WO2022202443A1 - 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池 - Google Patents

鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池 Download PDF

Info

Publication number
WO2022202443A1
WO2022202443A1 PCT/JP2022/011330 JP2022011330W WO2022202443A1 WO 2022202443 A1 WO2022202443 A1 WO 2022202443A1 JP 2022011330 W JP2022011330 W JP 2022011330W WO 2022202443 A1 WO2022202443 A1 WO 2022202443A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
mass
sheet
positive electrode
content
Prior art date
Application number
PCT/JP2022/011330
Other languages
English (en)
French (fr)
Inventor
彩乃 小出
惠造 山田
篤志 佐藤
洋 金子
吉章 荻原
Original Assignee
古河電池株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 古河電気工業株式会社 filed Critical 古河電池株式会社
Priority to JP2022521231A priority Critical patent/JP7449375B2/ja
Publication of WO2022202443A1 publication Critical patent/WO2022202443A1/ja
Priority to US18/473,882 priority patent/US20240021841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to current collector sheets for lead-acid batteries, lead-acid batteries, and bipolar lead-acid batteries.
  • a storage battery is used to level the power load. That is, when the amount of power generation is greater than the amount of consumption, the storage battery is charged with the difference, and when the amount of power generation is less than the amount of consumption, the difference is discharged from the storage battery.
  • a lead-acid battery is often used from the viewpoint of economy, safety, and the like.
  • a bipolar lead-acid battery described in Patent Document 1 below is known.
  • This bipolar lead-acid battery is frame-shaped and has a resin substrate attached to the inside of a resin frame.
  • a lead layer is placed on both sides of the board.
  • the positive electrode active material layer is adjacent to the lead layer on one surface of the substrate, and the negative electrode active material layer is adjacent to the lead layer on the other surface.
  • a frame-shaped spacer made of resin is provided, and a glass mat impregnated with an electrolytic solution is disposed inside the spacer.
  • a plurality of frames and spacers are alternately laminated, and the frames and spacers are adhered with an adhesive or the like.
  • the lead layers on both sides of the substrate are connected via through holes provided in the substrate.
  • the bipolar lead-acid battery described in Patent Document 1 includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a positive electrode and a negative electrode.
  • the space forming member includes a substrate covering at least one of the positive electrode side and the negative electrode side of the cell member, and a frame surrounding the side surface of the cell member (frames and spacers of the bipolar plates and the end plates).
  • Patent Document 1 describes the use of lead foil as the lead layers arranged on both sides of the substrate, but does not describe the specific composition of the lead foil to be used. It has not been.
  • Patent Document 2 has the following description.
  • Early lead-calcium alloys usually contained a relatively high content (eg, 0.08% or more) of calcium and a relatively low content (eg, 0.35-0.5%) of tin. Because of this, positive grids produced from these alloys have the advantage of being rapidly hardened and can be easily handled and pasted onto plates, but Pb 3 Ca precipitates formed on top of Sn 3 Ca precipitates. tend to harden the alloy and lead to increased corrosion and growth of the positive grid in high temperature applications. Also, lead alloys with very low calcium content (0.02-0.05%) commonly used as grid alloys are very soft, difficult to handle and harden very slowly.
  • Patent Document 3 discloses that a Pb--Ca--Sn-based alloy essentially has coarse crystal grains, so when used as a positive electrode current collector, it is prone to intergranular corrosion, undergoes anodic oxidation in a high-temperature environment, and exhibits extreme corrosion. It is described that the extension of the plate and the deformation of the grid are caused, and as a result, the contact between the grid and the active material is deteriorated, and the battery performance is deteriorated.
  • Patent Document 3 by adding Sr to a Pb—Sn alloy, the cast structure and the recrystallized structure of the rolled material are refined to suppress intergranular corrosion, and furthermore, by adding Ca, Ba, and Te , Since the hardness of the Pb-Sn alloy can be adjusted over a wide range, a rolled sheet of a lead alloy in which Sr (and further Ca, Ba, Te) is added to the Pb-Sn alloy, wherein at least the rolled structure
  • a positive electrode current collector of a lead-acid battery that partially has a recrystallized structure with an average grain size of 20 ⁇ m or less, the corrosion resistance is greatly improved, and the life and reliability of lead-acid batteries for a wide range of applications are extended. It is stated that it allows for improved performance.
  • One of the causes of deterioration of lead-acid batteries is corrosion of the positive current collector plate. Corrosion of the positive electrode current collecting plate progresses as the battery usage period becomes longer, and as the corrosion progresses, the positive electrode active material cannot be retained, and the performance as a battery deteriorates. In addition, if the positive electrode material (positive current collecting plate or positive electrode active material) falling off due to corrosion comes into contact with the negative electrode, a short circuit may occur. In particular, in the case of bipolar lead-acid batteries, the current distribution is a surface reaction, so there is no need to consider charge transfer resistance, and it is possible to make the current collector thinner, but the distance between the positive electrode and the negative electrode is short. Therefore, if the positive electrode current collector plate is heavily corroded, fatal defects may occur. Therefore, it is necessary to suppress the corrosion of the positive electrode current collector plate.
  • An object of the present invention is to provide a current collector for a lead-acid battery composed of a heat-treated material of a rolled sheet made of a Pb—Ca—Sn alloy that does not contain Sr (it may contain as an unavoidable impurity but does not contain as a component). To provide a sheet having excellent corrosion resistance.
  • the content of tin (Sn) is 1.0% by mass or more and 1.9% by mass or less
  • the content of calcium (Ca) is 0.005 % by mass or more and 0.028% by mass or less, the balance being lead (Pb) and a lead alloy that is an unavoidable impurity.
  • the current collector sheet for a lead-acid battery wherein the number of crystal grains having a grain size of 10 ⁇ m or more existing in the range excluding the upper and lower 10% in the thickness direction of the rolled sheet is 25 or more and 55 or less per 1 mm 2 of the area of the said range. is.
  • the content of tin (Sn) is 1.0% by mass or more and 1.5% by mass or less, and the content of calcium (Ca) is 0.005% by mass or more and 0.026% by mass.
  • the balance is lead (Pb) and a lead alloy that is an unavoidable impurity, and is composed of a rolled sheet without holes penetrating in the plate surface direction, and the thickness direction of the rolled sheet in an arbitrary cross section.
  • the current collecting sheet for a lead-acid battery wherein the number of crystal grains having a grain size of 10 ⁇ m or more existing in the range excluding the upper and lower 10% is 25 or more and 40 or less per 1 mm 2 of the area of the above range.
  • the current collecting sheet for a lead battery of the present invention is composed of a heat-treated material of a rolled sheet made of a Pb-Ca-Sn alloy that does not contain Sr (it may contain as an unavoidable impurity but does not contain as a component). It can be expected that the current collector sheet for lead-acid batteries that will be used will have excellent corrosion resistance.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a bipolar lead-acid battery that is an embodiment of the present invention
  • FIG. FIG. 2 is a partially enlarged view of the bipolar lead-acid battery of FIG. 1
  • 1 is a micrograph showing a cross-sectional metallographic structure of a No. 1 lead alloy sheet.
  • 4 is a micrograph showing the metallographic structure of the cross section of the lead alloy sheet of No. 4.
  • FIG. 2 is a micrograph showing the metallographic structure of the cross section of lead alloy sheet No. 5.
  • FIG. 2 is a micrograph showing the metallographic structure of the cross section of lead alloy sheet No. 6.
  • FIG. 2 is a micrograph showing the metallographic structure of the cross section of lead alloy sheet No. 7.
  • a bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , has a second end plate (space forming member) 140 .
  • FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, the number of cell members 110 is determined by battery design. Also, the number of biplates 120 is determined according to the number of cell members 110 .
  • the stacking direction of the cell members 110 is defined as the Z direction (vertical direction in FIGS. 1 and 2), and the direction perpendicular to the Z direction is defined as the X direction.
  • the cell member 110 includes a positive electrode 111 , a negative electrode 112 and a separator (electrolyte layer) 113 .
  • the separator 113 is impregnated with an electrolytic solution.
  • the positive electrode 111 has a positive electrode lead foil (a current collector sheet made of a rolled sheet without holes penetrating in the plate surface direction, a positive electrode current collector plate) 111a and a positive electrode active material layer 111b.
  • the negative electrode 112 has a negative electrode lead foil (negative electrode current collector) 112a and a negative electrode active material layer 112b.
  • Separator 113 is interposed between positive electrode 111 and negative electrode 112 .
  • the positive electrode lead foil 111a, the positive electrode active material layer 111b, the separator 113, the negative electrode active material layer 112b, and the negative electrode lead foil 112a are laminated in this order.
  • the positive electrode lead foil 111a is larger (thicker) than the negative electrode lead foil 112a
  • the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
  • a plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and substrates 121 of biplates 120 are arranged at the intervals. That is, the plurality of cell members 110 are stacked with the substrate 121 of the biplate 120 interposed therebetween.
  • the plurality of biplates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110. As shown in FIG.
  • the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame 122 covering four end surfaces of the substrate 121, and columns 123 projecting vertically from both sides of the substrate 121.
  • the substrate 121, the frame 122 and the pillars 123 are integrally formed of synthetic resin.
  • the number of pillars 123 protruding from each surface of substrate 121 may be one, or may be plural.
  • the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121 , and the dimension between the projecting end faces of the pillars 123 is the same as the dimension of the frame 122 .
  • a space C is formed between the substrates 121 and 121, and the pillars 123 in contact with each other form a space C.
  • the Z dimension of C is preserved.
  • the positive electrode lead foil 111a, the positive electrode active material layer 111b, the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 have through holes 111c, 111d, 112c, 112d, and 113a through which the columnar portion 123 penetrates. formed respectively.
  • a substrate 121 of the biplate 120 has a plurality of through holes 121a passing through the plate surface.
  • a first concave portion 121b is formed on one surface of the substrate 121, and a second concave portion 121c is formed on the other surface.
  • the depth of the first recess 121b is deeper than the second recess 121c.
  • the X-direction and Y-direction dimensions of the first recess 121b and the second recess 121c correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a and the negative electrode lead foil 112a.
  • Substrates 121 of biplates 120 are positioned between adjacent cell members 110 in the Z direction.
  • the positive electrode lead foil 111 a of the cell member 110 is arranged in the first concave portion 121 b of the substrate 121 of the biplate 120 with an adhesive layer 150 interposed therebetween.
  • the negative electrode lead foil 112a of the cell member 110 is arranged in the second concave portion 121c of the substrate 121 of the biplate 120 with the adhesive layer 150 interposed therebetween.
  • Conductor 160 is disposed in through-hole 121a of substrate 121 of biplate 120, and both end surfaces of conductor 160 are in contact with and bonded to positive electrode lead foil 111a and negative electrode lead foil 112a. That is, the conductor 160 electrically connects the positive electrode lead foil 111a and the negative electrode lead foil 112a. As a result, all of the plurality of cell members 110 are electrically connected in series.
  • the first end plate 130 includes a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (located closest to the positive electrode side). and a pillar portion 133 projecting vertically from the surface of the biplate 120 facing the substrate 121 .
  • the planar shape of the substrate 131 is rectangular, and four end surfaces of the substrate 131 are covered with a frame 132.
  • the substrate 131, the frame 132, and the pillars 133 are integrally formed of synthetic resin.
  • the number of columnar portions 133 protruding from one surface of the substrate 131 may be one or plural, and the columnar portions 133 correspond to the columnar portions 123 of the biplate 120 that come into contact with the columnar portions 133 .
  • the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the pillars 133 is the same as the dimension of the frame 132 .
  • the frame 132 and the column 133 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (on the positive electrode side) to stack the substrate 121 of the biplate 120 .
  • a space C is formed between the substrate 131 of the first end plate 130, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 133 of the first endplate 130 that are in contact with each other. is retained.
  • Through-holes 111c, 111d, and 113a through which the column portion 133 penetrates are formed in the positive electrode lead foil 111a, the positive electrode active material layer 111b, and the separator 113 of the cell member 110 arranged on the outermost side (positive electrode side). ing.
  • a concave portion 131 b is formed on one surface of the substrate 131 of the first end plate 130 .
  • the X-direction dimension of the recess 131b corresponds to the X-direction dimension of the positive electrode lead foil 111a.
  • the positive electrode lead foil 111 a of the cell member 110 is arranged in the concave portion 131 b of the substrate 131 of the first end plate 130 with the adhesive layer 150 interposed therebetween.
  • the first end plate 130 also has a positive terminal electrically connected to the positive lead foil 111a in the recess 131b.
  • the second end plate 140 includes a substrate 141 covering the negative electrode side of the cell member 110, a frame 142 surrounding the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 arranged closest to the negative electrode side). and a pillar portion 143 projecting vertically from the surface facing the .
  • the planar shape of the substrate 141 is rectangular, and four end surfaces of the substrate 141 are covered with a frame 142.
  • the substrate 141, the frame 142, and the pillars 143 are integrally formed of synthetic resin.
  • the number of columnar portions 143 protruding from one surface of the substrate 141 may be one or plural, and the columnar portions 143 are made to correspond to the columnar portions 123 of the biplate 120 that come into contact with each other.
  • the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the two pillars 143 is the same as the dimension of the frame 142 . Then, the frame 142 and the column 143 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (negative electrode side), thereby laminating the substrate 121 of the biplate 120.
  • a space C is formed between the substrate 141 of the second end plate 140, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 143 of the second endplate 140 that are in contact with each other. is retained.
  • Through-holes 112c, 112d, and 113a through which the column portion 143 penetrates are formed in the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 of the cell member 110 arranged on the outermost side (on the negative electrode side), respectively. ing.
  • a concave portion 141 b is formed on one surface of the substrate 141 of the second end plate 140 .
  • the X-direction and Y-direction dimensions of the recess 141b correspond to the X- and Y-direction dimensions of the negative electrode lead foil 112a.
  • the negative electrode lead foil 112a of the cell member 110 is arranged in the concave portion 141b of the substrate 141 of the second end plate 140 with the adhesive layer 150 interposed therebetween.
  • the second end plate 140 also has a negative terminal electrically connected to the negative lead foil 112a in the recess 141b.
  • the biplate 120 is a space-forming member that includes a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame 122 that surrounds the side surfaces of the cell member 110.
  • the first end plate 130 is a space forming member including a substrate 131 covering the positive electrode side of the cell member 110 and a frame 132 surrounding the side surface of the cell member 110 .
  • the second end plate 140 is a space forming member including a substrate 141 covering the negative electrode side of the cell member 110 and a frame 142 surrounding the side surface of the cell member 110 .
  • the thickness of the positive electrode lead foil (positive current collector plate) 111a arranged in the concave portion 121b of the biplate 120 is less than 0.5 mm (for example, 0.1 mm or more and 0.4 mm or less).
  • the positive electrode lead foil (positive electrode current collector) 111a has a tin (Sn) content of 1.0% by mass or more and 1.9% by mass or less, and a calcium (Ca) content of 0.005. % by mass or more and 0.028% by mass or less, the balance being lead (Pb) and a lead alloy that is an unavoidable impurity.
  • the number of crystal grains having a grain size of 10 ⁇ m or more existing in the excluded range is 25 or more and 55 or less per 1 mm 2 of the area of the above range.
  • “the number of crystal grains having a grain size of 10 ⁇ m or more and existing in the above range per 1 mm 2 of area in the above range” is also simply referred to as "the number of crystal grains per 1 mm 2 in the cross section”.
  • the positive electrode lead foil (positive current collector plate) 111a arranged in the concave portion 131b of the first end plate 130 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and is made of the same lead alloy as the rolled sheet. and is formed of a rolled sheet having the same number of crystal grains per mm 2 in cross section as above.
  • the thickness of the negative electrode lead foil (negative electrode collector plate) 121a arranged in the concave portion 121c of the biplate 120 is 0.05 mm or more and 0.3 mm or less.
  • the alloy forming the negative electrode lead foil 121a is, for example, a lead alloy having a tin (Sn) content of 0.5% by mass or more and 2% by mass or less.
  • the negative electrode lead foil (negative electrode current collector plate) 121a arranged in the concave portion 141b of the second end plate 140 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and the content of tin (Sn) is is a lead alloy containing 0.5% by mass or more and 2% by mass or less.
  • the positive electrode lead foil (positive current collector plate) 111a has a tin (Sn) content of 1.0% by mass or more and 1.9% by mass or less, and contains calcium (Ca ) is 0.005% by mass or more and 0.028% by mass or less, and the balance is lead (Pb) and a lead alloy that is an unavoidable impurity. is 25 or more and 55 or less. Thereby, corrosion of the lead foil 111a for positive electrodes can be suppressed.
  • the number of crystal grains per 1 mm 2 in the cross section can be 25 or more and 55 or less.
  • the number of crystal grains per 1 mm 2 in the cross section is preferably 25 or more and 40 or less. Within this range, a higher corrosion inhibitory effect can be obtained.
  • a more preferable range is 25 or more and 38 or less, and a particularly preferable range is 25 or more and 35 or less.
  • Lead alloy sheets No. 1 to No. 15 shown in Table 1 were prepared. Each lead alloy sheet had a thickness of 0.35 mm.
  • the No. 1 lead alloy sheet has a calcium (Ca) content of 0.000% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 310° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG.
  • the number of crystal grains with a grain size of 10 ⁇ m or more existing in the range excluding the upper and lower 10% in the thickness direction of the sheet was counted, and the number was calculated as the area of the above range in consideration of the magnification of the microscope. Converted to the number per 1 mm 2 . As a result, the number of crystal grains per 1 mm 2 in the cross section was 40.
  • the No. 2 lead alloy sheet has a calcium (Ca) content of 0.005% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 150° C. for 60 minutes in an air atmosphere.
  • lead alloy sheet No. 2 a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the cross section was measured in the same manner as No. 1. By the way, it was 40 pieces.
  • lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 200° C. for 30 minutes in an air atmosphere.
  • the lead alloy sheet of No. 3 a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the cross section was measured in the same manner as No. 1. By the way, it was 40 pieces.
  • the No. 4 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 120° C. for 600 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG. Also, from the image, the number of crystal grains per 1 mm 2 in the cross section was measured by the same method as No. 1, and it was 25.
  • 5 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 60° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG. Also, from the image, the same method as No. 1 was used to measure the number of crystal grains per 1 mm 2 in the above cross section, but it could not be measured because of the striped structure.
  • the No. 6 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 180° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG. Also, from the image, the number of crystal grains per 1 mm 2 in the cross section was measured by the same method as No. 1, and it was 135.
  • 7 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 220° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG. Also, from the image, the number of crystal grains per 1 mm 2 in the cross section was measured by the same method as No. 1, and it was 60.
  • the No. 8 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.0% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 220° C. for 15 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 40 pieces.
  • lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 2.0% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 250° C. for 10 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 30 pieces.
  • the No. 10 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 0.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 310° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 45 pieces.
  • the No. 10 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 0.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 310° C. for 5 minutes in an air atmosphere.
  • 11 lead alloy sheet has a calcium (Ca) content of 0.026% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 200° C. for 200 minutes in an air atmosphere.
  • the lead alloy sheet of No. 11 a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 25 pieces.
  • the No. 12 lead alloy sheet has a calcium (Ca) content of 0.030% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 150° C. for 600 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 25 pieces.
  • lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 150° C. for 30 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 55 pieces.
  • the No. 14 lead alloy sheet has a calcium (Ca) content of 0.028% by mass, a tin (Sn) content of 1.5% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 210° C. for 60 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 38 pieces.
  • 15 lead alloy sheet has a calcium (Ca) content of 0.010% by mass, a tin (Sn) content of 1.9% by mass, and the balance being lead (Pb) and lead as an unavoidable impurity.
  • a rolled sheet of the alloy was heat-treated at 215° C. for 60 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope, and the number of crystal grains per 1 mm 2 in the above cross section was measured in the same manner as No. 1. By the way, it was 30 pieces.
  • Corrosion tests were performed on each lead alloy sheet No. 1 to No. 15 by the following method.
  • Each lead alloy sheet was cut into a test piece of width 15 mm and length 70 mm, placed in 60° C. sulfuric acid with a specific gravity of 1.28, and anodicized for 28 consecutive days at a constant potential (vs: Hg/Hg 2 SO 4 ) of 1350 mV. After oxidation, the produced oxide was removed. Then, the mass was measured before and after the test, the amount of decrease in mass due to the test was calculated from the measured value, and the amount of decrease in mass per total surface area of the test piece was taken as the amount of corrosion.
  • the cross-sectional structure after the corrosion test was observed with an electron microscope (magnification: 400) to examine whether or not the lead alloy sheet had a through hole.
  • the cross-sectional structure around the welded part was observed with an electron microscope, and it was perpendicular to the sheet surface and in the rolling direction.
  • the number of crystal grains per 1 mm 2 in the cross section was measured in the same manner as in No. 1. Then, it was examined whether the number of crystal grains changed before and after welding. If the number of crystal grains changes before and after welding, there is a possibility that unintended local corrosion progresses from the connection portion by connecting the positive electrode current collector sheet and the negative electrode current collector sheet by resistance welding.
  • the thickness is 0.35 mm
  • the content of tin (Sn) is 1.0% by mass or more and 1.5% by mass or less
  • the content of calcium (Ca) is 0.35% by mass.
  • the balance is lead (Pb) and a lead alloy that is an unavoidable impurity. It can be seen that corrosion resistance is excellent when the number of crystal grains per 1 mm 2 (particle count: [particles/mm 2 ]) is 25 or more and 55 or less.
  • any cross section other than this cross section (arbitrary cross section) It can be estimated that the number of crystal grains is 25 or more and 55 or less.
  • Table 1 is a table summarizing the results of samples having the same tin (Sn) content of 1.5% by mass and different calcium (Ca) contents of the lead alloys constituting the lead alloy sheets. .
  • the number of particles (particles/mm 2 ) in the samples summarized in Table 1 is 25 or more and 40 or less. From this table, by setting the calcium (Ca) content of the lead alloy constituting the lead alloy sheet to 0.005% by mass or more and 0.028% by mass or less, the corrosion resistance is improved and no through holes are formed. I know you can do it.
  • Table 2 shows that the lead alloy constituting the lead alloy sheet has the same tin (Sn) content of 1.5% by mass and the same calcium (Ca) content of 0.010, and the heat treatment conditions are
  • FIG. 10 is a table summarizing the results of samples in which the number of particles (particles/mm 2 ) is changed by changing.
  • FIG. From this table, by setting the number of crystal grains per 1 mm 2 in an arbitrary cross section of the lead alloy sheet to 25 or more and 55 or less, the corrosion resistance is improved, and the number of crystal grains changes before and after welding. I know it can be done.
  • Table 3 is a table summarizing the results of samples having the same calcium (Ca) content of 0.010% by mass, which constitutes the lead alloy sheet, and different tin (Sn) contents of the lead alloys. .
  • the number of particles (particles/mm 2 ) in the samples summarized in Table 1 is 30 or more and 45 or less. From this table, by setting the tin (Sn) content of the lead alloy constituting the lead alloy sheet to 1.0% by mass or more and 1.9% by mass or less, corrosion resistance is improved and through holes are not formed. I know you can do it.
  • Bipolar lead-acid battery 110 Cell member 111 Positive electrode 112 Negative electrode 111a Lead foil for positive electrode (collector plate for positive electrode) 112a Lead foil for negative electrode (current collector for negative electrode) 111b active material layer for positive electrode 112b active material layer for negative electrode 113 separator 120 biplate 121 substrate of biplate 121a through hole of substrate 121b first recess of substrate 121c second recess of substrate 122 frame of biplate 130 first end plate 131 first end plate substrate 132 first end plate frame 140 second end plate 141 second end plate substrate 142 second end plate frame 150 adhesive layer 160 conductor C cell (space for accommodating cell members)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

双極型鉛蓄電池を構成する空間形成部材の樹脂製の基板面に貼り付けて使用される正極用集電板として好適な集電シートを提供する。鉛蓄電池用集電シートである正極用集電板(111a)は、、錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、板面方向を貫通する穴が空いていない圧延シートで構成され、任意の断面における前記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、前記範囲の面積1mm2当たり25個以上55個以下である。

Description

鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
 本発明は、鉛蓄電池用集電シート、鉛蓄電池、双極型(バイポーラ型)鉛蓄電池に関する。
 近年、太陽光や風力等の自然エネルギを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載された双極型鉛蓄電池が知られている。
 この双極型鉛蓄電池は、額縁形で樹脂製のフレームの内側に、樹脂製の基板が取り付けられている。基板の両面には鉛層が配置されている。基板の一面の鉛層には、正極用活物質層が隣接し、他面の鉛層には、負極用活物質層が隣接している。また、額縁形で樹脂製のスペーサを有し、その内側には、電解液を含浸させたガラスマットが配設されている。そして、フレームとスペーサとを交互に複数積層し、フレームとスペーサとの間が接着剤等で接着されている。また、基板に設けた貫通穴を介して、基板の両面の鉛層が接続されている。
 すなわち、特許文献1に記載された双極型鉛蓄電池は、正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置された、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有している。また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。また、セル部材と空間形成部材の基板とが交互に積層状態で配置され、セル部材同士が直列に電気的に接続され、隣接する枠体同士が接合されている。
 そして、特許文献1には、基板の両面に配置される鉛層として鉛箔を使用することが記載されているが、鉛箔として具体的にどのような組成のものを使用するかについては記載されていない。
 一般的な鉛蓄電池の集電板用鉛合金の組成に関しては、例えば特許文献2に以下の記載がある。初期の鉛-カルシウム合金は、通常、比較的高い含有率(たとえば、0.08%以上)のカルシウムおよび比較的低い含有率(たとえば、0.35-0.5%)の錫を含んでいるために、これらの合金から生産される正極格子は、急速に硬化し、容易にハンドリングされて板にペーストされ得る利点があるが、Sn3Ca析出物の上に形成されるPb3Ca析出物が合金を硬化させる傾向があり、高温用途における正極格子の腐食および成長の増加をもたらす傾向がある。また、格子用合金として一般に利用されるカルシウムの含有率が非常に低い(0.02-0.05%)鉛合金は、非常に軟質で、ハンドリングするのが難しく、非常にゆっくり硬化する。そして、カルシウム含有率が非常に低い鉛合金は、通常、比較的低い量の錫および比較的高い量の銀を含有し、これらの合金は、耐腐食性が高い傾向があるが、これらの合金には、ハンドリングしにくい問題や薄い集電板(集電シート)にするための特別な処置を必要とする問題がある。
 特許文献3には、Pb-Ca-Sn系合金は、本質的に結晶粒が粗大となるため正極集電体に用いた場合に粒界腐食し易く、高温環境下ではアノード酸化を受け、極板の伸びや格子の変形を招き、その結果、格子と活物質との接触が悪くなり、電池性能が低下することが問題となっていることが記載されている。
 また、特許文献3には、Pb-Sn合金にSrを添加することで鋳造組織及び圧延材の再結晶組織を微細化して粒界腐食を抑制し、更にCa、Ba、Teを添加することによって、広範にPb-Sn合金の硬さを調整できるようになるため、Pb-Sn合金にSr(さらに、Ca、Ba、Te)が添加された鉛合金の圧延シートであって、圧延組織の少なくとも一部が平均粒径20μm以下の再結晶組織となっているものを、鉛蓄電池の正極集電体に用いることで、耐食性を大幅に向上させ、広範な用途の鉛電池の長寿命化、信頼性向上を可能にすることが記載されている。
特許第6124894号公報 特許第5399272号公報 特許第4148175号公報
 鉛蓄電池の劣化原因の一つに、正極集電板の腐食がある。電池使用期間が長くなるほど、正極集電板の腐食は進行し、腐食が進むと正極活物質の保持ができなくなり、電池としての性能が低下してしまう。それだけでなく、腐食によって脱落した正極材(正極集電板または正極活物質)が負極に接してしまった場合、短絡の可能性もある。
 特に、バイポーラ鉛蓄電池の場合、電流分布が面での反応となるため、電荷移動抵抗を考慮する必要がなく、集電板を薄くすることが可能であるが、正極と負極との距離が近いため、正極集電板の腐食が多いと致命的な欠陥が生じる恐れがあることから、正極集電板の腐食を抑制する必要がある。
 本発明の課題は、Srを含まない(不可避的不純物として含むことはあっても成分としては含まない)Pb-Ca-Sn系合金からなる圧延シートの熱処理材で構成される鉛蓄電池用集電シートとして、耐食性に優れたものを提供することである。
 前述した課題を解決するための本発明の第一態様は、錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、板面方向を貫通する穴が空いていない圧延シートで構成され、任意の断面における前記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、前記範囲の面積1mm2当たり25個以上55個以下である鉛蓄電池用集電シートである。
 本発明の第二態様は、錫(Sn)の含有率が1.0質量%以上1.5質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.026質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、板面方向を貫通する穴が空いていない圧延シートで構成され、任意の断面における前記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、前記範囲の面積1mm2当たり25個以上40個以下である鉛蓄電池用集電シートである。
 本発明の鉛電池用集電シートによれば、Srを含まない(不可避的不純物として含むことはあっても成分としては含まない)Pb-Ca-Sn系合金からなる圧延シートの熱処理材で構成される鉛蓄電池用集電シートとして、耐食性に優れたものとなることが期待できる。
本発明の一実施形態である双極型鉛蓄電池の概略構成を示す断面図である。 図1の双極型鉛蓄電池の部分拡大図である。 No.1の鉛合金シートの断面の金属組織を示す顕微鏡写真である。 No.4の鉛合金シートの断面の金属組織を示す顕微鏡写真である。 No.5の鉛合金シートの断面の金属組織を示す顕微鏡写真である。 No.6の鉛合金シートの断面の金属組織を示す顕微鏡写真である。 No.7の鉛合金シートの断面の金属組織を示す顕微鏡写真である。
 以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
〔全体構成〕
 先ず、この実施形態の双極(バイポーラ)型鉛蓄電池の全体構成について説明する。
 図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140を有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
 セル部材110の積層方向をZ方向(図1及び図2の上下方向)とし、Z方向に垂直な方向をX方向とする。
 セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用鉛箔(板面方向を貫通する穴が空いていない圧延シートからなる集電シート、正極用集電板)111aと正極用活物質層111bを有する。負極112は負極用鉛箔(負極用集電板)112aと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用鉛箔111a、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112aは、この順に積層されている。
 Z方向の寸法(厚さ)は、正極用鉛箔111aの方が負極用鉛箔112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
 複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
 複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
 図2に示すように、バイプレート120は、平面形状が長方形の基板121と、基板121の四つの端面を覆う枠体122と、基板121の両面から垂直に突出する柱部123とからなり、基板121と枠体122と柱部123は一体に合成樹脂で形成されている。なお、基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
 Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。
 正極用鉛箔111a、正極用活物質層111b、負極用鉛箔112a、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113aがそれぞれ形成されている。
 バイプレート120の基板121は、板面を貫通する複数の貫通穴121aを有する。基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
 バイプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。
 また、バイプレート120の基板121の第二の凹部121cに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。
 バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。つまり、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
 図1に示すように、第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、基板131の一面(最も正極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部133とからなる。基板131の平面形状は長方形であり、基板131の四つの端面が枠体132で覆われ、基板131と枠体132と柱部133が一体に合成樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は一つであってもよいし、複数であってもよいが、柱部133と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、最も外側(正極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層することにより、バイプレート120の基板121と第一のエンドプレート130の基板131との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第一のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。
 最も外側(正極側)に配置されるセル部材110の正極用鉛箔111a、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
 第一のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向の寸法は、正極用鉛箔111aのX方向の寸法に対応させてある。
 第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。
 また、第一のエンドプレート130は、凹部131b内の正極用鉛箔111aと電気的に接続された正極端子を備えている。
 第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、基板141の一面(最も負極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部143とからなる。基板141の平面形状は長方形であり、基板141の四つの端面が枠体142で覆われ、基板141と枠体142と柱部143が一体に合成樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、最も外側(負極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層することにより、バイプレート120の基板121と第二のエンドプレート140の基板141との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第二のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。
 最も外側(負極側)に配置されるセル部材110の負極用鉛箔112a、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
 第二のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
 第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。
 また、第二のエンドプレート140は、凹部141b内の負極用鉛箔112aと電気的に接続された負極端子を備えている。
 なお、上記説明から分かるように、バイプレート120は、セル部材110の正極側および負極側の両方を覆う基板121と、セル部材110の側面を囲う枠体122と、を含む空間形成部材である。第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。
〔集電板の構成〕
 バイプレート120の凹部121bに配置される正極用鉛箔(正極用集電板)111aの厚さは0.5mm未満(例えば0.1mm以上0.4mm以下)である。また、正極用鉛箔(正極用集電板)111aは、錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートで構成され、任意の断面における上記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、上記範囲の面積1mm2当たり25個以上55個以下である。なお、以下においては、「上記範囲に存在する粒径10μm以上の結晶粒子の、上記範囲の面積1mm2当たりの個数」を、単に「断面における1mm2当たりの結晶粒子の数」とも称する。
 第一のエンドプレート130の凹部131bに配置される正極用鉛箔(正極用集電板)111aは、例えば、厚さが0.5mm以上1.5mm以下であり、上記圧延シートと同じ鉛合金からなり、断面における1mm2当たりの結晶粒子の数が上記と同じである圧延シートで形成されている。
 バイプレート120の凹部121cに配置される負極用鉛箔(負極用集電板)121aの厚さは0.05mm以上0.3mm以下である。負極用鉛箔121aをなす合金は、例えば、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金である。
 第二のエンドプレート140の凹部141bに配置される負極用鉛箔(負極用集電板)121aは、例えば、厚さが0.5mm以上1.5mm以下であり、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金からなる。
〔作用、効果〕
 実施形態の双極型鉛蓄電池100では、正極用鉛箔(正極用集電板)111aが、錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートで形成され、断面における1mm2当たりの結晶粒子の数が25個以上55個以下である。これにより、正極用鉛箔111aの腐食が抑制できる。
 厚さが0.5mm未満であり、錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートを用いた場合、例えば、大気雰囲気下、温度250℃以上融点以下、処理時間5分以上条件で上記圧延シートを熱処理することで、断面における1mm2当たりの結晶粒子の数を25個以上55個以下にすることができる。
 断面における1mm2当たりの結晶粒子の数は、25個以上40個以下であることが好ましい。この範囲であることで、より高い腐食抑制効果を得ることができる。更に好ましい範囲は25個以上38個以下であり、特に好ましい範囲は25個以上35個以下である。
 表1に示すNo.1~No.15の鉛合金シートを準備した。各鉛合金シートの厚さは全て0.35mmとした。
 No.1の鉛合金シートは、カルシウム(Ca)の含有率が0.000質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、310℃で5分間、大気雰囲気下で熱処理をしたものである。
 No.1の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図3に示す。
 また、その画像から、シートの厚さ方向の上下10%を除いた範囲に存在する、粒径10μm以上の結晶粒子の数を数え、その数を、顕微鏡の倍率を考慮して上記範囲の面積1mm2当たりの数に換算した。その結果、上記断面における1mm2当たりの結晶粒子の数は、40個であった。
 No.2の鉛合金シートは、カルシウム(Ca)の含有率が0.005質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、150℃で60分間、大気雰囲気下で熱処理をしたものである。No.2の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、40個であった。
 No.3の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、200℃で30分間、大気雰囲気下で熱処理をしたものである。No.3の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、40個であった。
 No.4の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、120℃で600分間、大気雰囲気下で熱処理をしたものである。
 No.4の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図4に示す。また、その画像から、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、25個であった。
 No.5の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、60℃で5分間、大気雰囲気下で熱処理をしたものである。
 No.5の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図5に示す。また、その画像から、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定しようとしたが、縞状組織になっていたため測定できなかった。
 No.6の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、180℃で5分間、大気雰囲気下で熱処理をしたものである。
 No.6の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図6に示す。また、その画像から、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、135個であった。
 No.7の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、220℃で5分間、大気雰囲気下で熱処理をしたものである。
 No.7の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図7に示す。また、その画像から、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、60個であった。
 No.8の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、220℃で15分間、大気雰囲気下で熱処理をしたものである。No.8の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、40個であった。
 No.9の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が2.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、250℃で10分間、大気雰囲気下で熱処理をしたものである。No.9の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、30個であった。
 No.10の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が0.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、310℃で5分間、大気雰囲気下で熱処理をしたものである。No.10の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、45個であった。
 No.11の鉛合金シートは、カルシウム(Ca)の含有率が0.026質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、200℃で200分間、大気雰囲気下で熱処理をしたものである。No.11の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、25個であった。
 No.12の鉛合金シートは、カルシウム(Ca)の含有率が0.030質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、150℃で600分間、大気雰囲気下で熱処理をしたものである。No.12の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、25個であった。
 No.13の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、150℃で30分間、大気雰囲気下で熱処理をしたものである。No.13の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、55個であった。
 No.14の鉛合金シートは、カルシウム(Ca)の含有率が0.028質量%、錫(Sn)の含有率が1.5質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、210℃で60分間、大気雰囲気下で熱処理をしたものである。No.14の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、38個であった。
 No.15の鉛合金シートは、カルシウム(Ca)の含有率が0.010質量%、錫(Sn)の含有率が1.9質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、215℃で60分間、大気雰囲気下で熱処理をしたものである。No.15の鉛合金シートについて、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定したところ、30個であった。
 No.1~No.15の各鉛合金シートについて、以下の方法で腐食試験を行った。
 各鉛合金シートを幅15mm、長さ70mmの試験片に切断して、比重1.28の60℃硫酸に入れ、1350mVの定電位(vs:Hg/Hg2SO4)で28日間連続の陽極酸化を行った後、生成酸化物を除去した。そして、試験前後に質量を測定し、その値から試験による質量の減少量を算出し、試験片の全表面積当たりの質量減少量を腐食量とした。また、腐食試験後の断面組織を電子顕微鏡(倍率400倍)で観察し、鉛合金シートに貫通穴が生じているか否かを調べた。
 また、No.1~No.15の各鉛合金シートについて、板面の一部にハンダ溶接を行った後、溶接部周囲の断面組織を電子顕微鏡で観察して、シート面に垂直で圧延方向と平行な断面を撮影し、No.1と同じ方法で、上記断面における1mm2当たりの結晶粒子の数を測定した。そして、溶接前後で結晶粒子の数が変化するか否かを調べた。溶接前後で結晶粒子の数が変化すると、抵抗溶接で正極用集電シートと負極集電シートを接続することにより、接続部から意図しない局所的な腐食が進行する可能性がある。
 なお、様々な条件で熱処理を行ってみたが、シート面に垂直で圧延方向と平行な断面における1mm2当たりの結晶粒子の数が25個未満となる熱処理条件は見出せなかった。
 これらの結果を各鉛合金シートの構成とともに表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3の結果から、厚さが0.35mmであり、錫(Sn)の含有率が1.0質量%以上1.5質量以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.026質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートの熱処理材で構成され、シート面に垂直で圧延方向と平行な断面における1mm2当たりの結晶粒子の数(粒子数:[個/mm2])が25個以上55個以下であると、耐食性に優れることが分かる。
 なお、シート面に垂直で圧延方向と平行な断面における1mm2当たりの結晶粒子の数が25個以上55個以下である場合、この断面以外の断面(任意の断面)についても、1mm2当たりの結晶粒子の数が25個以上55個以下となっていると推定できる。
 表1は、鉛合金シートを構成する鉛合金の錫(Sn)含有率が1.5質量%で同じであって、カルシウム(Ca)の含有率が異なるサンプルについての結果をまとめた表である。なお、表1にまとめたサンプルにおける粒子数(個/mm2)は25個以上40個以下となっている。この表から、鉛合金シートを構成する鉛合金のカルシウム(Ca)の含有率を0.005質量%以上0.028質量%以下にすることで、耐食性を良好にするとともに、貫通穴を生じないようにできることが分かる。
 表2は、鉛合金シートを構成する鉛合金の錫(Sn)含有率が1.5質量%で同じであるとともに、カルシウム(Ca)の含有率が0.010で同じであり、熱処理条件を変えることで粒子数(個/mm2)が異なるものとなっているサンプルについての結果をまとめた表である。この表から、鉛合金シートの任意の断面における1mm2当たりの結晶粒子の数を25個以上55個以下にすることで、耐食性を良好にするとともに、溶接前後での結晶粒子数の変化が生じないようにできることが分かる。
 表3は、鉛合金シートを構成するカルシウム(Ca)の含有率が0.010質量%で同じであって、鉛合金の錫(Sn)含有率が異なるサンプルについての結果をまとめた表である。なお、表1にまとめたサンプルにおける粒子数(個/mm2)は30個以上45個以下となっている。この表から、鉛合金シートを構成する鉛合金の錫(Sn)の含有率を1.0質量%以上1.9質量%以下にすることで、耐食性を良好にするとともに、貫通穴を生じないようにできることが分かる。
 100 双極(バイポーラ)型鉛蓄電池
 110 セル部材
 111 正極
 112 負極
 111a 正極用鉛箔(正極用集電板)
 112a 負極用鉛箔(負極用集電板)
 111b 正極用活物質層
 112b 負極用活物質層
 113 セパレータ
 120 バイプレート
 121 バイプレートの基板
 121a 基板の貫通穴
 121b 基板の第一の凹部
 121c 基板の第二の凹部
 122 バイプレートの枠体
 130 第一のエンドプレート
 131 第一のエンドプレートの基板
 132 第一のエンドプレートの枠体
 140 第二のエンドプレート
 141 第二のエンドプレートの基板
 142 第二のエンドプレートの枠体
 150 接着剤層
 160 導通体
 C セル(セル部材を収容する空間)

Claims (4)

  1.  錫(Sn)の含有率が1.0質量%以上1.9質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.028質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、板面方向を貫通する穴が空いていない圧延シートで構成され、
     任意の断面における前記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、前記範囲の面積1mm2当たり25個以上55個以下である鉛蓄電池用集電シート。
  2.  錫(Sn)の含有率が1.0質量%以上1.5質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.026質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、板面方向を貫通する穴が空いていない圧延シートで構成され、
     任意の断面における前記圧延シートの厚さ方向の上下10%を除いた範囲に存在する粒径10μm以上の結晶粒子の数が、前記範囲の面積1mm2当たり25個以上40個以下である鉛蓄電池用集電シート。
  3.  請求項1または2記載の鉛蓄電池用集電シートを有する鉛蓄電池。
  4.  正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
     前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
    を有し、
     前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含み、
     前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、
     前記複数のセル部材が直列に電気的に接続され、隣接する前記枠体が接合され、
     前記正極用集電板は請求項1または2記載の鉛蓄電池用集電シートである双極型鉛蓄電池。
PCT/JP2022/011330 2021-03-26 2022-03-14 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池 WO2022202443A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022521231A JP7449375B2 (ja) 2021-03-26 2022-03-14 双極型鉛蓄電池用集電シート、双極型鉛蓄電池およびその製造方法
US18/473,882 US20240021841A1 (en) 2021-03-26 2023-09-25 Current Collector Sheet For Lead-Acid Storage Battery, Lead-Acid Storage Battery, And Bipolar Lead-Acid Storage Battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053772 2021-03-26
JP2021-053772 2021-03-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/473,882 Continuation US20240021841A1 (en) 2021-03-26 2023-09-25 Current Collector Sheet For Lead-Acid Storage Battery, Lead-Acid Storage Battery, And Bipolar Lead-Acid Storage Battery

Publications (1)

Publication Number Publication Date
WO2022202443A1 true WO2022202443A1 (ja) 2022-09-29

Family

ID=83394931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011330 WO2022202443A1 (ja) 2021-03-26 2022-03-14 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池

Country Status (3)

Country Link
US (1) US20240021841A1 (ja)
JP (1) JP7449375B2 (ja)
WO (1) WO2022202443A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106431A (ja) * 1973-01-31 1974-10-09
JP2005290421A (ja) * 2004-03-31 2005-10-20 Shin Kobe Electric Mach Co Ltd 鉛合金及びそれを用いた鉛蓄電池
JP2006114236A (ja) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008210698A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2010113913A (ja) * 2008-11-05 2010-05-20 Furukawa Battery Co Ltd:The 鉛蓄電池用基板の製造方法
WO2013073420A1 (ja) * 2011-11-16 2013-05-23 新神戸電機株式会社 鉛蓄電池
JP2016177909A (ja) * 2015-03-19 2016-10-06 株式会社Gsユアサ 制御弁式鉛蓄電池
JP6124894B2 (ja) * 2011-09-09 2017-05-10 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. 二極式電池およびプレート
JP2019067522A (ja) * 2017-09-28 2019-04-25 古河電池株式会社 鉛蓄電池用正極格子体の製造方法、蓄電池用正極格子体、及び鉛蓄電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935918A (zh) * 2017-12-19 2019-06-25 巨江电源科技有限公司 一种双极性电池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106431A (ja) * 1973-01-31 1974-10-09
JP2005290421A (ja) * 2004-03-31 2005-10-20 Shin Kobe Electric Mach Co Ltd 鉛合金及びそれを用いた鉛蓄電池
JP2006114236A (ja) * 2004-10-12 2006-04-27 Matsushita Electric Ind Co Ltd 鉛蓄電池
JP2008210698A (ja) * 2007-02-27 2008-09-11 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2010113913A (ja) * 2008-11-05 2010-05-20 Furukawa Battery Co Ltd:The 鉛蓄電池用基板の製造方法
JP6124894B2 (ja) * 2011-09-09 2017-05-10 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. 二極式電池およびプレート
WO2013073420A1 (ja) * 2011-11-16 2013-05-23 新神戸電機株式会社 鉛蓄電池
JP2016177909A (ja) * 2015-03-19 2016-10-06 株式会社Gsユアサ 制御弁式鉛蓄電池
JP2019067522A (ja) * 2017-09-28 2019-04-25 古河電池株式会社 鉛蓄電池用正極格子体の製造方法、蓄電池用正極格子体、及び鉛蓄電池

Also Published As

Publication number Publication date
JP7449375B2 (ja) 2024-03-13
US20240021841A1 (en) 2024-01-18
JPWO2022202443A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
US6579647B2 (en) Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
EP2330676B1 (en) Lead acid storage battery
US7678496B2 (en) Current collector of lead-acid storage battery, and lead-acid storage battery
JP7296016B2 (ja) 鉛合金箔、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
CA2419248A1 (en) Lead-acid batteries and positive plate and alloys therefor
JP5656068B2 (ja) 液式鉛蓄電池
JP2012142185A (ja) 鉛蓄電池とアイドリングストップ車
WO2022202443A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
JP2023162291A (ja) 鉛合金箔及びその製造方法、鉛蓄電池用正極、鉛蓄電池、並びに蓄電システム
WO2022202442A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
JP7057461B1 (ja) 双極型蓄電池、双極型蓄電池の製造方法
WO2022224531A1 (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
WO2023008495A1 (ja) 双極型鉛蓄電池
WO2022215329A1 (ja) 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池
JP2022175783A (ja) 双極型鉛蓄電池
JP4491384B2 (ja) 密閉形鉛蓄電池
Sawai et al. New approach to prevent premature capacity loss of lead-acid battery in cycle use
Chen Development of VRLA batteries for high rate discharge applications
JPS61200670A (ja) 鉛蓄電池用格子体及びその製造法
US20230299267A1 (en) Lead Alloy, Lead Storage Battery Electrode, Lead Storage Battery, and Power Storage System
JPH0433110B2 (ja)
JP2023141123A (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
Schulte et al. Lead storage battery
JPH0869813A (ja) 密閉形鉛蓄電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022521231

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775235

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301006123

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775235

Country of ref document: EP

Kind code of ref document: A1