JP2023134316A - Lens part, laminated body, display body, display body production method, and display method - Google Patents

Lens part, laminated body, display body, display body production method, and display method Download PDF

Info

Publication number
JP2023134316A
JP2023134316A JP2022077631A JP2022077631A JP2023134316A JP 2023134316 A JP2023134316 A JP 2023134316A JP 2022077631 A JP2022077631 A JP 2022077631A JP 2022077631 A JP2022077631 A JP 2022077631A JP 2023134316 A JP2023134316 A JP 2023134316A
Authority
JP
Japan
Prior art keywords
polarizing member
reflective
lens
reflective polarizing
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022077631A
Other languages
Japanese (ja)
Inventor
周作 後藤
Shusaku Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to PCT/JP2023/006724 priority Critical patent/WO2023176357A1/en
Priority to PCT/JP2023/008561 priority patent/WO2023176590A1/en
Priority to PCT/JP2023/008560 priority patent/WO2023176589A1/en
Priority to PCT/JP2023/008533 priority patent/WO2023176585A1/en
Priority to PCT/JP2023/008812 priority patent/WO2023176627A1/en
Priority to PCT/JP2023/008817 priority patent/WO2023176632A1/en
Priority to PCT/JP2023/008810 priority patent/WO2023176625A1/en
Priority to PCT/JP2023/008809 priority patent/WO2023176624A1/en
Priority to PCT/JP2023/008811 priority patent/WO2023176626A1/en
Priority to PCT/JP2023/008813 priority patent/WO2023176628A1/en
Priority to PCT/JP2023/008815 priority patent/WO2023176630A1/en
Priority to PCT/JP2023/008816 priority patent/WO2023176631A1/en
Priority to PCT/JP2023/008814 priority patent/WO2023176629A1/en
Priority to PCT/JP2023/008963 priority patent/WO2023176656A1/en
Priority to PCT/JP2023/008964 priority patent/WO2023176657A1/en
Priority to PCT/JP2023/008961 priority patent/WO2023176654A1/en
Priority to TW112108735A priority patent/TW202345654A/en
Priority to PCT/JP2023/008966 priority patent/WO2023176659A1/en
Priority to PCT/JP2023/008967 priority patent/WO2023176660A1/en
Priority to PCT/JP2023/008968 priority patent/WO2023176661A1/en
Priority to PCT/JP2023/008965 priority patent/WO2023176658A1/en
Priority to PCT/JP2023/009078 priority patent/WO2023176693A1/en
Priority to PCT/JP2023/008962 priority patent/WO2023176655A1/en
Priority to PCT/JP2023/009075 priority patent/WO2023176690A1/en
Priority to TW112108737A priority patent/TW202402524A/en
Priority to TW112108734A priority patent/TW202345432A/en
Priority to PCT/JP2023/009076 priority patent/WO2023176691A1/en
Priority to PCT/JP2023/009077 priority patent/WO2023176692A1/en
Priority to TW112109173A priority patent/TW202336470A/en
Priority to TW112109171A priority patent/TW202339544A/en
Priority to TW112109172A priority patent/TW202337703A/en
Priority to TW112109170A priority patent/TW202344874A/en
Priority to TW112109165A priority patent/TW202336469A/en
Priority to TW112109213A priority patent/TW202343033A/en
Priority to TW112109164A priority patent/TW202346089A/en
Priority to TW112109192A priority patent/TW202400411A/en
Priority to TW112109214A priority patent/TW202341811A/en
Priority to TW112109347A priority patent/TW202345433A/en
Priority to TW112109341A priority patent/TW202403395A/en
Priority to TW112109342A priority patent/TW202346916A/en
Priority to TW112109348A priority patent/TW202344875A/en
Priority to TW112109351A priority patent/TW202346917A/en
Priority to TW112109371A priority patent/TW202346908A/en
Priority to TW112109349A priority patent/TW202401074A/en
Priority to TW112109344A priority patent/TW202346906A/en
Priority to TW112109345A priority patent/TW202346907A/en
Priority to TW112109370A priority patent/TW202401086A/en
Publication of JP2023134316A publication Critical patent/JP2023134316A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a lens part that enables weight reduction and higher definition of VR goggles.SOLUTION: A lens part according to an embodiment of the present invention is used in a display system for displaying an image to a user, the lens part comprising: a reflection part that reflects light representing the image, emitted forward from a display surface of a display element, and passing through a polarizing member and a first λ/4 member, and includes a reflective polarizing member and an absorptive polarizing member disposed in front of the reflective polarizing member; a first lens part that is disposed on an optical path between the display element and the reflection part; a half mirror that is disposed between the display element and the first lens part, transmits light emitted from the display element, and reflects light reflected by the reflection part toward the reflection part; and a second λ/4 member that is disposed on an optical path between the half mirror and the reflection part, wherein an orthogonal transmittance when light is incident on a laminate of the reflective polarizing member and the absorptive polarizing member from the reflective polarizing member side is 0.5% or less.SELECTED DRAWING: Figure 1

Description

本発明は、レンズ部、積層体、表示体、表示体の製造方法および表示方法に関する。 The present invention relates to a lens part, a laminate, a display body, a method for manufacturing a display body, and a display method.

液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescent (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).

近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、その軽量化、高精細化等が望まれている。軽量化は、例えば、VRゴーグルに用いられるレンズを薄型化することで達成され得る。一方で、薄型レンズを用いた表示システムに適した光学部材の開発も望まれている。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) have begun to be commercialized. Since VR goggles are being considered for use in a variety of situations, it is desired that they be lighter and have higher definition. Weight reduction can be achieved, for example, by making the lenses used in VR goggles thinner. On the other hand, there is also a desire for the development of optical members suitable for display systems using thin lenses.

特開2021-103286号公報JP2021-103286A

上記に鑑み、本発明はVRゴーグルの軽量化、高精細化を実現し得るレンズ部の提供を主たる目的とする。 In view of the above, the main object of the present invention is to provide a lens section that can realize weight reduction and high definition of VR goggles.

1.本発明の実施形態によるレンズ部は、ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射し、反射型偏光部材および前記反射型偏光部材の前方に配置される吸収型偏光部材を含む反射部と、前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、を備え、前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から光を入射させたときの直交透過率は0.5%以下である。
2.上記1に記載のレンズ部において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
3.上記1または2に記載のレンズ部において、上記第一レンズ部と上記ハーフミラーとは一体であってもよい。
4.上記1から3のいずれかに記載のレンズ部は、上記反射部の前方に配置される第二レンズ部を備えてもよい。
5.上記1から4のいずれかに記載のレンズ部において、上記表示素子に含まれる上記偏光部材の吸収軸と上記第1のλ/4部材の遅相軸とのなす角度は40°~50°であってもよく、上記表示素子に含まれる上記偏光部材の吸収軸と上記第2のλ/4部材の遅相軸とのなす角度は40°~50°であってもよい。
1. The lens unit according to the embodiment of the present invention is a lens unit used in a display system that displays an image to a user, and is a lens unit that emits light forward from a display surface of a display element that represents an image, and includes a polarizing member and a first a reflective part that reflects the light that has passed through the λ/4 member and includes a reflective polarizing member and an absorbing polarizing member disposed in front of the reflective polarizing member; and a reflective part between the display element and the reflective part. A first lens section disposed on the optical path is disposed between the display element and the first lens section, and transmits the light emitted from the display element and transmits the light reflected by the reflection section. a half mirror that reflects the light toward a reflecting section; and a second λ/4 member disposed on an optical path between the half mirror and the reflecting section, the reflective polarizing member and the absorbing polarizing member. The orthogonal transmittance when light is incident on the laminate with the member from the reflective polarizing member side is 0.5% or less.
2. In the lens portion described in 1 above, the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged parallel to each other.
3. In the lens section described in 1 or 2 above, the first lens section and the half mirror may be integrated.
4. The lens section according to any one of items 1 to 3 above may include a second lens section disposed in front of the reflecting section.
5. In the lens portion according to any one of 1 to 4 above, the angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°. The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the second λ/4 member may be 40° to 50°.

6.本発明の実施形態による積層体は、上記1から5のいずれかに記載のレンズ部の上記反射部に用いられ、上記反射型偏光部材と上記吸収型偏光部材とを有する。
7.上記6に記載の積層体において、上記反射型偏光部材と上記吸収型偏光部材とは接着層を介して積層されてもよい。
8.上記6または7に記載の積層体において、上記反射型偏光部材の反射軸と上記吸収型偏光部材の吸収軸とは互いに平行に配置されてもよい。
6. The laminate according to the embodiment of the present invention is used in the reflective section of the lens section described in any one of 1 to 5 above, and includes the reflective polarizing member and the absorbing polarizing member.
7. In the laminate described in 6 above, the reflective polarizing member and the absorbing polarizing member may be laminated with an adhesive layer interposed therebetween.
8. In the laminate described in 6 or 7 above, the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged parallel to each other.

9.本発明の実施形態による表示体は、上記1から5のいずれかに記載のレンズ部を有する。
10.本発明の実施形態による表示体の製造方法は、上記1から5のいずれかに記載のレンズ部を有する表示体の製造方法である。
9. A display body according to an embodiment of the present invention includes the lens portion described in any one of 1 to 5 above.
10. A method for manufacturing a display body according to an embodiment of the present invention is a method for manufacturing a display body having a lens portion according to any one of items 1 to 5 above.

11.本発明の実施形態による表示方法は、偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部の前記反射型偏光部材を透過可能にするステップと、前記反射型偏光部材を透過した光を、吸収型偏光部材を透過させるステップと、を有し、前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から光を入射させたときの直交透過率は0.5%以下である。 11. A display method according to an embodiment of the present invention includes a step of causing light representing an image emitted through a polarizing member and a first λ/4 member to pass through a half mirror and a first lens portion; a step of causing the light that has passed through the first lens section to pass through a second λ/4 member; and a step of directing the light that has passed through the second λ/4 member to the half mirror using a reflecting section that includes a reflective polarizing member. a step of allowing the light reflected by the reflecting section and the half mirror to pass through the reflective polarizing member of the reflecting section by the second λ/4 member; transmitting the light that has passed through the polarizing member through an absorptive polarizing member, and making the light enter the laminate of the reflective polarizing member and the absorbing polarizing member from the reflective polarizing member side. The orthogonal transmittance is 0.5% or less.

本発明の実施形態によるレンズ部によれば、VRゴーグルの軽量化、高精細化を実現し得る。 According to the lens portion according to the embodiment of the present invention, it is possible to realize lightweight VR goggles and high definition.

本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention. 図1に示す表示システムの反射部に用いられる積層体の一例を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing an example of a laminate used in a reflective section of the display system shown in FIG. 1. FIG. 反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。FIG. 2 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film.

以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Embodiments of the present invention will be described below with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited.

(用語および記号の定義)
本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Therefore, for example, "45°" means ±45°.

図1は本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。図1では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射部14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射部14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射部14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射部14との間の光路上に配置されている。 FIG. 1 is a schematic diagram showing the general configuration of a display system according to one embodiment of the present invention. FIG. 1 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflection section 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. We are prepared. The reflecting section 14 is arranged at the front of the display element 12 on the display surface 12a side, and can reflect the light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflection section 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflection section 14.

ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射部14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflection section 14, and the second lens section 24) are collectively called a lens section (lens section). 4).

表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. The light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) that may be included in the display element 12, and is emitted as first linearly polarized light.

第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得るλ/4部材である(以下、第一位相差部材を第1のλ/4部材と称する場合がある)。なお、第一位相差部材20は、表示素子12に一体に設けられてもよい。 The first retardation member 20 is a λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light (hereinafter, the first retardation member is referred to as the first (sometimes referred to as a λ/4 member). Note that the first retardation member 20 may be provided integrally with the display element 12.

ハーフミラー18は、表示素子12から出射された光を透過させ、反射部14で反射された光を反射部14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflection section 14 toward the reflection section 14 . The half mirror 18 is provided integrally with the first lens section 16.

第二位相差部材22は、反射部14およびハーフミラー18で反射させた光を、反射型偏光部材を含む反射部14を透過させ得るλ/4部材である(以下、第二位相差部材を第2のλ/4部材と称する場合がある)。なお、第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 is a λ/4 member that can transmit the light reflected by the reflection part 14 and the half mirror 18 through the reflection part 14 including a reflective polarizing member (hereinafter referred to as the second retardation member). (sometimes referred to as the second λ/4 member). Note that the second retardation member 22 may be provided integrally with the first lens portion 16.

第1のλ/4部材20から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第2のλ/4部材22により第2の直線偏光に変換される。第2のλ/4部材22から出射された第2の直線偏光は、反射部14に含まれる反射型偏光部材を透過せずにハーフミラー18に向けて反射される。このとき、反射部14に含まれる反射型偏光部材に入射した第2の直線偏光の偏光方向は、反射型偏光部材の反射軸と同方向である。そのため、反射部に入射した第2の直線偏光は、反射型偏光部材で反射される。 The first circularly polarized light emitted from the first λ/4 member 20 passes through the half mirror 18 and the first lens section 16, and is converted into second linearly polarized light by the second λ/4 member 22. . The second linearly polarized light emitted from the second λ/4 member 22 is reflected toward the half mirror 18 without passing through the reflective polarizing member included in the reflecting section 14 . At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the reflection axis of the reflective polarizing member. Therefore, the second linearly polarized light incident on the reflection section is reflected by the reflective polarizing member.

反射部14で反射された第2の直線偏光は第2のλ/4部材22により第2の円偏光に変換され、第2のλ/4部材22から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第2のλ/4部材22により第3の直線偏光に変換される。第3の直線偏光は、反射部14に含まれる反射型偏光部材を透過する。このとき、反射部14に含まれる反射型偏光部材に入射した第3の直線偏光の偏光方向は、反射型偏光部材の透過軸と同方向である。そのため、反射部14に入射した第3の直線偏光は、反射型偏光部材を透過する。 The second linearly polarized light reflected by the reflection section 14 is converted into second circularly polarized light by the second λ/4 member 22, and the second circularly polarized light emitted from the second λ/4 member 22 is converted into second circularly polarized light by the second λ/4 member 22. The light passes through one lens section 16 and is reflected by a half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member 22. The third linearly polarized light passes through the reflective polarizing member included in the reflecting section 14. At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member included in the reflecting section 14 is the same direction as the transmission axis of the reflective polarizing member. Therefore, the third linearly polarized light that has entered the reflecting section 14 is transmitted through the reflective polarizing member.

反射部14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light that has passed through the reflection section 14 passes through the second lens section 24 and enters the user's eyes 26 .

例えば、表示素子12に含まれる偏光部材の吸収軸と反射部14に含まれる反射型偏光部材の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材の吸収軸と第一位相差部材20の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。 For example, the absorption axis of the polarizing member included in the display element 12 and the reflection axis of the reflective polarizing member included in the reflecting section 14 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the first retardation member 20 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second retardation member 22 is, for example, 40° to 50°, may be 42° to 48°, and is about 45°. It may be °.

第一位相差部材20の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。 The in-plane retardation Re (550) of the first retardation member 20 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .

第一位相差部材20は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第一位相差部材20のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The first retardation member 20 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first retardation member 20 is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.

第二位相差部材22の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。 The in-plane retardation Re (550) of the second retardation member 22 is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. .

第二位相差部材22は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第二位相差部材22のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The second retardation member 22 preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second retardation member 22 is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.

反射部14は、反射型偏光部材に加え、吸収型偏光部材を含んでいてもよい。吸収型偏光部材は、反射型偏光部材の前方に配置され得る。反射型偏光部材の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得、反射型偏光部材の透過軸と吸収型偏光部材の透過軸とは互いに略平行に配置され得る。反射部14が吸収型偏光部材を含む場合、反射部14は反射型偏光部材と吸収型偏光部材とを有する積層体を含んでいてもよい。 In addition to the reflective polarizing member, the reflecting section 14 may include an absorbing polarizing member. The absorptive polarizing member may be placed in front of the reflective polarizing member. The reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other. When the reflecting section 14 includes an absorption type polarizing member, the reflecting section 14 may include a laminate having a reflective polarizing member and an absorbing polarizing member.

図2は、図1に示す表示システムの反射部に用いられる積層体の一例を示す模式的な断面図である。積層体30は、反射型偏光部材32と吸収型偏光部材34とを含み、反射型偏光部材32と吸収型偏光部材34とは接着層36を介して積層されている。接着層を用いることにより、反射型偏光部材32と吸収型偏光部材34とが固定され、反射軸と吸収軸(透過軸と透過軸)との軸配置のズレを防止することができる。また、反射型偏光部材32と吸収型偏光部材34との間に形成され得る空気層による悪影響を抑制することができる。接着層36は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。接着層36の厚みは、例えば0.05μm~30μmであり、好ましくは3μm~20μmであり、さらに好ましくは5μm~15μmである。 FIG. 2 is a schematic cross-sectional view showing an example of a laminate used in the reflective section of the display system shown in FIG. The laminate 30 includes a reflective polarizing member 32 and an absorbing polarizing member 34, and the reflective polarizing member 32 and the absorbing polarizing member 34 are laminated with an adhesive layer 36 in between. By using the adhesive layer, the reflective polarizing member 32 and the absorbing polarizing member 34 are fixed, and it is possible to prevent misalignment of the axis arrangement between the reflective axis and the absorption axis (the transmission axis and the transmission axis). Further, it is possible to suppress the adverse effects of an air layer that may be formed between the reflective polarizing member 32 and the absorbing polarizing member 34. The adhesive layer 36 may be formed of an adhesive or a pressure-sensitive adhesive. The thickness of the adhesive layer 36 is, for example, 0.05 μm to 30 μm, preferably 3 μm to 20 μm, and more preferably 5 μm to 15 μm.

上記反射型偏光部材は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。この場合、反射型偏光部材の厚みは、例えば10μm~150μmであり、好ましくは20μm~100μmであり、さらに好ましくは30μm~60μmである。 The reflective polarizing member can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light in other polarized states. The reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). In this case, the thickness of the reflective polarizing member is, for example, 10 μm to 150 μm, preferably 20 μm to 100 μm, and more preferably 30 μm to 60 μm.

図3は、反射型偏光フィルムに含まれる多層構造の一例を示す模式的な斜視図である。多層構造32aは、複屈折性を有する層Aと複屈折性を実質的に有さない層Bとを交互に有する。多層構造を構成する層の総数は、50~1000であってもよい。例えば、A層のx軸方向の屈折率nxはy軸方向の屈折率nyより大きく、B層のx軸方向の屈折率nxとy軸方向の屈折率nyとは実質的に同一であり、A層とB層との屈折率差は、x軸方向において大きく、y軸方向においては実質的にゼロである。その結果、x軸方向が反射軸となり、y軸方向が透過軸となり得る。A層とB層とのx軸方向における屈折率差は、好ましくは0.2~0.3である。 FIG. 3 is a schematic perspective view showing an example of a multilayer structure included in a reflective polarizing film. The multilayer structure 32a has layers A having birefringence and layers B having substantially no birefringence alternating. The total number of layers making up the multilayer structure may be between 50 and 1000. For example, the refractive index nx in the x-axis direction of the A layer is larger than the refractive index ny in the y-axis direction, and the refractive index nx in the x-axis direction and the refractive index ny in the y-axis direction of the B layer are substantially the same, The refractive index difference between layer A and layer B is large in the x-axis direction and substantially zero in the y-axis direction. As a result, the x-axis direction can become the reflection axis, and the y-axis direction can become the transmission axis. The refractive index difference between layer A and layer B in the x-axis direction is preferably 0.2 to 0.3.

上記A層は、代表的には、延伸により複屈折性を発現する材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸ポリエステル(例えば、ポリエチレンナフタレート)、ポリカーボネートおよびアクリル系樹脂(例えば、ポリメチルメタクリレート)が挙げられる。上記B層は、代表的には、延伸しても複屈折性を実質的に発現しない材料で構成される。このような材料としては、例えば、ナフタレンジカルボン酸とテレフタル酸とのコポリエステルが挙げられる。上記多層構造は、共押出と延伸とを組み合わせて形成され得る。例えば、A層を構成する材料とB層を構成する材料とを押し出した後、多層化する(例えば、マルチプライヤーを用いて)。次いで、得られた多層積層体を延伸する。図示例のx軸方向は、延伸方向に対応し得る。 The layer A is typically made of a material that exhibits birefringence when stretched. Such materials include, for example, naphthalene dicarboxylic acid polyesters (eg, polyethylene naphthalate), polycarbonates, and acrylic resins (eg, polymethyl methacrylate). The B layer is typically made of a material that does not substantially exhibit birefringence even when stretched. Examples of such materials include copolyesters of naphthalene dicarboxylic acid and terephthalic acid. The multilayer structure may be formed by a combination of coextrusion and stretching. For example, after extruding the material constituting layer A and the material constituting layer B, they are multilayered (for example, using a multiplier). The obtained multilayer laminate is then stretched. The x-axis direction in the illustrated example may correspond to the stretching direction.

反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。 Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF" and Nitto Denko's product name "APCF".

反射型偏光部材(反射型偏光フィルム)の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材(反射型偏光フィルム)の単体透過率(Ts)は、例えば43%~49%であり、好ましくは45%~47%である。反射型偏光部材(反射型偏光フィルム)の偏光度(P)は、例えば92%~99.99%であり得る。 The cross transmittance (Tc) of the reflective polarizing member (reflective polarizing film) may be, for example, 0.01% to 3%. The single transmittance (Ts) of the reflective polarizing member (reflective polarizing film) is, for example, 43% to 49%, preferably 45% to 47%. The degree of polarization (P) of the reflective polarizing member (reflective polarizing film) can be, for example, 92% to 99.99%.

上記吸収型偏光部材は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含み得る。吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。 The absorption type polarizing member may typically include a resin film (sometimes referred to as an absorption type polarizing film) containing a dichroic substance. The thickness of the absorption type polarizing film is, for example, 1 μm or more and 20 μm or less, may be 2 μm or more and 15 μm or less, may be 12 μm or less, may be 10 μm or less, or may be 8 μm or less, It may be 5 μm or less.

上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。 The above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.

単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。 When manufacturing from a single-layer resin film, for example, a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane. An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.

上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 The above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.

上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 The laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material. An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin. Forming a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film. can be produced by; In this embodiment, preferably, a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order. By introducing auxiliary stretching, even when PVA is applied onto a thermoplastic resin, it becomes possible to improve the crystallinity of PVA and achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when it is immersed in water during the subsequent dyeing and stretching processes, resulting in high optical properties. becomes possible to achieve. Furthermore, when the PVA-based resin layer is immersed in a liquid, disturbance in the orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. Thereby, the optical properties of an absorption polarizing film obtained through a treatment process performed by immersing the laminate in a liquid, such as dyeing treatment and underwater stretching treatment, can be improved. Furthermore, optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. The obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is. Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.

吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。 The orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be. The single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.

反射部の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。このような直交透過率を満足することにより、ユーザの残像(ゴースト)の視認を抑制することができ、優れた表示特性を実現し得る。反射部の単体透過率(Ts)は、好ましくは40.0%~45.0%であり、より好ましくは41.0%以上である。反射部の偏光度(P)は、好ましくは99.0%~99.997%であり、より好ましくは99.9%以上である。 The orthogonal transmittance (Tc) of the reflective portion is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. By satisfying such orthogonal transmittance, visibility of afterimages (ghosts) by the user can be suppressed, and excellent display characteristics can be achieved. The single transmittance (Ts) of the reflective portion is preferably 40.0% to 45.0%, more preferably 41.0% or more. The degree of polarization (P) of the reflective portion is preferably 99.0% to 99.997%, more preferably 99.9% or more.

上記反射部の光学特性は、反射型偏光部材の光学特性に相当してもよく、反射型偏光部材と吸収型偏光部材との積層体の光学特性に相当してもよい。上記反射部の光学特性は、反射型偏光部材に吸収型偏光部材を組み合わせることで、極めて良好に達成され得る。 The optical properties of the reflective section may correspond to the optical properties of a reflective polarizing member, or may correspond to the optical properties of a laminate of a reflective polarizing member and an absorbing polarizing member. The optical characteristics of the reflective section described above can be achieved extremely well by combining a reflective polarizing member with an absorbing polarizing member.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みは下記の測定方法により測定した値である。
<厚み>
10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Note that the thickness is a value measured by the following measuring method.
<Thickness>
The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).

[実施例1-1]
(偏光膜1の作製)
熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(三菱ケミカル社製、商品名「ゴーセネックスZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光膜の単体透過率(Ts)が42.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
このようにして、樹脂基材上に厚み5μmの偏光膜1(吸収型偏光膜)を形成した。
[Example 1-1]
(Preparation of polarizing film 1)
As the thermoplastic resin base material, a long, amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption rate of 0.75% and a Tg of about 75° C. was used. One side of the resin base material was subjected to corona treatment.
Iodine was added to 100 parts by weight of a PVA resin prepared by mixing polyvinyl alcohol (degree of polymerization 4200, degree of saponification 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Mitsubishi Chemical Corporation, product name "Gosenex Z410") in a ratio of 9:1. A PVA aqueous solution (coating liquid) was prepared by dissolving 13 parts by weight of potassium chloride in water.
The PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer with a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched free end to 2.4 times in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed for 30 seconds in an insolubilization bath (boric acid aqueous solution obtained by blending 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. (insolubilization treatment).
Next, the final polarizing film was added to a dyeing bath (an aqueous iodine solution obtained by mixing iodine and potassium iodide in a weight ratio of 1:7 to 100 parts by weight of water) at a liquid temperature of 30°C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 42.0% or more (staining treatment).
Next, it was immersed for 30 seconds in a crosslinking bath (an aqueous boric acid solution obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water) at a liquid temperature of 40°C. (Crosslinking treatment).
Thereafter, while immersing the laminate in a boric acid aqueous solution (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70°C, the laminate was completely rolled in the longitudinal direction (longitudinal direction) between rolls having different circumferential speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment).
Thereafter, the laminate was immersed in a cleaning bath (an aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (cleaning treatment).
Thereafter, while drying in an oven maintained at 90°C, it was brought into contact with a SUS heating roll whose surface temperature was maintained at 75°C for about 2 seconds (drying shrinkage treatment). The shrinkage rate of the laminate in the width direction due to the drying shrinkage treatment was 5.2%.
In this way, a 5 μm thick polarizing film 1 (absorption type polarizing film) was formed on the resin base material.

(吸収型偏光フィルムの作製)
得られた吸収型偏光膜の表面(積層体の偏光膜1側の面)に、保護層として厚み25μmのシクロオレフィン系樹脂フィルムを、紫外線硬化型接着剤を介して貼り合わせた。具体的には、硬化後の接着剤層の厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をシクロオレフィン系樹脂フィルム側から照射して接着剤を硬化させた。次いで、樹脂基材を剥離し、シクロオレフィン系樹脂フィルム/吸収型偏光膜の構成を有する吸収型偏光フィルムを得た。
(Preparation of absorption type polarizing film)
A cycloolefin resin film having a thickness of 25 μm was bonded as a protective layer to the surface of the obtained absorption type polarizing film (the surface on the polarizing film 1 side of the laminate) via an ultraviolet curable adhesive. Specifically, the adhesive layer was coated so that the thickness of the cured adhesive layer was approximately 1 μm, and the adhesive layers were bonded together using a roll machine. Thereafter, UV light was irradiated from the cycloolefin resin film side to cure the adhesive. Next, the resin base material was peeled off to obtain an absorption type polarizing film having a structure of cycloolefin resin film/absorption type polarizing film.

(反射部用フィルムの作製)
反射型偏光フィルム(日東電工社製の「APCFG4」)に、吸収型偏光フィルムを、反射型偏光フィルムの反射軸と吸収型偏光膜の吸収軸とが互いに平行に配置されるように、粘着剤を介して貼り合わせ、反射部用フィルム(積層フィルム)を得た。
(Preparation of film for reflective part)
An absorbing polarizing film is placed on a reflective polarizing film ("APCFG4" manufactured by Nitto Denko Corporation) with an adhesive so that the reflection axis of the reflective polarizing film and the absorption axis of the absorbing polarizing film are arranged parallel to each other. The films were bonded together through a laminate to obtain a film for a reflective section (laminated film).

[実施例1-2および実施例1-3]
偏光膜1の作製において、染色処理の条件を変更したこと以外は実施例1-1と同様にして、反射部用フィルムを得た。
[Example 1-2 and Example 1-3]
A reflective film was obtained in the same manner as in Example 1-1, except that the dyeing conditions were changed in the production of polarizing film 1.

[実施例1-4]
偏光膜1のかわりに下記の偏光膜2を用いたこと以外は実施例1-1と同様にして、反射部用を得た。
(偏光膜2の作製)
厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ製、商品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理をこの順で施した後、最後に乾燥処理を施すことにより、厚み12μmの偏光膜2を作製した。
上記膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる偏光膜の単体透過率が42.0%以上となるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。次いで、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。次いで、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、70℃で5分間乾燥処理して偏光膜2を得た。
[Example 1-4]
A reflective part was obtained in the same manner as in Example 1-1 except that the following polarizing film 2 was used instead of polarizing film 1.
(Preparation of polarizing film 2)
A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray, trade name "PE3000") with a thickness of 30 μm was simultaneously uniaxially stretched in the longitudinal direction so as to be 5.9 times larger in the longitudinal direction using a roll stretching machine. After performing swelling, dyeing, crosslinking, and washing treatments in this order, a drying treatment was finally performed to produce a polarizing film 2 with a thickness of 12 μm.
In the above swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing process is carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide is 1:7 and the iodine concentration is adjusted so that the single transmittance of the polarizing film obtained is 42.0% or more. While doing so, it was stretched 1.4 times. Next, a two-stage crosslinking treatment was adopted for the crosslinking treatment, and the first crosslinking treatment was performed in an aqueous solution containing boric acid and potassium iodide at 40° C. and stretched to 1.2 times. The boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second stage of crosslinking treatment, the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Next, washing treatment was performed with a potassium iodide aqueous solution at 20°C. The potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight. Finally, a polarizing film 2 was obtained by drying at 70° C. for 5 minutes.

[実施例1-5]
偏光膜2の作製において、染色処理の条件を変更したこと以外は実施例1-4と同様にして、反射部用フィルムを得た。
[Example 1-5]
A reflective film was obtained in the same manner as in Example 1-4, except that the conditions for the dyeing treatment were changed in the production of polarizing film 2.

[実施例2-1から実施例2-5]
反射型偏光フィルムとして日東電工社製の「APCFG5」を用いたこと以外は実施例1-1から実施例1-5と同様にして、反射部用フィルムを得た。
[Example 2-1 to Example 2-5]
A film for a reflective section was obtained in the same manner as in Examples 1-1 to 1-5, except that "APCFG5" manufactured by Nitto Denko Corporation was used as the reflective polarizing film.

[比較例1]
反射部用フィルムとして、日東電工社製の「APCFG4」を用いた。
[Comparative example 1]
As the film for the reflective section, "APCFG4" manufactured by Nitto Denko Corporation was used.

[比較例2]
反射部用フィルムとして、日東電工社製の「APCFG5」を用いた。
[Comparative example 2]
As the film for the reflective section, "APCFG5" manufactured by Nitto Denko Corporation was used.

実施例および比較例について、下記の評価を行った。評価結果を表1にまとめる。
<評価>
・単体透過率、直交透過率および偏光度
吸収型偏光膜(吸収型偏光フィルム)および反射部用フィルムについて、紫外可視分光光度計(大塚電子社製、「LPF200」)を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定した。Ts、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。なお、反射部用フィルムの測定においては、反射型偏光フィルム側から光を入射させて行った。
また、得られたTpおよびTcから、下記式により偏光度Pを求めた。
偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The following evaluations were performed for the Examples and Comparative Examples. The evaluation results are summarized in Table 1.
<Evaluation>
・Single transmittance, orthogonal transmittance, and degree of polarization The single transmittance of the absorbing polarizing film (absorbing polarizing film) and the reflective film was measured using an ultraviolet-visible spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "LPF200"). Ts, parallel transmittance Tp and orthogonal transmittance Tc were measured. Ts, Tp, and Tc are Y values measured using a 2-degree visual field (C light source) according to JIS Z8701 and subjected to visibility correction. In addition, in the measurement of the reflective film, light was incident from the reflective polarizing film side.
Furthermore, the degree of polarization P was determined from the obtained Tp and Tc using the following formula.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100

Figure 2023134316000002
Figure 2023134316000002

本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.

本発明の実施形態に係るレンズ部は、例えば、VRゴーグル等の表示体に用いられ得る。 The lens unit according to the embodiment of the present invention can be used, for example, in a display body such as VR goggles.

2 表示システム
4 レンズ部
12 表示素子
14 反射部
16 第一レンズ部
18 ハーフミラー
20 第一位相差部材
22 第二位相差部材
24 第二レンズ部
30 積層体
32 反射型偏光部材
34 吸収型偏光部材
36 接着層
2 Display system 4 Lens section 12 Display element 14 Reflection section 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section 30 Laminated body 32 Reflective polarizing member 34 Absorptive polarizing member 36 Adhesive layer

Claims (11)

ユーザに対して画像を表示する表示システムに用いられるレンズ部であって、
画像を表す表示素子の表示面から前方に向けて出射され、偏光部材および第1のλ/4部材を通過した光を反射し、反射型偏光部材および前記反射型偏光部材の前方に配置される吸収型偏光部材を含む反射部と、
前記表示素子と前記反射部との間の光路上に配置される第一レンズ部と、
前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射部で反射された光を前記反射部に向けて反射させるハーフミラーと、
前記ハーフミラーと前記反射部との間の光路上に配置される第2のλ/4部材と、を備え、
前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から光を入射させたときの直交透過率は0.5%以下である、
レンズ部。
A lens unit used in a display system that displays images to a user, the lens unit comprising:
A reflective polarizing member is arranged in front of a reflective polarizing member and the reflective polarizing member, and reflects light that is emitted forward from a display surface of a display element that represents an image and has passed through a polarizing member and a first λ/4 member. a reflective section including an absorptive polarizing member;
a first lens section disposed on an optical path between the display element and the reflection section;
a half mirror disposed between the display element and the first lens part, which transmits the light emitted from the display element and reflects the light reflected by the reflection part toward the reflection part;
a second λ/4 member disposed on the optical path between the half mirror and the reflection section,
When light is incident on the laminate of the reflective polarizing member and the absorbing polarizing member from the reflective polarizing member side, the orthogonal transmittance is 0.5% or less,
lens section.
前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項1に記載のレンズ部。 The lens portion according to claim 1, wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged parallel to each other. 前記第一レンズ部と前記ハーフミラーとは一体である、請求項1に記載のレンズ部。 The lens section according to claim 1, wherein the first lens section and the half mirror are integrated. 前記反射部の前方に配置される第二レンズ部を備える、請求項1に記載のレンズ部。 The lens section according to claim 1, further comprising a second lens section disposed in front of the reflecting section. 前記表示素子に含まれる前記偏光部材の吸収軸と前記第1のλ/4部材の遅相軸とのなす角度は40°~50°であり、
前記表示素子に含まれる前記偏光部材の吸収軸と前記第2のλ/4部材の遅相軸とのなす角度は40°~50°である、請求項1に記載のレンズ部。
The angle between the absorption axis of the polarizing member included in the display element and the slow axis of the first λ/4 member is 40° to 50°,
The lens portion according to claim 1, wherein the angle between the absorption axis of the polarizing member included in the display element and the slow axis of the second λ/4 member is 40° to 50°.
請求項1から5のいずれかに記載のレンズ部の前記反射部に用いられ、
前記反射型偏光部材と前記吸収型偏光部材とを有する、
積層体。
Used in the reflective part of the lens part according to any one of claims 1 to 5,
comprising the reflective polarizing member and the absorbing polarizing member,
laminate.
前記反射型偏光部材と前記吸収型偏光部材とは接着層を介して積層される、請求項6に記載の積層体。 The laminate according to claim 6, wherein the reflective polarizing member and the absorptive polarizing member are laminated with an adhesive layer interposed therebetween. 前記反射型偏光部材の反射軸と前記吸収型偏光部材の吸収軸とは互いに平行に配置される、請求項6に記載の積層体。 The laminate according to claim 6, wherein the reflection axis of the reflective polarizing member and the absorption axis of the absorptive polarizing member are arranged parallel to each other. 請求項1から5のいずれか一項に記載のレンズ部を有する表示体。 A display body comprising the lens portion according to any one of claims 1 to 5. 請求項1から5のいずれか一項に記載のレンズ部を有する表示体の製造方法。 A method for manufacturing a display body having a lens portion according to any one of claims 1 to 5. 偏光部材および第1のλ/4部材を介して出射された画像を表す光を、ハーフミラーおよび第一レンズ部を通過させるステップと、
前記ハーフミラーおよび前記第一レンズ部を通過した光を、第2のλ/4部材を通過させるステップと、
前記第2のλ/4部材を通過した光を、反射型偏光部材を含む反射部で前記ハーフミラーに向けて反射させるステップと、
前記反射部および前記ハーフミラーで反射させた光を、前記第2のλ/4部材により前記反射部の前記反射型偏光部材を透過可能にするステップと、
前記反射型偏光部材を透過した光を、吸収型偏光部材を透過させるステップと、を有し、
前記反射型偏光部材と前記吸収型偏光部材との積層体に、前記反射型偏光部材側から光を入射させたときの直交透過率は0.5%以下である、
表示方法。
A step of passing the light representing the image emitted through the polarizing member and the first λ/4 member through the half mirror and the first lens part;
passing the light that has passed through the half mirror and the first lens section through a second λ/4 member;
reflecting the light that has passed through the second λ/4 member toward the half mirror by a reflecting section including a reflective polarizing member;
a step of allowing the light reflected by the reflection part and the half mirror to pass through the reflective polarizing member of the reflection part by the second λ/4 member;
a step of transmitting the light transmitted through the reflective polarizing member through an absorbing polarizing member,
When light is incident on the laminate of the reflective polarizing member and the absorbing polarizing member from the reflective polarizing member side, the orthogonal transmittance is 0.5% or less,
Display method.
JP2022077631A 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method Pending JP2023134316A (en)

Priority Applications (47)

Application Number Priority Date Filing Date Title
PCT/JP2023/006724 WO2023176357A1 (en) 2022-03-14 2023-02-24 Lens unit, laminate, display body, display body manufacturing method, and display method
PCT/JP2023/008561 WO2023176590A1 (en) 2022-03-14 2023-03-07 Optical laminate with surface protection films and method for manufacturing display system
PCT/JP2023/008560 WO2023176589A1 (en) 2022-03-14 2023-03-07 Optical laminate equipped with surface protection film, and production method therefor
PCT/JP2023/008533 WO2023176585A1 (en) 2022-03-14 2023-03-07 Optical film assessment method
PCT/JP2023/008812 WO2023176627A1 (en) 2022-03-14 2023-03-08 Display system, display method, display body, and method for manufacturing display body
PCT/JP2023/008817 WO2023176632A1 (en) 2022-03-14 2023-03-08 Optical laminate, lens, and display method
PCT/JP2023/008810 WO2023176625A1 (en) 2022-03-14 2023-03-08 Lens part, display body, and display method
PCT/JP2023/008809 WO2023176624A1 (en) 2022-03-14 2023-03-08 Lens part, display body, and display method
PCT/JP2023/008811 WO2023176626A1 (en) 2022-03-14 2023-03-08 Display system, display method, display body, and method for manufacturing display body
PCT/JP2023/008813 WO2023176628A1 (en) 2022-03-14 2023-03-08 Optical laminate and display system
PCT/JP2023/008815 WO2023176630A1 (en) 2022-03-14 2023-03-08 Optical laminate, lens unit, and display method
PCT/JP2023/008816 WO2023176631A1 (en) 2022-03-14 2023-03-08 Optical laminate, lens part, and display method
PCT/JP2023/008814 WO2023176629A1 (en) 2022-03-14 2023-03-08 Optical laminate, lens portion, and display method
PCT/JP2023/008963 WO2023176656A1 (en) 2022-03-14 2023-03-09 Lens unit and laminated film
PCT/JP2023/008964 WO2023176657A1 (en) 2022-03-14 2023-03-09 Display system and laminate film
PCT/JP2023/008961 WO2023176654A1 (en) 2022-03-14 2023-03-09 Display system and laminated film
TW112108735A TW202345654A (en) 2022-03-14 2023-03-09 Optical film assessment method
PCT/JP2023/008966 WO2023176659A1 (en) 2022-03-14 2023-03-09 Lens unit and laminated film
PCT/JP2023/008967 WO2023176660A1 (en) 2022-03-14 2023-03-09 Display system and laminated film
PCT/JP2023/008968 WO2023176661A1 (en) 2022-03-14 2023-03-09 Display system and lamination film
PCT/JP2023/008965 WO2023176658A1 (en) 2022-03-14 2023-03-09 Lens unit and laminate film
PCT/JP2023/009078 WO2023176693A1 (en) 2022-03-14 2023-03-09 Display system, display method, display body, and method for manufacturing display body
PCT/JP2023/008962 WO2023176655A1 (en) 2022-03-14 2023-03-09 Lens unit and layered film
PCT/JP2023/009075 WO2023176690A1 (en) 2022-03-14 2023-03-09 Display system, optical layered body, and display system manufacturing method
TW112108737A TW202402524A (en) 2022-03-14 2023-03-09 Optical laminate equipped with surface protection film, and production method therefor
TW112108734A TW202345432A (en) 2022-03-14 2023-03-09 Optical laminate with surface protection films and method for manufacturing display system
PCT/JP2023/009076 WO2023176691A1 (en) 2022-03-14 2023-03-09 Display system, display method, display body, and method for manufacturing display body
PCT/JP2023/009077 WO2023176692A1 (en) 2022-03-14 2023-03-09 Display system, display method, display body, and method for manufacturing display body
TW112109173A TW202336470A (en) 2022-03-14 2023-03-13 Display system, display method, display body, and method of manufacturing display body which enables weight reduction and higher resolution of VR goggles
TW112109171A TW202339544A (en) 2022-03-14 2023-03-13 Lens part, display body, and display method
TW112109172A TW202337703A (en) 2022-03-14 2023-03-13 Optical laminate, lens part, and display method
TW112109170A TW202344874A (en) 2022-03-14 2023-03-13 Display system, display method, display body, and method for manufacturing display body
TW112109165A TW202336469A (en) 2022-03-14 2023-03-13 Optical laminate, lens part and display method capable of reducing the weight of VR goggles and improving visibility
TW112109213A TW202343033A (en) 2022-03-14 2023-03-13 Optical laminate, lens portion, and display method
TW112109164A TW202346089A (en) 2022-03-14 2023-03-13 Optical laminate and display system
TW112109192A TW202400411A (en) 2022-03-14 2023-03-13 Optical laminate, lens, and display method
TW112109214A TW202341811A (en) 2022-03-14 2023-03-13 Lens part, display body, and display method
TW112109347A TW202345433A (en) 2022-03-14 2023-03-14 Display system and laminate film
TW112109341A TW202403395A (en) 2022-03-14 2023-03-14 Display system, display method, display body, and method for manufacturing display body
TW112109342A TW202346916A (en) 2022-03-14 2023-03-14 Display system, display method, display body, and method for manufacturing display body
TW112109348A TW202344875A (en) 2022-03-14 2023-03-14 Lens unit and layered film
TW112109351A TW202346917A (en) 2022-03-14 2023-03-14 Display system, optical layered body, and display system manufacturing method
TW112109371A TW202346908A (en) 2022-03-14 2023-03-14 Display system and laminated film
TW112109349A TW202401074A (en) 2022-03-14 2023-03-14 Lens unit and layered film
TW112109344A TW202346906A (en) 2022-03-14 2023-03-14 Display system and lamination film
TW112109345A TW202346907A (en) 2022-03-14 2023-03-14 Display system and laminated film
TW112109370A TW202401086A (en) 2022-03-14 2023-03-14 Display system, display method, display body, and method for manufacturing display body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022039285 2022-03-14
JP2022039285 2022-03-14

Publications (1)

Publication Number Publication Date
JP2023134316A true JP2023134316A (en) 2023-09-27

Family

ID=88143601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022077631A Pending JP2023134316A (en) 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method

Country Status (1)

Country Link
JP (1) JP2023134316A (en)

Similar Documents

Publication Publication Date Title
WO2023176357A1 (en) Lens unit, laminate, display body, display body manufacturing method, and display method
WO2023176358A1 (en) Lens unit, laminate, display body, and display body production method and display method
WO2023176359A1 (en) Display method
JP2023134316A (en) Lens part, laminated body, display body, display body production method, and display method
JP2023166825A (en) Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2023166826A (en) Display method
WO2023176360A1 (en) Lens part, laminate, display body, and manufacturing method and display method for display body
TW202405519A (en) Lens part, laminated body, display body, display body manufacturing method and display method
WO2023176365A1 (en) Lens unit, laminate, display body, method for manufacturing display body, and display method
WO2023176366A1 (en) Lens unit, layered body, display body, display body manufacturing method, and display method
WO2023176367A1 (en) Lens part, laminated body, display body, display body production method, and display method
WO2023176368A1 (en) Lens part, laminate, display body, and manufacturing method and display method for display body
WO2023176363A1 (en) Display system, display method, display body, and display body manufacturing method
WO2023176627A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176624A1 (en) Lens part, display body, and display method
WO2023176625A1 (en) Lens part, display body, and display method
WO2023176626A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176361A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176693A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176692A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176661A1 (en) Display system and lamination film
WO2023176658A1 (en) Lens unit and laminate film
WO2023176691A1 (en) Display system, display method, display body, and method for manufacturing display body
WO2023176659A1 (en) Lens unit and laminated film
WO2023176655A1 (en) Lens unit and layered film