WO2022201907A1 - Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer - Google Patents

Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer Download PDF

Info

Publication number
WO2022201907A1
WO2022201907A1 PCT/JP2022/004574 JP2022004574W WO2022201907A1 WO 2022201907 A1 WO2022201907 A1 WO 2022201907A1 JP 2022004574 W JP2022004574 W JP 2022004574W WO 2022201907 A1 WO2022201907 A1 WO 2022201907A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation layer
polarizing plate
layer
retardation
laminate
Prior art date
Application number
PCT/JP2022/004574
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 林
亮 菅野
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280022202.9A priority Critical patent/CN117242374A/en
Priority to KR1020237032019A priority patent/KR20230145479A/en
Publication of WO2022201907A1 publication Critical patent/WO2022201907A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to a polarizing plate with a retardation layer, a manufacturing method thereof, and an image display device using the polarizing plate with a retardation layer.
  • the present invention was made to solve the above-mentioned conventional problems, and its main object is to provide a polarizing plate with a retardation layer that can realize an image display device in which the change in reflection hue is suppressed in a high-temperature environment. That's what it is.
  • a polarizing plate with a retardation layer includes a polarizing plate including a polarizer and a protective layer on at least one of the polarizer, and a first position disposed on the side opposite to the viewing side of the polarizing plate. It has a retardation layer, and a second retardation layer attached to the side of the first retardation layer opposite to the polarizing plate via an adhesive layer.
  • the first retardation layer is a retardation layer other than the C plate, and the second retardation layer is the C plate.
  • the adhesive layer is composed of an active energy ray-curable adhesive, and the curing shrinkage of the adhesive is 5% or more.
  • the laminate of the first retardation layer and the second retardation layer is annealed.
  • the first retardation layer exhibits refractive index characteristics of nx>ny ⁇ nz
  • Re(550) is 100 nm to 200 nm
  • Re(450) and Re(550) are the in-plane retardation measured with light having wavelengths of 450 nm and 550 nm at 23° C., respectively.
  • the first retardation layer and the second retardation layer are alignment fixed layers of a liquid crystal compound.
  • a method for producing the retardation layer-attached polarizing plate comprises forming the first retardation layer on a first substrate, forming the second retardation layer on a second substrate, and forming the first retardation layer on the first substrate and The first retardation layer of the laminate of the first retardation layers, the second substrate, and the second retardation layer of the laminate of the second retardation layers are irradiated with an active energy ray. laminating via a curable adhesive to form an intermediate laminate. In one embodiment, the curing shrinkage of the active energy ray-curable adhesive is 5% or more.
  • the manufacturing method includes increasing Re(550) of the first retardation layer by 0.5 nm or more when forming the intermediate laminate.
  • the manufacturing method further includes annealing the intermediate laminate.
  • the manufacturing method includes increasing Re(550) of the first retardation layer by 0.5 nm or more by the annealing treatment.
  • the annealing treatment has a treatment temperature of 80° C. or higher and a treatment time of 1 minute or longer.
  • an image display device is provided. This image display device includes the retardation layer-attached polarizing plate described above.
  • a polarizing plate with a retardation layer that can realize an image display device in which change in reflection hue is suppressed in a high-temperature environment.
  • FIG. 1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention
  • FIG. 2 is a flow chart including schematic cross-sectional views for explaining the manufacturing process of the polarizing plate with retardation layer according to the embodiment of the present invention.
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view of a retardation layer-attached polarizing plate according to one embodiment of the present invention.
  • a polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10, a first retardation layer 21, and a second retardation layer 22 in this order from the viewing side.
  • Polarizing plate 10 includes polarizer 11 and a protective layer disposed on at least one of polarizer 11 .
  • protective layers viewing-side protective layer 12 and inner protective layer 13
  • one of the viewing-side protective layer 12 or the inner protective layer 13 is omitted depending on the purpose.
  • the first retardation layer 21 is typically attached to the opposite side of the polarizing plate 10 to the viewing side with the first pressure-sensitive adhesive layer 40 interposed therebetween.
  • the second retardation layer 22 is attached to the side of the first retardation layer 21 opposite to the polarizing plate 10 with an adhesive layer 30 interposed therebetween.
  • the first retardation layer 21 is a retardation layer other than the C plate, and the second retardation layer 22 is the C plate.
  • the first retardation layer and the second retardation layer are typically oriented and fixed layers of a liquid crystal compound (hereinafter sometimes simply referred to as liquid crystal oriented and fixed layers).
  • a liquid crystal compound By using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material.
  • the layer thickness can be significantly reduced.
  • the second retardation layer (positive C plate) can be formed with a very thin thickness. As a result, it is possible to further reduce the thickness of the retardation layer-attached polarizing plate.
  • the term "fixed alignment layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction and the alignment state is fixed.
  • the "alignment fixed layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer.
  • the first retardation layer is typically aligned in a state in which rod-shaped liquid crystal compounds are aligned in the slow axis direction of the retardation layer (homogeneous alignment); In the film, rod-like liquid crystal compounds are aligned perpendicular to the film surface (homeotropic alignment).
  • the adhesive layer 30 is composed of an active energy ray-curable adhesive. Cure shrinkage of the adhesive is typically 5% or more. Additionally/or alternatively, the laminate of the first retardation layer and the second retardation layer is typically annealed. With such a configuration, the first Re(550) of the laminate (substantially, the first retardation layer) of the retardation layer and the second retardation layer can be increased. As a result, the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram.
  • the retardation layer is a liquid crystal alignment fixed layer. That is, the liquid crystal alignment fixed layer is susceptible to dimensional shrinkage of the polarizing plate in a high-temperature environment, and tends to have a larger reflection hue change ⁇ a * b * than the resin film retardation layer.
  • a second adhesive layer is provided on the side opposite to the polarizing plate 10 of the second retardation layer 22 (that is, as the outermost layer on the side opposite to the viewing side), and the polarizing plate with a retardation layer is It can be attached to the image display panel. Furthermore, it is preferable that a release film (not shown) is temporarily attached to the surface of the second pressure-sensitive adhesive layer 50 until the polarizing plate with the retardation layer is used. Temporarily attaching the release film protects the second pressure-sensitive adhesive layer 50 and enables roll formation of the retardation layer-attached polarizing plate.
  • the total thickness of the retardation layer-attached polarizing plate is preferably 120 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 80 ⁇ m or less.
  • a lower limit for the total thickness can be, for example, 45 ⁇ m.
  • a polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability.
  • the retardation layer-attached polarizing plate can be particularly preferably applied to a curved image display device and/or a bendable or foldable image display device.
  • the total thickness of the retardation layer-attached polarizing plate refers to the total thickness from the viewer side protective layer 12 (if present) to the second retardation layer 22 . That is, the total thickness of the retardation layer-attached polarizing plate does not include the thickness of the second adhesive layer 50 .
  • the retardation layer-attached polarizing plate may further include other optical functional layers.
  • the type, properties, number, combination, arrangement position, etc. of the optical functional layers that can be provided in the polarizing plate with a retardation layer can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer may further have a conductive layer or an isotropic substrate with a conductive layer (neither is shown).
  • a conductive layer or an isotropic substrate with a conductive layer is typically provided outside the second retardation layer 22 (on the side opposite to the polarizing plate 10).
  • the polarizing plate with a retardation layer is incorporated with a touch sensor between the image display panel and the polarizing plate, so-called inner touch panel type input display device can be applied.
  • the retardation layer-attached polarizing plate may further include other retardation layers.
  • Other optical properties of the retardation layer for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient, thickness, arrangement position, etc. can be appropriately set according to the purpose.
  • the polarizing plate with a retardation layer may be sheet-shaped or elongated.
  • the term "long shape” means an elongated shape whose length is sufficiently long relative to its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width. include.
  • the elongated retardation layer-attached polarizing plate can be wound into a roll.
  • Polarizing plate B-1 Polarizer Any appropriate polarizer can be employed as the polarizer 11 .
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
  • hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
  • oriented polyene films such as those dyed with dichroic substances such as iodine and dichroic dyes and stretched, and dehydrated PVA and dehydrochlorinated polyvinyl chloride films.
  • a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is preferably used because of its excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing the PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing. Moreover, you may dye after extending
  • the PVA-based film is subjected to swelling treatment, cross-linking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, not only can dirt and anti-blocking agents on the surface of the PVA-based film be washed away, but also the PVA-based film can be swollen to remove uneven dyeing. can be prevented.
  • the polarizer obtained using a laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA-based resin layer formed by coating on a substrate can be mentioned.
  • a polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material is obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary.
  • the obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), or the resin substrate may be peeled off from the resin substrate/polarizer laminate.
  • any appropriate protective layer may be laminated on the release surface according to the purpose. Details of the method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. These publications are incorporated herein by reference in their entirety.
  • the thickness of the polarizer is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, still more preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less.
  • the thickness of the polarizer is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and even more preferably 3 ⁇ m or more. If the thickness of the polarizer is within such a range, it is possible to satisfactorily suppress curling during heating, and obtain excellent durability in appearance during heating.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is, for example, 41.5% to 46.0%, preferably 43.0% to 46.0%, and preferably 44.5% to 46.0%.
  • the degree of polarization of the polarizer is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
  • the viewing-side protective layer 12 and inner protective layer 13 are each composed of any suitable film that can be used as a protective layer for a polarizer.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, cyclic olefin-based (for example, polynorbornene-based), polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins.
  • TAC triacetyl cellulose
  • polyester-based polyvinyl alcohol-based
  • polycarbonate-based polyamide-based
  • polyimide-based polyimide-based
  • polyethersulfone-based polysulfone-based resins.
  • polystyrene-based
  • Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used.
  • a glassy polymer such as a siloxane-based polymer can also be used.
  • polymer films described in JP-A-2001-343529 can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain.
  • the polymer film can be, for example, an extrudate of the resin composition.
  • the polarizing plate with a retardation layer is typically arranged on the viewer side of the image display device as described later, and the viewer side protective layer 12 is arranged on the viewer side. Therefore, the visible-side protective layer 12 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further/or, the visible-side protective layer 12 may optionally be treated to improve visibility when viewed through polarized sunglasses (typically, imparting an (elliptical) circular polarization function, super imparting a high retardation) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses.
  • polarized sunglasses typically, imparting an (elliptical) circular polarization function, super imparting a high retardation
  • the retardation layer-attached polarizing plate can also be suitably applied to an image display device that can be used outdoors.
  • cyclic olefin-based for example, polynorbornene-based
  • cellulose-based resin for example, TAC
  • the thickness of the visible-side protective layer 12 is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, still more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the viewer side protective layer is the thickness including the thickness of the surface treatment layer.
  • the inner protective layer 13 is preferably optically isotropic in one embodiment.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • the thickness of the inner protective layer 13 is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, still more preferably 10 ⁇ m to 30 ⁇ m.
  • Preferred materials for the inner protective layer include cyclic olefin-based (eg, polynorbornene-based), cellulose-based resins (eg, TAC), and acrylic-based resins.
  • the first retardation layer 21 can typically function as a ⁇ /4 plate.
  • the first retardation layer is typically provided to impart antireflection properties to the image display device.
  • the first retardation layer typically exhibits refractive index characteristics of nx>ny ⁇ nz as described above.
  • the in-plane retardation Re(550) of the first retardation layer is preferably 100 nm to 200 nm, more preferably 110 nm to 170 nm, still more preferably 120 nm to 160 nm, as described above.
  • the Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3. By satisfying such a relationship, it is possible to obtain an image display device having a very excellent reflective hue.
  • the first retardation layer preferably exhibits reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light. That is, the first retardation layer preferably satisfies the relationship Re(450) ⁇ Re(550) as described above. The first retardation layer preferably further satisfies the relationship Re(550) ⁇ Re(650).
  • Re(450)/Re(550) of the first retardation layer is preferably 0.8 or more and less than 1, more preferably 0.8 or more and 0.95 or less.
  • Re(650)/Re(550) of the first retardation layer is preferably 1.0 or more and less than 1.15, more preferably 1.03 to 1.1. With such a configuration, very excellent antireflection properties can be achieved.
  • the angle between the slow axis of the retardation layer and the absorption axis of the polarizer is preferably 40° to 50°, more preferably 42° to 48°, still more preferably about 45°. If the angle is within such a range, an image display device having extremely excellent antireflection properties can be obtained by using a ⁇ /4 plate as the retardation layer as described above.
  • the first retardation layer can typically be a liquid crystal alignment fixed layer as described above. As described above, by using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. The thickness of the retardation layer 1 can be remarkably reduced. In the first retardation layer, typically, as described above, rod-like liquid crystal compounds are aligned in the slow axis direction of the retardation layer (homogeneous alignment).
  • Liquid crystal compounds include, for example, liquid crystal compounds whose liquid crystal phase is a nematic phase (nematic liquid crystal).
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound.
  • the liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer.
  • the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline.
  • the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a change in temperature, which is peculiar to liquid crystalline compounds. As a result, the first retardation layer becomes a highly stable retardation layer that is not affected by temperature changes.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
  • liquid crystal monomer Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • polymerizable mesogenic compounds described in JP-T-2002-533742 WO00/37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93/22397 EP0261712, DE19504224, DE4408171, and GB2280445
  • EP0261712, DE19504224, DE4408171, and GB2280445 can be used.
  • the thickness of the first retardation layer can typically be set to a thickness that allows it to function properly as a ⁇ /4 plate.
  • the thickness of the first retardation layer is preferably 0.5 ⁇ m to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, particularly preferably -100 nm to -180 nm.
  • the second retardation layer can be made of any suitable material.
  • the second retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment.
  • a liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the adhesive layer 30 is composed of an active energy ray-curable adhesive.
  • the curing shrinkage of the adhesive is typically 5% or more, preferably 7% or more, more preferably 10% or more, and still more preferably 14% or more, as described above.
  • the upper limit of cure shrinkage of the adhesive may be, for example, 20%.
  • Re (550) of the laminate of the first retardation layer and the second retardation layer (substantially, the first retardation layer) can be increased,
  • the front reflection hue a value and b value at the initial stage (before being placed in a high temperature environment) of the image display device can be shifted in advance in the direction of change in the L * a * b * color space chromaticity diagram under the high temperature environment. can. Therefore, it is possible to reduce the reflection hue change ⁇ a * b * in a high-temperature environment (for example, after an endurance test).
  • the above range for example, 3%
  • active energy ray-curable adhesive can be used as the active energy ray-curable adhesive as long as the cure shrinkage rate can be within the above range.
  • active energy ray-curable adhesives include ultraviolet-curable adhesives and electron beam-curable adhesives.
  • active energy ray-curable adhesives include, for example, radical-curing, cationic-curing, anion-curing, and hybrids of radical-curing and cationic-curing.
  • a radical curing ultraviolet curing adhesive may be used. This is because it is excellent in versatility and the characteristics (structure) can be easily adjusted.
  • An active energy ray-curable adhesive typically contains a monofunctional component, a multifunctional component (curing component), and a photopolymerization initiator.
  • Each monofunctional component and multifunctional component is typically a radically polymerizable compound.
  • Preferred monofunctional components include, for example, higher alkyl esters of (meth)acrylic acid and modified products thereof. Specific examples include isostearyl acrylate, lauryl acrylate, acryloylmorpholine, and unsaturated fatty acid hydroxyalkyl ester-modified ⁇ -caprolactone.
  • Preferred multifunctional components include monomers and/or oligomers having two or more functional groups such as (meth)acrylate groups and (meth)acrylamide groups.
  • Specific examples include polyethylene glycol diacrylate, trimethylpropane triacrylate, and glycerin triacrylate.
  • Specific examples of monofunctional or multifunctional components other than the above include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, phenoxydiethylene glycol acrylate, and cyclic trimethylolpropane formal acrylate.
  • the monofunctional or multifunctional component has a ring structure. Specific examples include acryloylmorpholine, ⁇ -butyrolactone acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ⁇ -caprolactone, N-methylpyrrolidone, and 9-vinylcarbazole.
  • the monofunctional component and the polyfunctional component may be used alone or in combination of two or more.
  • the active energy ray-curable adhesive may further contain a cationic polymerizable compound, if necessary.
  • the cationically polymerizable compound may be monofunctional or polyfunctional.
  • monofunctional cationic polymerizable compounds include p-tert-butylphenyl glycidyl ether and 3-ethyl-3-[(2-ethylhexyl)oxy]oxetane.
  • polyfunctional cationic polymerizable compounds include 3-ethyl-3- ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ oxetane.
  • a silane coupling agent may be used as the cationic polymerizable compound. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane.
  • the active energy ray-curable adhesive may further contain an acrylic oligomer as necessary.
  • the molecular weight of the acrylic oligomer can be appropriately set depending on the purpose.
  • the active energy ray-curable adhesive may further contain a plasticizer (for example, an oligomer component), a cross-linking agent, a diluent, etc., depending on the purpose.
  • a plasticizer for example, an oligomer component
  • a cross-linking agent for example, an oligomer component
  • a diluent for example, an oligomer component
  • an activity having a desired cure shrinkage rate can be obtained.
  • An energy ray-curable adhesive can be obtained.
  • the thickness of the active energy ray-curable adhesive after curing is preferably 0.1 ⁇ m to 3.0 ⁇ m.
  • Adhesive Layer Any appropriate adhesive can be used for the first adhesive layer 40 and the second adhesive layer 50 depending on the purpose, and thus detailed description thereof is omitted.
  • Embodiments of the present invention also include the method for producing the polarizing plate with retardation layer.
  • This manufacturing method includes forming a first retardation layer on a first substrate, forming a second retardation layer on a second substrate, and forming the first substrate and the second retardation layer.
  • the first retardation layer of the laminate of one retardation layer, the second substrate and the second retardation layer of the laminate of the second retardation layer are combined with an active energy ray-curable laminating via an adhesive to form an intermediate laminate.
  • the first retardation layer 21 is formed on the first base material 61 .
  • the first substrate may include any suitable resin film. Specific examples include cellulose resin films such as triacetyl cellulose (TAC) films, polyester films such as polyethylene terephthalate (PET) films, and acrylic resin films. A TAC film is preferred.
  • the first retardation layer is typically formed by subjecting the surface of the first substrate to alignment treatment, applying a coating liquid containing a liquid crystal compound to the surface, and applying the liquid crystal compound to the alignment treatment. It can be formed by aligning in a direction to which the polarizer is aligned and fixing the alignment state. Any appropriate orientation treatment can be adopted as the orientation treatment.
  • Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment.
  • Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment.
  • Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose. Alignment of the liquid crystal compound is performed by treatment at a temperature at which a liquid crystal phase is exhibited depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material. In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • the first retardation layer 21 is formed on the first base material 61 .
  • the second retardation layer 22 is formed on the second substrate 62.
  • the second substrate includes any suitable resin film. Specific examples are as described above for the first substrate.
  • the second substrate is preferably a PET film.
  • the second retardation layer is formed, for example, as described above using the liquid crystal compound and formation method described in [0020] to [0028] of JP-A-2002-333642.
  • the second retardation layer 22 is formed on the second base material 62 .
  • the first retardation layer 21 and the second retardation layer 22 in each laminate obtained above are bonded via an active energy ray-curable adhesive. to form an intermediate laminate.
  • the active energy ray-curable adhesive is as described in section D above. More specifically, for example, an active energy ray-curable adhesive is applied to the surface of the second retardation layer, and the first retardation layer is brought into contact with the surface (typically, bonded) to form an intermediate
  • An intermediate laminate is formed by forming a laminate precursor, heating it if necessary, and irradiating a predetermined integrated amount of active energy rays (eg, ultraviolet rays) to cure the adhesive.
  • active energy rays eg, ultraviolet rays
  • the cure shrinkage rate of the active energy ray-curable adhesive is typically 5% or more as described above. If the curing shrinkage rate is within such a range, the Re(550) of the first retardation layer is preferably 0.5 nm or more, more preferably It can be increased by 1.0 nm or more, more preferably 1.5 nm or more, particularly preferably 2.5 nm or more, and most preferably 3.0 nm or more. As a result, the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram.
  • the intermediate laminate is annealed.
  • the annealing temperature is preferably 80° C. or higher, more preferably 90° C. or higher, still more preferably 95° C. or higher, and particularly preferably 100° C. or higher.
  • the upper limit of the treatment temperature can be 120° C., for example.
  • the treatment time can vary depending on the treatment temperature.
  • the treatment time is preferably 1 minute or longer, more preferably 3 minutes or longer, still more preferably 7 minutes or longer, and particularly preferably 10 minutes or longer.
  • the upper limit of treatment time can be, for example, 20 minutes.
  • Re (550) of the first retardation layer is preferably 0.5 nm or more, more preferably 1.0 nm or more, still more preferably 1.5 nm or more, particularly preferably 2.5 nm or more, Especially preferably, it can be increased by 3.0 nm or more.
  • the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram. can be made Therefore, it is possible to reduce the reflection hue change ⁇ a * b * in a high-temperature environment (for example, after an endurance test).
  • the curing shrinkage rate of the active energy ray-curable adhesive is 5% or more as described above, the effects of the embodiment of the present invention may be obtained without performing the annealing treatment.
  • an intermediate laminate is formed using an active energy ray-curable adhesive having a curing shrinkage of 5% or more, and the intermediate laminate can be subjected to an annealing treatment.
  • Re(550) of the first retardation layer can be further increased.
  • the first base material 61 is peeled off from the intermediate laminate, and the first adhesive layer 40 is applied to the peeled surface (surface of the first retardation layer 21). Then, the polarizing plate is attached with the first pressure-sensitive adhesive layer 40 interposed therebetween. In addition, since the polarizing plate can be manufactured by any appropriate method, detailed description of the manufacturing method of the polarizing plate is omitted. Practically, as shown in FIG. 2(f), the second base material 62 is peeled off, and the second adhesive layer 50 is placed on the peeled surface (surface of the second retardation layer 22). .
  • the second pressure-sensitive adhesive layer is formed on a release film (not shown), the laminate of the second pressure-sensitive adhesive layer and the release film, the second pressure-sensitive adhesive layer is the surface of the second retardation layer are placed in contact with the
  • a polarizing plate with a retardation layer can be produced.
  • the release film is removed when the retardation layer-attached polarizing plate is used.
  • the polarizing plate with a retardation layer according to the above items A to F can be applied to an image display device. Accordingly, embodiments of the present invention include imaging devices using such retardation layer-attached polarizing plates.
  • the image display device according to the embodiment of the present invention typically includes the retardation layer-attached polarizing plate described in the above items A to F on the viewing side thereof.
  • the retardation layer-attached polarizing plate is laminated such that the retardation layer is on the image display panel side (the polarizing plate is on the viewing side).
  • Typical image display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, and inorganic EL display devices.
  • the image display device eg, organic EL display device
  • the difference between the in-plane retardation of the intermediate laminate and the in-plane retardation of the first retardation layer before the production of the intermediate laminate was defined as the "retardation increase value".
  • the in-plane retardation of the intermediate laminate is substantially the in-plane retardation of the first retardation layer in the laminate.
  • test sample before and after the durability test is placed on a mirror plate, and the a value and b value are measured using a spectrophotometer/color difference meter "CM-26d” manufactured by Konica Minolta, Inc., and the difference is ⁇ a *. b * .
  • CM-26d spectrophotometer/color difference meter
  • ACMO Acryloylmorpholine manufactured by KJ Chemicals
  • Plaxel FA1DDM unsaturated fatty acid hydroxyalkyl ester-modified ⁇ -caprolactone manufactured by Daicel
  • ISTA isostearyl acrylate
  • Light acrylate LA manufactured by Osaka Organic Chemical Industry Co., Ltd.: Lauryl acrylate
  • Light acrylate 14EG-A manufactured by Kyoeisha Chemical Co., Ltd.: Kyoeisha Chemical Polyethylene glycol diacrylate light acrylate TMP-A manufactured by Kyoeisha Chemical Co., Ltd.
  • Aronix M-930 glycerin triacrylate manufactured by Toagosei KBM-403: 3-glycidoxy manufactured by Shin-Etsu Chemical Co., Ltd.
  • Propyltrimethoxysilane EX-146 p-tert-butylphenyl glycidyl ether OXT-212 manufactured by Nagase ChemteX Corporation: 3-ethyl-3-[(2-ethylhexyl)oxy]oxetane OXT-221 manufactured by Toagosei Co., Ltd.: Toagosei Co., Ltd. 3-ethyl-3- ⁇ [(3-ethyloxetan-3-yl)methoxy]methyl ⁇ oxetane
  • ARUFON UP-1190 Toagosei Co., Ltd.
  • ARUFON UG-4010 Toagosei Co., Ltd.
  • Omnirad 819 IGMresins CPI-110P manufactured by San-Apro Co., Ltd.
  • Example 1 Production of Polarizer
  • a thermoplastic resin substrate a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a water absorption of 0.75% and a Tg of about 75° C. was used. Corona treatment was applied to one side of the resin substrate.
  • Polyvinyl alcohol degree of polymerization: 4,200, degree of saponification: 99.2 mol% and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z410") mixed at 9:1: 100 weight of PVA-based resin 13 parts by weight of potassium iodide was added to parts by weight, and dissolved in water to prepare an aqueous PVA solution (coating solution). The above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
  • the finally obtained polarizing film is placed in a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C.
  • HC-COP film was attached to the surface of the polarizer of the resin substrate/polarizer laminate obtained above via an ultraviolet curable adhesive. Specifically, the curable adhesive was applied so as to have a thickness of 1.0 ⁇ m, and was bonded using a roll machine. After that, UV light was applied from the HC-TAC film side to cure the adhesive.
  • the HC-COP film is a film in which a hard coat (HC) layer (2 ⁇ m thick) is formed on a cyclic olefin resin (COP) film (25 ⁇ m thick), and the COP film is placed on the polarizer side. pasted together.
  • the resin substrate was peeled off, and a TAC film having an Re(550) of about 0 nm to 2 nm was attached to the peeled surface in the same manner as described above. Thus, a polarizing plate was obtained.
  • the resulting solution was filtered through a 0.20 ⁇ m membrane filter to obtain a polymerizable composition.
  • a polyimide solution for alignment film was applied to a TAC substrate by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film.
  • the resulting coating film was rubbed to form an alignment film.
  • the rubbing treatment was performed using a commercially available rubbing device.
  • the polymerizable composition obtained above was applied to the surface of the alignment film by spin coating, and dried at 100° C. for 2 minutes.
  • the obtained coating film After cooling the obtained coating film to room temperature, it was irradiated with ultraviolet rays for 30 seconds at an intensity of 30 mW/cm 2 using a high-pressure mercury lamp to obtain a liquid crystal alignment fixed layer (thickness 4 ⁇ m).
  • the in-plane retardation Re(550) of the liquid crystal alignment fixed layer was 130 nm.
  • the Re(450)/Re(550) of the liquid crystal alignment fixed layer was 0.851, showing reverse dispersion wavelength characteristics.
  • Second retardation layer Side chain type represented by the following chemical formula (1) (numbers 65 and 35 in the formula indicate mol% of the monomer unit, and are conveniently represented by block polymer body: weight average molecular weight 5000) 20 parts by weight of a liquid crystal polymer, 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) were added to cyclopenta A liquid crystal coating liquid was prepared by dissolving in 200 parts by weight of non.
  • the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal.
  • Examples 2 to 13 and Comparative Examples 1 to 3 A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that the UV adhesive shown in Table 2 was used and the intermediate laminate was annealed under the conditions shown in Table 2. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. Table 2 shows the results. "None" in the column of annealing treatment in Table 2 indicates that no annealing treatment was performed.
  • the retardation layer-attached polarizing plates of the examples of the present invention have smaller ⁇ a * b * than the comparative examples. That is, it can be seen that the retardation layer-attached polarizing plate of the example of the present invention can realize an image display device in which the reflection hue change is suppressed in a high-temperature environment.
  • the polarizing plate with a retardation layer of the present invention is suitably used as an antireflection circularly polarizing plate for an image display device.

Abstract

Provided is a polarizing plate that is provided with a retardation layer and that can be used to implement an image display device in which a reflection hue change is inhibited in a high temperature environment. The polarizing plate with a retardation layer according to an embodiment of the present invention has: a polarizing plate including a polarizer and a protective layer on at least one side of the polarizer; a first retardation layer disposed on the polarizing plate on a side opposite to the visible side thereof; and a second retardation layer attached, via an adhesive layer, to the first retardation layer on a side opposite to the polarizing plate. The first retardation layer is a retardation layer other than a C plate, and the second retardation layer is a C plate. In one embodiment, the adhesive layer is made of an actinic radiation curable adhesive. The curing shrinkage rate of the adhesive is at least 5%. In another embodiment, a layered product of the first retardation layer and the second retardation layer is subjected to an annealing treatment.

Description

位相差層付偏光板およびその製造方法、ならびに該位相差層付偏光板を用いた画像表示装置Polarizing plate with retardation layer, method for producing the same, and image display device using the polarizing plate with retardation layer
 本発明は、位相差層付偏光板およびその製造方法、ならびに該位相差層付偏光板を用いた画像表示装置に関する。 The present invention relates to a polarizing plate with a retardation layer, a manufacturing method thereof, and an image display device using the polarizing plate with a retardation layer.
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置には、代表的には偏光板および位相差板が用いられている。実用的には、偏光板と位相差板とを一体化した位相差層付偏光板が広く用いられているところ、最近、画像表示装置の薄型化への要望が強くなるに伴って、位相差層付偏光板についても薄型化の要望が強まっている。位相差層付偏光板の薄型化に対する1つのアプローチとして、液晶化合物を配向させた状態で固定した位相差層を用いる位相差層付偏光板が提案されている。しかし、このような位相差層付偏光板を用いた画像表示装置は、高温環境下における反射色相変化が大きいという問題がある。 In recent years, image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices) have rapidly spread. Polarizing plates and retardation plates are typically used in image display devices. Practically, a polarizing plate with a retardation layer, in which a polarizing plate and a retardation plate are integrated, is widely used. There is also an increasing demand for thinner layered polarizing plates. As one approach to thinning the retardation layer-equipped polarizing plate, a retardation layer-equipped polarizing plate using a retardation layer in which a liquid crystal compound is fixed in an aligned state has been proposed. However, an image display device using such a retardation layer-attached polarizing plate has a problem that the reflection hue change is large in a high-temperature environment.
特開2020-064274号公報JP 2020-064274 A
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高温環境下における反射色相変化が抑制された画像表示装置を実現し得る位相差層付偏光板を提供することにある。 The present invention was made to solve the above-mentioned conventional problems, and its main object is to provide a polarizing plate with a retardation layer that can realize an image display device in which the change in reflection hue is suppressed in a high-temperature environment. That's what it is.
 本発明の実施形態による位相差層付偏光板は、偏光子と該偏光子の少なくとも一方に保護層とを含む偏光板と、該偏光板の視認側と反対側に配置された第1の位相差層と、該第1の位相差層の該偏光板と反対側に接着剤層を介して貼り合わせられた第2の位相差層と、を有する。該第1の位相差層はCプレート以外の位相差層であり、該第2の位相差層はCプレートである。1つの実施形態においては、該接着剤層は活性エネルギー線硬化型接着剤で構成され、該接着剤の硬化収縮率は5%以上である。別の実施形態においては、該第1の位相差層と該第2の位相差層との積層体が、アニール処理されている。
 1つの実施形態においては、上記第1の位相差層はnx>ny≧nzの屈折率特性を示し、Re(550)は100nm~200nmであり、かつ、Re(450)<Re(550)の関係を満足し;上記第2の位相差層はnz>nx=nyの屈折率特性を示す。ここで、Re(450)およびRe(550)は、それぞれ、23℃における波長450nmおよび550nmの光で測定した面内位相差である。
 1つの実施形態においては、上記第1の位相差層および上記第2の位相差層は、液晶化合物の配向固化層である。
 本発明の別の局面によれば、上記の位相差層付偏光板の製造方法が提供される。この製造方法は、第1の基材に上記第1の位相差層を形成すること、第2の基材に上記第2の位相差層を形成すること、および、該第1の基材および該第1の位相差層の積層体の該第1の位相差層と該第2の基材および該第2の位相差層の積層体の該第2の位相差層とを、活性エネルギー線硬化型接着剤を介して貼り合わせ、中間積層体を形成すること、を含む。
 1つの実施形態においては、該活性エネルギー線硬化型接着剤の硬化収縮率は5%以上である。この場合、上記製造方法は、上記中間積層体を形成する際に、上記第1の位相差層のRe(550)を0.5nm以上増加させることを含む。
 別の実施形態においては、上記製造方法は、該中間積層体をアニール処理することをさらに含む。この場合、上記製造方法は、上記アニール処理により、上記第1の位相差層のRe(550)を0.5nm以上増加させることを含む。1つの実施形態においては、上記アニール処理の処理温度は80℃以上であり、処理時間は1分以上である。
 本発明のさらに別の局面によれば、画像表示装置が提供される。この画像表示装置は、上記の位相差層付偏光板を備える。
A polarizing plate with a retardation layer according to an embodiment of the present invention includes a polarizing plate including a polarizer and a protective layer on at least one of the polarizer, and a first position disposed on the side opposite to the viewing side of the polarizing plate. It has a retardation layer, and a second retardation layer attached to the side of the first retardation layer opposite to the polarizing plate via an adhesive layer. The first retardation layer is a retardation layer other than the C plate, and the second retardation layer is the C plate. In one embodiment, the adhesive layer is composed of an active energy ray-curable adhesive, and the curing shrinkage of the adhesive is 5% or more. In another embodiment, the laminate of the first retardation layer and the second retardation layer is annealed.
In one embodiment, the first retardation layer exhibits refractive index characteristics of nx>ny≧nz, Re(550) is 100 nm to 200 nm, and Re(450)<Re(550). the second retardation layer exhibits a refractive index characteristic of nz>nx=ny. Here, Re(450) and Re(550) are the in-plane retardation measured with light having wavelengths of 450 nm and 550 nm at 23° C., respectively.
In one embodiment, the first retardation layer and the second retardation layer are alignment fixed layers of a liquid crystal compound.
According to another aspect of the present invention, there is provided a method for producing the retardation layer-attached polarizing plate. This manufacturing method comprises forming the first retardation layer on a first substrate, forming the second retardation layer on a second substrate, and forming the first retardation layer on the first substrate and The first retardation layer of the laminate of the first retardation layers, the second substrate, and the second retardation layer of the laminate of the second retardation layers are irradiated with an active energy ray. laminating via a curable adhesive to form an intermediate laminate.
In one embodiment, the curing shrinkage of the active energy ray-curable adhesive is 5% or more. In this case, the manufacturing method includes increasing Re(550) of the first retardation layer by 0.5 nm or more when forming the intermediate laminate.
In another embodiment, the manufacturing method further includes annealing the intermediate laminate. In this case, the manufacturing method includes increasing Re(550) of the first retardation layer by 0.5 nm or more by the annealing treatment. In one embodiment, the annealing treatment has a treatment temperature of 80° C. or higher and a treatment time of 1 minute or longer.
According to still another aspect of the present invention, an image display device is provided. This image display device includes the retardation layer-attached polarizing plate described above.
 本発明の実施形態によれば、高温環境下における反射色相変化が抑制された画像表示装置を実現し得る位相差層付偏光板を得ることができる。 According to the embodiment of the present invention, it is possible to obtain a polarizing plate with a retardation layer that can realize an image display device in which change in reflection hue is suppressed in a high-temperature environment.
本発明の1つの実施形態による位相差層付偏光板の概略断面図である。1 is a schematic cross-sectional view of a polarizing plate with a retardation layer according to one embodiment of the present invention; FIG. 本発明の実施形態による位相差層付偏光板の製造工程を説明する、概略断面図を含むフロー図である。FIG. 2 is a flow chart including schematic cross-sectional views for explaining the manufacturing process of the polarizing plate with retardation layer according to the embodiment of the present invention.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re(λ)” is an in-plane retardation measured at 23° C. with light having a wavelength of λ nm. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is obtained by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth(λ)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of λ nm. For example, “Rth(550)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise directions with respect to a reference direction. Thus, for example, "45°" means ±45°.
A.位相差層付偏光板の全体構成
 図1は、本発明の1つの実施形態による位相差層付偏光板の概略断面図である。図示例の位相差層付偏光板100は、代表的には、偏光板10と第1の位相差層21と第2の位相差層22とを視認側からこの順に有する。偏光板10は、偏光子11と偏光子11の少なくとも一方に配置された保護層とを含む。図示例では、偏光子11の両側に保護層(視認側保護層12および内側保護層13)が配置されているが、視認側保護層12または内側保護層13の一方は目的等に応じて省略されてもよい。第1の位相差層21は、代表的には、偏光板10の視認側と反対側に第1の粘着剤層40を介して貼り合わせられている。第2の位相差層22は、第1の位相差層21の偏光板10と反対側に接着剤層30を介して貼り合わせられている。
A. Overall Configuration of Retardation Layer-Equipped Polarizing Plate FIG. 1 is a schematic cross-sectional view of a retardation layer-attached polarizing plate according to one embodiment of the present invention. A polarizing plate 100 with a retardation layer in the illustrated example typically has a polarizing plate 10, a first retardation layer 21, and a second retardation layer 22 in this order from the viewing side. Polarizing plate 10 includes polarizer 11 and a protective layer disposed on at least one of polarizer 11 . In the illustrated example, protective layers (viewing-side protective layer 12 and inner protective layer 13) are arranged on both sides of the polarizer 11, but one of the viewing-side protective layer 12 or the inner protective layer 13 is omitted depending on the purpose. may be The first retardation layer 21 is typically attached to the opposite side of the polarizing plate 10 to the viewing side with the first pressure-sensitive adhesive layer 40 interposed therebetween. The second retardation layer 22 is attached to the side of the first retardation layer 21 opposite to the polarizing plate 10 with an adhesive layer 30 interposed therebetween.
 本発明の実施形態においては、第1の位相差層21はCプレート以外の位相差層であり、第2の位相差層22はCプレートである。第1の位相差層21は、代表的にはnx>ny≧nzの屈折率特性を示す。すなわち、第1の位相差層は、ポジティブAプレート(nx>ny=nz)またはネガティブBプレート(nx>ny>nz)であり得る。さらに、第1の位相差層は、そのRe(550)が好ましくは100nm~200nmであり、好ましくはRe(450)<Re(550)の関係を満足する。第2の位相差層22は、代表的にはnz>nx=nyの屈折率特性を示す。すなわち、第2の位相差層は、ポジティブCプレートであり得る。第1の位相差層および第2の位相差層がこのような構成であれば、優れた反射防止特性を有する位相差層付偏光板を実現することができる。 In the embodiment of the present invention, the first retardation layer 21 is a retardation layer other than the C plate, and the second retardation layer 22 is the C plate. The first retardation layer 21 typically exhibits a refractive index characteristic of nx>ny≧nz. That is, the first retardation layer can be a positive A plate (nx>ny=nz) or a negative B plate (nx>ny>nz). Further, the first retardation layer preferably has Re(550) of 100 nm to 200 nm, and preferably satisfies the relationship Re(450)<Re(550). The second retardation layer 22 typically exhibits a refractive index characteristic of nz>nx=ny. That is, the second retardation layer can be a positive C-plate. If the first retardation layer and the second retardation layer have such a structure, it is possible to realize a polarizing plate with a retardation layer having excellent antireflection properties.
 第1の位相差層および第2の位相差層は、代表的には、液晶化合物の配向固化層(以下、単に液晶配向固化層と称する場合がある)である。液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための第1の位相差層の厚みを格段に小さくすることができる。また、非常に薄い厚みで第2の位相差層(ポジティブCプレート)を形成することができる。その結果、位相差層付偏光板のさらなる薄型化を実現することができる。本明細書において「配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第1の位相差層は、代表的には、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向しており(ホモジニアス配向);第2の位相差層は、代表的には、棒状の液晶化合物がフィルム面に垂直に配向している(ホメオトロピック配向)。 The first retardation layer and the second retardation layer are typically oriented and fixed layers of a liquid crystal compound (hereinafter sometimes simply referred to as liquid crystal oriented and fixed layers). By using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. The layer thickness can be significantly reduced. Also, the second retardation layer (positive C plate) can be formed with a very thin thickness. As a result, it is possible to further reduce the thickness of the retardation layer-attached polarizing plate. As used herein, the term "fixed alignment layer" refers to a layer in which a liquid crystal compound is aligned in a predetermined direction and the alignment state is fixed. In addition, the "alignment fixed layer" is a concept including an alignment cured layer obtained by curing a liquid crystal monomer. The first retardation layer is typically aligned in a state in which rod-shaped liquid crystal compounds are aligned in the slow axis direction of the retardation layer (homogeneous alignment); In the film, rod-like liquid crystal compounds are aligned perpendicular to the film surface (homeotropic alignment).
 本発明の実施形態においては、接着剤層30は、活性エネルギー線硬化型接着剤で構成されている。当該接着剤の硬化収縮率は、代表的には5%以上である。さらに/あるいは、第1の位相差層と第2の位相差層との積層体は、代表的にはアニール処理されている。このような構成であれば、接着剤の硬化収縮率が小さい場合、および/または、第1の位相差層と第2の位相差層との積層体をアニール処理しない場合に比べて、第1の位相差層と第2の位相差層との積層体(実質的には、第1の位相差層)のRe(550)を大きくすることができる。その結果、画像表示装置の初期(高温環境下に置かれる前)の正面反射色相a値およびb値を、L色空間色度図において高温環境下で変化する方向にあらかじめシフトさせることができる。したがって、高温環境下における(例えば、耐久試験後の)反射色相変化Δaを小さくすることができる。このような効果は、位相差層が液晶配向固化層である場合に顕著である。すなわち、液晶配向固化層は、高温環境下において偏光板の寸法収縮の影響を受けやすく、樹脂フィルムの位相差層に比べて反射色相変化Δaが大きい傾向がある。ここで、上記のとおり初期の正面反射色相a値およびb値を高温環境下で変化する方向にあらかじめシフトさせることにより(あらかじめ寸法収縮の影響を経験させておくことにより)、高温環境下における偏光板の寸法収縮の影響を小さくすることができ、その結果、反射色相変化Δaを小さくすることができる。 In the embodiment of the present invention, the adhesive layer 30 is composed of an active energy ray-curable adhesive. Cure shrinkage of the adhesive is typically 5% or more. Additionally/or alternatively, the laminate of the first retardation layer and the second retardation layer is typically annealed. With such a configuration, the first Re(550) of the laminate (substantially, the first retardation layer) of the retardation layer and the second retardation layer can be increased. As a result, the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram. can be made Therefore, it is possible to reduce the reflection hue change Δa * b * in a high-temperature environment (for example, after an endurance test). Such an effect is remarkable when the retardation layer is a liquid crystal alignment fixed layer. That is, the liquid crystal alignment fixed layer is susceptible to dimensional shrinkage of the polarizing plate in a high-temperature environment, and tends to have a larger reflection hue change Δa * b * than the resin film retardation layer. Here, as described above, by previously shifting the initial front reflection hue a value and b value in the direction of change in the high temperature environment (by experiencing the influence of dimensional shrinkage in advance), polarized light in the high temperature environment The effect of dimensional shrinkage of the plate can be reduced, and as a result, the reflected hue change Δa * b * can be reduced.
 実用的には、第2の位相差層22の偏光板10と反対側に(すなわち、視認側と反対側の最外層として)第2の粘着剤層が設けられ、位相差層付偏光板は画像表示パネルに貼り付け可能とされている。さらに、第2の粘着剤層50の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルム(図示せず)が仮着されていることが好ましい。剥離フィルムを仮着することにより、第2の粘着剤層50を保護するとともに、位相差層付偏光板のロール形成が可能となる。 Practically, a second adhesive layer is provided on the side opposite to the polarizing plate 10 of the second retardation layer 22 (that is, as the outermost layer on the side opposite to the viewing side), and the polarizing plate with a retardation layer is It can be attached to the image display panel. Furthermore, it is preferable that a release film (not shown) is temporarily attached to the surface of the second pressure-sensitive adhesive layer 50 until the polarizing plate with the retardation layer is used. Temporarily attaching the release film protects the second pressure-sensitive adhesive layer 50 and enables roll formation of the retardation layer-attached polarizing plate.
 位相差層付偏光板の総厚みは、好ましくは120μm以下であり、より好ましくは100μm以下であり、さらに好ましくは80μm以下である。総厚みの下限は、例えば45μmであり得る。このような総厚みを有する位相差層付偏光板は、きわめて優れた可撓性および折り曲げ耐久性を有し得る。その結果、位相差層付偏光板は、湾曲した画像表示装置および/または屈曲もしくは折り曲げ可能な画像表示装置に特に好適に適用され得る。なお、位相差層付偏光板の総厚みとは、視認側保護層12(存在する場合)から第2の位相差層22までの合計厚みをいう。すなわち、位相差層付偏光板の総厚みは、第2の粘着剤層50の厚みを含まない。 The total thickness of the retardation layer-attached polarizing plate is preferably 120 μm or less, more preferably 100 μm or less, and even more preferably 80 μm or less. A lower limit for the total thickness can be, for example, 45 μm. A polarizing plate with a retardation layer having such a total thickness can have extremely excellent flexibility and bending durability. As a result, the retardation layer-attached polarizing plate can be particularly preferably applied to a curved image display device and/or a bendable or foldable image display device. The total thickness of the retardation layer-attached polarizing plate refers to the total thickness from the viewer side protective layer 12 (if present) to the second retardation layer 22 . That is, the total thickness of the retardation layer-attached polarizing plate does not include the thickness of the second adhesive layer 50 .
 位相差層付偏光板は、その他の光学機能層をさらに含んでいてもよい。位相差層付偏光板に設けられ得る光学機能層の種類、特性、数、組み合わせ、配置位置等は、目的に応じて適切に設定され得る。例えば、位相差層付偏光板は、導電層または導電層付等方性基材をさらに有していてもよい(いずれも図示せず)。導電層または導電層付等方性基材は、代表的には、第2の位相差層22の外側(偏光板10と反対側)に設けられる。導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示パネルと偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。また例えば、位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The retardation layer-attached polarizing plate may further include other optical functional layers. The type, properties, number, combination, arrangement position, etc. of the optical functional layers that can be provided in the polarizing plate with a retardation layer can be appropriately set according to the purpose. For example, the polarizing plate with a retardation layer may further have a conductive layer or an isotropic substrate with a conductive layer (neither is shown). A conductive layer or an isotropic substrate with a conductive layer is typically provided outside the second retardation layer 22 (on the side opposite to the polarizing plate 10). When a conductive layer or an isotropic substrate with a conductive layer is provided, the polarizing plate with a retardation layer is incorporated with a touch sensor between the image display panel and the polarizing plate, so-called inner touch panel type input display device can be applied. . Further, for example, the retardation layer-attached polarizing plate may further include other retardation layers. Other optical properties of the retardation layer (for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. can be appropriately set according to the purpose.
 位相差層付偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の位相差層付偏光板は、ロール状に巻回可能である。 The polarizing plate with a retardation layer may be sheet-shaped or elongated. As used herein, the term "long shape" means an elongated shape whose length is sufficiently long relative to its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width. include. The elongated retardation layer-attached polarizing plate can be wound into a roll.
 以下、位相差層付偏光板の構成要素について、より詳細に説明する。 The components of the retardation layer-equipped polarizing plate will be described in more detail below.
B.偏光板
B-1.偏光子
 偏光子11としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B. Polarizing plate B-1. Polarizer Any appropriate polarizer can be employed as the polarizer 11 . For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films. In addition, oriented polyene films such as those dyed with dichroic substances such as iodine and dichroic dyes and stretched, and dehydrated PVA and dehydrochlorinated polyvinyl chloride films. A polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is preferably used because of its excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing the PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing. Moreover, you may dye after extending|stretching. If necessary, the PVA-based film is subjected to swelling treatment, cross-linking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, not only can dirt and anti-blocking agents on the surface of the PVA-based film be washed away, but also the PVA-based film can be swollen to remove uneven dyeing. can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子の保護層としてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained using a laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin A polarizer obtained by using a laminate with a PVA-based resin layer formed by coating on a substrate can be mentioned. A polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material is obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material. forming a PVA-based resin layer thereon to obtain a laminate of a resin substrate and a PVA-based resin layer; stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer; obtain. In this embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary. The obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a protective layer for the polarizer), or the resin substrate may be peeled off from the resin substrate/polarizer laminate. Then, any appropriate protective layer may be laminated on the release surface according to the purpose. Details of the method for manufacturing such a polarizer are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 and Japanese Patent No. 6470455. These publications are incorporated herein by reference in their entirety.
 偏光子の厚みは、好ましくは15μm以下であり、より好ましくは12μm以下であり、さらに好ましくは10μm以下であり、特に好ましくは8μm以下である。一方、偏光子の厚みは、好ましくは1μm以上であり、より好ましくは2μm以上であり、さらに好ましくは3μm以上である。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is preferably 15 µm or less, more preferably 12 µm or less, still more preferably 10 µm or less, and particularly preferably 8 µm or less. On the other hand, the thickness of the polarizer is preferably 1 μm or more, more preferably 2 μm or more, and even more preferably 3 μm or more. If the thickness of the polarizer is within such a range, it is possible to satisfactorily suppress curling during heating, and obtain excellent durability in appearance during heating.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、例えば41.5%~46.0%であり、好ましくは43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is, for example, 41.5% to 46.0%, preferably 43.0% to 46.0%, and preferably 44.5% to 46.0%. The degree of polarization of the polarizer is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
B-2.保護層
 視認側保護層12および内側保護層13は、それぞれ、偏光子の保護層として使用できる任意の適切なフィルムで構成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、環状オレフィン系(例えば、ポリノルボルネン系)、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Protective Layers The viewing-side protective layer 12 and inner protective layer 13 are each composed of any suitable film that can be used as a protective layer for a polarizer. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, cyclic olefin-based (for example, polynorbornene-based), polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins. Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used. In addition, for example, a glassy polymer such as a siloxane-based polymer can also be used. Further, polymer films described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain. can be used, for example, a resin composition comprising an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile-styrene copolymer. The polymer film can be, for example, an extrudate of the resin composition.
 位相差層付偏光板は、後述するように代表的には画像表示装置の視認側に配置され、視認側保護層12は、その視認側に配置される。したがって、視認側保護層12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、視認側保護層12には、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、位相差層付偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。なお、視認側保護層を構成する材料としては、好ましくは、環状オレフィン系(例えば、ポリノルボルネン系)、セルロース系樹脂(例えば、TAC)が挙げられる。 The polarizing plate with a retardation layer is typically arranged on the viewer side of the image display device as described later, and the viewer side protective layer 12 is arranged on the viewer side. Therefore, the visible-side protective layer 12 may be subjected to surface treatment such as hard coat treatment, anti-reflection treatment, anti-sticking treatment, and anti-glare treatment, if necessary. Further/or, the visible-side protective layer 12 may optionally be treated to improve visibility when viewed through polarized sunglasses (typically, imparting an (elliptical) circular polarization function, super imparting a high retardation) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. Therefore, the retardation layer-attached polarizing plate can also be suitably applied to an image display device that can be used outdoors. In addition, as a material constituting the visible side protective layer, cyclic olefin-based (for example, polynorbornene-based) and cellulose-based resin (for example, TAC) are preferably used.
 視認側保護層12の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。なお、表面処理が施されている場合、視認側保護層の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the visible-side protective layer 12 is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, still more preferably 10 μm to 30 μm. In addition, when the surface treatment is performed, the thickness of the viewer side protective layer is the thickness including the thickness of the surface treatment layer.
 内側保護層13は、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。内側保護層13の厚みは、好ましくは5μm~80μm、より好ましくは10μm~40μm、さらに好ましくは10μm~30μmである。内側保護層を構成する材料としては、好ましくは、環状オレフィン系(例えば、ポリノルボルネン系)、セルロース系樹脂(例えば、TAC)、アクリル系樹脂が挙げられる。 The inner protective layer 13 is preferably optically isotropic in one embodiment. As used herein, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say. The thickness of the inner protective layer 13 is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, still more preferably 10 μm to 30 μm. Preferred materials for the inner protective layer include cyclic olefin-based (eg, polynorbornene-based), cellulose-based resins (eg, TAC), and acrylic-based resins.
C.位相差層
C-1.第1の位相差層
 第1の位相差層21は代表的にはλ/4板として機能し得る。第1の位相差層は、代表的には画像表示装置に反射防止特性を付与するために設けられる。第1の位相差層は、代表的には上記のとおり、nx>ny≧nzの屈折率特性を示す。第1の位相差層の面内位相差Re(550)は、好ましくは上記のとおり100nm~200nmであり、より好ましくは110nm~170nmであり、さらに好ましくは120nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。
C. Retardation layer C-1. First Retardation Layer The first retardation layer 21 can typically function as a λ/4 plate. The first retardation layer is typically provided to impart antireflection properties to the image display device. The first retardation layer typically exhibits refractive index characteristics of nx>ny≧nz as described above. The in-plane retardation Re(550) of the first retardation layer is preferably 100 nm to 200 nm, more preferably 110 nm to 170 nm, still more preferably 120 nm to 160 nm, as described above. Here, "ny=nz" includes not only the case where ny and nz are completely equal but also the case where they are substantially equal. Therefore, ny>nz or ny<nz may be satisfied within a range that does not impair the effects of the present invention.
 位相差層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、非常に優れた反射色相を有する画像表示装置が得られ得る。 The Nz coefficient of the retardation layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3. By satisfying such a relationship, it is possible to obtain an image display device having a very excellent reflective hue.
 第1の位相差層は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。すなわち、第1の位相差層は、好ましくは上記のとおりRe(450)<Re(550)の関係を満足する。第1の位相差層は、好ましくは、Re(550)<Re(650)の関係をさらに満足する。第1の位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。第1の位相差層のRe(650)/Re(550)は、好ましくは1.0以上1.15未満であり、より好ましくは1.03~1.1である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The first retardation layer preferably exhibits reverse dispersion wavelength characteristics in which the retardation value increases according to the wavelength of the measurement light. That is, the first retardation layer preferably satisfies the relationship Re(450)<Re(550) as described above. The first retardation layer preferably further satisfies the relationship Re(550)<Re(650). Re(450)/Re(550) of the first retardation layer is preferably 0.8 or more and less than 1, more preferably 0.8 or more and 0.95 or less. Re(650)/Re(550) of the first retardation layer is preferably 1.0 or more and less than 1.15, more preferably 1.03 to 1.1. With such a configuration, very excellent antireflection properties can be achieved.
 位相差層の遅相軸と偏光子の吸収軸とのなす角度は、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度がこのような範囲であれば、上記のように位相差層をλ/4板とすることにより、非常に優れた反射防止特性を有する画像表示装置が得られ得る。 The angle between the slow axis of the retardation layer and the absorption axis of the polarizer is preferably 40° to 50°, more preferably 42° to 48°, still more preferably about 45°. If the angle is within such a range, an image display device having extremely excellent antireflection properties can be obtained by using a λ/4 plate as the retardation layer as described above.
 第1の位相差層は、代表的には上記のとおり、液晶配向固化層であり得る。上記のとおり、液晶化合物を用いることにより、得られる位相差層のnxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための第1の位相差層の厚みを格段に小さくすることができる。第1の位相差層は、代表的には上記のとおり、棒状の液晶化合物が位相差層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。 The first retardation layer can typically be a liquid crystal alignment fixed layer as described above. As described above, by using a liquid crystal compound, the difference between nx and ny in the resulting retardation layer can be significantly increased compared to a non-liquid crystal material. The thickness of the retardation layer 1 can be remarkably reduced. In the first retardation layer, typically, as described above, rod-like liquid crystal compounds are aligned in the slow axis direction of the retardation layer (homogeneous alignment).
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Liquid crystal compounds include, for example, liquid crystal compounds whose liquid crystal phase is a nematic phase (nematic liquid crystal). As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound. The liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の位相差層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の位相差層は、温度変化に影響されない、極めて安定性に優れた位相差層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers. Here, a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline. Therefore, the formed first retardation layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to a change in temperature, which is peculiar to liquid crystalline compounds. As a result, the first retardation layer becomes a highly stable retardation layer that is not affected by temperature changes.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。 Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer. For example, polymerizable mesogenic compounds described in JP-T-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used.
 第1の位相差層の厚みは、代表的には、λ/4板として適切に機能し得る厚みに設定され得る。第1の位相差層の厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 The thickness of the first retardation layer can typically be set to a thickness that allows it to function properly as a λ/4 plate. The thickness of the first retardation layer is preferably 0.5 μm to 7 μm, more preferably 1 μm to 5 μm. By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness much thinner than that of a resin film.
C-2.第2の位相差層
 第2の位相差層22は、上記のとおり、屈折率特性がnz>nx=nyの関係を示すポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
C-2. Second Retardation Layer As described above, the second retardation layer 22 may be a positive C-plate exhibiting a refractive index characteristic of nz>nx=ny. By using a positive C plate as the second retardation layer, it is possible to satisfactorily prevent reflection in oblique directions and widen the viewing angle of the antireflection function. In this case, the thickness direction retardation Rth (550) of the second retardation layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, still more preferably −90 nm to −200 nm, particularly preferably -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re(550) of the second retardation layer can be less than 10 nm.
 第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 The second retardation layer can be made of any suitable material. The second retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment. A liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642. In this case, the thickness of the second retardation layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, still more preferably 0.5 μm to 5 μm.
D.接着剤層
 接着剤層30は、上記のとおり、活性エネルギー線硬化型接着剤で構成されている。当該接着剤の硬化収縮率は、代表的には上記のとおり5%以上であり、好ましくは7%以上であり、より好ましくは10%以上であり、さらに好ましくは14%以上である。接着剤の硬化収縮率の上限は、例えば20%であり得る。このような構成であれば、第1の位相差層と第2の位相差層との積層体(実質的には、第1の位相差層)のRe(550)を大きくすることができ、画像表示装置の初期(高温環境下に置かれる前)の正面反射色相a値およびb値を、L色空間色度図において高温環境下で変化する方向にあらかじめシフトさせることができる。したがって、高温環境下における(例えば、耐久試験後の)反射色相変化Δaを小さくすることができる。なお、第1の位相差層と第2の位相差層との積層体をアニールする場合には、接着剤の硬化収縮率が上記範囲より小さい場合(例えば、3%)であっても、上記のような効果が得られる場合がある。
D. Adhesive Layer As described above, the adhesive layer 30 is composed of an active energy ray-curable adhesive. The curing shrinkage of the adhesive is typically 5% or more, preferably 7% or more, more preferably 10% or more, and still more preferably 14% or more, as described above. The upper limit of cure shrinkage of the adhesive may be, for example, 20%. With such a configuration, Re (550) of the laminate of the first retardation layer and the second retardation layer (substantially, the first retardation layer) can be increased, The front reflection hue a value and b value at the initial stage (before being placed in a high temperature environment) of the image display device can be shifted in advance in the direction of change in the L * a * b * color space chromaticity diagram under the high temperature environment. can. Therefore, it is possible to reduce the reflection hue change Δa * b * in a high-temperature environment (for example, after an endurance test). When annealing the laminate of the first retardation layer and the second retardation layer, even if the curing shrinkage rate of the adhesive is smaller than the above range (for example, 3%), the above You may get an effect like
 活性エネルギー線硬化型接着剤としては、硬化収縮率が上記範囲となり得る限りにおいて、任意の適切な活性エネルギー線硬化型接着剤を用いることができる。活性エネルギー線硬化型接着剤としては、例えば、紫外線硬化型接着剤、電子線硬化型接着剤が挙げられる。また、硬化メカニズムの観点からは、活性エネルギー線硬化型接着剤としては、例えば、ラジカル硬化型、カチオン硬化型、アニオン硬化型、ラジカル硬化型とカチオン硬化型とのハイブリッドが挙げられる。代表的には、ラジカル硬化型の紫外線硬化型接着剤が用いられ得る。汎用性に優れ、および、特性(構成)の調整が容易だからである。 Any appropriate active energy ray-curable adhesive can be used as the active energy ray-curable adhesive as long as the cure shrinkage rate can be within the above range. Examples of active energy ray-curable adhesives include ultraviolet-curable adhesives and electron beam-curable adhesives. From the viewpoint of the curing mechanism, active energy ray-curable adhesives include, for example, radical-curing, cationic-curing, anion-curing, and hybrids of radical-curing and cationic-curing. Typically, a radical curing ultraviolet curing adhesive may be used. This is because it is excellent in versatility and the characteristics (structure) can be easily adjusted.
  活性エネルギー線硬化型接着剤は、代表的には、単官能成分と多官能成分(硬化成分)と光重合開始剤とを含有する。単官能成分および多官能成分はそれぞれ、代表的には、ラジカル重合性化合物である。好ましい単官能成分としては、例えば、(メタ)アクリル酸の高級アルキルエステルおよびその変性体が挙げられる。具体例としては、イソステアリルアクリレート、ラウリルアクリレート、アクリロイルモルホリン、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトンが挙げられる。好ましい多官能成分としては、例えば、(メタ)アクリレート基、(メタ)アクリルアミド基などの官能基を2つ以上有するモノマーおよび/またはオリゴマーが挙げられる。具体例としては、ポリエチレングリコールジアクリレート、トリメチルプロパントリアクリレート、グリセリントリアクリレートが挙げられる。上記以外の単官能成分または多官能成分の具体例としては、トリプロピレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、トリシクロデカンジメタノールジアクリレート、フェノキシジエチレングリコールアクリレート、環状トリメチロールプロパンフォルマルアクリレート、ジオキサングリコールジアクリレート、EO変性ジグリセリンテトラアクリレート、γ-ブチロラクトンアクリレート、N-メチルピロリドン、ヒドロキシエチルアクリルアミド、N-メチロールアクリルアミド、N-メトキシメチルアクリルアミド、N-エトキシメチルアクリルアミド、9-ビニルカルバゾールが挙げられる。1つの実施形態においては、単官能成分または多官能成分は、環構造を有する。具体例としては、アクリロイルモルホリン、γ-ブチロラクトンアクリレート、不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン、N-メチルピロリドン、9-ビニルカルバゾールが挙げられる。単官能成分または多官能成分はそれぞれ、単独で用いてもよく2種以上を併用してもよい。 An active energy ray-curable adhesive typically contains a monofunctional component, a multifunctional component (curing component), and a photopolymerization initiator. Each monofunctional component and multifunctional component is typically a radically polymerizable compound. Preferred monofunctional components include, for example, higher alkyl esters of (meth)acrylic acid and modified products thereof. Specific examples include isostearyl acrylate, lauryl acrylate, acryloylmorpholine, and unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone. Preferred multifunctional components include monomers and/or oligomers having two or more functional groups such as (meth)acrylate groups and (meth)acrylamide groups. Specific examples include polyethylene glycol diacrylate, trimethylpropane triacrylate, and glycerin triacrylate. Specific examples of monofunctional or multifunctional components other than the above include tripropylene glycol diacrylate, 1,9-nonanediol diacrylate, tricyclodecanedimethanol diacrylate, phenoxydiethylene glycol acrylate, and cyclic trimethylolpropane formal acrylate. , dioxane glycol diacrylate, EO-modified diglycerin tetraacrylate, γ-butyrolactone acrylate, N-methylpyrrolidone, hydroxyethylacrylamide, N-methylolacrylamide, N-methoxymethylacrylamide, N-ethoxymethylacrylamide, 9-vinylcarbazole. be done. In one embodiment, the monofunctional or multifunctional component has a ring structure. Specific examples include acryloylmorpholine, γ-butyrolactone acrylate, unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone, N-methylpyrrolidone, and 9-vinylcarbazole. Each of the monofunctional component and the polyfunctional component may be used alone or in combination of two or more.
  活性エネルギー線硬化型接着剤は、必要に応じて、カチオン重合性化合物をさらに含んでいてもよい。カチオン重合性化合物は、単官能であってもよく多官能であってもよい。単官能カチオン重合性化合物としては、例えば、p-tert-ブチルフェニルグリシジルエーテル、3-エチル-3-[(2-エチルヘキシル)オキシ]オキセタンが挙げられる。多官能カチオン重合性化合物としては、例えば、3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタンが挙げられる。カチオン重合性化合物として、シランカップリング剤を用いてもよい。シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシランが挙げられる。 The active energy ray-curable adhesive may further contain a cationic polymerizable compound, if necessary. The cationically polymerizable compound may be monofunctional or polyfunctional. Examples of monofunctional cationic polymerizable compounds include p-tert-butylphenyl glycidyl ether and 3-ethyl-3-[(2-ethylhexyl)oxy]oxetane. Examples of polyfunctional cationic polymerizable compounds include 3-ethyl-3-{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane. A silane coupling agent may be used as the cationic polymerizable compound. Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane.
 活性エネルギー線硬化型接着剤は、必要に応じて、アクリル系オリゴマーをさらに含んでいてもよい。アクリル系オリゴマーの分子量は、目的に応じて適切に設定され得る。 The active energy ray-curable adhesive may further contain an acrylic oligomer as necessary. The molecular weight of the acrylic oligomer can be appropriately set depending on the purpose.
  活性エネルギー線硬化型接着剤は、目的に応じて、可塑剤(例えば、オリゴマー成分)、架橋剤、希釈剤等をさらに含有してもよい。これらの成分、ならびに上記の単官能成分、多官能成分、カチオン重合性化合物、アクリル系オリゴマーおよび光重合開始剤の種類、組み合わせ、および配合割合を調整することにより、所望の硬化収縮率を有する活性エネルギー線硬化型接着剤を得ることができる。なお、上記の各成分は、市販品を用いてもよい。 The active energy ray-curable adhesive may further contain a plasticizer (for example, an oligomer component), a cross-linking agent, a diluent, etc., depending on the purpose. By adjusting the types, combinations, and blending ratios of these components, as well as the above-mentioned monofunctional components, polyfunctional components, cationic polymerizable compounds, acrylic oligomers and photopolymerization initiators, an activity having a desired cure shrinkage rate can be obtained. An energy ray-curable adhesive can be obtained. In addition, you may use a commercial item for each said component.
  活性エネルギー線硬化型接着剤の硬化後の厚みは、好ましくは0.1μm~3.0μmである。 The thickness of the active energy ray-curable adhesive after curing is preferably 0.1 μm to 3.0 μm.
  活性エネルギー線硬化型接着剤の詳細は、例えば、特開2018-017996号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Details of the active energy ray-curable adhesive are described, for example, in JP-A-2018-017996. The description of the publication is incorporated herein by reference.
E.粘着剤層
 第1の粘着剤層40および第2の粘着剤層50については、目的に応じて任意の適切な粘着剤を用いることができるので、詳細な説明は省略する。
E. Adhesive Layer Any appropriate adhesive can be used for the first adhesive layer 40 and the second adhesive layer 50 depending on the purpose, and thus detailed description thereof is omitted.
F.位相差層付偏光板の製造方法
 本発明の実施形態は、上記の位相差層付偏光板の製造方法も包含する。この製造方法は、第1の基材に第1の位相差層を形成すること、第2の基材に第2の位相差層を形成すること、および、該第1の基材および該第1の位相差層の積層体の該第1の位相差層と該第2の基材および該第2の位相差層の積層体の該第2の位相差層とを、活性エネルギー線硬化型接着剤を介して貼り合わせ、中間積層体を形成すること、を含む。以下、図2を参照して、当該製造方法の代表例について説明する。
F. Method for Producing Polarizing Plate with Retardation Layer Embodiments of the present invention also include the method for producing the polarizing plate with retardation layer. This manufacturing method includes forming a first retardation layer on a first substrate, forming a second retardation layer on a second substrate, and forming the first substrate and the second retardation layer. The first retardation layer of the laminate of one retardation layer, the second substrate and the second retardation layer of the laminate of the second retardation layer are combined with an active energy ray-curable laminating via an adhesive to form an intermediate laminate. A representative example of the manufacturing method will be described below with reference to FIG.
 まず、図2(a)に示すように、第1の基材61に第1の位相差層21を形成する。第1の基材としては、任意の適切な樹脂フィルムが挙げられる。具体例としては、トリアセチルセルロース(TAC)フィルムのようなセルロース系樹脂フィルム、ポリエチレンテレフタレート(PET)フィルムのようなポリエステル系フィルム、アクリル系樹脂フィルムが挙げられる。好ましくは、TACフィルムである。第1の位相差層は、代表的には、第1の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。このようにして、第1の基材61に第1の位相差層21が形成される。 First, as shown in FIG. 2( a ), the first retardation layer 21 is formed on the first base material 61 . The first substrate may include any suitable resin film. Specific examples include cellulose resin films such as triacetyl cellulose (TAC) films, polyester films such as polyethylene terephthalate (PET) films, and acrylic resin films. A TAC film is preferred. The first retardation layer is typically formed by subjecting the surface of the first substrate to alignment treatment, applying a coating liquid containing a liquid crystal compound to the surface, and applying the liquid crystal compound to the alignment treatment. It can be formed by aligning in a direction to which the polarizer is aligned and fixing the alignment state. Any appropriate orientation treatment can be adopted as the orientation treatment. Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose. Alignment of the liquid crystal compound is performed by treatment at a temperature at which a liquid crystal phase is exhibited depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material. In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment. Thus, the first retardation layer 21 is formed on the first base material 61 .
 一方、図2(b)に示すように、第2の基材62に第2の位相差層22を形成する。第2の基材としては、任意の適切な樹脂フィルムが挙げられる。具体例は、第1の基材に関して上記したとおりである。第2の基材は、好ましくはPETフィルムである。第2の位相差層は、例えば上記のとおり、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および形成方法を用いて形成される。このようにして、第2の基材62に第2の位相差層22が形成される。 On the other hand, as shown in FIG. 2(b), the second retardation layer 22 is formed on the second substrate 62. The second substrate includes any suitable resin film. Specific examples are as described above for the first substrate. The second substrate is preferably a PET film. The second retardation layer is formed, for example, as described above using the liquid crystal compound and formation method described in [0020] to [0028] of JP-A-2002-333642. Thus, the second retardation layer 22 is formed on the second base material 62 .
 次に、図2(c)に示すように、上記で得られたそれぞれの積層体における第1の位相差層21と第2の位相差層22とを、活性エネルギー線硬化型接着剤を介して貼り合わせ、中間積層体を形成する。活性エネルギー線硬化型接着剤については、上記D項で説明したとおりである。より詳細には、例えば第2の位相差層の表面に活性エネルギー線硬化型接着剤を塗布し、その表面に第1の位相差層を接触させて(代表的には、貼り合わせて)中間積層体の前駆体を形成し、必要に応じて加熱し、所定の積算量の活性エネルギー線(例えば、紫外線)を照射して接着剤を硬化させることにより、中間積層体が形成される。ここで、活性エネルギー線硬化型接着剤の硬化収縮率は、代表的には上記のとおり5%以上である。硬化収縮率がこのような範囲であれば、中間積層体が形成される際に当該収縮に起因して、第1の位相差層のRe(550)を好ましくは0.5nm以上、より好ましくは1.0nm以上、さらに好ましくは1.5nm以上、特に好ましくは2.5nm以上、とりわけ好ましくは3.0nm以上増加させることができる。その結果、画像表示装置の初期(高温環境下に置かれる前)の正面反射色相a値およびb値を、L色空間色度図において高温環境下で変化する方向にあらかじめシフトさせることができる。したがって、高温環境下における(例えば、耐久試験後の)反射色相変化Δaを小さくすることができる。ただし、後述のアニール処理が行われる場合には、硬化収縮率が5%未満であっても本発明の実施形態による効果が得られる場合がある。 Next, as shown in FIG. 2(c), the first retardation layer 21 and the second retardation layer 22 in each laminate obtained above are bonded via an active energy ray-curable adhesive. to form an intermediate laminate. The active energy ray-curable adhesive is as described in section D above. More specifically, for example, an active energy ray-curable adhesive is applied to the surface of the second retardation layer, and the first retardation layer is brought into contact with the surface (typically, bonded) to form an intermediate An intermediate laminate is formed by forming a laminate precursor, heating it if necessary, and irradiating a predetermined integrated amount of active energy rays (eg, ultraviolet rays) to cure the adhesive. Here, the cure shrinkage rate of the active energy ray-curable adhesive is typically 5% or more as described above. If the curing shrinkage rate is within such a range, the Re(550) of the first retardation layer is preferably 0.5 nm or more, more preferably It can be increased by 1.0 nm or more, more preferably 1.5 nm or more, particularly preferably 2.5 nm or more, and most preferably 3.0 nm or more. As a result, the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram. can be made Therefore, it is possible to reduce the reflection hue change Δa * b * in a high-temperature environment (for example, after an endurance test). However, when an annealing treatment, which will be described later, is performed, the effects of the embodiment of the present invention may be obtained even if the curing shrinkage rate is less than 5%.
 次に、図2(d)に示すように、中間積層体をアニール処理する。アニール処理の処理温度は、好ましくは80℃以上であり、より好ましくは90℃以上であり、さらに好ましくは95℃以上であり、特に好ましくは100℃以上である。処理温度の上限は、例えば120℃であり得る。処理時間は処理温度に応じて変化し得る。処理時間は、好ましくは1分以上であり、より好ましくは3分以上であり、さらに好ましくは7分以上であり、特に好ましくは10分以上である。処理時間の上限は、例えば20分であり得る。アニール処理を行うことにより、第1の位相差層のRe(550)を好ましくは0.5nm以上、より好ましくは1.0nm以上、さらに好ましくは1.5nm以上、特に好ましくは2.5nm以上、とりわけ好ましくは3.0nm以上増加させることができる。その結果、画像表示装置の初期(高温環境下に置かれる前)の正面反射色相a値およびb値を、L色空間色度図において高温環境下で変化する方向にあらかじめシフトさせることができる。したがって、高温環境下における(例えば、耐久試験後の)反射色相変化Δaを小さくすることができる。ただし、上記のように活性エネルギー線硬化型接着剤の硬化収縮率が5%以上である場合には、アニール処理を行わなくても本発明の実施形態による効果が得られる場合がある。 Next, as shown in FIG. 2(d), the intermediate laminate is annealed. The annealing temperature is preferably 80° C. or higher, more preferably 90° C. or higher, still more preferably 95° C. or higher, and particularly preferably 100° C. or higher. The upper limit of the treatment temperature can be 120° C., for example. The treatment time can vary depending on the treatment temperature. The treatment time is preferably 1 minute or longer, more preferably 3 minutes or longer, still more preferably 7 minutes or longer, and particularly preferably 10 minutes or longer. The upper limit of treatment time can be, for example, 20 minutes. By performing the annealing treatment, Re (550) of the first retardation layer is preferably 0.5 nm or more, more preferably 1.0 nm or more, still more preferably 1.5 nm or more, particularly preferably 2.5 nm or more, Especially preferably, it can be increased by 3.0 nm or more. As a result, the initial front reflection hue a value and b value of the image display device (before being placed in a high temperature environment) are shifted in advance in the direction of change in a high temperature environment in the L * a * b * color space chromaticity diagram. can be made Therefore, it is possible to reduce the reflection hue change Δa * b * in a high-temperature environment (for example, after an endurance test). However, when the curing shrinkage rate of the active energy ray-curable adhesive is 5% or more as described above, the effects of the embodiment of the present invention may be obtained without performing the annealing treatment.
 好ましくは、硬化収縮率が5%以上である活性エネルギー線硬化型接着剤を用いて中間積層体を形成し、当該中間積層体をアニール処理に供することができる。その結果、第1の位相差層のRe(550)をさらに増加させることができる。 Preferably, an intermediate laminate is formed using an active energy ray-curable adhesive having a curing shrinkage of 5% or more, and the intermediate laminate can be subjected to an annealing treatment. As a result, Re(550) of the first retardation layer can be further increased.
 次に、図2(e)に示すように、中間積層体から第1の基材61を剥離除去し、当該剥離面(第1の位相差層21表面)に第1の粘着剤層40を配置し、第1の粘着剤層40を介して偏光板を貼り合わせる。なお、偏光板は任意の適切な方法で作製され得るので、偏光板の製造方法の詳細な説明は省略する。実用的には、図2(f)に示すように、第2の基材62を剥離除去し、当該剥離面(第2の位相差層22表面)に第2の粘着剤層50を配置する。例えば、第2の粘着剤層は剥離フィルム(図示せず)上に形成され、第2の粘着剤層と剥離フィルムとの積層体が、第2の粘着剤層が第2の位相差層表面に接するようにして配置される。このようにして、位相差層付偏光板が作製され得る。位相差層付偏光板の使用時には、剥離フィルムは除去される。 Next, as shown in FIG. 2(e), the first base material 61 is peeled off from the intermediate laminate, and the first adhesive layer 40 is applied to the peeled surface (surface of the first retardation layer 21). Then, the polarizing plate is attached with the first pressure-sensitive adhesive layer 40 interposed therebetween. In addition, since the polarizing plate can be manufactured by any appropriate method, detailed description of the manufacturing method of the polarizing plate is omitted. Practically, as shown in FIG. 2(f), the second base material 62 is peeled off, and the second adhesive layer 50 is placed on the peeled surface (surface of the second retardation layer 22). . For example, the second pressure-sensitive adhesive layer is formed on a release film (not shown), the laminate of the second pressure-sensitive adhesive layer and the release film, the second pressure-sensitive adhesive layer is the surface of the second retardation layer are placed in contact with the Thus, a polarizing plate with a retardation layer can be produced. The release film is removed when the retardation layer-attached polarizing plate is used.
G.画像表示装置
 上記A項からF項に記載の位相差層付偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような位相差層付偏光板を用いた画像装置を包含する。本発明の実施形態による画像表示装置は、代表的には、その視認側に上記A項からF項に記載の位相差層付偏光板を備える。位相差層付偏光板は、位相差層が画像表示パネル側となるように(偏光板が視認側となるように)積層されている。画像表示装置としては、代表的には、液晶表示装置、有機エレクトロルミネセンス(EL)表示装置、無機EL表示装置が挙げられる。1つの実施形態においては、画像表示装置(例えば、有機EL表示装置)は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、屈曲もしくは折り曲げ可能である。
G. Image Display Device The polarizing plate with a retardation layer according to the above items A to F can be applied to an image display device. Accordingly, embodiments of the present invention include imaging devices using such retardation layer-attached polarizing plates. The image display device according to the embodiment of the present invention typically includes the retardation layer-attached polarizing plate described in the above items A to F on the viewing side thereof. The retardation layer-attached polarizing plate is laminated such that the retardation layer is on the image display panel side (the polarizing plate is on the viewing side). Typical image display devices include liquid crystal display devices, organic electroluminescence (EL) display devices, and inorganic EL display devices. In one embodiment, the image display device (eg, organic EL display device) has a curved shape (substantially a curved display screen) and/or is bendable or bendable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measurement method of each characteristic is as follows. "Parts" and "%" in Examples and Comparative Examples are by weight unless otherwise specified.
(1)硬化収縮率
 実施例および比較例で用いた紫外線硬化型接着剤について、センテック社製の樹脂硬化収縮率応力測定装置「EU201」を用いて硬化収縮率を測定した。
(2)位相差上昇値
 実施例および比較例で作製した第1の位相差層(中間積層体作製前)および中間積層体(アニール処理した場合はアニール処理後)について、Axometrics社製の位相差測定装置(製品名「Axo Scan」)を用いて面内位相差を測定した。面内位相差の測定波長は550nmであり、測定温度は23℃であった。中間積層体の面内位相差と中間積層体作製前の第1の位相差層の面内位相差との差を「位相差上昇値」とした。なお、中間積層体の面内位相差は、実質的には、積層体中の第1の位相差層の面内位相差である。
(3)Δa
 実施例および比較例で得られた位相差層付偏光板を無アルカリガラス板に貼り合わせ、試験サンプルとした。当該試験サンプルを、80℃、500時間の耐久性試験に供した。耐久試験前後の試験サンプルを鏡面板上に載置し、コニカミノルタ社製の分光測色計・色彩色差計「CM-26d」を用いてa値およびb値を測定し、その差をΔaとした。
(1) Curing Shrinkage The curing shrinkage of the ultraviolet curable adhesives used in Examples and Comparative Examples was measured using a resin curing shrinkage stress measuring device "EU201" manufactured by Sentech.
(2) Retardation increase value For the first retardation layer (before intermediate laminate production) and the intermediate laminate (after annealing if annealing) produced in Examples and Comparative Examples, the phase difference manufactured by Axometrics The in-plane retardation was measured using a measuring device (product name “Axo Scan”). The in-plane retardation was measured at a wavelength of 550 nm and at a temperature of 23°C. The difference between the in-plane retardation of the intermediate laminate and the in-plane retardation of the first retardation layer before the production of the intermediate laminate was defined as the "retardation increase value". The in-plane retardation of the intermediate laminate is substantially the in-plane retardation of the first retardation layer in the laminate.
(3) Δa * b *
The retardation layer-equipped polarizing plates obtained in Examples and Comparative Examples were attached to alkali-free glass plates to prepare test samples. The test sample was subjected to a durability test at 80°C for 500 hours. The test sample before and after the durability test is placed on a mirror plate, and the a value and b value are measured using a spectrophotometer/color difference meter "CM-26d" manufactured by Konica Minolta, Inc., and the difference is Δa *. b * .
[製造例1~4:紫外線硬化型接着剤A~Dの調製]
 表1に示す各成分を表1に示す割合で配合し、紫外線硬化型接着剤A~Dを調製した。紫外線硬化型接着剤A~Dの硬化収縮率は表1に示すとおりであった。なお、表1に示す各用語の意味は以下のとおりである。
   ACMO:KJケミカルズ社製のアクリロイルモルホリン 
   プラクセルFA1DDM:ダイセル社製の不飽和脂肪酸ヒドロキシアルキルエステル修飾ε-カプロラクトン
   ISTA:大阪有機化学工業社製のイソステアリルアクリレート
   ライトアクリレートL-A:共栄社化学社製のラウリルアクリレート
   ライトアクリレート14EG-A:共栄社化学社製のポリエチレングリコールジアクリレート
   ライトアクリレートTMP-A:共栄社化学社製のトリメチルプロパントリアクリレート
   アロニックスM-930:東亞合成社製のグリセリントリアクリレート
   KBM-403:信越化学工業社製の3-グリシドキシプロピルトリメトキシシラン
   EX-146:ナガセケムテックス社製のp-tert-ブチルフェニルグリシジルエーテル
   OXT-212:東亞合成社製の3-エチル-3-[(2-エチルヘキシル)オキシ]オキセタン
   OXT-221:東亞合成社製の3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン
   ARUFON UP-1190:東亞合成社製
   ARUFON UG-4010:東亞合成社製
   Omnirad 819:IGMresins社製
   CPI-110P:サンアプロ社製
[Production Examples 1 to 4: Preparation of UV-curable adhesives A to D]
Each component shown in Table 1 was blended in the ratio shown in Table 1 to prepare UV-curable adhesives A to D. Table 1 shows the cure shrinkage rates of the UV-curable adhesives A to D. In addition, the meaning of each term shown in Table 1 is as follows.
ACMO: Acryloylmorpholine manufactured by KJ Chemicals
Plaxel FA1DDM: unsaturated fatty acid hydroxyalkyl ester-modified ε-caprolactone manufactured by Daicel ISTA: isostearyl acrylate Light acrylate LA manufactured by Osaka Organic Chemical Industry Co., Ltd.: Lauryl acrylate Light acrylate 14EG-A manufactured by Kyoeisha Chemical Co., Ltd.: Kyoeisha Chemical Polyethylene glycol diacrylate light acrylate TMP-A manufactured by Kyoeisha Chemical Co., Ltd. Aronix M-930: glycerin triacrylate manufactured by Toagosei KBM-403: 3-glycidoxy manufactured by Shin-Etsu Chemical Co., Ltd. Propyltrimethoxysilane EX-146: p-tert-butylphenyl glycidyl ether OXT-212 manufactured by Nagase ChemteX Corporation: 3-ethyl-3-[(2-ethylhexyl)oxy]oxetane OXT-221 manufactured by Toagosei Co., Ltd.: Toagosei Co., Ltd. 3-ethyl-3-{[(3-ethyloxetan-3-yl)methoxy]methyl}oxetane ARUFON UP-1190: Toagosei Co., Ltd. ARUFON UG-4010: Toagosei Co., Ltd. Omnirad 819: IGMresins CPI-110P manufactured by San-Apro Co., Ltd.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例1]
1.偏光子の作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が所望の値となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム5.0重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子を形成した。
[Example 1]
1. Production of Polarizer As a thermoplastic resin substrate, a long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption of 0.75% and a Tg of about 75° C. was used. Corona treatment was applied to one side of the resin substrate.
Polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z410") mixed at 9:1: 100 weight of PVA-based resin 13 parts by weight of potassium iodide was added to parts by weight, and dissolved in water to prepare an aqueous PVA solution (coating solution).
The above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Next, the finally obtained polarizing film is placed in a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was a desired value (dyeing treatment).
Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 40°C (an aqueous solution of boric acid obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment).
After that, while immersing the laminate in an aqueous solution of boric acid (boric acid concentration: 4.0% by weight, potassium iodide: 5.0% by weight) at a liquid temperature of 70°C, the laminate is moved between rolls with different peripheral speeds in the longitudinal direction (longitudinal direction). ) was uniaxially stretched so that the total draw ratio was 5.5 times (underwater stretching treatment).
After that, the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
After that, while drying in an oven kept at 90° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75° C. for about 2 seconds (drying shrinkage treatment). The shrinkage ratio in the width direction of the laminate due to the drying shrinkage treatment was 5.2%.
Thus, a polarizer having a thickness of 5 μm was formed on the resin substrate.
2.偏光板の作製
  上記で得られた樹脂基材/偏光子の積層体の偏光子表面に、紫外線硬化型接着剤を介してHC-COPフィルムを貼り合わせた。具体的には、硬化型接着剤の厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をHC-TACフィルム側から照射して接着剤を硬化させた。なお、HC-COPフィルムは、環状オレフィン系樹脂(COP)フィルム(厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムであり、COPフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、当該剥離面にRe(550)が0nm~2nm程度であるTACフィルムを上記と同様にして貼り合わせた。このようにして、偏光板を得た。
2. Preparation of Polarizing Plate An HC-COP film was attached to the surface of the polarizer of the resin substrate/polarizer laminate obtained above via an ultraviolet curable adhesive. Specifically, the curable adhesive was applied so as to have a thickness of 1.0 μm, and was bonded using a roll machine. After that, UV light was applied from the HC-TAC film side to cure the adhesive. The HC-COP film is a film in which a hard coat (HC) layer (2 μm thick) is formed on a cyclic olefin resin (COP) film (25 μm thick), and the COP film is placed on the polarizer side. pasted together. Next, the resin substrate was peeled off, and a TAC film having an Re(550) of about 0 nm to 2 nm was attached to the peeled surface in the same manner as described above. Thus, a polarizing plate was obtained.
3.位相差層を構成する液晶配向固化層の作製
3-1.第1の位相差層
 式(I)で表される化合物55部、式(II)で表される化合物25部、式(III)で表される化合物20部をシクロペンタノン(CPN)400部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、イルガキュア907(BASFジャパン株式会社製)3部、メガファックF-554(DIC株式会社製)0.2部、p-メトキシフェノール(MEHQ)0.1部を加えて、さらに撹拌を行い、溶液を得た。溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。一方、配向膜用ポリイミド溶液をTAC基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理し、配向膜を形成した。ラビング処理は、市販のラビング装置を用いて行った。配向膜表面に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して液晶配向固化層(厚み4μm)を得た。液晶配向固化層の面内位相差Re(550)は130nmであった。また、液晶配向固化層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。
3. Preparation of Liquid Crystal Alignment Fixed Layer Constituting Retardation Layer 3-1. First retardation layer 55 parts of the compound represented by the formula (I), 25 parts of the compound represented by the formula (II), 20 parts of the compound represented by the formula (III), and 400 parts of cyclopentanone (CPN) After adding to, heat to 60 ° C., stir to dissolve, after confirming dissolution, return to room temperature, 3 parts of Irgacure 907 (manufactured by BASF Japan Co., Ltd.), Megafac F-554 (manufactured by DIC Corporation ) and 0.1 part of p-methoxyphenol (MEHQ) were added and further stirred to obtain a solution. The solution was clear and homogeneous. The resulting solution was filtered through a 0.20 μm membrane filter to obtain a polymerizable composition. On the other hand, a polyimide solution for alignment film was applied to a TAC substrate by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film. The resulting coating film was rubbed to form an alignment film. The rubbing treatment was performed using a commercially available rubbing device. The polymerizable composition obtained above was applied to the surface of the alignment film by spin coating, and dried at 100° C. for 2 minutes. After cooling the obtained coating film to room temperature, it was irradiated with ultraviolet rays for 30 seconds at an intensity of 30 mW/cm 2 using a high-pressure mercury lamp to obtain a liquid crystal alignment fixed layer (thickness 4 μm). The in-plane retardation Re(550) of the liquid crystal alignment fixed layer was 130 nm. In addition, the Re(450)/Re(550) of the liquid crystal alignment fixed layer was 0.851, showing reverse dispersion wavelength characteristics.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
3-2.第2の位相差層
 下記化学式(1)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、nz>nx=nyの屈折率特性を示す第2の位相差層(厚み3μm)を基材上に形成した。
Figure JPOXMLDOC01-appb-C000004
3-2. Second retardation layer Side chain type represented by the following chemical formula (1) (numbers 65 and 35 in the formula indicate mol% of the monomer unit, and are conveniently represented by block polymer body: weight average molecular weight 5000) 20 parts by weight of a liquid crystal polymer, 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) were added to cyclopenta A liquid crystal coating liquid was prepared by dissolving in 200 parts by weight of non. Then, the coating solution was applied to the vertically aligned PET substrate using a bar coater, and dried by heating at 80° C. for 4 minutes to align the liquid crystal. By irradiating the liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a second retardation layer (thickness: 3 μm) exhibiting refractive index characteristics of nz>nx=ny was formed on the substrate.
Figure JPOXMLDOC01-appb-C000004
4.位相差層付偏光板の作製
 上記3-1.および3-2.で得られたそれぞれの積層体における第1の位相差層と第2の位相差層とを、UV接着剤A(硬化後の厚み1μm)を介して貼り合わせ、中間積層体を形成した。この中間積層体を100℃、10分間のアニール処理に供した。アニール処理した中間積層体からTAC基材を剥離し、第1の位相差層表面にアクリル系粘着剤(厚み5μm)を配置して、当該アクリル系粘着剤を介して偏光板を貼り合わせた。このとき、TACフィルムが第1の位相差層側となるようにして偏光板を貼り合わせた。次に、PET基材を剥離し、第2の位相差層表面にアクリル系粘着剤(厚み26μm)/剥離フィルムの積層体を配置した。このようにして、位相差層付偏光板を作製した。得られた位相差層付偏光板を上記(3)の評価に供した。結果を表2に示す。
4. Production of polarizing plate with retardation layer 3-1. and 3-2. The first retardation layer and the second retardation layer in each of the laminates obtained in 1. were bonded together via a UV adhesive A (having a thickness of 1 μm after curing) to form an intermediate laminate. This intermediate laminate was annealed at 100° C. for 10 minutes. The TAC substrate was peeled off from the annealed intermediate laminate, an acrylic pressure-sensitive adhesive (thickness: 5 μm) was placed on the surface of the first retardation layer, and a polarizing plate was bonded via the acrylic pressure-sensitive adhesive. At this time, the polarizing plate was attached so that the TAC film was on the side of the first retardation layer. Next, the PET substrate was peeled off, and a laminate of an acrylic pressure-sensitive adhesive (thickness: 26 μm)/release film was placed on the surface of the second retardation layer. Thus, a polarizing plate with a retardation layer was produced. The obtained polarizing plate with a retardation layer was subjected to the evaluation of (3) above. Table 2 shows the results.
[実施例2~13および比較例1~3]
 表2に示すUV接着剤を用いたこと、および、表2に示す条件で中間積層体をアニール処理したこと以外は実施例1と同様にして位相差層付偏光板を得た。得られた位相差層付偏光板を実施例1と同様の評価に供した。結果を表2に示す。なお、表2のアニール処理の欄における「なし」は、アニール処理を行わなかったことを示す。
[Examples 2 to 13 and Comparative Examples 1 to 3]
A polarizing plate with a retardation layer was obtained in the same manner as in Example 1 except that the UV adhesive shown in Table 2 was used and the intermediate laminate was annealed under the conditions shown in Table 2. The obtained polarizing plate with a retardation layer was subjected to the same evaluation as in Example 1. Table 2 shows the results. "None" in the column of annealing treatment in Table 2 indicates that no annealing treatment was performed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
[評価]
 表2から明らかなように、本発明の実施例の位相差層付偏光板は、比較例に比べてΔaが小さいことがわかる。すなわち、本発明の実施例の位相差層付偏光板は、高温環境下における反射色相変化が抑制された画像表示装置を実現し得ることがわかる。
[evaluation]
As is clear from Table 2, the retardation layer-attached polarizing plates of the examples of the present invention have smaller Δa * b * than the comparative examples. That is, it can be seen that the retardation layer-attached polarizing plate of the example of the present invention can realize an image display device in which the reflection hue change is suppressed in a high-temperature environment.
 本発明の位相差層付偏光板は、画像表示装置の反射防止用円偏光板として好適に用いられる。 The polarizing plate with a retardation layer of the present invention is suitably used as an antireflection circularly polarizing plate for an image display device.
 10   偏光板
 11   偏光子
 12   保護層
 13   保護層
 21   第1の位相差層
 22   第2の位相差層
 30   接着剤層
 40   第1の粘着剤層
 50   第2の粘着剤層
100   位相差層付偏光板
 
REFERENCE SIGNS LIST 10 polarizing plate 11 polarizer 12 protective layer 13 protective layer 21 first retardation layer 22 second retardation layer 30 adhesive layer 40 first adhesive layer 50 second adhesive layer 100 polarized light with retardation layer board

Claims (10)

  1.  偏光子と該偏光子の少なくとも一方に保護層とを含む偏光板と、該偏光板の視認側と反対側に配置された第1の位相差層と、該第1の位相差層の該偏光板と反対側に接着剤層を介して貼り合わせられた第2の位相差層と、を有し、
     該第1の位相差層がCプレート以外の位相差層であり、該第2の位相差層がCプレートであり、
     該接着剤層が活性エネルギー線硬化型接着剤で構成され、該接着剤の硬化収縮率が5%以上である、
     位相差層付偏光板。
    A polarizing plate comprising a polarizer and a protective layer on at least one of the polarizer, a first retardation layer disposed on the side opposite to the viewing side of the polarizing plate, and the polarized light of the first retardation layer and a second retardation layer bonded via an adhesive layer on the opposite side of the plate,
    The first retardation layer is a retardation layer other than a C plate, the second retardation layer is a C plate,
    The adhesive layer is composed of an active energy ray-curable adhesive, and the curing shrinkage of the adhesive is 5% or more.
    A polarizing plate with a retardation layer.
  2.  偏光子と該偏光子の少なくとも一方に保護層とを含む偏光板と、該偏光板の視認側と反対側に配置された第1の位相差層と、該第1の位相差層の該偏光板と反対側に接着剤層を介して貼り合わせられた第2の位相差層と、を有し、
     該第1の位相差層がCプレート以外の位相差層であり、該第2の位相差層がCプレートであり、
     該第1の位相差層と該第2の位相差層との積層体が、アニール処理されている、
     位相差層付偏光板。
    A polarizing plate comprising a polarizer and a protective layer on at least one of the polarizer, a first retardation layer disposed on the side opposite to the viewing side of the polarizing plate, and the polarized light of the first retardation layer and a second retardation layer bonded via an adhesive layer on the opposite side of the plate,
    The first retardation layer is a retardation layer other than a C plate, the second retardation layer is a C plate,
    The laminate of the first retardation layer and the second retardation layer is annealed.
    A polarizing plate with a retardation layer.
  3.  前記第1の位相差層がnx>ny≧nzの屈折率特性を示し、Re(550)が100nm~200nmであり、かつ、Re(450)<Re(550)の関係を満足し、
     前記第2の位相差層がnz>nx=nyの屈折率特性を示す、
     請求項1または2に記載の位相差層付偏光板:
    ここで、Re(450)およびRe(550)は、それぞれ、23℃における波長450nmおよび550nmの光で測定した面内位相差である。
    The first retardation layer exhibits refractive index characteristics of nx>ny≧nz, Re(550) is 100 nm to 200 nm, and satisfies the relationship Re(450)<Re(550),
    wherein the second retardation layer exhibits a refractive index characteristic of nz>nx=ny;
    The polarizing plate with a retardation layer according to claim 1 or 2:
    Here, Re(450) and Re(550) are the in-plane retardation measured with light having wavelengths of 450 nm and 550 nm at 23° C., respectively.
  4.  前記第1の位相差層および前記第2の位相差層が、液晶化合物の配向固化層である、請求項3に記載の位相差層付偏光板。 The polarizing plate with a retardation layer according to claim 3, wherein the first retardation layer and the second retardation layer are alignment fixed layers of a liquid crystal compound.
  5.  請求項1に記載の位相差層付偏光板の製造方法であって、
     第1の基材に前記第1の位相差層を形成すること、
     第2の基材に前記第2の位相差層を形成すること、および
     該第1の基材および該第1の位相差層の積層体の該第1の位相差層と該第2の基材および該第2の位相差層の積層体の該第2の位相差層とを、活性エネルギー線硬化型接着剤を介して貼り合わせ、中間積層体を形成すること、
     を含み、
     該活性エネルギー線硬化型接着剤の硬化収縮率が5%以上である、
     製造方法。
    A method for producing a polarizing plate with a retardation layer according to claim 1,
    forming the first retardation layer on a first substrate;
    Forming the second retardation layer on a second substrate, and forming the first retardation layer and the second substrate in a laminate of the first substrate and the first retardation layer Bonding the material and the second retardation layer of the laminate of the second retardation layer via an active energy ray-curable adhesive to form an intermediate laminate;
    including
    The curing shrinkage of the active energy ray-curable adhesive is 5% or more,
    Production method.
  6.  前記中間積層体を形成する際に、前記第1の位相差層のRe(550)を0.5nm以上増加させることを含む、請求項5に記載の製造方法。 The manufacturing method according to claim 5, comprising increasing Re(550) of the first retardation layer by 0.5 nm or more when forming the intermediate laminate.
  7.  請求項2に記載の位相差層付偏光板の製造方法であって、
     第1の基材に前記第1の位相差層を形成すること、
     第2の基材に前記第2の位相差層を形成すること、
     該第1の基材および該第1の位相差層の積層体の該第1の位相差層と該第2の基材および該第2の位相差層の積層体の該第2の位相差層とを、活性エネルギー線硬化型接着剤を介して貼り合わせ、中間積層体を形成すること、および
     該中間積層体をアニール処理すること、
     を含む、製造方法。
    A method for producing a polarizing plate with a retardation layer according to claim 2,
    forming the first retardation layer on a first substrate;
    forming the second retardation layer on a second substrate;
    The first retardation layer of the laminate of the first substrate and the first retardation layer, the second retardation of the laminate of the second substrate and the second retardation layer laminating the layers together via an active energy ray-curable adhesive to form an intermediate laminate, and annealing the intermediate laminate;
    A manufacturing method, including:
  8.  前記アニール処理の処理温度が80℃以上であり、処理時間が1分以上である、請求項7に記載の製造方法。 The manufacturing method according to claim 7, wherein the annealing treatment has a treatment temperature of 80°C or higher and a treatment time of 1 minute or longer.
  9.  前記アニール処理により、前記第1の位相差層のRe(550)を0.5nm以上増加させることを含む、請求項7または8に記載の製造方法。 The manufacturing method according to claim 7 or 8, comprising increasing Re(550) of the first retardation layer by 0.5 nm or more by the annealing treatment.
  10.  請求項1から4のいずれかに記載の位相差層付偏光板を備える、画像表示装置。 An image display device comprising the retardation layer-attached polarizing plate according to any one of claims 1 to 4.
PCT/JP2022/004574 2021-03-22 2022-02-07 Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer WO2022201907A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280022202.9A CN117242374A (en) 2021-03-22 2022-02-07 Polarizing plate with retardation layer, method for producing same, and image display device using polarizing plate with retardation layer
KR1020237032019A KR20230145479A (en) 2021-03-22 2022-02-07 Polarizer with retardation layer and method for manufacturing the same, and image display device using the polarizer with retardation layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-046925 2021-03-22
JP2021046925A JP2022146118A (en) 2021-03-22 2021-03-22 Polarizing plate with retardation layer, manufacturing method of the same and image display device using the polarizing plate with retardation layer

Publications (1)

Publication Number Publication Date
WO2022201907A1 true WO2022201907A1 (en) 2022-09-29

Family

ID=83395475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004574 WO2022201907A1 (en) 2021-03-22 2022-02-07 Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer

Country Status (5)

Country Link
JP (1) JP2022146118A (en)
KR (1) KR20230145479A (en)
CN (1) CN117242374A (en)
TW (1) TW202248691A (en)
WO (1) WO2022201907A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037273A (en) * 2011-08-10 2013-02-21 Seiko Epson Corp Optical element, manufacturing method of the optical element and projection type imaging apparatus
JP2016136169A (en) * 2015-01-23 2016-07-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive for polarizing plate, polarizing plate, and display device
JP2019066882A (en) * 2019-01-16 2019-04-25 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same
WO2019216076A1 (en) * 2018-05-10 2019-11-14 住友化学株式会社 Optical laminate and display apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240269B2 (en) 2018-10-15 2023-03-15 日東電工株式会社 Polarizing plate with retardation layer and image display device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013037273A (en) * 2011-08-10 2013-02-21 Seiko Epson Corp Optical element, manufacturing method of the optical element and projection type imaging apparatus
JP2016136169A (en) * 2015-01-23 2016-07-28 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive for polarizing plate, polarizing plate, and display device
WO2019216076A1 (en) * 2018-05-10 2019-11-14 住友化学株式会社 Optical laminate and display apparatus
JP2019066882A (en) * 2019-01-16 2019-04-25 日東電工株式会社 Polarizing plate with optical compensation layer and organic EL panel using the same

Also Published As

Publication number Publication date
TW202248691A (en) 2022-12-16
KR20230145479A (en) 2023-10-17
JP2022146118A (en) 2022-10-05
CN117242374A (en) 2023-12-15

Similar Documents

Publication Publication Date Title
US10969527B2 (en) Polarizing plate with phase difference layers, and organic EL display device
WO2015166930A1 (en) Circular polarizer for organic el display device, and organic el display device
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
WO2022201907A1 (en) Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer
WO2020246321A1 (en) Production method for polarizing plate having phase difference layer and hard coat layer
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP7126479B2 (en) Polarizing plate with retardation layer and organic EL display device
WO2023176624A1 (en) Lens part, display body, and display method
JP7411520B2 (en) Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device
WO2022185802A1 (en) Circular polarizing plate and image display device using same
WO2023176625A1 (en) Lens part, display body, and display method
WO2023176630A1 (en) Optical laminate, lens unit, and display method
WO2023176661A1 (en) Display system and lamination film
WO2023176632A1 (en) Optical laminate, lens, and display method
WO2022091471A1 (en) Retardation-layer-equipped polarizing plate, and image display device
WO2023176659A1 (en) Lens unit and laminated film
WO2023176658A1 (en) Lens unit and laminate film
WO2023176656A1 (en) Lens unit and laminated film
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
WO2022074872A1 (en) Method for manufacturing phase difference layer-equipped polarizing plate
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP6699513B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2024057833A (en) Optical laminate
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same
JP2024057839A (en) Optical laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237032019

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237032019

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774708

Country of ref document: EP

Kind code of ref document: A1