WO2023008495A1 - 双極型鉛蓄電池 - Google Patents

双極型鉛蓄電池 Download PDF

Info

Publication number
WO2023008495A1
WO2023008495A1 PCT/JP2022/029008 JP2022029008W WO2023008495A1 WO 2023008495 A1 WO2023008495 A1 WO 2023008495A1 JP 2022029008 W JP2022029008 W JP 2022029008W WO 2023008495 A1 WO2023008495 A1 WO 2023008495A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector plate
positive electrode
negative electrode
substrate
lead
Prior art date
Application number
PCT/JP2022/029008
Other languages
English (en)
French (fr)
Inventor
彩乃 小出
惠造 山田
Original Assignee
古河電池株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 古河電気工業株式会社 filed Critical 古河電池株式会社
Priority to CN202280049726.7A priority Critical patent/CN117652052A/zh
Publication of WO2023008495A1 publication Critical patent/WO2023008495A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • H01M50/114Monobloc comprising multiple compartments specially adapted for lead-acid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • H01M50/529Intercell connections through partitions, e.g. in a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a bipolar lead-acid battery.
  • This bipolar lead-acid battery is frame-shaped and has a resin substrate attached to the inside of a resin frame.
  • a lead layer is placed on both sides of the board.
  • the positive electrode active material layer is adjacent to the lead layer on one surface of the substrate, and the negative electrode active material layer is adjacent to the lead layer on the other surface.
  • a frame-shaped spacer made of resin is provided, and a glass mat impregnated with an electrolytic solution is disposed inside the spacer.
  • a plurality of frames and spacers are alternately laminated, and the frames and spacers are adhered with an adhesive or the like.
  • the lead layers on both sides of the substrate are connected via through holes provided in the substrate.
  • Paragraph number [0028] of Patent Document 1 describes that this connection is made by, for example, resistance welding. That is, the bipolar lead-acid battery described in Patent Document 1 has a plurality of cell members and a plurality of space forming members that form a plurality of spaces for individually accommodating the plurality of cell members.
  • Each of the plurality of cell members has a positive electrode in which a positive electrode active material layer is disposed on one surface of a positive electrode current collector made of lead or a lead alloy, and a negative electrode active material layer on one surface of a negative electrode current collector made of lead or a lead alloy.
  • a negative electrode on which a material layer is arranged, and a separator (glass mat) interposed between the positive electrode and the negative electrode are provided, and are stacked with a gap therebetween.
  • the space forming member includes a substrate covering at least one of the positive electrode side and the negative electrode side of the cell member, and a frame surrounding the side surface of the cell member (frames and spacers of the bipolar plates and the end plates). I'm in.
  • the cell members and the substrates of the space forming members are alternately arranged in a stacked state, and the substrates arranged between the adjacent cell members have through holes extending in a direction intersecting the plate surface.
  • the positive electrode current collector plate and the negative electrode current collector plate of the adjacent cell members are electrically connected to electrically connect the plurality of cell members in series, and the adjacent frames are joined.
  • One of the causes of deterioration of lead-acid batteries is corrosion of the positive current collector plate. Corrosion of the positive electrode current collecting plate progresses as the battery usage period becomes longer, and as the corrosion progresses, the positive electrode active material cannot be retained, and the performance as a battery deteriorates. In addition, if the positive electrode material (positive current collecting plate or positive electrode active material) falling off due to corrosion comes into contact with the negative electrode, a short circuit may occur. In particular, in the case of a bipolar lead-acid battery with the above structure, the current distribution is a surface reaction, so there is no need to consider charge transfer resistance, and it is possible to make the current collector plate thinner. Since the distance between the electrodes is short, fatal defects may occur if the degree of corrosion of the thinly formed positive electrode current collector plate increases.
  • An object of the present invention is to accommodate a plurality of cell members individually in a plurality of spaces, and as a substrate constituting the space forming member, a positive electrode collector plate is arranged on one surface and a negative electrode collector plate is arranged on the other surface. To extend the life of a bipolar lead-acid battery having a thin main substrate by preventing corrosion of a thinly formed positive collector plate.
  • a bipolar lead-acid battery having the following configurations (1) to (4).
  • a positive electrode in which a positive electrode active material layer is arranged on one surface of a positive electrode current collector made of lead or a lead alloy, and a negative electrode active material layer is arranged on one surface of a negative electrode current collector made of lead or a lead alloy. and a separator interposed between the positive electrode and the negative electrode. and a plurality of space forming members that form.
  • the space forming member includes a synthetic resin substrate that covers both the positive electrode side and the negative electrode side of the cell member, and a frame that surrounds the side surface of the cell member. The cell members and the substrates of the space forming members are alternately stacked.
  • the main substrate which is the substrate arranged between the adjacent cell members, has a through hole extending in a direction intersecting with the plate surface, and the conductor arranged in the through hole allows the adjacent cell members to
  • the positive electrode collector plate and the negative electrode collector plate of the cell members are electrically connected to electrically connect the plurality of cell members in series.
  • the thickness (T1) of the positive electrode collector plate disposed on one surface of the main substrate is 0.15 mm or more and 0.75 mm or less.
  • the ratio (T1/T2) of the thickness (T1) of the positive electrode current collector plate to the thickness (T2) of the negative electrode current collector plate disposed on the other surface of the main substrate (T1/T2) is 1.5 or more and 6.5. It is below.
  • a plurality of cell members are individually housed in a plurality of spaces. is arranged in the bipolar lead-acid battery, and it can be expected that corrosion of the thinly formed positive electrode current collector plate is prevented and the life of the battery is lengthened.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a bipolar lead-acid battery that is an embodiment of the present invention
  • FIG. 2 is a partially enlarged view of the bipolar lead-acid battery of FIG. 1;
  • a bipolar lead-acid battery 100 of this embodiment includes a plurality of cell members 110, a plurality of biplates (space forming members) 120, and a first end plate (space forming member) 130. , has a second end plate (space forming member) 140 .
  • FIG. 1 shows a bipolar lead-acid battery 100 in which three cell members 110 are stacked, the number of cell members 110 is determined by battery design. Also, the number of biplates 120 is determined according to the number of cell members 110 .
  • the stacking direction of the cell members 110 is defined as the Z direction (vertical direction in FIGS. 1 and 2), and the direction perpendicular to the Z direction is defined as the X direction.
  • the cell member 110 includes a positive electrode 111 , a negative electrode 112 and a separator (electrolyte layer) 113 .
  • the separator 113 is impregnated with an electrolytic solution.
  • the positive electrode 111 has positive electrode collector plates 111a and 111aa and a positive electrode active material layer 111b.
  • the negative electrode 112 has negative electrode collector plates 112a and 112aa and a negative electrode active material layer 112b.
  • Separator 113 is interposed between positive electrode 111 and negative electrode 112 .
  • the positive electrode collector plates 111a and 111aa, the positive electrode active material layer 111b, the separator 113, the negative electrode active material layer 112b, and the negative electrode collector plates 112a and 112aa are laminated in this order.
  • the positive electrode collector plate 111a is larger (thicker) than the negative electrode collector plate 112a
  • the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
  • a plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and substrates 121 of biplates 120 are arranged at the intervals. That is, the plurality of cell members 110 are stacked with the substrate 121 of the biplate 120 interposed therebetween.
  • the plurality of biplates 120, the first end plate 130, and the second end plate 140 are members for forming a plurality of spaces (cells) C that individually accommodate the plurality of cell members 110.
  • the biplate 120 includes a substrate 121 having a rectangular planar shape, a frame 122 covering four end surfaces of the substrate 121, and columns 123 projecting vertically from both sides of the substrate 121.
  • the substrate 121, the frame 122 and the pillars 123 are integrally formed of synthetic resin.
  • the number of pillars 123 protruding from each surface of substrate 121 may be one, or may be plural.
  • the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121 , and the dimension between the projecting end faces of the pillars 123 is the same as the dimension of the frame 122 .
  • a substrate 121 of the biplate 120 has a plurality of through holes 121a passing through the plate surface.
  • a first concave portion 121b is formed on one surface of the substrate 121, and a second concave portion 121c is formed on the other surface.
  • the depth of the first recess 121b is deeper than the second recess 121c.
  • the X-direction and Y-direction dimensions of the first recess 121b and the second recess 121c correspond to the X- and Y-direction dimensions of the positive collector plate 111a and the negative collector plate 112a.
  • Substrates 121 of biplates 120 are positioned between adjacent cell members 110 in the Z direction.
  • the substrate 121 of the biplate 120 is a substrate that covers both the positive electrode 111 side of the cell member 110 and the negative electrode 112 side of the adjacent cell member 110 .
  • the positive current collector plate 111a of the cell member 110 is arranged in the first concave portion 121b of the substrate 121 of the biplate 120 with the adhesive layer 150 interposed therebetween. That is, the positive electrode collector plate 111a is fixed to the surface of the substrate 121 on the positive electrode 111 side (bottom surface of the first concave portion 121b) with an adhesive.
  • the negative electrode collector plate 112a of the cell member 110 is arranged in the second concave portion 121c of the substrate 121 of the biplate 120 with the adhesive layer 150 interposed therebetween. That is, the negative electrode collector plate 112a is fixed to the surface of the substrate 121 on the negative electrode 112 side (bottom surface of the second recess 121c) with an adhesive.
  • Conductor 160 is arranged in through-hole 121a of substrate 121 of biplate 120, and both end surfaces of conductor 160 are in contact with and coupled to positive collector plate 111a and negative collector plate 112a. That is, the conductor 160 electrically connects the positive collector plate 111a and the negative collector plate 112a. As a result, all of the plurality of cell members 110 are electrically connected in series.
  • the first end plate 130 includes a substrate 131 that covers the positive electrode side of the cell member 110, a frame 132 that surrounds the side surface of the cell member 110, and one surface of the substrate 131 (located closest to the positive electrode side). and a pillar portion 133 projecting vertically from the surface of the biplate 120 facing the substrate 121 .
  • the planar shape of the substrate 131 is rectangular, and four end surfaces of the substrate 131 are covered with a frame 132.
  • the substrate 131, the frame 132, and the pillars 133 are integrally formed of synthetic resin.
  • the number of columnar portions 133 protruding from one surface of the substrate 131 may be one or plural, and the columnar portions 133 correspond to the columnar portions 123 of the biplate 120 that come into contact with the columnar portions 133 .
  • the dimension of the frame 132 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the pillars 133 is the same as the dimension of the frame 132 .
  • the frame 132 and the column 133 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (on the positive electrode side) to stack the substrate 121 of the biplate 120 .
  • a space C is formed between the substrate 131 of the first end plate 130, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 133 of the first endplate 130 that are in contact with each other. is retained.
  • Through-holes 111c, 111d, and 113a through which the column portion 133 penetrates are formed in the positive electrode collector plate 111aa, the positive electrode active material layer 111b, and the separator 113 of the cell member 110 arranged on the outermost side (on the positive electrode side), respectively. It is
  • a concave portion 131 b is formed on one surface of the substrate 131 of the first end plate 130 .
  • the X-direction dimension of the recess 131b corresponds to the X-direction dimension of the positive electrode collector plate 111aa.
  • the Z-direction dimension of the positive electrode collector plate 111aa arranged on one surface of the substrate 131 of the first end plate 130 is equal to the Z-direction dimension of the positive electrode collector plate 111a arranged on one surface of the substrate 121 of the biplate 120. Larger than the dimensions.
  • the positive electrode collector plate 111aa of the cell member 110 is arranged in the concave portion 131b of the substrate 131 of the first end plate 130 with the adhesive layer 150 interposed therebetween.
  • the positive electrode collector plate 111aa is fixed to the surface of the substrate 131 on the positive electrode 111 side (the bottom surface of the recess 131b) with an adhesive.
  • the first end plate 130 also includes a positive electrode terminal electrically connected to the positive current collector plate 111aa in the recess 131b.
  • the second end plate 140 includes a substrate 141 covering the negative electrode side of the cell member 110, a frame 142 surrounding the side surface of the cell member 110, and one surface of the substrate 141 (the substrate 121 of the biplate 120 arranged closest to the negative electrode side). and a pillar portion 143 projecting vertically from the surface facing the .
  • the planar shape of the substrate 141 is rectangular, and four end surfaces of the substrate 141 are covered with a frame 142.
  • the substrate 141, the frame 142, and the pillars 143 are integrally formed of synthetic resin.
  • the number of columnar portions 143 protruding from one surface of the substrate 141 may be one or plural, and the columnar portions 143 correspond to the columnar portions 123 of the biplate 120 that come into contact with the columnar portions 143 .
  • the dimension of the frame 142 is larger than the dimension (thickness) of the substrate 131 , and the dimension between the projecting end faces of the two pillars 143 is the same as the dimension of the frame 142 . Then, the frame 142 and the column 143 are brought into contact with the frame 122 and the column 123 of the biplate 120 arranged on the outermost side (negative electrode side), thereby laminating the substrate 121 of the biplate 120.
  • a space C is formed between the substrate 141 of the second end plate 140, and the dimension of the space C in the Z direction is defined by the columnar portion 123 of the biplate 120 and the columnar portion 143 of the second endplate 140 that are in contact with each other. is retained.
  • Through-holes 112c, 112d, and 113a through which the columnar portion 143 penetrates are formed in the negative electrode collector plate 112aa, the negative electrode active material layer 112b, and the separator 113 of the cell member 110 arranged on the outermost side (negative electrode side), respectively. It is
  • a concave portion 141 b is formed on one surface of the substrate 141 of the second end plate 140 .
  • the X-direction and Y-direction dimensions of the recess 141b correspond to the X- and Y-direction dimensions of the negative electrode collector plate 112aa.
  • the dimension in the Z direction of the negative electrode collector plate 112aa arranged on one surface of the substrate 141 of the second end plate 140 is the Z direction dimension of the negative electrode collector plate 112a arranged on the other surface of the substrate 121 of the biplate 120. larger than the dimensions of The negative electrode collector plate 112aa of the cell member 110 is arranged in the concave portion 141b of the substrate 141 of the second end plate 140 with the adhesive layer 150 interposed therebetween.
  • the negative electrode collector plate 112aa is fixed to the surface of the substrate 141 on the negative electrode 112 side (bottom surface of the recess 141b) with an adhesive.
  • the second end plate 140 has a negative terminal electrically connected to the negative collector plate 112aa in the recess 141b.
  • the biplate 120 is a space-forming member that includes a substrate 121 that covers both the positive electrode side and the negative electrode side of the cell member 110 and a frame 122 that surrounds the side surfaces of the cell member 110.
  • the first end plate 130 is a space forming member including a substrate 131 covering only the positive electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame 132 surrounding the side surface of the cell member 110 .
  • the second end plate 140 is a space forming member including a substrate 141 covering only the negative electrode side (one of the positive electrode side and the negative electrode side) of the cell member 110 and a frame 142 surrounding the side surface of the cell member 110.
  • the substrates 121 , 131 , and 141 are substrates covering at least one of the positive electrode side and the negative electrode side of the cell member 110
  • the substrate 121 is a substrate covering both the positive electrode side and the negative electrode side of the cell member 110 .
  • the substrate 121 of the biplate 120 is a substrate arranged between the cell members 110 .
  • the thickness (T1) of the positive electrode collector plate 111a (arranged on one surface of the main substrate 121) arranged in the concave portion 121b of the biplate 120 is 0.15 mm or more and 0.75 mm or less. Further, the positive electrode current collector plate 111a has a tin (Sn) content of 0.30% by mass or more and 2.1% by mass or less, and a calcium (Ca) content of 0.009% by mass or more and 0.11% by mass. % by mass or less, the remainder being lead (Pb) and a lead alloy that is an unavoidable impurity.
  • the positive electrode collector plate 111aa arranged in the concave portion 131b of the first end plate 130 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and is made of the same heat-treated material as the positive electrode collector plate 111a. ing.
  • Ratio ( T1/T2) is 1.5 or more and 6.5 or less. That is, the thickness (T2) of the negative electrode current collector plate 112a is set so that the ratio (T1/T2) is 1.5 or more and 6.5 or less in accordance with the thickness (T1) of the positive electrode current collector plate 111a. is set to Further, the negative electrode collector plate 112a is made of the same heat-treated material as the positive electrode collector plate 111a.
  • the negative electrode collector plate 112aa arranged in the concave portion 141b of the second end plate 140 has a thickness of, for example, 0.5 mm or more and 1.5 mm or less, and is made of the same heat-treated material as the positive electrode collector plate 111a. ing.
  • Examples of lead alloys forming the positive electrode collector plates 111a and 111aa and the negative electrode collector plates 112a and 112aa include PbAgSn alloys, PbSn alloys, and PbCuSn alloys in addition to PbCaSn alloys.
  • the content is preferably 0.01% by mass or more and 0.05% by mass or less, and the Sn content is preferably 0.30% by mass or more and 2.1% by mass or less.
  • the thickness (T1) of the positive electrode collector plate 111a arranged on one surface of the main substrate 121 is as thin as 0.15 mm or more and 0.75 mm or less, but the negative electrode collector plate 112a is thin.
  • the thickness (T1/T2) is 1.5 or more, the shortening of the life due to corrosion of the positive electrode current collector plate is suppressed compared to the case where it is less than 1.5. That is, in the cell members 110 having the same Z-direction dimension, the thickness of the positive electrode current collector plate that corrodes and wears due to charge and discharge is changed to the thickness of the negative electrode current collector plate that hardly corrodes and wears by 1.5 or more.
  • the positive electrode collector plate 111a arranged on one surface of the main substrate 121 and the negative electrode collector plate 112a arranged on the other surface are resistance-welded with the conductor 160 inserted in the through hole 121a of the main substrate 121. or ultrasonic welding, if the difference in thickness between the positive electrode current collector plate 111a and the negative electrode current collector plate 112a is large, the difference in the heat capacity of the metal becomes large. Poor welding occurs due to imbalance of generated heat. In the bipolar lead-acid battery 100 of the embodiment, defective welding is suppressed because the thickness ratio (T1/T2) between the positive electrode current collector plate 111a and the negative electrode current collector plate 112a is 6.5 or less.
  • the thickness of the positive electrode current collector plate 111a and the negative electrode current collector plate 112a made of lead or a lead alloy is It is preferably 0.05 mm or more.
  • the thickness of the current collector plate 112a for negative electrode is generally not corroded by charging and discharging.
  • the positive current collector plate 111a made of lead or a lead alloy starts to corrode from the stage of battery manufacturing (during chemical conversion). That's it.
  • the thickness of the positive electrode current collector plate 111a is preferably not too thick from the viewpoint of cost, weight, and Z-direction dimension of the cell member 110. However, the thicker the thickness, the longer the life. is set within a range that satisfies the ratio (T1/T2).
  • the content of tin (Sn) is 1.1% by mass, the content of calcium (Ca) is 0.02% by mass, and the balance is lead (Pb) and a lead alloy that is an unavoidable impurity.
  • a rolled sheet with a thickness of 0.1 mm to 0.25 mm is cut into a square sheet with a side of 28 cm, and a negative electrode current collector plate for the biplate 120 of Samples No. 1-1 to No. 1-10 112a.
  • the thickness of the negative electrode collector plate 112a of each sample is the value shown in Table 1 below.
  • a rolled sheet made of the same lead alloy as above and having a thickness of 1.50 mm was cut into a square sheet having a side of 28 cm, and the second samples of Samples No. 1-1 to No. 1-10
  • the negative electrode collector plate 112aa for the end plate 140 was used.
  • Example No.2-1 to No.2-7 The content of tin (Sn) is 1.1% by mass, the content of silver (Ag) is 0.04% by mass, and the balance is lead (Pb) and a lead alloy that is an unavoidable impurity.
  • a rolled sheet with a thickness of 0.1 mm to 0.70 mm is cut into a square sheet with a side of 28 cm, and a positive electrode current collector plate for the biplate 120 of Samples No. 2-1 to No. 2-7 111a.
  • the thickness of the positive electrode collector plate 111a of each sample is the value shown in Table 2 below.
  • a rolled sheet made of the same lead alloy as above and having a thickness of 1.50 mm was cut into a square sheet having a side of 28 cm, and the first samples of Samples No. 2-1 to No. 2-7 were obtained.
  • the positive electrode collector plate 111aa for the end plate 130 was used.
  • the content of tin (Sn) is 1.1% by mass
  • the content of silver (Ag) is 0.04% by mass
  • the balance is lead (Pb) and a lead alloy that is an unavoidable impurity
  • the thickness is A square sheet with a side of 28 cm was cut out from the rolled sheet of 0.10 mm to obtain the negative electrode collector plate 112a for the biplate 120 of Samples No. 2-1 to No. 2-7.
  • a rolled sheet made of the same lead alloy as above and having a thickness of 1.50 mm was cut into a square sheet having a side of 28 cm, and the second samples No. 2-1 to No. 2-7 were obtained.
  • the negative electrode collector plate 112aa for the end plate 140 was used.
  • a biplate 120 having the shape shown in FIG. 1 was manufactured by injection molding ABS resin.
  • the thickness of the substrate 121 of the biplate 120 is 2 mm.
  • the bottom surface of the recess 121b is a square with a side of 28.5 cm and a depth of 0.32 mm.
  • the bottom surface of the recess 121c is a square with a side of 28.5 cm and a depth of 0.12 mm.
  • a first end plate 130 and a second end plate 140 having the shape shown in FIG. 1 were produced by injection molding of ABS resin.
  • the thickness of the substrate 131 of the first end plate 130 and 141 of the second end plate 140 is 10 mm.
  • the bottom surfaces of the recess 131b and the recess 141b are square with a side of 28.5 cm and a depth of 1.52 mm.
  • Each lead alloy rolled sheet was cut into a square with a side of 30 cm to obtain a positive electrode test plate and a negative electrode test plate for a welding performance test.
  • the conductor 160 a cylindrical body made of pure lead and having a diameter of 15 mm and a height of 1.0 mm was prepared.
  • the conductor 160 is not limited to be made of pure lead, and may be made of a lead alloy as long as it has conductivity.
  • the results show the following.
  • the ratio ( T1/T2) is 1.5 or more and 6.5 or less (that is, the thickness (T1) of the positive electrode current collector plate 111a is 0.15 mm or more and 0.65 mm or less).
  • the bipolar lead-acid batteries are rated ⁇ (excellent) or ⁇ (good) in both welding performance and life performance, and the overall evaluation is ⁇ (excellent) or ⁇ (good).
  • the ratio (T1/T2) is 2.5 or more and 5.0 or less (that is, , No. 1-3 to No. 1-5 and No. 2-3 to No. 2-5 where the thickness (T1) of the positive electrode current collector plate 111a is 0.25 mm or more and 0.50 mm or less)
  • the lead-acid battery is excellent in both welding performance and life performance.
  • the thickness (T1) of the positive electrode collector plate 111a is 0.30 mm or more and 0.75 mm or less, and the negative electrode
  • the thickness (T2) of the current collector plate 112a is 0.10 mm or more and 0.25 mm or less, and the ratio (T1/T2) is 3.0, and both welding performance and life performance are excellent. .
  • Bipolar lead-acid battery 110 Cell member 111 Positive electrode 112 Negative electrode 111a Positive electrode current collector 111aa Positive electrode current collector 111b Positive electrode active material layer 112a Negative electrode current collector 112aa Negative electrode current collector 112b Negative electrode active material layer 113
  • Separator 120 biplate 121 biplate substrate (main substrate) 121a Substrate through hole 121b Substrate first recess 121c Substrate second recess 122 Biplate frame 130 First end plate 131 First end plate substrate 132 First end plate frame 140 Second Second end plate 141 Second end plate substrate 142 Second end plate frame 150 Adhesive layer 160 Conductor C Cell (space for accommodating cell members)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

複数のセル部材が個別に複数の空間に収容され、空間形成部材を構成する基板として、一面に正極用集電板が配置され他面に負極用集電板が配置された主基板を有する双極型鉛蓄電池において、薄く形成された正極用集電板の腐食を防止して寿命を長くする。隣り合うセル部材(110)の間に配置された基板(121)である主基板(121)の一面に配置された正極用集電板(111a)の厚さ(T1)は0.15mm以上0.75mm以下である。正極用集電板(111a)の厚さ(T1)の主基板(121)の他面に配置された負極用集電板(112a)の厚さ(T2)に対する比(T1/T2)は1.5以上6.5以下である。

Description

双極型鉛蓄電池
 本発明は、双極型鉛蓄電池に関する。
 近年、太陽光や風力等の自然エネルギを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載された双極型鉛蓄電池が知られている。
 この双極型鉛蓄電池は、額縁形で樹脂製のフレームの内側に、樹脂製の基板が取り付けられている。基板の両面には鉛層が配置されている。基板の一面の鉛層には、正極用活物質層が隣接し、他面の鉛層には、負極用活物質層が隣接している。また、額縁形で樹脂製のスペーサを有し、その内側には、電解液を含浸させたガラスマットが配設されている。そして、フレームとスペーサとを交互に複数積層し、フレームとスペーサとの間が接着剤等で接着されている。
 また、基板に設けた貫通穴を介して、基板の両面の鉛層が接続されている。特許文献1の段落番号[0028]には、この接続が例えば抵抗溶接により行われることが記載されている。
 すなわち、特許文献1に記載された双極型鉛蓄電池は、複数のセル部材と、複数のセル部材を個別に収容する複数の空間を形成する複数の空間形成部材と、を有する。複数のセル部材はそれぞれ、鉛または鉛合金からなる正極用集電板の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用集電板の一面に負極用活物質層が配置されている負極、および正極と負極との間に介在するセパレータ(ガラスマット)を備え、間隔を開けて積層配置されている。
 また、空間形成部材は、セル部材の正極側および負極側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体(二極式プレートおよび端部プレートの枠部とスペーサ)と、を含んでいる。さらに、セル部材と空間形成部材の基板とが交互に積層状態で配置され、隣り合うセル部材の間に配置された基板は、板面と交差する方向に延びる貫通穴を有し、貫通穴の中で、隣り合うセル部材の正極用集電板と負極用集電板とが導通されて複数のセル部材が直列に電気的に接続され、隣接する枠体が接合されている。
特許第6124894号公報
 鉛蓄電池の劣化原因の一つに、正極集電板の腐食がある。電池使用期間が長くなるほど、正極集電板の腐食は進行し、腐食が進むと正極活物質の保持ができなくなり、電池としての性能が低下してしまう。それだけでなく、腐食によって脱落した正極材(正極集電板または正極活物質)が負極に接してしまった場合、短絡の可能性もある。
 特に、上記構造の双極型鉛蓄電池の場合、電流分布が面での反応となるため、電荷移動抵抗を考慮する必要がなく、集電板を薄くすることが可能であるが、正極と負極との距離が近いため、薄く形成された正極集電板の腐食度合いが大きくなると致命的な欠陥が生じる恐れがある。
 本発明の課題は、複数のセル部材が個別に複数の空間に収容され、空間形成部材を構成する基板として、一面に正極用集電板が配置され他面に負極用集電板が配置された主基板を有する双極型鉛蓄電池において、薄く形成された正極用集電板の腐食を防止して寿命を長くすることである。
 前述した課題を解決するための本発明の一態様は、以下の構成(1)~(4)を有する双極型鉛蓄電池である。
(1)鉛または鉛合金からなる正極用集電板の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用集電板の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、を有する。
(2)前記空間形成部材は、前記セル部材の前記正極側および前記負極側の両方を覆う合成樹脂製の基板と、前記セル部材の側面を囲う枠体と、を含む。前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置されている。隣接する前記枠体が接合されている。
(3)隣り合う前記セル部材の間に配置された前記基板である主基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴に配置された導通体により、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続されている。
(4)前記主基板の一面に配置された前記正極用集電板の厚さ(T1)は0.15mm以上0.75mm以下である。前記正極用集電板の厚さ(T1)の前記主基板の他面に配置された前記負極用集電板の厚さ(T2)に対する比(T1/T2)は1.5以上6.5以下である。
 本発明の双極型鉛蓄電池は、複数のセル部材が個別に複数の空間に収容され、空間形成部材を構成する基板として、一面に正極用集電板が配置され他面に負極用集電板が配置された主基板を有する双極型鉛蓄電池であり、薄く形成された正極用集電板の腐食が防止されて寿命が長くなることが期待できる。
本発明の一実施形態である双極型鉛蓄電池の概略構成を示す断面図である。 図1の双極型鉛蓄電池の部分拡大図である。
 以下、本発明の実施形態について説明するが、本発明は以下に示す実施形態に限定されない。以下に示す実施形態では、本発明を実施するために技術的に好ましい限定がなされているが、この限定は本発明の必須要件ではない。
〔全体構成〕
 先ず、この実施形態の双極型鉛蓄電池の全体構成について説明する。
 図1に示すように、この実施形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイプレート(空間形成部材)120と、第一のエンドプレート(空間形成部材)130と、第二のエンドプレート(空間形成部材)140を有する。図1ではセル部材110が三個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイプレート120の数はセル部材110の数に応じて決まる。
 セル部材110の積層方向をZ方向(図1及び図2の上下方向)とし、Z方向に垂直な方向をX方向とする。
 セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。セパレータ113には電解液が含浸されている。正極111は、正極用集電板111a,111aaと正極用活物質層111bを有する。負極112は負極用集電板112a,112aaと負極用活物質層112bを有する。セパレータ113は、正極111と負極112との間に介在している。セル部材110において、正極用集電板111a,111aa、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用集電板112a,112aaは、この順に積層されている。
 Z方向の寸法(厚さ)は、正極用集電板111aの方が負極用集電板112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
 複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイプレート120の基板121が配置されている。つまり、複数のセル部材110は、バイプレート120の基板121を間に挟んだ状態で積層されている。
 複数枚のバイプレート120と第一のエンドプレート130と第二のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための部材である。
 図2に示すように、バイプレート120は、平面形状が長方形の基板121と、基板121の四つの端面を覆う枠体122と、基板121の両面から垂直に突出する柱部123とからなり、基板121と枠体122と柱部123は一体に合成樹脂で形成されている。なお、基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
 Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイプレート120が枠体122および柱部123同士を接触させて積層することにより、基板121と基板121との間に空間Cが形成され、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。
 正極用集電板111a,111aa、正極用活物質層111b、負極用集電板112a,112aa、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113aがそれぞれ形成されている。
 バイプレート120の基板121は、板面を貫通する複数の貫通穴121aを有する。基板121の一面に第一の凹部121bが、他面に第二の凹部121cが形成されている。第一の凹部121bの深さは第二の凹部121cより深い。第一の凹部121bおよび第二の凹部121cのX方向およびY方向の寸法は、正極用集電板111aおよび負極用集電板112aのX方向およびY方向の寸法に対応させてある。
 バイプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。バイプレート120の基板121は、セル部材110の正極111の側と、その隣のセル部材110の負極112の側と、の両方を覆う基板である。バイプレート120の基板121の第一の凹部121bに、セル部材110の正極用集電板111aが接着剤層150を介して配置されている。つまり、基板121の正極111の側の面(第一の凹部121bの底面)に接着剤で正極用集電板111aが固定されている。
 また、バイプレート120の基板121の第二の凹部121cに、セル部材110の負極用集電板112aが接着剤層150を介して配置されている。つまり、基板121の負極112の側の面(第二の凹部121cの底面)に接着剤で負極用集電板112aが固定されている。
 バイプレート120の基板121の貫通穴121aに導通体160が配置され、導通体160の両端面は、正極用集電板111aおよび負極用集電板112aと接触し、結合されている。つまり、導通体160により正極用集電板111aと負極用集電板112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
 図1に示すように、第一のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、基板131の一面(最も正極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部133とからなる。基板131の平面形状は長方形であり、基板131の四つの端面が枠体132で覆われ、基板131と枠体132と柱部133が一体に合成樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は一つであってもよいし、複数であってもよいが、柱部133と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、最も外側(正極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層することにより、バイプレート120の基板121と第一のエンドプレート130の基板131との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第一のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。
 最も外側(正極側)に配置されるセル部材110の正極用集電板111aa、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113aがそれぞれ形成されている。
 第一のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向の寸法は、正極用集電板111aaのX方向の寸法に対応させてある。第一のエンドプレート130の基板131の一面に配置された正極用集電板111aaのZ方向の寸法は、バイプレート120の基板121の一面に配置された正極用集電板111aのZ方向の寸法よりも大きい。
 第一のエンドプレート130の基板131の凹部131bに、セル部材110の正極用集電板111aaが接着剤層150を介して配置されている。つまり、基板131の正極111の側の面(凹部131bの底面)に接着剤で正極用集電板111aaが固定されている。
 また、第一のエンドプレート130は、凹部131b内の正極用集電板111aaと電気的に接続された正極端子を備えている。
 第二のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、基板141の一面(最も負極側に配置されるバイプレート120の基板121と対向する面)から垂直に突出する柱部143とからなる。基板141の平面形状は長方形であり、基板141の四つの端面が枠体142で覆われ、基板141と枠体142と柱部143が一体に合成樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイプレート120の柱部123に対応させる。
 Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、最も外側(負極側)に配置されるバイプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層することにより、バイプレート120の基板121と第二のエンドプレート140の基板141との間に空間Cが形成され、互いに接触するバイプレート120の柱部123と第二のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。
 最も外側(負極側)に配置されるセル部材110の負極用集電板112aa、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113aがそれぞれ形成されている。
 第二のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用集電板112aaのX方向およびY方向の寸法に対応させてある。第二のエンドプレート140の基板141の一面に配置された負極用集電板112aaのZ方向の寸法は、バイプレート120の基板121の他面に配置された負極用集電板112aのZ方向の寸法よりも大きい。
 第二のエンドプレート140の基板141の凹部141bに、セル部材110の負極用集電板112aaが接着剤層150を介して配置されている。つまり、基板141の負極112の側の面(凹部141bの底面)に接着剤で負極用集電板112aaが固定されている。
 また、第二のエンドプレート140は、凹部141b内の負極用集電板112aaと電気的に接続された負極端子を備えている。
 なお、上記説明から分かるように、バイプレート120は、セル部材110の正極側および負極側の両方を覆う基板121と、セル部材110の側面を囲う枠体122と、を含む空間形成部材である。第一のエンドプレート130は、セル部材110の正極側のみ(正極側および負極側の一方)を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。
 また、第二のエンドプレート140は、セル部材110の負極側のみ(正極側および負極側の一方)を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。つまり、基板121,131,141は、セル部材110の正極の側および負極の側の少なくとも一方を覆う基板であり、基板121はセル部材110の正極の側および負極の側の両方を覆う基板である。また、バイプレート120の基板121は、セル部材110同士の間に配置された基板である。
〔集電板の構成〕
 バイプレート120の凹部121bに配置された(主基板121の一面に配置された)正極用集電板111aの厚さ(T1)は、0.15mm以上0.75mm以下である。また、正極用集電板111aは、錫(Sn)の含有率が0.30質量%以上2.1質量%以下であり、カルシウム(Ca)の含有率が0.009質量%以上0.11質量%以下であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなる圧延シートの熱処理材で形成されている。
 第一のエンドプレート130の凹部131bに配置された正極用集電板111aaは、例えば、厚さが0.5mm以上1.5mm以下であり、正極用集電板111aと同じ熱処理材で形成されている。
 バイプレート120の凹部121cに配置された(主基板121の他面に配置された)負極用集電板112aの厚さ(T2)に対する正極用集電板111aの厚さ(T1)の比(T1/T2)は、1.5以上6.5以下である。つまり、負極用集電板112aの厚さ(T2)は、正極用集電板111aの厚さ(T1)に応じて、比(T1/T2)が1.5以上6.5以下となるように設定されている。また、負極用集電板112aは、正極用集電板111aと同じ熱処理材で形成されている。
 第二のエンドプレート140の凹部141bに配置される負極用集電板112aaは、例えば、厚さが0.5mm以上1.5mm以下であり、正極用集電板111aと同じ熱処理材で形成されている。
 正極用集電板111a,111aaおよび負極用集電板112a,112aaを形成する鉛合金としては、PbCaSn合金にも、PbAgSn合金、PbSn合金、およびPbCuSn合金が挙げられ、PbAgSnを用いる場合、Agの含有率は0.01質量%以上0.05質量%以下、Snの含有率は0.30質量%以上2.1質量%以下であることが好ましい。
〔作用、効果〕
 実施形態の双極型鉛蓄電池100では、主基板121の一面に配置された正極用集電板111aの厚さ(T1)が0.15mm以上0.75mm以下と薄いが、負極用集電板112aの厚さに対する比(T1/T2)が1.5以上であるため、1.5未満である場合と比較して正極用集電板の腐食に伴う低寿命化が抑制される。つまり、Z方向の寸法が同じセル部材110において、充放電によって腐食、摩耗する正極用集電板の厚さを、腐食、摩耗が殆ど生じない負極用集電板の1.5以上の厚さにすることで、負極用集電板と同じ厚さとした場合よりも、電池寿命を長くすることができる。
 また、主基板121の一面に配置された正極用集電板111aと他面に配置された負極用集電板112aを、主基板121の貫通穴121aに導通体160を入れた状態で抵抗溶接や超音波溶接などの溶接法により接続する方法を採用する場合、正極用集電板111aと負極用集電板112aの厚さの差が大きいと、金属の熱容量の差が大きくなって溶接時に発生する熱のバランスがとれずに溶接不良が生じる。実施形態の双極型鉛蓄電池100は、正極用集電板111aと負極用集電板112aの厚さの比(T1/T2)が6.5以下であることで、溶接不良が抑制される。
 なお、鉛または鉛合金からなる板状物は、硬度が低いため、製造時の取扱い性を考慮すると、鉛または鉛合金からなる正極用集電板111aおよび負極用集電板112aの厚さは0.05mm以上であることが好ましい。また、負極用集電板112aの厚さは、一般に充放電によってほとんど腐食しないため、コストや重さおよびセル部材110のZ方向の寸法の観点から、0.25mm以下であることが好ましい。
 鉛または鉛合金からなる正極用集電板111aは、電池製造時の段階(化成時)から腐食が始まるため、その腐食量を考慮して、正極用集電板111aの厚さを0.15mm以上としている。また、正極用集電板111aの厚さは、コストや重さおよびセル部材110のZ方向の寸法の観点からは厚すぎない方が好ましいが、厚いほど寿命が長くなるため、必要な寿命性能に応じて比(T1/T2)を満たす範囲に設定される。
[正極用集電板および負極用集電板の準備]
<サンプルNo.1-1~No.1-10>
 錫(Sn)の含有率が1.1質量%であり、カルシウム(Ca)の含有率が0.02質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.1mm~0.75mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-10のバイプレート120用の正極用集電板111aとした。各サンプルの正極用集電板111aの厚さは下記の表1に示す値である。
 また、上記と同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-10の第一のエンドプレート130用の正極用集電板111aaとした。
 錫(Sn)の含有率が1.1質量%であり、カルシウム(Ca)の含有率が0.02質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.1mm~0.25mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-10のバイプレート120用の負極用集電板112aとした。各サンプルの負極用集電板112aの厚さは下記の表1に示す値である。
 また、上記と同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.1-1~No.1-10の第二のエンドプレート140用の負極用集電板112aaとした。
<サンプルNo.2-1~No.2-7>
 錫(Sn)の含有率が1.1質量%であり、銀(Ag)の含有率が0.04質量%であり、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.1mm~0.70mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.2-1~No.2-7のバイプレート120用の正極用集電板111aとした。各サンプルの正極用集電板111aの厚さは下記の表2に示す値である。
 また、上記と同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.2-1~No.2-7の第一のエンドプレート130用の正極用集電板111aaとした。
 錫(Sn)の含有率が1.1質量%であり、銀(Ag)の含有率が0.04質量%、残部が鉛(Pb)と不可避的不純物である鉛合金からなり、厚さが0.10mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.2-1~No.2-7のバイプレート120用の負極用集電板112aとした。
 また、上記と同じ鉛合金からなり、厚さが1.50mmである圧延シートを、一辺が28cmである正方形のシートに切り出して、サンプルNo.2-1~No.2-7の第二のエンドプレート140用の負極用集電板112aaとした。
[バイプレートの作製]
 ABS樹脂の射出成形により図1に示す形状のバイプレート120を作製した。バイプレート120の基板121の厚さは2mmである。凹部121bの底面は、一辺が28.5cmの正方形であり、深さは0.32mmである。凹部121cの底面は、一辺が28.5cmの正方形であり、深さは0.12mmである。
[エンドプレートの作製]
 ABS樹脂の射出成形により図1に示す形状の第一のエンドプレート130および第二のエンドプレート140を作製した。第一のエンドプレート130の基板131および第二のエンドプレート140の141の厚さは10mmである。凹部131bおよび凹部141bの底面は、一辺が28.5cmの正方形であり、深さは1.52mmである。
[双極型鉛蓄電池の組み立て]
 バイプレート120用の正極用集電板111aおよび負極用集電板112aを表1の組み合わせとしたこと以外は全て同じ方法で、図1に示す構造を有し、定格容量が45AhとなるようにNo.1-1~No.1-10の双極型鉛蓄電池を組み立てた。
 また、バイプレート120用の正極用集電板111aおよび負極用集電板112aを表2の組み合わせとしたこと以外は全て同じ方法で、図1に示す構造を有し、定格容量が45AhとなるようにNo.2-1~No.2-7の双極型鉛蓄電池を組み立てた。
 なお、正極用活物質層111bおよび負極用活物質層112bは鉛化合物からなるもの、セパレータ113はガラス繊維からなるものであって、それぞれ定格容量45Ahに対応させた厚さのものを使用した。
[寿命試験]
 先ず、No.1-1~No.1-10およびNo.2-1~No.2-7の各双極型鉛蓄電池を、水温が25℃±2℃に制御された水槽内に置き、電池の端子電圧が1.8V/セルに低下するまで、定格容量(45Ah)の10時間率電流(4.5A)で放電し、放電持続時間を記録し、放電電流と放電持続時間から10時間率容量を計算した。
 次に、各双極型鉛蓄電池を満充電状態にした後、端子電圧を常時計測しながら、下記の(1)を400回繰り返した。
(1)定格容量(45Ah)の10時間率電流(4.5A)で7時間放電する。つまり、定格容量に対してDOD70%の放電を行う。
 上記放電を400回繰り返した後の各電池を解体して、正極用集電板111aに貫通が生じているかどうかと、液絡が発生したかどうかを調べた。液絡が発生すると端子電圧は急激に降下する。
 貫通が生じているかどうかについては、正極用集電板111aの板面に垂直で圧延方向と平行な断面を電子顕微鏡(倍率400倍)で観察することで調べた。
 液絡が発生したかどうかについては、正極用集電板111aの導通体160との結合部分の周縁部の接着剤層150が硫酸によって変色しているか否かを確認することで調べた。
 寿命性能は、貫通および液絡の両方が正極用集電板111aに全く生じていない場合を「◎」、液絡は生じていないが貫通が生じている部分はあった場合を「〇」、液絡が乗じていた場合を「×」と評価した。
[溶接性能試験]
 No.1-1~No.1-10およびNo.2-1~No.2-7の各双極型鉛蓄電池のバイプレート120用の正極用集電板111aおよび負極用集電板112aで用いた各鉛合金製圧延シートを、一辺が30cmである正方形に切り出して、溶接性能試験用の正極用試験板および負極用試験板を得た。また、導通体160として、純鉛製で、直径が15mmで高さが1.0mmの円柱体を用意した。なお、導通体160は、純鉛製に限らず、導電性を有すものであればよく、例えば、鉛合金製であってもよい。
 この円柱体を正極用試験板と負極用試験板との間に挟んで抵抗溶接を実施し、溶接後の状態を調べた。
 溶接性能は、チリおよび破れの両方が生じずに溶接できた場合を「◎」、破れが生じずに溶接できたが、チリは生じていた場合を「〇」、溶接できなかった場合や破れが生じた場合を「×」と評価した。
 これらの結果を、集電板の厚さ(T1、T2)および比(T1/T2)とともに表1および表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 この結果から以下のことが分かる。
 負極用集電板112aの厚さ(T2)が0.10mmであるNo.1-1~No.1-7およびNo.2-1~No.2-7の双極型鉛蓄電池において、比(T1/T2)が1.5以上6.5以下(つまり、正極用集電板111aの厚さ(T1)が0.15mm以上0.65mm以下)であるNo.1-2~No.1-6およびNo.2-2~No.2-6の双極型鉛蓄電池は、溶接性能および寿命性能の両方が◎(優秀)または〇(良好)となって、総合評価が◎(優秀)または〇(良好)となる。
 また、No.1-2~No.1-6およびNo.2-2~No.2-6の双極型鉛蓄電池のうち、比(T1/T2)が2.5以上5.0以下(つまり、正極用集電板111aの厚さ(T1)が0.25mm以上0.50mm以下)であるNo.1-3~No.1-5およびNo.2-3~No.2-5の双極型鉛蓄電池は、溶接性能および寿命性能の両方に優れたものとなる。
 また、No.1-4,No.1-8~No.1-10の双極型鉛蓄電池は、正極用集電板111aの厚さ(T1)が0.30mm以上0.75mm以下で、負極用集電板112aの厚さ(T2)が0.10mm以上0.25mm以下であって、比(T1/T2)が3.0であり、溶接性能および寿命性能の両方に優れたものとなる。
 100 双極型鉛蓄電池
 110 セル部材
 111 正極
 112 負極
 111a 正極用集電板
 111aa 正極用集電板
 111b 正極用活物質層
 112a 負極用集電板
 112aa 負極用集電板
 112b 負極用活物質層
 113 セパレータ
 120 バイプレート
 121 バイプレートの基板(主基板)
 121a 基板の貫通穴
 121b 基板の第一の凹部
 121c 基板の第二の凹部
 122 バイプレートの枠体
 130 第一のエンドプレート
 131 第一のエンドプレートの基板
 132 第一のエンドプレートの枠体
 140 第二のエンドプレート
 141 第二のエンドプレートの基板
 142 第二のエンドプレートの枠体
 150 接着剤層
 160 導通体
 C セル(セル部材を収容する空間)

Claims (3)

  1.  鉛または鉛合金からなる正極用集電板の一面に正極用活物質層が配置されている正極、鉛または鉛合金からなる負極用集電板の一面に負極用活物質層が配置されている負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、複数のセル部材と、
     前記複数のセル部材を個別に収容する複数の空間を形成する、複数の空間形成部材と、
    を有し、
     前記空間形成部材は、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含み、
     前記セル部材と前記空間形成部材の前記基板とが交互に積層された状態で配置され、
     隣接する前記枠体が接合され、
     隣り合う前記セル部材の間に配置された前記基板である主基板は、板面と交差する方向に延びる貫通穴を有し、前記貫通穴に配置された導通体により、隣り合う前記セル部材の前記正極用集電板と前記負極用集電板とが導通されて、前記複数のセル部材が直列に電気的に接続され、
     前記主基板の一面に配置された前記正極用集電板の厚さ(T1)は0.15mm以上0.75mm以下であり、
     前記正極用集電板の厚さ(T1)の前記主基板の他面に配置された前記負極用集電板の厚さ(T2)に対する比(T1/T2)は1.5以上6.5以下である双極型鉛蓄電池。
  2.  前記比(T1/T2)は2.5以上5.0以下である請求項1記載の双極型鉛蓄電池。
  3.  前記負極用集電板の厚さ(T2)は0.05mm以上0.25mm以下である請求項1または2記載の双極型鉛蓄電池。
PCT/JP2022/029008 2021-07-28 2022-07-27 双極型鉛蓄電池 WO2023008495A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280049726.7A CN117652052A (zh) 2021-07-28 2022-07-27 双极型铅蓄电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123478A JP7265309B2 (ja) 2021-07-28 2021-07-28 双極型鉛蓄電池
JP2021-123478 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008495A1 true WO2023008495A1 (ja) 2023-02-02

Family

ID=85086946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029008 WO2023008495A1 (ja) 2021-07-28 2022-07-27 双極型鉛蓄電池

Country Status (3)

Country Link
JP (1) JP7265309B2 (ja)
CN (1) CN117652052A (ja)
WO (1) WO2023008495A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514794A (ja) * 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー バイポラープレートの製造方法
US20120237816A1 (en) * 2011-03-15 2012-09-20 YottaQ, Inc. Low-cost high-power battery and enabling bipolar substrate
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート
JP7057461B1 (ja) * 2021-04-08 2022-04-19 古河電池株式会社 双極型蓄電池、双極型蓄電池の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001202967A (ja) 2000-01-17 2001-07-27 Matsushita Electric Ind Co Ltd 鉛蓄電池およびその製造方法
BRPI0703410B1 (pt) 2007-08-06 2017-05-02 Electrocell Indústria E Comércio De Equipamentos Elétricos Ltda placa para bateria bipolar e bateria bipolar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001514794A (ja) * 1997-03-12 2001-09-11 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー バイポラープレートの製造方法
US20120237816A1 (en) * 2011-03-15 2012-09-20 YottaQ, Inc. Low-cost high-power battery and enabling bipolar substrate
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート
JP7057461B1 (ja) * 2021-04-08 2022-04-19 古河電池株式会社 双極型蓄電池、双極型蓄電池の製造方法

Also Published As

Publication number Publication date
CN117652052A (zh) 2024-03-05
JP2023019023A (ja) 2023-02-09
JP7265309B2 (ja) 2023-04-26

Similar Documents

Publication Publication Date Title
US6579647B2 (en) Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
US9899666B2 (en) Liquid lead-acid battery and idling stop vehicle using liquid lead-acid battery
CN100448093C (zh) 铅酸电池
US20100062335A1 (en) Bipolar battery
JP7057461B1 (ja) 双極型蓄電池、双極型蓄電池の製造方法
WO2023008495A1 (ja) 双極型鉛蓄電池
JP2023162291A (ja) 鉛合金箔及びその製造方法、鉛蓄電池用正極、鉛蓄電池、並びに蓄電システム
WO2022224531A1 (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
WO2022215329A1 (ja) 双極型蓄電池、双極型蓄電池の製造方法、双極型鉛蓄電池
JP7057465B1 (ja) 双極型鉛蓄電池
WO2022202443A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
WO2022202442A1 (ja) 鉛蓄電池用集電シート、鉛蓄電池、双極型鉛蓄電池
JP2023141123A (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
WO2022201629A1 (ja) 双極型蓄電池
EP4318683A1 (en) Bipolar storage battery
CN211320252U (zh) 铅蓄电池
JPH0822816A (ja) 角形密閉電池
JPH0927318A (ja) 鉛蓄電池
JPH07254408A (ja) 鉛蓄電池
WO2021150851A1 (en) Lead-acid battery having fiber electrode and alloy for use with same
JP2022110383A (ja) 液式鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849556

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280049726.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2401000454

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022849556

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849556

Country of ref document: EP

Effective date: 20240228