WO2022202361A1 - 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2022202361A1
WO2022202361A1 PCT/JP2022/010594 JP2022010594W WO2022202361A1 WO 2022202361 A1 WO2022202361 A1 WO 2022202361A1 JP 2022010594 W JP2022010594 W JP 2022010594W WO 2022202361 A1 WO2022202361 A1 WO 2022202361A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte secondary
binder
nonaqueous electrolyte
secondary battery
Prior art date
Application number
PCT/JP2022/010594
Other languages
English (en)
French (fr)
Inventor
靖彦 向笠
英昭 藤分
洋行 藤本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to CN202280015081.5A priority Critical patent/CN116941058A/zh
Priority to JP2023508987A priority patent/JPWO2022202361A1/ja
Priority to US18/281,080 priority patent/US20240162443A1/en
Publication of WO2022202361A1 publication Critical patent/WO2022202361A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode for nonaqueous electrolyte secondary batteries, a method for manufacturing a positive electrode for nonaqueous electrolyte secondary batteries, and a nonaqueous electrolyte secondary battery.
  • Patent Document 1 discloses a positive electrode containing polyvinylidene fluoride (PVDF) having a weight average molecular weight of 500,000 to 1,000,000 as a binder. It is described as unfavorable because it leads to deterioration of battery characteristics due to deterioration and deterioration of uniformity.
  • PVDF polyvinylidene fluoride
  • An object of the present disclosure is to provide a positive electrode for a non-aqueous electrolyte secondary battery with improved adhesion and suppressed variations in battery characteristics.
  • a positive electrode for a nonaqueous electrolyte secondary battery which is one aspect of the present disclosure, includes a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector, wherein the positive electrode mixture layer is made of a positive electrode active material. , a conductive agent, and a binder, wherein the weight average molecular weight of the binder is 1.3 million or more, and in the particle size distribution of the binder, D10 and D90 satisfy D90 ⁇ D10 ⁇ 100 ⁇ m. Characterized by
  • a method for manufacturing a positive electrode for a nonaqueous electrolyte secondary battery which is one aspect of the present disclosure, includes a positive electrode mixture slurry in which a positive electrode mixture slurry is prepared by kneading a positive electrode active material, a conductive agent, and a binder. and a positive electrode mixture layer forming step of applying, drying, and rolling the positive electrode mixture slurry on the surface of the positive electrode current collector to form a positive electrode mixture layer, wherein the weight average molecular weight of the binder is , 1,300,000 or more, and in the particle size distribution of the binder, D10 and D90 satisfy D90 ⁇ D10 ⁇ 100 ⁇ m.
  • a non-aqueous electrolyte secondary battery includes the positive electrode for a non-aqueous electrolyte secondary battery described above, a negative electrode, and a non-aqueous electrolyte.
  • non-aqueous electrolyte secondary battery which is one aspect of the present disclosure, it is possible to achieve both improvement in electrode adhesion and suppression of variations in battery characteristics.
  • FIG. 1 is an axial cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment
  • a cylindrical battery in which a wound electrode body is housed in a cylindrical outer body is exemplified, but the electrode body is not limited to a wound type, and a plurality of positive electrodes and a plurality of negative electrodes are interposed between separators. It may be of a laminated type in which one sheet is alternately laminated on the other. Moreover, the exterior body is not limited to a cylindrical shape, and may be, for example, a square shape, a coin shape, or the like. It may be of a pouch type composed of a laminate sheet including a metal layer and a resin layer.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • an electrode body 14 and a non-aqueous electrolyte (not shown) are housed in an exterior body 15 .
  • the electrode body 14 has a wound structure in which the positive electrode 11 and the negative electrode 12 are wound with the separator 13 interposed therebetween.
  • the sealing member 16 side will be referred to as "upper”
  • the bottom side of the outer package 15 will be referred to as "lower”.
  • the inside of the secondary battery 10 is hermetically sealed by closing the opening end of the exterior body 15 with the sealing body 16 .
  • Insulating plates 17 and 18 are provided above and below the electrode body 14, respectively.
  • the positive electrode lead 19 extends upward through the through hole of the insulating plate 17 and is welded to the lower surface of the filter 22 which is the bottom plate of the sealing member 16 .
  • the cap 26, which is the top plate of the sealing member 16 electrically connected to the filter 22, serves as a positive electrode terminal.
  • the negative electrode lead 20 passes through the through hole of the insulating plate 18 , extends to the bottom side of the exterior body 15 , and is welded to the bottom inner surface of the exterior body 15 .
  • the exterior body 15 becomes a negative electrode terminal.
  • the negative electrode lead 20 passes through the through hole of the insulating plate 18 and extends to the bottom side of the exterior body 15 and is welded to the bottom inner surface of the exterior body 15 .
  • the exterior body 15 is, for example, a bottomed cylindrical metal exterior can.
  • a gasket 27 is provided between the exterior body 15 and the sealing body 16 to ensure hermetic sealing of the inside of the secondary battery 10 .
  • the exterior body 15 has a grooved portion 21 that supports the sealing body 16 and is formed, for example, by pressing the side portion from the outside.
  • the grooved portion 21 is preferably annularly formed along the circumferential direction of the exterior body 15 and supports the sealing body 16 via a gasket 27 on its upper surface.
  • the sealing body 16 has a filter 22, a lower valve body 23, an insulating member 24, an upper valve body 25, and a cap 26 which are stacked in order from the electrode body 14 side.
  • Each member constituting the sealing member 16 has, for example, a disk shape or a ring shape, and each member other than the insulating member 24 is electrically connected to each other.
  • the lower valve body 23 and the upper valve body 25 are connected to each other at their central portions, and an insulating member 24 is interposed between their peripheral edge portions.
  • the positive electrode 11, the negative electrode 12, the separator 13, and the non-aqueous electrolyte that constitute the electrode body 14 will be described in detail below, particularly the positive electrode 11.
  • the positive electrode 11 has a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layers are preferably formed on both sides of the positive electrode current collector.
  • foils of metals such as aluminum and aluminum alloys that are stable in the potential range of the positive electrode, films having such metals on the surface layer, and the like can be used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer contains a positive electrode active material, a conductive agent, and a binder. Further, the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector.
  • a method for producing a positive electrode mixture layer includes a positive electrode mixture slurry preparation step of kneading a positive electrode active material, a conductive agent, and a binder to prepare a positive electrode mixture slurry; and a positive electrode mixture layer forming step of applying, drying, and rolling the positive electrode mixture slurry to form a positive electrode mixture layer.
  • the positive electrode 11 may be provided with a positive electrode exposed portion where the surface of the positive electrode current collector is exposed.
  • a positive electrode lead 19 is connected to the positive electrode exposed portion by ultrasonic welding or the like.
  • the positive electrode exposed portions are preferably provided on both surfaces of the positive electrode 11 so as to overlap with each other in the thickness direction of the positive electrode 11 .
  • the positive electrode exposed portion may be formed at the inner end of the winding or the outer end of the winding of the positive electrode 11, but from the viewpoint of current collection, it is provided at a position substantially equidistant from the inner end and the outer end of the winding. is preferred.
  • the positive electrode lead 19 By connecting the positive electrode lead 19 to the positive electrode exposed portion provided at such a position, when the electrode body 14 is wound, the positive electrode lead 19 is positioned substantially at the center in the radial direction of the electrode body 14 in the width direction. is arranged so as to protrude upward from the end face of the
  • the positive electrode exposed portion can be provided, for example, by intermittent application in which the positive electrode mixture slurry is not applied to a part of the positive electrode current collector.
  • Examples of the positive electrode active material contained in the positive electrode mixture layer include lithium transition metal oxides containing transition metal elements such as Co, Mn, and Ni.
  • Lithium transition metal oxides include, for example, Li x CoO 2 , Li x NiO 2 , Li x MnO 2 , Li x Co y Ni 1-y O 2 , Li x Co y M 1-y O z , Li x Ni 1- yMyOz , LixMn2O4 , LixMn2 - yMyO4 , LiMPO4 , Li2MPO4F ( M ; Na , Mg , Sc , Y , Mn, Fe, Co, Ni , Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0.9, 2.0 ⁇ z ⁇ 2.3).
  • the positive electrode active material is Li x NiO 2 , Li x Co y Ni 1-y O 2 , Li x Ni 1- y My O z ( M; at least one of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb, and B, 0 ⁇ x ⁇ 1.2, 0 ⁇ y ⁇ 0 .9, 2.0 ⁇ z ⁇ 2.3).
  • Examples of conductive agents contained in the positive electrode mixture layer include carbon black (CB), acetylene black (AB), ketjen black, carbon nanotubes (CNT), graphene, graphite and other carbon-based particles. These may be used alone or in combination of two or more.
  • the weight-average molecular weight of the binder contained in the positive electrode mixture layer is 1,300,000 or more. Thereby, the adhesion between the positive electrode current collector and the positive electrode mixture layer can be improved.
  • the upper limit of the weight average molecular weight of the binder is, for example, 2,000,000. Weight average molecular weights were determined by gel permeation chromatography.
  • D10 and D90 satisfy D90-D10 ⁇ 100 ⁇ m.
  • D50 satisfies 60 ⁇ m to 200 ⁇ m.
  • D10, D50, and D90 mean particle diameters at which the cumulative frequency is 10%, 50%, and 90%, respectively, from the smallest particle size in the volume-based particle size distribution.
  • the particle size distribution of the carbon nanotube dispersion for electrode slurry can be measured using a laser diffraction particle size distribution analyzer (eg, Mastersizer 3000 manufactured by Malvern Panalytical).
  • binders include fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide-based resins, acrylic-based resins, and polyolefin-based resins. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • fluorine-based resins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polyimide-based resins, acrylic-based resins, and polyolefin-based resins. These may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the binder is preferably PVDF, a derivative of PVDF, or a copolymer containing vinylidene fluoride (VDF).
  • a PVDF derivative is a PVDF into which a functional group has been introduced.
  • a derivative of PVDF is, for example, PVDF into which a carbonyl group has been introduced. This improves the adhesion.
  • the copolymer containing VDF is, for example, a copolymer of VDF and other monomers. Other monomers include tetrafluoroethylene, hexafluoropropylene, tetrafluoroethylene and the like.
  • the content of the binder is preferably less than 1 part by mass, more preferably 0.9 parts by mass or less, and 0.7 parts by mass or less with respect to 100 parts by mass of the positive electrode active material. is particularly preferred. As a result, the content of the positive electrode active material in the positive electrode mixture layer can be increased, so that the capacity of the battery can be increased.
  • the lower limit of the content of the binder is, for example, 0.1 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the negative electrode 12 includes a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layers are preferably formed on both sides of the negative electrode current collector.
  • a foil of a metal such as copper or a copper alloy that is stable in the potential range of the negative electrode, a film having the metal on the surface layer, or the like can be used.
  • the thickness of the negative electrode current collector is, for example, 5 ⁇ m to 30 ⁇ m.
  • the negative electrode mixture layer contains a negative electrode active material and a binder.
  • the thickness of the negative electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the current collector.
  • a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. is applied onto a negative electrode current collector, the coating film is dried, and then rolled to form a negative electrode mixture layer on the negative electrode current collector. It can be produced by forming on both sides.
  • the negative electrode 12 may be provided with a negative electrode exposed portion where the surface of the negative electrode current collector is exposed.
  • a negative electrode lead 20 is connected to the negative electrode exposed portion by ultrasonic welding or the like.
  • the negative electrode exposed portions are preferably provided on both surfaces of the negative electrode 12 so as to overlap with each other in the thickness direction of the negative electrode 12 .
  • the negative electrode exposed portion is formed, for example, at the winding inner end portion of the negative electrode 12 .
  • the position where the negative electrode exposed portion is formed is not limited to the inner end portion of the winding of the negative electrode 12, and may be provided, for example, at the outer end portion of the winding.
  • the negative electrode exposed portion can be provided, for example, by intermittent application in which the negative electrode mixture slurry is not applied to a part of the negative electrode current collector.
  • the negative electrode active material is not particularly limited as long as it can reversibly absorb and release lithium ions, and carbon materials such as graphite are generally used.
  • Graphite may be any of natural graphite such as flaky graphite, massive graphite and earthy graphite, artificial graphite such as massive artificial graphite and graphitized mesophase carbon microbeads.
  • a metal alloyed with Li such as Si or Sn, a metal compound containing Si, Sn or the like, a lithium-titanium composite oxide, or the like may be used.
  • Si-containing compound represented by SiO x (0.5 ⁇ x ⁇ 1.6) or a lithium silicate phase represented by Li 2y SiO (2+y) (0 ⁇ y ⁇ 2) contains fine particles of Si.
  • a dispersed Si-containing compound or the like may be used in combination with graphite.
  • the binder contained in the negative electrode mixture layer may be fluorine-containing resin such as PTFE or PVDF, PAN, polyimide, acrylic resin, polyolefin, or the like, but preferably styrene-butadiene. Rubber (SBR) is used.
  • the negative electrode mixture layer may contain CMC or its salt, polyacrylic acid (PAA) or its salt, polyvinyl alcohol (PVA), or the like.
  • the negative electrode mixture layer contains, for example, SBR and CMC or a salt thereof.
  • a porous sheet having ion permeability and insulation is used for the separator.
  • porous sheets include microporous thin films, woven fabrics, and non-woven fabrics.
  • Polyolefins such as polyethylene and polypropylene, cellulose, and the like are suitable for the material of the separator.
  • the separator may have a single layer structure or a laminated structure.
  • a layer of resin having high heat resistance such as aramid resin and a filler layer containing inorganic compound filler may be provided on the surface of the separator.
  • Non-aqueous electrolyte contains a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more thereof.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least part of the hydrogen atoms of these solvents with halogen atoms such as fluorine.
  • halogen-substituted compounds include fluorinated cyclic carbonates such as fluoroethylene carbonate (FEC), fluorinated chain carbonates, and fluorinated chain carboxylates such as methyl fluoropropionate (FMP).
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylates
  • esters examples include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate. , Ethyl propyl carbonate, Methyl isopropyl carbonate, and other chain carbonates; ⁇ -Butyrolactone (GBL), ⁇ -Valerolactone (GVL), and other cyclic carboxylic acid esters; ), and chain carboxylic acid esters such as ethyl propionate.
  • cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC) and butylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC diethyl carbonate
  • methyl propyl carbonate methyl propyl carbonate
  • Ethyl propyl carbonate Methyl isoprop
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 -dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineol, cyclic ethers such as crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butyl phenyl ether, pentyl phenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, cycl
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4, LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN , LiCF3SO3 , LiCF3CO2 , Li ( P ( C2O4 ) F4 ), LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, lithium chloroborane, lithium lower aliphatic carboxylate, Li 2 B 4O7 , borates such as Li( B ( C2O4 )F2), LiN( SO2CF3 ) 2 , LiN( C1F2l + 1SO2 ) ( CmF2m +1SO2 ) ⁇ l , where m is an integer of 0 or more ⁇ .
  • Lithium salts may be used singly or in combination. Of these, it is preferable to use LiPF 6 from the viewpoint of ion conductivity, electrochemical stability, and the like.
  • the concentration of the lithium salt is preferably, for example, 0.8 mol to 1.8 mol per 1 L of the non-aqueous solvent.
  • Example 1 [Preparation of positive electrode] A lithium transition metal oxide represented by LiNi 0.8 Co 0.15 Al 0.05 O 2 was used as the positive electrode active material.
  • the binder polyvinylidene fluoride (PVDF) having a weight average molecular weight of 1,390,000 and a D90-D10 of 133 ⁇ m was used.
  • a positive electrode active material, acetylene black (AB) as a conductive agent, and PVDF were mixed at a mass ratio of 100:0.8:0.7, and mixed while adding N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a positive electrode mixture slurry having a solid content ratio of 78.5% was prepared by kneading.
  • the positive electrode mixture slurry was applied to both surfaces except for the portion to be connected with the positive electrode current collector lead made of aluminum foil, and the coating film was dried. Then, after the coating film was rolled using a roller, it was cut into a predetermined electrode size to prepare a positive electrode in which positive electrode mixture layers were formed on both sides of a positive electrode current collector.
  • a test piece having a width of 15 mm and a length of 80 mm was prepared by cutting the positive electrode.
  • a double-sided tape (manufactured by Nitto Denko Corporation) was attached to the positive electrode mixture layer on one side of the test piece, and fixed to a stainless steel substrate with a smooth surface.
  • the stainless steel substrate on which the specimen was fixed was placed horizontally.
  • One end of the positive electrode current collector in the longitudinal direction of the test piece was fixed to a movable jig of a tensile tester (trade name: Tensilon universal tester RTC1210, manufactured by A&D Co., Ltd.), and the substrate surface of the stainless steel substrate was measured.
  • the positive electrode current collector was peeled off in the direction of 90° with respect to .
  • the movable jig was moved to separate the positive electrode material mixture layer and the positive electrode current collector of the test piece at a speed of 20 mm/min.
  • the tensile direction was always maintained at 90° with respect to the substrate surface of the stainless steel substrate on which the test piece was fixed.
  • the numerical value of the stable tensile strength when the test piece was peeled off by 30 mm or more was read and defined as the peel strength (N/m) of the positive electrode material mixture layer from the positive electrode current collector.
  • Example 2 Evaluation was performed in the same manner as in Example 1, except that PVDF having a weight average molecular weight of 1,820,000 and a D90-D10 of 204 ⁇ m was used in the production of the positive electrode.
  • Example 1 Evaluation was performed in the same manner as in Example 1, except that PVDF having a weight average molecular weight of 1,180,000 and a D90-D10 of 73 ⁇ m was used in the production of the positive electrode.
  • Example 2 Evaluation was performed in the same manner as in Example 1, except that PVDF having a weight average molecular weight of 1.4 million and a D90-D10 of 70 ⁇ m was used in the production of the positive electrode.
  • Table 1 shows the viscosity change rate and peel strength evaluation results of Examples and Comparative Examples.
  • the viscosity change rates of Example 2 and Comparative Examples 1 and 2 are shown as relative values when the viscosity change rate of Example 1 is set to 100.
  • Table 1 also shows the weight average molecular weight and D90-D10 value of PVDF used as a binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

密着性が向上しつつ、電池特性のばらつきが抑制された非水電解質二次電池用正極を提供する。本開示の一態様である非水電解質二次電池用正極は、正極集電体と、正極集電体の表面に形成された正極合剤層とを含み、正極合剤層は、正極活物質と、導電剤と、結着剤とを含有し、結着剤の重量平均分子量は、130万以上であり、結着剤の粒度分布において、D10とD90がD90-D10≧100μmを満たす。

Description

非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池に関する。
 電極材料間、及び、電極材料を含む合剤層と集電体の密着性を確保するために、電極中には一定量の結着剤が含まれる。特許文献1には、結着剤として、重量平均分子量が50万~100万のポリフッ化ビニリデン(PVDF)を含む正極が開示されており、重量平均分子量が100万を超えるPVDFは、加工性の悪化、及び、均一性の低下による電池特性の悪化を招くため、好ましくないと記載されている。
特開2005-251684号公報
 近年、高容量化の観点から、合剤層において、活物質の量を増やし、結着剤等の活物質以外の電極材料の量を減らすことが検討されている。本発明者らが鋭意検討した結果、重量平均分子量の大きな結着剤を用いれば比較的少量でも密着性を確保することは可能であるが、電極合剤スラリーの安定性が低下し、電池特性のばらつきが大きくなることが判明した。特許文献1に開示された技術は、密着性と電極合剤スラリーの安定性の両立については考慮されておらず、未だ改善の余地がある。
 本開示の目的は、密着性が向上しつつ、電池特性のばらつきが抑制された非水電解質二次電池用正極を提供することである。
 本開示の一態様である非水電解質二次電池用正極は、正極集電体と、正極集電体の表面に形成された正極合剤層とを含み、正極合剤層は、正極活物質と、導電剤と、結着剤とを含有し、結着剤の重量平均分子量は、130万以上であり、結着剤の粒度分布において、D10とD90がD90-D10≧100μmを満たすことを特徴とする。
 本開示の一態様である非水電解質二次電池用正極の製造方法は、正極活物質と、導電剤と、結着剤とを混錬して、正極合剤スラリーを調製する正極合剤スラリー調製ステップと、正極集電体の表面に、正極合剤スラリーを塗布、乾燥、圧延して正極合剤層を形成する正極合剤層形成ステップと、を含み、結着剤の重量平均分子量は、130万以上であり、結着剤の粒度分布において、D10とD90がD90-D10≧100μmを満たすことを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記の非水電解質二次電池用正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池によれば、電極の密着性の向上と電池特性のばらつきの抑制を両立させることができる。
実施形態の一例である非水電解質二次電池の軸方向断面図である。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の外装体に収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、外装体は円筒形に限定されず、例えば角形、コイン形等であってもよい。金属層及び樹脂層を含むラミネートシートで構成されたパウチ型であってもよい。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示す二次電池10は、電極体14及び非水電解質(図示せず)が外装体15に収容されている。電極体14は、正極11及び負極12がセパレータ13を介して巻回されてなる巻回型の構造を有する。なお、以下では、説明の便宜上、封口体16側を「上」、外装体15の底部側を「下」として説明する。
 外装体15の開口端部が封口体16で塞がれることで、二次電池10の内部は、密閉される。電極体14の上下には、絶縁板17,18がそれぞれ設けられる。正極リード19は絶縁板17の貫通孔を通って上方に延び、封口体16の底板であるフィルタ22の下面に溶接される。二次電池10では、フィルタ22と電気的に接続された封口体16の天板であるキャップ26が正極端子となる。他方、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。二次電池10では、外装体15が負極端子となる。なお、負極リード20が終端部に設置されている場合は、負極リード20は絶縁板18の貫通孔を通って、外装体15の底部側に延び、外装体15の底部内面に溶接される。
 外装体15は、例えば有底の円筒形状の金属製外装缶である。外装体15と封口体16の間にはガスケット27が設けられ、二次電池10の内部の密閉性が確保されている。外装体15は、例えば側面部を外側からプレスして形成された、封口体16を支持する溝入部21を有する。溝入部21は、外装体15の周方向に沿って環状に形成されることが好ましく、その上面でガスケット27を介して封口体16を支持する。
 封口体16は、電極体14側から順に積層された、フィルタ22、下弁体23、絶縁部材24、上弁体25、及びキャップ26を有する。封口体16を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材24を除く各部材は互いに電気的に接続されている。下弁体23と上弁体25とは各々の中央部で互いに接続され、各々の周縁部の間には絶縁部材24が介在している。異常発熱で電池の内圧が上昇すると、例えば、下弁体23が破断し、これにより上弁体25がキャップ26側に膨れて下弁体23から離れることにより両者の電気的接続が遮断される。さらに内圧が上昇すると、上弁体25が破断し、キャップ26の開口部26aからガスが排出される。
 以下、電極体14を構成する正極11、負極12、セパレータ13、及び非水電解質について、特に正極11について詳説する。
 [正極]
 正極11は、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極集電体の両面に形成されることが好ましい。正極集電体には、アルミニウム、アルミニウム合金など、正極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極集電体の厚みは、例えば、10μm~30μmである。
 正極合剤層は、正極活物質と、導電剤と、結着剤とを含む。また、正極合剤層の厚みは、例えば、正極集電体の片側で10μm~150μmである。正極合剤層の製造方法は、正極活物質と、導電剤と、結着剤とを混錬して、正極合剤スラリーを調製する正極合剤スラリー調製ステップと、正極集電体の表面に、正極合剤スラリーを塗布、乾燥、圧延して正極合剤層を形成する正極合剤層形成ステップと、を含む。
 正極11には、正極集電体の表面が露出した正極露出部が設けられてもよい。正極露出部には、超音波溶接等によって、正極リード19が接続される。正極露出部は、正極11の厚み方向に重なるように正極11の両面に設けられることが好適である。正極露出部は、正極11の巻内端部又は巻外端部に形成されてもよいが、集電性の観点から、巻内端部及び巻外端部から略等距離の位置に設けられるのが好ましい。このような位置に設けられた正極露出部に正極リード19が接続されることで、電極体14として巻回された際に、正極リード19は、電極体14の半径方向の略中央で幅方向の端面から上方に突出して配置される。正極露出部は、例えば、正極集電体の一部に正極合剤スラリーを塗布しない間欠塗布により設けることできる。
 正極合剤層に含まれる正極活物質としては、Co、Mn、Ni等の遷移金属元素を含有するリチウム遷移金属酸化物が例示できる。リチウム遷移金属酸化物は、例えばLiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn、LiMn2-y、LiMPO、LiMPOF(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)である。これらは、1種単独で用いてもよいし、複数種を混合して用いてもよい。非水電解質二次電池の高容量化を図ることができる点で、正極活物質は、LiNiO、LiCoNi1-y、LiNi1-y(M;Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、Bのうち少なくとも1種、0<x≦1.2、0<y≦0.9、2.0≦z≦2.3)等のリチウムニッケル複合酸化物を含むことが好ましい。
 正極合剤層に含まれる導電剤としては、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層に含まれる結着剤の重量平均分子量は、130万以上である。これにより、正極集電体と正極合剤層の密着性を向上させることができる。結着剤の重量平均分子量の上限値は、例えば、200万である。重量平均分子量は、ゲル浸透クロマトグラフィーにより測定した。
 結着剤の粒度分布において、D10とD90はD90-D10≧100μmを満たす。結着剤において、分子量を130万以上と大きくしつつ、D90-D10の差を100μm以上に大きくすることで、スラリー中での結着剤の再凝集が抑制され、スラリーの安定性が向上する。また、結着剤の粒度分布において、D50が60μm~200μmを満たすことが好ましい。D10、D50、D90は、各々、体積基準の粒度分布において頻度の累積が粒径の小さい方から10%、50%、90%となる粒径を意味する。電極スラリー用カーボンナノチューブ分散液の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、Malvern Panalytical社製、マスターサイザー3000)を用いて測定できる。
 結着剤の例としては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、ポリアクリロニトリル(PAN)、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 結着剤は、PVDF、PVDFの誘導体、又は、フッ化ビニリデン(VDF)を含む共重合体であることが好ましい。PVDFの誘導体とは、官能基を導入したPVDFである。PVDFの誘導体は、例えば、カルボニル基を導入したPVDFである。これにより、密着性が向上する。また、VDFを含む共重合体は、例えば、VDFと他の単量体との共重合体である。他の単量体としては、テトラフルオロエチレン、ヘキサフルオロプロピレン、テトラフルオロエチレン等が例示できる。
 正極合剤層において、結着剤の含有量は、正極活物質100質量部に対して、1質量部未満であることが好ましく、0.9質量部以下がより好ましく、0.7質量部以下が特に好ましい。これにより、正極合剤層における正極活物質の含有量を増やすことができるので、電池を高容量化できる。結着剤の含有量の下限値は、正極活物質100質量部に対して、例えば、0.1質量部以下である。
 [負極]
 負極12は、負極集電体と、負極集電体の表面に形成された負極合剤層とを含む。負極合剤層は、負極集電体の両面に形成されることが好ましい。負極集電体には、銅、銅合金等の負極の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極集電体の厚みは、例えば、5μm~30μmである。
 負極合剤層は、負極活物質、及び結着剤を含む。負極合剤層の厚みは、例えば、集電体の片側で10μm~150μmである。負極は、例えば、負極集電体上に負極活物質、結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合剤層を負極集電体の両面に形成することにより作製できる。
 負極12には、負極集電体の表面が露出した負極露出部が設けられてもよい。負極露出部には、超音波溶接等によって、負極リード20が接続される。負極露出部は、負極12の厚み方向に重なるように負極12の両面に設けられることが好適である。負極露出部は、例えば、負極12の巻内端部に形成される。負極12の巻内端部に設けられた負極露出部に負極リード20が接続されることで、電極体14として巻回された際に、負極リード20は、電極体14の巻回軸近傍で幅方向の端面から下方に突出して配置される。なお、負極露出部が形成される位置は、負極12の巻内端部に限定されず、例えば、巻外端部等に設けられてもよい。負極露出部は、例えば、負極集電体の一部に負極合剤スラリーを塗布しない間欠塗布により設けることができる。
 負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合剤層に含まれる結着剤には、正極の場合と同様に、PTFE、PVDF等の含フッ素樹脂、PAN、ポリイミド、アクリル樹脂、ポリオレフィンなどを用いてもよいが、好ましくはスチレン-ブタジエンゴム(SBR)が用いられる。また、負極合剤層には、CMC又はその塩、ポリアクリル酸(PAA)又はその塩、ポリビニルアルコール(PVA)などが含まれていてもよい。負極合剤層には、例えばSBRと、CMC又はその塩が含まれる。
 [セパレータ]
 セパレータには、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータは、単層構造であってもよく、積層構造を有していてもよい。また、セパレータの表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素原子の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.8モル~1.8モルとすることが好ましい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
 <実施例1>
 [正極の作製]
 正極活物質としては、LiNi0.8Co0.15Al0.05で表されるリチウム遷移金属酸化物を用いた。結着剤としては、重量平均分子量が139万で、D90-D10が133μmのポリフッ化ビニリデン(PVDF)を用いた。正極活物質と、導電剤としてのアセチレンブラック(AB)と、PVDFとを、100:0.8:0.7の質量比で混合し、N-メチル-2-ピロリドン(NMP)を加えながら混錬して、固形分比率が78.5%の正極合剤スラリーを調製した。次に、アルミニウム箔からなる正極集電体リードが接続される部分を残して、当該正極合剤スラリーを両面に塗布し、塗膜を乾燥させた。そして、ローラを用いて塗膜を圧延した後、所定の電極サイズに切断し、正極集電体の両面に正極合剤層が形成された正極を作製した。
 [正極合剤スラリーの安定性の評価]
 スラリー調整直後、及び、調整から7日経過後の正極合剤スラリーについて、B型粘度計(東機産業(株)製のVISCOMETER、Hロータ)を用いて、25℃での粘度を測定した。調整直後の粘度に対する7日経過後の粘度の比率(7日経過後の粘度/調整直後の粘度)を粘度変化率とし、正極合剤スラリーの安定性の指標とした。
 [密着性の評価]
 上記正極を裁断して幅15mm、長さ80mmの試験片を作製した。両面テープ(日東電工(株)製)を試験片の一方の面の正極合剤層に貼り付け、表面が平滑なステンレス鋼基板に固定した。試験片が固定されたステンレス鋼基板を、水平になるように設置した。試験片の長手方向における正極集電体の一端を、引張り試験機(商品名:テンシロン万能試験機RTC1210、(株)エー・アンド・デイ製)の可動冶具に固定し、ステンレス鋼基板の基板面に対して90°の方向に正極集電体を剥離するように設定した。そして、可動治具を移動させ、試験片の正極合剤層と正極集電体とを20mm/分の速度で剥離させた。その際、引張方向は試験片を固定しているステンレス鋼基板の基板面に対して常に90°に維持した。試験片を30mm以上が剥離した時の、安定した引張り強度の数値を読み取り、正極合剤層の正極集電体からの剥離強度(N/m)とした。
 <実施例2>
 正極の作製において、重量平均分子量182万、D90-D10が204μmのPVDFを用いたこと以外は、実施例1と同様にして、評価を行った。
 <比較例1>
 正極の作製において、重量平均分子量118万、D90-D10が73μmのPVDFを用いたこと以外は、実施例1と同様にして、評価を行った。
 <比較例2>
 正極の作製において、重量平均分子量140万、D90-D10が70μmのPVDFを用いたこと以外は、実施例1と同様にして、評価を行った。
 実施例及び比較例の粘度変化率、及び剥離強度の評価結果を表1に示す。表1において、実施例2及び比較例1、2の粘度変化率は、実施例1の粘度変化率を100とした時の相対値で示す。また、表1には、結着剤として用いたPVDFの重量平均分子量、及びD90-D10の値も記載した。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、実施例1、2はいずれも、比較例1、2と比較して、正極合剤スラリーの安定性の向上と剥離強度の向上を両立させることができた。これにより、正極の密着性が向上しつつ、電池特性のばらつきを抑制することができる。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、15 外装体、16 封口体、17,18 絶縁板、19 正極リード、20 負極リード、21 溝入部、22 フィルタ、23 下弁体、24 絶縁部材、25 上弁体、26 キャップ、26a 開口部、27 ガスケット

Claims (5)

  1.  正極集電体と、前記正極集電体の表面に形成された正極合剤層とを有する正極であって、
     前記正極合剤層は、正極活物質と、導電剤と、結着剤とを含み、
     前記結着剤の重量平均分子量は、130万以上であり、
     前記結着剤の粒度分布において、D10とD90がD90-D10≧100μmを満たす、非水電解質二次電池用正極。
  2.  前記正極合剤層において、前記結着剤の含有量は、前記正極活物質100質量部に対して、1質量部未満である、請求項1に記載の非水電解質二次電池用正極。
  3.  前記結着剤は、ポリフッ化ビニリデン、ポリフッ化ビニリデンの誘導体、及び、フッ化ビニリデンを含む共重合体の少なくとも一つである、請求項1又は2に記載の非水電解質二次電池用正極。
  4.  正極活物質と、導電剤と、結着剤とを混錬して、正極合剤スラリーを調製する正極合剤スラリー調製ステップと、
     正極集電体の表面に、前記正極合剤スラリーを塗布、乾燥、圧延して正極合剤層を形成する正極合剤層形成ステップと、を含み、
     前記結着剤の重量平均分子量は、130万以上であり、
     前記結着剤の粒度分布において、D10とD90がD90-D10≧100μmを満たす、非水電解質二次電池用正極の製造方法。
  5.  請求項1~3のいずれか1項に記載の非水電解質二次電池用正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2022/010594 2021-03-26 2022-03-10 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池 WO2022202361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280015081.5A CN116941058A (zh) 2021-03-26 2022-03-10 非水电解质二次电池用正极、非水电解质二次电池用正极的制造方法以及非水电解质二次电池
JP2023508987A JPWO2022202361A1 (ja) 2021-03-26 2022-03-10
US18/281,080 US20240162443A1 (en) 2021-03-26 2022-03-10 Positive electrode for nonaqueous electrolyte secondary batteries, method for producing positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052644 2021-03-26
JP2021-052644 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202361A1 true WO2022202361A1 (ja) 2022-09-29

Family

ID=83395712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010594 WO2022202361A1 (ja) 2021-03-26 2022-03-10 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池

Country Status (4)

Country Link
US (1) US20240162443A1 (ja)
JP (1) JPWO2022202361A1 (ja)
CN (1) CN116941058A (ja)
WO (1) WO2022202361A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195784A1 (ja) * 2016-05-13 2017-11-16 日本ゼオン株式会社 電気化学素子電極用バインダー粒子集合体、電気化学素子電極用スラリー組成物、およびそれらの製造方法、並びに、電気化学素子用電極および電気化学素子
WO2019065909A1 (ja) * 2017-09-28 2019-04-04 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池
WO2019156086A1 (ja) * 2018-02-07 2019-08-15 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
JP2020057606A (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 正極構造体および二次電池
JP2021504904A (ja) * 2017-11-30 2021-02-15 エルジー・ケム・リミテッド リチウム二次電池の正極製造用バインダー及びこれを使用した正極の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195784A1 (ja) * 2016-05-13 2017-11-16 日本ゼオン株式会社 電気化学素子電極用バインダー粒子集合体、電気化学素子電極用スラリー組成物、およびそれらの製造方法、並びに、電気化学素子用電極および電気化学素子
WO2019065909A1 (ja) * 2017-09-28 2019-04-04 日本ゼオン株式会社 二次電池用バインダー組成物、二次電池用スラリー組成物、二次電池用機能層、二次電池用電極層および二次電池
JP2021504904A (ja) * 2017-11-30 2021-02-15 エルジー・ケム・リミテッド リチウム二次電池の正極製造用バインダー及びこれを使用した正極の製造方法
WO2019156086A1 (ja) * 2018-02-07 2019-08-15 日本ゼオン株式会社 電気化学素子用バインダー組成物、電気化学素子用スラリー組成物、電気化学素子用機能層および電気化学素子
JP2020057606A (ja) * 2018-10-03 2020-04-09 ダイキン工業株式会社 正極構造体および二次電池

Also Published As

Publication number Publication date
CN116941058A (zh) 2023-10-24
US20240162443A1 (en) 2024-05-16
JPWO2022202361A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6602130B2 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2019239652A1 (ja) 非水電解質二次電池
JP7182107B2 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
US20200067074A1 (en) Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP7233013B2 (ja) 非水電解質二次電池
WO2017150055A1 (ja) 非水電解質二次電池
US20220399575A1 (en) Non-aqueous electrolyte secondary battery
WO2019167558A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021106730A1 (ja) 非水電解質二次電池
JP7361340B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2023053625A1 (ja) 非水電解質二次電池
WO2022224824A1 (ja) 非水電解質二次電池
JP7361339B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP7233010B2 (ja) 二次電池用正極、二次電池用正極集電体、及び二次電池
WO2022202361A1 (ja) 非水電解質二次電池用正極、非水電解質二次電池用正極の製造方法、及び非水電解質二次電池
CN116195089A (zh) 二次电极用负极及二次电池
WO2019146413A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP2021099948A (ja) 非水電解質二次電池用負極及び非水電解質二次電池
WO2023053626A1 (ja) 非水電解質二次電池
WO2022230654A1 (ja) 非水電解質二次電池
WO2022158375A1 (ja) 非水電解質二次電池
WO2024142825A1 (ja) 非水電解質二次電池
WO2023013286A1 (ja) 非水電解質二次電池
WO2022092273A1 (ja) 非水電解質二次電池
WO2021106727A1 (ja) 非水電解質二次電池用負極、非水電解質二次電池、及び非水電解質二次電池用負極の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508987

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280015081.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18281080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775153

Country of ref document: EP

Kind code of ref document: A1