standard FMVSS 302. A test piece (bulk expansion ratio of 40 times) was 350 mm x 100 mm x 12 mm (thickness), and had skins on at least two sides of 350 mm x 100 mm. Flame retardancy was evaluated according to the following criteria based on the burning rate. If the fire is extinguished before reaching the starting point of the measurement, the burning speed is taken as 0 mm/min, and it can be evaluated as self-extinguishing. When the burning speed is 80 mm/min or less, it can be evaluated as excellent flame retardancy. The combustibility of the foam molded product is more preferably self-extinguishing.
  • a sample was prepared by cutting the foam molded body into a size of 215 mm ⁇ 40 mm ⁇ 20 mm, and after placing this sample on a pair of holding members arranged with a span of 155 mm, at an intermediate position between both holding members A steel ball with a weight of 321 g was dropped from a predetermined height to the central position of the sample in the width direction, and the presence or absence of breakage of the sample was confirmed. This test was repeated by changing the height from which the steel ball was dropped, and the lowest value of the height at which the sample was broken was taken as the falling ball impact value, and the impact strength was evaluated. Therefore, the higher the falling ball impact value, the higher the impact strength.
  • a falling ball impact value of 25 cm or more can be evaluated as practical impact absorption, and a value of 30 cm or more can be evaluated as excellent impact absorption.
  • the expanded composite resin particles were filled in a mold of 300 mm ⁇ 400 mm ⁇ 30 mm of a foam molding machine, and heated with steam to expand the expanded composite resin particles while thermally bonding the expanded composite resin particles to each other.
  • the resulting foamed molded product melted when the steam pressure was changed from 0.08 MPa to 0.25 MPa in increments of 0.01 MPa. I asked for the rate.
  • the moldability was evaluated with the lowest steam pressure value (minimum steam pressure value) at which the fusion rate was 90% or more.
  • a foam molded article with good fusion bonding can be obtained at a low steam pressure, the molding equipment can be simplified and the production energy can be reduced, resulting in a low production cost and an improvement in productivity. If a foamed molded article having a fusion rate of 90% or more can be obtained at a steam pressure of 0.16 MPa or less, preferably 0.10 MPa or less, a foamed molded article having good fusion bonding can be obtained with a low steam pressure adjustment, so that moldability is improved. becomes good, resulting in high productivity.
  • polypropylene resin used in the examples and the high density polyethylene resin (HDPE) used for comparison are as follows.
  • Table 1 shows the physical properties of the polypropylene-based resin and the high-density polyethylene resin.
  • F744NP random copolymer of PP (manufactured by Prime Polymer, ethylene content 7% by mass)
  • S-131 random copolymer of PP (manufactured by Sumitomo Chemical Co., Ltd., ethylene content 5% by mass)
  • PL500A PP homopolymer (manufactured by SunAllomer)
  • 10S65B High density polyethylene (manufactured by Tosoh Corporation)
  • EVA ethylene-vinyl acetate copolymer
  • EAA ethylene-ethyl acrylate copolymer
  • EF0505 ethylene-vinyl acetate copolymer (manufactured by Asahi Kasei Corporation, vinyl acetate content 4.7% by mass)
  • EF0510 ethylene-vinyl acetate copolymer (manufactured by Asahi Kasei Corporation, vinyl acetate content 5% by mass)
  • LV430 Ethylene-vinyl acetate copolymer (manufactured by Japan Polyethylene Co., Ltd., vinyl acetate content: 15% by mass)
  • 514R Ethylene-vinyl acetate copolymer (manufactured by Tosoh Corporation, product number 514R, vinyl acetate content 5% by mass)
  • A1100 Ethylene-ethyl acrylate copolymer (manufactured by Japan Polyethylene Co., Ltd., product number A1100, ethyl acrylate content 10% by mass)
  • Fine silica Silica (manufactured by Nippon Aerosil Co., Ltd., product number AEROSIL200)
  • Talc Talc Masterbatch manufactured by Nitto Funka Co., Ltd.
  • TAIC-6B Tris (2,3-dibromopropyl) isocyanurate (manufactured by Nippon Kasei Co., Ltd.) Biscumyl: 2,3-dimethyl-2,3-diphenylbutane (manufactured by Kayaku Nourion Co., Ltd., product number Perkadox 30)
  • Example 1 [Preparation of seed particles] F744NP as the polypropylene resin (A) and EF0505 as the ethylene-vinyl acetate copolymer (B) were placed in a tumbler mixer at a mass ratio of 40:60 and mixed for 10 minutes.
  • finely divided silica as an inorganic component was added in an amount of 0.25% by mass with respect to the total mass of the polypropylene resin (A) and the ethylene-vinyl acetate copolymer (B), and the mixture was further mixed for 10 minutes. , to obtain a resin mixture (base resin).
  • the resulting resin mixture is supplied to an extruder, melt-kneaded at a temperature of 230 to 250° C., granulated by an underwater cutting method, cut into oval spheres (ovals), and modified with an ethylene-vinyl acetate copolymer.
  • Polypropylene-based resin particles seed particles, average mass 0.6 mg were obtained.
  • a dispersion liquid prepared by dispersing 3 g of sodium dodecylbenzenesulfonate in 20 g of pure water was added dropwise over 10 minutes to the reaction liquid cooled to 120°C.
  • a liquid obtained by dissolving 5 g of dicumyl peroxide (polymerization initiator) in 1100 g of styrene monomer was added dropwise at a rate corresponding to 0.05 parts by mass/sec with respect to 100 parts by mass of seed particles. After dropping, the mixture was held at 120° C. for 1 hour to impregnate the modified polypropylene resin particles with the styrene monomer.
  • a dispersion medium prepared by dispersing 3 g of ethylene bis-stearic acid amide (cell modifier) in 100 g of pure water was added dropwise over 30 minutes. It was impregnated with styrene monomer and cell control agent. After the impregnation, the temperature was raised to 140° C. and maintained at this temperature for 3 hours for polymerization (second polymerization).
  • the obtained expandable resin particles are put into a cylindrical pre-expanding machine with an internal volume of 50 L and equipped with a stirrer, and heated with steam of 0.02 MPa while stirring to obtain expanded particles having a bulk density of 25 kg/m 3 (generally may be referred to as pre-expanded particles).
  • the foamed particles were classified with a 0.9 mm mesh sieve, and the amount of powder was measured by weighing the mass of powder discharged as classification off.
  • Examples 2-6 and Comparative Examples 3 and 4 Foam molded articles of Examples 2 to 5 and Comparative Examples 3 and 4 were produced in the same manner as in Example 1 except that the materials, amounts, bulk densities of expanded particles, etc. shown in Table 3 were used. The resulting foamed molded article was subjected to various tests. Table 3 shows the results. The meanings of the terms in Table 3 are as follows.
  • Mw/Mn of B ratio of mass average molecular weight to number average molecular weight of ethylene-vinyl acetate copolymer (B)
  • A:B mass ratio ratio of polypropylene resin (A) and ethylene-vinyl acetate copolymer (B)
  • Mass ratio Inorganic component content (%) Ratio of inorganic component added to total mass of polypropylene resin (A) and ethylene-vinyl acetate copolymer (B) (% by mass) A+B: PS mass ratio; ratio of total mass of polypropylene resin (A) and ethylene-vinyl acetate copolymer (B) to polystyrene mass Amount of flame retardant added; polypropylene resin (A) and ethylene-vinyl acetate copolymer Addition ratio of flame retardant to total mass of (B) (% by mass) Amount of flame retardant aid added: Percentage of flame retardant aid added to total mass of polypropylene resin (A) and
  • Example 7 Seed particles were produced in the same manner as in Example 1, except that the materials, amounts, etc. shown in Table 3 were used.
  • a dispersion liquid prepared by dispersing 3 g of sodium dodecylbenzenesulfonate in 20 g of pure water was added dropwise over 10 minutes to the reaction liquid cooled to 120°C.
  • a liquid obtained by dissolving 3 g of dicumyl peroxide (polymerization initiator) in 500 g of styrene monomer was added dropwise at a rate corresponding to 0.05 parts by mass/sec with respect to 100 parts by mass of seed particles. After dropping, the mixture was held at 120° C. for 1 hour to impregnate the modified polypropylene resin particles with the styrene monomer.
  • a dispersion medium prepared by dispersing 3 g of ethylene bis-stearic acid amide (cell modifier) in 100 g of pure water was added dropwise over 30 minutes. It was impregnated with styrene monomer and a cell control agent. After impregnation, the temperature is raised to 140° C. and held at this temperature for 3 hours to polymerize (second polymerization), whereby the composite resin particles (polypropylene resin (A) and ethylene-vinyl acetate copolymer (B) A 50:50 ratio of total mass to polystyrene mass was made. Then, it was cooled to 30° C. or less, and the composite resin particles were taken out from the autoclave.
  • cell modifier cell modifier
  • Expandable particles were produced in the same manner as in Example 1, except that the gas type was A, the bulk density of the expanded particles was 33 kg/m 3 , and the density of the expanded molded product was 33 kg/m 3 . An expanded particle and an expanded molded article were obtained.
  • Example 8 [Preparation of seed particles] Seed particles were produced in the same manner as in Example 1, except that the materials, amounts, etc. shown in Table 4 were used.
  • a dispersion medium prepared by dispersing 3 g of ethylene bis-stearic acid amide (cell modifier) in 100 g of pure water was added dropwise over 30 minutes. It was impregnated with butyl acrylate and styrene monomers and a cell control agent. After the impregnation, the temperature was raised to 140° C. and maintained at this temperature for 3 hours for polymerization (second polymerization).
  • Expandable beads, expanded beads, and an expanded molded product were obtained in the same manner as in Example 1 except that gas type A was used in the production of expandable beads.
  • Example 9 Seed particles were produced in the same manner as in Example 1, except that the materials, amounts, etc. shown in Table 4 were used.
  • a dispersion medium prepared by dispersing 3 g of ethylene bis-stearic acid amide (cell modifier) in 100 g of pure water was added dropwise over 30 minutes. It was impregnated with butyl acrylate and styrene monomers and a cell control agent. After the impregnation, the temperature was raised to 140° C. and maintained at this temperature for 3 hours for polymerization (second polymerization).
  • Expandable beads, expanded beads, and an expanded molded product were obtained in the same manner as in Example 1 except that gas type A was used in the production of expandable beads.
  • Example 10 [Preparation of seed particles] F744NP as the polypropylene resin (A) and EF0505 as the ethylene-vinyl acetate copolymer (B) were placed in a tumbler mixer at a mass ratio of 80:20 and mixed for 10 minutes.
  • a carbon black masterbatch manufactured by Dainichiseika Kogyo Co., Ltd., trade name: PPRM-10H381, carbon black content 45% by mass
  • the carbon black content was added in an amount of 5% by mass with respect to the total mass, and the mixture was further mixed for 10 minutes to obtain a resin mixture (base resin).
  • the resulting resin mixture is supplied to an extruder, melt-kneaded at a temperature of 230 to 250° C., granulated by an underwater cutting method, cut into oval spheres (ovals), and modified with an ethylene-vinyl acetate copolymer.
  • Polypropylene-based resin particles seed particles, average mass 0.6 mg were obtained.
  • Expandable beads, expanded beads, and an expanded molded product were obtained in the same manner as in Example 1 except that gas type A was used in the production of expandable beads.
  • Example 11 Seed particles were produced in the same manner as in Example 10 except that the materials and amounts shown in Table 4 were used.
  • a dispersion liquid prepared by dispersing 3 g of sodium dodecylbenzenesulfonate in 20 g of pure water was added dropwise to the reaction liquid cooled to 125° C. over 10 minutes.
  • a liquid obtained by dissolving 4 g of dicumyl peroxide (polymerization initiator) in 10 g of butyl acrylate and 790 g of styrene monomer was added at a rate corresponding to 0.05 parts by mass/sec with respect to 100 parts by mass of seed particles. Dripped. After dropping, the modified polypropylene resin particles were impregnated with the butyl acrylate and the styrene monomer by holding at 125° C. for 1 hour.
  • the temperature was raised to 140° C. and maintained at this temperature for 3 hours for polymerization (second polymerization).
  • Into this reaction solution were added 60 g of TAIC-6B as a flame retardant and 20 g of Biscumyl as a flame retardant aid.
  • the temperature of the reaction system was raised to 140 ° C., and the flame retardant-containing composite resin particles (the total mass of the polypropylene resin (A) and the ethylene-vinyl acetate copolymer (B) and A polystyrene mass ratio of 40:60) was made. Then, it was cooled to 30° C. or less, and the composite resin particles were taken out from the autoclave.
  • Expandable beads, expanded beads, and an expanded molded product were obtained in the same manner as in Example 1 except that gas type A was used in the production of expandable beads.
  • Example 12 Seed particles were produced in the same manner as in Example 10 except that the materials and amounts shown in Table 4 were used.
  • a dispersion liquid prepared by dispersing 3 g of sodium dodecylbenzenesulfonate in 20 g of pure water was added dropwise to the reaction liquid cooled to 125° C. over 10 minutes.
  • a liquid obtained by dissolving 4 g of dicumyl peroxide (polymerization initiator) in 800 g of styrene monomer was added dropwise at a rate corresponding to 0.05 parts by mass/sec with respect to 100 parts by mass of seed particles.
  • the mixture was held at 125° C. for 1 hour to impregnate the modified polypropylene resin particles with the styrene monomer. Thereafter, the temperature was raised to 140° C.
  • Comparative example 1 Preparation of seed particles
  • Seed particles were produced in the same manner as in Example 1, except that the materials, amounts, etc. shown in Table 3 were used.
  • Expandable beads, expanded beads and expanded molded articles were produced in the same manner as in Example 1 except that the gas type was changed to A.
  • Comparative example 2 [Preparation of seed particles] Seed particles were produced in the same manner as in Example 1, except that the materials, amounts, etc. shown in Table 3 were used.
  • a dispersion liquid prepared by dispersing 3 g of sodium dodecylbenzenesulfonate in 20 g of pure water was added dropwise over 10 minutes to the reaction liquid cooled to 120°C.
  • a liquid prepared by dissolving 5 g of dicumyl peroxide (polymerization initiator) in 800 g of styrene monomer was added dropwise at a rate corresponding to 0.05 parts by mass/sec with respect to 100 parts by mass of seed particles. After dropping, the mixture was held at 120° C. for 1 hour to impregnate the modified polypropylene resin particles with the styrene monomer.
  • a dispersion medium prepared by dispersing 3 g of ethylene bis-stearic acid amide (cell modifier) in 100 g of pure water was added dropwise over 30 minutes. It was impregnated with styrene monomer and a cell control agent. After impregnation, the temperature is raised to 140° C. and held at this temperature for 3 hours to polymerize (second polymerization), whereby the composite resin particles (polypropylene resin (A) and ethylene-vinyl acetate copolymer (B) A 40:60 ratio of total mass to polystyrene mass was made. Then, it was cooled to 30° C. or less, and the composite resin particles were taken out from the autoclave.
  • cell modifier cell modifier
  • Expandable beads, expanded beads and expanded molded articles were produced in the same manner as in Example 1 except that the gas type was changed to A.
  • Comparative Example 1 in which the A+B:PS ratio was 70:30, the amount of powder was as large as 0.05% by mass, the lowest steam pressure value was as large as 0.28 MPa, and the falling ball impact value was small.
  • Comparative Example 3 in which a high-density polyethylene resin was used instead of the polypropylene resin, self-extinguishing was not observed and the flame retardancy was inferior to that of the other examples. Colored light red.
  • Examples 1 to 7 showed excellent results in all evaluation items, and in particular, Examples 1 and 2 showed excellent results in all evaluation items.
  • the foam molded article of the present invention exhibited excellent flame retardancy even without blending a flame retardant (Example 6).
  • Examples 8 to 11 although the amount of the polypropylene resin relative to the ethylene-vinyl acetate copolymer is large, the polystyrene resin contains a resin component derived from butyl acrylate, so that the minimum vapor pressure value can be kept low. It was possible to reduce the energy required for foam molding.
  • Examples 10-12 contained a carbon component, they exhibited sufficient mechanical properties (flexural strength, bending breaking point, and falling ball impact value).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、耐熱性に優れ(加熱寸法変化率の低い)、難燃性に優れ、その発泡成形体の保管安定性に優れた発泡成形体、これを製造するための複合樹脂粒子等の提供 本発明は、ポリプロピレン系樹脂、エチレン-酢酸ビニル共重合体、及びポリスチレン系樹脂を含有する、複合樹脂粒子、当該複合樹脂粒子の発泡粒子、及び当該発泡粒子の発泡成形体に関する。

Description

複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体
 本発明は、複合樹脂粒子、複合樹脂発泡粒子、発泡成形体等に関する。
 ポリスチレン系樹脂からなる発泡成形体は、剛性、断熱性、軽量性、耐水性及び発泡成形性に優れるが、耐薬品性及び耐衝撃性が低いことが知られている。これを補うため、ポリスチレン系樹脂とポリオレフィン系樹脂との複合樹脂粒子から得られた複合樹脂発泡成形体が利用されている。複合樹脂粒子は、一般には、ポリエチレン系樹脂等のポリオレフィン系樹脂の基材樹脂を種粒子(核粒子とも称される)とし、種粒子にスチレン系単量体を添加後、重合することで製造されている。この重合はシード重合とも称される。複合樹脂粒子は、一般的には、発泡ガスが配合された後に発泡(予備発泡とも称される)させられて発泡した粒子(発泡粒子)となり、発泡粒子を型枠に充填し加熱することによって発泡成形体が製造される。
 複合樹脂粒子を構成するポリオレフィン系樹脂の種類を変えることで複合樹脂発泡成形体の特性を変更できる。例えば、ポリプロピレン系樹脂を使用すると耐熱性が向上し、直鎖状低密度ポリエチレンを使用すると耐衝撃性が向上する。耐熱性が高い複合樹脂発泡成形体は自動車用部材を中心として需要があり、ポリプロピレン系樹脂及びポリスチレン系樹脂からなる複合樹脂粒子から得られた耐熱性に優れた複合樹脂発泡成形体が使用されていた(特許文献1)。しかし、発泡成形に利用される蒸気の圧力が高くないと発泡が不十分となり所望の形状、密度等の特性を備えた成形体が得られにくい。発泡成形に要する蒸気の圧力が高いと成形に要するエネルギーが多く必要となり、さらにその圧力に対応した成形機を使用する必要があり、成形に要するコストが高くなっていた。
 このため、高密度ポリエチレン及びエチレン共重合体(例えば、エチレン-酢酸ビニル共重合体)からなる基材樹脂をシード重合でポリスチレン系樹脂と複合化した複合樹脂の粒子が代替品として使用されることがあった。この粒子を使用すると蒸気の圧力をそれほど高くすることなく発泡成形が可能であった(特許文献2、3)。そして、自動車用部材として使用される発泡成形体には難燃性が求められることが多いため、この発泡成形体に難燃剤を含有させることがなされていた。
特許第4718645号公報 特開2015-189912号公報 特許第6251409号公報
 本発明者は、高密度ポリエチレン及びエチレン-酢酸ビニル共重合体からなる基材樹脂をシード重合でポリスチレン系樹脂と複合化した複合樹脂に難燃剤を配合すると、その発泡成形体が保管安定性の加速試験で赤みを帯びて着色することに気付いた。
 本発明は、耐熱性に優れ(加熱寸法変化率の低い)、難燃性に優れ、保管安定性の加速試験において着色しない発泡成形体、これを製造するための複合樹脂粒子等の提供を一つの目的とする。また、本発明は、複合樹脂発泡粒子の製造時に発生する粉末の量が低減された複合樹脂粒子の提供を一つの目的とする。本発明は、低蒸気圧での融着性が高いために定常気圧での発泡成形可能な、成形性に優れた複合樹脂発泡粒子の提供を一つの目的とする。本発明は、曲げ強度に優れた発泡成形体の提供を一つの目的とする。本発明は、耐衝撃性に優れた発泡成形体の提供を一つの目的とする。
 本発明者は、上記課題に鑑み、ポリプロピレン系樹脂、エチレン-酢酸ビニル共重合体、及びポリスチレン系樹脂を含有する、複合樹脂粒子、これから得られる発泡樹脂粒子を発泡成形することによって、保管安定性の加速試験で着色しない発泡成形体が得られること、この発泡成形体が、高い難燃性とポリプロピレン系樹脂によりもたらされる優れた耐熱性(低い加熱寸法変化率)とを有すること等を見出し、本発明を完成させた。
 本発明は、代表的には以下の態様を包含する。
項1.
 ポリプロピレン系樹脂、エチレン-酢酸ビニル共重合体、及びポリスチレン系樹脂を含有する、複合樹脂粒子。
項2.
 前記複合樹脂粒子の全質量に対し、前記ポリプロピレン系樹脂の含有量が2~35質量%であり、前記エチレン-酢酸ビニル共重合体の含有量が3~50質量%であり、前記ポリスチレン系樹脂の含有量が40~95質量%である、項1に記載の複合樹脂粒子。
項3.
 複合樹脂粒子における前記エチレン-酢酸ビニル共重合体の含有量が、前記ポリプロピレン系樹脂含有量100質量部に対して60~1000質量部である、項1又は2に記載の複合樹脂粒子。
項4.
 複合樹脂粒子における前記エチレン-酢酸ビニル共重合体の含有量が、前記ポリプロピレン系樹脂含有量100質量部に対して10~60質量部であり、
前記ポリスチレン系樹脂が、(メタ)アクリル酸エステル由来の樹脂成分と、スチレン系単量体由来の樹脂成分とを含有し、(メタ)アクリル酸エステル由来の樹脂成分を、スチレン系単量体由来の樹脂成分の質量の0.05~5.00質量%含む、項1又は2に記載の複合樹脂粒子。
項5.
 複合樹脂粒子における前記ポリプロピレン系樹脂及び前記エチレン-酢酸ビニル共重合体の合計含有質量/複合樹脂粒子における前記ポリスチレン系樹脂の含有質量が5/95~60/40である、項1~4のいずれかに記載の複合樹脂粒子。
項6.
 前記エチレン-酢酸ビニル共重合体が、100~120℃の融点を有する、項1~5のいずれかに記載の複合樹脂粒子。
項7.
 前記エチレン-酢酸ビニル共重合体が、その数平均分子量(Mn)に対する質量平均分子量(Mw)の比(Mw/Mn)が1.0~7.0である、項1~6のいずれかに記載の複合樹脂粒子。
項8.
 前記エチレン-酢酸ビニル共重合体が、0.5g/10分~10g/10分のメルトフローレートを有する、項1~7のいずれかに記載の複合樹脂粒子。
項9.
 前記ポリプロピレン系樹脂が、130~150℃の融点を有する、項1~8のいずれかに記載の複合樹脂粒子。
項10.
 前記ポリプロピレン系樹脂が、ランダムポリプロピレンである、項1~9のいずれかに記載の複合樹脂粒子。
項11.
 前記複合樹脂粒子が、難燃剤をさらに含有し、その含有量が難燃剤を除いた前記複合樹脂粒子質量の0.5~10質量%である、項1~10のいずれかに記載の複合樹脂粒子。
項12.
 前記難燃剤が、ハロゲン系難燃剤である、項11に記載の複合樹脂粒子。
項13.
 前記複合樹脂粒子が、さらに無機成分を含有し、その含有量が前記複合樹脂粒子質量の0.01~5質量%である、項1~12のいずれかに記載の複合樹脂粒子。
項14.
 前記無機成分が、タルク又はシリカである、項13に記載の複合樹脂粒子。
項15.
 前記ポリプロピレン系樹脂及び前記エチレン-酢酸ビニル共重合体を含有する種粒子にスチレン系モノマーを含浸及び重合させたシード重合粒子である、項1~14のいずれかに記載の複合樹脂粒子。
項16.
 項1~15のいずれかに記載の複合樹脂粒子からなる発泡粒子。
項17.
 嵩密度が、10kg/m~200kg/mである、項15に記載の発泡粒子。
項18.
 項16又は17に記載の発泡粒子からなる発泡成形体。
項19.
 密度が、20kg/m~50kg/mである、項18に記載の発泡成形体。
項20.
 項18又は19に記載の発泡成形体を含有する自動車用部材。
 本発明の複合樹脂粒子及び複合発泡粒子によれば、保管安定性の加速試験で着色しない発泡成形体を提供できる。
 本発明の複合樹脂粒子及び複合発泡粒子によれば、高い難燃性とポリプロピレン系樹脂によりもたらされる優れた耐熱性(低い加熱寸法変化率)とを有する発泡成形体を提供できる。
 本発明の複合樹脂粒子によれば、複合樹脂発泡粒子の製造時に発生する粉末の量(本明細書中、単に「粉末量」とも称する。)が低減されるため、金型寿命を延ばすことができる。
 本発明の複合樹脂粒子及び複合樹脂粒子によれば、低蒸気圧の媒体(例:水蒸気)であっても高い熱融着率で発泡成形が可能なため、発泡成形に要するエネルギーを小さくできる。このため、発泡成形に要する設備を簡略化でき、発泡成形に要するコストを低減できる。したがって、本発明の複合樹脂粒子及び複合樹脂発泡粒子は、発泡成形体の生産性に優れる。
 本発明の複合樹脂粒子及び複合発泡粒子によれば、曲げ強度に優れる発泡成形体を提供できる。
 本発明の複合樹脂粒子及び複合発泡粒子によれば、耐衝撃性に優れる発泡成形体を提供できる。
 本明細書中、語句「含有する」は、語句「から本質的になる」、及び語句「からなる」を包含することを意図して用いられる。
 複合樹脂粒子は、代表的には基材樹脂粒子(種粒子)にスチレン系単量体を含浸させ、スチレン系単量体を重合することによって得られる。基材樹脂はポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体を少なくとも含有する。種粒子におけるポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体の合計含有量は、種粒子の総質量に対し、例えば80~100質量%、85~100質量%、90~100質量%、95~100質量%等であってよい。
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂としては、特に限定されず、公知の樹脂が使用できる。ポリプロピレン系樹脂としては、ホモポリマー、ランダムコポリマー、ブロックコポリマー等が挙げられ、成形性が高い(つまり低蒸気圧で融着性が高いために発泡成形できる及び発泡時の発泡倍率が高くなりやすい)点でランダムコポリマーが好適である。
 ポリプロピレン系樹脂としては、リサイクル品、例えば梱包材等として使用されたポリプロピレン系樹脂を回収し、リサイクルされたリサイクル樹脂を使用することもできる。
 コポリマーは、プロピレン以外のオレフィン(例えばエチレン、ブテン等)を含有するものであってよい。ランダムコポリマーとしては、エチレン-プロピレンランダム共重合体、プロピレン-ブテンランダム共重合体、エチレン-プロピレン-ブテンランダム共重等を挙げることができる。ブロックコポリマーとしては、エチレン-プロピレンブロック共重合体、プロピレン-ブテンブロック共重合体、エチレン-プロピレン-ブテンブロック共重等を挙げることができる。
 プロピレン以外のオレフィンに由来する成分のコポリマー中における割合は、例えば0.01~10質量%、0.01~8質量%、0.1~7質量%、0.1~6質量%等とすることができ、好ましくは1~7質量%、より好ましくは2~6質量%である。
 ポリプロピレン系樹脂としては市販の樹脂を使用できる。例えば、プライムポリマー社、サンアロマー社、住友化学社等から入手可能である。
 ポリプロピレン系樹脂の融点は特に限定されないが、例えば130~165℃とでき、130~150℃が好適であり、130~145℃がより好適であり、130~134℃がさらに好適である。融点が前記範囲内であると、低蒸気圧での成形性(高融着率)が向上する点又は発泡時の発泡倍率が高くなりやすい点で有利である。融点は実施例に記載された方法で特定できる。
 ポリプロピレン系樹脂のメルトマスフローレート(本明細書中、MFRとも称する。)は特に限定されないが、0.1g/10分~20.0g/10分が好適であり、1g/10分~10g/10分がより好適であり、4g/10分~8g/10分が特に好適である。MFRが前記範囲内であると、発泡成形性の点で有利である。MFRは実施例に記載された方法で特定できる。
 ポリプロピレン系樹脂は、880kg/m~950kg/mの密度を有してよい。密度がこの範囲内であると、耐衝撃性および成形加工性の点で有利である。密度は、890kg/m~930kg/mが好ましく、890kg/m~920kg/mがより好ましく、890kg/m~910kg/mが特に好ましい。密度が前記範囲内であると、発泡成形性の点で有利である。密度は次の方法で特定できる。
(ポリプロピレン系樹脂の密度)
 ポリプロピレン系樹脂の密度は、JIS K6922-1:1998に準拠して密度勾配管法で測定する。
 種粒子におけるポリプロピレン系樹脂の含有割合は、種粒子の総質量に対して、例えば10~77質量%、10~70質量%、10~60質量%、15~50質量%、18~70質量%等とでき、18~60質量%が好適であり、18~50質量%がより好適であり、18~40質量%がさらに好適である。
 ポリスチレン系樹脂が(メタ)アクリル酸エステル由来の樹脂成分を含むときは、種粒子におけるポリプロピレン系樹脂の含有割合は、種粒子の総質量に対して、例えば10~95質量%、10~90質量%、20~80質量%、30~80質量%等とでき、18~90質量%が好適であり、18~80質量%がより好適であり、30~80質量%がさらに好適である。
 複合樹脂粒子におけるポリプロピレン系樹脂の含有割合は、複合樹脂粒子の総質量に対して、例えば2~35質量%とでき、4~30質量%が好適であり、5~20質量%がより好適である。
 ポリスチレン系樹脂が(メタ)アクリル酸エステル由来の樹脂成分を含むときは、複合樹脂粒子におけるポリプロピレン系樹脂の含有割合は、複合樹脂粒子の総質量に対して、例えば2~35質量%等とでき、4~31質量%が好適であり、9~31質量%がより好適である。
 ポリプロピレン系樹脂の種粒子又は複合樹脂粒子における含有割合が前記範囲内であると、加熱寸法変化率が小さい点又は遅燃性の点で有利である。
(エチレン-酢酸ビニル共重合体)
 エチレン-酢酸ビニル共重合体は、エチレンと酢酸ビニルの共重合体である。エチレン-酢酸ビニル共重合体は、エチレンと他のエステル系単量体(例えばアクリル酸アルキルエステル、メタクリル酸アルキルエステル、脂肪族飽和モノカルボン酸ビニル(酢酸ビニルを除く))との共重合体よりも、複合樹脂発泡粒子の製造時に発生する粉末の量が少ない点又は加熱寸法変化率が小さい点で優れている。
 エチレン-酢酸ビニル共重合体としては、リサイクル品、例えば梱包材等として使用されたエチレン-酢酸ビニル共重合体を回収し、リサイクルされたリサイクル樹脂を使用することもできる。
 エチレン-酢酸ビニル共重合体における酢酸ビニル由来成分の占める割合は1~20質量%が好適であり、1~14質量%がより好適であり、1~10質量%がさらに好適である。
 エチレン-酢酸ビニル共重合体の融点は特に制限されないが、例えば85~120℃とでき、100~120℃が好適であり、100~115℃がより好適であり、100~110℃がさらに好適である。融点が前記範囲内であると、発泡成形体の加熱寸法変化率が小さい点又はポリプロピレン系樹脂との相溶性が良いことから発泡成形時の融着性に優れる点で有利である。融点は実施例に記載された方法で特定できる。
 エチレン-酢酸ビニル共重合体の数平均分子量(Mn)に対するエチレン-酢酸ビニル共重合体の質量平均分子量(Mw)の比(Mw/Mn)は特に制限されないが、例えば1.0~7.5とでき、1.0~7.0が好適である。Mw/Mnが前記範囲内であると、発泡成形体の強度が高い点又は耐衝撃性が向上する点で有利である。Mw/Mnは、3.0~6.0がより好適であり、3.5~5.5がさらに好適である。数平均分子量及び質量平均分子量は実施例に記載された方法で特定できる。
 エチレン-酢酸ビニル共重合体のMFRは特に限定されないが、例えば0.3g/10分~5.0g/10分とでき、0.5g/10分~5.0g/10分が好適である。MFRが前記範囲内であると、発泡成形体の強度が高い点、耐衝撃性が向上する点、又は低蒸気圧での成形性(高融着率)が向上する点で有利である。MFRは、0.5g/10分~4.0g/10分がより好適であり、0.5g/10分~3.0g/10分がさらに好適であり、0.7g/10分~3.0g/10分が特に好適である。MFRは実施例に記載された方法で特定できる。
 種粒子におけるエチレン-酢酸ビニル共重合体の含有割合は、種粒子の総質量に対して、例えば27~90質量%、30~90質量%、40~90質量%、50~85質量%、30~82質量%等とでき、40~82質量%が好適であり、50~82質量%がより好適であり、60~82質量%がさらに好適である。
 複合樹脂粒子に含有されるポリスチレン系樹脂が(メタ)アクリル酸エステル由来の樹脂成分を含むときは、種粒子におけるエチレン-酢酸ビニル共重合体の含有割合は、種粒子の総質量に対して、例えば5~90質量%、10~90質量%、20~80質量%、20~70質量%等とでき、10~82質量%が好適であり、20~82質量%がより好適であり、20~70質量%がさらに好適である。
 複合樹脂粒子におけるエチレン-酢酸ビニル共重合体の含有割合は、複合樹脂粒子の総質量に対して、例えば3~50質量%とでき、5~40質量%が好適であり、10~30質量%がより好適である。
 複合樹脂粒子に含有されるポリスチレン系樹脂が(メタ)アクリル酸エステル由来の樹脂成分を含むときは、複合樹脂粒子におけるエチレン-酢酸ビニル共重合体の含有割合は、複合樹脂粒子の総質量に対して、例えば3~50質量%等とでき、3~40質量%が好適であり、3~30質量%がより好適である。
 エチレン-酢酸ビニル共重合体の種粒子又は複合樹脂粒子における含有割合が前記範囲内であると、成形加工性又は遅燃性の点で有利である。
 種粒子又は複合樹脂粒子におけるエチレン-酢酸ビニル共重合体含有量は、ポリプロピレン系樹脂含有量100質量部に対して、例えば60~1000質量部、80~1000質量部等とでき、100~1000質量部が好適であり、120~1000質量部がより好適であり、130~1000質量部がさらに好適である。
 ポリスチレン系樹脂が(メタ)アクリル酸エステル由来の樹脂成分を含むときは、種粒子又は複合樹脂粒子におけるエチレン-酢酸ビニル共重合体含有量は、ポリプロピレン系樹脂含有量100質量部に対して、例えば10~1000質量部、10~500質量部等とでき、20~500質量部が好適であり、20~300質量部がより好適である。
 エチレン-酢酸ビニル共重合体の含有量が前記範囲内であると、低蒸気圧での成形性が向上する(融着率が高くなる)点で有利である。
(無機成分)
 種粒子には、ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体に加え、無機成分が含有されてもよい。種粒子又は複合樹脂粒子に無機成分が含有されていると、気泡が微細化しやすくなる。無機成分としては、タルク、シリカ、珪酸カルシウム、炭酸カルシウム、ホウ酸ナトリウム、ホウ酸亜鉛等の無機系気泡調整剤が挙げられ、タルク、シリカは気泡サイズが均質化しやすい点で好適である。
 無機成分は、ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体の合計質量に対し、例えば0.01~5質量%とでき、0.1~1質量%が好適である。
 無機成分は、ポリプロピレン系樹脂とエチレン-酢酸ビニル共重合体を混合する際に添加されてもよいし、ポリプロピレン系樹脂とエチレン-酢酸ビニル共重合体が混合された混合樹脂に添加されてもよい。
 (カーボン成分)
 種粒子には、ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体に加え、カーボン成分が含有されてもよい。カーボン成分としては、例えば、ファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、アセチレンブラック、黒鉛、炭素繊維などが挙げられる。
 種粒子に添加されるカーボン成分は、粒子状であることが好ましく、その平均粒子径は、5nm~100nmであってよく、15nm~35nmが好適である。なお、カーボン成分の平均粒子径は、電子顕微鏡により観察された粒子の直径の平均値である。ただし、カーボン成分がカーボンブラックであるときは、カーボンブラックの平均粒子径は、カーボンブラックの集合体を構成する小さな球状(微結晶による輪郭を有し、分離できない)成分を電子顕微鏡写真にて測定、算出した粒子の直径の平均値である。
 カーボン成分は、ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体の合計質量に対し、1~8質量%含まれていることが好ましい。
 複合樹脂粒子中のカーボンの配合量が前記範囲内であると、発泡成形体が十分な黒色を備え、十分な機械的強度も備える。
(他の成分)
 種粒子には、ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体に加え、他の成分が含有されてもよい。他の成分としては、着色剤、核剤、安定剤、充填材(補強材)、高級脂肪酸金属塩、帯電防止剤、滑剤、天然又は合成油、ワックス、紫外線吸収剤、耐候安定剤、防曇剤、坑ブロッキング剤、スリップ剤、被覆剤、中性子遮蔽剤等が挙げられる。種粒子に他の成分が含有される場合、その含有量は、種粒子の総質量に対して、0.001~10質量%であってよく、0.001~5質量%以下が好適であり、0.001~3質量%がより好適である。
(種粒子の製法)
 種粒子は、発泡成形体形成用の種粒子の製造に用いられる公知の方法により得ることができる。例えば、基材樹脂(ポリエチレン系樹脂、エチレン共重合体等)を、押出機中で溶融混練して押出すことでストランドを得、得られたストランドを、空気中でカット、水中でカット、又は加熱しつつカットすることで、造粒する方法が挙げられる。樹脂成分は押出機に投入される前に、ミキサーにより混合されてもよい。
 種粒子の形状は公知の形状であればよいが、円筒状、楕円球状(卵状)又は球状であることが好ましい。また形状は、種粒子から得られる発泡粒子の金型への充填性がよい点から、楕円球状又は球状であることがより好ましい。
 種粒子は、0.5~1.4mmの平均粒子径を有していることが好ましい。
(複合樹脂粒子)
 複合樹脂粒子は、樹脂成分として、基材樹脂に由来するポリプロピレン系樹脂及びエチレン系共重合体、並びにスチレン系単量体に由来するポリスチレン系樹脂を含有する。複合樹脂粒子におけるポリプロピレン系樹脂、エチレン-酢酸ビニル共重合体、及びポリスチレン系樹脂の合計含有量は、複合樹脂粒子の総質量に対し、例えば80~100質量%、85~100質量%、90~100質量%、95~100質量%等であってよい。複合樹脂粒子は、例えばシード重合法(種粒子にスチレン系単量体を含浸及び重合させること)により製造できる。
 シード重合に際し、スチレン系単量体使用量は、種粒子に含有されるポリプロピレン系樹脂質量及びエチレン-酢酸ビニル共重合体質量の合計質量/スチレン単量体使用量が5/95~60/40となる量が好適である。ここで、複合樹脂粒子中のポリスチレン系樹脂の含有量は、スチレン系単量体の使用量に対応した量である。このため、複合樹脂粒子におけるポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体の合計含有質量/複合樹脂粒子におけるポリスチレン系樹脂の含有質量は、5/95~60/40が好適である。スチレン系単量体使用量又はポリスチレン系樹脂含有質量が前記範囲内であると、低蒸気圧での成形性(高融着率)が向上する点、粉末量が低下する点、発泡成形体の強度が向上する点、又は発泡成形体の耐衝撃性が向上する点で有利である。前記範囲は、5/95~55/45がより好適であり、10/90~50/50がさらに好適であり、20/80~45/55がより一層好適であり、20/80~30/70が特に好適である。
 ポリスチレン系樹脂としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、t-ブチルスチレン等のスチレン系単量体に由来する重合体が挙げられる。更に、スチレン系重合体は、スチレン系単量体と、スチレン系単量体と共重合可能な他の単量体とから形成される重合体であってもよい。他の単量体としては、ジビニルベンゼンのような多官能性単量体や、(メタ)アクリル酸ブチルのような構造中にベンゼン環を含まない(メタ)アクリル酸エステル等が例示される。これら他の単量体に由来する樹脂成分は、スチレン系重合体中に5質量%を超えない範囲で含有されてもよい。
 (メタ)アクリル酸エステルがスチレン系単量体と共重合したポリスチレン系樹脂は、(メタ)アクリル酸エステルに由来する構成成分及びスチレン系単量体に由来する構成成分とから構成されることとなる。この(メタ)アクリル酸エステルに由来する構成成分を、(メタ)アクリル酸エステル由来の樹脂成分とも称する。
 (メタ)アクリル酸エステルは、アクリル酸エステルであっても、メタクリル酸エステルであってもよいが、アクリル酸エステルが好ましい。(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸-2-エチルヘキシル等が挙げられ、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ペンチル、アクリル酸ヘキシル、アクリル酸-2-エチルヘキシルが好適であり、アクリル酸ブチルがより好適である。
 (メタ)アクリル酸エステル由来の樹脂成分の含有割合は、スチレン系単量体由来の樹脂成分の質量に対し、0.05~5.00質量%であってよく、0.05~3.00質量%が好適である。例えば、実施例8では、ポリスチレン系樹脂として、スチレン単量体300g、アクリル酸ブチル20g及びスチレン単量体1080gが使用されているため、アクリル酸ブチル由来の樹脂成分の含有割合は1.45%(20/(300+1080)×100)である。
 (メタ)アクリル酸エステル由来の樹脂成分の含有割合が前記の範囲内であると、発泡成形時の加熱媒体の蒸気圧が高くなくても、ポリプロピレン系樹脂の含有割合が高い発泡粒子の発泡成形がしやすくなる。
(難燃剤)
 複合樹脂粒子は難燃剤を含有してもよい。また、複合樹脂粒子は難燃剤を含まずとも比較的高い遅燃性を有するため、難燃剤(例:ハロゲン系難燃剤)を含まなくてもよい。
 難燃剤としては、公知のハロゲン系難燃剤、リン系難燃剤、無機系難燃剤等が挙げられる。難燃剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。複合樹脂粒子が難燃剤を含有する場合、難燃剤としては、臭素系難燃剤、塩素系難燃剤、塩素臭素含有難燃剤等のハロゲン系難燃剤が、少量で高い難燃性を発泡成形体に付与できる観点から好ましい。
 ハロゲン系難燃剤としては、例えば、テトラブロモビスフェノールA、その誘導体(例えばテトラブロモビスフェノールA-ビス(2,3-ジブロモ-2-メチルプロピルエーテル)、テトラブロモビスフェノールA-ビス(2,3-ジブロモプロピルエーテル)、テトラブロモビスフェノールA-ビス(アリルエーテル))、トリアリルイソシアヌレート6臭素化物、トリス(2,3-ジブロモプロピル)イソシアヌレート、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン等が挙げられる。
 一般に、ハロゲン系難燃剤を含有すると、発泡成形体の難燃性が向上する一方で、発泡成形体の耐熱性が低下する傾向が見られる。しかし、本発明の発泡成形体では、加熱寸法変化率が低く、したがって耐熱性の低下は小さい。
 難燃剤は、難燃剤を除いた複合樹脂粒子の質量に対して、例えば1.5~6.0質量%とでき、1.5~4.0質量%が好適であり、2.0~3.5質量%がより好適である。難燃剤の含有量が前記範囲内にあると、発泡成形体の難燃性と耐熱性とを高い水準で両立できる点で有利である。
 複合樹脂粒子は、難燃剤を含有する場合、難燃助剤を含むことが好ましい。難燃助剤を含むことで、難燃剤によりもたらされる難燃性をより高めることができる。難燃助剤としては、ジクミルパーオキサイド(DCP)、クメンヒドロパーオキサイド、ジアシルパーオキサイド等の有機過酸化物、2,3-ジメチル-2,3-ジフェニルブタン(別名ビスクミル)、3,4-ジメチル-3,4-ジフェニルヘキサン等が挙げられる。
 難燃助剤は、難燃剤100質量部に対して、例えば50質量部以下、好適には10~40質量部、より好適には15~25質量部の量で含まれていることが好ましい。難燃助剤の含有量が前記範囲内にあると、発泡成形体の耐衝撃性及び耐熱性の低下が抑制される。
 複合樹脂粒子の形状は公知の形状であればよいが、円筒状、略球状及び球状が好適であり、複合樹脂粒子から形成される複合樹脂発泡粒子の金型への充填性が良好な点で、略球状又は球状がより好ましい。
 複合樹脂粒子の平均粒子径は、複合樹脂発泡粒子の金型への充填性が良好な点で、0.6mm~1.8mmが好適である。
(複合樹脂粒子の製法)
 複合樹脂粒子の製造方法としては、上で説明した複合樹脂粒子を得ることができれば特に限定されない。一例として、以下の製造方法により複合樹脂粒子を得ることができる。 即ち、種粒子に含浸させたスチレン系単量体を重合することにより複合樹脂粒子を得ることができる。この方法は、所謂、シード重合法である。
 シード重合法を利用した複合樹脂粒子の製造方法の例を下記する。
 まず、水性懸濁液中に、種粒子と、スチレン系単量体と、必要に応じて重合開始剤とを分散させる。なお、重合開始剤を使用する場合は、スチレン系単量体と重合開始剤とを予め混合して用いてもよい。
 重合開始剤としては、一般にスチレン系単量体の懸濁重合用の開始剤として用いられているものを好適に使用できる。例えば、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-t-ブチルパーオキシヘキサン、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチル-パーオキシ-2-エチルヘキシルカーボネート等の有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等である。これらの重合開始剤は1種又は2種以上を使用できる。なお、ジクミルパーオキサイドは、難燃助剤としても作用し得る。
 水性懸濁液を構成する水性媒体としては、水、水と水溶性溶媒(例えば、低級アルコール)との混合媒体が挙げられる。
 重合開始剤の使用量は、スチレン系単量体100質量部に対して、0.01~0.9質量部が好ましく、0.1~0.5質量部がより好ましい。
 水性懸濁液には、必要に応じて分散剤を添加してもよい。分散剤としては、特に限定されず、公知のものをいずれも使用できる。具体的には、リン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸ナトリウム、酸化マグネシウム等の難溶性無機物が挙げられる。更に、ドデシルベンゼンスルホン酸ナトリウムのような界面活性剤を使用してもよい。
 次に、得られた分散液をスチレン系単量体が実質的に重合しない温度に加熱してスチレン系単量体を種粒子に含浸させる。種粒子にスチレン系単量体を含浸させる時間は特に制限されず、例えば1分~24時間等とできるが、20分~4時間が好適であり、30分~2時間がより好適である。
 次いで、スチレン系単量体の重合を行う。重合は、特に限定されないが、115~150℃、好ましくは120~140℃で、1.5時間~5時間行うことが好ましい。重合は、通常、加圧可能な密閉容器中で行われる。なお、スチレン系単量体の含浸と重合とを複数回(例えば2回、3回、4回等)に分けて行うことが好ましい。複数回に分けることで、スチレン系樹脂の重合体粉末の発生を極力少なくできる。粉末は、成型用金型の寿命を縮めるため、少ない方がよい。また、重合開始剤の分解温度を考慮して、スチレン系単量体を種粒子に含浸させた後に重合を開始するのではなく、スチレン系単量体を含浸させながら重合を行ってもよい。
 重合を複数回に分ける場合、2回目以降の重合工程において、スチレン系単量体を、種粒子100質量部に対して0.001~0.1質量部/秒の速度で投入しつつ重合を行うことが好適である。
 難燃剤及び難燃助剤を含有する複合樹脂粒子は、難燃剤及び難燃助剤を、スチレン系モノマーと共に種粒子に含浸させる方法、重合後の粒子に含浸させる方法等により製造できる。
(発泡性粒子)
 発泡性粒子は、上記複合樹脂粒子と発泡剤を含む。
 発泡剤としては、例えば、プロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、シクロペンタン、n-ヘキサン、イソヘキサン等の有機系ガス、二酸化炭素、窒素、ヘリウム、アルゴン、空気等の無機系ガスを使用できる。これら発泡剤は、単独もしくは2種以上混合して用いることができる。有機系ガスとしては、n-ブタン、イソブタン、n-ペンタン、イソペンタンのいずれか又はこれらの組み合わせが好適である。
 発泡性粒子における発泡剤の含有量は、複合樹脂粒子100質量部に対して、5~25質量部が好適である。
 発泡性粒子を予備発泡させた発泡粒子は、ガスの抜けにより発泡成形性が低下するため、発泡粒子製造から発泡粒子を成型用金型に充填するまでの時間を長く確保できないことがあった。しかし、発泡剤としてn-ペンタン、イソペンタン、シクロペンタン、n-ヘキサン、イソヘキサン等を使用すると、発泡粒子からのガスの抜けが抑制されるため、発泡粒子製造から発泡粒子を成型用金型に充填するまでの時間をより長くできる。このため、本発明の発泡粒子がn-ペンタン、イソペンタン、シクロペンタン、n-ヘキサン、イソヘキサン等を発泡剤として含有する場合、充填までの時間を長くできるとともに、これら発泡剤残存によって発泡成形体の難燃性が低下しても所望の難燃性を確保できる利点を有する。つまり、本発明の複合樹脂粒子を採用することによって、発泡剤種及び量の選択の自由度が高くなる。
 発泡性粒子は、例えば、重合中若しくは重合終了後の複合樹脂粒子に発泡剤を含浸することで得ることができる。含浸は、それ自体公知の方法により行うことができる。例えば、重合中での含浸は、重合反応を密閉式の容器中で行い、容器中に発泡剤を圧入することにより行うことができる。重合終了後の含浸は、例えば、複合樹脂粒子が投入された密閉式の容器中に、発泡剤を圧入することにより行うことができる。
(複合樹脂発泡粒子)
 発泡粒子(一般には、予備発泡粒子と称されることもある。)は、複合樹脂粒子を予備的に発泡させた粒子である。例えば、発泡剤を含浸した発泡性粒子を発泡させることにより発泡粒子が得られる。上記複合樹脂粒子から製造された発泡粒子は、低蒸気圧の媒体(例:水蒸気)で発泡粒子同士が融着するため、発泡成形に要するエネルギーを小さくでき、また、発泡成形に要する設備を簡略化でき、したがって発泡成形に要するコストを低減できる。
 発泡粒子の嵩密度は、15kg/m~200kg/mが好適であり、20kg/m~100kg/mがより好適であり、20kg/m~50kg/mが更に好適である。嵩密度がこの範囲内にあると、発泡成形体の強度が高い点及び発泡成形体が軽量になる点で有利である。
 発泡粒子の形状は球状又は略球状であることが好ましい。その平均粒子径は、1.0mm~9.0mmであることが好ましく、2.0mm~6.4mmであることがより好ましい。
 発泡粒子は、発泡性粒子を、公知の方法で所望の嵩密度に発泡させることで得ることができる。発泡は、ゲージ圧で、好ましくは0.05MPa~0.20MPa、より好ましくは0.06MPa~0.15MPaの加熱蒸気を使用して発泡性粒子を発泡させることにより得ることができる。
(発泡成形体)
 発泡成形体は、発泡粒子の融着体から構成された発泡体であり、例えば、上記発泡粒子を発泡成形させて得られる。発泡成形体は、上記複合樹脂粒子を原料として使用するため、曲げ強度、耐衝撃性、又は耐熱性に優れる。
 発泡成形体の密度は、15kg/m~200kg/mが好適であり、20kg/m~100kg/mがより好適であり、20kg/m~50kg/mがさらに好適である。密度が前記範囲内にあると、軽量性と強度の双方に優れる。発泡成形体の密度は実施例に記載された方法で特定できる。
 発泡成形体の曲げ強度は、例えば0.35MPa以上、0.35MPa~0.60MPa、0.38MPa~0.60MPa、0.40MPa~0.50MPa等とでき、0.40MPa~0.45MPaが好適である。曲げ強度は実施例に記載された方法で特定できる。
 発泡成形体の曲げ破断点は、例えば15mm以上、15mm~50mm、15mm~40mm等とでき、20mm~40mmが好適であり、20mm~30mmがより好適である。曲げ破断点は実施例に記載された方法で特定できる。
 発泡成形体の加熱寸法変化率は、例えば1.5%以下、1.2%以下、1.1%以下、0.5~1.5%、0.5~1.2%等とでき、0.5~1.1%が好適である。加熱寸法変化率は実施例に記載された方法で特定できる。
 発泡成形体の落球衝撃値は、例えば25cm以上、31cm以上、25cm~60cm、31cm~50cm等とでき、32.5cm~50cmが好適であり、35cm~50cmがより好適である。落球衝撃値は実施例に記載された方法で特定できる。
 発泡成形体の難燃性は、米国自動車安全基準FMVSS 302で、特に実施例に記載された方法で特定される燃焼速度が80mm/分以下であることが好ましく、40mm/分以下であることがより好ましく、0mm/分(自己消火性)であることがさらに好ましい。
 発泡成形体は、発泡粒子を発泡成形機の金型内に充填し、加熱して発泡粒子を発泡させながら、発泡粒子同士を熱融着させることで得ることができる。加熱用の媒体としては水蒸気が好適に使用できる。
 本発明の複合樹脂発泡粒子は、低圧(例:ゲージ圧0.05MPa~0.16MPa、0.05MPa~0.15MPa、0.05MPa~0.12MPa、又は0.05MPa~0.11MPa、0.05MPa~0.10MPa)の媒体(例:水蒸気)でも十分に発泡及び融着するため、発泡成形に要するエネルギーを小さくでき、発泡成形に要する設備を簡略化でき、その結果、発泡成形に要するコストを低減できる(つまり、生産性に優れる)。
 各製造工程における工程温度、工程圧力及び工程時間のようなその他の製造条件は、使用する製造設備、原料等に従って適宜設定される。
 発泡成形体は、例えば、自動車用部材、緩衝材、梱包材、建築資材、靴の部材、スポーツ用品等に用いることができる。具体的には、自転車、車椅子等のタイヤ芯材;自動車、鉄道車両、飛行機等の輸送機器の内装材、シート芯材、衝撃吸収部材(例;バンパーの芯材)、振動吸収部材等;シューズのミッドソール部材、インソール部材又はアウトソール部材;ラケット、バット等のスポーツ用品の打具類の芯材;パッド、プロテクター等のスポーツ用品の防具類;パッド、プロテクター等の医療、介護、福祉又はヘルスケア用品;防舷材;フロート;玩具;床下地材;壁材;ベッド;クッション;電子部品、各種工業資材、食品等の搬送容器等に用いることができる。
 好適には、自動車の内装材、衝撃吸収部材、振動吸収部材、又は部品梱包材である。
 以下、実施例等によって本発明の一実施態様を更に詳細に説明するが、本発明はこれらに限定されない。
 実施例等における各種物性等の特定方法を下記する。
(ポリプロピレン系樹脂及びエチレン-酢酸ビニル重合体のMFR)
 MFRは、JIS K6922-1:1998に準拠して、190℃、2.16kgの荷重下で測定した。
(ポリプロピレン系樹脂及びエチレン-酢酸ビニル共重合体の融点)
 融点は、JIS K7122:1987「プラスチックの転移熱測定方法」記載の方法により測定した。即ち、示差走査熱量計装置RDC220型(セイコー電子工業社製)を用い、測定容器に試料を7mg充填して、窒素ガス流量30mL/分のもと、室温から220℃の間で10℃/Lの昇温及び降温スピードにより昇温、降温及び昇温し、2回目の昇温時のDSC曲線の融解ピーク温度を融点とした。また、融解ピークが2つ以上ある場合は、低い側のピーク温度を融点とした。
(エチレン-酢酸ビニル共重合体の数平均分子量(Mn)及び質量平均分子量(Mw)) 分子量は、具体的には、次のようにして測定した。6mgの試料を収容した容器にO-ジクロロベンゼン6mLを加えて密栓し、溶液を調製した。溶液は、東ソー(株)製DF-8200を使って、160℃で1時間加熱して試料を溶解させて調製した。この溶液を測定試料とし、次の測定条件でゲルパーミッションクロマトグラフ法を用いて測定した。標準ポリスチレンを予め測定し、作成しておいた標準ポリスチレンの検量線から試料の平均分子量(Mn、Mw)を求めた。
使用機器:東ソー(株)製 「HLC-8321GPC/HT」 ゲル浸透クロマトグラフ
ガードカラム:東ソー(株)製 TSKgel guardcolumn HHR(30)HT2 (7.5mmI.D.×7.5cm×1本
カラム:東ソー(株)製 TSKgel GMHHR-H(20)HT2 (7.8mmI.D.×30cm)×3本 移動相:O-ジクロロベンゼン
 サンプル流量:1.0mL/min
 リファレンス流量:0.5mL/min
 検出器:RI
 試料濃度:0.1wt%
 注入量:300μL
 測定時間:34min
(装置各部設定温度)
 溶媒ストッカ:40℃
 カラムオーブン(カラム温度):160℃
 サンプルテーブル:160℃
 注入バルブ:160℃
 検出器:160℃
検量線用標準ポリスチレン試料は東ソー(株)製の商品名「High polymer kit」、「oligomer kit」で質量平均分子量が8,420,000、5,480,000、2,110,000、1,090,000、706,000、427,000、190,000、96,400、37,900、17,400、5,060、2,550、1,013、589のものを用いた。
上記検量線用標準ポリスチレンをA(8,420,000、1,090,000、190,000、17,400、1,013)、B(5,480,000、706,000、96,400、5,060、589)およびC(2,110,000、427,000、37,900、2,550)にグループ分けした後、Aを各々10mg秤量後、O-ジクロロベンゼン30mLに溶解した。B及びCも各々10mg秤量後、O-ジクロロベンゼン30mLに溶解した。標準ポリスチレン検量線は、各A、BおよびC溶解液を300μL注入して測定後に得られた保持時間から較正曲線(三次式)を作成することにより得た。その検量線を用いて平均分子量を算出した。
(複合樹脂発泡粒子の嵩密度)
 複合樹脂発泡粒子をメスシリンダに500cmの目盛りまで充填した。但し、メスシリンダを水平方向から目視し、複合樹脂発泡粒子が一粒でも500cmの目盛りに達していれば、充填を終了した。次に、メスシリンダ内に充填した複合樹脂発泡粒子の質量を小数点以下2位の有効数字で秤量し、その質量をW(g)とした。次式により複合樹脂発泡粒子の嵩密度を算出する。
  嵩密度(kg/m)=(W/500)×1000
(複合樹脂発泡粒子製造時に発生する粉末量)
 嵩密度0.025g/cmとなるように予備発泡した複合樹脂発泡粒子5kgを公称目開き0.9mmの篩機を用いて分級を行った。0.9mmの目開きを通過した粉末の質量(D(g))を計測し、5kgの複合樹脂発泡粒子に対する粉末量(P)を次式で算出した。
  P(%)=D/(5×1000)×100
 粉末は金型の寿命を縮めることがあるため、粉末量は少ない方が望ましい。粉末量は0.04%以下が望ましく、0.03%以下がより望ましく、0.02%以下がさらに望ましい。
(発泡成形体の密度)
 発泡成形体(成形後、50℃で4時間以上乾燥させたもの)から切り出した試験片(75mm×300mm×35mm)の質量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(a)/(b)により発泡成形体の密度(g/cm)を求めた。
(発泡成形体の曲げ強度及び曲げ破断点)
 曲げ強度(平均最大曲げ強度)及び曲げ破断点はJIS K7221-1:2006「硬質発泡プラスチック-曲げ試験-第1部:たわみ特性の求め方」記載の方法に準拠して測定した。すなわち、テンシロン万能試験機UCT-10T(オリエンテック社製)、万能試験機データ処理ソフトUTPS-237(ソフトブレーン社製)を用い、直方体形状の試験片サイズを幅25mm×長さ130mm×厚み20mm(加圧面側のみにスキン面あり)とし、試験速度を10mm/min、加圧くさびを5R、支持台を5R、支点間距離を100mmとし、試験片のスキンを持たない面が伸びるように加圧し測定した。なお、試験片について、その数は5個とし、JIS K7100:1999「プラスチック-状態調節及び試験のための標準雰囲気」の記号「23/50」(温度23℃、相対湿度50%)、2級の標準雰囲気下で16時間かけて状態調整した後、同じ標準雰囲気下で前述の測定を実施した。
 曲げ強度(MPa)は次式により算出した。
  R=(1.5F×L/bd)×10
   R  :曲げ強度(MPa)
   F :最大荷重(kN)
   L  :支点間距離(mm)
   b  :試験片の幅(mm)
   d  :試験片の厚さ(mm)
 曲げ強度が0.35MPa以上であれば望ましく、0.40MPa以上であれば優れた曲げ強度が備わっていると評価できる。
 この試験において、破断検出感度を0.5%に設定し、直前荷重サンプリング点と比較して、その減少が設定値0.5%(たわみ量:30mm)を超えた時、直前のサンプリング点を曲げ破断点変位量(mm)として測定し、試験数5の平均を求め、曲げ破断点(mm)とした。曲げ破断点が15mm以上であれば望ましく、20mm以上であれば優れた柔軟性が備わっていると評価できる。
(発泡成形体の加熱寸法変化率)
 発泡成形体の加熱寸法変化率をJIS K 6767:1999「発泡プラスチック-ポリエチレン-試験方法」記載のB法にて測定した。発泡成形体から縦150mm×横150mm×高さ20mmの試験片を切り出した。前記試験片の表面に、縦方向に指向する長さ50mmの直線を3本、互いに平行に50mm間隔毎に記入すると共に、横方向に指向する長さ50mmの直線を3本、互いに平行に50mm間隔毎に記入した。その後、試験片を80℃の熱風循環式乾燥機の中に168時間に亘って放置した後に取出し、標準状態(20±2℃、湿度65±5%)の場所にて1時間に亘って放置した。次に、試験片の表面に記入した6本の直線の長さをそれぞれ測定し、6本の直線の長さの相加平均値L1を算出した。下記の式に基づいて変化度Sを算出し、変化度Sの絶対値を加熱寸法変化率(%)とした。
  S=100×(L1-50)/50
 加熱寸法変化率が1.5%以下であれば寸法変化率が低く、寸法の安定性が良好であると評価でき、1.1%以下であればより優れた寸法安定性が備わっていると評価できる。 
(発泡成形体の燃焼速度と難燃性)
 燃焼速度(mm/分)は、米国自動車安全基準FMVSS 302に準拠した方法で測定した。試験片(嵩発泡倍数40倍)は、350mm×100mm×12mm(厚み)とし、少なくとも350mm×100mmの二面には表皮が存在した。
 難燃性は燃焼速度に基づき次の基準で評価した。
 測定開始点に達する前に消火した場合は燃焼速度を0mm/分とし、自己消化性と評価できる。燃焼速度が80mm/分以下の場合は優れた難燃性と評価できる。発泡成形体の燃焼性は、自己消火性がより好ましい。
(落球衝撃値)
 発泡成形体を、215mm×40mm×20mmの大きさにカットしたサンプルを作製し、このサンプルを、155mmのスパンで配置された一対の保持部材上に載置したのち、両保持部材の中間位置でかつサンプルの幅方向の中心位置に、所定の高さから重さ321gの鋼球を落下させて、サンプルの破壊の有無を確認した。
 この試験は、鋼球を落下させる高さを変えて繰り返し行い、サンプルが破壊された高さの最低値を落球衝撃値とし、衝撃強度を評価した。従って、落球衝撃値が高いほど衝撃強度は高くなる。
 落球衝撃値が25cm以上であれば実用的な衝撃吸収性と評価でき、30cm以上であれば優れた衝撃吸収性と評価できる。
(発泡成形体の融着率)
 縦400mm×横300mmの上面を有し、厚み30mmの直方体形状の発泡成形体の上面に、カッターで横方向に沿って長さ300mm、深さ約5mmの切り込み線を入れ、この切り込み線に沿って発泡成形体を2分割して破断面を観察した。破断面において
50個以上の発泡粒子を含む任意の範囲を設定し、この範囲内において発泡粒子の表面ではなく内部で破断している発泡粒子(強く熱融着した発泡粒子)の数(a)と、発泡粒子同士の界面で破断している発泡粒子(弱く熱融着した発泡粒子)の数(b)を数え、下記式により融着率(%)を算出した。
  融着率(%)=(a/(a+b))×100
(発泡成形体の成形性;水蒸気圧)
 複合樹脂発泡粒子を発泡成形機の300mm×400mm×30mmの金型内に充填し、水蒸気により加熱して複合樹脂発泡粒子を発泡させながら、複合樹脂発泡粒子同士を熱融着させた。
水蒸気による加熱(50秒間)の際、水蒸気の蒸気圧力を0.08MPaとした場合から0.25MPaとした場合まで0.01MPa刻みで変化させた場合のそれぞれについて、得られた発泡成形体の融着率を求めた。融着率が90%以上となった最も低い蒸気圧力値(最低蒸気圧力値)で成形性を評価した。なお、低い蒸気圧力で融着良好な発泡成形体が得られると、成形設備を簡便とでき、また、製造エネルギーを低減できるため、低製造コストとなり、生産性が向上する。
 0.16MPa以下、好ましくは0.10MPa以下の蒸気圧力で融着率90%以上の発泡成形体が得られれば、低い蒸気調圧で融着良好な発泡成形体が得られることから、成形性が良好となり、高い生産性をもたらす。
(保管安定性(発泡成形体の変色))
 縦300mm×横400mmの試験片について恒温恒湿試験機を用いて暗室下にて促進暴露試験を下記条件下にて行った。なお、試験片は白色である。
 試験槽温度:55~65℃、相対湿度:50~60%、試験時間:168hr、試験片枚数:10
 促進暴露試験後の試験片をそれぞれ、試験前後の外観色の変化を確認した。10枚全ての試験片について白色からの変色が部分的にも認められなかった場合を発泡成形体の変色無しと判定した。試験片の一部分でも白色から変化が確認された場合を発泡成形体の変色有りと判定した。
(ポリプロピレン系樹脂等)
 実施例等において使用したポリプロピレン系樹脂(PP)及び比較のために使用した高密度ポリエチレン樹脂(HDPE)は次のとおりである。ポリプロピレン系樹脂及び高密度ポリエチレン樹脂の物性を表1に示す。
 F744NP:PPのランダムコポリマー(プライムポリマー社製、エチレン含有量7質量%)
 S-131:PPのランダムコポリマー(住友化学社製、エチレン含有量5質量%)
 PL500A:PPのホモポリマー(サンアロマー社製)
 10S65B:高密度ポリエチレン(東ソー社製)
Figure JPOXMLDOC01-appb-T000001
(エチレン-酢酸ビニル共重合体等)
 実施例等において使用したエチレン-酢酸ビニル共重合体(EVA)及び比較のために使用したエチレン-アクリル酸エチル共重合体(EEA)は次のとおりである。エチレン-酢酸ビニル共重合体及びエチレン-アクリル酸エチル共重合体の物性を表2に示す。
 EF0505:エチレン-酢酸ビニル共重合体(旭化成社製、酢酸ビニル含有量4.7質量%)
 EF0510:エチレン-酢酸ビニル共重合体(旭化成社製、酢酸ビニル含有量5質量%)
 LV430:エチレン-酢酸ビニル共重合体(日本ポリエチレン社製、酢酸ビニル含有量15質量%)
 514R:エチレン-酢酸ビニル共重合体(東ソー社製、品番514R、酢酸ビニル含有量5質量%)
 A1100:エチレン-アクリル酸エチル共重合体(日本ポリエチレン社製、品番A1100、アクリル酸エチル含有量10質量%)
Figure JPOXMLDOC01-appb-T000002
 実施例等において使用した他の材料を下記する。
 微粉シリカ:シリカ(日本アエロジル社製、品番AEROSIL200)
 タルク:日東粉化社製タルクマスターバッチ(商品名「タルペット70P」、平均粒子径(D50)12μm、比表面積8.5m/g、タルク純分70質量%)
 TAIC-6B:トリス(2,3-ジブロモプロピル)イソシアヌレート(日本化成社製)
 ビスクミル:2,3-ジメチル-2,3-ジフェニルブタン(化薬ヌーリオン社製、品番パーカドックス30)
 実施例1
[種粒子の作製]
 ポリプロピレン系樹脂(A)としてのF744NPとエチレン-酢酸ビニル共重合体(B)としてのEF0505とを40:60の質量比でタンブラーミキサーに投入して10分間混合した。ここに、無機成分としての微粉シリカを、ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量に対し0.25質量%となる量で添加し、さらに10分間混合し、樹脂混合物(基材樹脂)を得た。
 得られた樹脂混合物を押出機に供給して温度230~250℃で溶融混練し、水中カット方式により造粒して楕円球状(卵状)に切断し、エチレン-酢酸ビニル共重合体で改質されたポリプロピレン系樹脂粒子(種粒子、平均質量0.6mg)を得た。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子600gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体300gにジクミルパーオキサイド0.6g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、120℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、スチレン単量体1100gに、ジクミルパーオキサイド(重合開始剤)を5g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、120℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にスチレン単量体を含浸させた。その後、純水100gにエチレンビスステアリン酸アミド3g(気泡調整剤)を分散させて作製した分散媒体を30分かけて滴下し、滴下後、115℃で1時間保持することで、種粒子中にスチレン単量体および気泡調整剤を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの10gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比30:70)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、複合樹脂粒子2kg(100質量部)、水2kg、ドデシルベンゼンスルホン酸ナトリウム2.0g(界面活性剤)を投入した。さらに、発泡剤としてイソペンタン300g(520mL、複合樹脂粒子100質量部あたり15質量部)を投入した後、70℃に昇温し、4時間攪拌を続けることで発泡性粒子を得ることができた。その後、30℃以下まで冷却し、冷却完了後にオートクレーブを除圧し、直ちに蒸留水で界面活性剤を洗浄し、脱水及び乾燥することで発泡性粒子を得た。
[発泡粒子の作製]
 得られた発泡性樹脂粒子を内容積50Lの撹拌機付円筒型予備発泡機に投入し、撹拌しながら0.02MPaの水蒸気で加熱して、嵩密度25kg/mの発泡粒子(一般的には予備発泡粒子と称される場合もある。)を作製した。発泡粒子を0.9mmメッシュの篩機にて分級し、分級オフとして排出された粉末の質量を計量することで粉末量を測定した。
[発泡成形体の作製]
 得られた発泡粒子を1日間23℃に放置した後、発泡ビーズ自動成形機(DABOジャパン社製、DPM-7454)の成形用金型(長さ400mm×幅300mm×厚み30mm)に充填した。金型内に0.09MPaの水蒸気を50秒間導入して発泡粒子を加熱及び発泡させた後、発泡成形体の最高面圧が0.01MPaに低下するまで冷却することで、密度25kg/mの発泡成形体を得た。
 得られた発泡成形体の外観及び融着は良好であった。また、得られた発泡成形体を各種試験に供した。結果を表3に示す。
 実施例2~6並びに比較例3及び4
 表3に示した材料、量、発泡粒子嵩密度等を使用した以外は実施例1と同様にして実施例2~5並びに比較例3及び4の発泡成形体を製造した。得られた発泡成形体を各種試験に供した。結果を表3に示す。表3中の用語の意味は次のとおりである。
 BのMw/Mn;エチレン-酢酸ビニル共重合体(B)の数平均分子量に対する質量平均分子量の比
 A:B質量比;ポリプロピレン系樹脂(A)とエチレン-酢酸ビニル共重合体(B)の質量比
 無機成分含有量(%);ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量に対する無機成分の添加割合(質量%)
 A+B:PS質量比;ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比
 難燃剤添加量;ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量に対する難燃剤の添加割合(質量%)
 難燃助剤添加量;ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量に対する難燃助剤の添加割合(質量%)
 ガス種のA;発泡剤としてのブタン(ノルマルブタン:イソブタン=7:3(容積比))
 ガス種のB;発泡剤としてのイソペンタン
 実施例7
[種粒子の作製]
 表3に示した材料、量等を使用した以外は実施例1と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子1000gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体500gにジクミルパーオキサイド1.0g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、120℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、スチレン単量体500gに、ジクミルパーオキサイド(重合開始剤)を3g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、120℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にスチレン単量体を含浸させた。その後、純水100gにエチレンビスステアリン酸アミド3g(気泡調整剤)を分散させて作製した分散媒体を30分かけて滴下し、滴下後、120℃で1時間保持することで、種粒子中にスチレン単量体及び気泡調整剤を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させることで、複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比50:50)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 発泡性粒子の作製において、ガス種をAとし、発泡粒子の嵩密度を33kg/mとし、発泡成形体の密度を33kg/mとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 実施例8
[種粒子の作製]
 表4に示した材料、量等を使用した以外は実施例1と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子600gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体300gにジクミルパーオキサイド0.6g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、125℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、アクリル酸ブチル20g及びスチレン単量体1080gに、ジクミルパーオキサイド(重合開始剤)を5g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、125℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にアクリル酸ブチル及びスチレン単量体を含浸させた。その後、純水100gにエチレンビスステアリン酸アミド3g(気泡調整剤)を分散させて作製した分散媒体を30分かけて滴下し、滴下後、125℃で1時間保持することで、種粒子中にアクリル酸ブチル及びスチレン単量体及び気泡調整剤を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの20gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比30:70)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 発泡性粒子の作製において、ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 実施例9
[種粒子の作製]
 表4に示した材料、量等を使用した以外は実施例1と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子600gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体300gにジクミルパーオキサイド0.6g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、125℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、アクリル酸ブチル30g及びスチレン単量体1070gに、ジクミルパーオキサイド(重合開始剤)を5g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、125℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にアクリル酸ブチル及びスチレン単量体を含浸させた。その後、純水100gにエチレンビスステアリン酸アミド3g(気泡調整剤)を分散させて作製した分散媒体を30分かけて滴下し、滴下後、125℃で1時間保持することで、種粒子中にアクリル酸ブチル及びスチレン単量体及び気泡調整剤を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの20gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比30:70)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 発泡性粒子の作製において、ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 実施例10
[種粒子の作製]
 ポリプロピレン系樹脂(A)としてのF744NPとエチレン-酢酸ビニル共重合体(B)としてのEF0505とを80:20の質量比でタンブラーミキサーに投入して10分間混合した。ここに、カーボンブラックマスターバッチ(大日精化工業株式会社製、商品名:PPRM-10H381、カーボンブラックコンテント45質量%)を、ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量に対し、カーボンブラックコンテントが5質量%となる量で添加し、さらに10分間混合し、樹脂混合物(基材樹脂)を得た。
 得られた樹脂混合物を押出機に供給して温度230~250℃で溶融混練し、水中カット方式により造粒して楕円球状(卵状)に切断し、エチレン-酢酸ビニル共重合体で改質されたポリプロピレン系樹脂粒子(種粒子、平均質量0.6mg)を得た。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子600gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体300gにジクミルパーオキサイド0.6g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、125℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、アクリル酸ブチル20g及びスチレン単量体1080gに、ジクミルパーオキサイド(重合開始剤)を5g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、125℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にアクリル酸ブチル及びスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの20gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比30:70)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 発泡性粒子の作製において、ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 実施例11
[種粒子の作製]
 表4に示した材料、量等を使用した以外は実施例10と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子800gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体400gにジクミルパーオキサイド1.0g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、125℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、アクリル酸ブチル10g及びスチレン単量体790gに、ジクミルパーオキサイド(重合開始剤)を4g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、125℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にアクリル酸ブチル及びスチレン単量体を含浸させた。その後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの20gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比40:60)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 発泡性粒子の作製において、ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 実施例12
[種粒子の作製]
 表4に示した材料、量等を使用した以外は実施例10と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子800gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体400gにジクミルパーオキサイド0.8g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、125℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、スチレン単量体800gに、ジクミルパーオキサイド(重合開始剤)を4g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、125℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にスチレン単量体を含浸させた。その後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させた。
 この反応液中に、難燃剤としてのTAIC-6Bの60gと、難燃助剤としてビスクミルの20gとを投入した。投入後、反応系の温度を140℃に昇温し、3時間攪拌を続けることで難燃剤含有複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比40:60)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を得た。
 比較例1
[種粒子の作製]
 表3に示した材料、量等を使用した以外は実施例1と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子1400gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体600gにジクミルパーオキサイド5g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で4時間重合させることで、複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比70:30)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を製造した。
 比較例2
[種粒子の作製]
 表3に示した材料、量等を使用した以外は実施例1と同様にして種粒子を製造した。
[複合樹脂粒子の作製]
 内容積5リットルの攪拌機付オートクレーブに、ピロリン酸マグネシウム40g(分散剤)、ドデシルベンゼンスルホン酸ソーダ0.6g(界面活性剤)、純水2kgを投入し分散用媒体を得た。分散用媒体に30℃で種粒子800gを分散させて10分間保持し、次いで60℃に昇温して懸濁液を得た。さらに、この懸濁液を60℃に保持しつつ、スチレン単量体400gにジクミルパーオキサイド0.8g(重合開始剤)を溶解させた液を30分かけて滴下した後、30分間保持することで、種粒子中にスチレン単量体を含浸させた。含浸後、140℃に昇温し、この温度で2時間重合(第1重合)させた。
 次に、120℃に降温した反応液中に、ドデシルベンゼンスルホン酸ナトリウム3gを純水20gに分散させた分散液を10分かけて滴下した。次いで、スチレン単量体800gに、ジクミルパーオキサイド(重合開始剤)を5g溶解させた液を、種粒子100質量部に対し0.05質量部/秒に相当する速度で滴下した。滴下後、120℃で1時間保持することで、改質ポリプロピレン系樹脂粒子中にスチレン単量体を含浸させた。その後、純水100gにエチレンビスステアリン酸アミド3g(気泡調整剤)を分散させて作製した分散媒体を30分かけて滴下し、滴下後、120℃で1時間保持することで、種粒子中にスチレン単量体及び気泡調整剤を含浸させた。含浸後、140℃に昇温し、この温度で3時間保持して重合(第2重合)させることで、複合樹脂粒子(ポリプロピレン系樹脂(A)及びエチレン-酢酸ビニル共重合体(B)の合計質量とポリスチレン質量の比40:60)を作製した。次いで、30℃以下まで冷却し、オートクレーブから複合樹脂粒子を取り出した。
[発泡性粒子、発泡粒子及び発泡成形体の作製]
 ガス種をAとした以外は実施例1と同様にして発泡性粒子、発泡粒子及び発泡成形体を製造した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 A+B:PS比が70:30の比較例1では、粉末量が0.05質量%と多く、最低蒸気圧力値が0.28MPaと大きく、落球衝撃値が小さかった。
 エチレン-酢酸ビニル共重合体(EVA)を使用せず基材樹脂としてポリプロピレン系樹脂のみを使用した比較例2では、最低蒸気圧力値が0.18MPaと大きく、発泡成形に大きなエネルギーを要するものであった。
 ポリプロピレン系樹脂に代えて高密度ポリエチレン系樹脂を使用した比較例3では、自己消化とならず難燃性が他の例より劣るものであり、また、保管安定性の加速試験では発泡成形体が薄い赤色に着色した。
 エチレン-アクリル酸エチル共重合体(EEA)を使用した比較例4では、粉末量が0.07質量%と多かった。
 実施例1~7では全ての評価項目で優れた結果を示し、特に、実施例1及び2は全ての評価項目でより優れた結果を示した。また、本発明の発泡成形体では難燃剤を配合しなくても優れた難燃性を示した(実施例6)。
 実施例8~11では、エチレン-酢酸ビニル共重合体に対するポリプロピレン系樹脂の量が多いものの、ポリスチレン系樹脂がアクリル酸ブチル由来の樹脂成分を含有することにより、最低蒸気圧力値を低く維持できており、発泡成形に要するエネルギーを小さくできた。
 実施例10~12では、カーボン成分が含有されるものの、十分な機械的物性(曲げ強度、曲げ破断点、及び落球衝撃値)を示した。

Claims (20)

  1.  ポリプロピレン系樹脂、エチレン-酢酸ビニル共重合体、及びポリスチレン系樹脂を含有する、複合樹脂粒子。
  2.  前記複合樹脂粒子の全質量に対し、前記ポリプロピレン系樹脂の含有量が2~35質量%であり、前記エチレン-酢酸ビニル共重合体の含有量が3~50質量%であり、前記ポリスチレン系樹脂の含有量が40~95質量%である、請求項1に記載の複合樹脂粒子。
  3.  複合樹脂粒子における前記エチレン-酢酸ビニル共重合体の含有量が、前記ポリプロピレン系樹脂含有量100質量部に対して60~1000質量部である、請求項1又は2に記載の複合樹脂粒子。
  4.  複合樹脂粒子における前記エチレン-酢酸ビニル共重合体の含有量が、前記ポリプロピレン系樹脂含有量100質量部に対して10~60質量部であり、
    前記ポリスチレン系樹脂が、(メタ)アクリル酸エステル由来の樹脂成分と、スチレン系単量体由来の樹脂成分とを含有し、(メタ)アクリル酸エステル由来の樹脂成分を、スチレン系単量体由来の樹脂成分の質量の0.05~5.00質量%含む、請求項1又は2に記載の複合樹脂粒子。
  5.  複合樹脂粒子における前記ポリプロピレン系樹脂及び前記エチレン-酢酸ビニル共重合体の合計含有質量/複合樹脂粒子における前記ポリスチレン系樹脂の含有質量が5/95~60/40である、請求項1~4のいずれかに記載の複合樹脂粒子。
  6.  前記エチレン-酢酸ビニル共重合体が、100~120℃の融点を有する、請求項1~5のいずれかに記載の複合樹脂粒子。
  7.  前記エチレン-酢酸ビニル共重合体が、その数平均分子量(Mn)に対する質量平均分子量(Mw)の比(Mw/Mn)が1.0~7.0である、請求項1~6のいずれかに記載の複合樹脂粒子。
  8.  前記エチレン-酢酸ビニル共重合体が、0.5g/10分~10g/10分のメルトフローレートを有する、請求項1~7のいずれかに記載の複合樹脂粒子。
  9.  前記ポリプロピレン系樹脂が、130~150℃の融点を有する、請求項1~8のいずれかに記載の複合樹脂粒子。
  10.  前記ポリプロピレン系樹脂が、ランダムポリプロピレンである、請求項1~9のいずれかに記載の複合樹脂粒子。
  11.  前記複合樹脂粒子が、難燃剤をさらに含有し、その含有量が難燃剤を除いた前記複合樹脂粒子質量の0.5~10質量%である、請求項1~10のいずれかに記載の複合樹脂粒子。
  12.  前記難燃剤が、ハロゲン系難燃剤である、請求項11に記載の複合樹脂粒子。
  13.  前記複合樹脂粒子が、さらに無機成分を含有し、その含有量が前記複合樹脂粒子質量の0.01~5質量%である、請求項1~12のいずれかに記載の複合樹脂粒子。
  14.  前記無機成分が、タルク又はシリカである、請求項13に記載の複合樹脂粒子。
  15.  前記ポリプロピレン系樹脂及び前記エチレン-酢酸ビニル共重合体を含有する種粒子にスチレン系モノマーを含浸及び重合させたシード重合粒子である、請求項1~14のいずれかに記載の複合樹脂粒子。
  16.  請求項1~15のいずれかに記載の複合樹脂粒子からなる発泡粒子。
  17.  嵩密度が、10kg/m~200kg/mである、請求項15に記載の発泡粒子。
  18.  請求項16又は17に記載の発泡粒子からなる発泡成形体。
  19.  密度が、20kg/m~50kg/mである、請求項18に記載の発泡成形体。
  20.  請求項18又は19に記載の発泡成形体を含有する自動車用部材。
PCT/JP2022/012689 2021-03-23 2022-03-18 複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体 WO2022202680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/283,094 US20240166790A1 (en) 2021-03-23 2022-03-18 Composite resin particles, composite resin foaming particles, and foam molded body
CN202280023258.6A CN117043257A (zh) 2021-03-23 2022-03-18 复合树脂颗粒、复合树脂发泡颗粒和发泡成型体
EP22775467.8A EP4317227A1 (en) 2021-03-23 2022-03-18 Composite resin particles, composite resin foaming particles, and foam molded body
JP2023509132A JPWO2022202680A1 (ja) 2021-03-23 2022-03-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-048806 2021-03-23
JP2021048806 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202680A1 true WO2022202680A1 (ja) 2022-09-29

Family

ID=83397311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012689 WO2022202680A1 (ja) 2021-03-23 2022-03-18 複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体

Country Status (6)

Country Link
US (1) US20240166790A1 (ja)
EP (1) EP4317227A1 (ja)
JP (1) JPWO2022202680A1 (ja)
CN (1) CN117043257A (ja)
TW (1) TWI807710B (ja)
WO (1) WO2022202680A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208916A (ja) * 1994-11-08 1996-08-13 Sumitomo Chem Co Ltd ポリスチレン系樹脂組成物及びその成形品
JP2012167148A (ja) * 2011-02-10 2012-09-06 Sekisui Plastics Co Ltd 複合樹脂粒子、発泡性樹脂粒子、それらの製造方法、発泡粒子及び発泡成形体
JP2018053029A (ja) * 2016-09-27 2018-04-05 積水化成品工業株式会社 複合樹脂粒子、その製造方法、発泡性粒子、発泡粒子、発泡成形体及び自動車用外装材
JP2020050784A (ja) * 2018-09-27 2020-04-02 積水化成品工業株式会社 複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19541645A1 (de) * 1994-11-08 1996-05-09 Sumitomo Chemical Co Styrolharzmasse und Formkörper daraus
EP3816209A4 (en) * 2018-06-28 2022-04-27 Kaneka Corporation MODIFIED POLYPROPYLENE RESIN AND PROCESS OF PRODUCTION THEREOF, AND FOAM PARTICLES EXTRUDED WITH SUCH MODIFIED POLYPROPYLENE RESIN AND PROCESS OF PRODUCTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208916A (ja) * 1994-11-08 1996-08-13 Sumitomo Chem Co Ltd ポリスチレン系樹脂組成物及びその成形品
JP2012167148A (ja) * 2011-02-10 2012-09-06 Sekisui Plastics Co Ltd 複合樹脂粒子、発泡性樹脂粒子、それらの製造方法、発泡粒子及び発泡成形体
JP2018053029A (ja) * 2016-09-27 2018-04-05 積水化成品工業株式会社 複合樹脂粒子、その製造方法、発泡性粒子、発泡粒子、発泡成形体及び自動車用外装材
JP2020050784A (ja) * 2018-09-27 2020-04-02 積水化成品工業株式会社 複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体

Also Published As

Publication number Publication date
TWI807710B (zh) 2023-07-01
TW202248304A (zh) 2022-12-16
EP4317227A1 (en) 2024-02-07
CN117043257A (zh) 2023-11-10
JPWO2022202680A1 (ja) 2022-09-29
US20240166790A1 (en) 2024-05-23

Similar Documents

Publication Publication Date Title
JP6185872B2 (ja) 高密度ポリエチレン系樹脂粒子、複合樹脂粒子、発泡粒子及び発泡成形体
JP2008075076A (ja) スチレン改質ポリプロピレン系樹脂粒子及びその発泡性樹脂粒子、それらの製造方法、予備発泡粒子及び発泡成形体
JP4834316B2 (ja) カーボン含有スチレン改質ポリエチレン系発泡性樹脂粒子、その製造方法、予備発泡粒子及び発泡成形体
JP6251103B2 (ja) 直鎖状低密度ポリエチレン系樹脂粒子、複合樹脂粒子、発泡粒子及び発泡成形体
US11643519B2 (en) Foam particle moulded article and sole member
JP5722564B2 (ja) 自動車用外装材
WO2022065253A1 (ja) 複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体
JP6944914B2 (ja) 複合樹脂粒子、発泡性粒子、発泡粒子及び発泡成形体
JP5545972B2 (ja) 発泡成形体の製造方法
JP2010024353A (ja) スチレン改質ポリオレフィン系樹脂粒子、発泡性樹脂粒子、予備発泡粒子及び発泡成形体
US11597127B2 (en) Foam particle moulded article, and production method therefor
JP5731428B2 (ja) スチレン改質ポリエチレン系樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及び予備発泡粒子の製造方法
WO2022202680A1 (ja) 複合樹脂粒子、複合樹脂発泡粒子、及び発泡成形体
JP5690632B2 (ja) シード重合用ポリプロピレン系樹脂粒子、その製造方法、複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子および発泡成形体
WO2013147040A1 (ja) 複合樹脂粒子、発泡性複合樹脂粒子、予備発泡粒子、発泡成形体及びバンパー用芯材
JP7372860B2 (ja) 高密度ポリエチレン系樹脂粒子、複合樹脂粒子、発泡粒子、及び発泡成形体
JP2011208066A (ja) 発泡成形体、車両用内装材、車両用タイヤスペーサおよび車両用ラゲージボックス
JP6764364B2 (ja) 複合樹脂発泡成形体及びその製造方法
JP5581138B2 (ja) 部品梱包材
JP2023100351A (ja) 複合樹脂粒子及び発泡成形体
WO2023243583A1 (ja) 種粒子、複合樹脂粒子、発泡粒子、発泡成形体、及び複合樹脂粒子の製造方法
JP2019183121A (ja) 複合樹脂粒子、発泡性粒子、発泡粒子、発泡成形体及び緩衝材
JP2012025908A (ja) 自動車用内装材
TW202411319A (zh) 種粒子、複合樹脂粒子、發泡粒子、發泡成形體及複合樹脂粒子的製造方法
JP2021054931A (ja) スチレン複合ポリエチレン系樹脂発泡粒子、その製造方法及び発泡成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509132

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18283094

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280023258.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022775467

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775467

Country of ref document: EP

Effective date: 20231023