WO2022201925A1 - セラミック焼結体、及びセラミック焼結体の製造方法 - Google Patents

セラミック焼結体、及びセラミック焼結体の製造方法 Download PDF

Info

Publication number
WO2022201925A1
WO2022201925A1 PCT/JP2022/004896 JP2022004896W WO2022201925A1 WO 2022201925 A1 WO2022201925 A1 WO 2022201925A1 JP 2022004896 W JP2022004896 W JP 2022004896W WO 2022201925 A1 WO2022201925 A1 WO 2022201925A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sintered body
ceramic sintered
ceramic
hours
Prior art date
Application number
PCT/JP2022/004896
Other languages
English (en)
French (fr)
Inventor
優太 津川
江 尹
清治 矢野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=83395510&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2022201925(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022535196A priority Critical patent/JP7186930B1/ja
Publication of WO2022201925A1 publication Critical patent/WO2022201925A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents

Definitions

  • the present disclosure relates to a ceramic sintered body and a method for manufacturing a ceramic sintered body.
  • Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation.
  • An insulating ceramic plate is used for the circuit board mounted on the power module.
  • a method for manufacturing a ceramic plate for example, the following manufacturing method described in Patent Document 1 is known. That is, a step of mixing and kneading ceramic powder with a sintering aid or the like and then extrusion molding into a continuous sheet shape, a step of punching the continuous sheet into a desired shape to form a green sheet, and a green sheet A ceramic substrate is manufactured by performing the step of firing. In the green sheet firing process, the green sheets are fired in a state in which a required number of green sheets of about 10 to 20 are stacked.
  • Patent Document 2 discloses a silicon nitride sintered body prepared using a specific boride as a sintering aid.
  • An object of the present disclosure is to provide a ceramic sintered body with excellent bending strength. Another object of the present disclosure is to provide a method of manufacturing a ceramic sintered body as described above.
  • the bending strength of the ceramic sintered body is affected.
  • a high-frequency AC voltage is applied to a ceramic sintered body, a slight discharge occurs and the dielectric loss ⁇ ” increases.
  • the dielectric loss in a specific frequency band corresponds well to the bending strength.
  • One aspect of the present disclosure is a ceramic having a maximum value of dielectric loss ⁇ ′′ that occurs when an alternating voltage of 1 V is applied while continuously changing the frequency between 800 Hz and 1 MHz is 1 ⁇ 10 ⁇ 2 or less A sintered body is provided.
  • the ceramic sintered body has a dielectric loss within the above range in a specific frequency band when an AC voltage is applied, and can exhibit excellent bending strength.
  • the ceramic sintered body described above may be composed of silicon nitride. Since the silicon nitride sintered body has both heat resistance and high strength, it is superior to the ceramic sintered body in bending strength.
  • One aspect of the present disclosure includes a degreasing step of heating and degreasing a laminate of green sheets containing a ceramic, a sintering aid, a binder, and a dispersant, and heating the degreased laminate at a predetermined firing temperature.
  • a method for producing a ceramic sintered body comprising a first step of holding for 5 to 2.0 hours and a second step of holding at a temperature of 1400 to 1600° C. for 1.5 to 4.0 hours.
  • the method for manufacturing a ceramic sintered body has the temperature lowering step as described above, it is possible to manufacture a ceramic sintered body having excellent bending strength.
  • the present disclosure it is possible to provide a ceramic sintered body with excellent bending strength.
  • the present disclosure can also provide a method of manufacturing a ceramic sintered body as described above.
  • FIG. 1 is a schematic diagram for explaining a method for measuring dielectric loss ⁇ ′′.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • the maximum value of dielectric loss ⁇ ′′ that occurs when an alternating voltage of 1 V is applied while continuously changing the frequency between 800 Hz and 1 MHz is 1 ⁇ 10 ⁇ 2 or less.
  • a ceramic sintered body having a dielectric loss within the above range in a high frequency band has few defects such as voids and can exhibit excellent bending strength.
  • the maximum value of the dielectric loss ⁇ ′′ mentioned above may be, for example, 1 ⁇ 10 ⁇ 2 or less, 9 ⁇ 10 ⁇ 3 or less, 8 ⁇ 10 ⁇ 3 or less, or 6 ⁇ 10 ⁇ 3 or less.
  • the maximum value of ⁇ ′′ is generally 1 ⁇ 10 ⁇ 3 or more, or 2 ⁇ 10 ⁇ 3 or more.
  • the maximum value of the dielectric loss ⁇ ′′ described above may be adjusted within the ranges described above, for example, 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 , 1 ⁇ 10 ⁇ 3 to 9 ⁇ 10 ⁇ 3 , or 1 ⁇ 10 ⁇ 3 to 6 ⁇ 10 ⁇ 3 .
  • the dielectric loss ⁇ ′′ in this specification means a value measured by the following method.
  • the frequency is continuously changed from 50 Hz to 1 MHz, the dielectric constant ⁇ and tan ⁇ are measured between 800 Hz and 1 MHz, and the measured values are used to calculate the dielectric loss ⁇ ” based on the following formula (1). be able to. Measurements are made at 25°C.
  • an LCR meter manufactured by Hewlett-Packard product name: 4284A Precision LCR meter
  • FIG. 1 shows a schematic diagram of an evaluation sample for measuring the dielectric loss ⁇ ′′.
  • FIG. is a cross-sectional view along the line 1b-1b' As shown in FIG.
  • a guard electrode 20 is provided so as to surround the main electrode 10 , and a counter electrode 30 is provided on the other main surface of the ceramic sintered body 100 .
  • Dielectric loss ⁇ ′′ 27.3 ⁇ f/C ⁇ tan ⁇ Equation (1)
  • f means the measurement frequency
  • C means the speed of light (299792458 ms -1 ).
  • the ceramic sintered body may be composed of silicon nitride. Even when the ceramic sintered body is composed of silicon nitride, it may contain other components within the scope of the present disclosure. For example, it may contain a crystal phase, a glass phase, etc. derived from a sintering aid used when producing a ceramic sintered body.
  • the density of the ceramic sintered body may be, for example, 3.24 g/cm 2 or higher, 3.25 g/cm 3 or higher, or 3.26 g/cm 3 or higher.
  • the upper limit of the density of the ceramic sintered body is usually 3.35 g/cm 3 or less, and may be 3.30 g/cm 3 or less, or 3.28 g/cm 3 or less.
  • the density of the ceramic sintered body may be adjusted within the range described above, and may be, for example, 3.24-3.35 g/cm 2 , or 3.25-3.28 g/cm 2 .
  • the density of the ceramic sintered body means a value measured based on the Archimedes method.
  • the surface roughness Ra of the main surface of the ceramic sintered body may be, for example, 0.28 ⁇ m or less, 0.27 ⁇ m or less, or 0.25 ⁇ m or less.
  • the lower limit of the surface roughness Ra on the main surface of the ceramic sintered body may be, for example, 0.10 ⁇ m or more, 0.13 ⁇ m or more, 0.18 ⁇ m or more, 0.20 ⁇ m or more, or 0.22 ⁇ m or more.
  • the surface roughness Ra of the main surface of the ceramic sintered body may be adjusted within the range described above, and may be, for example, 0.10-0.28 ⁇ m, or 0.22-0.27 ⁇ m.
  • the surface roughness Ra in this specification is measured according to the method described in JIS B 0601: 2013 "Product Geometric Characteristic Specification (GPS) - Surface Texture: Contour Curve Method - Terms, Definitions and Surface Texture Parameters". means the arithmetic mean roughness.
  • the shape of the ceramic sintered body may be plate-like, for example. That is, the ceramic sintered body may be a ceramic sintered plate.
  • the thickness of the plate-shaped ceramic sintered body may be, for example, 0.20 mm or more, or 0.25 mm or more.
  • the upper limit of the thickness of the plate-shaped ceramic sintered body may be, for example, 0.50 mm or less, 0.40 mm or less, or 0.35 mm or less.
  • the thickness of the ceramic sintered plate may be adjusted within the ranges mentioned above, and may be, for example, 0.20-0.50 mm, 0.25-0.40 mm, or 0.25-0.35 mm.
  • the above-mentioned ceramic sintered body has excellent bending strength.
  • the bending strength of the ceramic sintered body can be 780 MPa or more, 800 MPa or more, 810 MPa or more, 820 MPa or more, or 830 MPa or more.
  • the bending strength of a ceramic sintered body means a value measured by a three-point bending test in accordance with the description of JIS R 1601:2008 "Room temperature bending strength test method for fine ceramics".
  • the above-mentioned ceramic sintered body can exhibit excellent thermal conductivity.
  • the thermal conductivity of the ceramic sintered body can be, for example, 89 W/m ⁇ K or more, or 90 W/m ⁇ K or more.
  • the thermal conductivity of a ceramic sintered body can be measured by a laser flash method.
  • One embodiment of the method for producing a ceramic sintered body includes the steps of preparing a green sheet containing a ceramic, a sintering aid, a binder and a dispersant, a degreasing step of heating and degreasing the laminate of the green sheets, A firing step of heating the degreased laminate at a predetermined firing temperature to obtain a heat-treated product, and a cooling step of cooling the heat-treated product from the firing temperature to room temperature to obtain a ceramic sintered body.
  • the temperature lowering step includes a first step (hereinafter also referred to as a first holding step) of holding at a temperature of 900 to 1200° C. for 0.5 to 2.0 hours, and a temperature of 1400 to 1600° C. for 1.5 to 4 hours. and a second step of holding for 0 hours (hereinafter also referred to as a second holding step).
  • a green sheet is produced, for example, by the following procedure.
  • a raw material slurry containing a ceramic, a sintering aid, a binder and a dispersant is prepared.
  • Ceramics are not particularly limited, and include, for example, nitrides, oxides and carbides.
  • the ceramic may specifically be silicon nitride, silicon carbide, alumina, aluminum nitride, boron nitride and the like, preferably silicon nitride.
  • Binders include those containing organic components.
  • the binder may be, for example, an acrylic copolymer.
  • Dispersants can be, for example, unsaturated fatty acids.
  • sintering aids include oxides of alkaline earth metals such as magnesium oxide and calcium oxide, rare earth oxides such as yttrium oxide, aluminum oxide, silicon dioxide, and composite oxides such as spinel. A plurality of sintering aids are preferably used in combination.
  • the sintering aid preferably contains at least one selected from the group consisting of yttrium oxide, magnesium oxide, and silicon dioxide.
  • the composition of the sintering aid is based on the total amount of the ceramic and sintering aid, for example, 1 to 10% by weight of yttrium oxide, 0.5 to 7% by weight of magnesium oxide, and 5% by weight or less of dioxide.
  • the raw material slurry described above is applied to a release film to a predetermined thickness by, for example, a doctor blade method, a calendar method, or an extrusion method. After that, the applied raw material slurry is dried and peeled off from the release film to obtain a green sheet.
  • the green sheet may be processed into a desired shape by, for example, cutting.
  • the material and shape of the plurality of green sheets may be the same or different.
  • the green sheet may have a flat plate shape.
  • the size of the green sheet is not particularly limited, but may be, for example, 170 to 300 mm or 170 to 200 mm in diagonal length.
  • the thickness of the green sheet may be, for example, 0.2-2 mm, 0.2-1 mm, 0.2-0.5 mm, or 0.2-0.4 mm.
  • a laminate obtained by laminating a plurality of green sheets prepared as described above is heated to reduce the content of the binder component in each green sheet.
  • the number of green sheets constituting the laminate may be, for example, 20 to 150 or 50 to 100. When the number of green sheets constituting the laminate is within the above range, deformation of the green sheets themselves due to the weight of the green sheets can be further suppressed, and productivity can be improved.
  • the laminate may be one in which a plurality of green sheets are laminated such that the main surfaces thereof are in contact with each other.
  • a release material is provided on the main surface of each green sheet. may be applied.
  • the release material may be, for example, ceramic powder such as boron nitride, graphite powder, and the like.
  • the laminate In the degreasing step, the laminate is placed in a degreasing furnace and heated to, for example, 300°C to 700°C. As a result, the binder and dispersant contained in the green sheet volatilize, and the content of organic components in the green sheet is reduced.
  • the degreased green sheet laminate is placed in a firing furnace and heated at a predetermined firing temperature.
  • the green sheet is fired to obtain a flat ceramic sintered body.
  • the degreasing furnace used for degreasing and the firing furnace used for firing may be the same furnace or may be different furnaces.
  • the firing temperature may be, for example, 1600°C to 2000°C.
  • the heating time in the firing step may be, for example, 8 to 20 hours, or 8 to 12 hours.
  • the heating time means the time during which the temperature inside the furnace reaches a predetermined firing temperature and is maintained within the firing temperature.
  • the predetermined firing temperature means the maximum attainable temperature within the firing temperature range.
  • the firing process may include multiple processes with different heating temperatures. By performing the heat treatment in a plurality of steps, the structure of the ceramic sintered body can be further homogenized.
  • the firing step includes, for example, a first firing step in which heat treatment is performed at a temperature of 1600 ° C. or higher and lower than 1800 ° C., and a and a second firing step in which heat treatment is performed at a temperature of ) below.
  • the time for holding the temperature in the furnace at 1600 ° C. or more and less than 1800 ° C. may be, for example, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 hours or more, or 9 hours or more. hours or less, or 12 hours or less.
  • the time for which the temperature inside the furnace is maintained at 1600° C. or more and less than 1800° C. may be, for example, 4 to 15 hours, or 5 to 8 hours. In the temperature range of 1600° C.
  • the sintering aid forms a liquid phase, so by securing a sufficient time to hold at this temperature, the environment for grain growth of the ceramic can be made more homogeneous.
  • the bending strength of the ceramic sintered body can be further improved.
  • the time for holding the temperature in the furnace at a temperature of 1800 to 2000 ° C. is, for example, It may be 3 hours or more, or 4 hours or more, and may be 7 hours or less, or 6 hours.
  • the time for which the temperature in the furnace is maintained at a temperature of 1800-2000° C. may be, for example, 3-7 hours or 4-6 hours.
  • the ceramic powder dissolves in the liquid phase derived from the sintering aid, and the growth of a thermodynamically more stable crystal phase is promoted, so the time to hold at this temperature is secured.
  • the firing step includes, for example, a first firing step of performing heat treatment at a temperature of 1600 ° C. or higher and lower than 1800 ° C. for 1 to 2 hours, and a 1800 ° C. or higher and 2000 ° C. or lower (preferably 1800 ° C. or higher and 1850 ° C. or lower , more preferably 1800° C. or higher and 1830° C. or lower) for 4 to 5 hours.
  • a first firing step of performing heat treatment at a temperature of 1600 ° C. or higher and lower than 1800 ° C. for 1 to 2 hours, and a 1800 ° C. or higher and 2000 ° C. or lower (preferably 1800 ° C. or higher and 1850 ° C. or lower , more preferably 1800° C. or higher and 1830° C. or lower) for 4 to 5 hours.
  • the temperature lowering step includes a first step (hereinafter also referred to as a first holding step) in which the temperature is lower than the firing temperature and is held at a temperature of 900 to 1200 ° C. for 0.5 to 2.0 hours, and a temperature of 1400 to 1600 ° C. and a second step of holding for 5 to 4.0 hours (hereinafter also referred to as a second holding step).
  • the second holding step is a step subsequent to the first holding step, preferably a step performed immediately after the first holding step.
  • the temperature (first temperature) at which the fired body is held in the first holding step may be, for example, 1200°C or lower, or 1100°C or lower.
  • the first temperature may be adjusted within the ranges described above, eg, 900-1200°C, or 1000-1200°C.
  • the time for holding at the first temperature may be, for example, 0.5 to 2.0 hours.
  • the holding time in the first holding step may be, for example, 0.8 hours or longer, 0.9 hours or longer, or 1.0 hours or longer.
  • the holding time of the first holding step may be, for example, 1.8 hours or less, or 1.6 hours or less.
  • the heat-treated material is cooled from the firing temperature to room temperature to obtain a ceramic sintered body.
  • the sintering aid in the surface layer of the ceramic sintered body tends to decompose and the concentration of the aid tends to decrease. can occur.
  • the crystalline phase or glass phase derived from the sintering aid is distributed on the surface and inside of the ceramic sintered body, and the spread of the distribution increases the bending strength. can decline.
  • the solidification temperature differs depending on the sintering aid, when using multiple sintering aids together, each sintering aid forms a crystal phase or glass phase, promoting the formation of grain boundaries.
  • the rate of temperature drop from the firing temperature to the first temperature may be, for example, 8° C./min or less, 7° C./min or less, or 6° C./min or less.
  • the temperature (second temperature) at which the fired body is held in the second holding step is set higher than the first temperature.
  • the second temperature is set to a temperature higher than the first temperature.
  • the sintering aid held in the fired body is suppressed by suppressing the escape of the sintering aid in the first holding step, and then slightly heated.
  • the agent melt again defects in the surface layer can be repaired, the smoothness can be further improved, and the bending strength can be further improved.
  • the second temperature in the second holding step may be, for example, 1600°C or lower, or 1550°C or lower.
  • the lower limit of the second temperature may be, for example, 1400° C. or higher, or 1450° C. or higher.
  • the second temperature in the second holding step may be adjusted within the range described above, and may be, for example, 1400-1600°C, or 1450-1550°C.
  • the time for holding at the second temperature may be, for example, 1.5 to 4.0 hours.
  • the holding time in the second holding step may be, for example, 1.8 hours or longer, 1.9 hours or longer, or 2.0 hours or longer.
  • the holding time in the second holding step may be, for example, 3.5 hours or less, 3.0 hours or less, or 2.5 hours or less.
  • the rate of temperature drop from the second temperature to room temperature is not particularly limited, but may be, for example, 10°C/min or more, or 20°C/min or more.
  • a laminated body was prepared by cutting the prepared ceramic green sheets into a length of 250 mm and a width of 180 mm and laminating 70 sheets.
  • the laminate was placed in an electric furnace equipped with a carbon heater and heated in the air at 500° C. for 20 hours for degreasing to obtain a degreased body.
  • the pressure in the firing furnace was reduced to 100 Pa or less, and the temperature was raised to 900°C under vacuum to heat-treat the degreased body.
  • nitrogen gas was introduced into the firing furnace, and the temperature was raised to 1500° C. under a pressure of about 0.9 MPa to heat the above degreased body and hold it at 1500° C. for 4 hours for soaking.
  • the temperature was raised to 1830° C. over 3.5 hours to heat the degreased body, and the sintered body was obtained by holding at 1830° C. for 5 hours.
  • the sintered body described above was finally cooled by the following temperature-lowering process to prepare a ceramic sintered body. That is, regarding the temperature of the firing furnace in the cooling step, it was cooled from 1830° C. to 1100° C. over 120 minutes and held at a temperature of 1100° C. (first temperature) for 2 hours. Then, it was heated to 1500° C. over 240 minutes and held at 1500° C. (second temperature) for 2 hours. After further cooling to 1100° C. over 80 minutes, the heater power source of the kiln was turned off and allowed to cool naturally.
  • Example 2 A ceramic plate was obtained in the same manner as in Example 1, except that the second temperature was changed to 1600°C.
  • Example 3 A ceramic plate was obtained in the same manner as in Example 1, except that the first temperature was changed to 1200°C.
  • Example 4 A ceramic plate was obtained in the same manner as in Example 1, except that the thickness of the ceramic green sheet was adjusted to be 23% thinner. The thickness of the obtained ceramic plate was 0.25 mm.
  • Example 5 A ceramic plate was obtained in the same manner as in Example 1, except that the amount of the sintering aid was changed as shown in Table 1.
  • Example 1 A ceramic plate was obtained in the same manner as in Example 1, except that the heating time in the firing step was changed to 9.5 hours.
  • Example 2 A ceramic plate was obtained in the same manner as in Example 1, except that the temperature lowering step was changed to natural cooling and the first holding step and the second holding step were not provided.
  • Example 3 In the same manner as in Example 1, except that the temperature lowering step was cooled to 1500° C. at 6° C./min, held at 1500° C. for 2 hours, and then naturally cooled (the holding step in the temperature lowering step was changed to one step). , to obtain a ceramic plate.
  • a circular electrode is formed on a ceramic plate, and an alternating voltage with an effective value of 1 V is applied at 25 ° C., and the frequency of the alternating voltage is continuously changed from 50 Hz to 1 MHz to change the dielectric constant between 800 Hz and 1 MHz.
  • ⁇ and tan ⁇ were measured to calculate the dielectric loss ⁇ ′′.
  • an LCR meter manufactured by Hewlett-Packard product name: 4284A Precision LCR meter
  • the present disclosure it is possible to provide a ceramic sintered body with excellent bending strength.
  • the present disclosure can also provide a method of manufacturing a ceramic sintered body as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本開示の一側面は、800Hz~1MHzの間で周波数を連続的に変化させながら1Vの交流電圧を印加したときに生じる誘電損失ε"の最大値が1×10-2以下である、セラミック焼結体を提供する。

Description

セラミック焼結体、及びセラミック焼結体の製造方法
 本開示は、セラミック焼結体、及びセラミック焼結体の製造方法に関する。
 自動車、電鉄、産業用機器、及び発電関係等の分野には、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される回路基板には、絶縁性のセラミック板が用いられる。セラミック板の製造方法としては、例えば、特許文献1に記載されるような以下の製造方法が知られている。すなわち、セラミックの粉末を焼結助剤等と混合・混練した後に連続シートの形状に押出成形する工程と、当該連続シートを所要形状に打抜加工してグリーンシートを形成する工程と、グリーンシートを焼成する工程とが行われることで、セラミックス基板が製造される。グリーンシートの焼成工程では、10~20枚程度の所要枚数のグリーンシートが積み重ねられた状態でグリーンシートの焼成が行われる。
 また、パワーモジュール等のように使用時に熱の変化に曝される用途の場合、パワーモジュールを構成する部材の熱膨張率の違いによって、部材ごとの変形量が異なる。このような変形に耐えるためにセラミック板には優れた抗折強度を有することが求められる。例えば、特許文献2には、焼結助剤として特定の硼化物を用いて調製された窒化ケイ素焼結体が開示されている。
特開平3-060469号公報 特開平7-172925号公報
 本開示は、抗折強度に優れるセラミック焼結体を提供することを目的とする。本開示はまた、上述のようなセラミック焼結体を製造する方法を提供することを目的とする。
 セラミック焼結体中に、ボイド、欠陥、又は組織の不均一な部分等が存在する場合、セラミック焼結体の抗折強度に影響すると考えられるが、本発明者らは検討によって、上述のボイド等が存在する場合、セラミック焼結体に高周波で交流電圧を印加するとわずかに放電を起こし、誘電損失ε”が大きくなること、さらには、特定の周波数帯域における誘電損失が抗折強度とよく対応することを見出した。本開示は、上述の知見に基づいてなされたものである。
 本開示の一側面は、800Hz~1MHzの間で周波数を連続的に変化させながら、1Vの交流電圧を印加したときに生じる誘電損失ε”の最大値が1×10-2以下である、セラミック焼結体を提供する。
 上記セラミック焼結体は、交流電圧を印加した際に、特定の周波数帯域における誘電損失が上記範囲内となっており、優れた抗折強度を発揮し得る。
 上述のセラミック焼結体は窒化ケイ素で構成されてよい。窒化ケイ素焼結体は、耐熱性と高い強度を兼ね備えることから、セラミック焼結体の抗折強度により優れる。
 本開示の一側面は、セラミック、焼結助剤、バインダ及び分散剤を含むグリーンシートの積層体を加熱して脱脂する脱脂工程と、脱脂された上記積層体を所定の焼成温度で加熱して加熱処理物を得る焼成工程と、上記加熱処理物を上記焼成温度から室温まで冷却してセラミック焼結体を得る降温工程と、を有し、上記降温工程は、900~1200℃の温度で0.5~2.0時間保持する第一工程と、1400~1600℃の温度で1.5~4.0時間保持する第二工程と、を含む、セラミック焼結体の製造方法を提供する。
 上記セラミック焼結体の製造方法は、上述のような降温工程を有することから、抗折強度に優れるセラミック焼結体を製造することができる。
 本開示によれば、抗折強度に優れるセラミック焼結体を提供できる。本開示によればまた、上述のようなセラミック焼結体を製造する方法を提供できる。
図1は、誘電損失ε”の測定方法を説明するための模式図である。
 以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 セラミック焼結体の一実施形態は、800Hz~1MHzの間で周波数を連続的に変化させながら1Vの交流電圧を印加したときに生じる誘電損失ε”の最大値が1×10-2以下である。高周波数帯域における誘電損失が上記範囲内となるセラミック焼結体は、空隙等の欠陥が少なく、優れた抗折強度を発揮し得る。
 上述の誘電損失ε”の最大値は、例えば、1×10-2以下、9×10-3以下、8×10-3以下、又は6×10-3以下であってよい。上述の誘電損失ε”の最大値は、一般的には、1×10-3以上、又は2×10-3以上である。上述の誘電損失ε”の最大値は上述の範囲内で調整してよく、例えば、1×10-3~1×10-2、1×10-3~9×10-3、又は1×10-3~6×10-3であってよい。
 本明細書における誘電損失ε”は、以下の方法によって測定される値を意味する。すなわち、セラミック焼結体上に円形電極を形成し、実効値1Vの交流電圧を印加しながら、交流電圧の周波数を50Hzから1MHzまで連続的に変化させて、800Hz~1MHzの間での誘電率εとtanδを測定し、測定された数値を用い下記式(1)に基づいて誘電損失ε”を算出することができる。測定は25℃で行う。上記測定には、例えば、ヒューレットパッカード社製のLCRメータ(製品名:4284A プレシジョンLCRメータ)等を用いることができる。なお、参考のため、図1に、誘電損失ε”を測定するための評価用サンプルの模式図を示す。図1の(a)は評価用サンプルの上面図であり、(b)は(a)の1b-1b’線に沿った断面図である。図1に示すように、評価用サンプルは、セラミック焼結体100の一方の主面上に円形の主電極10(円形電極)と、主電極10を囲うように設けられたガード電極20を設け、セラミック焼結体100のもう一方の主面上に対向電極30を設けたものである。
誘電損失ε”=27.3×f/C×ε×tanδ …式(1)
なお、式(1)においてfは測定周波数を意味し、Cは光速(299792458ms-1)を意味する。
 セラミック焼結体は窒化ケイ素で構成されてよい。セラミック焼結体が窒化ケイ素で構成される場合であっても、本開示の趣旨を逸脱しない範囲で、その他の成分を含んでもよい。例えば、セラミック焼結体を製造する際に用いられる焼結助剤に由来する結晶相及びガラス相等を含んでもよい。
 セラミック焼結体の密度は、例えば、3.24g/cm以上、3.25g/cm以上、又は3.26g/cm以上であってよい。セラミック焼結体の密度の上限値は、通常、3.35g/cm以下であり、3.30g/cm以下、又は3.28g/cm以下であってよい。セラミック焼結体の密度は上述の範囲内で調整してよく、例えば、3.24~3.35g/cm、又は3.25~3.28g/cmであってよい。セラミック焼結体の密度はアルキメデス法に基づき測定される値を意味する。
 セラミック焼結体の主面における表面粗さRaは、例えば、0.28μm以下、0.27μm以下、又は0.25μm以下であってよい。セラミック焼結体の主面における表面粗さRaの下限値は、例えば、0.10μm以上、0.13μm以上、0.18μm以上、0.20μm以上、又は0.22μm以上であってよい。セラミック焼結体の主面における表面粗さRaは上述の範囲内で調整してよく、例えば、0.10~0.28μm、又は0.22~0.27μmであってよい。本明細書における表面粗さRaは、JIS B 0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に記載の方法に準拠して測定される算術平均粗さを意味する。
 セラミック焼結体の形状は、例えば、板状であってよい。すなわち、セラミック焼結体は、セラミック焼結板であってよい。板状のセラミック焼結体の厚さは、例えば、0.20mm以上、又は0.25mm以上であってよい。板状のセラミック焼結体の厚さの上限値は、例えば、0.50mm以下、0.40mm以下、又は0.35mm以下であってよい。セラミック焼結板の厚さは上述の範囲内で調整してよく、例えば、0.20~0.50mm、0.25~0.40mm、又は0.25~0.35mmであってよい。
 上述のセラミック焼結体は抗折強度に優れる。セラミック焼結体の抗折強度は、780MPa以上、800MPa以上、810MPa以上、820MPa以上、又は830MPa以上とすることができる。セラミック焼結体の抗折強度は、JIS R 1601:2008「ファインセラミックスの室温曲げ強さ試験方法」の記載に準拠して3点曲げ試験によって測定される値を意味する。
 上述のセラミック焼結体は優れた熱伝導率を発揮し得る。セラミック焼結体の熱伝導率は、例えば、89W/m・K以上、又は90W/m・K以上とすることができる。セラミック焼結体の熱伝導率は、レーザーフラッシュ法によって測定することができる。
 セラミック焼結体の製造方法の一実施形態は、セラミック、焼結助剤、バインダ及び分散剤を含むグリーンシートを調製する工程と、上記グリーンシートの積層体を加熱して脱脂する脱脂工程と、脱脂された積層体を所定の焼成温度で加熱して加熱処理物を得る焼成工程と、上記加熱処理物を上記焼成温度から室温まで冷却してセラミック焼結体を得る降温工程と、を有する。上記降温工程は、900~1200℃の温度で0.5~2.0時間保持する第一工程(以下、第一保持工程ともいう)と、1400~1600℃の温度で1.5~4.0時間保持する第二工程(以下、第二保持工程ともいう)と、を含む。
 グリーンシートは、例えば、以下の手順で作製する。まず、セラミック、焼結助剤、バインダ及び分散剤を含む原料スラリーを調製する。セラミックとしては、特に制限されず、例えば、窒化物、酸化物及び炭化物等が挙げられる。セラミックは具体的には、窒化ケイ素、炭化ケイ素、アルミナ、窒化アルミニウム及び窒化ホウ素等であってよく、好ましくは窒化ケイ素を含む。バインダは有機成分を含むものが挙げられる。バインダは、例えば、アクリル系共重合物であってよい。分散剤は、例えば、不飽和脂肪酸であってよい。
 焼結助剤としては、例えば、酸化マグネシウム及び酸化カルシウム等のアルカリ土類金属の酸化物、酸化イットリウム等の希土類酸化物、酸化アルミニウム、二酸化ケイ素、並びに、スピネル等の複合酸化物が挙げられる。焼結助剤は、好ましくは複数組み合わせて用いる。焼結助剤は、好ましくは、酸化イットリウム、酸化マグネシウム、及び二酸化ケイ素からなる群より選択される少なくとも1種を含むことが望ましい。
 焼結助剤の配合は、セラミック及び焼結助剤の合計量を基準として、例えば、1~10質量%の酸化イットリウム、0.5~7質量%の酸化マグネシウム、及び5質量%以下の二酸化ケイ素を含んでよく、2~7質量%の酸化イットリウム、0.5~5質量%の酸化マグネシウム、及び3質量%以下の二酸化ケイ素を含んでよく、5~7質量%の酸化イットリウム、0.5~2質量%の酸化マグネシウム、及び0.5~2質量%以下の二酸化ケイ素を含んでよい。
 上述の原料スラリーを、例えば、ドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布する。その後、塗布された原料スラリーを乾燥させて離型フィルムから剥がすことによって、グリーンシートが得られる。グリーンシートは、例えば、切断等することによって所望の形状に加工してよい。複数のグリーンシートの材質及び形状は、互いに同一であってもよいし、互いに異なっていてもよい。
 グリーンシートは平板形状を有してよい。グリーンシートのサイズは特に限定されるものではないが、例えば、対角線の長さで、170~300mm、又は170~200mmであってよい。グリーンシートの厚みは、例えば、0.2~2mm、0.2~1mm、0.2~0.5mm、又は0.2~0.4mmであってよい。
 脱脂工程では上述のように調製されたグリーンシートを複数枚積層させた積層体を加熱し、各グリーンシートにおけるバインダ成分の含有量が低減する。積層体を構成するグリーンシートの枚数は、例えば、20~150枚、又は50~100枚であってよい。積層体を構成するグリーンシートの枚数が上記範囲内であることで、グリーンシートの重量によってグリーンシート自体が変形することをより一層抑制することができ、かつ生産性を向上できる。
 上記積層体は複数のグリーンシートの主面同士が互いに接触するように積層されたものであってよく、グリーンシート同士が接着することを抑制するため、各グリーンシートの主面上に離型材が塗布されてもよい。離型材は、例えば、窒化ホウ素等のセラミック粉末、及び黒鉛粉末等であってよい。
 脱脂工程では、上記積層体を脱脂炉に収容し、例えば、300℃~700℃に加熱する。これによって、グリーンシートに含まれるバインダ及び分散剤が揮散し、グリーンシートにおける有機成分の含有量が低減される。
 焼成工程では、脱脂されたグリーンシートの積層体を焼成炉に収容して、所定の焼成温度で加熱する。焼成工程によって、グリーンシートが焼成され、平板状のセラミック焼結体が得られる。脱脂で用いる脱脂炉と焼成で用いる焼成炉は同一炉であってもよいし、異なる炉であってもよい。焼成温度は、例えば、1600℃~2000℃であってよい。
 焼成工程における加熱時間は、例えば、8~20時間、又は8~12時間であってよい。上記加熱時間は、炉内温度が所定の焼成温度に達してから焼成温度内に保持する時間を意味する。特に断りがない場合には、上記所定の焼成温度とは、上記焼成温度の範囲内での最大到達温度を意味する。
 焼成工程は、加熱温度の異なる複数の工程を含んでもよい。このような複数の工程で加熱処理を行うことによって、セラミック焼結体の組織をより一層均質化することができる。上記焼成工程は、例えば、1600℃以上1800℃未満の温度で加熱処理を行う第一焼成工程と、1800℃以上2000℃以下(好ましくは1800℃以上1850℃以下、より好ましくは1800℃以上1830℃以下)の温度で加熱処理を行う第二焼成工程と、を含んでよい。
 焼成工程における加熱時間のうち、1600℃以上1800℃未満の温度で加熱処理する時間(例えば第一焼成工程における加熱処理する時間)を長め(例えば、数時間)に確保することが望ましい。そこで、炉内温度を1600℃以上1800℃未満に保持する時間は、例えば、4時間以上、5時間以上、6時間以上、7時間以上、8時間以上、又は9時間以上であってよく、15時間以下、又は12時間以下であってよい。炉内温度を1600℃以上1800℃未満に保持する時間は、例えば、4~15時間、又は5~8時間であってよい。1600℃以上1800℃未満の温度域では、焼結助剤が液相を形成するため、この温度で保持する時間を十分に確保することによってセラミックを粒成長させる環境をより均質化でき、結果としてセラミック焼結体の抗折強度をより向上できる。
 また1800℃以上の温度で加熱処理する時間を長めに確保することが好ましく、炉内温度を1800~2000℃の温度に保持する時間(例えば第二焼成工程における加熱処理する時間)は、例えば、3時間以上、又は4時間以上であってよく、7時間以下、又は6時間であってよい。炉内温度を1800~2000℃の温度に保持する時間は、例えば、3~7時間、又は4~6時間であってよい。1800~2000℃の温度域では、焼結助剤に由来する液相にセラミック粉末が溶解し、熱力学的により安定な結晶相の成長が促進されるため、この温度で保持する時間を確保することでセラミックの粒成長を促進させ、得られるセラミック焼結体の熱伝導率を向上させることができる。また1800~2000℃の温度に保持する時間を上記範囲内とすることで、セラミック及び焼結助剤の分解を抑制し、セラミック焼結体の緻密化が阻害されることをより十分に抑制できる。
 焼成工程は、より具体的には例えば、1600℃以上1800℃未満の温度で1~2時間、加熱処理を行う第一焼成工程と、1800℃以上2000℃以下(好ましくは1800℃以上1850℃以下、より好ましくは1800℃以上1830℃以下)の温度で4~5時間、加熱処理を行う第二焼成工程を含む工程であってよい。
 降温工程は、上記焼成温度より低く、900~1200℃の温度で0.5~2.0時間保持する第一工程(以下、第一保持工程ともいう)と、1400~1600℃の温度で1.5~4.0時間保持する第二工程(以下、第二保持工程ともいう)と、を含む。第二保持工程は、第一保持工程以降の工程であり、好ましくは第一保持工程の直後に実施される工程である。降温工程として温度の異なる少なくとも2段階の保持工程を設け、焼成体を室温まで冷却することによって、焼成工程において焼結助剤が分解され、焼成体の表層から抜けていくことで、セラミック焼結体の表層に欠陥等が生じることを抑制することができる。
 第一保持工程において焼成体を保持する温度(第一温度)は、例えば、1200℃以下、又は1100℃以下であってよい。第一温度を上記範囲内にすることによって、焼結助剤の固化を促進することができ、焼結助剤が表層から抜けることをより一層抑制することができる。第一温度の下限値は特に限定されるものではないが、例えば、900℃以上、又は1000℃以上であってよい。第一温度の下限値を上記範囲内にすることによって、セラミック焼結体の生産性をより向上できる。第一温度は上述の範囲内で調整してよく、例えば、900~1200℃、又は1000~1200℃であってよい。
 第一保持工程において、第一温度に保持する時間(保持時間)は、例えば、0.5~2.0時間であってよい。第一保持工程の上記保持時間は、例えば、0.8時間以上、0.9時間以上、又は1.0時間以上であってよい。第一保持工程の上記保持時間は、例えば、1.8時間以下、又は1.6時間以下であってよい。
 降温工程では、上記焼成温度から室温まで上記加熱処理物を冷却してセラミック焼結体を得る。焼成温度付近では、セラミック焼結体表層における焼結助剤が分解され、助剤濃度が低下する傾向にあるため、焼成工程の直後から急冷を開始する場合、セラミック焼結体の表層に欠陥が生じ得る。焼成工程の直後から急冷を開始する場合はまた、セラミック焼結体の表層と内部とで焼結助剤に由来する結晶相又はガラス相に分布ができ、その分布の広がりによって抗折強度がより低下し得る。さらに、焼結助剤によって固化する温度が異なることから、複数の焼結助剤を併用する場合には、焼結助剤ごとに結晶相又はガラス相を形成し、粒界の形成を促進することから、抗折強度がより低下し得る。そこで、降温工程における降温速度を調整することが望ましい。降温速度を緩やかにすることによって、上述のような焼結助剤の抜けによるセラミック焼結体の表層における欠陥の発生をさらに抑制し、またセラミック焼結体の表層と内部とにおける結晶相及びガラス相の分布、並びに結晶相及びガラス相における粒界の形成を抑制し得、これによって抗折強度により優れるセラミック焼結体を製造できる。焼成温度から第一温度への降温速度は、例えば、8℃/分以下、7℃/分以下、又は6℃/分以下であってよい。
 第二保持工程において焼成体を保持する温度(第二温度)は第一温度よりも高く設定される。第二温度が第一温度よりも高い温度に設定されることで、第一保持工程において焼結助剤の抜けを抑制し、その後僅かに加熱することで焼成体中に保持された焼結助剤を再び溶融液相化させることによって、表層の欠陥を修復し、より平滑度を向上させ、抗折強度を更に向上し得る。
 第二保持工程における第二温度は、例えば、1600℃以下、又は1550℃以下であってよい。第二温度を上記範囲内とすることによって、焼結助剤の更なる分解を十分に抑制することができ、セラミック焼結体における欠陥の発生を更に抑制できる。第二温度の下限値は、例えば、1400℃以上、又は1450℃以上であってよい。第二温度の下限値を上記範囲内とすることによって、焼結助剤の溶融による液相形成を促進すると共に当該液相の分散性を向上させることができ、セラミック焼結体の主面における平滑性をより高めることができる。第二保持工程における第二温度は上述の範囲内で調整してよく、例えば、1400~1600℃、又は1450~1550℃であってよい。
 第二保持工程において、第二温度に保持する時間(保持時間)は、例えば、1.5~4.0時間であってよい。第二保持工程の上記保持時間は、例えば、1.8時間以上、1.9時間以上、又は2.0時間以上であってよい。第二保持工程の上記保持時間は、例えば、3.5時間以下、3.0時間以下、又は2.5時間以下であってよい。
 第二温度から室温への降温速度は特に制限されるものではないが、例えば、10℃/分以上、又は20℃/分以上であってもよい。
 以上、幾つかの実施形態について説明したが、共通する構成については互いの説明を適用することができる。また本開示は、上記実施形態に何ら限定されるものではない。
 実施例及び比較例を参照して本開示の内容をより詳細に説明するが、本開示は下記の実施例に限定されるものではない。
(実施例1)
<セラミック板の作製>
 窒化ケイ素粉末と、焼結助剤として、酸化イットリウム粉末、酸化マグネシウム粉末及び二酸化珪素を準備した。これらを、Si:Y:MgO:SiO=91:5:2:2(質量比)で配合して原料粉末を得た。この原料粉末に、バインダ、分散剤、及び分散媒を加えて、原料スラリーを調製した。次に、離型フィルム上にドクターブレード法によって、上述の原料スラリーを塗布し、塗布厚が0.4mmとなるように調整し、グリーンシートを作製した。
 作製したセラミックグリーンシートを縦:250mm×横:180mmとなるように切断し、70枚積層させることで積層体を調製した。上記積層体を、カーボンヒータを備える電気炉中に配置し、空気中、500℃で20時間加熱して脱脂し、脱脂体を得た。
 次に、焼成炉内を100Pa以下に減圧させ、温度を上昇させ900℃まで真空下で上記脱脂体を加熱処理した。その後、焼成炉内に窒素ガスを導入し、約0.9MPaの加圧下で1500℃まで昇温し、上記脱脂体を加熱し、均熱を図るため1500℃で4時間保持した。保持後、1830℃で3.5時間かけて昇温し、上記脱脂体を加熱し、1830℃で5時間保持することによって焼成体を得た。
 上述の焼成体を、以下の降温工程によって最終的に冷却し、セラミック焼結体を調製した。すなわち、降温工程における焼成炉の温度に関し、1830℃から1100℃まで120分かけて冷却し、1100℃の温度(第一温度)で2時間保持した。その後、1500℃まで240分かけて加熱し、1500℃(第二温度)で2時間保持した。さらに1100℃まで80分かけて冷却し、その後、焼成炉のヒーター電源を切り、自然冷却させた。
(実施例2)
 第二温度を1600℃に変更したこと以外は、実施例1と同様にして、セラミック板を得た。
(実施例3)
 第一温度を1200℃に変更したこと以外は、実施例1と同様にして、セラミック板を得た。
(実施例4)
 セラミックグリーンシートの厚みを23%薄く調整したこと以外は、実施例1と同様にして、セラミック板を得た。得られたセラミック板の厚さは0.25mmであった。
(実施例5)
 焼結助剤の配合量を表1に記載した様に変更したこと以外は、実施例1と同様にして、セラミック板を得た。
(比較例1)
 焼成工程における加熱時間を9.5時間に変更したこと以外は、実施例1と同様にして、セラミック板を得た。
(比較例2)
 降温工程を自然冷却に変更し、第一保持工程及び第二保持工程を設けなかったこと以外は、実施例1と同様にして、セラミック板を得た。
(比較例3)
 降温工程を1500℃まで6℃/分で冷却した後に1500℃で2時間保持し、その後自然冷却した(降温工程における保持工程を一段階に変更した)こと以外は、実施例1と同様にして、セラミック板を得た。
<セラミック板の評価>
 実施例1~5、及び比較例1~3で調製したセラミック板に対して、厚さ、誘電損失、密度、表面粗さ、熱伝導率及び抗折強度の測定を行った。誘電損失、密度、表面粗さ、熱伝導率及び抗折強度の測定は、セラミック板は上述のセラミック板を50mm×50mmサイズに加工したサンプルを用いて、後述する方法で行った。結果を表1に示す。
[セラミック板の誘電損失の測定]
 セラミック板上に円形電極を形成し、実効値1Vの交流電圧を印加しながら、25℃で、交流電圧の周波数を50Hzから1MHzまで連続的に変化させて、800Hz~1MHzの間での誘電率εとtanδを測定し、誘電損失ε”を算出した。測定には、ヒューレットパッカード社製のLCRメータ(製品名:4284A プレシジョンLCRメータ)を用いた。
[セラミック板の密度の測定]
 セラミック板の密度は、アルキメデス法に基づき測定した。
[セラミック板の表面粗さ(算術平均粗さ)の測定]
 表面粗さRaは、JIS B 0601:2013「製品の幾何特性仕様(GPS)-表面性状:輪郭曲線方式-用語,定義及び表面性状パラメータ」に記載の方法に準拠して測定した。
[セラミック板の熱伝導率の測定]
 セラミック板の熱伝導率は、レーザーフラッシュ法によって測定した。
[セラミック板の抗折強度の測定]
 実施例1~5、及び比較例1~3で調製したセラミック板のそれぞれについて、JIS R 1601:2008「ファインセラミックスの室温曲げ強さ試験方法」の記載に準拠して3点曲げ試験によって抗折強度を測定した。
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、抗折強度に優れるセラミック焼結体を提供できる。本開示によればまた、上述のようなセラミック焼結体を製造する方法を提供できる。
 10…主電極、20…ガード電極、30…対向電極、100…セラミック焼結体。

Claims (3)

  1.  800Hz~1MHzの間で周波数を連続的に変化させながら1Vの交流電圧を印加したときに生じる誘電損失ε”の最大値が1×10-2以下である、セラミック焼結体。
  2.  窒化ケイ素で構成される、請求項1に記載のセラミック焼結体。
  3.  セラミック、焼結助剤、バインダ及び分散剤を含むグリーンシートの積層体を加熱して脱脂する脱脂工程と、
     脱脂された前記積層体を所定の焼成温度で加熱して加熱処理物を得る焼成工程と、
     前記加熱処理物を前記焼成温度から室温まで冷却してセラミック焼結体を得る降温工程と、を有し、
     前記降温工程は、
      900~1200℃の温度で0.5~2.0時間保持する第一工程と、
      1400~1600℃の温度で1.5~4.0時間保持する第二工程と、
    を含む、セラミック焼結体の製造方法。
PCT/JP2022/004896 2021-03-26 2022-02-08 セラミック焼結体、及びセラミック焼結体の製造方法 WO2022201925A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022535196A JP7186930B1 (ja) 2021-03-26 2022-02-08 セラミック焼結板、及びセラミック焼結板の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053256 2021-03-26
JP2021053256 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201925A1 true WO2022201925A1 (ja) 2022-09-29

Family

ID=83395510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004896 WO2022201925A1 (ja) 2021-03-26 2022-02-08 セラミック焼結体、及びセラミック焼結体の製造方法

Country Status (2)

Country Link
JP (1) JP7186930B1 (ja)
WO (1) WO2022201925A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000335974A (ja) * 1999-05-31 2000-12-05 Toshiba Ceramics Co Ltd 高周波透過体およびその製造方法
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
JP2006008493A (ja) * 2004-05-26 2006-01-12 National Institute Of Advanced Industrial & Technology プラズマ耐食材料、その製造方法及びその部材
JP2009179557A (ja) * 1998-05-12 2009-08-13 Toshiba Corp 高熱伝導性窒化けい素焼結体の製造方法
JP2018020929A (ja) * 2016-08-03 2018-02-08 日立金属株式会社 窒化珪素焼結基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179557A (ja) * 1998-05-12 2009-08-13 Toshiba Corp 高熱伝導性窒化けい素焼結体の製造方法
JP2000335974A (ja) * 1999-05-31 2000-12-05 Toshiba Ceramics Co Ltd 高周波透過体およびその製造方法
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
JP2006008493A (ja) * 2004-05-26 2006-01-12 National Institute Of Advanced Industrial & Technology プラズマ耐食材料、その製造方法及びその部材
JP2018020929A (ja) * 2016-08-03 2018-02-08 日立金属株式会社 窒化珪素焼結基板及びその製造方法

Also Published As

Publication number Publication date
JP7186930B1 (ja) 2022-12-09
JPWO2022201925A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
CN114380603B (zh) 氮化硅烧结基板的制造方法
JP6822362B2 (ja) 窒化珪素基板の製造方法、及び窒化珪素基板
TWI445682B (zh) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP6697363B2 (ja) 半導体製造装置用部材、その製法及びシャフト付きヒータ
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
US9938444B2 (en) Method for producing silicon nitride substrate
JP7062230B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
CN105683129B (zh) 氮化硅基板及使用其的氮化硅电路基板
Kume et al. Dielectric and thermal properties of AlN ceramics
KR102657287B1 (ko) 세라믹 구조체, 그 제법 및 반도체 제조 장치용 부재
US20240150249A1 (en) Silicon nitride substrate
JP2002293642A (ja) 高熱伝導窒化ケイ素質焼結体およびその製造方法と回路基板
WO2022201925A1 (ja) セラミック焼結体、及びセラミック焼結体の製造方法
JP3775335B2 (ja) 窒化ケイ素質焼結体および窒化ケイ素質焼結体の製造方法、並びにそれを用いた回路基板
TWI764320B (zh) 複合燒結體及複合燒結體的製造方法
Kume et al. Annealing effect on dielectric property of AlN ceramics
JP2018070436A (ja) 窒化ケイ素焼結体の製造方法
JP7408884B1 (ja) 窒化ケイ素焼結体及び焼結助剤粉末
JP7401718B1 (ja) 窒化ケイ素焼結体及び焼結助剤粉末
Dong et al. Effect of powder characteristics on the thermal conductivity and mechanical properties of Si 3 N 4 ceramics sintered by Spark plasma sintering
JP4348659B2 (ja) 高熱伝導窒化ケイ素質焼結体およびそれを用いた基板、半導体素子用回路基板
WO2021193762A1 (ja) セラミック板及びその製造方法
JP7339980B2 (ja) 窒化ケイ素焼結体の製造方法
JP7330416B2 (ja) 窒化アルミニウム焼結板、回路基板、並びに、積層基板
WO2022210520A1 (ja) 窒化アルミニウム焼結体、及びその製造方法、回路基板、並びに、積層基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535196

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774726

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774726

Country of ref document: EP

Kind code of ref document: A1