WO2022215329A1 - 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池 - Google Patents

双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池 Download PDF

Info

Publication number
WO2022215329A1
WO2022215329A1 PCT/JP2022/003587 JP2022003587W WO2022215329A1 WO 2022215329 A1 WO2022215329 A1 WO 2022215329A1 JP 2022003587 W JP2022003587 W JP 2022003587W WO 2022215329 A1 WO2022215329 A1 WO 2022215329A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
lead
substrate
members
Prior art date
Application number
PCT/JP2022/003587
Other languages
English (en)
French (fr)
Inventor
彩乃 小出
Original Assignee
古河電池株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021065939A external-priority patent/JP7057461B1/ja
Priority claimed from JP2021082472A external-priority patent/JP7057465B1/ja
Application filed by 古河電池株式会社, 古河電気工業株式会社 filed Critical 古河電池株式会社
Publication of WO2022215329A1 publication Critical patent/WO2022215329A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar storage battery, its manufacturing method, and a bipolar lead-acid battery.
  • a storage battery is used to level the power load. That is, when the amount of power generation is greater than the amount of consumption, the storage battery is charged with the difference, and when the amount of power generation is less than the amount of consumption, the difference is discharged from the storage battery.
  • a lead-acid battery is often used from the viewpoint of economy, safety, and the like.
  • a bipolar lead-acid battery described in Patent Document 1 below is known.
  • This bipolar lead-acid battery is frame-shaped and has a resin substrate attached to the inside of a resin frame.
  • a lead layer is placed on both sides of the board.
  • the positive electrode active material layer is adjacent to the lead layer on one surface of the substrate, and the negative electrode active material layer is adjacent to the lead layer on the other surface.
  • a frame-shaped spacer made of resin is provided, and a glass mat impregnated with an electrolytic solution is disposed inside the spacer.
  • a plurality of frames and spacers are alternately laminated, and the frames and spacers are adhered with an adhesive or the like.
  • the lead layers on both sides of the substrate are connected via through holes provided in the substrate.
  • the bipolar lead-acid battery described in Patent Document 1 includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a positive electrode and a negative electrode.
  • a plurality of cell members having separators (glass mats) interposed therebetween and arranged in layers at intervals; and a plurality of space forming members forming a plurality of spaces for individually accommodating the plurality of cell members.
  • both the positive electrode current collector plate and the negative electrode current collector plate are made of metal (lead).
  • the space forming member includes a substrate covering at least one of the positive electrode side and the negative electrode side of the cell member, and a frame surrounding the side surface of the cell member (frames and spacers of the bipolar plates and the end plates). I'm in.
  • the cell members and the substrates of the space forming members are alternately arranged in a stacked state, and the substrates arranged between the adjacent cell members have through holes extending in a direction intersecting the plate surface.
  • the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell members are electrically connected to electrically connect the plurality of cell members in series, and the adjacent frames are joined.
  • Patent Document 1 describes the lead foils of the positive electrode current collector and the negative electrode current collector, stating that "the lead foils are disposed in the material receiving passages of the frame on both exposed surfaces of the substrate.” However, there is no description that the lead foil is fixed to the substrate with an adhesive, nor is there any description suggesting it.
  • the collector plate is When corrosion occurs and the electrolyte existing in the active material layer moves between the substrate and the current collector, the electrolyte reaches the current collector plate on the opposite side through the through holes, causing the liquid junction phenomenon. may occur and lead to a short circuit.
  • This liquid junction phenomenon occurs when the current collector plate is fixed to the substrate with an adhesive, but if there is a portion where the adhesive layer is not present, the electrolyte moves between the current collector plate and the substrate. It may lead to a through hole.
  • a first object of the present invention is to provide a bipolar storage battery in which a plurality of cell members are electrically connected in series by electrically connecting a positive electrode current collector plate and a negative electrode current collector plate through a through hole in a substrate.
  • a positive electrode current collector plate To prevent a short circuit by making it difficult for a liquid to reach a through hole even when the liquid moves between a collector plate and a substrate.
  • one of the causes of deterioration of lead-acid batteries is corrosion of the positive electrode current collector plate. Corrosion of the positive electrode current collecting plate progresses as the battery usage period becomes longer, and as the corrosion progresses, the positive electrode active material cannot be retained, and the performance as a battery deteriorates.
  • the positive electrode material positive current collecting plate or positive electrode active material
  • the current distribution is a surface reaction, so there is no need to consider charge transfer resistance, and it is possible to make the current collector thinner, but the distance between the positive electrode and the negative electrode is short. Therefore, if the positive electrode current collector plate is heavily corroded, fatal defects may occur. Therefore, it is necessary to suppress the corrosion of the positive electrode current collector plate.
  • lead alloys with high corrosion resistance do not easily react with the active material, so that lead foils made of lead alloys with high corrosion resistance are inferior in adhesion to the active material layer.
  • a second object of the present invention is to improve the adhesion between a lead foil made of a highly corrosion-resistant lead alloy and an active material layer in a bipolar lead-acid battery having a lead foil made of a highly corrosion-resistant lead alloy as a current collector. It is to let
  • a first aspect of the present invention for solving the first problem described above is a bipolar storage battery having the following configurations (1) to (4).
  • a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a separator interposed between the positive electrode and the negative electrode;
  • a plurality of cell members stacked and arranged with openings therebetween, and a plurality of space forming members forming a plurality of spaces for individually accommodating the plurality of cell members.
  • the space forming member includes a synthetic resin substrate that covers both the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
  • the cell members and the substrates of the space forming members are alternately stacked. Adjacent frames are joined together.
  • the ten-point average roughness (Rz JIS) defined in 1. above is 30 ⁇ m or more and 104 ⁇ m or less, and the maximum height roughness (Rz) defined above is 123 ⁇ m or less.
  • the positive electrode collector plate made of metal is fixed with an adhesive to the positive electrode side surface of the main substrate, which is the substrate arranged between the adjacent cell members.
  • the negative electrode collector plate made of metal is fixed to the negative electrode side surface of the main substrate with an adhesive.
  • the main substrate has a through hole extending in a direction intersecting the plate surface, and the positive electrode collector plate and the negative electrode collector plate of the adjacent cell members are electrically connected in the through hole, The plurality of cell members are electrically connected in series.
  • a second aspect of the present invention for solving the first problem described above is a method for manufacturing a bipolar storage battery having the above configurations (1), (2), and (4), and has the following configuration (5). . (5)
  • the main substrate at least one of the positive electrode side surface and the negative electrode side surface of the main substrate has a ten-point average roughness according to the provisions of "JIS B 0601:2013 Annex JA" ( Rz JIS) is 30 ⁇ m or more and 104 ⁇ m or less, and the maximum height roughness (Rz) according to the above regulation is 123 ⁇ m or less.
  • a third aspect of the present invention for solving the second problem described above is a bipolar lead-acid battery having the following configurations (11) to (14).
  • (11) A positive electrode in which a positive electrode active material layer is arranged on one surface of a positive electrode lead foil made of lead or a lead alloy, and a negative electrode active material layer is arranged on one surface of a negative electrode lead foil made of lead or a lead alloy. and a separator interposed between the positive electrode and the negative electrode. , and a plurality of space forming members.
  • the space forming member includes a synthetic resin substrate that covers both the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member.
  • the cell members and the substrates of the space forming members are alternately stacked. Adjacent frames are joined together.
  • the positive electrode lead foil and the negative electrode lead foil have a portion with a granular structure. At least one of the interface of the positive electrode lead foil with the positive electrode active material layer and the interface of the negative electrode lead foil with the negative electrode active material layer has a portion formed in the granular structure, and " JIS B 0601:2013 Annex JA” has a ten-point average roughness (RzJIS) of 50 ⁇ m or more, and the maximum height roughness (Rz) according to the above-mentioned regulation is the average particle size of the particles constituting the granular structure. Less than 1/2 the diameter.
  • the substrate disposed between the adjacent cell members has a through hole extending in a direction intersecting the plate surface, and the positive electrode lead foil of the adjacent cell member is located in the through hole. and the negative electrode lead foil are electrically connected to electrically connect the plurality of cell members in series.
  • the bipolar lead-acid battery of the present invention can be expected to have excellent adhesion between the lead foil (current collector) made of a highly corrosion-resistant lead alloy and the active material layer.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a bipolar lead-acid battery that is an embodiment of the present invention
  • FIG. FIG. 2 is a partially enlarged view of the bipolar lead-acid battery of FIG. 1
  • 2 is a micrograph showing the metallographic structure of the cross section of lead foil No. 2-1.
  • 2 is a micrograph showing the metallographic structure of the cross section of lead foil No. 2-6.
  • a bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , has a second end plate (space forming member) 140 .
  • FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, the number of cell members 110 is determined by battery design. Also, the number of biplates 120 is determined according to the number of cell members 110 .
  • the stacking direction of the cell members 110 is defined as the Z direction (vertical direction in FIGS. 1 and 2), and the direction perpendicular to the Z direction is defined as the X direction.
  • the cell member 110 includes a positive electrode 111, a negative electrode 112, and a separator (electrolyte layer) 113.
  • the separator 113 is impregnated with an electrolytic solution.
  • the positive electrode 111 has positive electrode lead foils (positive electrode collector plates) 111a and 111aa and a positive electrode active material layer 111b.
  • the negative electrode 112 has negative electrode lead foils (negative electrode collector plates) 112a and 112aa and a negative electrode active material layer 112b.
  • Separator 113 is interposed between positive electrode 111 and negative electrode 112 .
  • the positive electrode lead foils 111a and 111aa, the positive electrode active material layer 111b, the separator 113, the negative electrode active material layer 112b, and the negative electrode lead foils 112a and 112aa are laminated in this order.
  • the positive electrode lead foil 111a is larger (thicker) than the negative electrode lead foil 112a
  • the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
  • a plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and substrates 121 of biplates 120 are arranged at the intervals. That is, the plurality of cell members 110 are stacked with the substrate 121 of the biplate 120 interposed therebetween.
  • the plurality of biplates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110. As shown in FIG.
  • the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame 122 covering four end surfaces of the substrate 121, and columns 123 projecting vertically from both sides of the substrate 121.
  • the substrate 121, the frame 122 and the pillars 123 are integrally formed of synthetic resin.
  • the number of pillars 123 protruding from each surface of substrate 121 may be one, or may be plural.
  • the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121 , and the dimension between the projecting end faces of the pillars 123 is the same as the dimension of the frame 122 .
  • a space C is formed between the substrates 121 and 121, and the pillars 123 in contact with each other form a space C.
  • the Z dimension of C is preserved.
  • a substrate (main substrate) 121 of the biplate 120 has a plurality of through holes 121a passing through the plate surface.
  • a first concave portion 121b is formed on one surface of the substrate 121, and a second concave portion 121c is formed on the other surface.
  • the depth of the first recess 121b is deeper than the second recess 121c.
  • the X-direction and Y-direction dimensions of the first recess 121b and the second recess 121c correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a and the negative electrode lead foil 112a.
  • the bottom surface of the first recess 121b (the surface of the substrate 121 on the positive electrode 111 side) and the bottom surface of the second recess 121c (the surface of the substrate 121 on the negative electrode 112 side) conform to "JIS B 0601:2013 Annex
  • the ten-point average roughness (Rz JIS) defined by JA” is 30 ⁇ m or more and 104 ⁇ m or less, and the maximum height roughness (Rz) according to this regulation is 123 ⁇ m or less.
  • Substrates 121 of biplates 120 are positioned between adjacent cell members 110 in the Z direction.
  • the substrate 121 of the biplate 120 is a substrate that covers both the positive electrode 111 side of the cell member 110 and the negative electrode 112 side of the adjacent cell member 110 .
  • the positive electrode lead foil 111 a of the cell member 110 is arranged in the first concave portion 121 b of the substrate 121 of the biplate 120 with an adhesive layer 150 interposed therebetween. That is, the positive electrode lead foil 111a is fixed to the surface of the substrate 121 on the positive electrode 111 side (bottom surface of the first concave portion 121b) with an adhesive.
  • the negative electrode lead foil 112a of the cell member 110 is arranged in the second concave portion 121c of the substrate 121 of the biplate 120 with the adhesive layer 150 interposed therebetween. That is, the negative electrode lead foil 112a is fixed to the surface of the substrate 121 on the negative electrode 112 side (bottom surface of the second recess 121c) with an adhesive.
  • Conductor 160 is disposed in through-hole 121a of substrate 121 of biplate 120, and both end surfaces of conductor 160 are in contact with and bonded to positive electrode lead foil 111a and negative electrode lead foil 112a. That is, the conductor 160 electrically connects the positive electrode lead foil 111a and the negative electrode lead foil 112a. As a result, all of the plurality of cell members 110 are electrically connected in series.
  • the first end plate 130 includes a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (located closest to the positive electrode side). and a pillar portion 133 projecting vertically from the surface of the biplate 120 facing the substrate 121 .
  • the planar shape of the substrate 131 is rectangular, and four end surfaces of the substrate 131 are covered with a frame 132.
  • the substrate 131, the frame 132, and the pillars 133 are integrally formed of synthetic resin.
  • the number of columnar portions 133 protruding from one surface of the substrate 131 may be one or plural, and the columnar portions 133 correspond to the columnar portions 123 of the biplate 120 that come into contact with the columnar portions 133 .
  • the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the pillars 133 is the same as the dimension of the frame 132 .
  • the frame 132 and the column 133 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (on the positive electrode side) to stack the substrate 121 of the biplate 120 .
  • a space C is formed between the substrate 131 of the first end plate 130, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 133 of the first endplate 130 that are in contact with each other. is retained.
  • Through-holes 111c, 111d, and 113a through which the column portion 133 penetrates are formed in the positive electrode lead foil 111aa, the positive electrode active material layer 111b, and the separator 113 of the cell member 110 arranged on the outermost side (on the positive electrode side), respectively. ing.
  • a concave portion 131 b is formed on one surface of the substrate 131 of the first end plate 130 .
  • the X-direction dimension of the recess 131b corresponds to the X-direction dimension of the positive electrode lead foil 111aa.
  • the Z-direction dimension of the positive electrode lead foil 111aa arranged on one surface of the substrate 131 of the first end plate 130 is larger than the Z-direction dimension of the positive electrode lead foil 111a arranged on one surface of the substrate 121 of the biplate 120. is also big.
  • the positive electrode lead foil 111aa of the cell member 110 is arranged in the concave portion 131b of the substrate 131 of the first end plate 130 with the adhesive layer 150 interposed therebetween.
  • the positive electrode lead foil 111aa is fixed to the surface of the substrate 131 on the positive electrode 111 side (bottom surface of the recess 131b) with an adhesive.
  • the first end plate 130 also has a positive terminal electrically connected to the positive lead foil 111aa in the recess 131b.
  • the second end plate 140 includes a substrate 141 covering the negative electrode side of the cell member 110, a frame 142 surrounding the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 arranged closest to the negative electrode side). and a pillar portion 143 projecting vertically from the surface facing the .
  • the planar shape of the substrate 141 is rectangular, and four end surfaces of the substrate 141 are covered with a frame 142.
  • the substrate 141, the frame 142, and the pillars 143 are integrally formed of synthetic resin.
  • the number of columnar portions 143 protruding from one surface of the substrate 141 may be one or plural, and the columnar portions 143 are made to correspond to the columnar portions 123 of the biplate 120 that come into contact with each other.
  • the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the two pillars 143 is the same as the dimension of the frame 142 . Then, the frame 142 and the column 143 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (negative electrode side), thereby laminating the substrate 121 of the biplate 120.
  • a space C is formed between the substrate 141 of the second end plate 140, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 143 of the second endplate 140 that are in contact with each other. is retained.
  • Through-holes 112c, 112d, and 113a through which the column portion 143 penetrates are formed in the negative electrode lead foil 112aa, the negative electrode active material layer 112b, and the separator 113 of the cell member 110 arranged on the outermost side (negative electrode side). ing.
  • a concave portion 141 b is formed on one surface of the substrate 141 of the second end plate 140 .
  • the X-direction and Y-direction dimensions of the recess 141b correspond to the X- and Y-direction dimensions of the negative electrode lead foil 112aa.
  • the Z-direction dimension of the negative electrode lead foil 112aa arranged on one surface of the substrate 141 of the second end plate 140 corresponds to the Z-direction dimension of the negative electrode lead foil 112a arranged on the other surface of the substrate 121 of the biplate 120. bigger than
  • the negative electrode lead foil 112aa of the cell member 110 is arranged in the concave portion 141b of the substrate 141 of the second end plate 140 with the adhesive layer 150 interposed therebetween.
  • the negative electrode lead foil 112aa is fixed to the surface of the substrate 141 on the negative electrode 112 side (bottom surface of the recess 141b) with an adhesive.
  • the second end plate 140 has a negative terminal electrically connected to the negative lead foil 112aa in the recess 141b.
  • the biplate 120 is a space-forming member that includes a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame 122 that surrounds the side surfaces of the cell member 110.
  • the first end plate 130 is a space forming member including a substrate 131 covering only the positive electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame 132 surrounding the side surface of the cell member 110 .
  • the second end plate 140 is a space forming member including a substrate 141 covering only the negative electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame 142 surrounding the side surface of the cell member 110.
  • the substrates 121 , 131 , and 141 are substrates covering at least one of the positive electrode side and the negative electrode side of the cell member 110
  • the substrate 121 is a substrate covering both the positive electrode side and the negative electrode side of the cell member 110 .
  • the substrate 121 of the biplate 120 is a substrate (main substrate) arranged between the cell members 110 .
  • the bottom surface of the recess 121b (the surface of the substrate 121 on the positive electrode 111 side) and the bottom surface of the recess 121c (the surface of the substrate 121 on the negative electrode 112 side) of the substrate 121, which is the main substrate.
  • the positive electrode lead foil 111a is fixed to the surface of the substrate 121 on the positive electrode 111 side (bottom surface of the recess 121b) with an adhesive
  • the negative electrode is fixed to the surface of the substrate 121 on the negative electrode 112 side (bottom surface of the recess 121c) with an adhesive.
  • a lead foil 112a is fixed.
  • the electrolyte existing in the positive electrode active material layer 111b tries to move toward the substrate 121 through the corroded portion of the positive electrode lead foil 111a. Since it is fixed to the bottom surface of the recess 121b of the substrate 121 with an adhesive, the presence of the adhesive layer 150 prevents the electrolytic solution from reaching the bottom surface of the recess 121b of the substrate 121. FIG. Further, even when the electrolytic solution reaches the bottom surface of the concave portion 121b of the substrate 121, the rough surface state of the bottom surface of the concave portion 121b (the values of RZjis and Rz are large) is smoother (the values of RZjis and Rz are large).
  • the distance that the electrolytic solution that reaches the bottom surface moves to the through hole 121a of the substrate 121 is longer than when it is small). Therefore, the electrolytic solution that has reached the bottom surface is less likely to reach the through hole 121a, and the occurrence of the liquid junction phenomenon is suppressed.
  • the surface condition of the bottom surfaces of the first recess 121b and the second recess 121c satisfies "RzJIS of 30 ⁇ m or more and 104 ⁇ m or less and Rz of 123 ⁇ m or less". It can be expected that these problems will be resolved.
  • the bottom surfaces of the first recess 121b and the second recess 121c (the surface on the positive and/or the surface on the negative electrode side) preferably satisfies "Rz JIS of 50 ⁇ m to 75 ⁇ m and Rz of 20 ⁇ m to 90 ⁇ m".
  • RzJIS is 30 ⁇ m or more and 104 ⁇ m or less and Rz is 123 ⁇ m or less
  • after molding with synthetic resin A method of rubbing the surface of the main substrate with sandpaper, a method of texturing the surface of the main substrate, and a method of subjecting the surface of the main substrate to surface treatment such as sandblasting or shotblasting.
  • the surface condition of the surface on the positive electrode side and/or the surface on the negative electrode side is "RzJIS is 30 ⁇ m or more and 104 ⁇ m or less, Rz is 123 ⁇ m or less”.
  • the bipolar lead-acid battery in which the positive electrode collector plate is made of the positive electrode lead foil and the negative electrode collector plate is made of the negative electrode lead foil has been described.
  • the present invention can also be applied to bipolar storage batteries in which the positive electrode current collector and the negative electrode current collector are made of a metal other than lead (eg, aluminum, copper, nickel), an alloy, or a conductive resin.
  • the bipolar lead-acid battery 100 of the second embodiment is the same as the bipolar lead-acid battery 100 of the first embodiment except for the following points.
  • the bottom surface of the first recess 121b (the surface of the substrate 121 on the positive electrode 111 side) and the bottom surface of the second recess 121c (the surface of the substrate 121 on the negative electrode 112 side) conform to "JIS B 0601 : 2013 Annex JA”, the ten-point average roughness (RzJIS) is 30 ⁇ m or more and 104 ⁇ m or less, and the maximum height roughness (Rz) is 123 ⁇ m or less, but the second implementation In terms of form, the current collecting plate has the following configuration.
  • the positive electrode lead foil 111a disposed in the concave portion 121b of the biplate 120 has, for example, a thickness of less than 0.5 mm (eg, 0.1 mm or more and 0.4 mm or less) and a tin (Sn) content of 1.0 mm.
  • a lead alloy having a content of 0 mass% or more and 2.0 mass% or less, a calcium (Ca) content of 0.005 mass% or more and 0.030 mass% or less, and the balance being lead (Pb) and inevitable impurities. It is formed of a heat-treated material of a rolled sheet consisting of The structure of this heat-treated material is a granular structure.
  • the positive electrode lead foil 111aa arranged in the concave portion 131b of the first end plate 130 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and is made of the same heat treatment material as the positive electrode lead foil 111a. .
  • the interface between the positive electrode lead foils 111a and 111aa and the positive electrode active material layer 111b has a ten-point average roughness (RzJIS) of 50 ⁇ m or more according to the provisions of “JIS B 0601:2013 Annex JA”, and the above
  • the specified maximum height roughness (Rz) is smaller than 1/2 of the average particle diameter of the particles forming the granular structure of the positive electrode lead foils 111a and 111aa.
  • the thickness of the negative electrode lead foil (negative electrode collector plate) 112a arranged in the concave portion 121c of the biplate 120 is, for example, 0.05 mm or more and 0.3 mm or less.
  • the alloy forming the negative electrode lead foil 112a is, for example, a lead alloy having a tin (Sn) content of 0.5% by mass or more and 2% by mass or less.
  • the negative electrode lead foil (negative electrode current collector plate) 112a arranged in the concave portion 141b of the second end plate 140 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and the content of tin (Sn) is is a lead alloy containing 0.5% by mass or more and 2% by mass or less.
  • the positive electrode lead foils 111a and 111aa are heat-treated rolled sheets made of the lead alloy, and therefore have a granular structure. Therefore, the positive electrode lead foils 111a and 111aa have excellent corrosion resistance, and the interface with the positive electrode active material layer 111b has a granular structure.
  • the interface between the positive electrode lead foils 111a and 111aa and the positive electrode active material layer 111b has a ten-point average roughness (RzJIS) defined above of 50 ⁇ m or more (structure a), and a maximum height roughness defined above. (Rz) is smaller than 1/2 of the average particle size (A) of the particles forming the granular structure of the positive electrode lead foils 111a and 111aa (structure b).
  • the positive electrode lead foils 111a and 111aa are lead foils made of a highly corrosion-resistant lead alloy. It has high adhesion to the active material layer 111b for use. As a result, the positive electrode active material is less likely to come off from the positive electrode lead foils 111a and 111aa, thereby maintaining high battery performance and preventing short circuits. can.
  • the ten-point average roughness (RzJIS) defined above at the interface between the positive electrode lead foils 111a and 111aa and the positive electrode active material layer 111b is less than 50 ⁇ m, the interface with the positive electrode active material layer 111b Adhesion becomes remarkably low. Further, when the maximum height roughness (Rz) of the positive electrode lead foils 111a and 111aa defined above is A/2 or more, the positive electrode lead foils 111a and 111aa are likely to corrode, and penetration is likely to occur.
  • the positive electrode lead foils 111a and 111aa are made of a highly corrosion-resistant lead alloy having a granular structure, and the interface with the positive electrode active material layer 111b has the configuration a. It is assumed that both of the configurations b are satisfied. However, if the negative electrode lead foils 112a and 112aa are made of a highly corrosion-resistant lead alloy having a granular structure, and the interface with the negative electrode active material layer 112b satisfies both the above-described configuration a and configuration b, Similar actions and effects can also be obtained for the negative electrode (since the active material is less likely to fall off, high battery performance is maintained and short-circuiting is prevented).
  • the maximum height roughness (Rz) is preferably larger than the ten-point average roughness (Rz) and 1/7 or more and 1/2 or less of the average particle diameter.
  • a rolled sheet with a tin (Sn) content of 1.0% by mass, the balance being lead (Pb) and a lead alloy that is an unavoidable impurity, and having a thickness of 0.1 mm and a side of 28 cm Square sheets were cut out to obtain negative electrode collector plates 112a for the biplates 120 of samples No. 1-1 to No. 1-8.
  • a rolled sheet made of the same lead alloy and having a thickness of 1.50 mm was cut into a square sheet having a side of 28 cm, and the second end plates of samples No. 1-1 to No. 1-8
  • the negative electrode current collector plate 112aa for 140 was used.
  • a biplate 120 having the shape shown in FIG. 1 was manufactured by injection molding ABS resin.
  • the thickness of the substrate 121 of the biplate 120 is 2 mm.
  • the bottom surface of the recess 121b is a square with a side of 28.5 cm and a depth of 0.32 mm.
  • the bottom surface of the recess 121c is a square with a side of 28.5 cm and a depth of 0.12 mm.
  • ⁇ Sample No.1-2> The bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as in Sample No. 1-1, were rubbed with No. 2000 sandpaper to obtain a ten-point average roughness (RzJIS) of 18 ⁇ m and a maximum height roughness of 18 ⁇ m. The height (Rz) was set to 23 ⁇ m. This was used as the biplate of sample No. 1-2.
  • ⁇ Sample No.1-3> The bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as in Sample No. 1-1, were rubbed with No.
  • ⁇ Sample No.1-4> The bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as in Sample No. 1-1, were rubbed with No. 800 sandpaper to obtain a ten-point average roughness (RzJIS) of 46 ⁇ m and a maximum height roughness of 46 ⁇ m. The height (Rz) was set to 63 ⁇ m. This was used as sample No. 1-4 biplate.
  • ⁇ Sample No.1-5> By subjecting the bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as the sample No. 1-1, to texturing, the ten-point average roughness (RzJIS) was 69 ⁇ m, and the maximum height roughness (Rz ) was set to 155 ⁇ m. This was used as sample No. 1-5 biplate.
  • ⁇ Sample No.1-6> The bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as Sample No. 1-1, were rubbed with No. 150 sandpaper to obtain a ten-point average roughness (RzJIS) of 77 ⁇ m and a maximum height roughness of 77 ⁇ m. The height (Rz) was set to 92 ⁇ m. This was used as sample No. 1-6 biplate.
  • ⁇ Sample No.1-7> The bottom surfaces of the concave portions 121b and 121c of the biplate 120, which were produced in the same manner as Sample No. 1-1, were rubbed with No.
  • a first end plate 130 and a second end plate 140 having the shape shown in FIG. 1 were produced by injection molding of ABS resin.
  • the thickness of the substrate 131 of the first end plate 130 and 141 of the second end plate 140 is 10 mm.
  • the bottom surfaces of the recess 131b and the recess 141b are square with a side of 28.5 cm and a depth of 1.52 mm.
  • Whether or not a liquid junction has occurred is determined by disassembling each battery after repeating the above-mentioned discharge 400 times, and checking whether or not the periphery of the connecting portion of the lead foil 111a for the positive electrode with the conductor 160 is discolored by sulfuric acid. This was done by confirming Then, the presence or absence of liquid junction was determined from the degree of discoloration.
  • a square lead alloy sheet with a side of 28 cm was placed on the adhesive-coated surface, and a rubber roller was applied to the upper surface of the sheet so that it would move from the edge (right edge) to the edge (left edge). , the sheet is attached while extending the adhesive.
  • Bipolar lead-acid batteries No. 1-2 and No. 1-3 with an RzJIS of less than 30 ⁇ m were able to obtain the necessary adhesive strength with a small amount of adhesive used, but the liquid junction suppression effect was not obtained. .
  • the liquid junction suppression effect was obtained, but the amount of adhesive to obtain the necessary adhesive strength was increased.
  • Lead foils No. 2-1 to No. 2-6 shown in Table 2 were prepared. The thickness of each lead foil was set to 0.35 mm.
  • the lead foil of sample No. 2-1 has a calcium (Ca) content of 0.030% by mass, a tin (Sn) content of 2.0% by mass, and the balance being lead (Pb) and unavoidable impurities.
  • a rolled sheet of a certain lead alloy was heat-treated at 310° C. for 5 minutes in an air atmosphere.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG.
  • the texture was granular and the average particle size was 160 ⁇ m.
  • the surface condition of the lead foil of sample No. 2-1 was measured.
  • Roughness (Rz) was 30 ⁇ m.
  • ⁇ Sample No.2-2> One surface of the lead foil prepared in the same manner as sample No. 2-1 was rubbed with 800 sandpaper, and the ten-point average roughness (RzJIS) was 30 ⁇ m and the maximum height roughness (Rz) was It was made to be 45 ⁇ m. This was used as lead foil of sample No. 2-2.
  • the lead foil thus produced had a granular structure and an average particle size of 160 ⁇ m, like the lead foil No. 2-1.
  • ⁇ Sample No.2-3> One surface of the lead foil prepared in the same manner as sample No. 2-1 was rubbed with No.
  • the lead foil thus produced had a granular structure and an average particle size of 160 ⁇ m, like the lead foil No. 2-1.
  • ⁇ Sample No.2-4> One surface of the lead foil prepared in the same manner as sample No. 2-1 was rubbed with No. 80 sandpaper, and the ten-point average roughness (RzJIS) was 50 ⁇ m and the maximum height roughness (Rz) was It was made to be 70 ⁇ m. This was used as sample No. 2-4 lead foil.
  • the lead foil thus produced had a granular structure and an average particle size of 160 ⁇ m, like the lead foil No. 2-1.
  • ⁇ Sample No.2-5> One surface of the lead foil prepared in the same manner as sample No. 2-1 was rubbed with No.
  • the lead foil thus produced had a granular structure and an average particle size of 160 ⁇ m, like the lead foil No. 2-1.
  • the lead foil of sample No. 2-6 has a calcium (Ca) content of 0.030% by mass, a tin (Sn) content of 2.0% by mass, and the balance being lead (Pb) and unavoidable impurities.
  • the thickness (Rz) is set to 70 ⁇ m.
  • a cross section perpendicular to the sheet surface and parallel to the rolling direction was photographed with an electron microscope. A micrograph thereof is shown in FIG. As can be seen from this image, the texture is striped texture.
  • Corrosion tests were conducted on lead foils No. 2-1 to No. 2-6 by the following method. Each lead foil was cut into a test piece of width 15 mm and length 70 mm, placed in 60° C. sulfuric acid having a specific gravity of 1.28, and anodized continuously for 28 days at a constant potential of 1350 mV (vs: Hg/Hg 2 SO 4 ). After performing, the produced oxide was removed. Then, the mass was measured before and after the test, the amount of decrease in mass due to the test was calculated from the measured value, and the amount of decrease in mass per total surface area of the test piece was taken as the amount of corrosion. In addition, the cross section after the corrosion test (the cross section perpendicular to the sheet surface and parallel to the rolling direction) was observed with an electron microscope (magnification: 400) to examine whether or not the lead foil had penetrated.
  • a biplate 120 having the shape shown in FIG. 1 was manufactured by injection molding ABS resin.
  • the thickness of the substrate 121 of the biplate 120 is 2 mm.
  • the bottom surfaces of the recesses 121b and 121c are square with sides of 10.0 cm, and the depth of the recesses 121b and 121c is 0.37 mm.
  • a first end plate 130 and a second end plate 140 having the shape shown in FIG. 1 were produced by injection molding of ABS resin.
  • the thickness of the substrate 131 of the first end plate 130 and 141 of the second end plate 140 is 10 mm.
  • the bottom surfaces of the recess 131b and the recess 141b are square with a side of 10.0 cm cm and a depth of 1.52 mm.
  • each lead foil of samples No. 2-1 to No. 2-6 was cut into a square with a side of 9.0 cm. Using. Otherwise, bipolar lead-acid batteries No. 2-1 to No. 2-6 having the structure shown in FIG. 1 and a nominal voltage of 6 V were assembled in the usual manner. In other words, each bipolar lead-acid battery had the same configuration except for the surface state of the positive electrode lead foil and the negative electrode lead foil on the side of each active material layer.
  • the positive electrode active material layer 111b with a thickness of 1.8 mm was formed on the surfaces of the positive electrode lead foils 111a and 111aa.
  • the negative electrode active material layer 112b with a thickness of 1.6 mm was formed on the surfaces of the negative electrode lead foils 112a and 112aa.
  • the separator 113 used was made of glass fiber. Dilute sulfuric acid having a commonly used concentration was used as the electrolytic solution.
  • each bipolar lead-acid battery is dismantled and the positive electrode lead foil 111a is replaced with a positive electrode lead foil 111a.
  • the positive electrode lead foil 111a was peeled off from the active material layer 111b, and the surface of the positive electrode lead foil 111a on the positive electrode active material layer 111b side was observed with a microscope. Based on this observation, it was determined whether or not the active material remained on the positive electrode lead foil 111a. If the active material remains, it can be determined that the positive electrode active material layer 111b has excellent adhesion to the positive electrode lead foil 111a made of a highly corrosion-resistant lead alloy.
  • Table 2 shows the results of the corrosion test and the peel test together with the surface condition of the lead foil.
  • the lead foils No.2-1 to No.2-5 are made of a lead alloy with a granular structure, so they have high corrosion resistance. However, although the lead foils of No. 2-1 and No. 2-2 satisfy "Rz ⁇ A/2", they do not satisfy "Rz JIS ⁇ 50 ⁇ m", so the adhesion of the active material layer is low. rice field. Further, the lead foils No. 2-5 satisfied "Rz JIS ⁇ 50 ⁇ m" but did not satisfy "Rz ⁇ A/2", so that the lead foils were perforated. On the other hand, No. 2-3 to No. 2-4 lead foils satisfy both "Rz ⁇ A/2" and "Rz JIS ⁇ 50 ⁇ m". No penetration occurred in the foil.
  • the lead foil of No. 2-6 was low in corrosion resistance because it was made of a lead alloy with a striped structure. Therefore, according to the bipolar lead-acid batteries using No.2-3 to No.2-4 lead foils as the positive electrode lead foils, the positive electrode active material is less likely to fall off from the positive electrode lead foils, resulting in a high Battery performance is maintained and short-circuiting is prevented, resulting in longer life than bipolar lead-acid batteries that use No.2-1, No.2-2, and No.2-6 lead foils as positive electrode lead foils. It is estimated that
  • Bipolar lead-acid battery 110 Cell member 111 Positive electrode 112 Negative electrode 111a Lead foil for positive electrode (collector plate for positive electrode disposed on the surface of the main substrate facing the positive electrode) 111aa Lead foil for positive electrode (collector plate for positive electrode) 111b Positive electrode active material layer 112a Negative electrode lead foil (negative electrode collector plate disposed on the negative electrode side surface of the main substrate) 112aa Lead foil for negative electrode (current collector for negative electrode) 112b Negative electrode active material layer 113 Separator 120 Biplate 121 Biplate substrate (substrate disposed between adjacent cell members, main substrate) 121a Substrate through hole 121b Substrate first recess 121c Substrate second recess 122 Biplate frame 130 First end plate 131 First end plate substrate 132 First end plate frame 140 Second Second end plate 141 Second end plate substrate 142 Second end plate frame 150 Adhesive layer 160 Conductor C Cell (space for accommodating cell members)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池において、電解液が集電板と基板との間に移動した場合でも、基板の貫通穴に至りにくくして、短絡を防止する。セル部材(110)同士の間に配置された基板である主基板(121)の正極(111)の側の面である凹部(121b)の底面および負極(112)の側の面である凹部(121c)の底面の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、この規定による最大高さ粗さ(Rz)が123μm以下であり、上記各面に接着剤(150)で金属製の正極用集電板(111a)および金属製の負極用集電板(112a)が固定されている。

Description

双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池
 本発明は、双極型蓄電池およびその製造方法と、双極型鉛蓄電池に関する。
 近年、太陽光や風力等の自然エネルギを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載された双極型鉛蓄電池が知られている。
 この双極型鉛蓄電池は、額縁形で樹脂製のフレームの内側に、樹脂製の基板が取り付けられている。基板の両面には鉛層が配置されている。基板の一面の鉛層には、正極用活物質層が隣接し、他面の鉛層には、負極用活物質層が隣接している。また、額縁形で樹脂製のスペーサを有し、その内側には、電解液を含浸させたガラスマットが配設されている。そして、フレームとスペーサとを交互に複数積層し、フレームとスペーサとの間が接着剤等で接着されている。また、基板に設けた貫通穴を介して、基板の両面の鉛層が接続されている。
 すなわち、特許文献1に記載された双極型鉛蓄電池は、正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置された、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有し、正極用集電板および負極用集電板は共に金属(鉛)製である。
 また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。さらに、セル部材と空間形成部材の基板とが交互に積層状態で配置され、隣り合うセル部材の間に配置された基板は、板面と交差する方向に延びる貫通穴を有し、貫通穴の中で、隣り合うセル部材の正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続され、隣接する枠体が接合されている。
 しかし、特許文献1には、正極用集電板および負極用集電板である鉛箔について、「鉛箔は、基板の両方の露出表面上のフレームの材料受け入れ通路に配置される」と記載されているだけで、鉛箔が基板に接着剤で固定されていることは記載されていないし、それを示唆する記載もない。
特許第6124894号公報
 上述のように、基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池の場合、集電板が腐食して、活物質層に存在する電解液が基板と集電体との間に移動する状態になると、電解液が貫通穴を経由して反対側の集電板に到達し、液絡現象が生じて短絡に至る可能性がある。この液絡現象は、集電板が基板に接着剤で固定されている場合でも、接着剤層が存在していない部分があると、電解液が集電板と基板との間に移動して貫通穴に至る可能性がある。
 本発明の第一の課題は、基板の貫通穴で正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続されている双極型蓄電池において、電解液が集電板と基板との間に移動した場合でも、貫通穴に至りにくくして、短絡を防止することである。
 一方、鉛蓄電池の劣化原因の一つに、正極集電板の腐食がある。電池使用期間が長くなるほど、正極集電板の腐食は進行し、腐食が進むと正極活物質の保持ができなくなり、電池としての性能が低下してしまう。それだけでなく、腐食によって脱落した正極材(正極集電板または正極活物質)が負極に接してしまった場合、短絡の可能性もある。
 特に、バイポーラ鉛蓄電池の場合、電流分布が面での反応となるため、電荷移動抵抗を考慮する必要がなく、集電板を薄くすることが可能であるが、正極と負極との距離が近いため、正極集電板の腐食が多いと致命的な欠陥が生じる恐れがあることから、正極集電板の腐食を抑制する必要がある。しかし、耐食性の高い鉛合金は活物質と反応しにくいことから、耐食性の高い鉛合金からなる鉛箔は活物質層との密着性に劣るものとなっている。
 本発明の第二の課題は、耐食性の高い鉛合金からなる鉛箔を集電板として備えた双極型鉛蓄電池において、耐食性の高い鉛合金からなる鉛箔と活物質層との密着性を向上させることである。
 前述した第一の課題を解決するための本発明の第一態様は、以下の構成(1)~(4)を有する双極型蓄電池である。
(1)正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
(2)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の両方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。隣接する前記枠体が接合されている。
(3)隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面および前記負極の側の面の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、前記規定による最大高さ粗さ(Rz)が123μm以下である。
(4)隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定されている。前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定されている。前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている。
 前述した第一の課題を解決するための本発明の第二態様は、上記構成(1)(2)(4)を有する双極型蓄電池の製造方法であって、以下の構成(5)を有する。
(5)前記主基板として、当該主基板の前記正極の側の面および前記負極の側の面の少なくとも一方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、前記規定による最大高さ粗さ(Rz)が123μm以下であるものを使用する。
 前述した第二の課題を解決するための本発明の第三態様は、以下の構成(11)~(14)を有する双極型鉛蓄電池である。
(11)鉛または鉛合金からなる正極用鉛箔の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用鉛箔の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
(12)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の両方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。隣接する前記枠体が接合されている。
(13)前記正極用鉛箔および前記負極用鉛箔は粒状組織である部分を有する。前記正極用鉛箔の前記正極用活物質層との界面および前記負極用鉛箔の前記負極用活物質層との界面の少なくともいずれかは、前記粒状組織に形成された部分を有するとともに、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、前記規定による最大高さ粗さ(Rz)が、前記粒状組織を構成する粒子の平均粒子径の1/2よりも小さい。
(14)隣り合う前記セル部材の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用鉛箔と前記負極用鉛箔とが導通されて、前記複数のセル部材が直列に電気的に接続されている。
 本発明の双極型蓄電池および本発明の方法で得られた双極型蓄電池は、電解液が集電板と基板との間に移動した場合でも、貫通穴に至りにくくなって、短絡防止効果が得られることが期待できる。
 本発明の双極型鉛蓄電池は、耐食性の高い鉛合金からなる鉛箔(集電板)と活物質層との密着性に優れたものとなることが期待できる。
本発明の一実施形態である双極型鉛蓄電池の概略構成を示す断面図である。 図1の双極型鉛蓄電池の部分拡大図である。 No.2-1の鉛箔の断面の金属組織を示す顕微鏡写真である。 No.2-6の鉛箔の断面の金属組織を示す顕微鏡写真である。
 以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。なお、以下においては、双極型蓄電池として双極型鉛蓄電池を例に挙げて説明する。
[第一の実施形態]
〔全体構成〕
 先ず、この実施形態の双極(バイポーラ)型鉛蓄電池の全体構成について説明する。
 図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140を有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
 セル部材110の積層方向をZ方向(図1及び図2の上下方向)とし、Z方向に垂直な方向をX方向とする。
 セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用鉛箔(正極用集電板)111a,111aaと正極用活物質層111bを有する。負極112は負極用鉛箔(負極用集電板)112a,112aaと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用鉛箔111a,111aa、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112a,112aaは、この順に積層されている。
 Z方向の寸法(厚さ)は、正極用鉛箔111aの方が負極用鉛箔112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
 複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
 複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
 図2に示すように、バイプレート120は、平面形状が長方形の基板121と、基板121の四つの端面を覆う枠体122と、基板121の両面から垂直に突出する柱部123とからなり、基板121と枠体122と柱部123は一体に合成樹脂で形成されている。なお、基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
 Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。
 正極用鉛箔111a,111aa、正極用活物質層111b、負極用鉛箔112a,112aa、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113aがそれぞれ形成されている。
 バイプレート120の基板(主基板)121は、板面を貫通する複数の貫通穴121aを有する。基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
 また、第一の凹部121bの底面(基板121の正極111の側の面)および第二の凹部121cの底面(基板121の負極112の側の面)は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、この規定による最大高さ粗さ(Rz)が123μm以下になっている。
 バイプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。バイプレート120の基板121は、セル部材110の正極111の側と、その隣のセル部材110の負極112の側と、の両方を覆う基板である。バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用鉛箔111aが接着剤層150を介して配置されている。つまり、基板121の正極111の側の面(第一の凹部121bの底面)に接着剤で正極用鉛箔111aが固定されている。
 また、バイプレート120の基板121の第二の凹部121cに、セル部材110の負極用鉛箔112aが接着剤層150を介して配置されている。つまり、基板121の負極112の側の面(第二の凹部121cの底面)に接着剤で負極用鉛箔112aが固定されている。
 バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。つまり、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
 図1に示すように、第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、基板131の一面(最も正極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部133とからなる。基板131の平面形状は長方形であり、基板131の四つの端面が枠体132で覆われ、基板131と枠体132と柱部133が一体に合成樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は一つであってもよいし、複数であってもよいが、柱部133と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、最も外側(正極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層することにより、バイプレート120の基板121と第一のエンドプレート130の基板131との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第一のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。
 最も外側(正極側)に配置されるセル部材110の正極用鉛箔111aa、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
 第一のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向の寸法は、正極用鉛箔111aaのX方向の寸法に対応させてある。第一のエンドプレート130の基板131の一面に配置された正極用鉛箔111aaのZ方向の寸法は、バイプレート120の基板121の一面に配置された正極用鉛箔111aのZ方向の寸法よりも大きい。
 第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aaが接着剤層150を介して配置されている。つまり、基板131の正極111の側の面(凹部131bの底面)に接着剤で正極用鉛箔111aaが固定されている。
 また、第一のエンドプレート130は、凹部131b内の正極用鉛箔111aaと電気的に接続された正極端子を備えている。
 第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、基板141の一面(最も負極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部143とからなる。基板141の平面形状は長方形であり、基板141の四つの端面が枠体142で覆われ、基板141と枠体142と柱部143が一体に合成樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、最も外側(負極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層することにより、バイプレート120の基板121と第二のエンドプレート140の基板141との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第二のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。
 最も外側(負極側)に配置されるセル部材110の負極用鉛箔112aa、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
 第二のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用鉛箔112aaのX方向およびY方向の寸法に対応させてある。第二のエンドプレート140の基板141の一面に配置された負極用鉛箔112aaのZ方向の寸法は、バイプレート120の基板121の他面に配置された負極用鉛箔112aのZ方向の寸法よりも大きい。
 第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aaが接着剤層150を介して配置されている。つまり、基板141の負極112の側の面(凹部141bの底面)に接着剤で負極用鉛箔112aaが固定されている。
 また、第二のエンドプレート140は、凹部141b内の負極用鉛箔112aaと電気的に接続された負極端子を備えている。
 なお、上記説明から分かるように、バイプレート120は、セル部材110の正極側および負極側の両方を覆う基板121と、セル部材110の側面を囲う枠体122と、を含む空間形成部材である。第一のエンドプレート130は、セル部材110の正極側のみ(正極側および負極側の一方)を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。
 また、第二のエンドプレート140は、セル部材110の負極側のみ(正極側および負極側の一方)を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。つまり、基板121,131,141は、セル部材110の正極の側および負極の側の少なくとも一方を覆う基板であり、基板121はセル部材110の正極の側および負極の側の両方を覆う基板である。また、バイプレート120の基板121は、セル部材110同士の間に配置された基板(主基板)である。
〔作用、効果〕
 第一の実施形態の双極型鉛蓄電池100では、主基板である基板121の凹部121bの底面(基板121の正極111の側の面)および凹部121cの底面(基板121の負極112の側の面)の両方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、この規定による最大高さ粗さ(Rz)が123μm以下になっている。そして、基板121の正極111の側の面(凹部121bの底面)に接着剤で正極用鉛箔111aが固定され、基板121の負極112の側の面(凹部121cの底面)に接着剤で負極用鉛箔112aが固定されている。これにより、双極型鉛蓄電池100は、以下の作用、効果が得られる。
 正極用鉛箔111aが腐食した場合、正極用活物質層111bに存在する電解液は正極用鉛箔111aの腐食部を通って基板121の側に移動しようとするが、正極用鉛箔111aが基板121の凹部121bの底面に接着剤で固定されているため、接着剤層150の存在により、電解液が基板121の凹部121bの底面に至ることが抑制される。
 また、この電解液が基板121の凹部121bの底面に至った場合でも、凹部121bの底面の表面状態が粗い(RZjisおよびRzの値が大きい)方が、滑らかな場合(RZjisおよびRzの値が小さい場合)よりも、底面に至った電解液が基板121の貫通穴121aまで移動する距離が長くなる。よって、底面に至った電解液が貫通穴121aに至りにくくなって、液絡現象の発生が抑制されるため、双極型鉛蓄電池100の短絡防止効果が期待できる。
 一方、第一の凹部121bおよび第二の凹部121cの底面の表面状態が粗すぎると、同じ平面積の正極用鉛箔111aおよび負極用鉛箔111bを固定するために必要な接着剤の量が多くなってコストアップ要因になるとともに、決められた量の接着剤で接着しようとすると正極用鉛箔111aおよび負極用鉛箔111bの面内での接着強度が不均一になるという問題点が生じる。双極型鉛蓄電池100では、第一の凹部121bおよび第二の凹部121cの底面の表面状態が「RzJISが30μm以上104μm以下、且つ、Rzが123μm以下」を満たすものとなっているため、このような問題点の解消が期待できる。
 なお、液絡抑制効果と少ない接着剤の使用量で必要な接着強度が得られる効果との両立の点から、第一の凹部121bおよび第二の凹部121cの底面(主基板の正極側の面および/または負極側の面)の表面状態は「RzJISが50μm~75μm、Rzが20μm~90μm」を満たすものになっていることが好ましい。
 また、主基板の正極側の面および/または負極側の面の表面状態を「RzJISが30μm以上104μm以下、且つ、Rzが123μm以下」とするための方法としては、合成樹脂で成形された後の主基板の表面を紙やすりで擦る方法、主基板の表面に対してシボ加工を施す方法、主基板の表面に対してサンドブラストやショットブラスト等の表面処理を施す方法が挙げられる。或いは、主基板を合成樹脂で成形する際に、金型表面を粗加工することにより、正極側の面および/または負極側の面の表面状態が「RzJISが30μm以上104μm以下であり、Rzが123μm以下」となるようにする方法も挙げられる。
 また、第一の実施形態では、正極用集電板が正極用鉛箔からなり、負極用集電板が負極用鉛箔からなる双極型鉛蓄電池について説明したが、本発明の第一態様は、正極用集電板および負極用集電板が鉛以外の金属(例えば、アルミニウム、銅、ニッケル)や合金、導電性樹脂からなる双極型蓄電池にも適用できる。
[第二の実施形態]
〔全体構成〕
 第二の実施形態の双極型鉛蓄電池100は、以下の点を除いて第一の実施形態の双極型鉛蓄電池100と同じである。
 第一の実施形態では、第一の凹部121bの底面(基板121の正極111の側の面)および第二の凹部121cの底面(基板121の負極112の側の面)は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、この規定による最大高さ粗さ(Rz)が123μm以下になっているが、第二の実施形態では集電板が下記の構成を有する。
〔集電板の構成〕
 バイプレート120の凹部121bに配置される正極用鉛箔111aは、例えば、厚さが0.5mm未満(例えば0.1mm以上0.4mm以下)であり、錫(Sn)の含有率が1.0質量%以上2.0質量%以下であり、カルシウム(Ca)の含有率が0.005質量%以上0.030質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートの熱処理材で形成されている。この熱処理材の組織は粒状組織となっている。
 第一のエンドプレート130の凹部131bに配置される正極用鉛箔111aaは、例えば、厚さが0.5mm以上1.5mm以下であり、正極用鉛箔111aと同じ熱処理材で形成されている。
 また、正極用鉛箔111a,111aaの正極用活物質層111bとの界面は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、上記規定による最大高さ粗さ(Rz)が、正極用鉛箔111a,111aaの粒状組織を構成する粒子の平均粒子径の1/2よりも小さくなっている。
 バイプレート120の凹部121cに配置される負極用鉛箔(負極用集電板)112aの厚さは、例えば、0.05mm以上0.3mm以下である。負極用鉛箔112aをなす合金は、例えば、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金である。
 第二のエンドプレート140の凹部141bに配置される負極用鉛箔(負極用集電板)112aは、例えば、厚さが0.5mm以上1.5mm以下であり、錫(Sn)の含有率が0.5質量%以上2質量%以下の鉛合金からなる。
〔作用、効果〕
 第二の実施形態の双極型鉛蓄電池100では、正極用鉛箔111a,111aaが上記鉛合金からなる圧延シートの熱処理材であることから、正極用鉛箔111a,111aaは粒状組織を有する。よって、正極用鉛箔111a,111aaは、耐食性に優れたものであるとともに、正極用活物質層111bとの界面が粒状組織の面となっている。また、正極用鉛箔111a,111aaの正極用活物質層111bとの界面は、上記規定による十点平均粗さ(RzJIS)が50μm以上(構成a)であり、上記規定による最大高さ粗さ(Rz)が、正極用鉛箔111a,111aaの粒状組織を構成する粒子の平均粒子径(A)の1/2よりも小さい(構成b)。
 このように、正極用鉛箔111a,111aaは、耐食性の高い鉛合金からなる鉛箔であるが、正極用活物質層111bとの界面が上記構成aと構成bの両方を満たすことで、正極用活物質層111bとの密着性が高いものとなっている。これに伴い、正極用鉛箔111a,111aaから正極用活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止されるため、双極型鉛蓄電池100の寿命向上効果が期待できる。
 これに対して、正極用鉛箔111a,111aaの正極用活物質層111bとの界面の、上記規定による十点平均粗さ(RzJIS)が50μm未満であると、正極用活物質層111bとの密着性が著しく低いものとなる。また、正極用鉛箔111a,111aaの上記規定による最大高さ粗さ(Rz)がA/2以上であると、正極用鉛箔111a,111aaが腐食し易くなるため、貫通が生じやすくなる。
 なお、第二の実施形態の双極型鉛蓄電池100では、正極用鉛箔111a,111aaが粒状組織を有する耐食性の高い鉛合金からなり、その正極用活物質層111bとの界面が上記構成aと構成bの両方を満たすものとされている。しかし、負極用鉛箔112a,112aaが粒状組織を有する耐食性の高い鉛合金からなり、その負極用活物質層112bとの界面が上記構成aと構成bの両方を満たすものとされていれば、負極についても同様の作用、効果(活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止される)が得られるものとなる。
 また、鉛箔の金属組織が粒状組織であっても、活物質層との界面の十点平均粗さ(RzJIS)が大きすぎる(表面が粗すぎる)と、部分的に鉛箔が薄くなる箇所が生じることで、電池動作時に鉛箔に貫通が生じる危険性が高くなるため、RzJISは50μm以上70μm以下であることが好ましい。同様の理由から、最大高さ粗さ(Rz)は、十点平均粗さ(Rz)よりも大きくかつ平均粒子径の1/7以上1/2以下が好ましい。
{第一実施例}
[バイプレート、正極用集電板、および負極用集電板の準備]
〔各集電板の切り出し〕
 錫(Sn)の含有率が1.0質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.30mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-8のバイプレート120用の正極用集電板111aとした。また、同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-8の第一のエンドプレート130用の正極用集電板111aaとした。
 錫(Sn)の含有率が1.0質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.1mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-8のバイプレート120用の負極用集電板112aとした。また、同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-8の第二のエンドプレート140用の負極用集電板112aaとした。
〔バイプレートの作製〕
<サンプルNo.1-1>
 ABS樹脂の射出成形により図1に示す形状のバイプレート120を作製した。バイプレート120の基板121の厚さは2mmである。凹部121bの底面は、一辺が28.5cmの正方形であり、深さは0.32mmである。凹部121cの底面は、一辺が28.5cmの正方形であり、深さは0.12mmである。
 「JIS B 0601:2013の付属書JA」の規定に基づいてバイプレート120の基板121の凹部121bの底面の表面状態を計測したところ、十点平均粗さ(RzJIS)は10μmであり、最大高さ粗さ(Rz)は17μmであった。
<サンプルNo.1-2>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、2000番の紙やすりで擦って、十点平均粗さ(RzJIS)が18μmで、最大高さ粗さ(Rz)が23μmとなるようにした。これをサンプルNo.1-2のバイプレートとした。
<サンプルNo.1-3>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が30μmで、最大高さ粗さ(Rz)が39μmとなるようにした。これをサンプルNo.1-3のバイプレートとした。
<サンプルNo.1-4>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が46μmで、最大高さ粗さ(Rz)が63μmとなるようにした。これをサンプルNo.1-4のバイプレートとした。
<サンプルNo.1-5>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面にシボ加工を施すことにより、十点平均粗さ(RzJIS)が69μmで、最大高さ粗さ(Rz)が155μmとなるようにした。これをサンプルNo.1-5のバイプレートとした。
<サンプルNo.1-6>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、150番の紙やすりで擦って、十点平均粗さ(RzJIS)が77μmで、最大高さ粗さ(Rz)が92μmとなるようにした。これをサンプルNo.1-6のバイプレートとした。
<サンプルNo.1-7>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、120番の紙やすりで擦って、十点平均粗さ(RzJIS)が104μmで、最大高さ粗さ(Rz)が123μmとなるようにした。これをサンプルNo.1-7のバイプレートとした。
<サンプルNo.1-8>
 サンプルNo.1-1と同じ方法で作製したバイプレート120の凹部121bおよび凹部121cの底面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が128μmで、最大高さ粗さ(Rz)が141μmとなるようにした。これをサンプルNo.1-8のバイプレートとした。
[エンドプレートの作製]
<サンプルNo.1-1~No.1-8>
 ABS樹脂の射出成形により図1に示す形状の第一のエンドプレート130および第二のエンドプレート140を作製した。第一のエンドプレート130の基板131および第二のエンドプレート140の141の厚さは10mmである。凹部131bおよび凹部141bの底面は、一辺が28.5cmの正方形であり、深さは1.52mmである。
[双極型鉛蓄電池の組み立て]
 サンプルNo.1-1~No.1-8の各バイプレートを用いたこと以外は全て同じ方法で、図1に示す構造を有し、定格容量が45AhとなるようにNo.1-1~No.1-8の双極型鉛蓄電池を組み立てた。つまり、バイプレート120の基板121の凹部121bの底面の表面状態以外は、全てのサンプルで同じ構成とした。
 正極用活物質層111bおよび負極用活物質層112bは鉛化合物からなるもの、セパレータ113はガラス繊維からなるものであって、それぞれ定格容量45Ahに対応させた厚さのものを使用した。
[寿命試験]
 先ず、No.1-1~No.1-8の各双極型鉛蓄電池を、水温が25℃±2℃に制御された水槽内に置き、電池の端子電圧が1.8V/セルに低下するまで、定格容量(45Ah)の10時間率電流(4.5A)で放電し、放電持続時間を記録し、放電電流と放電持続時間から10時間率容量を計算した。
 次に、各双極型鉛蓄電池を満充電状態にした後、端子電圧を常時計測しながら、下記の(1)を400回繰り返した。
(1)定格容量(45Ah)の10時間率電流(4.5A)で7時間放電する。つまり、定格容量に対してDOD70%の放電を行う。
 液絡が発生すると端子電圧は急激に降下する。液絡が発生したかどうかは、上記放電を400回繰り返した後の各電池を解体して、正極用鉛箔111aの導通体160との結合部分の周縁部が硫酸によって変色しているか否かを確認することにより行った。そして、この変色度合いから液絡の有り無しを判定した。
[接着剤塗布試験]
 先ず、サンプルNo.1-1~No.1-8の各バイプレート120に対応させた試験板として、ABS樹脂製で、厚さが2mmで一辺が30cmである正方形の板の一面の表面状態を、サンプルNo.1-1~No.1-8の各バイプレート120の凹部121bおよび凹部121cの底面の表面状態と同じにしたものを用意した。
 次に、各サンプル用の試験板の一面に、接着剤を25ml塗布する。その際、基板面を水平に保持する。その後、接着剤を塗布した面に、上述の一辺が28cmである正方形の鉛合金製のシートを載せて、このシートの上面にゴムローラを当てて、端(右端)から端(左端)に向かうように移動することで、接着剤を延ばしながらシートを貼り付ける。
 次に、全面に接着剤が隙間なく広がっているかどうかを調べた。接着剤としては、ソマール株式会社製のエポキシ系接着剤「エピフォーム(登録商標)K-9487」を使用した。
 なお、厚さ2mmのABS樹脂製の板は透過率が高いため、板の他方の面(鉛合金シートを貼り付けていない面)を目視することで、板とシートとの間の接着剤の状態を調べることができる。
 全面に接着剤が隙間なく広がっている場合は、接着剤量が十分である(○)と判定し、隙間が存在している場合は接着剤量が不足している(×)と判定した。
 これらの結果を、基板(凹部121b,121cの底面および試験板の一面)の表面状態とともに表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から以下のことが分かる。
 主基板121の両面(正極側の面および負極側の面)の表面状態が、{JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、この規定による最大高さ粗さ(Rz)が123μm以下}を満たし、各面に接着剤で鉛合金製の正極用集電板111aおよび負極用集電板112aが固定されているNo.1-3、No.1-4、No.1-6、No.1-7の双極型鉛蓄電池は、液絡抑制効果と少ない接着剤の使用量で必要な接着強度が得られる効果とが両立できるものとなる。
 RzJISが30μm未満であるNo.1-2、No.1-3の双極型鉛蓄電池では、少ない接着剤の使用量で必要な接着強度が得られたが、液絡抑制効果は得られなかった。また、RzJISが69μmであるがRzが123μmを超えているNo.1-5の双極型鉛蓄電池と、RzJISが104μmを超えRzが123μmを超えているNo.1-8の双極型鉛蓄電池では、液絡抑制効果は得られたが、必要な接着強度を得るための接着剤量が多くなった。
{第二実施例}
[鉛箔の準備]
 表2に示すNo.2-1~No.2-6の鉛箔を準備した。各鉛箔の厚さは全て0.35mmとした。
<サンプルNo.2-1>
 サンプルNo.2-1の鉛箔は、カルシウム(Ca)の含有率が0.030質量%、錫(Sn)の含有率が2.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートを、310℃で5分間、大気雰囲気下で熱処理をしたものである。
 サンプルNo.2-1の鉛箔について、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図3に示す。この画像から分かるように、その組織は粒状組織であり、その平均粒子径は160μmであった。
 「JIS B 0601:2013の付属書JA」の規定に基づいて、サンプルNo.2-1の鉛箔の表面状態を計測したところ、十点平均粗さ(RzJIS)は20μmであり、最大高さ粗さ(Rz)は30μmであった。
<サンプルNo.2-2>
 サンプルNo.2-1と同じ方法で作製した鉛箔の一方の面を、800番の紙やすりで擦って、十点平均粗さ(RzJIS)が30μmで、最大高さ粗さ(Rz)が45μmとなるようにした。これをサンプルNo.2-2の鉛箔とした。なお、作製した鉛箔は、No.2-1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<サンプルNo.2-3>
 サンプルNo.2-1と同じ方法で作製した鉛箔の一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が60μmとなるようにした。これをサンプルNo.2-3の鉛箔とした。なお、作製した鉛箔は、No.2-1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<サンプルNo.2-4>
 サンプルNo.2-1と同じ方法で作製した鉛箔の一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が70μmとなるようにした。これをサンプルNo.2-4の鉛箔とした。なお、作製した鉛箔は、No.2-1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<サンプルNo.2-5>
 サンプルNo.2-1と同じ方法で作製した鉛箔の一方の面を、40番の紙やすりで擦って、十点平均粗さ(RzJIS)が70μmで、最大高さ粗さ(Rz)が110μmとなるようにした。これをサンプルNo.2-5の鉛箔とした。なお、作製した鉛箔は、No.2-1の鉛箔と同様に、粒状組織を有し、その平均粒子径は160μmであった。
<サンプルNo.2-6>
 サンプルNo.2-6の鉛箔は、カルシウム(Ca)の含有率が0.030質量%、錫(Sn)の含有率が2.0質量%、残部が鉛(Pb)と不可避的不純物である鉛合金の圧延シートであって、熱処理を施していないものであり、その一方の面を、80番の紙やすりで擦って、十点平均粗さ(RzJIS)が50μmで、最大高さ粗さ(Rz)が70μmとなるようにしたものである。
 サンプルNo.2-6の鉛箔を、紙やすりで擦る前に、電子顕微鏡で、シート面に垂直で圧延方向と平行な断面を撮影した。その顕微鏡写真を図4に示す。この画像から分かるように、その組織は縞状組織である。
[腐食試験]
 No.2-1~No.2-6の各鉛箔について、以下の方法で腐食試験を行った。
 各鉛箔を幅15mm、長さ70mmの試験片に切断して、比重1.28の60℃硫酸に入れ、1350mVの定電位(vs:Hg/Hg2SO4)で28日間連続の陽極酸化を行った後、生成酸化物を除去した。そして、試験前後に質量を測定し、その値から試験による質量の減少量を算出し、試験片の全表面積当たりの質量減少量を腐食量とした。また、腐食試験後の断面(シート面に垂直で圧延方向と平行な断面)を電子顕微鏡(倍率400倍)で観察し、鉛箔に貫通が生じているか否かを調べた。
[活物質層の剥離試験]
〔バイプレートの作製〕
 ABS樹脂の射出成形により図1に示す形状のバイプレート120を作製した。バイプレート120の基板121の厚さは2mmである。凹部121bおよび凹部121cの底面は、一辺が10.0cmの正方形であり、凹部121bおよび凹部121cの深さは0.37mmである。
〔エンドプレートの作製〕
 ABS樹脂の射出成形により図1に示す形状の第一のエンドプレート130および第二のエンドプレート140を作製した。第一のエンドプレート130の基板131および第二のエンドプレート140の141の厚さは10mmである。凹部131bおよび凹部141bの底面は、一辺が10.0cmcmの正方形であり、深さは1.52mmである。
〔双極型鉛蓄電池の組み立て〕
 凹部121bおよび凹部121cに配置する正極用鉛箔111aおよび負極用鉛箔112aとして、サンプルNo.2-1~No.2-6の各鉛箔を一辺が9.0cmの正方形に切り出したものを用いた。これ以外は全て同じにして、図1に示す構造を有し、公称電圧が6VであるNo.2-1~No.2-6の双極型鉛蓄電池を、通常の方法で組み立てた。つまり、正極用鉛箔および負極用鉛箔の各活物質層側の面の表面状態以外は、各双極型鉛蓄電池で同じ構成とした。
 正極用活物質層111bは、厚さ1.8mmで正極用鉛箔111a,111aaの表面に形成した。負極用活物質層112bは、厚さ1.6mmで負極用鉛箔112a,112aaの表面に形成した。セパレータ113は、ガラス繊維からなるものを用いた。電解液としては、通常用いられている濃度の希硫酸を用いた。
〔活物質層の剥離状態の観察〕
 組み立てられたNo.2-1~No.2-6の双極型鉛蓄電池に対して通常の条件で化成を行った後に、各双極型鉛蓄電池を解体して、正極用鉛箔111aを正極用活物質層111bから剥がし、正極用鉛箔111aの正極用活物質層111b側の面を顕微鏡で観察した。この観察により、正極用鉛箔111aに活物質が残っているかどうかを調べた。活物質の残りが有れば、耐食性の高い鉛合金からなる正極用鉛箔111aに対する正極用活物質層111bの密着性が優れていると判断できる。
[評価]
 腐食試験と剥離試験の結果を、鉛箔の表面状態とともに表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から以下のことが分かる。
 No.2-1~No.2-5の鉛箔は、粒状組織の鉛合金からなるため耐食性が高い。しかし、No.2-1とNo.2-2の鉛箔は、「Rz<A/2」を満たすものの、「RzJIS≧50μm」を満たさないため、活物質層の密着性が低いものとなった。また、No.2-5の鉛箔は、「RzJIS≧50μm」を満たすものの、「Rz<A/2」を満たさないため鉛箔に貫通が生じた。これに対して、No.2-3~No.2-4の鉛箔は、「Rz<A/2」と「RzJIS≧50μm」の両方を満たすため、活物質層の密着性も高く、鉛箔に貫通が生じないものであった。
 さらに、No.2-6の鉛箔は、縞状組織の鉛合金からなるため耐食性が低いものであった。
 よって、No.2-3~No.2-4の鉛箔を正極用鉛箔として用いた双極型鉛蓄電池によれば、正極用鉛箔から正極用活物質が脱落しにくくなることで、高い電池性能が維持されるとともに短絡が防止されて、No.2-1、No.2-2、No.2-6の鉛箔を正極用鉛箔として用いた双極型鉛蓄電池よりも寿命が向上すると推定される。
 100 双極(バイポーラ)型鉛蓄電池
 110 セル部材
 111 正極
 112 負極
 111a 正極用鉛箔(主基板の正極の側の面に配置された正極用集電板)
 111aa 正極用鉛箔(正極用集電板)
 111b 正極用活物質層
 112a 負極用鉛箔(主基板の負極の側の面に配置された負極用集電板)
 112aa 負極用鉛箔(負極用集電板)
 112b 負極用活物質層
 113 セパレータ
 120 バイプレート
 121 バイプレートの基板(隣り合うセル部材の間に配置された基板、主基板)
 121a 基板の貫通穴
 121b 基板の第一の凹部
 121c 基板の第二の凹部
 122 バイプレートの枠体
 130 第一のエンドプレート
 131 第一のエンドプレートの基板
 132 第一のエンドプレートの枠体
 140 第二のエンドプレート
 141 第二のエンドプレートの基板
 142 第二のエンドプレートの枠体
 150 接着剤層
 160 導通体
 C セル(セル部材を収容する空間)

Claims (4)

  1.  正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
     前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
    を有し、
     前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含み、
     前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
     隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面および前記負極の側の面の少なくとも一方は、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、前記規定による最大高さ粗さ(Rz)が123μm以下であり、
     前記主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定され、
     前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定され、
     前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている双極型蓄電池。
  2.  前記正極用集電板および前記負極用集電板は鉛または鉛合金からなる請求項1記載の双極型蓄電池。
  3.  双極型蓄電池の製造方法であって、
     当該双極型蓄電池は、
     正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
     前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
    を有し、
     前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含み、
     前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
     隣り合う前記セル部材の間に配置された前記基板である主基板の前記正極の側の面に、接着剤で金属製の前記正極用集電板が固定され、
     前記主基板の前記負極の側の面に、接着剤で金属製の前記負極用集電板が固定され、
     前記主基板は板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されているものであり、
     前記主基板として、
     当該主基板の前記正極の側の面および前記負極の側の面の少なくとも一方が、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が30μm以上104μm以下であり、前記規定による最大高さ粗さ(Rz)が123μm以下であるものを使用する双極型蓄電池の製造方法。
  4.  鉛または鉛合金からなる正極用鉛箔の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用鉛箔の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
     前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
    を有し、
     前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含み、
     前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、隣接する前記枠体が接合され、
     前記正極用鉛箔および前記負極用鉛箔は粒状組織である部分を有し、
     前記正極用鉛箔の前記正極用活物質層との界面および前記負極用鉛箔の前記負極用活物質層との界面の少なくともいずれかは、前記粒状組織に形成された部分を有するとともに、「JIS B 0601:2013の付属書JA」の規定による十点平均粗さ(RzJIS)が50μm以上であり、前記規定による最大高さ粗さ(Rz)が、前記粒状組織を構成する粒子の平均粒子径の1/2よりも小さく、
     隣り合う前記セル部材の間に配置された前記基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴の中で、隣り合う前記セル部材の前記正極用鉛箔と前記負極用鉛箔とが導通されて、前記複数のセル部材が直列に電気的に接続されている双極型鉛蓄電池。
PCT/JP2022/003587 2021-04-08 2022-01-31 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池 WO2022215329A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021065939A JP7057461B1 (ja) 2021-04-08 2021-04-08 双極型蓄電池、双極型蓄電池の製造方法
JP2021-065939 2021-04-08
JP2021082472A JP7057465B1 (ja) 2021-05-14 2021-05-14 双極型鉛蓄電池
JP2021-082472 2021-05-14

Publications (1)

Publication Number Publication Date
WO2022215329A1 true WO2022215329A1 (ja) 2022-10-13

Family

ID=83545849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003587 WO2022215329A1 (ja) 2021-04-08 2022-01-31 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池

Country Status (1)

Country Link
WO (1) WO2022215329A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726633A (ja) * 1971-03-29 1972-10-25
US5800946A (en) * 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JPH11250894A (ja) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd 鉛蓄電池及びその製造法
JP2001514794A (ja) * 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー バイポラープレートの製造方法
JP2004158433A (ja) * 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The 鉛蓄電池用基板およびそれを用いた鉛蓄電池
JP2004186013A (ja) * 2002-12-04 2004-07-02 Ntt Power & Building Facilities Inc 電極集電体及びその製造方法とシール鉛蓄電池
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4726633A (ja) * 1971-03-29 1972-10-25
US5800946A (en) * 1996-12-06 1998-09-01 Grosvenor; Victor L. Bipolar lead-acid battery plates
JP2001514794A (ja) * 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー バイポラープレートの製造方法
JPH11250894A (ja) * 1998-02-26 1999-09-17 Shin Kobe Electric Mach Co Ltd 鉛蓄電池及びその製造法
JP2004158433A (ja) * 2002-10-18 2004-06-03 Furukawa Battery Co Ltd:The 鉛蓄電池用基板およびそれを用いた鉛蓄電池
JP2004186013A (ja) * 2002-12-04 2004-07-02 Ntt Power & Building Facilities Inc 電極集電体及びその製造方法とシール鉛蓄電池
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート

Similar Documents

Publication Publication Date Title
US6579647B2 (en) Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
US5120620A (en) Binary lead-tin alloy substrate for lead-acid electrochemical cells
JP2000106197A (ja) 燃料電池及び燃料電池用セパレータ
JP7296016B2 (ja) 鉛合金箔、鉛蓄電池用正極、鉛蓄電池、及び蓄電システム
JP2022161267A (ja) 双極型蓄電池、双極型蓄電池の製造方法
WO2022215329A1 (ja) 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池
US20100062335A1 (en) Bipolar battery
JP2023162291A (ja) 鉛合金箔及びその製造方法、鉛蓄電池用正極、鉛蓄電池、並びに蓄電システム
JP5050309B2 (ja) 鉛蓄電池
JP2022175783A (ja) 双極型鉛蓄電池
WO2023008495A1 (ja) 双極型鉛蓄電池
WO2022224531A1 (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
WO2022202442A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
WO2022202443A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
KR20210056402A (ko) 전류 콜렉터 베이스 상에 세퍼레이터 물질을 갖는 전기 배터리 제조 방법
JP2014241306A (ja) 鉛蓄電池
JP2023141123A (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
TWI843384B (zh) 鋁電池的負極結構
EP4318683A1 (en) Bipolar storage battery
JP5630716B2 (ja) 鉛蓄電池
TWI823239B (zh) 雙極性電池胞元極板及其製造
WO2022201629A1 (ja) 双極型蓄電池
KR101324943B1 (ko) 전극 격자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2301006479

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784314

Country of ref document: EP

Kind code of ref document: A1