WO2023176632A1 - Optical laminate, lens, and display method - Google Patents

Optical laminate, lens, and display method Download PDF

Info

Publication number
WO2023176632A1
WO2023176632A1 PCT/JP2023/008817 JP2023008817W WO2023176632A1 WO 2023176632 A1 WO2023176632 A1 WO 2023176632A1 JP 2023008817 W JP2023008817 W JP 2023008817W WO 2023176632 A1 WO2023176632 A1 WO 2023176632A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
film
layer
absorption type
polarizing member
Prior art date
Application number
PCT/JP2023/008817
Other languages
French (fr)
Japanese (ja)
Inventor
理 小島
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022077678A external-priority patent/JP2023166853A/en
Priority claimed from JP2022077657A external-priority patent/JP2023134317A/en
Priority claimed from JP2022077679A external-priority patent/JP7516458B2/en
Priority claimed from JP2022077677A external-priority patent/JP2023166852A/en
Priority claimed from JP2022077633A external-priority patent/JP7516456B2/en
Priority claimed from JP2022077676A external-priority patent/JP2023166851A/en
Priority claimed from JP2022077632A external-priority patent/JP7516455B2/en
Priority claimed from JP2022077658A external-priority patent/JP2023166840A/en
Priority claimed from JP2022077634A external-priority patent/JP7516457B2/en
Priority claimed from JP2022077631A external-priority patent/JP2023134316A/en
Priority claimed from JP2022077659A external-priority patent/JP2023166841A/en
Priority claimed from JP2022212224A external-priority patent/JP2024095152A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176632A1 publication Critical patent/WO2023176632A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an optical laminate, a lens part, and a display method.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
  • EL electroluminescence
  • optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
  • VR goggles with a display for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be made lighter and have improved visibility. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
  • the main purpose of the present invention is to provide an optical laminate that can reduce the weight of VR goggles and improve visibility.
  • An optical laminate according to an embodiment of the present invention includes, in this order, a laminate film having a base material and a surface treatment layer, a reflective polarizing member, and an absorbing polarizing member including an absorbing polarizing film, and The surface smoothness of the polarizing member is 0.4 arcmin or less.
  • the absorption type polarizing film may have a thickness of 7 ⁇ m or less.
  • the absorption type polarizing film may be disposed adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film may be 4 ⁇ m or less. 4.
  • the absorption type polarizing film may be disposed adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film may be 6 ⁇ m or more. 5.
  • the absorption type polarizing member may include a protective layer, and the absorption type polarizing film may have a thickness of less than 6 ⁇ m. 6.
  • the laminate film, the reflective polarizing member, and the absorbing polarizing member may be integrated using an adhesive layer, and the adhesive layer The thickness of the layer may be between 4 ⁇ m and 13 ⁇ m. 7.
  • the surface treatment layer of the laminate film may have an antireflection function.
  • the optical laminate according to any one of 1 to 7 above may include the laminate film, the reflective polarizing member, the absorbing polarizing member, and the retardation member in this order.
  • the optical laminate according to any one of items 1 to 8 above may have a laminate smoothness of 0.7 arcmin or less.
  • the optical laminate according to any one of 1 to 9 above may have a degree of polarization of 99.5% or more.
  • the optical laminate according to any one of items 1 to 10 above may have a haze of 0.5% or less. 12.
  • the lens unit according to the embodiment of the present invention is a lens unit used in a display system that displays an image to a user, and is a lens unit that emits light forward from a display surface of a display element that represents an image, and includes a polarizing member and a first the optical laminate according to any one of 1 to 11 above, which reflects light that has passed through the ⁇ /4 member; and a first lens portion disposed on an optical path between the display element and the optical laminate; , the reflective polarizing member is disposed between the display element and the first lens part, transmits the light emitted from the display element, and transmits the light reflected by the reflective polarizing member of the optical laminate.
  • a display method includes a step of causing light representing an image emitted through a polarizing member and a first ⁇ /4 member to pass through a half mirror and a first lens portion; A step of causing the light that has passed through the first lens portion to pass through a second ⁇ /4 member, and a step of transmitting the light that has passed through the second ⁇ /4 member to the optical system according to any one of 1 to 11 above reflecting the light reflected by the reflective polarizing member and the half mirror of the optical laminate toward the half mirror by the second ⁇ /4 member; and a step of allowing the light transmitted through the reflective polarizing member to pass through a second lens portion.
  • optical laminate according to the embodiment of the present invention it is possible to reduce the weight of VR goggles and improve visibility.
  • FIG. 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of details of a lens section of the display system shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view showing a modification of the optical laminate shown in FIG. 2.
  • FIG. FIG. 2 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
  • Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
  • FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention.
  • FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2.
  • the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with
  • the reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12.
  • the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
  • the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is.
  • a half mirror or components disposed in front of the first lens part may be collectively referred to as a lens section (lens section 4).
  • the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
  • the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
  • a polarizing member typically, a polarizing film
  • the first retardation member 20 includes a first ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light.
  • the first retardation member may correspond to the first ⁇ /4 member.
  • the first retardation member 20 may be provided integrally with the display element 12.
  • the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14.
  • the half mirror 18 is provided integrally with the first lens section 16.
  • the second retardation member 22 includes a second ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14.
  • the second retardation member may correspond to the second ⁇ /4 member.
  • the second retardation member 22 may be provided integrally with the first lens portion 16.
  • the first circularly polarized light emitted from the first ⁇ /4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second ⁇ /4 member converts the light into a second linearly polarized light.
  • the second linearly polarized light emitted from the second ⁇ /4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14.
  • the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
  • the second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second ⁇ /4 member included in the second retardation member 22, and is emitted from the second ⁇ /4 member.
  • the second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18.
  • the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member included in the second retardation member 22.
  • the third linearly polarized light is transmitted through the reflective polarizing member 14 .
  • the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
  • the light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
  • the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first ⁇ /4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second ⁇ /4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
  • the in-plane retardation Re (550) of the first ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
  • the first ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • the first ⁇ /4 member preferably satisfies the relationship Re(450) ⁇ Re(550) ⁇ Re(650).
  • Re(450)/Re(550) of the first ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the in-plane retardation Re (550) of the second ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
  • the second ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • the second ⁇ /4 member preferably satisfies the relationship Re(450) ⁇ Re(550) ⁇ Re(650).
  • Re(450)/Re(550) of the second ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • a space may be formed between the first lens portion 16 and the second lens portion 24.
  • the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24.
  • the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled.
  • the adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive.
  • the adhesive layer may be an adhesive layer or an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • FIG. 2 is a schematic cross-sectional view showing an example of details of the lens section of the display system shown in FIG. 1. Specifically, FIG. 2 shows a first lens part, a second lens part, and members disposed between them.
  • the lens part 4 includes a first lens part 16 , a first laminated part 100 provided adjacent to the first lens part 16 , a second lens part 24 , and a second laminated part 100 provided adjacent to the second lens part 24 .
  • a laminated portion 200 is provided.
  • the first laminated part 100 and the second laminated part 200 are arranged apart from each other.
  • a half mirror may be provided integrally with the first lens section 16.
  • the second laminate section may be referred to as an optical laminate.
  • the first laminated part 100 includes a second retardation member 22 and an adhesive layer (for example, an adhesive layer) 41 disposed between the first lens part 16 and the second retardation member 22, and the adhesive layer 41, it is integrally provided to the first lens portion 16.
  • the first laminated portion 100 further includes a first protection member 31 disposed in front of the second retardation member 22.
  • the first protection member 31 is laminated on the second retardation member 22 via an adhesive layer (for example, a pressure-sensitive adhesive layer) 42, and is disposed adjacent to the second retardation member 22.
  • the first protection member 31 may be located on the outermost surface of the first laminated portion 100. Note that in this specification, adjacent includes not only directly adjacent but also adjacent via an adhesive layer.
  • the second retardation member 22 includes, in addition to the second ⁇ /4 member (first retardation layer) 22a, a member (the second retardation layer) having a refractive index characteristic of nz>nx ⁇ ny. (two retardation layers) 22b.
  • the second retardation member 22 has a laminated structure of a first retardation layer 22a and a second retardation layer 22b.
  • the member 22b that exhibits the relationship nz>nx ⁇ ny, light leakage (for example, light leakage in an oblique direction) can be prevented.
  • the second ⁇ /4 member 22a is located in front of the member 22b which exhibits the relationship nz>nx ⁇ ny.
  • the second ⁇ /4 member (first retardation layer) 22a and the member (second retardation layer) 22b exhibiting the relationship nz>nx ⁇ ny are laminated with an adhesive layer 51 in between.
  • the second retardation member 22 includes a first retardation layer 22a, an adhesive layer 51, and a second retardation layer 22b.
  • the second ⁇ /4 member exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the second ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the second ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the second ⁇ /4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound.
  • the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the second ⁇ /4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
  • polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
  • the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the thickness of the second ⁇ /4 member made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
  • the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the second ⁇ /4 member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
  • the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
  • the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
  • the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
  • the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
  • liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
  • the thickness of the second ⁇ /4 member composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and even more preferably 1 ⁇ m to 4 ⁇ m. be.
  • the retardation Rth (550) in the thickness direction of the member (second retardation layer) whose refractive index characteristics exhibit the relationship of nz>nx ⁇ ny is preferably -260 nm to -10 nm, more preferably -230 nm to -230 nm. -15 nm, more preferably -215 nm to -20 nm.
  • the second retardation layer has a refractive index that exhibits a relationship of nx>ny.
  • the in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
  • the member whose refractive index characteristics exhibit the relationship nz>nx ⁇ ny may be formed of any suitable material.
  • it consists of a film containing liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of such liquid crystal compounds and film forming methods include the liquid crystal compounds and forming methods described in [0020] to [0042] of JP-A No. 2002-333642.
  • the thickness is preferably 0.1 ⁇ m to 5 ⁇ m, more preferably 0.5 ⁇ m to 4 ⁇ m.
  • the member whose refractive index characteristics exhibit the relationship of nz>nx ⁇ ny may be a retardation film formed from a fumaric acid diester resin described in JP-A No. 2012-32784.
  • the thickness is preferably 5 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 35 ⁇ m.
  • the first protection member typically includes a base material.
  • the thickness of the base material is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, and still more preferably 15 ⁇ m to 40 ⁇ m.
  • the surface smoothness of the base material is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less. Note that surface smoothness can be measured by focusing irradiation light on the surface of the target.
  • the base material may be composed of any suitable film.
  • Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins.
  • TAC triacetyl cellulose
  • polyesters polyvinyl alcohols
  • polycarbonates polyamides
  • polyimides polyethersulfones
  • Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and a
  • a base material with excellent smoothness for example, satisfying the above-mentioned surface smoothness
  • a protective member with excellent smoothness can be obtained.
  • the first protective member is preferably composed of a laminated film having a base material and a surface treatment layer formed on the base material.
  • the thickness of the laminated film is preferably 10 ⁇ m to 80 ⁇ m, more preferably 15 ⁇ m to 60 ⁇ m, even more preferably 20 ⁇ m to 45 ⁇ m.
  • the thickness of the surface treatment layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and still more preferably 2 ⁇ m to 5 ⁇ m.
  • the surface treatment layer typically includes a hard coat layer.
  • the hard coat layer is typically formed by applying a hard coat layer forming material to a base material and curing the applied layer.
  • the hard coat layer forming material typically contains a curable compound as a layer forming component.
  • the curing mechanism of the curable compound include a thermosetting type and a photocuring type.
  • the curable compound include monomers, oligomers, and prepolymers. Preferably, a polyfunctional monomer or oligomer is used as the curable compound.
  • polyfunctional monomers or oligomers examples include monomers or oligomers having two or more (meth)acryloyl groups, urethane (meth)acrylate or urethane (meth)acrylate oligomers, epoxy monomers or oligomers, and silicone monomers or oligomers. can be mentioned.
  • the thickness of the hard coat layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 1 ⁇ m to 7 ⁇ m, and even more preferably 2 ⁇ m to 5 ⁇ m.
  • the surface treatment layer preferably includes a functional layer.
  • the functional layer preferably functions as an antireflection layer.
  • the surface treatment layer includes the hard coat layer and the antireflection layer in this order from the base material side.
  • the thickness of the functional layer is preferably 0.05 ⁇ m to 10 ⁇ m, more preferably 0.1 ⁇ m to 5 ⁇ m, and even more preferably 0.1 ⁇ m to 2 ⁇ m.
  • the first protective member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the first laminated portion.
  • the surface treatment layer may have any suitable function.
  • the surface treatment layer preferably has an antireflection function, for example, from the viewpoint of suppressing optical loss at the interface with air and improving visibility.
  • the first protective member preferably has a maximum value of the 5° specular reflectance spectrum in the wavelength range of 420 nm to 680 nm of 2.0% or less, more preferably 1.2% or less. It is more preferably 1.0% or less, particularly preferably 0.8% or less.
  • the surface smoothness of the first protective member is preferably 0.5 arcmin or less, more preferably 0.4 arcmin or less. Substantially, the surface smoothness of the first protection member is, for example, 0.1 arcmin or more.
  • the second laminated portion 200 includes a reflective polarizing member 14 and an adhesive layer (for example, an adhesive layer) disposed between the reflective polarizing member 14 and the second lens portion 24.
  • the second laminated section 200 further includes, for example, an absorptive polarizing member 28 disposed between the reflective polarizing member 14 and the second lens section 24 from the viewpoint of improving visibility.
  • the absorptive polarizing member 28 is laminated in front of the reflective polarizing member 14 with an adhesive layer (for example, an adhesive layer) 44 interposed therebetween.
  • the absorption type polarizing member 28 includes at least an absorption type polarizing film. As shown in FIG.
  • the absorption type polarizing member 28 when the absorption type polarizing member 28 does not include any member (for example, a protective layer) other than the absorption type polarizing film, the absorption type polarizing member 28 can correspond to an absorption type polarizing film. Then, the absorptive polarizing film may be placed adjacent to the reflective polarizing member 14. The reflection axis of the reflective polarizing member 14 and the absorption axis of the absorbing polarizing film included in the absorbing polarizing member 28 may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member 14 and the absorption axis of the absorbing polarizing film included in the absorbing polarizing member 28 may be arranged substantially parallel to each other.
  • the transmission axes of the absorbing polarizing films may be arranged substantially parallel to each other.
  • the reflective polarizing member 14 and the absorbing polarizing member 28 are fixed, and it is possible to prevent misalignment of the axis arrangement between the reflective axis and the absorption axis (the transmission axis and the transmission axis). . Further, it is possible to suppress the adverse effects of an air layer that may be formed between the reflective polarizing member 14 and the absorbing polarizing member 28.
  • the second laminated section 200 further includes a second protection member 32 disposed behind the reflective polarizing member 14.
  • the second protection member 32 is laminated on the reflective polarizing member 14 via an adhesive layer (for example, an adhesive layer) 43.
  • the second protection member 32 may be located on the outermost surface of the second laminated portion 200.
  • the first protection member 31 and the second protection member 32 are arranged facing each other with a space interposed therebetween.
  • the second protection member may typically be a laminated film having a base material and a surface treatment layer. In this case, the surface treatment layer may be located on the outermost surface of the second laminated portion.
  • the same explanation as that for the first protection member can be applied. Specifically, the same explanations as for the first protection member can be applied to the reflection characteristics and effects, smoothness, thickness, and constituent materials of the second protection member.
  • the second laminated section 200 may further include a third retardation member 30 disposed between the absorptive polarizing member 28 and the second lens section 24.
  • the third retardation member 30 is laminated on the absorption type polarizing member 28 via an adhesive layer (for example, an adhesive layer) 45. Further, the third retardation member 30 is laminated on the second lens portion 24 via an adhesive layer (for example, an adhesive layer) 46, and the second laminated portion 200 is integrally provided on the second lens portion 24.
  • the third retardation member 30 includes, for example, a third ⁇ /4 member.
  • the angle between the absorption axis of the absorption type polarizing member 28 and the slow axis of the third ⁇ /4 member included in the third retardation member 30 is, for example, 40° to 50°, and 42° to 48°. The angle may be approximately 45°. By providing such a member, for example, reflection of external light from the second lens portion 16 side can be prevented. If the third retardation member 30 does not include any member other than the third ⁇ /4 member, the third retardation member 30 may correspond to the third ⁇ /4 member.
  • FIG. 3 is a schematic cross-sectional view showing a modification of the optical laminate (second laminate part) shown in FIG. 2.
  • the absorption type polarizing member 28 includes a protective layer 28b in addition to the absorption type polarizing film 28a.
  • the absorption type polarizing film 28a and the protective layer 28b are laminated with an adhesive layer 52 in between.
  • the absorption type polarizing member 28 includes an absorption type polarizing film 28a, an adhesive layer 52, and a protective layer 28b.
  • the protective layer 28b may be disposed on the reflective polarizing member 14 side with respect to the absorption type polarizing film 28a, as shown in FIG. It may be arranged on the second lens section 24 side.
  • the reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states.
  • the reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film).
  • the thickness of the reflective polarizing member is, for example, 10 ⁇ m to 150 ⁇ m, preferably 20 ⁇ m to 100 ⁇ m, and more preferably 30 ⁇ m to 60 ⁇ m.
  • FIG. 4 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.
  • the multilayer structure 14a has layers A having birefringence and layers B having substantially no birefringence alternating.
  • the total number of layers making up the multilayer structure may be between 50 and 1000.
  • the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same,
  • the refractive index difference between layer A and layer B is large in the x-axis direction and substantially zero in the y-axis direction.
  • the x-axis direction can become the reflection axis
  • the y-axis direction can become the transmission axis.
  • the refractive index difference between layer A and layer B in the x-axis direction is preferably 0.2 to 0.3.
  • the above layer A is typically made of a material that exhibits birefringence when stretched.
  • materials include, for example, naphthalene dicarboxylic acid polyesters (eg, polyethylene naphthalate), polycarbonates, and acrylic resins (eg, polymethyl methacrylate).
  • the B layer is typically made of a material that does not substantially exhibit birefringence even when stretched. Examples of such materials include copolyesters of naphthalene dicarboxylic acid and terephthalic acid.
  • the multilayer structure may be formed by a combination of coextrusion and stretching. For example, after extruding the material constituting layer A and the material constituting layer B, they are multilayered (for example, using a multiplier). The obtained multilayer laminate is then stretched.
  • the x-axis direction in the illustrated example may correspond to the stretching direction.
  • reflective polarizing films include, for example, 3M's product names "DBEF” and “APF” and Nitto Denko's product name "APCF”.
  • the cross transmittance (Tc) of the reflective polarizing member (reflective polarizing film) may be, for example, 0.001% to 3%.
  • the single transmittance (Ts) of the reflective polarizing member (reflective polarizing film) is, for example, 43% to 49%, preferably 45% to 47%.
  • the degree of polarization (P) of the reflective polarizing member (reflective polarizing film) can be, for example, 92% to 99.99%.
  • the above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer.
  • the degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula.
  • Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z 8701 and subjected to visibility correction.
  • Polarization degree P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the absorption type polarizing member includes an absorption type polarizing film.
  • the orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be.
  • the single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
  • the degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.8% or more.
  • the surface smoothness of the absorption type polarizing member is preferably 0.4 arcmin or less, more preferably 0.3 arcmin or less, and still more preferably 0.2 arcmin or less.
  • the image can be enlarged in the lens portion (for example, by a convex lens), and the smoothness of the optical laminate can greatly affect visibility.
  • an optical laminate with excellent smoothness can be obtained.
  • significantly excellent visibility can be realized in the above-mentioned display system. For example, it is possible to suppress a phenomenon called ghost where an image appears double. Further, for example, a clear image without distortion can be realized.
  • the surface smoothness of the absorption type polarizing member is, for example, 0.1 arcmin or more.
  • An absorption type polarizing film is typically composed of a film containing a dichroic substance such as iodine or an organic dye.
  • the thickness of the absorption type polarizing film is, for example, 10 ⁇ m or less, preferably 9 ⁇ m or less, more preferably 8 ⁇ m or less, and still more preferably 7 ⁇ m or less.
  • the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more.
  • the absorption type polarizing film may be composed of a liquid crystal compound.
  • the thickness of the absorption type polarizing film made of a liquid crystal compound can be, for example, 4 ⁇ m or less, 3 ⁇ m or less, or 2 ⁇ m or less.
  • a lyotropic liquid crystal polymer is preferably used as the liquid crystal compound.
  • the liquid crystal compound is typically aligned in a predetermined direction in the absorption type polarizing film, and the alignment state is fixed.
  • the absorption type polarizing film may be an alignment solidified layer of a liquid crystal compound.
  • the structure of the liquid crystal phase of the liquid crystal compound may be, for example, any of a nematic phase, a smectic phase, and a columnar phase.
  • the lyotropic liquid crystalline polymer has, for example, a structural unit containing a ring structure, a linking group, and a sulfo group and/or a sulfonic acid group.
  • the ring structure is typically included in the main chain of the lyotropic liquid crystalline polymer.
  • the number of ring structures included in each structural unit is, for example, 1 or more and 5 or less.
  • a typical example of the ring structure is an aromatic ring.
  • the ring structure include a benzene ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a biphenyl ring, and fused rings thereof.
  • a benzene ring is used.
  • a linking group connects two ring structures. Both ends of the linking group are, for example, directly bonded to the ring structure.
  • the linking group include an sp 3 carbon-containing linking group and an amide bond.
  • sp 3 carbon-containing linking groups are used.
  • Specific examples of sp 3 carbon-containing linking groups include alkylene groups and oxyalkylene groups.
  • an alkylene group having 1 to 8 carbon atoms is used, and more preferably a methylene group and an ethylene group are used.
  • the sulfo group and/or sulfonic acid group can impart water solubility and lyotropic liquid crystallinity to the lyotropic liquid crystalline polymer.
  • Sulfo groups and/or sulfonic acid groups are, for example, directly bonded to the ring structure.
  • the number of sulfo groups and/or sulfonic acid groups contained in each structural unit is, for example, 1 or more and 5 or less.
  • the counter cation of the sulfonic acid group typically includes an alkali metal cation, preferably Li + , Na + , K + , Rb + , and Cs + .
  • cations having lower water solubility than alkali metal cations include ammonium ions and polyvalent metal cations.
  • ammonium ion ammonium ions of organic nitrogen compounds having two or more nitrogen atoms in the molecule are typically used.
  • the number of nitrogen atoms contained in the organic nitrogen compound is not particularly limited, but is preferably 2 to 5, more preferably 2 to 3, and even more preferably 2.
  • polyvalent metal cations examples include alkaline earth metal cations (e.g., Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ ), transition metal cations (e.g., La 3+ , Fe 3+ , Cr 3+ , Mn 2+ , Cu 2+ ). , Ce 3+ ), and poor metal cations (eg, Al 3+ , Pb 2+ , Sn 2+ , Zn 2+ ).
  • alkaline earth metal cations e.g., Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+
  • transition metal cations e.g., La 3+ , Fe 3+ , Cr 3+ , Mn 2+ , Cu 2+ ).
  • Ce 3+ e.g., Ce 3+
  • poor metal cations eg, Al 3+ , Pb 2+ , Sn 2+ , Zn 2+ ).
  • Examples of the structural units of the lyotropic liquid crystalline polymer include structures shown in the following formulas (1) to (23).
  • formulas (1), (3) to (10) represent structural units having an alkylene group (linking group) and a benzene ring (ring structure).
  • Formula (2) shows a structural unit having an amide bond (linking group) and a benzene ring (ring structure).
  • Formulas (11) to (19) represent structural units having an alkylene group (linking group) and a condensed ring (ring structure).
  • Formulas (20) to (23) represent structural units having an oxyalkylene group (linking group) and a benzene ring (ring structure).
  • the following formulas (2) to (23) contain a sulfo group for convenience, but a sulfonic acid group may be used.
  • X represents a hydrogen atom or a counter cation selected from ammonium ions, alkali metal cations, alkaline earth metal cations, transition metal cations, or poor metal cations.
  • a structural unit having a ring (ring structure) (formula (2) above) is preferably used, and a structural unit represented by formula (1) above is more preferably used.
  • the lyotropic liquid crystalline polymer may have, for example, one constituent unit alone or a combination of a plurality of constituent units among the above constituent units.
  • the lyotropic liquid crystalline polymer is a homopolymer (homopolymer) having only one of the above structural units, more preferably a structural unit represented by the above formula (1) or (2).
  • a homopolymer of the structural unit represented by the above formula (1) is more preferable.
  • the number of repeating structural units is, for example, 25 or more and 1000 or less.
  • the lyotropic liquid crystalline polymer itself may be transparent and exhibit substantially no absorption dichroism.
  • the single transmittance of the lyotropic liquid crystalline polymer is, for example, 85% or more and 100% or less.
  • the absorption type polarizing film made of a liquid crystal compound may contain an organic dye capable of imparting absorption dichroism as a dichroic substance.
  • organic dyes include organic dyes represented by the following formulas (24) to (26).
  • A represents a sulfo group or a sulfonic acid group.
  • m represents 1 or more and 4 or less.
  • B represents a chlorine atom.
  • p represents 0 or more and 2 or less.
  • m+p is 4 or less.
  • A represents a sulfonic acid group, its countercation is Na + , K + , Cs + or NH 4 + .
  • A represents a sulfo group or a sulfonic acid group.
  • m represents 1 or more and 4 or less.
  • B represents a hydroxyl group.
  • p represents 0 or more and 4 or less.
  • C represents a sulfonyl group.
  • n represents 0 or more and 2 or less.
  • R represents an oxygen atom.
  • q represents 0 or more and 4 or less.
  • m+p+q is 6 or less.
  • A When A is a sulfonic acid group, its counter cation is Na + , K + , Cs + , or NH 4 + .) (In formula (26), A represents a sulfo group or a sulfonic acid group. When A is a sulfonic acid group, its counter cation is Na + , K + , Cs + , or NH 4 + .)
  • organic dyes examples include azo dyes, azoxy dyes, azomethine dyes, stilbene dyes, polymethine dyes, cationic dyes, and naphthalene dyes described in paragraphs [0035] to [0037] of Japanese Patent Publication No. 2004-528603. dyes, perylene dyes, anthrone dyes; stilbene dyes described in U.S. Pat. No. 5,007,942 or U.S. Pat. No. 5,340,504; European Patent No. 0 530 106, European Patent Application Publication Mention may be made of the azo and metallized dyes described in US Pat. No. 0,626,598 or US Pat. No. 5,318,856.
  • organic dyes for example, C.I. I. Direct Yellow 12, C. I. Direct Yellow 28, C. I. Direct Yellow 44, C. I. Direct Yellow 142, C. I. Direct Orange 6, C. I. Direct Orange 26, C. I. Direct Orange 39, C. I. Direct Orange 72, C. I. Direct Orange 107, C. I. Direct Red 2, C. I. Direct Red 31, C. I. Direct Red 79, C. I. Direct Red 81, C. I. Direct Red 240, C. I. Direct Red 247, C. I. Direct Violet 9, C. I. Direct Violet 48, C. I. Direct Violet 51, C. I. Direct Blue 1, C. I. Direct Blue 15, C. I. Direct Blue 71, C. I. Direct Blue 78, C. I.
  • Direct Blue 98 C. I. Direct Blue 168, C. I. Direct Blue 202, C. I. Direct Brown 106, C. I. Direct Brown 223, C. I. Direct dyes such as Direct Green 85; C.I. I. Active Yellow 1, C. I. Active Red 1, C. I. Active Red 6, C. I. Active Red 14, C. I. Active Red 46, C. I. Active Violet 1, C. I. Active Blue 9, C. I. an active dye such as Active Blue 10; C.I. I. Acid Orange 63, C. I. Acid Red 85, C. I. Acid Red 144, C. I. Acid Red 152, C. I. Acid Brown 32, C. I. Acid Violet 50, C. I. Acid Blue 18, C. I. Acid Blue 44, C. I.
  • Acid Blue 61 C. I. Acid Blue 102, C. I. Acidic dyes such as Acid Black 21; C.I. I. Basic Red 12, Basic Brown (C.I.33500), C.I. I. Examples include cationic dyes such as basic black.
  • organic dyes include organic molecules described in US Patent Application Publication No. 2001/0029638. Specific examples include polymethine dyes (e.g. pseudoisocyanine, piacyanol), triarylmethane dyes (e.g. Basic Turquose, Acid Light Blue 3), diaminoxanthene dyes (e.g. sulforhodamine), acridine dyes (e.g. Basic Yellow). K), sulfonated acridine dyes (e.g. trans-quinacridone), water-soluble derivatives of anthraquinone dyes (e.g. Activite Light Blue KX), sulfonated vat dyes (e.g.
  • polymethine dyes e.g. pseudoisocyanine, piacyanol
  • triarylmethane dyes e.g. Basic Turquose, Acid Light Blue 3
  • diaminoxanthene dyes e.g. sulforhodamine
  • organic dyes may be used alone or in combination of two or more.
  • organic dyes represented by formulas (24) to (26) above are used in combination.
  • an absorption type polarizing film composed of a liquid crystal compound is produced by coating a base film with a liquid crystal polymer solution obtained by dissolving the above lyotropic liquid crystal polymer in an aqueous solvent and drying it to form a lyotropic liquid crystal layer. It can be obtained by dyeing the layer. After staining, excess staining solution can be removed.
  • aqueous solvent examples include water and a mixed solvent of water and alcohol, and preferably water is used.
  • the solid content concentration in the liquid crystal polymer solution is, for example, 5% by mass or more and 30% by mass or less, preferably 10% by mass or more and 20% by mass or less.
  • a primer layer eg, containing polyethyleneimine
  • the liquid crystal polymer solution can be applied by a coating method that can impart shear stress.
  • a wire bar is typically used for coating.
  • a lyotropic liquid crystal layer can be formed by drying the coating film of the liquid crystal polymer solution.
  • the drying temperature is, for example, 40°C or higher and 80°C or lower, preferably 50°C or higher and 70°C or lower.
  • the drying time is, for example, 10 seconds or more and 10 minutes or less, preferably 5 minutes or less.
  • the lyotropic liquid crystalline polymer can be oriented by shear stress during coating, and the lyotropic liquid crystal layer can develop a retardation having a slow axis in the coating direction.
  • the above dyeing can typically be performed by immersing the lyotropic liquid crystal layer in a dyeing solution containing a dichroic substance.
  • the temperature of the dyeing solution during dyeing is, for example, 10°C or more and 50°C or less, preferably 20°C or more and 40°C or less.
  • the immersion time (dying time) is, for example, 5 seconds or more and 300 seconds or less, preferably 30 seconds or more and 180 seconds or less.
  • the staining solution preferably further contains an iodine compound, more preferably an iodine compound and a polyvalent metal salt.
  • iodine compounds include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide.
  • potassium iodide is used.
  • the mass ratio of iodine to iodine compound (iodine:iodine compound) in the staining solution is, for example, 1:5 to 1:30, preferably 1:5 to 1:15.
  • the staining solution contains a polyvalent metal salt
  • water resistance can be imparted to the absorption type polarizing film.
  • polyvalent metal salts include chlorides, sulfates, nitrates, phosphates, oxalates, and acetates.
  • the countermetal of the polyvalent metal salt include alkali metals, alkaline earth metals, transition metals, and poor metals.
  • strontium chloride is used.
  • the mass ratio of iodine to polyvalent metal salt (iodine: polyvalent metal salt) in the staining solution is, for example, 1:5 to 1:30, preferably 1:5 to 1:15.
  • the solid content concentration of the organic dye in the dyeing solution is, for example, 0.1% by mass or more and 3.0% by mass or less, and preferably 1.0% by mass or more.
  • the mass ratio of formula (24):formula (25):formula (26) is, for example, 40 to 60:10 to 30. :10-30.
  • the absorption type polarizing film may be composed of a resin film.
  • the absorption type polarizing film is preferably a polyvinyl alcohol (PVA) film containing iodine.
  • PVA polyvinyl alcohol
  • the thickness of the absorptive polarizing film made of a resin film is preferably 6 ⁇ m or more. With such a thickness, the durability described below can be satisfactorily satisfied even without using a protective layer as shown in FIG. In another embodiment, the thickness of the absorptive polarizing film made of a resin film is preferably less than 6 ⁇ m. Even with such a thickness, by using a protective layer as shown in FIG. 3, the durability described below can be satisfactorily satisfied.
  • an absorption type polarizing film composed of a resin film for example, a polyvinyl alcohol resin layer containing a polyvinyl alcohol resin (PVA resin) and a halide is formed on one side of a long thermoplastic resin base material. (PVA resin layer) to form a laminate, and the laminate is subjected to aerial auxiliary stretching treatment, dyeing treatment, underwater stretching treatment, and heating while conveying in the longitudinal direction, so that the laminate is stretched in the width direction.
  • a method including performing a drying shrinkage treatment to cause shrinkage by 2% or more in this order may be mentioned.
  • the thickness of the resulting absorptive polarizing film can be controlled, for example, by adjusting the stretching ratio in the underwater stretching process.
  • the PVA-based resin layer is preferably formed by applying a coating liquid containing a PVA-based resin and a halide to a thermoplastic resin base material and drying the coating liquid.
  • the content of the halide in the PVA resin layer is preferably 5 parts by weight to 20 parts by weight based on 100 parts by weight of the PVA resin.
  • the thickness of the PVA resin layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • Examples of methods for applying the coating liquid include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.). It will be done.
  • the coating and drying temperature of the coating liquid is preferably 50°C or higher.
  • thermoplastic resin base material may be subjected to surface treatment such as corona treatment or heat treatment before forming the PVA resin layer.
  • surface treatment such as corona treatment or heat treatment before forming the PVA resin layer.
  • An easily adhesive layer may be formed on the plastic resin base material.
  • the thickness of the thermoplastic resin base material is preferably 20 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 200 ⁇ m. If it is less than 20 ⁇ m, for example, it may be difficult to form a PVA-based resin layer. If it exceeds 300 ⁇ m, for example, it may take a long time for the thermoplastic resin base material to absorb water in the underwater stretching treatment described below, and an excessive load may be required for stretching.
  • the water absorption rate of the thermoplastic resin base material is preferably 0.2% or more, more preferably 0.3% or more.
  • the thermoplastic resin base material can absorb water, and the water can act as a plasticizer to be plasticized. As a result, stretching stress can be significantly reduced and stretching can be performed at a high magnification.
  • the water absorption rate of the thermoplastic resin base material is preferably 3.0% or less, more preferably 1.0% or less.
  • thermoplastic resin base material can be adjusted, for example, by introducing a modifying group into the constituent material.
  • the water absorption rate is a value determined according to JIS K 7209.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 120°C or lower.
  • Tg is more preferably 100°C or less, and even more preferably 90°C or less.
  • the Tg of the thermoplastic resin base material is preferably 60°C or higher.
  • a laminate can be produced. Further, the PVA resin layer can be stretched at a suitable temperature (for example, about 60° C.). Note that the glass transition temperature of the thermoplastic resin base material can be adjusted by, for example, heating using a crystallizing material that introduces a modifying group into the constituent material.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • thermoplastic resins examples include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Can be mentioned. Among these, norbornene resins and amorphous polyethylene terephthalate resins are preferably used.
  • amorphous (uncrystallized) polyethylene terephthalate resin is preferably used.
  • amorphous (hard to crystallize) polyethylene terephthalate resin is preferably used.
  • Specific examples of the amorphous polyethylene terephthalate resin include copolymers further containing isophthalic acid and/or cyclohexane dicarboxylic acid as a dicarboxylic acid, and copolymers further containing cyclohexanedimethanol or diethylene glycol as a glycol.
  • the thermoplastic resin base material is composed of a polyethylene terephthalate resin having an isophthalic acid unit.
  • a thermoplastic resin base material has extremely excellent stretchability and can suppress crystallization during stretching. This is thought to be due to the fact that the introduction of the isophthalic acid unit imparts a large bend to the main chain.
  • Polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit.
  • the content of the isophthalic acid unit is preferably 0.1 mol% or more, more preferably 1.0 mol% or more, based on the total of all repeating units. This is because a thermoplastic resin base material with extremely excellent stretchability can be obtained.
  • the content of isophthalic acid units is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units.
  • the degree of crystallinity can be favorably increased in the drying shrinkage treatment described below.
  • the thermoplastic resin base material may be stretched by any appropriate method before forming the PVA-based resin layer. For example, it may be stretched in the lateral direction of a long thermoplastic resin base material.
  • the lateral direction is preferably a direction substantially perpendicular to the stretching direction of the laminate, which will be described later.
  • the stretching temperature of the thermoplastic resin base material is preferably Tg-10°C to Tg+50°C relative to the glass transition temperature (Tg).
  • Tg glass transition temperature
  • the stretching ratio of the thermoplastic resin base material is preferably 1.5 times to 3.0 times.
  • the coating liquid may contain a PVA-based resin and a halide.
  • the coating liquid may typically be a solution in which a PVA-based resin and a halide are dissolved in a solvent.
  • the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. Among these, water is preferably used.
  • the PVA resin concentration is preferably 3 to 20 parts by weight based on 100 parts by weight of the solvent.
  • the content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, more preferably 10 parts by weight to 15 parts by weight, based on 100 parts by weight of the PVA resin.
  • Examples of the PVA-based resin include polyvinyl alcohol and ethylene-vinyl alcohol copolymer.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • Ethylene-vinyl alcohol copolymer can be obtained by saponifying ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA resin is, for example, 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. It is.
  • the degree of saponification can be determined according to JIS K 6726-1994.
  • the average degree of polymerization of the PVA resin is, for example, 1,000 to 10,000, preferably 1,200 to 4,500, and more preferably 1,500 to 4,300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • the halides include iodides such as potassium iodide, sodium iodide, and lithium iodide, and sodium chloride. Among these, potassium iodide is preferably used.
  • Additives may be added to the coating liquid.
  • additives include plasticizers and surfactants.
  • plasticizer include polyhydric alcohols such as ethylene glycol and glycerin.
  • surfactant include nonionic surfactants.
  • the orientation of the polyvinyl alcohol molecules in the PVA resin can be increased, but when the stretched PVA resin layer is immersed in a liquid containing water, the orientation of the polyvinyl alcohol molecules can be improved. may become disordered and the orientation may deteriorate.
  • a laminate of a thermoplastic resin and a PVA-based resin layer is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin, there is a remarkable tendency for the orientation to decrease.
  • the laminate after the auxiliary stretching can be Crystallization of the PVA resin in the PVA resin layer of the body can be promoted.
  • auxiliary stretching a thermoplastic resin base material
  • the laminate after the auxiliary stretching can be Crystallization of the PVA resin in the PVA resin layer of the body can be promoted.
  • disordered orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide.
  • This can improve the optical properties of an absorption polarizing film obtained through a process performed by immersing the laminate in a liquid, such as a dyeing process and an underwater stretching process.
  • a two-stage stretching method that combines aerial stretching (auxiliary stretching) and boric acid water stretching may be selected.
  • auxiliary stretching it is possible to stretch while suppressing the crystallization of the thermoplastic resin base material, which reduces stretchability due to excessive crystallization of the thermoplastic resin base material during subsequent stretching in boric acid water.
  • the problem can be solved and the laminate can be stretched to a high magnification.
  • PVA-based resin on a thermoplastic resin base material in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material, for example, compared to when applying PVA-based resin on a metal drum, it is necessary to lower the coating temperature.
  • the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical properties cannot be obtained.
  • by introducing auxiliary stretching it is possible to increase the crystallinity of PVA-based resin even when applying PVA-based resin onto thermoplastic resin, making it possible to achieve high optical properties. Become.
  • by increasing the orientation of the PVA resin in advance it is possible to prevent problems such as a decrease in orientation and dissolution of the PVA resin when it is immersed in water during subsequent dyeing and stretching treatments. High optical properties can be achieved.
  • the stretching method for aerial auxiliary stretching may be fixed end stretching (for example, stretching using a tenter stretching machine) or free end stretching (for example, uniaxial stretching by passing the laminate between rolls with different circumferential speeds). good. From the viewpoint of obtaining high optical properties, free end stretching is preferably used.
  • the stretching ratio of the aerial auxiliary stretching is preferably 2.0 times to 3.5 times.
  • Aerial assisted stretching may be performed in one step or in multiple steps. In the case of multi-stage stretching, the stretching ratio is the product of the stretching ratios of each stage.
  • the stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the stretching temperature of the aerial auxiliary stretching is preferably at least the glass transition temperature (Tg) of the thermoplastic resin base material, more preferably at least Tg + 10°C of the thermoplastic resin base material, and even more preferably at the glass transition temperature (Tg) of the thermoplastic resin base material. Tg+15°C or higher.
  • the upper limit of the stretching temperature is preferably 170°C.
  • the crystallization index of the PVA-based resin after in-air assisted stretching is preferably 1.3 to 1.8, more preferably 1.4 to 1.7.
  • I C is the intensity of 1141 cm ⁇ 1 measured with the measurement light incident thereon
  • I R is the intensity of 1440 cm ⁇ 1 measured with the measurement light incident thereon.
  • an insolubilization treatment may be performed.
  • the insolubilization treatment is typically performed by immersing the PVA resin layer in an aqueous boric acid solution.
  • the insolubilization treatment imparts water resistance to the PVA-based resin layer and prevents the PVA from deteriorating in orientation when immersed in water.
  • the concentration of the aqueous boric acid solution for insolubilization treatment is preferably 1 part by weight to 4 parts by weight per 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20°C to 50°C.
  • the above dyeing treatment is typically performed by dyeing the PVA-based resin layer with iodine. Specifically, this is carried out by adsorbing iodine to the PVA resin layer.
  • adsorbing iodine preferably a method is employed in which the PVA resin layer (laminate) is immersed in a dye solution (dye bath) containing iodine.
  • the staining solution is preferably an iodine aqueous solution.
  • the amount of iodine blended is preferably 0.05 part by weight to 0.5 part by weight per 100 parts by weight of water.
  • iodide is added to the iodine aqueous solution.
  • iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. can be mentioned.
  • potassium iodide is preferably used.
  • the amount of iodide to be blended is preferably 0.1 parts by weight to 10 parts by weight, more preferably 0.3 parts by weight to 5 parts by weight, based on 100 parts by weight of water.
  • the temperature of the dyeing solution during dyeing is preferably 20° C. to 50° C. in order to suppress dissolution of the PVA resin.
  • the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 90 seconds, in order to ensure the transmittance of the PVA resin layer.
  • the dyeing conditions can be set so that the single transmittance and degree of polarization of the resulting absorption polarizing film fall within the above-mentioned ranges.
  • the content ratio of iodine and potassium iodide in the iodine aqueous solution used as the staining solution is preferably 1:5 to 1:20, more preferably 1:5 to 1:10.
  • the boric acid contained in the treatment bath may mix into the dyeing bath, causing the dyeing bath to deteriorate.
  • the boric acid concentration may change over time, resulting in unstable staining.
  • the upper limit of the concentration of boric acid in the dyeing bath is adjusted to preferably 4 parts by weight, more preferably 2 parts by weight, per 100 parts by weight of water. be done.
  • the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, and still more preferably 0.5 part by weight, based on 100 parts by weight of water. It is.
  • a dye bath pre-blended with boric acid is used. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed into the dyeing bath.
  • the amount of boric acid added to the dyeing bath in advance is preferably 0.1 parts by weight to 2 parts by weight based on 100 parts by weight of water. , more preferably 0.5 parts by weight to 1.5 parts by weight.
  • a crosslinking treatment may be performed.
  • the above crosslinking treatment is typically performed by immersing the PVA resin layer in a boric acid aqueous solution.
  • the crosslinking treatment imparts water resistance to the PVA-based resin layer, and subsequent underwater stretching can prevent the PVA from deteriorating in orientation when immersed in high-temperature water.
  • the concentration of the aqueous boric acid solution for crosslinking treatment is preferably 1 to 5 parts by weight per 100 parts by weight of water.
  • iodide By blending iodide, it is possible to suppress elution of iodine adsorbed to the PVA-based resin layer.
  • the amount of iodide to be blended is preferably 1 to 5 parts by weight per 100 parts by weight of water. Specific examples of iodides are as described above.
  • the temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20°C to 50°C.
  • the underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, stretching can be performed at a temperature lower than the glass transition temperature (typically about 80° C.) of the thermoplastic resin base material or the PVA resin layer, and the PVA resin layer can be It can be stretched while suppressing the As a result, a polarizing film having excellent optical properties can be manufactured.
  • a temperature lower than the glass transition temperature (typically about 80° C.) of the thermoplastic resin base material or the PVA resin layer typically about 80° C.
  • the PVA resin layer can be It can be stretched while suppressing the As a result, a polarizing film having excellent optical properties can be manufactured.
  • any suitable method can be adopted as the method for stretching the laminate.
  • fixed-end stretching or free-end stretching for example, a method in which the laminate is passed between rolls having different circumferential speeds and uniaxially stretched
  • free end stretching is chosen.
  • the laminate may be stretched in one step or in multiple steps.
  • the stretching ratio of the laminate described below is the product of the stretching ratios of each stage.
  • the stretching in water is preferably performed by immersing the laminate in an aqueous boric acid solution (stretching in boric acid water).
  • a boric acid aqueous solution as a stretching bath, it is possible to impart rigidity to the PVA-based resin layer to withstand tension applied during stretching, and water resistance that does not dissolve in water.
  • boric acid can generate a tetrahydroxyborate anion in an aqueous solution and crosslink with the PVA-based resin through hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, and it can be stretched well, making it possible to manufacture an absorption type polarizing film having excellent optical properties.
  • the aqueous boric acid solution is preferably obtained by dissolving boric acid and/or a borate salt in water, which is a solvent.
  • the boric acid concentration is preferably 1 to 10 parts by weight, more preferably 2.5 to 7 parts by weight, even more preferably 3 to 6 parts by weight, based on 100 parts by weight of water. It is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and an absorption type polarizing film with higher characteristics can be manufactured.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, etc. in a solvent can also be used.
  • iodide is added to the stretching bath (boric acid aqueous solution).
  • the stretching bath boric acid aqueous solution.
  • concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 8 parts by weight, based on 100 parts by weight of water.
  • the stretching temperature (the liquid temperature of the stretching bath) is preferably 40°C or higher, more preferably 60°C or higher. At such a temperature, the film can be stretched well.
  • the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60° C. or higher in relation to the formation of the PVA-based resin layer.
  • the stretching temperature (the liquid temperature of the stretching bath) is preferably 85°C or lower, more preferably 75°C or lower. As the temperature of the stretching bath becomes higher, the solubility of the PVA-based resin layer increases, and there is a possibility that excellent optical properties may not be obtained.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the stretching ratio by underwater stretching is preferably 1.0 times to 2.2 times, more preferably 1.1 times to 2.0 times, and even more preferably 1.1 times. 1.8 times, particularly preferably 1.2 times to 1.6 times.
  • an absorption polarizing film that can achieve the durability described below can be obtained without combining a protective layer.
  • a polarizing film in which breakage along the absorption axis direction is suppressed can be obtained.
  • the total stretching ratio of the laminate is preferably 3.0 to 4.5 times, more preferably 3.0 to 4.3 times, even more preferably 3. It is .0 times to 4.0 times.
  • the stretching ratio by underwater stretching is preferably 1.5 times or more, more preferably 3.0 times or more.
  • the total stretching ratio of the laminate is preferably 5.0 times or more, more preferably 5.5 times or more, relative to the original length of the laminate.
  • the above drying shrinkage treatment may be performed by zone heating in which the entire zone is heated, or by heating a conveyance roll (using a so-called heating roll). Preferably, both are used.
  • a heating roll By drying using a heating roll, heating curl of the laminate can be efficiently suppressed, and an absorption type polarizing film with excellent appearance can be manufactured.
  • the laminate along a heating roll it is possible to efficiently promote crystallization of the thermoplastic resin base material and increase the degree of crystallinity, which is relatively low. Even at drying temperatures, the degree of crystallinity of the thermoplastic resin base material can be increased favorably.
  • the thermoplastic resin base material has increased rigidity and is in a state where it can withstand shrinkage of the PVA resin layer due to drying, thereby suppressing curling.
  • the laminate can be dried while maintaining it in a flat state, so that not only curling but also wrinkles can be suppressed.
  • the optical properties of the laminate can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. This is because the orientation of PVA and PVA/iodine complex can be effectively improved.
  • the shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, particularly preferably 4% to 6%.
  • the drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, etc.
  • the temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, even more preferably 70°C to 80°C.
  • the degree of crystallinity of the thermoplastic resin can be increased favorably, curling can be favorably suppressed, and excellent strength can be imparted to the laminate.
  • the temperature of the heating roll can be measured with a contact thermometer.
  • the number of conveyance rolls used is usually 2 to 40, preferably 4 to 30.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and even more preferably 1 to 10 seconds.
  • the heating roll may be provided within a heating furnace (for example, an oven) or may be provided on a normal production line (at room temperature). Preferably, it is provided in a heating furnace equipped with air blowing means.
  • a heating furnace equipped with air blowing means.
  • the temperature of hot air drying is preferably 30°C to 100°C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of the hot air is preferably about 10 m/s to 30 m/s. Note that the wind speed is the wind speed within the heating furnace, and can be measured with a mini-vane digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the above-mentioned cleaning treatment is performed, for example, by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
  • the protective layer that may be included in the absorption type polarizing member may be composed of any suitable film.
  • the main component of the film constituting the protective layer include cellulose resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. Among these, (meth)acrylic resins and cycloolefin resins are preferably used.
  • a protective layer with excellent smoothness can be formed by extrusion molding, and an absorption type polarizing member with excellent smoothness can be obtained. Furthermore, the protective layer made of a cycloolefin resin can have excellent durability in birefringence characteristics (for example, has little change over time).
  • the thickness of the protective layer is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 50 ⁇ m, even more preferably 15 ⁇ m to 40 ⁇ m.
  • the surface smoothness of the protective layer is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less.
  • the adhesive layer 52 that may be included in the absorptive polarizing member 28 may be formed of any suitable adhesive.
  • the adhesive preferably a water-based adhesive is used. By using a water-based adhesive, an extremely thin adhesive layer can be formed. Further, by using a water-based adhesive, the resulting absorption type polarizing member can have excellent smoothness and satisfy the above-mentioned surface smoothness.
  • a curable adhesive such as an ultraviolet curable adhesive may be used as the adhesive. The curable adhesive may undergo curing shrinkage during formation of the adhesive layer, and the curing shrinkage may affect the smoothness of the resulting absorptive polarizing member.
  • the water-based adhesive preferably contains a PVA-based resin.
  • the average degree of polymerization of the PVA resin contained in the water-based adhesive is preferably about 100 to 5,000, more preferably 1,000 to 4,000 from the viewpoint of adhesive properties.
  • the average degree of saponification is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, from the viewpoint of adhesive properties.
  • the PVA-based resin contains an acetoacetyl group. This is because the adhesion between the absorption type polarizing film and the protective layer can be excellent.
  • the acetoacetyl group-containing PVA resin can be obtained, for example, by reacting a PVA resin and diketene by any method.
  • the degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is, for example, 0.1 mol% or more, preferably 0.1 mol% to 40 mol%, more preferably 1 mol% to 20 mol%.
  • the content is more preferably 2 mol% to 7 mol%. Note that the degree of acetoacetyl group modification can be measured by NMR.
  • the water-based adhesive may contain any suitable crosslinking agent.
  • the crosslinking agent for example, a compound having a functional group (for example, a methylol group) that is reactive with the PVA-based resin can be used.
  • the water-based adhesive may contain a metal compound colloid.
  • the metal compound colloid may be one in which metal compound fine particles are dispersed in a dispersion medium, and may be electrostatically stabilized due to mutual repulsion of like charges of the fine particles, and may have permanent stability. .
  • the average particle diameter of the fine particles forming the metal compound colloid can be any appropriate value, for example, as long as it does not adversely affect the optical properties of the absorption type polarizing member.
  • the average particle diameter of the fine particles forming the metal compound colloid is, for example, 1 nm to 100 nm, preferably 1 nm to 50 nm. According to such an average particle diameter, for example, the fine particles can be uniformly dispersed in the adhesive layer, and nicks can be suppressed while ensuring adhesiveness.
  • the term "knick" refers to a local unevenness defect that occurs at the interface between the absorbing polarizing film and the protective layer.
  • the thickness of the adhesive layer that may be included in the absorption type polarizing member is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.2 ⁇ m or less. With such a thickness, it is possible to obtain an absorption type polarizing member that can satisfactorily satisfy the above-mentioned surface smoothness.
  • the thickness of the adhesive layer that may be included in the absorbent member is, for example, 0.01 ⁇ m or more from the viewpoint of adhesiveness and the like.
  • the in-plane retardation Re (550) of the third ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the third ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the third ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the third ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the third ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the third ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the third ⁇ /4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound.
  • the same explanation as for the second ⁇ /4 member can be applied to the third ⁇ /4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the second ⁇ /4 member and the third ⁇ /4 member may be members with the same configuration (for example, forming material, thickness, optical properties, etc.), or may be members with different configurations.
  • the thickness of the adhesive layer used for laminating each of the above members can be set to any appropriate thickness.
  • the thickness of each adhesive layer used for laminating the above-mentioned members is preferably 20 ⁇ m or less, may be 15 ⁇ m or less, or may be 13 ⁇ m or less. With such a thickness, the degree of unevenness on the surface of the adhesive layer can be suppressed, and the laminated portion can have excellent smoothness.
  • the thickness of each adhesive layer used for laminating the above-mentioned members is preferably 3 ⁇ m or more, and may be 4 ⁇ m or more.
  • the third retardation member 30 may be integrated with an adhesive layer having a thickness of 4 ⁇ m to 13 ⁇ m.
  • the laminate smoothness of the optical laminate 200 is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less.
  • the laminate smoothness of the optical laminate 200 is, for example, 0.1 arcmin or more. Note that the smoothness of the laminate can be obtained by irradiating an object with irradiation light and detecting the degree of reflection and transmission of each member constituting the object (the laminate).
  • the optical laminate 200 has excellent durability.
  • the optical laminate 200 preferably has a laminate smoothness of 0.7 arcmin or less, more preferably 0.6 arcmin or less, and even more preferably is 0.5 arcmin or less.
  • the degree of polarization (P) of the optical laminate 200 is, for example, 99.5% to 99.99%, preferably 99.8% or more.
  • the haze of the optical laminate 200 is preferably 0.5% or less, more preferably 0.4% or less, may be 0.3% or less, or may be 0.2% or less.
  • excellent visibility can be achieved.
  • the ghosting described above may be reduced.
  • the haze of the optical laminate 200 is, for example, 0.01% or more.
  • the thickness, retardation value, and surface smoothness are values measured by the following measuring method. Furthermore, unless otherwise specified, "parts" and “%” are based on weight.
  • the adhesive layer was attached to a microslide glass (manufactured by Matsunami Glass Industries Co., Ltd., product name "S200200"), and the smoothness of the exposed adhesive surface was measured.
  • the object to be measured is a film
  • an acrylic adhesive layer with a thickness of 5 ⁇ m and less unevenness is formed on the glass, and the film to be measured is laminated on this adhesive surface to prevent foreign objects, air bubbles, and deformation lines from entering.
  • the smoothness of the surface opposite to the adhesive layer was measured.
  • the surface smoothness of the acrylic pressure-sensitive adhesive layer having a thickness of 5 ⁇ m and having few irregularities was 0.30 arcmin.
  • the value obtained by doubling the angle index "Slope magnitude RMS" (corresponding to 2 ⁇ ) was defined as surface smoothness (unit: arcmin).
  • Example 1 (Preparation of absorption type polarizing film) A primer composition was prepared according to US Patent Application Publication No. 2020/0110209. The obtained primer composition was applied to a 25 ⁇ m thick TAC film (manufactured by Konica Minolta, “KC2UA”) using a wire bar, and the coated film was dried at 60° C. for 3 minutes to form a 30 nm thick primer layer. was formed. Next, a lyotropic liquid crystalline polymer consisting of the structural unit of the above formula (1) was dissolved in water to a solid content concentration of 14% by mass.
  • TAC film manufactured by Konica Minolta, “KC2UA”
  • Birefringent Aromatic Polymer (Structure P1) was produced according to Example 17 of US Patent Application Publication No. 2020/0110209.
  • the lyotropic liquid crystalline polymer had a sodium sulfonate base.
  • the obtained liquid crystal polymer aqueous solution was applied onto the primer layer using a wire bar and dried at 60° C. for 3 minutes to form a 2 ⁇ m thick lyotropic liquid crystal layer. Since the molecules of this material are oriented due to shear stress during coating, a phase difference with a slow axis in the coating direction was observed.
  • organic dyes represented by the above formulas (24) to (26) were prepared according to US Patent Application Publication No. 2020/0110209.
  • the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
  • temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
  • polymerization was allowed to proceed until a predetermined stirring power was reached.
  • nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
  • polyester carbonate resin pellets
  • a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
  • T-die width 200mm, setting temperature: 250°C
  • a long resin film with a thickness of 135 ⁇ m was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder.
  • the obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times to obtain a stretched film with a thickness of 47 ⁇ m.
  • the obtained stretched film had Re(550) of 143 nm, Re(450)/Re(550) of 0.86, and Nz coefficient of 1.12.
  • the following hard coat layer forming material was applied to an acrylic film having a lactone ring structure (thickness: 40 ⁇ m, surface smoothness: 0.45 arcmin), heated at 90°C for 1 minute, and the coated layer after heating was coated with a high-pressure mercury lamp.
  • the coating layer was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 to produce an acrylic film (44 ⁇ m thick, surface smoothness on the hard coat layer side 0.4 arcmin) on which a 4 ⁇ m thick hard coat layer was formed.
  • Apply the following coating solution A for forming an antireflection layer with a wire bar heat the applied coating solution at 80 ° C.
  • the dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form an antireflection layer A with a thickness of 140 nm.
  • the following coating solution B for forming an antireflection layer is applied using a wire bar, and the applied coating solution is heated at 80° C. for 1 minute and dried to form a coating film. Formed.
  • the dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form an antireflection layer B having a thickness of 105 nm.
  • a protective member thickness: 44 ⁇ m, surface smoothness on the antireflection layer side: 0.4 arcmin
  • Hard coat layer forming material 50 parts of urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., "NK Oligo UA-53H”), polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat #300”) 30 parts, 4-hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 20 parts, a leveling agent (manufactured by DIC Corporation, "GRANDIC PC4100”) 1 part, and a photopolymerization initiator (manufactured by Ciba Japan, "Irgacure 907”) Three parts were mixed and diluted with methyl isobutyl ketone to a solid content concentration of 50% to prepare a hard coat layer forming material.
  • a leveling agent manufactured by DIC Corporation, "GRANDIC PC4100
  • Coating liquid A for forming antireflection layer 100 parts by weight of polyfunctional acrylate (manufactured by Arakawa Chemical Co., Ltd., trade name “Opstar KZ6728", solid content 20% by weight), 3 parts by weight of a leveling agent (manufactured by DIC Corporation, "GRANDIC PC4100"), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907” (trade name, manufactured by BASF, solid content: 100% by weight) were mixed. The mixture was made to have a solid content of 12% by weight using butyl acetate as a diluting solvent, and stirred to prepare a coating liquid A for forming an antireflection layer.
  • polyfunctional acrylate manufactured by Arakawa Chemical Co., Ltd., trade name "Opstar KZ6728", solid content 20% by weight
  • a leveling agent manufactured by DIC Corporation, "GRANDIC PC4100
  • a photopolymerization initiator 3 parts by weight of "OMNIRAD90
  • Coating liquid B for forming antireflection layer 100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid
  • a mixed solvent of TBA tertiary butyl alcohol
  • MIBK methyl isobutyl ketone
  • PMA propylene glycol monomethyl ether acetate
  • a reflective polarizing film (Nitto Denko's "APCF ”) were pasted together.
  • the acrylic film of the protective member was attached to the reflective polarizing film side.
  • the above-mentioned absorption polarizing film was attached to the reflective polarizing film as an absorbing polarizing member through an adhesive layer having a thickness of 11 ⁇ m and a surface smoothness of 0.30 arcmin, and the reflective axis of the reflective polarizing film and the absorption polarizing film were attached to the reflective polarizing film.
  • the membranes were attached so that their absorption axes were parallel to each other.
  • the TAC film (including the primer layer) was peeled off from the absorption type polarizing film.
  • the above ⁇ /4 member was attached to the absorption type polarizing film through an adhesive layer having a thickness of 5 ⁇ m and a surface smoothness of 0.30 arcmin, so that the absorption axis of the absorption type polarizing film and the slow axis of the ⁇ /4 member were aligned. They were attached so that they formed an angle of 45°.
  • an adhesive layer having a thickness of 15 ⁇ m and a surface smoothness of 0.30 arcmin was formed on the ⁇ /4 member to obtain an optical laminate.
  • Example 2 An optical laminate was obtained in the same manner as in Example 1 except that a polarizing film produced as described below was used as the absorption type polarizing film.
  • thermoplastic resin base material a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a water absorption rate of 0.75% and a Tg of about 75° C. was used.
  • One side of the resin base material was subjected to corona treatment. Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410”) in a ratio of 9:1.
  • a PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched free end to 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
  • the final polarizing film was added to a dyeing bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 42.0% or more (staining treatment).
  • the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment). Thereafter, while drying in an oven maintained at 90°C, it was brought into contact with a SUS heating roll whose surface temperature was maintained at 75°C for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 2%. In this way, a polarizing film (absorption type polarizing film) with a thickness of 6.7 ⁇ m and a surface smoothness of 0.24 arcmin was formed on the resin base material.
  • a cleaning bath an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water
  • Example 3 An optical laminate was obtained in the same manner as in Example 1 except that a polarizing film produced as described below was used as the absorption type polarizing film.
  • thermoplastic resin base material a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a water absorption rate of 0.75% and a Tg of about 75° C. was used.
  • One side of the resin base material was subjected to corona treatment. Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410”) in a ratio of 9:1.
  • a PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
  • the PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched free end to 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
  • the final polarizing film was added to a dyeing bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 42.0% or more (staining treatment).
  • the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment). Thereafter, while drying in an oven maintained at 90°C, it was brought into contact with a SUS heating roll whose surface temperature was maintained at 75°C for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%. In this way, a polarizing film (absorption type polarizing film) having a thickness of 5 ⁇ m and a surface smoothness of 0.26 arcmin was formed on the resin base material.
  • a polarizing film absorption type polarizing film
  • Example 4 An optical laminate was obtained in the same manner as in Example 1, except that an absorption type polarization member produced as described below was used as the absorption type polarization member.
  • Preparation of water-based adhesive Dissolve 50 parts by weight of methylolmelamine in pure water per 100 parts by weight of PVA resin having an acetoacetyl group (average degree of polymerization 1200, average degree of saponification 98.5 mol%, degree of acetoacetyl group modification 5 mol%). An aqueous solution with a solid content concentration of 3.7% by weight was prepared, and 18 parts by weight of an aqueous solution containing a positively charged alumina colloid (average particle size 15 nm) with a solid content concentration of 10% by weight was added to 100 parts by weight of this aqueous solution. % to prepare a water-based adhesive.
  • UV curable adhesive 62 parts by weight of hydroxyethyl acrylamide (manufactured by Kojinsha, trade name "HEAA”), 25 parts by weight of acryloylmorpholine (manufactured by Kojinsha, trade name “ACMO”), and PEG400# diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product 7 parts by weight of ⁇ Light Acrylate 9EG-A''), 3 parts by weight of BASF's brand name ⁇ Irgacure 907'', and 3 parts by weight of Nippon Kayaku Co., Ltd.'s brand name ⁇ KAYACURE DETX-S''.
  • a UV curable adhesive was prepared by mixing for a minute.
  • the optical laminates obtained in Examples and Comparative Examples were evaluated as follows. The evaluation results are shown in Table 1.
  • the smoothness of the laminate was measured using a phase shift laser interferometer (manufactured by Zygo, product name "DynaFiz”). Specifically, the optical laminate was laminated onto a microslide glass (manufactured by Matsunami Glass Industry Co., Ltd., product name "S200200”) to prevent foreign matter, air bubbles, and deformation lines from entering. Next, in order to remove the influence of minute air bubbles, defoaming was performed using a pressurized defoaming device (autoclave). The defoaming conditions were 50° C., 0.5 MPa, and 30 minutes.
  • the measurement sample After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample.
  • the measurement sample is placed on a measuring table with a vibration-isolating table, and a laser with a single wavelength (wavelength 633 nm) is used to interfere with a reference device whose flatness is guaranteed, and the relative displacement within a predetermined area (a circle of 30 mm ⁇ ) is measured. It was measured.
  • the value (equivalent to 2 ⁇ ) obtained by doubling the angle index "Slope magnitude RMS" obtained by extracting frequency values from 0.1/mm to 1/mm is calculated as the laminate smoothness (unit: arcmin).
  • an optical laminate cut into a 45 mm diameter circle was laminated on the flat side of the optical lens to prevent foreign matter, air bubbles, and deformation lines from entering the surface.
  • defoaming was performed using a pressurized defoaming device (autoclave).
  • the defoaming conditions were 50° C., 0.5 MPa, and 30 minutes. After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample.
  • a point light source, an optical lens (measurement sample), and a screen were installed in this order, and the light from the point light source was projected onto the screen via the optical lens to evaluate its appearance.
  • the lens was held by a holder at a position where light from a point light source was incident from the flat side of the optical lens.
  • the distance from the point light source to the screen was 1050 mm, and the distance from the optical lens to the screen was 130 mm.
  • the light reflected on the screen through the optical lens was visually observed, and the appearance was evaluated using the following evaluation criteria. (Evaluation criteria) ⁇ Good: Wrinkles and undulations are not visible. ⁇ Bad: Wrinkles and undulations are visible. ”) was used to measure haze.
  • the optical laminate was laminated onto a microslide glass (manufactured by Matsunami Glass Industry Co., Ltd., product name "S200200") to prevent foreign matter, air bubbles, and deformation lines from entering.
  • defoaming was performed using a pressurized defoaming device (autoclave).
  • the defoaming conditions were 50° C., 0.5 MPa, and 30 minutes. After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample. The obtained measurement sample was subjected to the above measurement.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
  • optical laminate according to the embodiment of the present invention can be used, for example, in a display body such as VR goggles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an optical laminate with which it is possible to reduce the weight and improve the vision qualitz of VR goggles. A optical laminate (200) according to one embodiment of the present invention comprises, in the following order: a laminated film (32) which has a substrate and a surface treatment layer; a reflection-type polarisation member (14); and an absorption-type polarisation member (28) which contains an absorption-type polarisation film. The surface smoothness of the absorption-type polarisation member is 0.4 arcmin or less.

Description

光学積層体、レンズ部および表示方法Optical laminate, lens part and display method
 本発明は、光学積層体、レンズ部および表示方法に関する。 The present invention relates to an optical laminate, a lens part, and a display method.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
 近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、視認性の向上等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be made lighter and have improved visibility. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.
特開2021-103286号公報JP2021-103286A
 上記に鑑み、本発明はVRゴーグルの軽量化、視認性の向上を実現し得る光学積層体の提供を主たる目的とする。 In view of the above, the main purpose of the present invention is to provide an optical laminate that can reduce the weight of VR goggles and improve visibility.
 1.本発明の実施形態による光学積層体は、基材と表面処理層とを有する積層フィルムと、反射型偏光部材と、吸収型偏光膜を含む吸収型偏光部材と、をこの順に備え、前記吸収型偏光部材の表面平滑性は0.4arcmin以下である。
 2.上記1に記載の光学積層体において、上記吸収型偏光膜の厚みは7μm以下であってもよい。
 3.上記1または2に記載の光学積層体において、上記吸収型偏光膜は上記反射型偏光部材に隣接して配置され、上記吸収型偏光膜の厚みは4μm以下であってもよい。
 4.上記1または2に記載の光学積層体において、上記吸収型偏光膜は上記反射型偏光部材に隣接して配置され、上記吸収型偏光膜の厚みは6μm以上であってもよい。
 5.上記1または2に記載の光学積層体において、上記吸収型偏光部材は保護層を含み、上記吸収型偏光膜の厚みは6μm未満であってもよい。
 6.上記1から5のいずれかに記載の光学積層体において、上記積層フィルムと、上記反射型偏光部材と、上記吸収型偏光部材とは粘着剤層を用いて一体化されてもよく、前記粘着剤層の厚みは4μm~13μmであってもよい。
 7.上記1から6のいずれかに記載の光学積層体において、上記積層フィルムの上記表面処理層は反射防止機能を有してもよい。
 8.上記1から7のいずれかに記載の光学積層体は、上記積層フィルムと、上記反射型偏光部材と、上記吸収型偏光部材と、位相差部材とをこの順に備えてもよい。
 9.上記1から8のいずれかに記載の光学積層体は、積層体平滑性が0.7arcmin以下であってもよい。
 10.上記1から9のいずれかに記載の光学積層体は、偏光度が99.5%以上であってもよい。
 11.上記1から10のいずれかに記載の光学積層体は、ヘイズが0.5%以下であってもよい。
 12.本発明の実施形態によるレンズ部は、ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射する上記1から11のいずれかに記載の光学積層体と、前記表示素子と前記光学積層体との間の光路上に配置される第一レンズ部と、前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記光学積層体の前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、前記光学積層体の前方に配置される第二レンズ部と、前記ハーフミラーと前記光学積層体との間の光路上に配置される第2のλ/4部材と、を備える。
 13.本発明の実施形態による表示方法は、偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、前記第2のλ/4部材を通過した光を、上記1から11のいずれか一項に記載の光学積層体で前記ハーフミラーに向けて反射させるステップと、前記光学積層体の前記反射型偏光部材および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射型偏光部材を透過可能にするステップと、前記反射型偏光部材を透過した光を、第二レンズ部を通過させるステップと、を有する。
1. An optical laminate according to an embodiment of the present invention includes, in this order, a laminate film having a base material and a surface treatment layer, a reflective polarizing member, and an absorbing polarizing member including an absorbing polarizing film, and The surface smoothness of the polarizing member is 0.4 arcmin or less.
2. In the optical laminate described in 1 above, the absorption type polarizing film may have a thickness of 7 μm or less.
3. In the optical laminate described in 1 or 2 above, the absorption type polarizing film may be disposed adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film may be 4 μm or less.
4. In the optical laminate described in 1 or 2 above, the absorption type polarizing film may be disposed adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film may be 6 μm or more.
5. In the optical laminate according to 1 or 2 above, the absorption type polarizing member may include a protective layer, and the absorption type polarizing film may have a thickness of less than 6 μm.
6. In the optical laminate according to any one of 1 to 5 above, the laminate film, the reflective polarizing member, and the absorbing polarizing member may be integrated using an adhesive layer, and the adhesive layer The thickness of the layer may be between 4 μm and 13 μm.
7. In the optical laminate according to any one of 1 to 6 above, the surface treatment layer of the laminate film may have an antireflection function.
8. The optical laminate according to any one of 1 to 7 above may include the laminate film, the reflective polarizing member, the absorbing polarizing member, and the retardation member in this order.
9. The optical laminate according to any one of items 1 to 8 above may have a laminate smoothness of 0.7 arcmin or less.
10. The optical laminate according to any one of 1 to 9 above may have a degree of polarization of 99.5% or more.
11. The optical laminate according to any one of items 1 to 10 above may have a haze of 0.5% or less.
12. The lens unit according to the embodiment of the present invention is a lens unit used in a display system that displays an image to a user, and is a lens unit that emits light forward from a display surface of a display element that represents an image, and includes a polarizing member and a first the optical laminate according to any one of 1 to 11 above, which reflects light that has passed through the λ/4 member; and a first lens portion disposed on an optical path between the display element and the optical laminate; , the reflective polarizing member is disposed between the display element and the first lens part, transmits the light emitted from the display element, and transmits the light reflected by the reflective polarizing member of the optical laminate. a second lens portion disposed in front of the optical laminate, and a second λ/4 member disposed on the optical path between the half mirror and the optical laminate. and.
13. A display method according to an embodiment of the present invention includes a step of causing light representing an image emitted through a polarizing member and a first λ/4 member to pass through a half mirror and a first lens portion; A step of causing the light that has passed through the first lens portion to pass through a second λ/4 member, and a step of transmitting the light that has passed through the second λ/4 member to the optical system according to any one of 1 to 11 above reflecting the light reflected by the reflective polarizing member and the half mirror of the optical laminate toward the half mirror by the second λ/4 member; and a step of allowing the light transmitted through the reflective polarizing member to pass through a second lens portion.
 本発明の実施形態による光学積層体によれば、VRゴーグルの軽量化、視認性の向上を実現し得る。 According to the optical laminate according to the embodiment of the present invention, it is possible to reduce the weight of VR goggles and improve visibility.
本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention. 図1に示す表示システムのレンズ部の詳細の一例を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing an example of details of a lens section of the display system shown in FIG. 1. FIG. 図2に示す光学積層体の変形例を示す模式的な断面図である。3 is a schematic cross-sectional view showing a modification of the optical laminate shown in FIG. 2. FIG. 反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚み、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、図面については、同一または同等の要素には同一の符号を付し、重複する説明は省略することがある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. In order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is only an example and does not limit the interpretation of the present invention. isn't it. Further, in the drawings, the same or equivalent elements are denoted by the same reference numerals, and overlapping explanations may be omitted.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°.
 図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射型偏光部材14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射型偏光部材14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射型偏光部材14との間の光路上に配置されている。 FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention. FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with The reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is.
 ハーフミラー、もしくは、第一レンズ部から前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射型偏光部材14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 A half mirror or components disposed in front of the first lens part (in the illustrated example, the half mirror 18, the first lens part 16, the second retardation member 22, the reflective polarizing member 14, and the second lens part 24) ) may be collectively referred to as a lens section (lens section 4).
 表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. The light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.
 第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得る第1のλ/4部材を含む。第一位相差部材が第1のλ/4部材以外の部材を含まない場合は、第一位相差部材は第1のλ/4部材に相当し得る。第一位相差部材20は、表示素子12に一体に設けられてもよい。 The first retardation member 20 includes a first λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light. When the first retardation member does not include any member other than the first λ/4 member, the first retardation member may correspond to the first λ/4 member. The first retardation member 20 may be provided integrally with the display element 12.
 ハーフミラー18は、表示素子12から出射された光を透過させ、反射型偏光部材14で反射された光を反射型偏光部材14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14. The half mirror 18 is provided integrally with the first lens section 16.
 第二位相差部材22は、反射型偏光部材14およびハーフミラー18で反射させた光を、反射型偏光部材14を透過させ得る第2のλ/4部材を含む。第二位相差部材が第2のλ/4部材以外の部材を含まない場合は、第二位相差部材は第2のλ/4部材に相当し得る。第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 includes a second λ/4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14. When the second retardation member does not include any member other than the second λ/4 member, the second retardation member may correspond to the second λ/4 member. The second retardation member 22 may be provided integrally with the first lens portion 16.
 第一位相差部材20に含まれる第1のλ/4部材から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第2の直線偏光に変換される。第2のλ/4部材から出射された第2の直線偏光は、反射型偏光部材14を透過せずにハーフミラー18に向けて反射される。このとき、反射型偏光部材14に入射した第2の直線偏光の偏光方向は、反射型偏光部材14の反射軸と同方向である。そのため、反射型偏光部材14に入射した第2の直線偏光は、反射型偏光部材14で反射される。 The first circularly polarized light emitted from the first λ/4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second λ/4 member converts the light into a second linearly polarized light. The second linearly polarized light emitted from the second λ/4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14. At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
 反射型偏光部材14で反射された第2の直線偏光は第二位相差部材22に含まれる第2のλ/4部材により第2の円偏光に変換され、第2のλ/4部材から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第3の直線偏光に変換される。第3の直線偏光は、反射型偏光部材14を透過する。このとき、反射型偏光部材14に入射した第3の直線偏光の偏光方向は、反射型偏光部材14の透過軸と同方向である。そのため、反射型偏光部材14に入射した第3の直線偏光は、反射型偏光部材14を透過する。 The second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second λ/4 member included in the second retardation member 22, and is emitted from the second λ/4 member. The second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member included in the second retardation member 22. The third linearly polarized light is transmitted through the reflective polarizing member 14 . At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
 反射型偏光部材14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
 例えば、表示素子12に含まれる偏光部材の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20に含まれる第1のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22に含まれる第2のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。 For example, the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first λ/4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second λ/4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
 第1のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第1のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第1のλ/4部材は、好ましくは、Re(450)<Re(550)<Re(650)の関係を満たす。第1のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The in-plane retardation Re (550) of the first λ/4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good. The first λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. The first λ/4 member preferably satisfies the relationship Re(450)<Re(550)<Re(650). Re(450)/Re(550) of the first λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第2のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第2のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第2のλ/4部材は、好ましくは、Re(450)<Re(550)<Re(650)の関係を満たす。第2のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The in-plane retardation Re (550) of the second λ/4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good. The second λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. The second λ/4 member preferably satisfies the relationship Re(450)<Re(550)<Re(650). Re(450)/Re(550) of the second λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 レンズ部4において、第一レンズ部16と第二レンズ部24との間には空間が形成され得る。この場合、第一レンズ部16と第二レンズ部24との間に配置される部材は、第一レンズ部16と第二レンズ部24のいずれかに一体に設けられることが好ましい。例えば、第一レンズ部16と第二レンズ部24との間に配置される部材は、接着層を介して第一レンズ部16と第二レンズ部24のいずれかに一体化させることが好ましい。このような形態によれば、例えば、各部材の取扱い性に優れ得る。接着層は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。具体的には、接着層は、接着剤層であってもよいし、粘着剤層であってもよい。接着層の厚みは、例えば0.05μm~30μmである。 In the lens portion 4, a space may be formed between the first lens portion 16 and the second lens portion 24. In this case, the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24. For example, it is preferable that the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled. The adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive. Specifically, the adhesive layer may be an adhesive layer or an adhesive layer. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm.
 図2は、図1に示す表示システムのレンズ部の詳細の一例を示す模式的な断面図である。具体的には、図2は、第一レンズ部と第二レンズ部とこれらの間に配置される部材を示している。レンズ部4は、第一レンズ部16と、第一レンズ部16に隣接して設けられる第一積層部100と、第二レンズ部24と、第二レンズ部24に隣接して設けられる第二積層部200を備えている。図2に示す例では、第一積層部100と第二積層部200とは離間して配置されている。図示しないが、ハーフミラーは、第一レンズ部16に一体に設けられ得る。以下、第二積層部を光学積層体と称する場合がある。 FIG. 2 is a schematic cross-sectional view showing an example of details of the lens section of the display system shown in FIG. 1. Specifically, FIG. 2 shows a first lens part, a second lens part, and members disposed between them. The lens part 4 includes a first lens part 16 , a first laminated part 100 provided adjacent to the first lens part 16 , a second lens part 24 , and a second laminated part 100 provided adjacent to the second lens part 24 . A laminated portion 200 is provided. In the example shown in FIG. 2, the first laminated part 100 and the second laminated part 200 are arranged apart from each other. Although not shown, a half mirror may be provided integrally with the first lens section 16. Hereinafter, the second laminate section may be referred to as an optical laminate.
 第一積層部100は、第二位相差部材22と、第一レンズ部16と第二位相差部材22との間に配置される接着層(例えば、粘着剤層)41とを含み、接着層41により第一レンズ部16に一体に設けられている。第一積層部100は、第二位相差部材22の前方に配置される第一保護部材31をさらに含んでいる。第一保護部材31は、第二位相差部材22に接着層(例えば、粘着剤層)42を介して積層され、第二位相差部材22に隣接して配置されている。第一保護部材31は、第一積層部100の最表面に位置し得る。なお、本明細書において、隣接とは、直接隣り合っているだけでなく、接着層を介して隣り合っていることも包含する。 The first laminated part 100 includes a second retardation member 22 and an adhesive layer (for example, an adhesive layer) 41 disposed between the first lens part 16 and the second retardation member 22, and the adhesive layer 41, it is integrally provided to the first lens portion 16. The first laminated portion 100 further includes a first protection member 31 disposed in front of the second retardation member 22. The first protection member 31 is laminated on the second retardation member 22 via an adhesive layer (for example, a pressure-sensitive adhesive layer) 42, and is disposed adjacent to the second retardation member 22. The first protection member 31 may be located on the outermost surface of the first laminated portion 100. Note that in this specification, adjacent includes not only directly adjacent but also adjacent via an adhesive layer.
 図2に示す例では、第二位相差部材22は、第2のλ/4部材(第一位相差層)22aに加えて、屈折率特性がnz>nx≧nyの関係を示す部材(第二位相差層)22bを含んでいる。第二位相差部材22は、第一位相差層22aと第二位相差層22bとの積層構造を有している。nz>nx≧nyの関係を示す部材22bを用いることにより、光抜け(例えば、斜め方向の光抜け)を防止し得る。図2に示すとおり、第二位相差部材22において、nz>nx≧nyの関係を示す部材22bより第2のλ/4部材22aの方が前方に位置していることが好ましい。 In the example shown in FIG. 2, the second retardation member 22 includes, in addition to the second λ/4 member (first retardation layer) 22a, a member (the second retardation layer) having a refractive index characteristic of nz>nx≧ny. (two retardation layers) 22b. The second retardation member 22 has a laminated structure of a first retardation layer 22a and a second retardation layer 22b. By using the member 22b that exhibits the relationship nz>nx≧ny, light leakage (for example, light leakage in an oblique direction) can be prevented. As shown in FIG. 2, in the second retardation member 22, it is preferable that the second λ/4 member 22a is located in front of the member 22b which exhibits the relationship nz>nx≧ny.
 第2のλ/4部材(第一位相差層)22aとnz>nx≧nyの関係を示す部材(第二位相差層)22bとは、接着剤層51を介して積層されている。第二位相差部材22は、第一位相差層22aと接着剤層51と第二位相差層22bとを含んでいる。 The second λ/4 member (first retardation layer) 22a and the member (second retardation layer) 22b exhibiting the relationship nz>nx≧ny are laminated with an adhesive layer 51 in between. The second retardation member 22 includes a first retardation layer 22a, an adhesive layer 51, and a second retardation layer 22b.
 上記第2のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第2のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 Preferably, the second λ/4 member exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第2のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第2のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。 The second λ/4 member is formed of any suitable material that can satisfy the above characteristics. The second λ/4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound.
 上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。組み合わせる方法としては、例えば、ブレンド、共重合が挙げられる。第2のλ/4部材が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。 The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the second λ/4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
 上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第2のλ/4部材に好適に用いられ得るポリカーボネート系樹脂および第2のλ/4部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。 Any suitable polycarbonate resin can be used as the polycarbonate resin. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. Note that the details of the polycarbonate resin that can be suitably used for the second λ/4 member and the method for forming the second λ/4 member can be found in, for example, JP-A No. 2014-10291 and JP-A No. 2014-26266. , JP 2015-212816, A, JP 2015-212817, and JP 2015-212818, and the descriptions of these publications are incorporated herein by reference.
 樹脂フィルムの延伸フィルムで構成される第2のλ/4部材の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μmであり、より好ましくは20μm~60μmである。 The thickness of the second λ/4 member made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, and more preferably 20 μm to 60 μm.
 上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第2のλ/4部材においては、代表的には、棒状の液晶化合物が第2のλ/4部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。 The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the second λ/4 member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the second λ/4 member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
 上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
 上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
 液晶配向固化層で構成される第2のλ/4部材の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μmであり、より好ましくは1μm~6μmであり、さらに好ましくは1μm~4μmである。 The thickness of the second λ/4 member composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and even more preferably 1 μm to 4 μm. be.
 上記屈折率特性がnz>nx≧nyの関係を示す部材(第二位相差層)の厚み方向の位相差Rth(550)は、好ましくは-260nm~-10nmであり、より好ましくは-230nm~-15nmであり、さらに好ましくは-215nm~-20nmである。1つの実施形態においては、第二位相差層は、その屈折率がnx=nyの関係を示す、いわゆる、ポジティブCプレートである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。例えば、Re(550)が10nm未満である場合も包含する。別の実施形態においては、第二位相差層は、その屈折率がnx>nyの関係を示す。この場合、第二位相差層の面内位相差Re(550)は、好ましくは10nm~150nmであり、より好ましくは10nm~80nmである。 The retardation Rth (550) in the thickness direction of the member (second retardation layer) whose refractive index characteristics exhibit the relationship of nz>nx≧ny is preferably -260 nm to -10 nm, more preferably -230 nm to -230 nm. -15 nm, more preferably -215 nm to -20 nm. In one embodiment, the second retardation layer is a so-called positive C plate whose refractive index exhibits the relationship nx=ny. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. For example, cases where Re(550) is less than 10 nm are also included. In another embodiment, the second retardation layer has a refractive index that exhibits a relationship of nx>ny. In this case, the in-plane retardation Re (550) of the second retardation layer is preferably 10 nm to 150 nm, more preferably 10 nm to 80 nm.
 屈折率特性がnz>nx≧nyの関係を示す部材は、任意の適切な材料で形成され得る。好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであってもよいし、液晶ポリマーであってもよい。このような液晶化合物およびフィルムの形成方法の具体例としては、特開2002-333642号公報の[0020]~[0042]に記載の液晶化合物および形成方法が挙げられる。この場合、厚みは、好ましくは0.1μm~5μmであり、より好ましくは0.5μm~4μmである。 The member whose refractive index characteristics exhibit the relationship nz>nx≧ny may be formed of any suitable material. Preferably, it consists of a film containing liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of such liquid crystal compounds and film forming methods include the liquid crystal compounds and forming methods described in [0020] to [0042] of JP-A No. 2002-333642. In this case, the thickness is preferably 0.1 μm to 5 μm, more preferably 0.5 μm to 4 μm.
 別の好ましい具体例として、屈折率特性がnz>nx≧nyの関係を示す部材は、特開2012-32784号公報に記載のフマル酸ジエステル系樹脂で形成された位相差フィルムであってもよい。この場合、厚みは、好ましくは5μm~50μmであり、より好ましくは10μm~35μmである。 As another preferred specific example, the member whose refractive index characteristics exhibit the relationship of nz>nx≧ny may be a retardation film formed from a fumaric acid diester resin described in JP-A No. 2012-32784. . In this case, the thickness is preferably 5 μm to 50 μm, more preferably 10 μm to 35 μm.
 上記第一保護部材は、代表的には、基材を含む。基材の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~50μmであり、さらに好ましくは15μm~40μmである。基材の表面平滑性は、好ましくは0.7arcmin以下であり、より好ましくは0.6arcmin以下であり、さらに好ましくは0.5arcmin以下である。なお、表面平滑性は、照射光を対象の表面にフォーカスさせることにより測定することができる。 The first protection member typically includes a base material. The thickness of the base material is preferably 5 μm to 80 μm, more preferably 10 μm to 50 μm, and still more preferably 15 μm to 40 μm. The surface smoothness of the base material is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less. Note that surface smoothness can be measured by focusing irradiation light on the surface of the target.
 基材は、任意の適切なフィルムで構成され得る。基材を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。ここで、(メタ)アクリルとは、アクリルおよび/またはメタクリルをいう。1つの実施形態においては、基材は、(メタ)アクリル系樹脂で構成されることが好ましい。(メタ)アクリル系樹脂を採用することにより、押出し成形により、平滑性に優れた(例えば、上記表面平滑性を満足する)基材を製膜し得る。そして、平滑性に優れた保護部材が得られ得る。 The base material may be composed of any suitable film. Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. Here, (meth)acrylic refers to acrylic and/or methacrylic. In one embodiment, the base material is preferably made of (meth)acrylic resin. By employing a (meth)acrylic resin, a base material with excellent smoothness (for example, satisfying the above-mentioned surface smoothness) can be formed into a film by extrusion molding. Then, a protective member with excellent smoothness can be obtained.
 第一保護部材は、好ましくは、基材と基材上に形成される表面処理層とを有する積層フィルムで構成される。積層フィルムの厚みは、好ましくは10μm~80μmであり、より好ましくは15μm~60μmであり、さらに好ましくは20μm~45μmである。表面処理層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。 The first protective member is preferably composed of a laminated film having a base material and a surface treatment layer formed on the base material. The thickness of the laminated film is preferably 10 μm to 80 μm, more preferably 15 μm to 60 μm, even more preferably 20 μm to 45 μm. The thickness of the surface treatment layer is preferably 0.5 μm to 10 μm, more preferably 1 μm to 7 μm, and still more preferably 2 μm to 5 μm.
 表面処理層は、代表的には、ハードコート層を含む。ハードコート層は、代表的には、基材にハードコート層形成材料を塗布し、塗布層を硬化させることにより形成される。ハードコート層形成材料は、代表的には、層形成成分としての硬化性化合物を含む。硬化性化合物の硬化メカニズムとしては、例えば、熱硬化型、光硬化型が挙げられる。硬化性化合物としては、例えば、モノマー、オリゴマー、プレポリマーが挙げられる。好ましくは、硬化性化合物として多官能モノマーまたはオリゴマーが用いられる。多官能モノマーまたはオリゴマーとしては、例えば、2個以上の(メタ)アクリロイル基を有するモノマーまたはオリゴマー、ウレタン(メタ)アクリレートまたはウレタン(メタ)アクリレートのオリゴマー、エポキシ系モノマーまたはオリゴマー、シリコーン系モノマーまたはオリゴマーが挙げられる。 The surface treatment layer typically includes a hard coat layer. The hard coat layer is typically formed by applying a hard coat layer forming material to a base material and curing the applied layer. The hard coat layer forming material typically contains a curable compound as a layer forming component. Examples of the curing mechanism of the curable compound include a thermosetting type and a photocuring type. Examples of the curable compound include monomers, oligomers, and prepolymers. Preferably, a polyfunctional monomer or oligomer is used as the curable compound. Examples of polyfunctional monomers or oligomers include monomers or oligomers having two or more (meth)acryloyl groups, urethane (meth)acrylate or urethane (meth)acrylate oligomers, epoxy monomers or oligomers, and silicone monomers or oligomers. can be mentioned.
 ハードコート層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは1μm~7μmであり、さらに好ましくは2μm~5μmである。 The thickness of the hard coat layer is preferably 0.5 μm to 10 μm, more preferably 1 μm to 7 μm, and even more preferably 2 μm to 5 μm.
 表面処理層は、機能層を含むことが好ましい。機能層は、好ましくは、反射防止層として機能する。好ましい実施形態においては、表面処理層は、上記基材側から、上記ハードコート層と反射防止層とをこの順に含む。機能層の厚みは、好ましくは0.05μm~10μmであり、より好ましくは0.1μm~5μmであり、さらに好ましくは0.1μm~2μmである。 The surface treatment layer preferably includes a functional layer. The functional layer preferably functions as an antireflection layer. In a preferred embodiment, the surface treatment layer includes the hard coat layer and the antireflection layer in this order from the base material side. The thickness of the functional layer is preferably 0.05 μm to 10 μm, more preferably 0.1 μm to 5 μm, and even more preferably 0.1 μm to 2 μm.
 表面処理層を有する第一保護部材は、表面処理層が前方側に位置するように配置され得る。具体的には、表面処理層が第一積層部の最表面に位置し得る。表面処理層は、任意の適切な機能を有し得る。表面処理層は、例えば、空気との界面における光損失を抑制させる観点および視認性を向上させる観点から、反射防止機能を有することが好ましい。1つの実施形態においては、第一保護部材は、波長420nmから680nmの範囲における5°正反射率スペクトルの最大値が2.0%以下であることが好ましく、より好ましくは1.2%以下であり、さらに好ましくは1.0%以下であり、特に好ましくは0.8%以下である。ここで、5°正反射率は、例えば、粘着剤を用いて測定対象を黒アクリル板に貼り付けて測定サンプルを作製し、測定装置としては、分光光度計(日立ハイテクノロジー社製、商品名「U-4100」)を用い、測定サンプルに対する光の入射角は5°として測定することができる。 The first protective member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the first laminated portion. The surface treatment layer may have any suitable function. The surface treatment layer preferably has an antireflection function, for example, from the viewpoint of suppressing optical loss at the interface with air and improving visibility. In one embodiment, the first protective member preferably has a maximum value of the 5° specular reflectance spectrum in the wavelength range of 420 nm to 680 nm of 2.0% or less, more preferably 1.2% or less. It is more preferably 1.0% or less, particularly preferably 0.8% or less. Here, to measure the 5° specular reflectance, use an adhesive to attach the measurement target to a black acrylic plate to prepare a measurement sample, and use a spectrophotometer (manufactured by Hitachi High-Technologies, trade name: "U-4100"), and the angle of incidence of light on the measurement sample is 5°.
 第一保護部材の表面平滑性は、好ましくは0.5arcmin以下であり、より好ましくは0.4arcmin以下である。実質的には、第一保護部材の表面平滑性は、例えば0.1arcmin以上である。 The surface smoothness of the first protective member is preferably 0.5 arcmin or less, more preferably 0.4 arcmin or less. Substantially, the surface smoothness of the first protection member is, for example, 0.1 arcmin or more.
 第二積層部200は、反射型偏光部材14と、反射型偏光部材14と第二レンズ部24との間に配置される接着層(例えば、粘着剤層)とを含んでいる。第二積層部200は、例えば、視認性向上の観点から、反射型偏光部材14と第二レンズ部24との間に配置される吸収型偏光部材28をさらに含んでいる。吸収型偏光部材28は、反射型偏光部材14の前方に接着層(例えば、粘着剤層)44を介して積層されている。吸収型偏光部材28は、少なくとも吸収型偏光膜を含む。図2に示すように、吸収型偏光部材28が吸収型偏光膜以外の部材(例えば、保護層)を含まない場合は、吸収型偏光部材28は吸収型偏光膜に相当し得る。そして、吸収型偏光膜は反射型偏光部材14に隣接して配置され得る。反射型偏光部材14の反射軸と吸収型偏光部材28に含まれる吸収型偏光膜の吸収軸とは互いに略平行に配置され得、反射型偏光部材14の透過軸と吸収型偏光部材28に含まれる吸収型偏光膜の透過軸とは互いに略平行に配置され得る。接着層を介して積層することにより、反射型偏光部材14と吸収型偏光部材28とが固定され、反射軸と吸収軸(透過軸と透過軸)との軸配置のズレを防止することができる。また、反射型偏光部材14と吸収型偏光部材28との間に形成され得る空気層による悪影響を抑制することができる。 The second laminated portion 200 includes a reflective polarizing member 14 and an adhesive layer (for example, an adhesive layer) disposed between the reflective polarizing member 14 and the second lens portion 24. The second laminated section 200 further includes, for example, an absorptive polarizing member 28 disposed between the reflective polarizing member 14 and the second lens section 24 from the viewpoint of improving visibility. The absorptive polarizing member 28 is laminated in front of the reflective polarizing member 14 with an adhesive layer (for example, an adhesive layer) 44 interposed therebetween. The absorption type polarizing member 28 includes at least an absorption type polarizing film. As shown in FIG. 2, when the absorption type polarizing member 28 does not include any member (for example, a protective layer) other than the absorption type polarizing film, the absorption type polarizing member 28 can correspond to an absorption type polarizing film. Then, the absorptive polarizing film may be placed adjacent to the reflective polarizing member 14. The reflection axis of the reflective polarizing member 14 and the absorption axis of the absorbing polarizing film included in the absorbing polarizing member 28 may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member 14 and the absorption axis of the absorbing polarizing film included in the absorbing polarizing member 28 may be arranged substantially parallel to each other. The transmission axes of the absorbing polarizing films may be arranged substantially parallel to each other. By laminating them through an adhesive layer, the reflective polarizing member 14 and the absorbing polarizing member 28 are fixed, and it is possible to prevent misalignment of the axis arrangement between the reflective axis and the absorption axis (the transmission axis and the transmission axis). . Further, it is possible to suppress the adverse effects of an air layer that may be formed between the reflective polarizing member 14 and the absorbing polarizing member 28.
 第二積層部200は、反射型偏光部材14の後方に配置される第二保護部材32をさらに含んでいる。第二保護部材32は、反射型偏光部材14に接着層(例えば、粘着剤層)43を介して積層されている。第二保護部材32は、第二積層部200の最表面に位置し得る。第一保護部材31と第二保護部材32とは、空間を介して対向して配置されている。第二保護部材は、上記第一保護部材と同様、代表的には、基材と表面処理層とを有する積層フィルムであり得る。この場合、表面処理層が第二積層部の最表面に位置し得る。第二保護部材の詳細については、上記第一保護部材と同様の説明を適用することができる。具体的には、第二保護部材の反射特性とその効果、平滑性、厚みおよび構成材料については、上記第一保護部材と同様の説明を適用することができる。 The second laminated section 200 further includes a second protection member 32 disposed behind the reflective polarizing member 14. The second protection member 32 is laminated on the reflective polarizing member 14 via an adhesive layer (for example, an adhesive layer) 43. The second protection member 32 may be located on the outermost surface of the second laminated portion 200. The first protection member 31 and the second protection member 32 are arranged facing each other with a space interposed therebetween. Like the first protection member, the second protection member may typically be a laminated film having a base material and a surface treatment layer. In this case, the surface treatment layer may be located on the outermost surface of the second laminated portion. Regarding the details of the second protection member, the same explanation as that for the first protection member can be applied. Specifically, the same explanations as for the first protection member can be applied to the reflection characteristics and effects, smoothness, thickness, and constituent materials of the second protection member.
 図2に示すように、第二積層部200は、吸収型偏光部材28と第二レンズ部24との間に配置される第三位相差部材30をさらに含んでいてもよい。第三位相差部材30は、吸収型偏光部材28に接着層(例えば、粘着剤層)45を介して積層されている。また、第三位相差部材30は、第二レンズ部24に接着層(例えば、粘着剤層)46を介して積層され、第二積層部200は、第二レンズ部24に一体に設けられている。第三位相差部材30は、例えば、第3のλ/4部材を含む。吸収型偏光部材28の吸収軸と第三位相差部材30に含まれる第3のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。このような部材を設けることにより、例えば、第二レンズ部16側からの外光の反射を防止することができる。第三位相差部材30が第3のλ/4部材以外の部材を含まない場合は、第三位相差部材30は第3のλ/4部材に相当し得る。 As shown in FIG. 2, the second laminated section 200 may further include a third retardation member 30 disposed between the absorptive polarizing member 28 and the second lens section 24. The third retardation member 30 is laminated on the absorption type polarizing member 28 via an adhesive layer (for example, an adhesive layer) 45. Further, the third retardation member 30 is laminated on the second lens portion 24 via an adhesive layer (for example, an adhesive layer) 46, and the second laminated portion 200 is integrally provided on the second lens portion 24. There is. The third retardation member 30 includes, for example, a third λ/4 member. The angle between the absorption axis of the absorption type polarizing member 28 and the slow axis of the third λ/4 member included in the third retardation member 30 is, for example, 40° to 50°, and 42° to 48°. The angle may be approximately 45°. By providing such a member, for example, reflection of external light from the second lens portion 16 side can be prevented. If the third retardation member 30 does not include any member other than the third λ/4 member, the third retardation member 30 may correspond to the third λ/4 member.
 図3は、図2に示す光学積層体(第二積層部)の変形例を示す模式的な断面図である。図3に示す例では、吸収型偏光部材28は、吸収型偏光膜28aに加えて保護層28bを含んでいる。吸収型偏光膜28aと保護層28bとは、接着剤層52を介して積層されている。吸収型偏光部材28は、吸収型偏光膜28aと接着剤層52と保護層28bとを含んでいる。保護層28bを設ける場合、保護層28bは、図3に示すように、吸収型偏光膜28aに対して反射型偏光部材14側に配置されてもよいし、吸収型偏光膜28aに対して第二レンズ部24側に配置されてもよい。 FIG. 3 is a schematic cross-sectional view showing a modification of the optical laminate (second laminate part) shown in FIG. 2. In the example shown in FIG. 3, the absorption type polarizing member 28 includes a protective layer 28b in addition to the absorption type polarizing film 28a. The absorption type polarizing film 28a and the protective layer 28b are laminated with an adhesive layer 52 in between. The absorption type polarizing member 28 includes an absorption type polarizing film 28a, an adhesive layer 52, and a protective layer 28b. When the protective layer 28b is provided, the protective layer 28b may be disposed on the reflective polarizing member 14 side with respect to the absorption type polarizing film 28a, as shown in FIG. It may be arranged on the second lens section 24 side.
 上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。この場合、反射型偏光部材の厚みは、例えば10μm~150μmであり、好ましくは20μm~100μmであり、さらに好ましくは30μm~60μmである。 The reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states. The reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). In this case, the thickness of the reflective polarizing member is, for example, 10 μm to 150 μm, preferably 20 μm to 100 μm, and more preferably 30 μm to 60 μm.
 図4は、反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。多層構造14aは、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとを交互に有する。多層構造を構成する層の総数は、50~1000であってもよい。例えば、A層のx軸方向の屈折率nxはy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一であり、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となり得る。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。 FIG. 4 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film. The multilayer structure 14a has layers A having birefringence and layers B having substantially no birefringence alternating. The total number of layers making up the multilayer structure may be between 50 and 1000. For example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same, The refractive index difference between layer A and layer B is large in the x-axis direction and substantially zero in the y-axis direction. As a result, the x-axis direction can become the reflection axis, and the y-axis direction can become the transmission axis. The refractive index difference between layer A and layer B in the x-axis direction is preferably 0.2 to 0.3.
 上記A層は、代表的には、延伸により複屈折性を発現する材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。上記B層は、代表的には、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。上記多層構造は、共押出と延伸とを組み合わせて形成され得る。例えば、A層を構成する材料とB層を構成する材料とを押し出した後、多層化する(例えば、マルチプライヤーを用いて)。次いで、得られた多層積層体を延伸する。図示例のx軸方向は、延伸方向に対応し得る。 The above layer A is typically made of a material that exhibits birefringence when stretched. Such materials include, for example, naphthalene dicarboxylic acid polyesters (eg, polyethylene naphthalate), polycarbonates, and acrylic resins (eg, polymethyl methacrylate). The B layer is typically made of a material that does not substantially exhibit birefringence even when stretched. Examples of such materials include copolyesters of naphthalene dicarboxylic acid and terephthalic acid. The multilayer structure may be formed by a combination of coextrusion and stretching. For example, after extruding the material constituting layer A and the material constituting layer B, they are multilayered (for example, using a multiplier). The obtained multilayer laminate is then stretched. The x-axis direction in the illustrated example may correspond to the stretching direction.
 反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。 Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF" and Nitto Denko's product name "APCF".
 反射型偏光部材(反射型偏光フィルム)の直交透過率(Tc)は、例えば0.001%~3%であり得る。反射型偏光部材(反射型偏光フィルム)の単体透過率(Ts)は、例えば43%~49%であり、好ましくは45%~47%である。反射型偏光部材(反射型偏光フィルム)の偏光度(P)は、例えば92%~99.99%であり得る。 The cross transmittance (Tc) of the reflective polarizing member (reflective polarizing film) may be, for example, 0.001% to 3%. The single transmittance (Ts) of the reflective polarizing member (reflective polarizing film) is, for example, 43% to 49%, preferably 45% to 47%. The degree of polarization (P) of the reflective polarizing member (reflective polarizing film) can be, for example, 92% to 99.99%.
 上記直交透過率、単体透過率および偏光度は、例えば、紫外可視分光光度計を用いて測定することができる。偏光度Pは、紫外可視分光光度計を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、得られたTpおよびTcから、下記式により求めることができる。なお、Ts、TpおよびTcは、JIS Z 8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
 偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer. The degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula. Note that Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z 8701 and subjected to visibility correction.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
 上記吸収型偏光部材は、吸収型偏光膜を含む。吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.8%以上である。 The absorption type polarizing member includes an absorption type polarizing film. The orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be. The single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.8% or more.
 吸収型偏光部材の表面平滑性は、好ましくは0.4arcmin以下であり、より好ましくは0.3arcmin以下であり、さらに好ましくは0.2arcmin以下である。上記表示システムにおいては、レンズ部において(例えば、凸レンズにより)画像が拡大され得、光学積層体の平滑性は視認性に大きく影響し得る。光学積層体全体の平滑性に影響を及ぼしやすい吸収型偏光部材において上記表面平滑性を満足させることにより、平滑性に優れた光学積層体を得ることができる。また、このような光学積層体によれば、上記表示システムにおいて顕著に優れた視認性を実現し得る。例えば、ゴーストと称される像が二重に見える現象を抑制し得る。また例えば、ゆがみのない、明瞭な画像を実現し得る。実質的には、吸収型偏光部材の表面平滑性は、例えば0.1arcmin以上である。 The surface smoothness of the absorption type polarizing member is preferably 0.4 arcmin or less, more preferably 0.3 arcmin or less, and still more preferably 0.2 arcmin or less. In the above display system, the image can be enlarged in the lens portion (for example, by a convex lens), and the smoothness of the optical laminate can greatly affect visibility. By satisfying the above surface smoothness in an absorption type polarizing member that tends to affect the smoothness of the entire optical laminate, an optical laminate with excellent smoothness can be obtained. Moreover, according to such an optical laminate, significantly excellent visibility can be realized in the above-mentioned display system. For example, it is possible to suppress a phenomenon called ghost where an image appears double. Further, for example, a clear image without distortion can be realized. Substantially, the surface smoothness of the absorption type polarizing member is, for example, 0.1 arcmin or more.
 吸収型偏光膜は、代表的には、ヨウ素、有機染料等の二色性物質を含む膜から構成される。吸収型偏光膜の厚みは、例えば10μm以下であり、好ましくは9μm以下であり、より好ましくは8μm以下であり、さらに好ましくは7μm以下である。このような厚みを有する吸収型偏光膜を用いることにより、上記表面平滑性を良好に満足し得る。一方、吸収型偏光膜の厚みは、例えば1μm以上である。 An absorption type polarizing film is typically composed of a film containing a dichroic substance such as iodine or an organic dye. The thickness of the absorption type polarizing film is, for example, 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less, and still more preferably 7 μm or less. By using an absorption type polarizing film having such a thickness, the above-mentioned surface smoothness can be satisfactorily satisfied. On the other hand, the thickness of the absorption type polarizing film is, for example, 1 μm or more.
 例えば、吸収型偏光膜は、液晶化合物から構成され得る。液晶化合物から構成される吸収型偏光膜の厚みは、例えば4μm以下とすることができ、3μm以下としてもよく、2μm以下としてもよい。液晶化合物から構成される吸収型偏光膜を用いることにより、極めて高い表面平滑性を達成し得る。また、液晶化合物から構成される吸収型偏光膜を用いることにより、図2に示すように保護層を用いなくても、後述の耐久性を良好に満足し得る。 For example, the absorption type polarizing film may be composed of a liquid crystal compound. The thickness of the absorption type polarizing film made of a liquid crystal compound can be, for example, 4 μm or less, 3 μm or less, or 2 μm or less. By using an absorption type polarizing film made of a liquid crystal compound, extremely high surface smoothness can be achieved. Further, by using an absorption type polarizing film made of a liquid crystal compound, the durability described below can be satisfactorily satisfied without using a protective layer as shown in FIG.
 上記液晶化合物としては、好ましくは、リオトロピック液晶性ポリマーが用いられる。液晶化合物は、典型的には、吸収型偏光膜において所定方向に配向しており、その配向状態が固定されている。具体的には、吸収型偏光膜は、液晶化合物の配向固化層であり得る。液晶化合物の液晶相の構成としては、例えば、ネマチック相、スメクチック相、および、カラムナー相のいずれであってもよい。 A lyotropic liquid crystal polymer is preferably used as the liquid crystal compound. The liquid crystal compound is typically aligned in a predetermined direction in the absorption type polarizing film, and the alignment state is fixed. Specifically, the absorption type polarizing film may be an alignment solidified layer of a liquid crystal compound. The structure of the liquid crystal phase of the liquid crystal compound may be, for example, any of a nematic phase, a smectic phase, and a columnar phase.
 上記リオトロピック液晶性ポリマーは、例えば、環構造と、連結基と、スルホ基および/またはスルホン酸塩基とを含む構成単位を有している。環構造は、代表的には、リオトロピック液晶性ポリマーの主鎖に含まれる。各構成単位に含まれる環構造の個数は、例えば1以上5以下である。環構造として、代表的には、芳香族環が挙げられる。環構造としては、例えば、ベンゼン環、オキサゾール環、チアゾール環、オキサジアゾール環、ビフェニル環、および、それらの縮合環が挙げられる。好ましくは、ベンゼン環が用いられる。連結基は、例えば、二つの環構造を連結している。連結基の両末端は、例えば、環構造に直接結合している。連結基としては、例えば、sp炭素含有連結基、アミド結合が挙げられる。好ましくは、sp炭素含有連結基が用いられる。sp炭素含有連結基の具体例としては、アルキレン基、オキシアルキレン基が挙げられる。好ましくは、炭素数1から8のアルキレン基が用いられ、より好ましくは、メチレン基、エチレン基が用いられる。 The lyotropic liquid crystalline polymer has, for example, a structural unit containing a ring structure, a linking group, and a sulfo group and/or a sulfonic acid group. The ring structure is typically included in the main chain of the lyotropic liquid crystalline polymer. The number of ring structures included in each structural unit is, for example, 1 or more and 5 or less. A typical example of the ring structure is an aromatic ring. Examples of the ring structure include a benzene ring, an oxazole ring, a thiazole ring, an oxadiazole ring, a biphenyl ring, and fused rings thereof. Preferably, a benzene ring is used. A linking group, for example, connects two ring structures. Both ends of the linking group are, for example, directly bonded to the ring structure. Examples of the linking group include an sp 3 carbon-containing linking group and an amide bond. Preferably, sp 3 carbon-containing linking groups are used. Specific examples of sp 3 carbon-containing linking groups include alkylene groups and oxyalkylene groups. Preferably, an alkylene group having 1 to 8 carbon atoms is used, and more preferably a methylene group and an ethylene group are used.
 スルホ基および/またはスルホン酸塩基は、リオトロピック液晶性ポリマーに水溶性およびリオトロピック液晶性を付与し得る。スルホ基および/またはスルホン酸塩基は、例えば、環構造に直接結合している。各構成単位に含まれるスルホ基および/またはスルホン酸塩基の個数は、例えば1以上5以下である。スルホン酸塩基のカウンターカチオンとしては、代表的には、アルカリ金属カチオンが挙げられ、好ましくは、Li、Na、K、Rb、Csが挙げられる。スルホン酸塩基のカウンターカチオンを、より水溶性の低いカチオンに交換(いわゆる不溶化処理)することで、耐水性に優れた吸収型偏光膜が得られ得る。アルカリ金属カチオンよりも水溶性の低いカチオンとして、代表的には、アンモニウムイオン、多価金属カチオンが挙げられる。アンモニウムイオンは、代表的には、分子中に2個以上の窒素原子を有する有機窒素化合物のアンモニウムイオンが用いられる。有機窒素化合物に含まれる窒素原子の数は、特に限定されないが、好ましくは2個~5個であり、より好ましくは2個~3個であり、さらに好ましくは2個である。多価金属カチオンとしては、例えば、アルカリ土類金属カチオン(例えば、Ca2+、Mg2+、Sr2+、Ba2+)、遷移金属カチオン(例えば、La3+、Fe3+、Cr3+、Mn2+、Cu2+、Ce3+)、貧金属カチオン(例えば、Al3+、Pb2+、Sn2+、Zn2+)が挙げられる。 The sulfo group and/or sulfonic acid group can impart water solubility and lyotropic liquid crystallinity to the lyotropic liquid crystalline polymer. Sulfo groups and/or sulfonic acid groups are, for example, directly bonded to the ring structure. The number of sulfo groups and/or sulfonic acid groups contained in each structural unit is, for example, 1 or more and 5 or less. The counter cation of the sulfonic acid group typically includes an alkali metal cation, preferably Li + , Na + , K + , Rb + , and Cs + . By exchanging the counter cation of the sulfonic acid group with a cation having lower water solubility (so-called insolubilization treatment), an absorption polarizing film with excellent water resistance can be obtained. Typical examples of cations having lower water solubility than alkali metal cations include ammonium ions and polyvalent metal cations. As the ammonium ion, ammonium ions of organic nitrogen compounds having two or more nitrogen atoms in the molecule are typically used. The number of nitrogen atoms contained in the organic nitrogen compound is not particularly limited, but is preferably 2 to 5, more preferably 2 to 3, and even more preferably 2. Examples of polyvalent metal cations include alkaline earth metal cations (e.g., Ca 2+ , Mg 2+ , Sr 2+ , Ba 2+ ), transition metal cations (e.g., La 3+ , Fe 3+ , Cr 3+ , Mn 2+ , Cu 2+ ). , Ce 3+ ), and poor metal cations (eg, Al 3+ , Pb 2+ , Sn 2+ , Zn 2+ ).
 リオトロピック液晶性ポリマーの構成単位としては、例えば、下記式(1)から(23)に示す構造が挙げられる。ここで、式(1)、(3)~(10)は、アルキレン基(連結基)およびベンゼン環(環構造)を有する構成単位を示す。式(2)は、アミド結合(連結基)およびベンゼン環(環構造)を有する構成単位を示す。式(11)~(19)は、アルキレン基(連結基)および縮合環(環構造)を有する構成単位を示す。式(20)~(23)は、オキシアルキレン基(連結基)およびベンゼン環(環構造)を有する構成単位を示す。下記式(2)~(23)では、便宜上、スルホ基を含んでいるが、スルホン酸塩基であってもよい。 Examples of the structural units of the lyotropic liquid crystalline polymer include structures shown in the following formulas (1) to (23). Here, formulas (1), (3) to (10) represent structural units having an alkylene group (linking group) and a benzene ring (ring structure). Formula (2) shows a structural unit having an amide bond (linking group) and a benzene ring (ring structure). Formulas (11) to (19) represent structural units having an alkylene group (linking group) and a condensed ring (ring structure). Formulas (20) to (23) represent structural units having an oxyalkylene group (linking group) and a benzene ring (ring structure). The following formulas (2) to (23) contain a sulfo group for convenience, but a sulfonic acid group may be used.
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Xは、水素原子、あるいは、アンモニウムイオン、アルカリ金属カチオン、アルカリ土類金属カチオン、遷移金属カチオンまたは貧金属カチオンから選択されるカウンターカチオンを示す。)
Figure JPOXMLDOC01-appb-C000001
(In formula (1), X represents a hydrogen atom or a counter cation selected from ammonium ions, alkali metal cations, alkaline earth metal cations, transition metal cations, or poor metal cations.)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 このような構成単位の中では、アルキレン基(連結基)およびベンゼン環(環構造)を有する構成単位(上記式(1)、(3)~(10))、アミド結合(連結基)およびベンゼン環(環構造)を有する構成単位(上記式(2))が好ましく用いられ、上記式(1)で示される構成単位がより好ましく用いられる。リオトロピック液晶性ポリマーは、例えば、上記構成単位のうち、1つの構成単位を単独で有していてもよく、複数の構成単位を組み合わせて有していてもよい。好ましくは、リオトロピック液晶性ポリマーは、上記構成単位のうち1つの構成単位を単独で有するホモポリマー(単独重合体)であり、より好ましくは、上記式(1)または(2)で示される構成単位のホモポリマーであり、さらに好ましくは、上記式(1)で示される構成単位のホモポリマーである。 Among such structural units, structural units having an alkylene group (linking group) and a benzene ring (ring structure) (formulas (1), (3) to (10) above), amide bonds (linking group) and benzene A structural unit having a ring (ring structure) (formula (2) above) is preferably used, and a structural unit represented by formula (1) above is more preferably used. The lyotropic liquid crystalline polymer may have, for example, one constituent unit alone or a combination of a plurality of constituent units among the above constituent units. Preferably, the lyotropic liquid crystalline polymer is a homopolymer (homopolymer) having only one of the above structural units, more preferably a structural unit represented by the above formula (1) or (2). A homopolymer of the structural unit represented by the above formula (1) is more preferable.
 リオトロピック液晶性ポリマーにおいて、構成単位の繰り返し数は、例えば25以上1000以下である。リオトロピック液晶性ポリマー自体は、透明であり得、実質的に吸収二色性を示さない。リオトロピック液晶性ポリマーの単体透過率は、例えば85%以上100%以下である。 In the lyotropic liquid crystalline polymer, the number of repeating structural units is, for example, 25 or more and 1000 or less. The lyotropic liquid crystalline polymer itself may be transparent and exhibit substantially no absorption dichroism. The single transmittance of the lyotropic liquid crystalline polymer is, for example, 85% or more and 100% or less.
 1つの実施形態においては、液晶化合物から構成される吸収型偏光膜は、二色性物質として吸収二色性を付与し得る有機染料を含み得る。このような有機染料としては、例えば、下記式(24)~式(26)に示される有機染料が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式(24)において、Aはスルホ基またはスルホン酸塩基を示す。mは1以上4以下を示す。Bは塩素原子を示す。pは0以上2以下を示す。m+pは4以下である。Aがスルホン酸塩基である場合、そのカウンターカチオンは、Na、K、Cs、または、NH である。)
Figure JPOXMLDOC01-appb-C000007
(式(25)において、Aはスルホ基またはスルホン酸塩基を示す。mは1以上4以下を示す。Bは水酸基を示す。pは0以上4以下を示す。Cはスルホニル基を示す。nは0以上2以下を示す。Rは酸素原子を示す。qは0以上4以下を示す。m+p+qは6以下である。Aがスルホン酸塩基である場合、そのカウンターカチオンは、Na、K、Cs、または、NH である。)
Figure JPOXMLDOC01-appb-C000008
(式(26)において、Aはスルホ基またはスルホン酸塩基を示す。Aがスルホン酸塩基である場合、そのカウンターカチオンは、Na、K、Cs、または、NH である。)
In one embodiment, the absorption type polarizing film made of a liquid crystal compound may contain an organic dye capable of imparting absorption dichroism as a dichroic substance. Examples of such organic dyes include organic dyes represented by the following formulas (24) to (26).
Figure JPOXMLDOC01-appb-C000006
(In formula (24), A represents a sulfo group or a sulfonic acid group. m represents 1 or more and 4 or less. B represents a chlorine atom. p represents 0 or more and 2 or less. m+p is 4 or less. When A is a sulfonic acid group, its countercation is Na + , K + , Cs + or NH 4 + .)
Figure JPOXMLDOC01-appb-C000007
(In formula (25), A represents a sulfo group or a sulfonic acid group. m represents 1 or more and 4 or less. B represents a hydroxyl group. p represents 0 or more and 4 or less. C represents a sulfonyl group. n represents 0 or more and 2 or less. R represents an oxygen atom. q represents 0 or more and 4 or less. m+p+q is 6 or less. When A is a sulfonic acid group, its counter cation is Na + , K + , Cs + , or NH 4 + .)
Figure JPOXMLDOC01-appb-C000008
(In formula (26), A represents a sulfo group or a sulfonic acid group. When A is a sulfonic acid group, its counter cation is Na + , K + , Cs + , or NH 4 + .)
 また、有機染料として、例えば、特表2004-528603号公報の段落[0035]~[0037]に記載されているアゾ染料、アゾキシ染料、アゾメチン染料、スチルベン染料、ポリメチン染料、陽イオン性染料、ナフタレン系染料、ペリレン系染料、アンスロン系染料;米国特許第5,007,942号または米国特許第5,340,504号に記載されているスチルベン染料;欧州特許第 0 530 106 号、欧州特許出願公開第 0 626 598 号または米国特許第5318856号に記載されているアゾおよび金属化染料が挙げられる。 Examples of organic dyes include azo dyes, azoxy dyes, azomethine dyes, stilbene dyes, polymethine dyes, cationic dyes, and naphthalene dyes described in paragraphs [0035] to [0037] of Japanese Patent Publication No. 2004-528603. dyes, perylene dyes, anthrone dyes; stilbene dyes described in U.S. Pat. No. 5,007,942 or U.S. Pat. No. 5,340,504; European Patent No. 0 530 106, European Patent Application Publication Mention may be made of the azo and metallized dyes described in US Pat. No. 0,626,598 or US Pat. No. 5,318,856.
 また、有機染料として、例えば、C.I.ダイレクトイエロー12、C.I.ダイレクトイエロー28,C.I.ダイレクトイエロー44、C.I.ダイレクトイエロー142、C.I.ダイレクトオレンジ6、C.I.ダイレクトオレンジ26、C.I.ダイレクトオレンジ39、C.I.ダイレクトオレンジ72、C.I.ダイレクトオレンジ107、C.I.ダイレクトレッド2、C.I.ダイレクトレッド31、C.I.ダイレクトレッド79、C.I.ダイレクトレッド81、C.I.ダイレクトレッド240、C.I.ダイレクトレッド247、C.I.ダイレクトバイオレット9、C.I.ダイレクトバイオレット48、C.I.ダイレクトバイオレット51、C.I.ダイレクトブルー1、C.I.ダイレクトブルー15、C.I.ダイレクトブルー71、C.I.ダイレクトブルー78、C.I.ダイレクトブルー98、C.I.ダイレクトブルー168、C.I.ダイレクトブルー202、C.I.ダイレクトブラウン106、C.I.ダイレクトブラウン223、C.I.ダイレクトグリーン85などの直接染料;C.I.アクティブイエロー1、C.I.アクティブレッド1、C.I.アクティブレッド6、C.I.アクティブレッド14、C.I.アクティブレッド46、C.I.アクティブバイオレット1、C.I.アクティブブルー9、C.I.アクティブブルー10などの活性染料;C.I.アシッドオレンジ63、C.I.アシッドレッド85、C.I.アシッドレッド144、C.I.アシッドレッド152、C.I.アシッドブラウン32、C.I.アシッドバイオレット50、C.I.アシッドブルー18、C.I.アシッドブルー44、C.I.アシッドブルー61、C.I.アシッドブルー102、C.I.アシッドブラック21などの酸性染料;C.I.ベーシックレッド12、ベーシックブラウン(C.I.33500)、C.I.ベーシックブラックなどの陽イオン性染料が挙げられる。 In addition, as organic dyes, for example, C.I. I. Direct Yellow 12, C. I. Direct Yellow 28, C. I. Direct Yellow 44, C. I. Direct Yellow 142, C. I. Direct Orange 6, C. I. Direct Orange 26, C. I. Direct Orange 39, C. I. Direct Orange 72, C. I. Direct Orange 107, C. I. Direct Red 2, C. I. Direct Red 31, C. I. Direct Red 79, C. I. Direct Red 81, C. I. Direct Red 240, C. I. Direct Red 247, C. I. Direct Violet 9, C. I. Direct Violet 48, C. I. Direct Violet 51, C. I. Direct Blue 1, C. I. Direct Blue 15, C. I. Direct Blue 71, C. I. Direct Blue 78, C. I. Direct Blue 98, C. I. Direct Blue 168, C. I. Direct Blue 202, C. I. Direct Brown 106, C. I. Direct Brown 223, C. I. Direct dyes such as Direct Green 85; C.I. I. Active Yellow 1, C. I. Active Red 1, C. I. Active Red 6, C. I. Active Red 14, C. I. Active Red 46, C. I. Active Violet 1, C. I. Active Blue 9, C. I. an active dye such as Active Blue 10; C.I. I. Acid Orange 63, C. I. Acid Red 85, C. I. Acid Red 144, C. I. Acid Red 152, C. I. Acid Brown 32, C. I. Acid Violet 50, C. I. Acid Blue 18, C. I. Acid Blue 44, C. I. Acid Blue 61, C. I. Acid Blue 102, C. I. Acidic dyes such as Acid Black 21; C.I. I. Basic Red 12, Basic Brown (C.I.33500), C.I. I. Examples include cationic dyes such as basic black.
 さらに、有機染料として、例えば、米国特許出願公開第2001/0029638号に記載の有機分子が挙げられる。具体例としては、ポリメチン染料(例えば、擬イソシアニン、ピアシアノール)、トリアリールメタン染料(例えば、Basic Turquose、Acid Light Blue 3)、ジアミノキサンテン染料(例えば、スルホローダミン)、アクリジン染料(例えば、ベーシック・イエローK)、スルホン化アクリジン染料(例えば、トランス-キナクリドン)、アントラキノン染料の水溶性誘導体(例えば、アクティバイト・ライト・ブルーKX)、スルホン化バット染料(例えば、フラバントロン、インダンスレン・イエロー、バット・イエロー4K、バット・ダーク・グリーンG、バット・バイオレットC、インダントロン、ペリレン・バイオレット、バット・スカーレット2G)、アゾ染料(例えば、ベンゾプルプリン4B、ダイレクト・ライトファースト・イエローO)、水溶性ジアジン染料(例えば、アシッド・ダーク・ブルー3)、スルホン化ジオキサジン染料(例えば、ピグメント・バイオレット・ジオキサジン)、可溶性チアジン染料(例えば、メチレンブルー)、水溶性フタロシアニン誘導体(例えば、銅オクタカルボキシフタロシアニン塩)、クロモグリカネート二ナトリウム、ペリレンテトラカルボン酸ジイミドレッド(PADR)、PADRのベンゾイミダゾール(すなわち紫)、ナフタレンテトラカルボン酸(すなわち黄、濃い赤紫)、フェナントロ-9´,10´:2,3‐キノキサリン、ベンゾイミダゾール類のスルホ誘導体が挙げられる。 Furthermore, examples of organic dyes include organic molecules described in US Patent Application Publication No. 2001/0029638. Specific examples include polymethine dyes (e.g. pseudoisocyanine, piacyanol), triarylmethane dyes (e.g. Basic Turquose, Acid Light Blue 3), diaminoxanthene dyes (e.g. sulforhodamine), acridine dyes (e.g. Basic Yellow). K), sulfonated acridine dyes (e.g. trans-quinacridone), water-soluble derivatives of anthraquinone dyes (e.g. Activite Light Blue KX), sulfonated vat dyes (e.g. flavanthrone, indanthrene yellow, vat・Yellow 4K, Bat Dark Green G, Bat Violet C, Indanthrone, Perylene Violet, Bat Scarlet 2G), Azo dyes (e.g. Benzopurpurin 4B, Direct Lightfast Yellow O), Water-soluble diazine dyes (e.g. Acid Dark Blue 3), sulfonated dioxazine dyes (e.g. Pigment Violet Dioxazine), soluble thiazine dyes (e.g. methylene blue), water-soluble phthalocyanine derivatives (e.g. copper octacarboxyphthalocyanine salt), Cromoglycanate disodium, perylenetetracarboxylic acid diimide red (PADR), PADR benzimidazole (i.e. purple), naphthalenetetracarboxylic acid (i.e. yellow, deep red-purple), phenanthro-9',10':2,3- Examples include quinoxaline and sulfo derivatives of benzimidazoles.
 このような有機染料は、単独で、または、二種以上組み合わせて用いられ得る。好ましい実施形態においては、上記式(24)~(26)に示される有機染料を組み合わせて用いる。 Such organic dyes may be used alone or in combination of two or more. In a preferred embodiment, organic dyes represented by formulas (24) to (26) above are used in combination.
 液晶化合物から構成される吸収型偏光膜は、例えば、水系溶媒に上記リオトロピック液晶性ポリマーを溶解させた液晶ポリマー溶液を基材フィルムに塗工・乾燥してリオトロピック液晶層を形成した後、リオトロピック液晶層を染色することにより得ることができる。染色後、過剰な染色液は除去され得る。 For example, an absorption type polarizing film composed of a liquid crystal compound is produced by coating a base film with a liquid crystal polymer solution obtained by dissolving the above lyotropic liquid crystal polymer in an aqueous solvent and drying it to form a lyotropic liquid crystal layer. It can be obtained by dyeing the layer. After staining, excess staining solution can be removed.
 上記水系溶媒として、例えば、水、水とアルコールとの混合溶媒が挙げられ、好ましくは水が用いられる。液晶ポリマー溶液における固形分濃度は、例えば5質量%以上30質量%以下であり、好ましくは10質量%以上20質量%以下である。液晶ポリマー溶液の塗工の際、基材フィルムの塗工面にはプライマー層(例えば、ポリエチレンイミンを含む)が形成されていてもよい。プライマー層の厚みは、例えば10nm以上50nm以下である。液晶ポリマー溶液は、せん断応力を付与し得る塗工方法により塗工され得る。塗工には、代表的にはワイヤーバーが用いられる。液晶ポリマー溶液の塗工膜を乾燥して、リオトロピック液晶層が形成され得る。乾燥温度は、例えば40℃以上80℃以下であり、好ましくは50℃以上70℃以下である。乾燥時間は、例えば10秒以上10分以下であり、好ましくは5分以下である。リオトロピック液晶性ポリマーは、塗工時のせん断応力により配向し得、リオトロピック液晶層には、塗工方向に遅相軸をもつ位相差が発現し得る。 Examples of the aqueous solvent include water and a mixed solvent of water and alcohol, and preferably water is used. The solid content concentration in the liquid crystal polymer solution is, for example, 5% by mass or more and 30% by mass or less, preferably 10% by mass or more and 20% by mass or less. During coating of the liquid crystal polymer solution, a primer layer (eg, containing polyethyleneimine) may be formed on the coated surface of the base film. The thickness of the primer layer is, for example, 10 nm or more and 50 nm or less. The liquid crystal polymer solution can be applied by a coating method that can impart shear stress. A wire bar is typically used for coating. A lyotropic liquid crystal layer can be formed by drying the coating film of the liquid crystal polymer solution. The drying temperature is, for example, 40°C or higher and 80°C or lower, preferably 50°C or higher and 70°C or lower. The drying time is, for example, 10 seconds or more and 10 minutes or less, preferably 5 minutes or less. The lyotropic liquid crystalline polymer can be oriented by shear stress during coating, and the lyotropic liquid crystal layer can develop a retardation having a slow axis in the coating direction.
 上記染色は、代表的には、リオトロピック液晶層を、二色性物質を含む染色液に浸漬することより行われ得る。染色時の染色液の温度は、例えば10℃以上50℃以下であり、好ましくは20℃以上40℃以下である。浸漬時間(染色時間)は、例えば5秒以上300秒以下であり、好ましくは30秒以上180秒以下である。 The above dyeing can typically be performed by immersing the lyotropic liquid crystal layer in a dyeing solution containing a dichroic substance. The temperature of the dyeing solution during dyeing is, for example, 10°C or more and 50°C or less, preferably 20°C or more and 40°C or less. The immersion time (dying time) is, for example, 5 seconds or more and 300 seconds or less, preferably 30 seconds or more and 180 seconds or less.
 二色性物質がヨウ素である場合、染色液は、好ましくはヨウ素化合物をさらに含み、より好ましくはヨウ素化合物および多価金属塩をさらに含む。ヨウ素化合物として、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられる。好ましくは、ヨウ化カリウムが用いられる。染色液におけるヨウ素とヨウ素化合物との質量比(ヨウ素:ヨウ素化合物)は、例えば1:5~1:30であり、好ましくは1:5~1:15である。染色液が多価金属塩を含むことにより、吸収型偏光膜に耐水性を付与され得る。多価金属塩としては、例えば、塩化物、硫酸塩、硝酸塩、リン酸塩、シュウ酸塩、酢酸塩が挙げられる。多価金属塩の対金属としては、例えば、アルカリ金属、アルカリ土類金属、遷移金属、貧金属が挙げられ、具体的には、バリウム、アルミニウム、鉛、クロム、ストロンチウム、セリウム、ランタン、サマリウム、イットリウム、銅、鉄が挙げられる。好ましくは、塩化ストロンチウムが用いられる。染色液におけるヨウ素と多価金属塩との質量比(ヨウ素:多価金属塩)は、例えば1:5~1:30であり、好ましくは1:5~1:15である。 When the dichroic substance is iodine, the staining solution preferably further contains an iodine compound, more preferably an iodine compound and a polyvalent metal salt. Examples of iodine compounds include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. Can be mentioned. Preferably potassium iodide is used. The mass ratio of iodine to iodine compound (iodine:iodine compound) in the staining solution is, for example, 1:5 to 1:30, preferably 1:5 to 1:15. When the staining solution contains a polyvalent metal salt, water resistance can be imparted to the absorption type polarizing film. Examples of polyvalent metal salts include chlorides, sulfates, nitrates, phosphates, oxalates, and acetates. Examples of the countermetal of the polyvalent metal salt include alkali metals, alkaline earth metals, transition metals, and poor metals. Specifically, barium, aluminum, lead, chromium, strontium, cerium, lanthanum, samarium, Examples include yttrium, copper, and iron. Preferably, strontium chloride is used. The mass ratio of iodine to polyvalent metal salt (iodine: polyvalent metal salt) in the staining solution is, for example, 1:5 to 1:30, preferably 1:5 to 1:15.
 二色性物質が有機染料である場合、染色液における有機染料の固形分濃度は、例えば0.1質量%以上3.0質量%以下であり、好ましくは1.0質量%以上である。また、上記式(24)~(26)で示される有機染料が併用される場合、式(24):式(25):式(26)の質量比は、例えば、40~60:10~30:10~30である。 When the dichroic substance is an organic dye, the solid content concentration of the organic dye in the dyeing solution is, for example, 0.1% by mass or more and 3.0% by mass or less, and preferably 1.0% by mass or more. Further, when the organic dyes represented by the above formulas (24) to (26) are used together, the mass ratio of formula (24):formula (25):formula (26) is, for example, 40 to 60:10 to 30. :10-30.
 また例えば、吸収型偏光膜は、樹脂膜で構成され得る。この場合、吸収型偏光膜は、好ましくは、ヨウ素を含むポリビニルアルコール(PVA)系フィルムである。1つの実施形態においては、樹脂膜で構成される吸収型偏光膜の厚みは、好ましくは6μm以上である。このような厚みによれば、図2に示すように保護層を用いなくても、後述の耐久性を良好に満足し得る。別の実施形態においては、樹脂膜で構成される吸収型偏光膜の厚みは、好ましくは6μm未満である。このような厚みにおいても、図3に示すように保護層を用いることにより、後述の耐久性を良好に満足し得る。 Also, for example, the absorption type polarizing film may be composed of a resin film. In this case, the absorption type polarizing film is preferably a polyvinyl alcohol (PVA) film containing iodine. In one embodiment, the thickness of the absorptive polarizing film made of a resin film is preferably 6 μm or more. With such a thickness, the durability described below can be satisfactorily satisfied even without using a protective layer as shown in FIG. In another embodiment, the thickness of the absorptive polarizing film made of a resin film is preferably less than 6 μm. Even with such a thickness, by using a protective layer as shown in FIG. 3, the durability described below can be satisfactorily satisfied.
 樹脂膜で構成される吸収型偏光膜の製造方法としては、例えば、長尺状の熱可塑性樹脂基材の片側に、ポリビニルアルコール系樹脂(PVA系樹脂)とハロゲン化物を含むポリビニルアルコール系樹脂層(PVA系樹脂層)を形成して積層体とすること、および、積層体に、空中補助延伸処理と、染色処理と、水中延伸処理と、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理と、をこの順に施すことを含む方法が挙げられる。得られる吸収型偏光膜の厚みは、例えば、水中延伸処理における延伸倍率を調整することにより制御され得る。 As a method for manufacturing an absorption type polarizing film composed of a resin film, for example, a polyvinyl alcohol resin layer containing a polyvinyl alcohol resin (PVA resin) and a halide is formed on one side of a long thermoplastic resin base material. (PVA resin layer) to form a laminate, and the laminate is subjected to aerial auxiliary stretching treatment, dyeing treatment, underwater stretching treatment, and heating while conveying in the longitudinal direction, so that the laminate is stretched in the width direction. A method including performing a drying shrinkage treatment to cause shrinkage by 2% or more in this order may be mentioned. The thickness of the resulting absorptive polarizing film can be controlled, for example, by adjusting the stretching ratio in the underwater stretching process.
 上記PVA系樹脂層は、好ましくは、熱可塑性樹脂基材に、PVA系樹脂とハロゲン化物を含む塗布液を塗布し、乾燥することにより形成される。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。PVA系樹脂層の厚みは、好ましくは3μm~40μmであり、さらに好ましくは3μm~20μmである。 The PVA-based resin layer is preferably formed by applying a coating liquid containing a PVA-based resin and a halide to a thermoplastic resin base material and drying the coating liquid. The content of the halide in the PVA resin layer is preferably 5 parts by weight to 20 parts by weight based on 100 parts by weight of the PVA resin. The thickness of the PVA resin layer is preferably 3 μm to 40 μm, more preferably 3 μm to 20 μm.
 塗布液の塗布方法としては、例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。塗布液の塗布・乾燥温度は、好ましくは50℃以上である。 Examples of methods for applying the coating liquid include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.). It will be done. The coating and drying temperature of the coating liquid is preferably 50°C or higher.
 熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させる観点から、PVA系樹脂層を形成する前に、熱可塑性樹脂基材にコロナ処理等の表面処理を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。 From the viewpoint of improving the adhesion between the thermoplastic resin base material and the PVA resin layer, the thermoplastic resin base material may be subjected to surface treatment such as corona treatment or heat treatment before forming the PVA resin layer. An easily adhesive layer may be formed on the plastic resin base material.
 熱可塑性樹脂基材の厚みは、好ましくは20μm~300μmであり、より好ましくは50μm~200μmである。20μm未満であると、例えば、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、後述の水中延伸処理において、熱可塑性樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。 The thickness of the thermoplastic resin base material is preferably 20 μm to 300 μm, more preferably 50 μm to 200 μm. If it is less than 20 μm, for example, it may be difficult to form a PVA-based resin layer. If it exceeds 300 μm, for example, it may take a long time for the thermoplastic resin base material to absorb water in the underwater stretching treatment described below, and an excessive load may be required for stretching.
 熱可塑性樹脂基材の吸水率は、好ましくは0.2%以上であり、より好ましくは0.3%以上である。熱可塑性樹脂基材は水を吸収し得、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させることができ、高倍率に延伸することができる。一方、熱可塑性樹脂基材の吸水率は、好ましくは3.0%以下であり、より好ましくは1.0%以下である。このような熱可塑性樹脂基材を用いることにより、製造時に基材の寸法安定性が著しく低下して、得られる吸収型偏光膜の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に基材が破断したり、基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、熱可塑性樹脂基材の吸水率は、例えば、構成材料に変性基を導入することにより調整することができる。吸水率は、JIS K 7209に準じて求められる値である。 The water absorption rate of the thermoplastic resin base material is preferably 0.2% or more, more preferably 0.3% or more. The thermoplastic resin base material can absorb water, and the water can act as a plasticizer to be plasticized. As a result, stretching stress can be significantly reduced and stretching can be performed at a high magnification. On the other hand, the water absorption rate of the thermoplastic resin base material is preferably 3.0% or less, more preferably 1.0% or less. By using such a thermoplastic resin base material, it is possible to prevent problems such as a significant decrease in the dimensional stability of the base material during production and deterioration of the appearance of the resulting absorption type polarizing film. Furthermore, it is possible to prevent the base material from breaking or the PVA resin layer from peeling off from the base material during underwater stretching. Note that the water absorption rate of the thermoplastic resin base material can be adjusted, for example, by introducing a modifying group into the constituent material. The water absorption rate is a value determined according to JIS K 7209.
 熱可塑性樹脂基材のガラス転移温度(Tg)は、好ましくは120℃以下である。このような熱可塑性樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。水による熱可塑性樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、Tgは100℃以下であることがより好ましく、さらに好ましくは90℃以下である。一方、熱可塑性樹脂基材のTgは、好ましくは60℃以上である。このような熱可塑性樹脂基材を用いることにより、上記塗布液を塗布・乾燥する際に、基材が変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、PVA系樹脂層の延伸を、好適な温度(例えば、60℃程度)にて行うことができる。なお、熱可塑性樹脂基材のガラス転移温度は、例えば、構成材料に変性基を導入する、結晶化材料を用いて加熱することにより調整することができる。ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。 The glass transition temperature (Tg) of the thermoplastic resin base material is preferably 120°C or lower. By using such a thermoplastic resin base material, it is possible to sufficiently ensure the stretchability of the laminate while suppressing crystallization of the PVA-based resin layer. Considering the plasticization of the thermoplastic resin base material with water and the good performance of stretching in water, Tg is more preferably 100°C or less, and even more preferably 90°C or less. On the other hand, the Tg of the thermoplastic resin base material is preferably 60°C or higher. By using such a thermoplastic resin base material, defects such as deformation of the base material (e.g., occurrence of unevenness, sagging, wrinkles, etc.) when applying and drying the above coating solution can be prevented, resulting in good quality. A laminate can be produced. Further, the PVA resin layer can be stretched at a suitable temperature (for example, about 60° C.). Note that the glass transition temperature of the thermoplastic resin base material can be adjusted by, for example, heating using a crystallizing material that introduces a modifying group into the constituent material. The glass transition temperature (Tg) is a value determined according to JIS K 7121.
 熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂が挙げられる。これらの中でも、好ましくは、ノルボルネン系樹脂、非晶質のポリエチレンテレフタレート系樹脂が用いられる。 Examples of thermoplastic resins include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. Can be mentioned. Among these, norbornene resins and amorphous polyethylene terephthalate resins are preferably used.
 1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。 In one embodiment, amorphous (uncrystallized) polyethylene terephthalate resin is preferably used. Among these, amorphous (hard to crystallize) polyethylene terephthalate resin is preferably used. Specific examples of the amorphous polyethylene terephthalate resin include copolymers further containing isophthalic acid and/or cyclohexane dicarboxylic acid as a dicarboxylic acid, and copolymers further containing cyclohexanedimethanol or diethylene glycol as a glycol.
 好ましい実施形態においては、熱可塑性樹脂基材は、イソフタル酸ユニットを有するポリエチレンテレフタレート系樹脂で構成される。このような熱可塑性樹脂基材は、延伸性に極めて優れるとともに、延伸時の結晶化が抑制され得る。これは、イソフタル酸ユニットを導入することで、主鎖に大きな屈曲を与えることによるものと考えられる。ポリエチレンテレフタレート系樹脂は、テレフタル酸ユニットおよびエチレングリコールユニットを有する。イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは0.1モル%以上であり、より好ましくは1.0モル%以上である。延伸性に極めて優れた熱可塑性樹脂基材が得られるからである。一方、イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは20モル%以下であり、より好ましくは10モル%以下である。このような含有割合に設定することで、後述の乾燥収縮処理において結晶化度を良好に増加させることができる。 In a preferred embodiment, the thermoplastic resin base material is composed of a polyethylene terephthalate resin having an isophthalic acid unit. Such a thermoplastic resin base material has extremely excellent stretchability and can suppress crystallization during stretching. This is thought to be due to the fact that the introduction of the isophthalic acid unit imparts a large bend to the main chain. Polyethylene terephthalate resin has a terephthalic acid unit and an ethylene glycol unit. The content of the isophthalic acid unit is preferably 0.1 mol% or more, more preferably 1.0 mol% or more, based on the total of all repeating units. This is because a thermoplastic resin base material with extremely excellent stretchability can be obtained. On the other hand, the content of isophthalic acid units is preferably 20 mol% or less, more preferably 10 mol% or less, based on the total of all repeating units. By setting the content to such a content ratio, the degree of crystallinity can be favorably increased in the drying shrinkage treatment described below.
 熱可塑性樹脂基材は、PVA系樹脂層を形成する前に、任意の適切な方法により延伸されていてもよい。例えば、長尺状の熱可塑性樹脂基材の横方向に延伸されていてもよい。横方向は、好ましくは、後述の積層体の延伸方向に略直交する方向である。熱可塑性樹脂基材の延伸温度は、ガラス転移温度(Tg)に対し、好ましくはTg-10℃~Tg+50℃である。熱可塑性樹脂基材の延伸倍率は、好ましくは1.5倍~3.0倍である。 The thermoplastic resin base material may be stretched by any appropriate method before forming the PVA-based resin layer. For example, it may be stretched in the lateral direction of a long thermoplastic resin base material. The lateral direction is preferably a direction substantially perpendicular to the stretching direction of the laminate, which will be described later. The stretching temperature of the thermoplastic resin base material is preferably Tg-10°C to Tg+50°C relative to the glass transition temperature (Tg). The stretching ratio of the thermoplastic resin base material is preferably 1.5 times to 3.0 times.
 上述のとおり、塗布液は、PVA系樹脂とハロゲン化物を含み得る。塗布液は、代表的には、PVA系樹脂およびハロゲン化物を溶媒に溶解させた溶液であり得る。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらの中でも、水が好ましく用いられる。PVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。塗布液におけるハロゲン化物の含有量は、PVA系樹脂100重量部に対して5重量部~20重量部であることが好ましく、より好ましくは10重量部~15重量部である。 As mentioned above, the coating liquid may contain a PVA-based resin and a halide. The coating liquid may typically be a solution in which a PVA-based resin and a halide are dissolved in a solvent. Examples of the solvent include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. Among these, water is preferably used. The PVA resin concentration is preferably 3 to 20 parts by weight based on 100 parts by weight of the solvent. The content of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight, more preferably 10 parts by weight to 15 parts by weight, based on 100 parts by weight of the PVA resin.
 上記PVA系樹脂としては、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、例えば85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%であり、より好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。PVA系樹脂の平均重合度は、例えば1000~10000であり、好ましくは1200~4500であり、より好ましくは1500~4300である。平均重合度は、JIS K 6726-1994に準じて求めることができる。上記ハロゲン化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、ヨウ化リチウム等のヨウ化物、塩化ナトリウムが挙げられる。これらの中でも、ヨウ化カリウムが好ましく用いられる。 Examples of the PVA-based resin include polyvinyl alcohol and ethylene-vinyl alcohol copolymer. Polyvinyl alcohol is obtained by saponifying polyvinyl acetate. Ethylene-vinyl alcohol copolymer can be obtained by saponifying ethylene-vinyl acetate copolymer. The degree of saponification of the PVA resin is, for example, 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. It is. The degree of saponification can be determined according to JIS K 6726-1994. The average degree of polymerization of the PVA resin is, for example, 1,000 to 10,000, preferably 1,200 to 4,500, and more preferably 1,500 to 4,300. The average degree of polymerization can be determined according to JIS K 6726-1994. Examples of the halides include iodides such as potassium iodide, sodium iodide, and lithium iodide, and sodium chloride. Among these, potassium iodide is preferably used.
 塗布液には、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。 Additives may be added to the coating liquid. Examples of additives include plasticizers and surfactants. Examples of the plasticizer include polyhydric alcohols such as ethylene glycol and glycerin. Examples of the surfactant include nonionic surfactants.
 PVA系樹脂層は延伸されることによって、PVA系樹脂中のポリビニルアルコール分子の配向性は高くなり得るが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。熱可塑性樹脂の延伸を安定させるため、比較的高い温度で熱可塑性樹脂とPVA系樹脂層との積層体をホウ酸水中で延伸する場合、配向性低下の傾向が顕著である。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れおよび配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理を経て得られる吸収型偏光膜の光学特性を向上させ得る。 By stretching the PVA resin layer, the orientation of the polyvinyl alcohol molecules in the PVA resin can be increased, but when the stretched PVA resin layer is immersed in a liquid containing water, the orientation of the polyvinyl alcohol molecules can be improved. may become disordered and the orientation may deteriorate. When a laminate of a thermoplastic resin and a PVA-based resin layer is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin, there is a remarkable tendency for the orientation to decrease. On the other hand, by stretching the laminate of a PVA resin layer containing a halide and a thermoplastic resin base material in air at high temperature (auxiliary stretching) before stretching it in boric acid water, the laminate after the auxiliary stretching can be Crystallization of the PVA resin in the PVA resin layer of the body can be promoted. As a result, when the PVA-based resin layer is immersed in a liquid, disordered orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. This can improve the optical properties of an absorption polarizing film obtained through a process performed by immersing the laminate in a liquid, such as a dyeing process and an underwater stretching process.
 高い光学特性を得るために、空中延伸(補助延伸)とホウ酸水中延伸を組み合わせる、二段延伸の方法が選択され得る。補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体を高倍率に延伸することができる。また、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、例えば、金属ドラム上にPVA系樹脂を塗布する場合に比べて、塗布温度を低くする必要がある。その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色処理や延伸処理で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防ぐことができ、高い光学特性を達成し得る。 In order to obtain high optical properties, a two-stage stretching method that combines aerial stretching (auxiliary stretching) and boric acid water stretching may be selected. By introducing auxiliary stretching, it is possible to stretch while suppressing the crystallization of the thermoplastic resin base material, which reduces stretchability due to excessive crystallization of the thermoplastic resin base material during subsequent stretching in boric acid water. The problem can be solved and the laminate can be stretched to a high magnification. In addition, when applying PVA-based resin on a thermoplastic resin base material, in order to suppress the influence of the glass transition temperature of the thermoplastic resin base material, for example, compared to when applying PVA-based resin on a metal drum, , it is necessary to lower the coating temperature. As a result, the crystallization of the PVA-based resin becomes relatively low, which may cause a problem that sufficient optical properties cannot be obtained. On the other hand, by introducing auxiliary stretching, it is possible to increase the crystallinity of PVA-based resin even when applying PVA-based resin onto thermoplastic resin, making it possible to achieve high optical properties. Become. At the same time, by increasing the orientation of the PVA resin in advance, it is possible to prevent problems such as a decrease in orientation and dissolution of the PVA resin when it is immersed in water during subsequent dyeing and stretching treatments. High optical properties can be achieved.
 空中補助延伸の延伸方法は、固定端延伸(例えば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。高い光学特性を得る観点から、自由端延伸が好ましく用いられる。 The stretching method for aerial auxiliary stretching may be fixed end stretching (for example, stretching using a tenter stretching machine) or free end stretching (for example, uniaxial stretching by passing the laminate between rolls with different circumferential speeds). good. From the viewpoint of obtaining high optical properties, free end stretching is preferably used.
 空中補助延伸の延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。 The stretching ratio of the aerial auxiliary stretching is preferably 2.0 times to 3.5 times. Aerial assisted stretching may be performed in one step or in multiple steps. In the case of multi-stage stretching, the stretching ratio is the product of the stretching ratios of each stage. The stretching direction in the aerial auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
 空中補助延伸の延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、より好ましくは熱可塑性樹脂基材のTg+10℃以上であり、さらに好ましくは熱可塑性樹脂基材のTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。空中補助延伸後のPVA系樹脂の結晶化指数は、好ましくは1.3~1.8であり、より好ましくは1.4~1.7である。PVA系樹脂の結晶化指数は、フーリエ変換赤外分光光度計を用い、ATR法により測定することができる。具体的には、偏光を測定光として測定を実施し、得られたスペクトルの1141cm-1および1440cm-1の強度を用いて、下記式に従って結晶化指数を算出する。
   結晶化指数=(I/I
ここで、Iは測定光を入射して測定したときの1141cm-1の強度であり、Iは測定光を入射して測定したときの1440cm-1の強度である。
The stretching temperature of the aerial auxiliary stretching is preferably at least the glass transition temperature (Tg) of the thermoplastic resin base material, more preferably at least Tg + 10°C of the thermoplastic resin base material, and even more preferably at the glass transition temperature (Tg) of the thermoplastic resin base material. Tg+15°C or higher. On the other hand, the upper limit of the stretching temperature is preferably 170°C. By stretching at such a temperature, it is possible to suppress the rapid progress of crystallization of the PVA-based resin, and to suppress defects caused by crystallization (for example, hindering the orientation of the PVA-based resin layer due to stretching). . The crystallization index of the PVA-based resin after in-air assisted stretching is preferably 1.3 to 1.8, more preferably 1.4 to 1.7. The crystallization index of the PVA-based resin can be measured by the ATR method using a Fourier transform infrared spectrophotometer. Specifically, measurements are performed using polarized light as measurement light, and the crystallization index is calculated according to the following formula using the intensities at 1141 cm -1 and 1440 cm -1 of the obtained spectrum.
Crystallization index = (I C /I R )
Here, I C is the intensity of 1141 cm −1 measured with the measurement light incident thereon, and I R is the intensity of 1440 cm −1 measured with the measurement light incident thereon.
 空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を行ってもよい。不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。不溶化処理により、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止し得る。不溶化処理のホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。 After the aerial auxiliary stretching treatment and before the underwater stretching treatment or dyeing treatment, an insolubilization treatment may be performed. The insolubilization treatment is typically performed by immersing the PVA resin layer in an aqueous boric acid solution. The insolubilization treatment imparts water resistance to the PVA-based resin layer and prevents the PVA from deteriorating in orientation when immersed in water. The concentration of the aqueous boric acid solution for insolubilization treatment is preferably 1 part by weight to 4 parts by weight per 100 parts by weight of water. The liquid temperature of the insolubilizing bath (boric acid aqueous solution) is preferably 20°C to 50°C.
 上記染色処理は、代表的には、PVA系樹脂層をヨウ素で染色することにより行う。具体的には、PVA系樹脂層にヨウ素を吸着させることにより行う。ヨウ素の吸着方法としては、好ましくは、ヨウ素を含む染色液(染色浴)に、PVA系樹脂層(積層体)を浸漬させる方法が採用される。 The above dyeing treatment is typically performed by dyeing the PVA-based resin layer with iodine. Specifically, this is carried out by adsorbing iodine to the PVA resin layer. As a method for adsorbing iodine, preferably a method is employed in which the PVA resin layer (laminate) is immersed in a dye solution (dye bath) containing iodine.
 上記染色液は、好ましくは、ヨウ素水溶液である。この場合、ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタンが挙げられる。これらの中でも、ヨウ化カリウムが好ましく用いられる。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部~10重量部であり、より好ましくは0.3重量部~5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分であり、より好ましくは30秒~90秒である。 The staining solution is preferably an iodine aqueous solution. In this case, the amount of iodine blended is preferably 0.05 part by weight to 0.5 part by weight per 100 parts by weight of water. In order to increase the solubility of iodine in water, it is preferable to add iodide to the iodine aqueous solution. Examples of iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. can be mentioned. Among these, potassium iodide is preferably used. The amount of iodide to be blended is preferably 0.1 parts by weight to 10 parts by weight, more preferably 0.3 parts by weight to 5 parts by weight, based on 100 parts by weight of water. The temperature of the dyeing solution during dyeing is preferably 20° C. to 50° C. in order to suppress dissolution of the PVA resin. When the PVA resin layer is immersed in the dyeing liquid, the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 90 seconds, in order to ensure the transmittance of the PVA resin layer.
 染色条件(濃度、液温、浸漬時間)は、得られる吸収型偏光膜の単体透過率および偏光度が上述の範囲となるように設定され得る。例えば、染色液としてヨウ素水溶液におけるヨウ素とヨウ化カリウムの含有量の比を1:5~1:20とすることが好ましく、より好ましくは1:5~1:10である。 The dyeing conditions (concentration, liquid temperature, immersion time) can be set so that the single transmittance and degree of polarization of the resulting absorption polarizing film fall within the above-mentioned ranges. For example, the content ratio of iodine and potassium iodide in the iodine aqueous solution used as the staining solution is preferably 1:5 to 1:20, more preferably 1:5 to 1:10.
 ホウ酸を含有する処理浴に積層体を浸漬する処理(例えば、不溶化処理)の後に連続して染色処理を行う場合、当該処理浴に含まれるホウ酸が染色浴に混入することにより染色浴のホウ酸濃度が経時的に変化し、その結果、染色性が不安定になる場合がある。このような染色性の不安定化を抑制するために、染色浴のホウ酸濃度の上限は、水100重量部に対して、好ましくは4重量部、より好ましくは2重量部となるように調整される。一方で、染色浴のホウ酸濃度の下限は、水100重量部に対して、好ましくは0.1重量部であり、より好ましくは0.2重量部であり、さらに好ましくは0.5重量部である。1つの実施形態においては、予めホウ酸が配合された染色浴を用いる。これにより、上記処理浴のホウ酸が染色浴に混入した場合のホウ酸濃度の変化の割合を低減し得る。予め染色浴に配合されるホウ酸の配合量(すなわち、上記処理浴に由来しないホウ酸の含有量)は、水100重量部に対して、好ましくは0.1重量部~2重量部であり、より好ましくは0.5重量部~1.5重量部である。 When dyeing is performed continuously after immersing the laminate in a treatment bath containing boric acid (for example, insolubilization treatment), the boric acid contained in the treatment bath may mix into the dyeing bath, causing the dyeing bath to deteriorate. The boric acid concentration may change over time, resulting in unstable staining. In order to suppress such destabilization of dyeability, the upper limit of the concentration of boric acid in the dyeing bath is adjusted to preferably 4 parts by weight, more preferably 2 parts by weight, per 100 parts by weight of water. be done. On the other hand, the lower limit of the concentration of boric acid in the dyeing bath is preferably 0.1 part by weight, more preferably 0.2 part by weight, and still more preferably 0.5 part by weight, based on 100 parts by weight of water. It is. In one embodiment, a dye bath pre-blended with boric acid is used. This can reduce the rate of change in boric acid concentration when boric acid in the treatment bath is mixed into the dyeing bath. The amount of boric acid added to the dyeing bath in advance (that is, the content of boric acid not derived from the treatment bath) is preferably 0.1 parts by weight to 2 parts by weight based on 100 parts by weight of water. , more preferably 0.5 parts by weight to 1.5 parts by weight.
 染色処理の後、水中延伸処理の前に、架橋処理を行ってもよい。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理により、PVA系樹脂層に耐水性を付与し、後の水中延伸で、高温の水中へ浸漬した際のPVAの配向低下を防止することができる。架橋処理のホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。 After the dyeing treatment and before the underwater stretching treatment, a crosslinking treatment may be performed. The above crosslinking treatment is typically performed by immersing the PVA resin layer in a boric acid aqueous solution. The crosslinking treatment imparts water resistance to the PVA-based resin layer, and subsequent underwater stretching can prevent the PVA from deteriorating in orientation when immersed in high-temperature water. The concentration of the aqueous boric acid solution for crosslinking treatment is preferably 1 to 5 parts by weight per 100 parts by weight of water. Moreover, when crosslinking treatment is performed after the above-mentioned dyeing treatment, it is preferable to further include an iodide. By blending iodide, it is possible to suppress elution of iodine adsorbed to the PVA-based resin layer. The amount of iodide to be blended is preferably 1 to 5 parts by weight per 100 parts by weight of water. Specific examples of iodides are as described above. The temperature of the crosslinking bath (boric acid aqueous solution) is preferably 20°C to 50°C.
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら延伸することができる。その結果、優れた光学特性を有する偏光膜を製造することができる。 The underwater stretching treatment is performed by immersing the laminate in a stretching bath. According to the underwater stretching treatment, stretching can be performed at a temperature lower than the glass transition temperature (typically about 80° C.) of the thermoplastic resin base material or the PVA resin layer, and the PVA resin layer can be It can be stretched while suppressing the As a result, a polarizing film having excellent optical properties can be manufactured.
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率は、各段階の延伸倍率の積である。 Any suitable method can be adopted as the method for stretching the laminate. Specifically, fixed-end stretching or free-end stretching (for example, a method in which the laminate is passed between rolls having different circumferential speeds and uniaxially stretched) may be used. Preferably, free end stretching is chosen. The laminate may be stretched in one step or in multiple steps. When performing multi-stage stretching, the stretching ratio of the laminate described below is the product of the stretching ratios of each stage.
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する吸収型偏光膜を製造することができる。 The stretching in water is preferably performed by immersing the laminate in an aqueous boric acid solution (stretching in boric acid water). By using a boric acid aqueous solution as a stretching bath, it is possible to impart rigidity to the PVA-based resin layer to withstand tension applied during stretching, and water resistance that does not dissolve in water. Specifically, boric acid can generate a tetrahydroxyborate anion in an aqueous solution and crosslink with the PVA-based resin through hydrogen bonding. As a result, rigidity and water resistance can be imparted to the PVA-based resin layer, and it can be stretched well, making it possible to manufacture an absorption type polarizing film having excellent optical properties.
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~7重量部であり、さらに好ましくは3重量部~6重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の吸収型偏光膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。 The aqueous boric acid solution is preferably obtained by dissolving boric acid and/or a borate salt in water, which is a solvent. The boric acid concentration is preferably 1 to 10 parts by weight, more preferably 2.5 to 7 parts by weight, even more preferably 3 to 6 parts by weight, based on 100 parts by weight of water. It is. By setting the boric acid concentration to 1 part by weight or more, dissolution of the PVA-based resin layer can be effectively suppressed, and an absorption type polarizing film with higher characteristics can be manufactured. In addition to boric acid or a borate salt, an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, etc. in a solvent can also be used.
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。 Preferably, iodide is added to the stretching bath (boric acid aqueous solution). By blending iodide, it is possible to suppress elution of iodine adsorbed to the PVA-based resin layer. Specific examples of iodides are as described above. The concentration of iodide is preferably 0.05 parts by weight to 15 parts by weight, more preferably 0.5 parts by weight to 8 parts by weight, based on 100 parts by weight of water.
 延伸温度(延伸浴の液温)は、好ましくは40℃以上であり、より好ましくは60℃以上である。このような温度であれば、良好に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸温度(延伸浴の液温)は、好ましくは85℃以下であり、より好ましくは75℃以下である。延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。 The stretching temperature (the liquid temperature of the stretching bath) is preferably 40°C or higher, more preferably 60°C or higher. At such a temperature, the film can be stretched well. Specifically, as described above, the glass transition temperature (Tg) of the thermoplastic resin base material is preferably 60° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40° C., there is a possibility that the stretching cannot be performed satisfactorily even if the plasticization of the thermoplastic resin base material by water is taken into account. On the other hand, the stretching temperature (the liquid temperature of the stretching bath) is preferably 85°C or lower, more preferably 75°C or lower. As the temperature of the stretching bath becomes higher, the solubility of the PVA-based resin layer increases, and there is a possibility that excellent optical properties may not be obtained. The immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
 1つの実施形態においては、水中延伸による延伸倍率は、好ましくは1.0倍~2.2倍であり、より好ましくは1.1倍~2.0倍であり、さらに好ましくは1.1倍~1.8倍であり、特に好ましくは1.2倍~1.6倍である。水中延伸による延伸倍率をこのような範囲に設定することにより、保護層を組み合わせることなく、後述の耐久性を達成し得る吸収型偏光膜を得ることができる。また、吸収軸方向に沿った破断が抑制された偏光膜を得ることができる。積層体の総延伸倍率は、積層体の元長に対して、好ましくは3.0倍~4.5倍であり、より好ましくは3.0倍~4.3倍であり、さらに好ましくは3.0倍~4.0倍である。 In one embodiment, the stretching ratio by underwater stretching is preferably 1.0 times to 2.2 times, more preferably 1.1 times to 2.0 times, and even more preferably 1.1 times. 1.8 times, particularly preferably 1.2 times to 1.6 times. By setting the stretching ratio in water stretching within such a range, an absorption polarizing film that can achieve the durability described below can be obtained without combining a protective layer. Moreover, a polarizing film in which breakage along the absorption axis direction is suppressed can be obtained. The total stretching ratio of the laminate is preferably 3.0 to 4.5 times, more preferably 3.0 to 4.3 times, even more preferably 3. It is .0 times to 4.0 times.
 1つの実施形態においては、水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、さらに好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に優れた吸収型偏光膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成され得る。 In one embodiment, the stretching ratio by underwater stretching is preferably 1.5 times or more, more preferably 3.0 times or more. The total stretching ratio of the laminate is preferably 5.0 times or more, more preferably 5.5 times or more, relative to the original length of the laminate. By achieving such a high stretching ratio, an absorption type polarizing film with excellent optical properties can be manufactured. Such a high stretching ratio can be achieved by employing an underwater stretching method (boric acid underwater stretching).
 上記乾燥収縮処理は、ゾーン全体を加熱するゾーン加熱により行ってもよいし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行ってもよい。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた吸収型偏光膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。 The above drying shrinkage treatment may be performed by zone heating in which the entire zone is heated, or by heating a conveyance roll (using a so-called heating roll). Preferably, both are used. By drying using a heating roll, heating curl of the laminate can be efficiently suppressed, and an absorption type polarizing film with excellent appearance can be manufactured. Specifically, by drying the laminate along a heating roll, it is possible to efficiently promote crystallization of the thermoplastic resin base material and increase the degree of crystallinity, which is relatively low. Even at drying temperatures, the degree of crystallinity of the thermoplastic resin base material can be increased favorably. As a result, the thermoplastic resin base material has increased rigidity and is in a state where it can withstand shrinkage of the PVA resin layer due to drying, thereby suppressing curling. Furthermore, by using a heating roll, the laminate can be dried while maintaining it in a flat state, so that not only curling but also wrinkles can be suppressed. At this time, the optical properties of the laminate can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. This is because the orientation of PVA and PVA/iodine complex can be effectively improved. The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, particularly preferably 4% to 6%. By using a heating roll, the laminate can be continuously contracted in the width direction while being conveyed, and high productivity can be achieved.
 例えば、搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、より好ましくは65℃~100℃であり、さらに好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制し得るとともに、積層体に優れた強度を付与し得る。なお、加熱ロールの温度は、接触式温度計により測定することができる。搬送ロールは、通常2個~40個、好ましくは4個~30個用いられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。 For example, the drying conditions can be controlled by adjusting the heating temperature of the transport roll (temperature of the heating roll), the number of heating rolls, the contact time with the heating roll, etc. The temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, even more preferably 70°C to 80°C. The degree of crystallinity of the thermoplastic resin can be increased favorably, curling can be favorably suppressed, and excellent strength can be imparted to the laminate. Note that the temperature of the heating roll can be measured with a contact thermometer. The number of conveyance rolls used is usually 2 to 40, preferably 4 to 30. The contact time (total contact time) between the laminate and the heating roll is preferably 1 second to 300 seconds, more preferably 1 to 20 seconds, and even more preferably 1 to 10 seconds.
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは30℃~100℃である。熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。 The heating roll may be provided within a heating furnace (for example, an oven) or may be provided on a normal production line (at room temperature). Preferably, it is provided in a heating furnace equipped with air blowing means. By using both heating roll drying and hot air drying, a sharp temperature change between the heating rolls can be suppressed, and shrinkage in the width direction can be easily controlled. The temperature of hot air drying is preferably 30°C to 100°C. The hot air drying time is preferably 1 second to 300 seconds. The wind speed of the hot air is preferably about 10 m/s to 30 m/s. Note that the wind speed is the wind speed within the heating furnace, and can be measured with a mini-vane digital anemometer.
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を行う。上記洗浄処理は、例えば、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。 Preferably, a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment. The above-mentioned cleaning treatment is performed, for example, by immersing the PVA-based resin layer in an aqueous potassium iodide solution.
 上記吸収型偏光部材に含まれ得る保護層としては、任意の適切なフィルムで構成され得る。保護層を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。これらの中でも、(メタ)アクリル系樹脂、シクロオレフィン系樹脂が好ましく用いられる。これらの樹脂を採用することにより、押出し成形により平滑性に優れた保護層を製膜し得、平滑性に優れた吸収型偏光部材が得られ得る。また、シクロオレフィン系樹脂で構成される保護層は、複屈折特性の耐久性に優れ得る(例えば、経時変化が少ない)。 The protective layer that may be included in the absorption type polarizing member may be composed of any suitable film. Examples of the main component of the film constituting the protective layer include cellulose resins such as triacetylcellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. Among these, (meth)acrylic resins and cycloolefin resins are preferably used. By employing these resins, a protective layer with excellent smoothness can be formed by extrusion molding, and an absorption type polarizing member with excellent smoothness can be obtained. Furthermore, the protective layer made of a cycloolefin resin can have excellent durability in birefringence characteristics (for example, has little change over time).
 保護層の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~50μmであり、さらに好ましくは15μm~40μmである。保護層の表面平滑性は、好ましくは0.7arcmin以下であり、より好ましくは0.6arcmin以下であり、さらに好ましくは0.5arcmin以下である。 The thickness of the protective layer is preferably 5 μm to 80 μm, more preferably 10 μm to 50 μm, even more preferably 15 μm to 40 μm. The surface smoothness of the protective layer is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less.
 吸収型偏光部材28に含まれてもよい接着剤層52は、任意の適切な接着剤で形成され得る。接着剤としては、好ましくは、水系接着剤が用いられる。水系接着剤を用いることにより、極めて薄い接着層を形成することができる。また、水系接着剤を用いることにより、得られる吸収型偏光部材は優れた平滑性を有し得、上記表面平滑性を満足し得る。なお、接着剤として、例えば、紫外線硬化型接着剤等の硬化型接着剤が用いられ得る。硬化型接着剤は、接着剤層の形成に際して硬化収縮し得、硬化収縮は得られる吸収型偏光部材の平滑性に影響し得る。 The adhesive layer 52 that may be included in the absorptive polarizing member 28 may be formed of any suitable adhesive. As the adhesive, preferably a water-based adhesive is used. By using a water-based adhesive, an extremely thin adhesive layer can be formed. Further, by using a water-based adhesive, the resulting absorption type polarizing member can have excellent smoothness and satisfy the above-mentioned surface smoothness. Note that as the adhesive, for example, a curable adhesive such as an ultraviolet curable adhesive may be used. The curable adhesive may undergo curing shrinkage during formation of the adhesive layer, and the curing shrinkage may affect the smoothness of the resulting absorptive polarizing member.
 水系接着剤は、好ましくはPVA系樹脂を含む。水系接着剤に含まれるPVA系樹脂の平均重合度は、接着性の点から、好ましくは100~5000程度であり、さらに好ましくは1000~4000である。平均ケン化度は、接着性の点から、好ましくは85モル%~100モル%程度であり、さらに好ましくは90モル%~100モル%である。PVA系樹脂は、アセトアセチル基を含有することが好ましい。吸収型偏光膜と保護層との密着性に優れ得るからである。アセトアセチル基含有PVA系樹脂は、例えば、PVA系樹脂とジケテンとを任意の方法で反応させることにより得られる。アセトアセチル基含有PVA系樹脂のアセトアセチル基変性度は、例えば0.1モル%以上であり、好ましくは0.1モル%~40モル%であり、より好ましくは1モル%~20モル%であり、さらに好ましくは2モル%~7モル%である。なお、アセトアセチル基変性度は、NMRにより測定され得る。 The water-based adhesive preferably contains a PVA-based resin. The average degree of polymerization of the PVA resin contained in the water-based adhesive is preferably about 100 to 5,000, more preferably 1,000 to 4,000 from the viewpoint of adhesive properties. The average degree of saponification is preferably about 85 mol% to 100 mol%, more preferably 90 mol% to 100 mol%, from the viewpoint of adhesive properties. It is preferable that the PVA-based resin contains an acetoacetyl group. This is because the adhesion between the absorption type polarizing film and the protective layer can be excellent. The acetoacetyl group-containing PVA resin can be obtained, for example, by reacting a PVA resin and diketene by any method. The degree of acetoacetyl group modification of the acetoacetyl group-containing PVA resin is, for example, 0.1 mol% or more, preferably 0.1 mol% to 40 mol%, more preferably 1 mol% to 20 mol%. The content is more preferably 2 mol% to 7 mol%. Note that the degree of acetoacetyl group modification can be measured by NMR.
 上記水系接着剤は、任意の適切な架橋剤を含んでいてもよい。架橋剤としては、例えば、上記PVA系樹脂と反応性を有する官能基(例えば、メチロール基)有する化合物を用いられ得る。また、上記水系接着剤は、金属化合物コロイドを含んでいてもよい。金属化合物コロイドは、金属化合物微粒子が分散媒中に分散しているものであり得、微粒子の同種電荷の相互反発に起因して静電的安定化し、永続的に安定性を有するものであり得る。金属化合物コロイドを形成する微粒子の平均粒子径は、例えば、吸収型偏光部材の光学特性に悪影響を及ぼさない限り、任意の適切な値であり得る。金属化合物コロイドを形成する微粒子の平均粒子径は、例えば1nm~100nmであり、好ましくは1nm~50nmである。このような平均粒子径によれば、例えば、微粒子を接着剤層中に均一に分散させ得、接着性を確保しながら、クニックを抑制することができる。ここで、「クニック」とは、吸収型偏光膜と保護層の界面で生じる局所的な凹凸欠陥をいう。 The water-based adhesive may contain any suitable crosslinking agent. As the crosslinking agent, for example, a compound having a functional group (for example, a methylol group) that is reactive with the PVA-based resin can be used. Further, the water-based adhesive may contain a metal compound colloid. The metal compound colloid may be one in which metal compound fine particles are dispersed in a dispersion medium, and may be electrostatically stabilized due to mutual repulsion of like charges of the fine particles, and may have permanent stability. . The average particle diameter of the fine particles forming the metal compound colloid can be any appropriate value, for example, as long as it does not adversely affect the optical properties of the absorption type polarizing member. The average particle diameter of the fine particles forming the metal compound colloid is, for example, 1 nm to 100 nm, preferably 1 nm to 50 nm. According to such an average particle diameter, for example, the fine particles can be uniformly dispersed in the adhesive layer, and nicks can be suppressed while ensuring adhesiveness. Here, the term "knick" refers to a local unevenness defect that occurs at the interface between the absorbing polarizing film and the protective layer.
 吸収型偏光部材に含まれてもよい接着剤層の厚みは、好ましくは1μm以下であり、より好ましくは0.5μm以下であり、さらに好ましくは0.2μm以下である。このような厚みによれば、上記表面平滑性を良好に満足し得る吸収型偏光部材を得ることができる。吸収型部材に含まれてもよい接着剤層の厚みは、接着性等の観点から、例えば、0.01μm以上である。 The thickness of the adhesive layer that may be included in the absorption type polarizing member is preferably 1 μm or less, more preferably 0.5 μm or less, and even more preferably 0.2 μm or less. With such a thickness, it is possible to obtain an absorption type polarizing member that can satisfactorily satisfy the above-mentioned surface smoothness. The thickness of the adhesive layer that may be included in the absorbent member is, for example, 0.01 μm or more from the viewpoint of adhesiveness and the like.
 上記第3のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第3のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第3のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。第3のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。第3のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The in-plane retardation Re (550) of the third λ/4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The third λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the third λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less. The third λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. The Nz coefficient of the third λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, still more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第3のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第3のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第3のλ/4部材については、上記第2のλ/4部材と同様の説明を適用することができる。第2のλ/4部材と第3のλ/4部材とは、構成(例えば、形成材料、厚み、光学特性等)が同じ部材であってもよく、異なる構成の部材であってもよい。 The third λ/4 member is formed of any suitable material that can satisfy the above characteristics. The third λ/4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the second λ/4 member can be applied to the third λ/4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The second λ/4 member and the third λ/4 member may be members with the same configuration (for example, forming material, thickness, optical properties, etc.), or may be members with different configurations.
 上記各部材の積層に用いられる粘着剤層の厚みは、それぞれ、任意の適切な厚みに設定され得る。上記各部材の積層に用いられる粘着剤層のそれぞれの厚みは、好ましくは20μm以下であり、15μm以下であってもよく、13μm以下であってもよい。このような厚みによれば、粘着剤層表面の凹凸の度合いは抑制され得、積層部は平滑性に優れ得る。一方、上記各部材の積層に用いられる粘着剤層のそれぞれの厚みは、好ましくは3μm以上であり、4μm以上であってもよい。例えば、第二保護部材(積層フィルム)32と反射型偏光部材14と吸収型偏光部材28とは、または、第二保護部材(積層フィルム)32と反射型偏光部材14と吸収型偏光部材28と第三位相差部材30とは、厚みは4μm~13μmの粘着剤層を用いて一体化され得る。 The thickness of the adhesive layer used for laminating each of the above members can be set to any appropriate thickness. The thickness of each adhesive layer used for laminating the above-mentioned members is preferably 20 μm or less, may be 15 μm or less, or may be 13 μm or less. With such a thickness, the degree of unevenness on the surface of the adhesive layer can be suppressed, and the laminated portion can have excellent smoothness. On the other hand, the thickness of each adhesive layer used for laminating the above-mentioned members is preferably 3 μm or more, and may be 4 μm or more. For example, the second protective member (laminated film) 32, the reflective polarizing member 14, and the absorptive polarizing member 28, or the second protective member (laminated film) 32, the reflective polarizing member 14, and the absorbing polarizing member 28 The third retardation member 30 may be integrated with an adhesive layer having a thickness of 4 μm to 13 μm.
 光学積層体200の積層体平滑性は、好ましくは0.7arcmin以下であり、より好ましくは0.6arcmin以下であり、さらに好ましくは0.5arcmin以下である。光学積層体がこのような積層体平滑性を満足することにより、拡散光の発生を抑制し、画像が不明瞭になることを抑制し得る。光学積層体200の積層体平滑性は、例えば0.1arcmin以上である。なお、積層体平滑性は、照射光を対象に照射して、対象(積層体)を構成する各部材の反射および透過具合を検出することにより得られ得る。 The laminate smoothness of the optical laminate 200 is preferably 0.7 arcmin or less, more preferably 0.6 arcmin or less, and still more preferably 0.5 arcmin or less. When the optical laminate satisfies such laminate smoothness, it is possible to suppress the generation of diffused light and to suppress images from becoming unclear. The laminate smoothness of the optical laminate 200 is, for example, 0.1 arcmin or more. Note that the smoothness of the laminate can be obtained by irradiating an object with irradiation light and detecting the degree of reflection and transmission of each member constituting the object (the laminate).
 光学積層体200は、耐久性に優れることが好ましい。例えば、光学積層体200は、80℃の温度環境下に500時間置かれた後の積層体平滑性が、0.7arcmin以下であることが好ましく、より好ましくは0.6arcmin以下であり、さらに好ましくは0.5arcmin以下である。 It is preferable that the optical laminate 200 has excellent durability. For example, the optical laminate 200 preferably has a laminate smoothness of 0.7 arcmin or less, more preferably 0.6 arcmin or less, and even more preferably is 0.5 arcmin or less.
 光学積層体200の偏光度(P)は、例えば99.5%~99.99%であり、好ましくは99.8%以上である。 The degree of polarization (P) of the optical laminate 200 is, for example, 99.5% to 99.99%, preferably 99.8% or more.
 光学積層体200のヘイズは、好ましくは0.5%以下であり、より好ましくは0.4%以下であり、0.3%以下であってもよく、0.2%以下であってもよい。レンズと組み合わせられ得る光学積層体がこのようなヘイズ値を満足することにより、優れた視認性を実現し得る。例えば、上記ゴーストが低減され得る。光学積層体200のヘイズは、例えば0.01%以上である。 The haze of the optical laminate 200 is preferably 0.5% or less, more preferably 0.4% or less, may be 0.3% or less, or may be 0.2% or less. . When the optical laminate that can be combined with the lens satisfies such a haze value, excellent visibility can be achieved. For example, the ghosting described above may be reduced. The haze of the optical laminate 200 is, for example, 0.01% or more.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚み、位相差値および表面平滑性は下記の測定方法により測定した値である。また、特に明記しない限り、「部」および「%」は重量基準である。
<厚み>
 10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
<位相差値>
 ミュラーマトリクス・ポラリメーター(Axometrics社製、製品名「Axoscan」)を用いて、23℃における各波長での位相差値を測定した。
<表面平滑性>
 走査型白色干渉計(Zygo社製、製品名「NewView9000」)を用いて表面平滑性を測定した。具体的には、防振台つき測定台に測定試料を載せ、単一白色LED照明を用いて干渉縞を発生させ、基準面を持った干渉対物レンズ(1.4倍)をZ方向(厚み方向)にスキャンすることで、12.4mm□の視野範囲における測定対象最表面の平滑性(表面平滑性)を選択的に取得した。
 測定対象が粘着剤層の場合は、マイクロスライドガラス(松浪硝子工業社製、製品名「S200200」)に粘着剤層を貼り合わせ、むき出しの粘着面の平滑性を測定した。測定対象がフィルムの場合は、上記ガラスに厚み5μmの凹凸の少ないアクリル系粘着剤層を形成し、この粘着面に測定対象のフィルムを異物や気泡、変形のスジが入り込まないようにラミネートし、粘着剤層と反対側の表面の平滑性を測定した。なお、上記厚み5μmの凹凸の少ないアクリル系粘着剤層の表面平滑性は0.30arcminであった。
 解析については、角度の指標「Slope magnitude RMS」を2倍した値(2σに相当)を、表面平滑性(単位:arcmin)と定義した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Note that the thickness, retardation value, and surface smoothness are values measured by the following measuring method. Furthermore, unless otherwise specified, "parts" and "%" are based on weight.
<Thickness>
The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
<Phase difference value>
The phase difference value at each wavelength at 23° C. was measured using a Mueller matrix polarimeter (manufactured by Axometrics, product name “Axoscan”).
<Surface smoothness>
Surface smoothness was measured using a scanning white interferometer (manufactured by Zygo, product name "NewView9000"). Specifically, a measurement sample is placed on a measurement table with a vibration-proof table, interference fringes are generated using a single white LED illumination, and an interference objective lens (1.4x) with a reference plane is placed in the Z direction (thickness The smoothness (surface smoothness) of the outermost surface of the object to be measured in a field of view of 12.4 mm□ was selectively obtained by scanning in the 12.4 mm□ field of view.
When the measurement target was an adhesive layer, the adhesive layer was attached to a microslide glass (manufactured by Matsunami Glass Industries Co., Ltd., product name "S200200"), and the smoothness of the exposed adhesive surface was measured. If the object to be measured is a film, an acrylic adhesive layer with a thickness of 5 μm and less unevenness is formed on the glass, and the film to be measured is laminated on this adhesive surface to prevent foreign objects, air bubbles, and deformation lines from entering. The smoothness of the surface opposite to the adhesive layer was measured. Incidentally, the surface smoothness of the acrylic pressure-sensitive adhesive layer having a thickness of 5 μm and having few irregularities was 0.30 arcmin.
Regarding the analysis, the value obtained by doubling the angle index "Slope magnitude RMS" (corresponding to 2σ) was defined as surface smoothness (unit: arcmin).
[実施例1]
(吸収型偏光膜の作製)
 米国特許出願公開第2020/0110209号に準じて、プライマー組成物を調製した。得られたプライマー組成物をワイヤーバーにより、厚み25μmのTACフィルム(コニカミノルタ社製、「KC2UA」)に塗工し、塗工膜を60℃で3分乾燥して、30nmの厚みのプライマー層を形成した。
 次いで、上記式(1)の構成単位からなるリオトロピック液晶性ポリマーを、14質量%の固形分濃度になるように水に溶解させた。リオトロピック液晶性ポリマーとして、米国特許出願公開第2020/0110209号のExample 17に準じて、Birefringent Aromatic Polymer (Structure P1)を作製した。リオトロピック液晶性ポリマーは、スルホン酸ナトリウム塩基を有していた。得られた液晶ポリマー水溶液をワイヤーバーで上記プライマー層上に塗工し、60℃で3分乾燥して、厚み2μmのリオトロピック液晶層を形成した。本材料は塗工時のせん断応力により分子配向するため、塗工方向に遅相軸をもつ位相差が発現していた。
 次いで、上記式(24)~(26)に示す有機染料を米国特許出願公開第2020/0110209号に準じて調製した。その後、上記式(24)~(26)に示す有機染料を、式(24):式(25):式(26)=18:7:8の質量比で水に溶解させて、固形分濃度1.9質量%の染色液を調製した。
 次いで、上記リオトロピック液晶層を上記染色液に90秒間浸漬して染色した後、10質量%のSrCl水溶液に3秒浸漬して不溶化処理を施した。その後、リオトロピック液晶層を純水に3秒間浸漬して洗浄した後、圧縮空気で過剰な水を吹き飛ばして風乾した。
 こうして、TACフィルム上に、厚み2μmで、表面平滑性0.18arcminの吸収型偏光膜を形成した。
[Example 1]
(Preparation of absorption type polarizing film)
A primer composition was prepared according to US Patent Application Publication No. 2020/0110209. The obtained primer composition was applied to a 25 μm thick TAC film (manufactured by Konica Minolta, “KC2UA”) using a wire bar, and the coated film was dried at 60° C. for 3 minutes to form a 30 nm thick primer layer. was formed.
Next, a lyotropic liquid crystalline polymer consisting of the structural unit of the above formula (1) was dissolved in water to a solid content concentration of 14% by mass. As a lyotropic liquid crystalline polymer, Birefringent Aromatic Polymer (Structure P1) was produced according to Example 17 of US Patent Application Publication No. 2020/0110209. The lyotropic liquid crystalline polymer had a sodium sulfonate base. The obtained liquid crystal polymer aqueous solution was applied onto the primer layer using a wire bar and dried at 60° C. for 3 minutes to form a 2 μm thick lyotropic liquid crystal layer. Since the molecules of this material are oriented due to shear stress during coating, a phase difference with a slow axis in the coating direction was observed.
Next, organic dyes represented by the above formulas (24) to (26) were prepared according to US Patent Application Publication No. 2020/0110209. Thereafter, the organic dyes shown in formulas (24) to (26) above are dissolved in water at a mass ratio of formula (24): formula (25): formula (26) = 18:7:8, and the solid content concentration is A 1.9% by mass staining solution was prepared.
Next, the lyotropic liquid crystal layer was immersed in the dyeing solution for 90 seconds to dye it, and then immersed in a 10% by mass SrCl 2 aqueous solution for 3 seconds to perform an insolubilization treatment. Thereafter, the lyotropic liquid crystal layer was washed by immersing it in pure water for 3 seconds, and then the excess water was blown off with compressed air and air-dried.
In this way, an absorption type polarizing film having a thickness of 2 μm and a surface smoothness of 0.18 arcmin was formed on the TAC film.
(λ/4部材の作製)
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
(Preparation of λ/4 member)
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC), and 1.19×10 −2 parts by mass (6.78×10 −2 of calcium acetate monohydrate as a catalyst ). 5 mol) was prepared. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度143℃、延伸倍率2.8倍で延伸し、厚み47μmの延伸フィルムを得た。得られた延伸フィルムのRe(550)は143nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。 After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 135 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder. The obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times to obtain a stretched film with a thickness of 47 μm. The obtained stretched film had Re(550) of 143 nm, Re(450)/Re(550) of 0.86, and Nz coefficient of 1.12.
(保護部材の作製)
 ラクトン環構造を有するアクリルフィルム(厚み40μm、表面平滑性0.45arcmin)に、下記のハードコート層形成材料を塗布して90℃で1分間加熱し、加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚み4μmのハードコート層が形成されたアクリルフィルム(厚み44μm、ハードコート層側の表面平滑性0.4arcmin)を作製した。
 次いで、上記ハードコート層上に、下記の反射防止層形成用塗工液Aをワイヤーバーで塗工し、塗工した塗工液を80℃で1分間加熱し、乾燥させて塗膜を形成した。乾燥後の塗膜に、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗膜を硬化させ、厚み140nmの反射防止層Aを形成した。
 続いて、反射防止層A上に、下記の反射防止層形成用塗工液Bをワイヤーバーで塗工し、塗工した塗工液を80℃で1分間加熱し、乾燥させて塗膜を形成した。乾燥後の塗膜に、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗膜を硬化させ、厚み105nmの反射防止層Bを形成した。
 こうして、保護部材(厚み44μm、反射防止層側の表面平滑性0.4arcmin)を得た。
(Production of protective member)
The following hard coat layer forming material was applied to an acrylic film having a lactone ring structure (thickness: 40 μm, surface smoothness: 0.45 arcmin), heated at 90°C for 1 minute, and the coated layer after heating was coated with a high-pressure mercury lamp. The coating layer was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 to produce an acrylic film (44 μm thick, surface smoothness on the hard coat layer side 0.4 arcmin) on which a 4 μm thick hard coat layer was formed.
Next, on the hard coat layer, apply the following coating solution A for forming an antireflection layer with a wire bar, heat the applied coating solution at 80 ° C. for 1 minute, and dry it to form a coating film. did. The dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form an antireflection layer A with a thickness of 140 nm.
Next, on the antireflection layer A, the following coating solution B for forming an antireflection layer is applied using a wire bar, and the applied coating solution is heated at 80° C. for 1 minute and dried to form a coating film. Formed. The dried coating film was cured by irradiating ultraviolet rays with a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp to form an antireflection layer B having a thickness of 105 nm.
In this way, a protective member (thickness: 44 μm, surface smoothness on the antireflection layer side: 0.4 arcmin) was obtained.
(ハードコート層形成材料)
 ウレタンアクリルオリゴマー(新中村化学社製、「NKオリゴ UA-53H」)50部、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業社製、商品名「ビスコート#300」)30部、4-ヒドロキシブチルアクリレート(大阪有機化学工業社製)20部、レベリング剤(DIC社製、「GRANDIC PC4100」)1部および光重合開始剤(チバ・ジャパン社製、「イルガキュア907」)3部を混合し、固形分濃度が50%になるようにメチルイソブチルケトンで希釈して、ハードコート層形成材料を調製した。
(Hard coat layer forming material)
50 parts of urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., "NK Oligo UA-53H"), polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat #300") 30 parts, 4-hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.) 20 parts, a leveling agent (manufactured by DIC Corporation, "GRANDIC PC4100") 1 part, and a photopolymerization initiator (manufactured by Ciba Japan, "Irgacure 907") Three parts were mixed and diluted with methyl isobutyl ketone to a solid content concentration of 50% to prepare a hard coat layer forming material.
(反射防止層形成用塗工液A)
 多官能アクリレート(荒川化学工業株式会社製、商品名「オプスターKZ6728」、固形分20重量%)100重量部、レベリング剤(DIC社製、「GRANDIC PC4100」)3重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒として酢酸ブチルを用いて固形分が12重量%となるようにし、攪拌して反射防止層形成用塗工液Aを調製した。
(Coating liquid A for forming antireflection layer)
100 parts by weight of polyfunctional acrylate (manufactured by Arakawa Chemical Co., Ltd., trade name "Opstar KZ6728", solid content 20% by weight), 3 parts by weight of a leveling agent (manufactured by DIC Corporation, "GRANDIC PC4100"), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content: 100% by weight) were mixed. The mixture was made to have a solid content of 12% by weight using butyl acetate as a diluting solvent, and stirred to prepare a coating liquid A for forming an antireflection layer.
(反射防止層形成用塗工液B)
 ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)150重量部、中実ナノシリカ粒子(日産化学工業株式会社製、商品名「MEK-2140Z-AC」、固形分30重量%、重量平均粒子径10nm)50重量部、フッ素元素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒としてTBA(ターシャリーブチルアルコール)、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を60:25:15重量比で混合した混合溶媒を添加して全体の固形分が4重量%となるようにし、攪拌して反射防止層形成用塗工液Bを調製した。
(Coating liquid B for forming antireflection layer)
100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content: 100% by weight) were mixed. To the mixture, a mixed solvent of TBA (tertiary butyl alcohol), MIBK (methyl isobutyl ketone) and PMA (propylene glycol monomethyl ether acetate) mixed in a weight ratio of 60:25:15 was added as a diluting solvent to dissolve the entire solid. The coating liquid B for forming an antireflection layer was prepared by stirring the mixture so that the amount was 4% by weight.
(光学積層体の作製)
 上記保護部材(ハードコート層および反射防止層が形成されたアクリルフィルム)に、厚み11μmで、表面平滑性0.30arcminの粘着剤層を介して、反射型偏光フィルム(日東電工社製の「APCF」)を貼り合わせた。ここで、保護部材のアクリルフィルムが反射型偏光フィルム側に位置するように貼り合わせた。
 次いで、反射型偏光フィルムに、厚み11μmで、表面平滑性0.30arcminの粘着剤層を介して、吸収型偏光部材として上記吸収型偏光膜のみを、反射型偏光フィルムの反射軸と吸収型偏光膜の吸収軸とが互いに平行に配置されるように貼り合わせた。貼り合わせ後、吸収型偏光膜からTACフィルム(プライマー層を含む)を剥離した。
 次いで、吸収型偏光膜に、厚み5μmで、表面平滑性0.30arcminの粘着剤層を介して、上記λ/4部材を、吸収型偏光膜の吸収軸とλ/4部材の遅相軸とが45°の角度をなすように貼り合わせた。
 次いで、λ/4部材に、厚み15μmで、表面平滑性0.30arcminの粘着剤層を形成して光学積層体を得た。
(Preparation of optical laminate)
A reflective polarizing film (Nitto Denko's "APCF ”) were pasted together. Here, the acrylic film of the protective member was attached to the reflective polarizing film side.
Next, only the above-mentioned absorption polarizing film was attached to the reflective polarizing film as an absorbing polarizing member through an adhesive layer having a thickness of 11 μm and a surface smoothness of 0.30 arcmin, and the reflective axis of the reflective polarizing film and the absorption polarizing film were attached to the reflective polarizing film. The membranes were attached so that their absorption axes were parallel to each other. After bonding, the TAC film (including the primer layer) was peeled off from the absorption type polarizing film.
Next, the above λ/4 member was attached to the absorption type polarizing film through an adhesive layer having a thickness of 5 μm and a surface smoothness of 0.30 arcmin, so that the absorption axis of the absorption type polarizing film and the slow axis of the λ/4 member were aligned. They were attached so that they formed an angle of 45°.
Next, an adhesive layer having a thickness of 15 μm and a surface smoothness of 0.30 arcmin was formed on the λ/4 member to obtain an optical laminate.
[実施例2]
 吸収型偏光膜として、下記のとおり作製した偏光膜を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[Example 2]
An optical laminate was obtained in the same manner as in Example 1 except that a polarizing film produced as described below was used as the absorption type polarizing film.
(吸収型偏光膜の作製)
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に1.46倍に(総延伸倍率が3.5倍となるように)一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
 このようにして、樹脂基材上に、厚み6.7μmで、表面平滑性0.24arcmin偏光膜(吸収型偏光膜)を形成した。
(Preparation of absorption type polarizing film)
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of about 75° C. was used. One side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched free end to 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the final polarizing film was added to a dyeing bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 42.0% or more (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 62°C, the laminate was moved vertically (longitudinal direction) once between rolls having different circumferential speeds. Uniaxial stretching was performed to .46 times (total stretching ratio was 3.5 times) (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven maintained at 90°C, it was brought into contact with a SUS heating roll whose surface temperature was maintained at 75°C for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 2%.
In this way, a polarizing film (absorption type polarizing film) with a thickness of 6.7 μm and a surface smoothness of 0.24 arcmin was formed on the resin base material.
[実施例3]
 吸収型偏光膜として、下記のとおり作製した偏光膜を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[Example 3]
An optical laminate was obtained in the same manner as in Example 1 except that a polarizing film produced as described below was used as the absorption type polarizing film.
(吸収型偏光膜の作製)
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温62℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に、厚み5μmで、表面平滑性0.26arcminの偏光膜(吸収型偏光膜)を形成した。
(Preparation of absorption type polarizing film)
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of about 75° C. was used. One side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched free end to 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the final polarizing film was added to a dyeing bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 42.0% or more (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 62°C, the laminate was completely rolled in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven maintained at 90°C, it was brought into contact with a SUS heating roll whose surface temperature was maintained at 75°C for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this way, a polarizing film (absorption type polarizing film) having a thickness of 5 μm and a surface smoothness of 0.26 arcmin was formed on the resin base material.
[実施例4]
 吸収型偏光部材として、下記のとおり作製した吸収型偏光部材を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[Example 4]
An optical laminate was obtained in the same manner as in Example 1, except that an absorption type polarization member produced as described below was used as the absorption type polarization member.
(吸収型偏光部材の作製)
 実施例3と同様にして作製した吸収型偏光膜に、下記の水系接着剤(硬化後の厚み0.1μm)を用いて、厚み20μmで、表面平滑性0.10arcminのラクトン環構造を有するアクリルフィルムを貼り合わせ、吸収型偏光部材を得た。
(Production of absorption type polarizing member)
An acrylic film having a lactone ring structure with a thickness of 20 μm and a surface smoothness of 0.10 arcmin was added to an absorption type polarizing film prepared in the same manner as in Example 3 using the following water-based adhesive (thickness after curing: 0.1 μm). The films were bonded together to obtain an absorption type polarizing member.
(水系接着剤の調製)
 アセトアセチル基を有するPVA系樹脂(平均重合度1200、平均ケン化度98.5モル%、アセトアセチル基変性度5モル%)100重量部に対して、メチロールメラミン50重量部を純水に溶解し、固形分濃度3.7重量%の水溶液を調製し、この水溶液100重量部に対して、正電荷を有するアルミナコロイド(平均粒子径15nm)を固形分濃度10重量%で含有する水溶液18重量部を加えて水系接着剤を調製した。
(Preparation of water-based adhesive)
Dissolve 50 parts by weight of methylolmelamine in pure water per 100 parts by weight of PVA resin having an acetoacetyl group (average degree of polymerization 1200, average degree of saponification 98.5 mol%, degree of acetoacetyl group modification 5 mol%). An aqueous solution with a solid content concentration of 3.7% by weight was prepared, and 18 parts by weight of an aqueous solution containing a positively charged alumina colloid (average particle size 15 nm) with a solid content concentration of 10% by weight was added to 100 parts by weight of this aqueous solution. % to prepare a water-based adhesive.
[比較例1]
 吸収型偏光部材として、下記のとおり作製した吸収型偏光部材を用いたこと以外は実施例1と同様にして、光学積層体を得た。
[Comparative example 1]
An optical laminate was obtained in the same manner as in Example 1, except that an absorption type polarization member produced as described below was used as the absorption type polarization member.
(吸収型偏光部材の作製)
 実施例3と同様にして作製した吸収型偏光膜に、下記の紫外線硬化型接着剤(硬化後の厚み0.7μm)を用いて、厚み20μmで、表面平滑性0.10arcminのラクトン環構造を有するアクリルフィルムを貼り合わせ、吸収型偏光部材を得た。
(Production of absorption type polarizing member)
A lactone ring structure with a thickness of 20 μm and a surface smoothness of 0.10 arcmin was formed on the absorption polarizing film produced in the same manner as in Example 3 using the following ultraviolet curable adhesive (thickness after curing: 0.7 μm). An acrylic film containing the above was bonded together to obtain an absorption type polarizing member.
(紫外線硬化型接着剤の調製)
 ヒドロキシエチルアクリルアミド(興人社製、商品名「HEAA」)62重量部と、アクリロイルモルホリン(興人社製、商品名「ACMO」)25重量部と、PEG400#ジアクリレート(共栄社化学社製、商品名「ライトアクリレート9EG-A」)7重量部と、BASF社製の商品名「イルガキュア907」3重量部と、日本化薬社製の商品名「KAYACURE DETX-S」3重量部とを、60分間混合して、紫外線硬化型接着剤を調製した。
(Preparation of ultraviolet curable adhesive)
62 parts by weight of hydroxyethyl acrylamide (manufactured by Kojinsha, trade name "HEAA"), 25 parts by weight of acryloylmorpholine (manufactured by Kojinsha, trade name "ACMO"), and PEG400# diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., product 7 parts by weight of ``Light Acrylate 9EG-A''), 3 parts by weight of BASF's brand name ``Irgacure 907'', and 3 parts by weight of Nippon Kayaku Co., Ltd.'s brand name ``KAYACURE DETX-S''. A UV curable adhesive was prepared by mixing for a minute.
 実施例および比較例で得られた光学積層体について、以下の評価を行った。評価結果を表1に示す。
(1)積層体平滑性
 位相シフト式レーザー干渉計(Zygo社製、製品名「DynaFiz」)を用いて積層体平滑性を測定した。具体的には、異物や気泡、変形のスジが入り込まないように、マイクロスライドガラス(松浪硝子工業社製、製品名「S200200」)に光学積層体をラミネートした。次いで、微小な気泡の影響を除去するため、加圧脱泡装置(オートクレーブ)による脱泡を行った。脱泡条件は、50℃、0.5MPa、30分とした。脱泡後、室温で30分以上放冷し、測定試料を得た。
 防振台つき測定台に測定試料を載せ、単一波長(波長633nm)のレーザーを用いて、平坦度が保証された基準器と干渉させ、所定の領域(30mmφの円)内の相対変位を測定した。解析については、0.1/mm~1/mmの周波数の値を抜粋して得られる角度の指標「Slope magnitude RMS」を2倍した値(2σに相当)を、積層体平滑性(単位:arcmin)と定義した。
(2)耐久性
 上記(1)の測定後、測定試料を、80℃のオーブンに500時間置いた。その後、上記(1)と同様の方法で積層体平滑性を測定し、加熱前後の測定値の差を算出し耐久性を評価した。
(評価基準)
・非常に良好:測定値の変化量が+0.05arcmin未満
・良好:測定値の変化量が+0.05arcmin以上0.10arcmin未満
(3)見映え
 光学レンズ(Thorabs社製、商品名「LA1145」)と、点光源(浜松ホトニクス社製、型番「L8425-01」)を用いて、光学積層体の見映え(レンズ透過光)を評価した。
 具体的には、光学レンズの平坦側に、表面に異物や気泡、変形のスジが入り込まないように、45mmφの円形にカットした光学積層体をラミネートした。次いで、微小な気泡の影響を除去するため、加圧脱泡装置(オートクレーブ)による脱泡を行った。脱泡条件は、50℃、0.5MPa、30分とした。脱泡後、室温で30分以上放冷し、測定試料を得た。
 点光源、光学レンズ(測定試料)およびスクリーンをこの順に設置し、光学レンズを介した点光源の光をスクリーンに映し、その見映えを評価した。ここで、光学レンズの平坦側から点光源の光が入射する位置にレンズを保持具により保持した。点光源からスクリーンまでの距離は1050mmとし、光学レンズからスクリーンまでの距離は130mmとした。
 スクリーンに映った光学レンズを介した光を目視により観察し、下記の評価基準により見映えを評価した。
(評価基準)
・良好:しわ・うねりは視認されない
・不良:しわ・うねりが視認される
(4)ヘイズ
 光学積層体について、JIS 7136に準じ、ヘイズメーター(村上色彩科学研究所社製、製品名「HN-150」)を用いてヘイズを測定した。
 具体的には、異物や気泡、変形のスジが入り込まないように、マイクロスライドガラス(松浪硝子工業社製、製品名「S200200」)に光学積層体をラミネートした。次いで、微小な気泡の影響を除去するため、加圧脱泡装置(オートクレーブ)による脱泡を行った。脱泡条件は、50℃、0.5MPa、30分とした。脱泡後、室温で30分以上放冷し、測定試料を得た。得られた測定試料を上記測定に供した。
The optical laminates obtained in Examples and Comparative Examples were evaluated as follows. The evaluation results are shown in Table 1.
(1) Smoothness of the laminate The smoothness of the laminate was measured using a phase shift laser interferometer (manufactured by Zygo, product name "DynaFiz"). Specifically, the optical laminate was laminated onto a microslide glass (manufactured by Matsunami Glass Industry Co., Ltd., product name "S200200") to prevent foreign matter, air bubbles, and deformation lines from entering. Next, in order to remove the influence of minute air bubbles, defoaming was performed using a pressurized defoaming device (autoclave). The defoaming conditions were 50° C., 0.5 MPa, and 30 minutes. After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample.
The measurement sample is placed on a measuring table with a vibration-isolating table, and a laser with a single wavelength (wavelength 633 nm) is used to interfere with a reference device whose flatness is guaranteed, and the relative displacement within a predetermined area (a circle of 30 mmφ) is measured. It was measured. For analysis, the value (equivalent to 2σ) obtained by doubling the angle index "Slope magnitude RMS" obtained by extracting frequency values from 0.1/mm to 1/mm is calculated as the laminate smoothness (unit: arcmin).
(2) Durability After the measurement in (1) above, the measurement sample was placed in an oven at 80°C for 500 hours. Thereafter, the smoothness of the laminate was measured in the same manner as in (1) above, and the difference between the measured values before and after heating was calculated to evaluate durability.
(Evaluation criteria)
- Very good: The amount of change in the measured value is less than +0.05 arcmin - Good: The amount of change in the measured value is +0.05 arcmin or more and less than 0.10 arcmin (3) Good appearance Optical lens (manufactured by Thorabs, product name "LA1145") The appearance of the optical laminate (light transmitted through the lens) was evaluated using a point light source (manufactured by Hamamatsu Photonics, model number "L8425-01").
Specifically, an optical laminate cut into a 45 mm diameter circle was laminated on the flat side of the optical lens to prevent foreign matter, air bubbles, and deformation lines from entering the surface. Next, in order to remove the influence of minute air bubbles, defoaming was performed using a pressurized defoaming device (autoclave). The defoaming conditions were 50° C., 0.5 MPa, and 30 minutes. After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample.
A point light source, an optical lens (measurement sample), and a screen were installed in this order, and the light from the point light source was projected onto the screen via the optical lens to evaluate its appearance. Here, the lens was held by a holder at a position where light from a point light source was incident from the flat side of the optical lens. The distance from the point light source to the screen was 1050 mm, and the distance from the optical lens to the screen was 130 mm.
The light reflected on the screen through the optical lens was visually observed, and the appearance was evaluated using the following evaluation criteria.
(Evaluation criteria)
・Good: Wrinkles and undulations are not visible. ・Bad: Wrinkles and undulations are visible. ”) was used to measure haze.
Specifically, the optical laminate was laminated onto a microslide glass (manufactured by Matsunami Glass Industry Co., Ltd., product name "S200200") to prevent foreign matter, air bubbles, and deformation lines from entering. Next, in order to remove the influence of minute air bubbles, defoaming was performed using a pressurized defoaming device (autoclave). The defoaming conditions were 50° C., 0.5 MPa, and 30 minutes. After defoaming, it was left to cool at room temperature for 30 minutes or more to obtain a measurement sample. The obtained measurement sample was subjected to the above measurement.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same purpose.
 本発明の実施形態に係る光学積層体は、例えば、VRゴーグル等の示表体に用いられ得る。 The optical laminate according to the embodiment of the present invention can be used, for example, in a display body such as VR goggles.
 2 表示システム、4 レンズ部、12 表示素子、14 反射型偏光部材、16 第一レンズ部、18 ハーフミラー、20 第一位相差部材、22 第二位相差部材、24 第二レンズ部、28 吸収型偏光部材、30 第三位相差部材、31 第一保護部材、32 第二保護部材、41 接着層、42 接着層、43 接着層、44 接着層、45 接着層、46 接着層、51 接着剤層、52 接着剤層、100 第一積層部、200 第二積層部(光学積層体)。 2 Display system, 4 Lens section, 12 Display element, 14 Reflective polarizing member, 16 First lens section, 18 Half mirror, 20 First retardation member, 22 Second retardation member, 24 Second lens section, 28 Absorption type polarizing member, 30 third retardation member, 31 first protection member, 32 second protection member, 41 adhesive layer, 42 adhesive layer, 43 adhesive layer, 44 adhesive layer, 45 adhesive layer, 46 adhesive layer, 51 adhesive layer, 52 adhesive layer, 100 first laminated part, 200 second laminated part (optical laminate).

Claims (13)

  1.  基材と表面処理層とを有する積層フィルムと、反射型偏光部材と、吸収型偏光膜を含む吸収型偏光部材と、をこの順に備え、
     前記吸収型偏光部材の表面平滑性は0.4arcmin以下である、
     光学積層体。
    A laminated film having a base material and a surface treatment layer, a reflective polarizing member, and an absorbing polarizing member including an absorbing polarizing film, in this order,
    The surface smoothness of the absorptive polarizing member is 0.4 arcmin or less,
    Optical laminate.
  2.  前記吸収型偏光膜の厚みは7μm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the absorption type polarizing film has a thickness of 7 μm or less.
  3.  前記吸収型偏光膜は前記反射型偏光部材に隣接して配置され、前記吸収型偏光膜の厚みは4μm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the absorption type polarizing film is arranged adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film is 4 μm or less.
  4.  前記吸収型偏光膜は前記反射型偏光部材に隣接して配置され、前記吸収型偏光膜の厚みは6μm以上である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the absorption type polarizing film is arranged adjacent to the reflective polarizing member, and the thickness of the absorption type polarizing film is 6 μm or more.
  5.  前記吸収型偏光部材は保護層を含み、前記吸収型偏光膜の厚みは6μm未満である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the absorption type polarizing member includes a protective layer, and the thickness of the absorption type polarizing film is less than 6 μm.
  6.  前記積層フィルムと、前記反射型偏光部材と、前記吸収型偏光部材とは粘着剤層を用いて一体化され、前記粘着剤層の厚みは4μm~13μmである、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the laminate film, the reflective polarizing member, and the absorbing polarizing member are integrated using an adhesive layer, and the adhesive layer has a thickness of 4 μm to 13 μm. body.
  7.  前記積層フィルムの前記表面処理層は反射防止機能を有する、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the surface treatment layer of the laminate film has an antireflection function.
  8.  前記積層フィルムと、前記反射型偏光部材と、前記吸収型偏光部材と、位相差部材とをこの順に備える、請求項1に記載の光学積層体。 The optical laminate according to claim 1, comprising the laminate film, the reflective polarizing member, the absorbing polarizing member, and the retardation member in this order.
  9.  積層体平滑性が0.7arcmin以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the laminate smoothness is 0.7 arcmin or less.
  10.  偏光度が99.5%以上である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, having a degree of polarization of 99.5% or more.
  11.  ヘイズが0.5%以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, having a haze of 0.5% or less.
  12.  ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、
     画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射する請求項1から11のいずれか一項に記載の光学積層体と、
     前記表示素子と前記光学積層体との間の光路上に配置される第一レンズ部と、
     前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記光学積層体の前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、
     前記光学積層体の前方に配置される第二レンズ部と、
     前記ハーフミラーと前記光学積層体との間の光路上に配置される第2のλ/4部材と、
     を備える、レンズ部。
    A lens unit used in a display system that displays images to a user, the lens unit comprising:
    The optical laminate according to any one of claims 1 to 11, which reflects light that is emitted forward from a display surface of a display element that represents an image and has passed through a polarizing member and a first λ/4 member. ,
    a first lens portion disposed on an optical path between the display element and the optical laminate;
    Disposed between the display element and the first lens part, transmits the light emitted from the display element, and transmits the light reflected by the reflective polarizing member of the optical laminate to the reflective polarizing member. A half mirror that reflects toward the
    a second lens portion disposed in front of the optical laminate;
    a second λ/4 member disposed on the optical path between the half mirror and the optical laminate;
    A lens section comprising:
  13.  偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
     前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
     前記第2のλ/4部材を通過した光を、請求項1から11のいずれか一項に記載の光学積層体で前記ハーフミラーに向けて反射させるステップと、
     前記光学積層体の前記反射型偏光部材および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射型偏光部材を透過可能にするステップと、
     前記反射型偏光部材を透過した光を、第二レンズ部を通過させるステップと、
     を有する、表示方法。
    A step of passing the light representing the image emitted through the polarizing member and the first λ/4 member through the half mirror and the first lens part;
    passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
    a step of reflecting the light that has passed through the second λ/4 member toward the half mirror by the optical laminate according to any one of claims 1 to 11;
    a step of allowing light reflected by the reflective polarizing member and the half mirror of the optical laminate to be transmitted through the reflective polarizing member by the second λ/4 member;
    passing the light that has passed through the reflective polarizing member through a second lens section;
    A display method having.
PCT/JP2023/008817 2022-03-14 2023-03-08 Optical laminate, lens, and display method WO2023176632A1 (en)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
JP2022039286 2022-03-14
JP2022-039286 2022-03-14
JP2022-039285 2022-03-14
JP2022039285 2022-03-14
JP2022-077631 2022-05-10
JP2022077679A JP7516458B2 (en) 2022-05-10 2022-05-10 Lens portion, laminate, display, manufacturing method of display, and display method
JP2022-077659 2022-05-10
JP2022077677A JP2023166852A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077633A JP7516456B2 (en) 2022-05-10 2022-05-10 Display method
JP2022-077676 2022-05-10
JP2022-077679 2022-05-10
JP2022077676A JP2023166851A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077632 2022-05-10
JP2022077678A JP2023166853A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077659A JP2023166841A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022-077678 2022-05-10
JP2022077657A JP2023134317A (en) 2022-03-14 2022-05-10 Display system, display method, display body, and display body production method
JP2022-077634 2022-05-10
JP2022-077657 2022-05-10
JP2022077631A JP2023134316A (en) 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method
JP2022077634A JP7516457B2 (en) 2022-05-10 2022-05-10 Lens portion, laminate, display, manufacturing method of display, and display method
JP2022-077677 2022-05-10
JP2022-077658 2022-05-10
JP2022077658A JP2023166840A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022-077633 2022-05-10
JP2022077632A JP7516455B2 (en) 2022-05-10 2022-05-10 Lens portion, laminate, display, manufacturing method of display, and display method
JP2022-212224 2022-12-28
JP2022212224A JP2024095152A (en) 2022-12-28 2022-12-28 Optical laminate, lens unit, and display method

Publications (1)

Publication Number Publication Date
WO2023176632A1 true WO2023176632A1 (en) 2023-09-21

Family

ID=88023147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008817 WO2023176632A1 (en) 2022-03-14 2023-03-08 Optical laminate, lens, and display method

Country Status (2)

Country Link
TW (1) TW202400411A (en)
WO (1) WO2023176632A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276268A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd Compound lens and optical head device
JP2007507358A (en) * 2003-09-30 2007-03-29 松下電器産業株式会社 Mold for optical parts
JP2007138147A (en) * 2005-10-18 2007-06-07 Nitto Denko Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, method for producing the layer, and optical member with pressure-sensitive adhesive
JP2007322557A (en) * 2006-05-30 2007-12-13 Hitachi Via Mechanics Ltd Ftheta LENS
JP2008275738A (en) * 2007-04-26 2008-11-13 Konica Minolta Opto Inc Optical element and manufacturing method thereof
WO2014030698A1 (en) * 2012-08-24 2014-02-27 三菱樹脂株式会社 Optical laminate and method for manufacturing optical laminate
JP2016033654A (en) * 2014-07-29 2016-03-10 住友化学株式会社 Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
JP2019053152A (en) * 2017-09-14 2019-04-04 セイコーエプソン株式会社 Virtual image display device
JP2020194091A (en) * 2019-05-28 2020-12-03 東洋紡株式会社 Composite polarizer and method of manufacturing the same
WO2021145446A1 (en) * 2020-01-15 2021-07-22 富士フイルム株式会社 Optical system
WO2022050321A1 (en) * 2020-09-02 2022-03-10 富士フイルム株式会社 Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering, and sensor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507358A (en) * 2003-09-30 2007-03-29 松下電器産業株式会社 Mold for optical parts
JP2005276268A (en) * 2004-03-23 2005-10-06 Matsushita Electric Ind Co Ltd Compound lens and optical head device
JP2007138147A (en) * 2005-10-18 2007-06-07 Nitto Denko Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, method for producing the layer, and optical member with pressure-sensitive adhesive
JP2007322557A (en) * 2006-05-30 2007-12-13 Hitachi Via Mechanics Ltd Ftheta LENS
JP2008275738A (en) * 2007-04-26 2008-11-13 Konica Minolta Opto Inc Optical element and manufacturing method thereof
WO2014030698A1 (en) * 2012-08-24 2014-02-27 三菱樹脂株式会社 Optical laminate and method for manufacturing optical laminate
JP2016033654A (en) * 2014-07-29 2016-03-10 住友化学株式会社 Polarizing plate, polarizing plate with adhesive, and liquid crystal display device
JP2019053152A (en) * 2017-09-14 2019-04-04 セイコーエプソン株式会社 Virtual image display device
JP2020194091A (en) * 2019-05-28 2020-12-03 東洋紡株式会社 Composite polarizer and method of manufacturing the same
WO2021145446A1 (en) * 2020-01-15 2021-07-22 富士フイルム株式会社 Optical system
WO2022050321A1 (en) * 2020-09-02 2022-03-10 富士フイルム株式会社 Liquid crystal diffraction element, optical element, image display unit, head-mounted display, beam steering, and sensor

Also Published As

Publication number Publication date
TW202400411A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
JP6681934B2 (en) Polarizing plate and organic EL panel
WO2013191152A1 (en) Polarizing plate and organic el panel
TW201923417A (en) Head-up display apparatus
KR20210114945A (en) Head-up display device and manufacturing method thereof
US11933979B2 (en) Head-up display device
JP6797499B2 (en) Polarizing plate with retardation layer and image display device using it
WO2023176631A1 (en) Optical laminate, lens part, and display method
WO2023176632A1 (en) Optical laminate, lens, and display method
JP6804168B2 (en) Polarizing plate with retardation layer and image display device using it
EP3699671B1 (en) Head-up display device
US11215821B2 (en) Head-up display device
KR20240156382A (en) Optical laminate, lens unit and display method
WO2023176624A1 (en) Lens part, display body, and display method
WO2023176630A1 (en) Optical laminate, lens unit, and display method
JP2024095152A (en) Optical laminate, lens unit, and display method
WO2023176625A1 (en) Lens part, display body, and display method
WO2023176629A1 (en) Optical laminate, lens portion, and display method
JP7547456B2 (en) Lens portion, display body and display method
WO2024203295A1 (en) Method for producing optical film
WO2024203296A1 (en) Optical film
WO2022201907A1 (en) Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer
WO2023176367A1 (en) Lens part, laminated body, display body, display body production method, and display method
JP2024095146A (en) Optical laminate, lens unit, and display method
JP2024095150A (en) Optical laminate, lens unit, and display method
JP2024095144A (en) Lens part, display body and display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770588

Country of ref document: EP

Kind code of ref document: A1