WO2023176589A1 - Optical laminate equipped with surface protection film, and production method therefor - Google Patents

Optical laminate equipped with surface protection film, and production method therefor Download PDF

Info

Publication number
WO2023176589A1
WO2023176589A1 PCT/JP2023/008560 JP2023008560W WO2023176589A1 WO 2023176589 A1 WO2023176589 A1 WO 2023176589A1 JP 2023008560 W JP2023008560 W JP 2023008560W WO 2023176589 A1 WO2023176589 A1 WO 2023176589A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection film
surface protection
optical laminate
base material
adhesive layer
Prior art date
Application number
PCT/JP2023/008560
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 小野
祥明 麻野井
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022077632A external-priority patent/JP2023166825A/en
Priority claimed from JP2022077634A external-priority patent/JP2023166827A/en
Priority claimed from JP2022077631A external-priority patent/JP2023134316A/en
Priority claimed from JP2022077679A external-priority patent/JP2023166854A/en
Priority claimed from JP2022077677A external-priority patent/JP2023166852A/en
Priority claimed from JP2022077657A external-priority patent/JP2023134317A/en
Priority claimed from JP2022077678A external-priority patent/JP2023166853A/en
Priority claimed from JP2022077658A external-priority patent/JP2023166840A/en
Priority claimed from JP2022077676A external-priority patent/JP2023166851A/en
Priority claimed from JP2022077633A external-priority patent/JP2023166826A/en
Priority claimed from JP2022077659A external-priority patent/JP2023166841A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176589A1 publication Critical patent/WO2023176589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an optical laminate with a surface protection film and a method for manufacturing the same.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
  • EL electroluminescence
  • optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
  • VR goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized.
  • VR goggles the image displayed on the display panel is enlarged for the viewer to see, so the optical laminate used in VR goggles is more expensive than the optical laminate used in conventional image display devices. Strict defect management is also required.
  • the main object of the present invention is to provide an optical laminate that can be applied to VR goggles and is capable of both surface protection and precise defect inspection.
  • the optical laminate with a surface protection film of [1] to [9], the method of manufacturing an optical laminate with a surface protection film of [10], and the production of a display system of [11] A method is provided.
  • the first surface protection film has a first base material and a first adhesive layer laminated on the first base material, and the first base material in the first adhesive layer A defect in which the absolute value of the maximum valley depth (Sv) on the opposite surface is 500 nm or less, and the maximum Feret diameter is 10 ⁇ m or more in an observation area of 100 ⁇ m x 100 ⁇ m when the first base material is observed with a microscope.
  • the first surface protection film has a first base material and a first adhesive layer laminated on the first base material, and the first base material in the first adhesive layer
  • the surface on the opposite side is the optical laminate with a surface protection film according to [1] or [2], which is obtained by attaching a surface protection film satisfying the following formula (1) to the optical laminate.
  • S represents the measurement field area of the white interferometer in the following surface shape evaluation test
  • B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test.
  • A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.
  • ⁇ Surface shape evaluation test> measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer; After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area; The two-dimensional image is binarized and analyzed using ⁇ 100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below ⁇ 100 nm is a white region.
  • the optical laminate includes a polarizing member, a first retardation member, and a protective member in this order toward the first surface protection film, according to any one of [1] to [6].
  • the optical laminate with a surface protection film according to [7] wherein the protection member includes a surface treatment layer, and the first surface protection film is attached to the surface treatment layer.
  • optical laminate with a surface protection film comprises attaching a first surface protection film and a second surface protection film to one surface of an optical laminate having at least one optical member.
  • a manufacturing method comprising: the first surface protection film selected from (i) and (ii); (i) having a first base material and a first adhesive layer laminated on the first base material, The absolute value of the maximum valley depth (Sv) of the surface of the first adhesive layer opposite to the first base material is 500 nm or less, A surface protection film having less than three defects with a maximum Feret diameter of 10 ⁇ m or more in an observation area of 100 ⁇ m x 100 ⁇ m when the first base material is observed under a microscope; (ii) having a first base material and a first adhesive layer laminated on the first base material, The surface of the first adhesive layer opposite to the first base material is a surface protection film that satisfies the following formula (1); (In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test.
  • A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.
  • ⁇ Surface shape evaluation test> measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer; After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area; The two-dimensional image is binarized and analyzed using ⁇ 100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below ⁇ 100 nm is a white region.
  • a method for manufacturing a display system wherein the first surface protection film and the second surface protection film of the optical laminate with a surface protection film according to any one of [1] to [9] are pasted. Obtaining a secondary laminate with a surface protection film by pasting another member on the side opposite to the side on which it was applied; Peeling the second surface protection film from the surface protection film-attached secondary laminate; inspecting the secondary laminate with the surface protection film for defects; and peeling the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate; In this order, A manufacturing method, wherein the display system is goggles with a display.
  • the optical laminate with a surface protection film according to the embodiment of the present invention has a configuration in which two surface protection films are attached to the surface of the optical laminate. Therefore, even if the outer surface protection film is peeled off and removed before defect inspection, the optical laminate can be inspected for defects while the surface is protected by the inner surface protection film, and scratches etc. can be prevented until just before the assembly process. can be prevented.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention.
  • 1 is a schematic cross-sectional view illustrating a surface protection film that can be used in an optical laminate with a surface protection film according to an embodiment of the present invention.
  • 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention.
  • 4 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 3.
  • FIG. 4 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 3.
  • FIG. 1 is a schematic diagram illustrating a method of manufacturing a display system according to one embodiment of the present invention.
  • FIG. 6A It is a figure following FIG. 6B.
  • FIG. 6C It is a figure following FIG. 6D.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
  • Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
  • substantially parallel includes cases within the range of 0° ⁇ 10°, for example, 0° ⁇ 5°, preferably 0° ⁇ 3°, more preferably 0° ⁇ 1 90° ⁇ 5°, preferably 90° ⁇ 3°, more preferably 90° ⁇ 1 within the range of °.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention.
  • the optical laminate 200 with a surface protection film includes at least one optical member, and is attached to the optical laminate 100 and one surface of the optical laminate 100 in this order toward the outside, for use in goggles with a display. It has a first surface protection film 110 and a second surface protection film 120.
  • the optical laminate 100 may have an adhesive layer on the surface opposite to the side to which the first surface protection film 110 and the second surface protection film 120 are attached. In this case, the adhesive layer may be protected with a release liner.
  • the first surface protection film 110, the second surface protection film 120, and the release liner are process members that are temporarily attached (temporary attachment) to the optical laminate 100, and are used when the optical laminate 100 is put into use. When it is removed, it is peeled off and removed.
  • the optical laminate with a surface protection film can be produced by attaching a first surface protection film and a second surface protection film to one surface of the optical laminate.
  • a first surface protection film and a second surface protection film may be attached in this order to one surface of the optical laminate, and a laminate of the first surface protection film and the second surface protection film may be laminated to the optical laminate. You may.
  • the first surface protection film 110 includes a first base material 112 and a first adhesive layer 114 laminated on the first base material 112. have A release liner 116 is attached (temporarily attached) to the first adhesive layer 114 to protect the first adhesive layer 114 until the first surface protection film 110 is put into use. .
  • the haze of the first surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, even more preferably 2% or less, even more preferably 1.5% or less, and typically 0. It is .05% or more. If the haze of the first surface protection film is within the above range, precise defect inspection can be performed even when the surface of the optical laminate is protected by the first surface protection film. A surface protection film having a haze within the above range can be obtained, for example, by using a low haze base material and/or an adhesive layer.
  • the 90° triggered peeling force (P1) of the first surface protection film against the optical laminate is, for example, 0.05N to 0.25N, preferably 0.08N to 0.2N, more preferably 0.10N to 0.15N. be.
  • the 180° triggered peeling force (P1') of the first surface protection film against the optical laminate is, for example, 0.05N to 0.25N, preferably 0.08N to 0.2N, more preferably 0.10N to 0.15N. It is.
  • the peeling force of the film increases depending on the peeling length immediately after the start of peeling, reaches a peak, then decreases, and then reaches a certain level after a predetermined period of time.
  • triggered peeling force means the peak value (maximum value) of peeling force immediately after the start of peeling
  • normal peeling force means the stabilized peeling force after a predetermined period of time has passed from the start of peeling. do.
  • the ratio (P2/P1) to (P2) is, for example, 0.1 to 2.0, preferably 0.3 to 1.5, more preferably 0.5 to 1.0, even more preferably 0.5 to It is 0.9.
  • the 180° triggered peeling force (P1') of the first surface protection film against the optical laminate and the 180° trigger peeling force (P1') of the second surface protection film against the first surface protection film (first substrate side surface of the first surface protection film) The ratio (P2'/P1') to the triggered peeling force (P2') is, for example, 0.1 to 1.5, preferably 0.3 to 1.2, more preferably 0.5 to 1.0, and Preferably it is 0.5 to 0.9.
  • the normal peeling force of the first surface protection film against the optical laminate is, for example, 0.01 N/25 mm to 0.2 N/25 mm, preferably 0.02 N/25 mm to 0.02 N/25 mm. 12N/25mm, more preferably 0.03N/25mm to 0.08N/25mm.
  • '' is, for example, 0.1 to 3.0, preferably 0.5 to 2.5, more preferably 1.0 to 2.0.
  • the number of defects with a maximum Feret diameter of 10 ⁇ m or more is preferably 3 in an observation area of 100 ⁇ m x 100 ⁇ m. It is less than 1, more preferably 1 or less, and even more preferably 0.
  • the number of defects of 10 ⁇ m or more in microscopic observation of the surface protection film is below the above upper limit, false detections caused by the surface protection film can be more stably reduced in foreign matter inspection.
  • the number of defects with a maximum Feret diameter of less than 10 ⁇ m in an observation area of 100 ⁇ m x 100 ⁇ m is, for example, 10 or less. , preferably 5 or less, more preferably 3 or less, more preferably 1 or less. Even if a defect is observed in microscopic observation of the surface protection film, as long as the maximum Feret diameter is less than 10 ⁇ m and the number is below the above upper limit, it is possible to suppress the defect from being erroneously detected in a foreign object inspection.
  • the number of defects with a maximum Feret diameter of 10 ⁇ m or more in an observation area of 100 ⁇ m x 100 ⁇ m is preferably less than 3, more preferably 1 or less, and even more preferably 0. It is. If the number of defects in the base material is below the above upper limit, false detections caused by the surface protection film can be reduced in foreign matter inspection. Note that details of the microscopic observation will be explained in Examples described later.
  • the tear strength of the first base material is, for example, 0.5 N/mm or more, preferably 1 N/mm or more, and more preferably 2 N/mm or more. If the tear strength of the first base material is equal to or higher than the above lower limit, false detections caused by the surface protection film in foreign matter inspection can be further reduced.
  • the tear strength of the first base material is typically 200 N/mm or less. Note that the tear strength of the first base material can be measured in accordance with JIS K7128-1:1998.
  • the first base material is formed of any suitable resin film that can be used as a surface protection film.
  • suitable resin film that can be used as a surface protection film.
  • materials that are the main components of the resin film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), Examples include transparent resins such as polycarbonate (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • transparent resins such as polycarbonate (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene
  • thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • (meth)acrylic resin refers to acrylic resin and/or methacrylic resin.
  • Other examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • the materials for the resin film can be used alone or in combination.
  • the first base material preferably contains at least one transparent resin selected from the group consisting of COP-based, PET-based, TAC-based, PC-based, and (meth)acrylic-based, and more preferably COP-based, PET-based, etc.
  • the resin contains at least one transparent resin selected from the group consisting of COP-based, PC-based, and (meth)acrylic-based, and more preferably at least one transparent resin selected from the group consisting of COP-based, PET-based, and PC-based. Contains resin.
  • the first base material contains any one of COP-based, PET-based, PC-based, and (meth)acrylic-based transparent resins
  • the first base material contains TAC-based resins
  • foreign matter inspection Erroneous detections caused by surface protection films can be reduced.
  • the first base material contains any one of COP-based, PET-based, and PC-based transparent resins, it is possible to more stably reduce false detections caused by the surface protection film in foreign matter inspection.
  • the first base material may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a nucleating agent, a filler, a pigment, a surfactant, an antistatic agent, and the like.
  • the surface of the first base material (the surface opposite to the first adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
  • the thickness of the first base material is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the absolute value of the maximum valley depth (Sv) of the surface 114a opposite to the first base material 112 in the first adhesive layer 114 before being attached to the optical laminate is, for example, 500 nm or less, preferably 300 nm.
  • the thickness is more preferably 250 nm or less, particularly preferably 200 nm or less, particularly preferably 100 nm or less, and most preferably 50 nm or less.
  • the absolute value of the maximum valley depth (Sv) of the surface 114a is typically 5 nm or more. Note that the maximum valley depth (Sv) can be measured in accordance with JIS B0681-2:2018.
  • the absolute value of the arithmetic mean height (Sa) of the surface 114a opposite to the first base material 112 in the first adhesive layer 114 before being attached to the optical laminate is preferably 25 nm or less, more preferably 10 nm.
  • the thickness is more preferably 6 nm or less, particularly preferably 5 nm or less.
  • the absolute value of the arithmetic mean height (Sa) of the surface 114a is typically 0 nm or more. Note that the arithmetic mean height (Sa) can be measured in accordance with JIS B0681-2:2018.
  • the surface protective film will not be used in defect inspection (for example, bubble inspection). It is possible to stably reduce false detections caused by
  • the surface 114a of the first adhesive layer 114 opposite to the first base material 112 before being attached to the optical laminate preferably satisfies the following formula (1), more preferably satisfies the following formula (2). More preferably, the following formula (3) is satisfied.
  • S represents the measurement field area of the white interferometer in the following surface shape evaluation test
  • B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test.
  • A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.
  • ⁇ Surface shape evaluation test> measuring the surface of the first adhesive layer opposite to the first base material with a white interferometer; After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area; The two-dimensional image is binarized and analyzed using ⁇ 100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below ⁇ 100 nm is a white region. Note that details of the surface shape evaluation test will be explained in Examples described later.
  • the depressions In the two-dimensional image before binarization, among the depressions existing on the surface of the first adhesive layer opposite to the first base material, the depressions have a depth exceeding the detection limit of the white interferometer.
  • the portion becomes a black area, and the portion that does not correspond to the black area becomes a white area.
  • the area B-BA of the black area in the two-dimensional image before binarization is, for example, 1.5% or less, preferably 0.3% or less, when the measurement field area S of the white interferometer is 100%. It is preferably 0.2% or less, more preferably 0.1% or less, and typically 0% or more.
  • the part corresponding to -100 nm or less with respect to the measurement surface becomes a white region
  • the other part (with respect to the measurement surface) becomes a white region. (exceeding ⁇ 100 nm) becomes a black region.
  • the area A-WA of the white region in the binarized image is, for example, 1.3% or less, preferably 0.2% or less, more preferably 0.2% or less, when the measurement field area S of the white interferometer is 100%. It is 1% or less, more preferably 0.08% or less, and typically 0% or more.
  • the surface of the first adhesive layer opposite to the first base material before being attached to the optical laminate has a shape that satisfies the above formula (1), preferably formula (2), and more preferably formula (3). If it has, even if the surface protection film is subjected to defect inspection (for example, bubble inspection) with the surface protection film attached to the optical laminate, false detections caused by the surface protection film can be suitably reduced.
  • defect inspection for example, bubble inspection
  • the first adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives.
  • the first adhesive layer contains a (meth)acrylic adhesive.
  • the (meth)acrylic pressure-sensitive adhesive contains a polymer (hereinafter referred to as (meth)acrylic polymer) of a monomer component whose main component is alkyl (meth)acrylate.
  • the (meth)acrylic polymer contains a structural unit derived from alkyl (meth)acrylate.
  • the content of structural units derived from alkyl (meth)acrylate is typically 50% by mass or more, preferably 80% by mass or more, more preferably 93% by mass or more, for example 100% by mass or more, preferably 80% by mass or more, and more preferably 93% by mass or more in the (meth)acrylic polymer. It is not more than 98% by mass, preferably not more than 98% by mass.
  • the alkyl group that the alkyl (meth)acrylate has may be linear or branched.
  • the number of carbon atoms in the alkyl group is, for example, 1 or more and 18 or less.
  • Examples of the alkyl group include methyl group, ethyl group, butyl group, 2-ethylhexyl group, decyl group, isodecyl group, and octadecyl group.
  • Alkyl (meth)acrylates can be used alone or in combination.
  • the average number of carbon atoms in the alkyl group is preferably 3 to 10.
  • the (meth)acrylic polymer may also contain structural units derived from copolymerizable monomers that are polymerizable with alkyl (meth)acrylates.
  • copolymerizable monomers include carboxyl group-containing monomers and hydroxyl group-containing monomers. Copolymerizable monomers can be used alone or in combination.
  • a carboxyl group-containing monomer is a compound that contains a carboxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group.
  • the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, maleic acid, fumaric acid, and crotonic acid, with (meth)acrylic acid being preferred.
  • the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the adhesive properties of the adhesive layer can be improved.
  • the content ratio of the structural unit derived from the carboxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass or less.
  • a hydroxyl group-containing monomer is a compound that contains a hydroxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group.
  • hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethyl cyclohexyl)-methyl acrylate, preferably 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, more preferably 2-hydroxyethyl (meth)acrylate.
  • the durability of the adhesive layer can be improved.
  • the content of the structural unit derived from the hydroxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass in the (meth)acrylic polymer. % or less.
  • the weight average molecular weight Mw of the (meth)acrylic polymer is, for example, 100,000 to 2,000,000, preferably 200,000 to 1,000,000.
  • the (meth)acrylic pressure-sensitive adhesive can contain a crosslinking agent.
  • the crosslinking agent typically includes an organic crosslinking agent and a polyfunctional metal chelate, preferably an organic crosslinking agent.
  • examples of the organic crosslinking agent include an isocyanate crosslinking agent, a peroxide crosslinking agent, an epoxy crosslinking agent, and an imine crosslinking agent, and more preferably an isocyanate crosslinking agent.
  • the content of the crosslinking agent is usually 0.01 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the (meth)acrylic polymer.
  • the above adhesives may contain various additives in appropriate proportions, if necessary.
  • the composition of the base polymer for example, the type and content ratio of monomers, the type and content ratio of crosslinking agents, etc.
  • the molecular weight of the base polymer for example, the type and content ratio of crosslinking agents, etc.
  • An adhesive layer having desired adhesiveness can be obtained.
  • Additives include polymerization initiators, solvents, polymerization catalysts, crosslinking catalysts, silane coupling agents, tackifiers, plasticizers, softeners, deterioration inhibitors, fillers, colorants (pigments, dyes, etc.), and ultraviolet rays.
  • Examples include absorbents, antioxidants, surfactants, antistatic agents, chain transfer agents, and the like.
  • the thickness of the first adhesive layer is typically 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and typically 30 ⁇ m or less, preferably 20 ⁇ m or less.
  • the first adhesive layer may be formed on the surface of the first base material by direct copying or by transfer.
  • direct copying the adhesive is directly applied to the surface of the first base material to form the first adhesive layer.
  • transfer a first adhesive layer is formed by applying an adhesive to the surface of a release liner, and then a base material is attached to the first adhesive layer.
  • the first base material includes an amorphous resin having a relatively low glass transition temperature Tg (for example, 150° C. or lower)
  • Tg glass transition temperature
  • the first adhesive layer is preferably formed by a transfer process. With the transfer process, it is possible to prevent the high temperature during drying required for forming the first adhesive layer from affecting the first base material.
  • Release liner 116 is formed from any suitable resin film that can be used as a release liner.
  • the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The materials for the resin film can be used alone or in combination. Release liner 116 may or may not be transparent.
  • a release treatment layer may be provided on the surface of the release liner 116 that contacts the surface 114a of the first adhesive layer 114.
  • the mold release agent forming the mold release treatment layer include silicone-based mold release agents, fluorine-based mold release agents, and long-chain alkyl acrylate-based mold release agents, and preferably silicone-based mold release agents.
  • examples include vinyl group-containing addition type silicones, and more preferably vinyl group-containing addition type silicones.
  • the mold release treatment agents can be used alone or in combination.
  • the thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
  • the contact surface of the release liner 116 with the surface 114a of the first adhesive layer 114 is smooth.
  • the absolute value of the maximum peak height (Sp) at the contact surface of the release liner 116 with the first adhesive layer 114 is typically 500 nm or less, preferably 400 nm or less, more preferably 300 nm or less, and Preferably it is 100 nm or less. If the absolute value of the maximum peak height (Sp) on the contact surface is below the above upper limit, the maximum valley depth (Sv) on the surface opposite to the first base material in the first adhesive layer is stabilized below the above upper limit. can be adjusted.
  • the absolute value of the maximum peak height (Sp) on the contact surface is below the above upper limit, the surface of the first adhesive layer on the opposite side to the first base material is stabilized so as to satisfy the above formula (1). can be adjusted.
  • the absolute value of the maximum peak height (Sp) on the contact surface is typically 10 nm or more. Note that the maximum peak height (Sp) can be measured in accordance with JIS B0681-2:2018.
  • the absolute value of the arithmetic mean height (Sa) of the contact surface of the release liner 116 with the surface 114a of the first adhesive layer 114 is typically 30 nm or less, preferably 20 nm or less, more preferably 10 nm or less, and even more preferably is 5 nm or less.
  • the absolute value of the arithmetic mean height (Sa) of the contact surface is typically 0 nm or more.
  • the thickness of the release liner 116 is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 60 ⁇ m or less, preferably 45 ⁇ m or less. In addition, when a mold release treatment layer is applied, the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
  • the second surface protection film 120 includes a second base material 122 and a second adhesive layer 124 laminated on the second base material. Similar to the first surface protection film, a release liner is attached (temporarily attached) to the second adhesive layer until the second surface protection film is put into use. is protected.
  • the second surface protection film may be transparent (for example, haze ⁇ 5%) or opaque.
  • the 90° trigger peeling force of the second surface protection film against the first surface protection film is, for example, 0.01N to 0.20N, preferably 0.03N to 0.01N. 15N, more preferably 0.05N to 0.12N.
  • the 180° triggered peeling force of the second surface protection film against the first surface protection film is, for example, 0.01N to 0.20N, preferably 0.03N to 0.2N. 15N, more preferably 0.05N to 0.12N.
  • the normal peeling force (peel angle 180°, tensile speed 300 mm/min) of the second surface protection film against the first surface protection film (the surface of the first surface protection film on the first substrate side) is, for example, 0.01 N/25 mm to 0.2N/25mm, preferably 0.03N/25mm to 0.15N/25mm, more preferably 0.05N/25mm to 0.1N/25mm.
  • the second base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of the material that is the main component of the resin film are as described above regarding the first base material.
  • the second base material may contain antioxidants, ultraviolet absorbers, light stabilizers, nucleating agents, fillers, pigments, surfactants, antistatic agents, and the like.
  • the surface of the second base material (the surface opposite to the second adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
  • the thickness of the second base material is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the second adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives.
  • the second adhesive layer contains a (meth)acrylic adhesive.
  • the details of the (meth)acrylic adhesive are as described above regarding the first adhesive layer.
  • the above-mentioned adhesives may contain a base polymer (or its constituent monomer components) and, if necessary, additives. Specific examples of the additive are as described above for the first adhesive layer.
  • the thickness of the second adhesive layer is typically 1 ⁇ m or more, preferably 5 ⁇ m or more, and typically 30 ⁇ m or less, preferably 15 ⁇ m or less.
  • the method for forming the second adhesive layer includes the same method as the method for forming the first adhesive layer.
  • optical laminate includes at least one optical member and is used in goggles with a display.
  • optical member include polarizing members (absorbing polarizing member, reflective polarizing member), retardation members, and the like.
  • FIG. 3 is a schematic diagram showing a general configuration of a display system (goggles with a display) to which the optical laminate can be applied.
  • FIG. 3 schematically shows the arrangement, shape, etc. of each component of the display system 2.
  • the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with The reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12.
  • the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
  • the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14.
  • the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
  • the components disposed in front of the half mirror are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
  • the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
  • the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
  • a polarizing member typically, a polarizing film
  • the first retardation member 20 includes a first ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light.
  • the first retardation member may correspond to the first ⁇ /4 member.
  • the first retardation member 20 may be provided integrally with the display element 12.
  • the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14.
  • the half mirror 18 is provided integrally with the first lens section 16.
  • the second retardation member 22 includes a second ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14.
  • the second retardation member may correspond to the second ⁇ /4 member.
  • the second retardation member 22 may be provided integrally with the first lens portion 16.
  • the first circularly polarized light emitted from the first ⁇ /4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second ⁇ /4 member converts the light into a second linearly polarized light.
  • the second linearly polarized light emitted from the second ⁇ /4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14.
  • the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
  • the second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second ⁇ /4 member included in the second retardation member 22, and is emitted from the second ⁇ /4 member.
  • the second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18.
  • the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member included in the second retardation member 22.
  • the third linearly polarized light is transmitted through the reflective polarizing member 14 .
  • the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
  • the light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
  • the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
  • the angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first ⁇ /4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ⁇ 48°, and may be about 45°.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second ⁇ /4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
  • a space may be formed between the first lens portion 16 and the second lens portion 24.
  • the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24.
  • the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled.
  • the adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive.
  • the adhesive layer may be an adhesive layer or an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • FIG. 4 is a schematic cross-sectional view of an optical layered body that can be used in the display system illustrated in FIG. 3.
  • the optical laminate 100a includes an adhesive layer 31, a polarizing member 10, a first retardation member 20, and a first protective member 41 in this order.
  • the polarizing member 10, the first retardation member 20, and the first protection member 41 are laminated with adhesive layers 51 and 52 interposed therebetween.
  • the adhesive layers 51 and 52 are typically adhesive layers or adhesive layers, preferably adhesive layers.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the surface of the adhesive layer 31 is protected by a release liner 61 until it is used. Note that the first surface protection film and the second surface protection film are attached to the surface of the optical laminate 100a on the first protection member 41 side.
  • the first retardation member 20 has a laminated structure of a first ⁇ /4 member 20a and a first positive C plate 20b. As shown in the illustrated example, it is preferable that the first ⁇ /4 member 20a is located closer to the polarizing member 10 than the first positive C plate 20b, but these arrangements may be reversed. Furthermore, the first positive C plate 20b may be omitted.
  • the first ⁇ /4 member 20a and the first positive C plate 20b are laminated, for example, via an adhesive layer (not shown).
  • the angle between the absorption axis of the polarizing member 10 and the slow axis of the first ⁇ /4 member 20a is preferably 40° to 50°, more preferably 42° to The angle is 48°, for example about 45°.
  • the optical laminate 100a can be applied, for example, to manufacturing a display system illustrated in FIG. 3, in which the first retardation member 20 is integrally provided with the display element 12.
  • the release liner 61 is peeled off from the optical laminate 100a, and the polarizing member 10 is attached to the liquid crystal cell together with the back side polarizing member so that the polarizing member 10 becomes the front side (viewing side) polarizing member of the liquid crystal cell.
  • a display system in which the retardation member 20 is integrally provided with a liquid crystal panel (display element) can be manufactured.
  • the first retardation member 20 is integrated with the organic EL panel (display element) by peeling off the release liner 61 from the optical laminate 100a and bonding it to the front of the organic EL panel via the adhesive layer 31.
  • a display system can be manufactured that is provided with a display system.
  • a third retardation member including a third ⁇ /4 member may be disposed between the optical laminate 100a and the organic EL panel.
  • the third retardation member may be included in the optical laminate.
  • the optical laminate may include an adhesive layer, a third retardation member, a polarizing member, a first retardation member, and a protection member in this order.
  • the same explanation as for the first ⁇ /4 member can be applied to the third ⁇ /4 member.
  • the third retardation member is configured such that the slow axis of the third ⁇ /4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
  • the polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include.
  • the protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer.
  • a typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
  • the orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be.
  • the single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
  • the degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
  • the above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer.
  • the degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula.
  • Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
  • Polarization degree P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, may be 2 ⁇ m or more and 15 ⁇ m or less, may be 12 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less, It may be 5 ⁇ m or less.
  • the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
  • An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
  • the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
  • the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
  • the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
  • An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin.
  • a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film.
  • a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
  • Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
  • the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
  • the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
  • the obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is.
  • Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
  • the protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film.
  • materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate.
  • thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • (meth)acrylic resin refers to acrylic resin and/or methacrylic resin.
  • Other examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • the materials for the resin film can be used alone or in combination.
  • the thickness of the protective layer is typically 100 ⁇ m or less, for example 5 ⁇ m to 80 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m, more preferably 15 ⁇ m to 35 ⁇ m.
  • the in-plane retardation Re (550) of the first ⁇ /4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the first ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the first ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the first ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the first ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the first ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the first ⁇ /4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first ⁇ /4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
  • polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
  • the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the thickness of the first ⁇ /4 member made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
  • the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first ⁇ /4 member (homogeneous alignment).
  • Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
  • the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
  • the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
  • the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
  • the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
  • liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
  • the thickness of the first ⁇ /4 member composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m. be.
  • the retardation Rth (550) in the thickness direction of the first positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm.
  • the in-plane retardation Re (550) of the first positive C plate is, for example, less than 10 nm.
  • the first positive C-plate may be formed of any suitable material.
  • the first positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method for forming such a liquid crystal compound and positive C plate include the method for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A No. 2002-333642.
  • the thickness of the first positive C plate is preferably 0.5 ⁇ m to 5 ⁇ m.
  • the first protection member 41 typically includes a base material.
  • the substrate may be comprised of any suitable film.
  • Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins.
  • the thickness of the base material is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 15 ⁇ m to 35 ⁇ m.
  • the first protective member preferably has a base material and a surface treatment layer formed on the base material.
  • the first protection member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the optical laminate 100a.
  • the surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer.
  • the first protection member may have two or more surface treatment layers.
  • the water contact angle on the surface of the surface treatment layer may be, for example, 90° or more and 125° or less, or, for example, 100° or more and 115° or less.
  • the antireflection layer is provided to prevent reflection of external light and the like.
  • the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure).
  • the thickness of the antireflection layer is preferably 0.05 ⁇ m to 1 ⁇ m.
  • methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method).
  • the antireflection layer is provided on the outermost surface of the first protective member, and the first surface protection film is attached to the surface of the antireflection layer. According to the embodiment in which the antireflection layer is provided on the outermost surface of the first protective member, an excellent antireflection effect can be achieved in a display system in which a space is formed between the half mirror 18 and the first retardation member 20. Obtainable.
  • the hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency.
  • the hard coat layer may be formed from any suitable resin.
  • the hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • Adhesive layer 31 may be composed of any suitable adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination, and blending ratio of monomers that form the base resin of the adhesive, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., adhesives can have desired characteristics depending on the purpose. can be prepared.
  • the base resin of the adhesive may be used alone or in combination of two or more types. As the base resin, acrylic resin is preferably used.
  • the adhesive layer is preferably composed of an acrylic adhesive.
  • the thickness of the adhesive layer is typically 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 12 ⁇ m or more, and typically 60 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 23 ⁇ m or less.
  • Release liner 61 is formed of any suitable resin film.
  • the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene.
  • PET polyethylene terephthalate
  • the materials for the resin film can be used alone or in combination.
  • the release liner may be transparent (eg, haze of 5% or less, and such as 3% or less) or non-transparent.
  • a release treatment layer may be provided on the surface of the release liner 61 that comes into contact with the adhesive layer 31.
  • the mold release treatment agent forming the mold release treatment layer include silicone mold release treatment agents, fluorine mold release treatment agents, and long chain alkyl acrylate type mold release treatment agents.
  • the mold release treatment agents can be used alone or in combination.
  • the thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
  • the thickness of the release liner is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 60 ⁇ m or less, preferably 45 ⁇ m or less.
  • the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
  • FIG. 5 is a schematic cross-sectional view of another optical laminate that may be used in the display system illustrated in FIG. 3.
  • the optical laminate 100b includes an adhesive layer 32, a second retardation member 22, and a second protection member 42 in this order.
  • the second retardation member 22 and the second protection member 42 are laminated with an adhesive layer 53 in between.
  • the adhesive layer 53 is typically an adhesive layer or an adhesive layer, and preferably an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the surface of the adhesive layer 32 is protected by a release liner 62 until it is ready for use.
  • the first surface protection film and the second surface protection film are attached to the second protection member 42 side of the optical laminate 100b.
  • the second retardation member 22 has a laminated structure of a second ⁇ /4 member 22a and a second positive C plate 22b. As shown in the illustrated example, it is preferable that the second ⁇ /4 member 22a is located closer to the second protection member 42 than the second positive C plate 22b, but these arrangements may be reversed. . Further, the second positive C plate 22b may be omitted.
  • the second ⁇ /4 member 22a and the second positive C plate 22b are laminated, for example, via an adhesive layer (not shown).
  • the optical laminate 100b can be applied, for example, to manufacturing a display system in an embodiment in which the second retardation member 22 is integrally provided with the first lens portion 16 in the display system illustrated in FIG. Specifically, by peeling off the release liner 62 from the optical laminate 100b and bonding it to the first lens part 16 via the adhesive layer 32, the second retardation member 22 is integrally attached to the first lens part 16.
  • a display system provided can be manufactured.
  • the in-plane retardation Re (550) of the second ⁇ /4 member 22a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the second ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the second ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the second ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the second ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the second ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the second ⁇ /4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound.
  • the same explanation as for the first ⁇ /4 member can be applied to the second ⁇ /4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the first ⁇ /4 member and the second ⁇ /4 member may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
  • the retardation Rth (550) in the thickness direction of the second positive C plate 22b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm.
  • the in-plane retardation Re (550) of the second positive C plate is, for example, less than 10 nm.
  • the second positive C plate is formed of any suitable material that can satisfy the above characteristics.
  • the same explanation as for the first positive C plate can be applied to the constituent material of the second positive C plate.
  • the first positive C plate and the second positive C plate may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
  • the second protection member 42 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material.
  • the surface treatment layer may be located on the outermost surface of the optical laminate 100b.
  • the same explanation as for the first protective member can be applied.
  • the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 42.
  • an excellent antireflection effect can be obtained.
  • a method for manufacturing a display system includes peeling off the second surface protection film from the optical laminate with a surface protection film described in Section A, and producing an optical laminate to which only the first surface protection film is attached. and inspecting for defects an object to be inspected in which an optical laminate to which only the first surface protection film is attached is bonded to another member.
  • the second surface protection film may be peeled off before or after the production of the object to be inspected (that is, bonding the optical laminate with the surface protection film to another member).
  • a method of manufacturing a display system includes: Another member is pasted on the side opposite to the side to which the first surface protection film and the second surface protection film of the optical laminate with a surface protection film according to item A are pasted, to form a secondary surface protection film-attached optical laminate. obtaining a laminate; Peeling the second surface protection film from the surface protection film-attached secondary laminate; inspecting the secondary laminate with the surface protection film for defects; and peeling the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate; In this order.
  • the obtained secondary laminate is subjected to an assembly process and assembled with other members to form a display system.
  • FIG. 6 an example of a method for manufacturing the display system of the present invention will be described with reference to FIG. 6.
  • the optical laminate 200 with a surface protection film shown in FIG. 6A has the optical laminate 100a illustrated in FIG.
  • the protective film 120 is pasted outward in this order.
  • the optical laminate 100a is processed into a shape corresponding to the shape of the object to be adhered (another member 300 shown in FIG. 6(b)).
  • the optical laminate 200 with a surface protection film is processed into a desired shape by cutting, punching, machining, or the like.
  • the release liner 61 is peeled off from the optical laminate 200 with a surface protection film, and the viewing side of the optical member (e.g., liquid crystal cell, organic EL panel) 300 ( (front) surface to obtain a secondary laminate 400a with a surface protection film.
  • the optical member e.g., liquid crystal cell, organic EL panel
  • the second surface protection film 120 is peeled off from the surface protection film-attached secondary laminate 400a to obtain a surface protection film-attached secondary laminate 400b.
  • a defect inspection is performed on the surface protection film-equipped secondary laminate 400b whose surface is protected by the first surface protection film 110.
  • the first surface protection film 110 is peeled off from the surface protection film-attached secondary laminate 400b, which was determined to be good in the defect inspection, to obtain a secondary laminate 400c.
  • the secondary laminate 400c is used for assembly of a display system.
  • the optical laminate is shipped to a display element manufacturer as a first semi-finished product in the state of an optical laminate with a surface protection film to which two surface protection films are attached (for example, FIG. 6A).
  • the display element (liquid crystal panel, organic EL panel, etc.) to which the optical laminate with a surface protection film is pasted can be produced. ) is obtained (for example, FIG. 6B); from here, the second surface protection film is peeled off, and the display element is inspected for defects with the surface protected by the first surface protection film (for example, 6C and D); Display elements determined to be non-defective in the defect inspection are shipped to a display system manufacturer as a second semi-finished product with the first surface protection film attached; After peeling off the surface protection film, it can be assembled with other components (eg, FIG. 6E).
  • an optical member such as a liquid crystal cell or an organic EL element
  • defects can be prevented when shipping the first semi-finished product
  • defect inspection can be performed when manufacturing the second semi-finished product
  • the second surface protection film may be peeled off before the release liner is peeled off and attached to the optical member, and the defect inspection may be performed before the release liner is attached to the optical member.
  • the optical laminate can be bonded to the optical member.
  • the release liner is peeled off and the optical laminate is attached to the optical member. Can be matched.
  • Defect inspection may be performed by automated optical inspection (AOI), visual inspection, etc.
  • the defect inspection includes automated optical inspection (AOI).
  • Defect inspection may be performed using a transmission optical system, a reflection optical system, or a combination thereof depending on the purpose.
  • the thickness is a value measured by the following measuring method.
  • ⁇ Thickness> The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
  • ⁇ Haze of surface protection film> For each surface protection film, the release liner is peeled off from the adhesive layer, and light is irradiated from the base material side of the surface protection film using a haze meter ("NDH-5000" manufactured by Nippon Denshoku Industries Co., Ltd.) to meet JIS K7136. Haze was measured according to .
  • Adhesive composition A was applied to one side of a base material (PET film, "CE905-38" manufactured by KOLON, thickness 38 ⁇ m), and then dried to form an adhesive layer (thickness 15 ⁇ m).
  • a release liner manufactured by Toyobo Co., Ltd., product number TG704 was attached to the surface of the adhesive layer opposite to the base material.
  • surface protection film A was obtained.
  • the haze of surface protection film A was 1.8%.
  • Production of surface protection film B An adhesive layer (thickness: 15 ⁇ m) was formed in the same manner as in Production Example 1A, except that a PET film (“CE901-38” manufactured by KOLON, thickness: 38 ⁇ m) was used as the base material. Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material. As a result, surface protection film B was obtained. The haze of surface protection film B was 3.9%.
  • Production Example 1C Production of surface protection film C
  • Production Example 1A except that a PET film (product number T100C38 manufactured by Mitsubishi Chemical Corporation, thickness 38 ⁇ m) was used as the base material, and adhesive composition A was applied to the corona-treated surface of the film to form an adhesive layer with a thickness of 5 ⁇ m.
  • a surface protection film C was obtained in the same manner as above. The haze of surface protection film C was 2.6%.
  • the following evaluations (1) to (5) were performed.
  • the release liner was peeled off from the adhesive layer to expose the surface of the adhesive layer on the side opposite to the base material.
  • the surface protective film from which the release liner was removed was set in a white interferometer (manufactured by Zygo, trade name: Zygo NewView 7300) so that the exposed surface of the adhesive layer faced the objective lens, and the surface of the adhesive layer was exposed. Interference data was measured under the following conditions.
  • Measurement conditions for white interferometer Objective lens; ⁇ 10 Internal lens; ⁇ 1.0 Resolution: 1.09 ⁇ m
  • the obtained interference data is calculated in the analysis range (depth direction) from -1000 nm to -2000 nm with respect to the measurement surface (reference surface) using frequency domain analysis (calculation software; MetroPro), and the corresponding location is determined as a black area.
  • a two-dimensional image was obtained. Note that the measurement plane (reference plane) was set based on the plane that was the average height within the measurement visual field area. Table 2 shows the area of the black area (B-BA) in the two-dimensional image.
  • the two-dimensional image was binarized and analyzed using ⁇ 100 nm as a threshold value with respect to the measurement surface, to obtain a binarized image in which the portion below ⁇ 100 nm was a white region.
  • Table 2 shows the area (A-WA) of the white region in the binarized image.
  • the ratio of the sum of the area of the black area in the two-dimensional image (B-BA) and the area of the white area in the binarized image (A-WA) to the measurement field area S of the white interferometer was calculated (as described above). (See formulas (1) to (3).) The results are shown in Table 2.
  • the maximum valley depth is determined by the minimum value with respect to the average plane within the measurement field of view area. It was set as (Sv). Further, the value of Ra was defined as the arithmetic mean height (Sa). Note that the maximum valley depth and arithmetic mean height were determined by averaging data from three randomly selected points. The results are shown in Table 2.
  • ⁇ Measuring device Tensile tester (manufactured by Kyowa Interface Science Co., Ltd., adhesive film peeling analyzer "VPA-2", turn on the power and let it age for at least 30 minutes.)
  • ⁇ Measurement environment 23 ⁇ 5°C, 60 ⁇ 20RH%
  • ⁇ Peeling speed 300mm/min
  • ⁇ Peeling angle 90° or 180°
  • Surface protection film C Cut out the surface protection film A or B into a rectangular film piece (50 mm x 50 mm), peel off the release liner and attach it to the SUS board via the exposed adhesive layer, and apply it to the surface of the base layer of the surface protection film.
  • the trigger peeling force of the protective film C was measured in the same manner as in (1) above, except that the surface protective film C was attached.
  • ⁇ Normal peeling force measurement method> The surface protection film was cut into a size of 25 mm in width and 100 mm in length, the release liner was peeled off from the adhesive layer, and the film was roll-bonded to the adherend at a pressure of 0.25 MPa and a feed rate of 0.3 m/min. This sample was allowed to stand for 30 minutes in an environment with a temperature of 23°C and a relative humidity of 50%, and then a peel test was conducted under the same environment at a peel angle of 180° and a tensile speed of 300 mm/min, and the 180° peel force was measured. .
  • the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times.
  • the boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C.
  • the potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight.
  • the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
  • a triacetyl cellulose (TAC) resin film with HC (TAC thickness: 25 ⁇ m, HC thickness: 7 ⁇ m) was placed on one side of the obtained absorption type polarizing film, and a cycloolefin resin film (thickness: 13 ⁇ m) was placed on the other side. were laminated together as a protective layer.
  • the curable adhesive was coated to a total thickness of about 1 ⁇ m, and then bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive. Thereby, a polarizing film having the structure of [TAC film (protective layer)/absorption type polarizing film/COP film (protective layer)] was obtained.
  • the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
  • temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
  • polymerization was allowed to proceed until a predetermined stirring power was reached.
  • nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
  • polyester carbonate resin pellets
  • a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
  • T-die width 200mm, setting temperature: 250°C
  • a long resin film with a thickness of 135 ⁇ m was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder.
  • the obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times to obtain a stretched film ( ⁇ /4 member) with a thickness of 47 ⁇ m.
  • the obtained stretched film had Re(550) of 143 nm, Re(450)/Re(550) of 0.86, and Nz coefficient of 1.12.
  • the coating solution was applied to a PET substrate subjected to vertical alignment treatment using a bar coater, and then heated and dried at 80° C. for 4 minutes to align the liquid crystal.
  • a positive C plate having a thickness of 4 ⁇ m and an Rth (550) of ⁇ 100 nm was formed on the base material.
  • a leveling agent By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared.
  • Anti-reflection layer forming material 100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content: 100%
  • an acrylic polymer solution was prepared by adding 0.3 parts of benzoyl peroxide (BPO: Niper BMT manufactured by NOF Corporation) as a crosslinking agent to 100 parts of the solid content of the obtained acrylic polymer solution.
  • BPO benzoyl peroxide
  • the obtained adhesive composition was applied to the release-treated layer surface of a release liner (manufactured by Toray Industries, Inc., Therapel) and dried at 155° C. for 3 minutes to form an adhesive layer with a thickness of 20 ⁇ m.
  • Example 1 A surface protection film laminate was obtained using surface protection film A as the first surface protection film and surface protection film C as the second surface protection film. Specifically, a release liner is peeled off from surface protection film C and bonded to the base material surface of surface protection film A to form a surface protection film having the configuration of [release liner/surface protection film A/surface protection film C]. A laminate was obtained. (2) The adhesive layer obtained in Production Example 6 was laminated together with a release liner on the COP protective layer side surface of the polarizing film obtained in Production Example 2 to obtain a polarizing film with an adhesive layer.
  • the positive C plate was transferred to a ⁇ /4 member (stretched film) via an ultraviolet curable adhesive (thickness after curing: 1 ⁇ m) to obtain a retardation member.
  • the protective member obtained in Production Example 5 was bonded to the positive C plate side of the obtained retardation member via another acrylic adhesive layer. At this time, they were bonded together so that the acrylic film of the protective member was located on the retardation member side (in other words, so that the antireflection layer was on the outermost surface).
  • another acrylic adhesive layer formed on the release liner was attached to the ⁇ /4 member side surface. Thereby, a laminate having the structure of [protective member/positive C plate/ ⁇ /4 member/acrylic adhesive layer/release liner] was obtained.
  • the release liner of Film A was peeled off and the film was bonded to Film B with the longitudinal direction aligned without applying tension.
  • film A is punched so that the slow axis of the ⁇ /4 member is parallel to the transverse direction
  • film B is punched so that the absorption axis of the absorption type polarizing film is diagonally 45 degrees.
  • the angle between the absorption axis of the absorption type polarizing film and the slow axis of the ⁇ /4 member is 45°.
  • the surface protection having the structure of [optical laminate (release liner/adhesive layer/polarizing member/ ⁇ /4 member/positive C plate/protective member)/surface protection film A/surface protection film C] An optical laminate with film was obtained.
  • Example 2 An optical film with a surface protection film having the structure of [optical laminate/surface protection film B/surface protection film C] was prepared in the same manner as in Example 1 except that the above-mentioned surface protection film B was used as the first surface protection film. A laminate was obtained.
  • the optical laminates with surface protection films obtained in the above Examples and Comparative Examples were cut into a size of 371.87 mm x 236.58 mm and used as samples to be tested.
  • the samples to be inspected in Examples 1 and 2 were subjected to defect inspection with the release liner and second surface protection film removed, and the samples to be inspected in Comparative Examples 1 to 3 were subjected to defect inspection with the release liner removed.
  • the sample to be inspected was set in the chucking part of an automatic optical visual inspection device, and defects (scratches, foreign objects, air bubbles, etc.) with a size of 100 ⁇ m or more in the sample were detected.
  • Inspection failure rate (%) number of false positives/total number of detections x 100, and the effectiveness of the test was evaluated based on the following criteria.
  • Inspection failure rate (%) number of false positives/total number of detections x 100, and the effectiveness of the test was evaluated based on the following criteria.
  • the presence or absence of scratches with a size of 100 ⁇ m or more on the surface of the surface protection film was checked, and scratch evaluation was performed based on the following criteria. The results are shown in Table 5.
  • the optical laminate with a surface protection film of the example which has a structure in which the surface protection film is double affixed to the surface of the optical laminate, is Scratches are prevented.
  • the optical laminate can be inspected for defects with the inner surface protection film attached, and the surface remains unchanged until it is used for assembly. can be protected.
  • the optical laminate can be suitably inspected automatically with the surface protection film attached.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
  • optical laminate with a protective film according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.
  • Second lens section 100 Optical laminate 110 First surface Protective film 120 Second surface protection film 200 Optical laminate with surface protection film

Abstract

The main purpose of the present invention is to provide an optical laminate that is applied to VR goggles, and that can satisfy both of surface protection and minute defect inspection. The present invention provides an optical laminate equipped with a surface protection film, comprising: an optical laminate which includes at least one optical member and is for use in display-equipped goggles; and a first surface protection film and a second surface protection film that are stuck on one surface of the optical laminate in the stated order toward the outer side.

Description

表面保護フィルム付光学積層体およびその製造方法Optical laminate with surface protection film and manufacturing method thereof
 本発明は、表面保護フィルム付光学積層体およびその製造方法に関する。 The present invention relates to an optical laminate with a surface protection film and a method for manufacturing the same.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
 近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルでは、表示パネルに表示される画像を拡大して視認者に視認させることから、VRゴーグルに適用される光学積層体に対しては、従来の画像表示装置に適用される光学積層体よりも厳しい欠点管理が必要となる。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. In VR goggles, the image displayed on the display panel is enlarged for the viewer to see, so the optical laminate used in VR goggles is more expensive than the optical laminate used in conventional image display devices. Strict defect management is also required.
特開2021-103286号公報JP2021-103286A
 上述のとおり、VRゴーグルに適用される光学積層体に対しては、厳しい欠点管理が必要となるため、微細な欠点まで検出可能な精密な欠点検査が行われる。その一方で、最終的なアセンブリ工程までの間、光学積層体の表面は保護されていることが好ましい。よって、本発明は、VRゴーグルに適用される光学積層体であって、表面保護と精密な欠点検査とを両立可能な光学積層体の提供を主たる目的とする。 As mentioned above, strict defect management is required for optical laminates applied to VR goggles, so a precise defect inspection that can detect even the smallest defects is performed. On the other hand, the surface of the optical laminate is preferably protected until the final assembly process. Therefore, the main object of the present invention is to provide an optical laminate that can be applied to VR goggles and is capable of both surface protection and precise defect inspection.
 本発明の1つの局面によれば、[1]~[9]の表面保護フィルム付光学積層体、[10]の表面保護フィルム付光学積層体の製造方法、および[11]の表示システムの製造方法が提供される。
[1]少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体と、該光学積層体の一方の面に外方に向かってこの順に貼着されている、第一表面保護フィルムおよび第二表面保護フィルムと、を有する、表面保護フィルム付光学積層体。
[2]上記第一表面保護フィルムのヘイズが5%未満である、[1]に記載の表面保護フィルム付光学積層体。
[3]上記第一表面保護フィルムとして、第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、該第一粘着剤層における該第一基材と反対側の表面の最大谷深さ(Sv)の絶対値が500nm以下であり、該第一基材を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、表面保護フィルムを、上記光学積層体に貼着して得られる、[1]または[2]に記載の表面保護フィルム付光学積層体。
[4]上記第一粘着剤層における上記第一基材と反対側の表面の算術平均高さ(Sa)の絶対値が25nm以下である、[3]に記載の表面保護フィルム付光学積層体。
[5]上記第一表面保護フィルムとして、第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、該第一粘着剤層における該第一基材と反対側の表面は、下記式(1)を満足する、表面保護フィルムを、上記光学積層体に貼着して得られる、[1]または[2]に記載の表面保護フィルム付光学積層体;
Figure JPOXMLDOC01-appb-M000003
(式(1)中、Sは下記表面形状評価試験における白色干渉計の測定視野面積を示し;B-BAは下記表面形状評価試験において得られる二値化前の二次元画像における黒色領域の面積を示し;A-WAは下記表面形状評価試験において得られる二値化後の二次元画像おける白色領域の面積を示す。)
<表面形状評価試験>
 該第一粘着剤層における該第一基材と反対側の表面を白色干渉計により測定し;
 得られた干渉データを、周波数領域解析により、測定面に対して-1000nm~-2000nmの解析範囲で演算して、該当箇所が黒色領域となる二次元画像を得た後;
 該二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得る。
[6]上記第一基材を顕微鏡観察したときに、100μm×100μmの観測領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、[5]に記載の表面保護フィルム付光学積層体。
[7]上記光学積層体が、偏光部材と、第一位相差部材と、保護部材とを、上記第一表面保護フィルムに向かってこの順に有する、[1]から[6]のいずれかに記載の表面保護フィルム付光学積層体。
[8]上記保護部材が、表面処理層を含み、該表面処理層に、上記第一表面保護フィルムが貼着されている、[7]に記載の表面保護フィルム付光学積層体。
[9]上記光学積層体が、上記第一表面保護フィルムおよび上記第二表面保護フィルムが貼着されている側と反対側の面に粘着剤層を有する、[1]から[8]のいずれかに記載の表面保護フィルム付光学積層体。
[10]表面保護フィルム付光学積層体の製造方法であって、少なくとも1つの光学部材を有する光学積層体の一方の面に、第一表面保護フィルムおよび第二表面保護フィルムを貼着することを含み、該第一表面保護フィルムが、(i)および(ii)から選択される、製造方法;
(i)第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
 該第一粘着剤層における該第一基材と反対側の表面の最大谷深さ(Sv)の絶対値が500nm以下であり、
 該第一基材を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、表面保護フィルム;
(ii)第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
 該第一粘着剤層における該第一基材と反対側の表面は、下記式(1)を満足する、表面保護フィルム;
Figure JPOXMLDOC01-appb-M000004
(式(1)中、Sは下記表面形状評価試験における白色干渉計の測定視野面積を示し;B-BAは下記表面形状評価試験において得られる二値化前の二次元画像における黒色領域の面積を示し;A-WAは下記表面形状評価試験において得られる二値化後の二次元画像おける白色領域の面積を示す。)
<表面形状評価試験>
 該第一粘着剤層における該第一基材と反対側の表面を白色干渉計により測定し;
 得られた干渉データを、周波数領域解析により、測定面に対して-1000nm~-2000nmの解析範囲で演算して、該当箇所が黒色領域となる二次元画像を得た後;
 該二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得る。
[11]表示システムの製造方法であって、[1]から[9]のいずれか一つに記載の表面保護フィルム付光学積層体の上記第一表面保護フィルムおよび上記第二表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、
 該表面保護フィルム付二次積層体から上記第二表面保護フィルムを剥離すること、
 該表面保護フィルム付二次積層体を欠点検査すること、および
 該表面保護フィルム付二次積層体から上記第一表面保護フィルムを剥離して、二次積層体を得ること、
 をこの順に含み、
 該表示システムが、ディスプレイ付きゴーグルである、製造方法。
According to one aspect of the present invention, the optical laminate with a surface protection film of [1] to [9], the method of manufacturing an optical laminate with a surface protection film of [10], and the production of a display system of [11] A method is provided.
[1] An optical laminate that includes at least one optical member and is used for goggles with a display, and a first surface protection film that is adhered to one surface of the optical laminate in this order outward. and a second surface protection film, an optical laminate with a surface protection film.
[2] The optical laminate with a surface protection film according to [1], wherein the first surface protection film has a haze of less than 5%.
[3] The first surface protection film has a first base material and a first adhesive layer laminated on the first base material, and the first base material in the first adhesive layer A defect in which the absolute value of the maximum valley depth (Sv) on the opposite surface is 500 nm or less, and the maximum Feret diameter is 10 μm or more in an observation area of 100 μm x 100 μm when the first base material is observed with a microscope. The optical laminate with a surface protection film according to [1] or [2], which is obtained by attaching less than three surface protection films to the optical laminate.
[4] The optical laminate with a surface protection film according to [3], wherein the absolute value of the arithmetic mean height (Sa) of the surface of the first adhesive layer opposite to the first base material is 25 nm or less. .
[5] The first surface protection film has a first base material and a first adhesive layer laminated on the first base material, and the first base material in the first adhesive layer The surface on the opposite side is the optical laminate with a surface protection film according to [1] or [2], which is obtained by attaching a surface protection film satisfying the following formula (1) to the optical laminate. ;
Figure JPOXMLDOC01-appb-M000003
(In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test. (A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.)
<Surface shape evaluation test>
measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer;
After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area;
The two-dimensional image is binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below −100 nm is a white region.
[6] The optical device with a surface protection film according to [5], wherein when the first base material is observed under a microscope, the number of defects with a maximum Feret diameter of 10 μm or more is less than 3 in an observation area of 100 μm x 100 μm. laminate.
[7] The optical laminate includes a polarizing member, a first retardation member, and a protective member in this order toward the first surface protection film, according to any one of [1] to [6]. Optical laminate with surface protection film.
[8] The optical laminate with a surface protection film according to [7], wherein the protection member includes a surface treatment layer, and the first surface protection film is attached to the surface treatment layer.
[9] Any one of [1] to [8], wherein the optical laminate has an adhesive layer on the side opposite to the side to which the first surface protection film and the second surface protection film are attached. An optical laminate with a surface protection film according to claim 1.
[10] A method for producing an optical laminate with a surface protection film, which comprises attaching a first surface protection film and a second surface protection film to one surface of an optical laminate having at least one optical member. A manufacturing method comprising: the first surface protection film selected from (i) and (ii);
(i) having a first base material and a first adhesive layer laminated on the first base material,
The absolute value of the maximum valley depth (Sv) of the surface of the first adhesive layer opposite to the first base material is 500 nm or less,
A surface protection film having less than three defects with a maximum Feret diameter of 10 μm or more in an observation area of 100 μm x 100 μm when the first base material is observed under a microscope;
(ii) having a first base material and a first adhesive layer laminated on the first base material,
The surface of the first adhesive layer opposite to the first base material is a surface protection film that satisfies the following formula (1);
Figure JPOXMLDOC01-appb-M000004
(In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test. (A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.)
<Surface shape evaluation test>
measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer;
After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area;
The two-dimensional image is binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below −100 nm is a white region.
[11] A method for manufacturing a display system, wherein the first surface protection film and the second surface protection film of the optical laminate with a surface protection film according to any one of [1] to [9] are pasted. Obtaining a secondary laminate with a surface protection film by pasting another member on the side opposite to the side on which it was applied;
Peeling the second surface protection film from the surface protection film-attached secondary laminate;
inspecting the secondary laminate with the surface protection film for defects; and peeling the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate;
In this order,
A manufacturing method, wherein the display system is goggles with a display.
 本発明の実施形態による表面保護フィルム付光学積層体は、光学積層体の表面に2つの表面保護フィルムが貼着された構成を有する。よって、欠点検査前に外側の表面保護フィルムを剥離除去しても、内側の表面保護フィルムで表面が保護された状態で光学積層体を欠点検査することができ、アセンブリ工程の直前までキズ付き等を防止することができる。 The optical laminate with a surface protection film according to the embodiment of the present invention has a configuration in which two surface protection films are attached to the surface of the optical laminate. Therefore, even if the outer surface protection film is peeled off and removed before defect inspection, the optical laminate can be inspected for defects while the surface is protected by the inner surface protection film, and scratches etc. can be prevented until just before the assembly process. can be prevented.
本発明の1つの実施形態による表面保護フィルム付光学積層体の概略断面図である。1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention. 本発明の実施形態による表面保護フィルム付光学積層体に用いられ得る表面保護フィルムを説明する概略断面図である。1 is a schematic cross-sectional view illustrating a surface protection film that can be used in an optical laminate with a surface protection film according to an embodiment of the present invention. 本発明の1つの実施形態に係る表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention. 図3に示す表示システムに用いられ得る光学積層体の一例を示す模式的な断面図である。4 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 3. FIG. 図3に示す表示システムに用いられ得る光学積層体の一例を示す模式的な断面図である。4 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 3. FIG. 本発明の1つの実施形態による表示システムの製造方法を説明する概略図である。1 is a schematic diagram illustrating a method of manufacturing a display system according to one embodiment of the present invention. FIG. 図6Aに続く図である。It is a figure following FIG. 6A. 図6Bに続く図である。It is a figure following FIG. 6B. 図6Cに続く図である。It is a figure following FIG. 6C. 図6Dに続く図である。It is a figure following FIG. 6D.
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は時計回りまたは反時計回りに45°を意味する。また、本明細書において、「略平行」は、0°±10°の範囲内である場合を包含し、例えば0°±5°、好ましくは0°±3°、より好ましくは0°±1°の範囲内であり、「略直交」は、90°±10°の範囲内である場合を包含し、例えば90°±5°、好ましくは90°±3°、より好ましくは90°±1°の範囲内である。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Thus, for example, "45°" means 45° clockwise or counterclockwise. In addition, in this specification, "substantially parallel" includes cases within the range of 0°±10°, for example, 0°±5°, preferably 0°±3°, more preferably 0°±1 90°±5°, preferably 90°±3°, more preferably 90°±1 within the range of °.
A.表面保護フィルム付光学積層体
 図1は、本発明の1つの実施形態による表面保護フィルム付光学積層体の概略断面図である。表面保護フィルム付光学積層体200は、少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体100と、光学積層体100の一方の面に外方に向かってこの順に貼着されている、第一表面保護フィルム110および第二表面保護フィルム120と、を有する。光学積層体100は、第一表面保護フィルム110および第二表面保護フィルム120が貼着されている側と反対側の面に粘着剤層を有し得る。この場合、粘着剤層は、はく離ライナーで保護されていてもよい。第一表面保護フィルム110、第二表面保護フィルム120、およびはく離ライナーは、光学積層体100に一時的に貼着(仮着)される工程用部材であり、光学積層体100が使用に供される際には剥離除去される。
A. Optical laminate with surface protection film FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention. The optical laminate 200 with a surface protection film includes at least one optical member, and is attached to the optical laminate 100 and one surface of the optical laminate 100 in this order toward the outside, for use in goggles with a display. It has a first surface protection film 110 and a second surface protection film 120. The optical laminate 100 may have an adhesive layer on the surface opposite to the side to which the first surface protection film 110 and the second surface protection film 120 are attached. In this case, the adhesive layer may be protected with a release liner. The first surface protection film 110, the second surface protection film 120, and the release liner are process members that are temporarily attached (temporary attachment) to the optical laminate 100, and are used when the optical laminate 100 is put into use. When it is removed, it is peeled off and removed.
 表面保護フィルム付光学積層体は、光学積層体の一方の面に、第一表面保護フィルムおよび第二表面保護フィルムを貼着することによって製造され得る。光学積層体の一方の面に第一表面保護フィルムおよび第二表面保護フィルムをこの順に貼着してもよく、第一表面保護フィルムと第二表面保護フィルムとの積層体を光学積層体に積層してもよい。 The optical laminate with a surface protection film can be produced by attaching a first surface protection film and a second surface protection film to one surface of the optical laminate. A first surface protection film and a second surface protection film may be attached in this order to one surface of the optical laminate, and a laminate of the first surface protection film and the second surface protection film may be laminated to the optical laminate. You may.
A-1.第一表面保護フィルム
 図1および図2に示されるように、第一表面保護フィルム110は、第一基材112と、第一基材112に積層されている第一粘着剤層114と、を有する。第一表面保護フィルム110が使用に供されるまでの間、第一粘着剤層114には、はく離ライナー116が貼着(仮着)されており、第一粘着剤層114を保護している。
A-1. First surface protection film As shown in FIGS. 1 and 2, the first surface protection film 110 includes a first base material 112 and a first adhesive layer 114 laminated on the first base material 112. have A release liner 116 is attached (temporarily attached) to the first adhesive layer 114 to protect the first adhesive layer 114 until the first surface protection film 110 is put into use. .
 第一表面保護フィルムのヘイズは、例えば5%以下、好ましくは4%以下、より好ましく3%以下、さらに好ましくは2%以下、さらにより好ましくは1.5%以下であり、代表的には0.05%以上である。第一表面保護フィルムのヘイズが上記範囲内であれば、光学積層体の表面が第一表面保護フィルムで保護された状態であっても精密な欠点検査を行うことができる。上記範囲のヘイズを有する表面保護フィルムは、例えば、低ヘイズの基材および/または粘着剤層を用いることによって得ることができる。 The haze of the first surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, even more preferably 2% or less, even more preferably 1.5% or less, and typically 0. It is .05% or more. If the haze of the first surface protection film is within the above range, precise defect inspection can be performed even when the surface of the optical laminate is protected by the first surface protection film. A surface protection film having a haze within the above range can be obtained, for example, by using a low haze base material and/or an adhesive layer.
 第一表面保護フィルムの光学積層体に対する90°きっかけ剥離力(P1)は、例えば0.05N~0.25N、好ましくは0.08N~0.2N、より好ましくは0.10N~0.15Nである。第一表面保護フィルムの光学積層体に対する180°きっかけ剥離力(P1’)は、例えば0.05N~0.25N、好ましくは0.08N~0.2N、より好ましくは0.10N~0.15Nである。一般的に、フィルムを端部から一定の剥離速度で剥離する場合、フィルムの剥離力は、剥離開始直後は剥離長さに応じて増大し、ピークを迎えて減少し、所定時間経過後に一定の値で安定化する。本明細書において、きっかけ剥離力とは剥離開始直後における剥離力のピーク値(最大値)を意味し、通常剥離力とは剥離開始から所定時間経過後の安定化した剥離力を意味するものとする。 The 90° triggered peeling force (P1) of the first surface protection film against the optical laminate is, for example, 0.05N to 0.25N, preferably 0.08N to 0.2N, more preferably 0.10N to 0.15N. be. The 180° triggered peeling force (P1') of the first surface protection film against the optical laminate is, for example, 0.05N to 0.25N, preferably 0.08N to 0.2N, more preferably 0.10N to 0.15N. It is. Generally, when peeling a film from the edge at a constant peeling speed, the peeling force of the film increases depending on the peeling length immediately after the start of peeling, reaches a peak, then decreases, and then reaches a certain level after a predetermined period of time. Stabilize at the value. In this specification, triggered peeling force means the peak value (maximum value) of peeling force immediately after the start of peeling, and normal peeling force means the stabilized peeling force after a predetermined period of time has passed from the start of peeling. do.
 第一表面保護フィルムの光学積層体に対する90°きっかけ剥離力(P1)と第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する90°きっかけ剥離力(P2)との比(P2/P1)は、例えば0.1~2.0、好ましくは0.3~1.5、より好ましくは0.5~1.0、さらに好ましくは0.5~0.9である。また、第一表面保護フィルムの光学積層体に対する180°きっかけ剥離力(P1’)と第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する180°きっかけ剥離力(P2’)との比(P2’/P1’)は、例えば0.1~1.5、好ましくは0.3~1.2、より好ましくは0.5~1.0、さらに好ましくは0.5~0.9である。 90° triggered peeling force (P1) of the first surface protection film against the optical laminate and 90° triggered peeling force of the second surface protection film against the first surface protective film (first substrate side surface of the first surface protective film) The ratio (P2/P1) to (P2) is, for example, 0.1 to 2.0, preferably 0.3 to 1.5, more preferably 0.5 to 1.0, even more preferably 0.5 to It is 0.9. In addition, the 180° triggered peeling force (P1') of the first surface protection film against the optical laminate and the 180° trigger peeling force (P1') of the second surface protection film against the first surface protection film (first substrate side surface of the first surface protection film) The ratio (P2'/P1') to the triggered peeling force (P2') is, for example, 0.1 to 1.5, preferably 0.3 to 1.2, more preferably 0.5 to 1.0, and Preferably it is 0.5 to 0.9.
 第一表面保護フィルムの光学積層体に対する通常剥離力(剥離角度180°、引張速度300mm/分)は、例えば0.01N/25mm~0.2N/25mm、好ましくは0.02N/25mm~0.12N/25mm、より好ましくは0.03N/25mm~0.08N/25mmである。 The normal peeling force of the first surface protection film against the optical laminate (peel angle: 180°, tensile speed: 300 mm/min) is, for example, 0.01 N/25 mm to 0.2 N/25 mm, preferably 0.02 N/25 mm to 0.02 N/25 mm. 12N/25mm, more preferably 0.03N/25mm to 0.08N/25mm.
 第一表面保護フィルムの光学積層体に対する通常剥離力(P1’’)と第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する通常剥離力(P2’’)との比(P2’’/P1’’)は、例えば0.1~3.0、好ましくは0.5~2.5、より好ましくは1.0~2.0である。 The normal peeling force (P1'') of the first surface protection film against the optical laminate and the normal peeling force (P2'') of the second surface protection film against the first surface protection film (first substrate side surface of the first surface protection film). '') is, for example, 0.1 to 3.0, preferably 0.5 to 2.5, more preferably 1.0 to 2.0.
 1つの実施形態において、第一表面保護フィルム(はく離ライナーが剥離除去された状態)を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm以上の欠点数が、好ましくは3つ未満であり、より好ましくは1つ以下、さらに好ましくは0である。表面保護フィルムの顕微鏡観察の10μm以上の欠点数が上記上限以下であると、異物検査において表面保護フィルムに起因する誤検出をより安定して低減できる。 In one embodiment, when the first surface protection film (with the release liner removed) is observed under a microscope, the number of defects with a maximum Feret diameter of 10 μm or more is preferably 3 in an observation area of 100 μm x 100 μm. It is less than 1, more preferably 1 or less, and even more preferably 0. When the number of defects of 10 μm or more in microscopic observation of the surface protection film is below the above upper limit, false detections caused by the surface protection film can be more stably reduced in foreign matter inspection.
 1つの実施形態において、第一表面保護フィルム(はく離ライナーが剥離除去された状態)を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm未満の欠点数は、例えば10以下、好ましくは5つ以下、さらに好ましくは3つ以下、より好ましくは1つ以下である。表面保護フィルムの顕微鏡観察において欠点が観測されても、最大フェレ径が10μm未満であり、かつ、個数が上記上限以下であれば、異物検査において当該欠点が誤検出されることを抑制できる。 In one embodiment, when the first surface protection film (with the release liner peeled off) is observed under a microscope, the number of defects with a maximum Feret diameter of less than 10 μm in an observation area of 100 μm x 100 μm is, for example, 10 or less. , preferably 5 or less, more preferably 3 or less, more preferably 1 or less. Even if a defect is observed in microscopic observation of the surface protection film, as long as the maximum Feret diameter is less than 10 μm and the number is below the above upper limit, it is possible to suppress the defect from being erroneously detected in a foreign object inspection.
<第一基材>
 第一基材114を顕微鏡観察したときに、100μm×100μmの観測領域において、最大フェレ径が10μm以上の欠点数は、好ましくは3つ未満であり、より好ましくは1つ以下、さらに好ましくは0である。基材における欠点数が上記上限以下であれば、異物検査において表面保護フィルムに起因する誤検出を低減できる。なお、顕微鏡観察の詳細については、後述する実施例で説明する。
<First base material>
When the first base material 114 is observed under a microscope, the number of defects with a maximum Feret diameter of 10 μm or more in an observation area of 100 μm x 100 μm is preferably less than 3, more preferably 1 or less, and even more preferably 0. It is. If the number of defects in the base material is below the above upper limit, false detections caused by the surface protection film can be reduced in foreign matter inspection. Note that details of the microscopic observation will be explained in Examples described later.
 第一基材の引裂強さは、例えば0.5N/mm以上、好ましくは1N/mm以上、より好ましくは2N/mm以上である。第一基材の引裂強さが上記下限以上であれば、異物検査において表面保護フィルムに起因する誤検出をより一層低減できる。第一基材の引裂強さは、代表的には200N/mm以下である。なお、第一基材の引裂強さは、JIS K7128-1:1998に準拠して測定できる。 The tear strength of the first base material is, for example, 0.5 N/mm or more, preferably 1 N/mm or more, and more preferably 2 N/mm or more. If the tear strength of the first base material is equal to or higher than the above lower limit, false detections caused by the surface protection film in foreign matter inspection can be further reduced. The tear strength of the first base material is typically 200 N/mm or less. Note that the tear strength of the first base material can be measured in accordance with JIS K7128-1:1998.
 第一基材は、表面保護フィルムとして使用できる任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。 The first base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of materials that are the main components of the resin film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), Examples include transparent resins such as polycarbonate (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned. Note that "(meth)acrylic resin" refers to acrylic resin and/or methacrylic resin. Other examples include glassy polymers such as siloxane polymers. Furthermore, the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain. For example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used. The polymer film may be, for example, an extrusion molded product of the resin composition. The materials for the resin film can be used alone or in combination.
 第一基材は、好ましくは、COP系、PET系、TAC系、PC系および(メタ)アクリル系からなる群から選択される少なくとも1種の透明樹脂を含み、より好ましくは、COP系、PET系、PC系および(メタ)アクリル系からなる群から選択される少なくとも1種の透明樹脂を含み、さらに好ましくは、COP系、PET系およびPC系からなる群から選択される少なくとも1種の透明樹脂を含む。第一基材が上記の透明樹脂を含むと、異物検査および気泡検査において表面保護フィルムに起因する誤検出をより安定して低減できる。また、第一基材がCOP系、PET系、PC系および(メタ)アクリル系のいずれかの透明樹脂を含むと、第一基材がTAC系樹脂を含む場合と比較して、異物検査における表面保護フィルムに起因する誤検出を低減できる。特に、第一基材がCOP系、PET系およびPC系のいずれかの透明樹脂を含むと、異物検査において表面保護フィルムに起因する誤検出をより一層安定して低減できる。 The first base material preferably contains at least one transparent resin selected from the group consisting of COP-based, PET-based, TAC-based, PC-based, and (meth)acrylic-based, and more preferably COP-based, PET-based, etc. The resin contains at least one transparent resin selected from the group consisting of COP-based, PC-based, and (meth)acrylic-based, and more preferably at least one transparent resin selected from the group consisting of COP-based, PET-based, and PC-based. Contains resin. When the first base material contains the above-mentioned transparent resin, false detections caused by the surface protection film can be more stably reduced in foreign object inspection and air bubble inspection. In addition, when the first base material contains any one of COP-based, PET-based, PC-based, and (meth)acrylic-based transparent resins, compared to the case where the first base material contains TAC-based resins, foreign matter inspection Erroneous detections caused by surface protection films can be reduced. In particular, when the first base material contains any one of COP-based, PET-based, and PC-based transparent resins, it is possible to more stably reduce false detections caused by the surface protection film in foreign matter inspection.
 第一基材には、酸化防止剤、紫外線吸収剤、光安定剤、造核剤、充填剤、顔料、界面活性剤、帯電防止剤等が含まれていてもよい。第一基材の表面(第一粘着剤層と反対側の表面)には、易接着層、易滑層、ブロッキング防止層、帯電防止層、反射防止層、オリゴマー防止層等が設けられていてもよい。 The first base material may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a nucleating agent, a filler, a pigment, a surfactant, an antistatic agent, and the like. The surface of the first base material (the surface opposite to the first adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
 第一基材の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には200μm以下であり、好ましくは100μm以下である。 The thickness of the first base material is typically 5 μm or more, preferably 20 μm or more, and typically 200 μm or less, preferably 100 μm or less.
<第一粘着剤層>
 光学積層体に貼着される前の第一粘着剤層114における第一基材112と反対側の表面114aの最大谷深さ(Sv)の絶対値は、例えば500nm以下であり、好ましくは300nm以下、より好ましくは250nm以下、とりわけ好ましくは200nm以下、特に好ましくは100nm以下、最も好ましくは50nm以下である。該表面114aの最大谷深さ(Sv)の絶対値は、代表的には5nm以上である。なお、最大谷深さ(Sv)は、JIS B0681-2:2018に準拠して測定できる。光学積層体に貼着される前の第一粘着剤層114の表面114aの最大谷深さ(Sv)の絶対値が上記上限以下であると、表面保護フィルムを光学積層体に貼着した状態で欠点検査(例えば、気泡検査)に供しても、表面保護フィルムに起因する誤検出が低減され得る。
<First adhesive layer>
The absolute value of the maximum valley depth (Sv) of the surface 114a opposite to the first base material 112 in the first adhesive layer 114 before being attached to the optical laminate is, for example, 500 nm or less, preferably 300 nm. The thickness is more preferably 250 nm or less, particularly preferably 200 nm or less, particularly preferably 100 nm or less, and most preferably 50 nm or less. The absolute value of the maximum valley depth (Sv) of the surface 114a is typically 5 nm or more. Note that the maximum valley depth (Sv) can be measured in accordance with JIS B0681-2:2018. When the absolute value of the maximum valley depth (Sv) of the surface 114a of the first adhesive layer 114 before being attached to the optical laminate is below the above upper limit, the state in which the surface protection film is attached to the optical laminate Even when subjected to defect inspection (for example, bubble inspection), false detections caused by the surface protection film can be reduced.
 光学積層体に貼着される前の第一粘着剤層114における第一基材112と反対側の表面114aの算術平均高さ(Sa)の絶対値は、好ましくは25nm以下、より好ましくは10nm以下、さらに好ましくは6nm以下、とりわけ好ましくは5nm以下である。該表面114aの算術平均高さ(Sa)の絶対値は、代表的には0nm以上である。なお、算術平均高さ(Sa)は、JIS B0681-2:2018に準拠して測定できる。光学積層体に貼着される前の第一粘着剤層114の表面114aの算術平均高さ(Sa)の絶対値が上記上限以下であれば、欠点検査(例えば、気泡検査)において表面保護フィルムに起因する誤検出を安定して低減できる。 The absolute value of the arithmetic mean height (Sa) of the surface 114a opposite to the first base material 112 in the first adhesive layer 114 before being attached to the optical laminate is preferably 25 nm or less, more preferably 10 nm. The thickness is more preferably 6 nm or less, particularly preferably 5 nm or less. The absolute value of the arithmetic mean height (Sa) of the surface 114a is typically 0 nm or more. Note that the arithmetic mean height (Sa) can be measured in accordance with JIS B0681-2:2018. If the absolute value of the arithmetic mean height (Sa) of the surface 114a of the first adhesive layer 114 before being attached to the optical laminate is equal to or less than the above upper limit, the surface protective film will not be used in defect inspection (for example, bubble inspection). It is possible to stably reduce false detections caused by
 光学積層体に貼着される前の第一粘着剤層114における第一基材112と反対側の表面114aは、好ましくは下記式(1)を満足し、より好ましくは下記式(2)を満足し、さらに好ましくは下記式(3)を満足する。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
(式(1)中、Sは下記表面形状評価試験における白色干渉計の測定視野面積を示し;B-BAは下記表面形状評価試験において得られる二値化前の二次元画像における黒色領域の面積を示し;A-WAは下記表面形状評価試験において得られる二値化後の二次元画像おける白色領域の面積を示す。)
<表面形状評価試験>
 第一粘着剤層における第一基材と反対側の表面を白色干渉計により測定し;
 得られた干渉データを、周波数領域解析により、測定面に対して-1000nm~-2000nmの解析範囲で演算して、該当箇所が黒色領域となる二次元画像を得た後;
 該二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得る。なお、表面形状評価試験の詳細については、後述する実施例で説明する。
The surface 114a of the first adhesive layer 114 opposite to the first base material 112 before being attached to the optical laminate preferably satisfies the following formula (1), more preferably satisfies the following formula (2). More preferably, the following formula (3) is satisfied.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
(In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test. (A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.)
<Surface shape evaluation test>
measuring the surface of the first adhesive layer opposite to the first base material with a white interferometer;
After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area;
The two-dimensional image is binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below −100 nm is a white region. Note that details of the surface shape evaluation test will be explained in Examples described later.
 二値化前の二次元画像では、第一粘着剤層における第一基材と反対側の表面に存在する凹み部分の内、白色干渉計の検出限界を超えた深さを有する凹みに該当する部分が黒色領域となり、該黒色領域に該当しない部分が白色領域となる。二値化前の二次元画像における黒色領域の面積B-BAは、白色干渉計の測定視野面積Sを100%としたときに、例えば1.5%以下、好ましくは0.3%以下、より好ましくは0.2%以下、さらに好ましくは0.1%以下であり、代表的には0%以上である。 In the two-dimensional image before binarization, among the depressions existing on the surface of the first adhesive layer opposite to the first base material, the depressions have a depth exceeding the detection limit of the white interferometer. The portion becomes a black area, and the portion that does not correspond to the black area becomes a white area. The area B-BA of the black area in the two-dimensional image before binarization is, for example, 1.5% or less, preferably 0.3% or less, when the measurement field area S of the white interferometer is 100%. It is preferably 0.2% or less, more preferably 0.1% or less, and typically 0% or more.
 二値化後の二次元画像(以下では二値化画像と称する場合がある。)では、測定面に対して-100nm以下に該当する部分が白色領域となり、それ以外の部分(測定面に対して-100nmを超過する部分)が黒色領域となる。二値化画像における白色領域の面積A-WAは、白色干渉計の測定視野面積Sを100%としたときに、例えば1.3%以下、好ましくは0.2%以下、より好ましくは0.1%以下、さらに好ましくは0.08%以下であり、代表的には0%以上である。 In the two-dimensional image after binarization (hereinafter sometimes referred to as a binarized image), the part corresponding to -100 nm or less with respect to the measurement surface becomes a white region, and the other part (with respect to the measurement surface) becomes a white region. (exceeding −100 nm) becomes a black region. The area A-WA of the white region in the binarized image is, for example, 1.3% or less, preferably 0.2% or less, more preferably 0.2% or less, when the measurement field area S of the white interferometer is 100%. It is 1% or less, more preferably 0.08% or less, and typically 0% or more.
 光学積層体に貼着される前の第一粘着剤層における第一基材と反対側の表面が上記式(1)、好ましくは式(2)、より好ましくは式(3)を満足する形状を有していれば、表面保護フィルムを光学積層体に貼着した状態で欠点検査(例えば、気泡検査)に供しても、表面保護フィルムに起因する誤検出が好適に低減され得る。 The surface of the first adhesive layer opposite to the first base material before being attached to the optical laminate has a shape that satisfies the above formula (1), preferably formula (2), and more preferably formula (3). If it has, even if the surface protection film is subjected to defect inspection (for example, bubble inspection) with the surface protection film attached to the optical laminate, false detections caused by the surface protection film can be suitably reduced.
 第一粘着剤層は、代表的には、(メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤からなる群から選択される少なくとも1種の粘着剤を含有する。好ましくは、第一粘着剤層は、(メタ)アクリル系粘着剤を含有する。 The first adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. Preferably, the first adhesive layer contains a (meth)acrylic adhesive.
 (メタ)アクリル系粘着剤は、アルキル(メタ)アクリレートを主成分とするモノマー成分の重合体(以下(メタ)アクリル系ポリマーとする。)を含有する。言い換えれば、(メタ)アクリル系ポリマーは、アルキル(メタ)アクリレート由来の構造単位を含む。アルキル(メタ)アクリレート由来の構造単位の含有割合は、(メタ)アクリル系ポリマーにおいて、代表的には50質量%以上、好ましくは80質量%以上、より好ましくは93質量%以上であり、例えば100質量%以下、好ましくは98質量%以下である。 The (meth)acrylic pressure-sensitive adhesive contains a polymer (hereinafter referred to as (meth)acrylic polymer) of a monomer component whose main component is alkyl (meth)acrylate. In other words, the (meth)acrylic polymer contains a structural unit derived from alkyl (meth)acrylate. The content of structural units derived from alkyl (meth)acrylate is typically 50% by mass or more, preferably 80% by mass or more, more preferably 93% by mass or more, for example 100% by mass or more, preferably 80% by mass or more, and more preferably 93% by mass or more in the (meth)acrylic polymer. It is not more than 98% by mass, preferably not more than 98% by mass.
 アルキル(メタ)アクリレートが有するアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。アルキル基の炭素数は、例えば1以上18以下である。アルキル基としては、例えば、メチル基、エチル基、ブチル基、2-エチルヘキシル基、デシル基、イソデシル基、オクタデシル基が挙げられる。アルキル(メタ)アクリレートは、単独でまたは組み合わせて使用できる。アルキル基の平均炭素数は3~10であることが好ましい。 The alkyl group that the alkyl (meth)acrylate has may be linear or branched. The number of carbon atoms in the alkyl group is, for example, 1 or more and 18 or less. Examples of the alkyl group include methyl group, ethyl group, butyl group, 2-ethylhexyl group, decyl group, isodecyl group, and octadecyl group. Alkyl (meth)acrylates can be used alone or in combination. The average number of carbon atoms in the alkyl group is preferably 3 to 10.
 (メタ)アクリル系ポリマーは、アルキル(メタ)アクリレート由来の構造単位以外にも、アルキル(メタ)アクリレートと重合可能な共重合モノマー由来の構造単位を含有してもよい。共重合モノマーとして、例えば、カルボキシル基含有モノマー、ヒドロキシル基含有モノマーが挙げられる。共重合モノマーは、単独でまたは組み合わせて使用できる。 In addition to structural units derived from alkyl (meth)acrylates, the (meth)acrylic polymer may also contain structural units derived from copolymerizable monomers that are polymerizable with alkyl (meth)acrylates. Examples of the copolymerizable monomer include carboxyl group-containing monomers and hydroxyl group-containing monomers. Copolymerizable monomers can be used alone or in combination.
 カルボキシル基含有モノマーは、その構造中にカルボキシル基を含み、かつ(メタ)アクリロイル基、ビニル基などの重合性不飽和二重結合を含む化合物である。カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、マレイン酸、フマル酸、クロトン酸が挙げられ、好ましくは(メタ)アクリル酸が挙げられる。(メタ)アクリル系ポリマーがカルボキシル基含有モノマー由来の構造単位を含むと、粘着剤層の粘着特性の向上を図り得る。(メタ)アクリル系ポリマーがカルボキシル基含有モノマー由来の構造単位を含む場合、カルボキシル基含有モノマー由来の構造単位の含有割合は、好ましくは0.01質量%以上10質量%以下である。 A carboxyl group-containing monomer is a compound that contains a carboxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Examples of the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, maleic acid, fumaric acid, and crotonic acid, with (meth)acrylic acid being preferred. When the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the adhesive properties of the adhesive layer can be improved. When the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the content ratio of the structural unit derived from the carboxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass or less.
 ヒドロキシル基含有モノマーは、その構造中にヒドロキシル基を含み、かつ(メタ)アクリロイル基、ビニル基などの重合性不飽和二重結合を含む化合物である。ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートが挙げられ、好ましくは、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが挙げられ、より好ましくは、2-ヒドロキシエチル(メタ)アクリレートが挙げられる。(メタ)アクリル系ポリマーがヒドロキシル基含有モノマー由来の構造単位を含むと、粘着剤層の耐久性の向上を図り得る。(メタ)アクリル系ポリマーがヒドロキシル基含有モノマー由来の構造単位を含む場合、ヒドロキシル基含有モノマー由来の構造単位の含有割合は、(メタ)アクリル系ポリマーにおいて、好ましくは0.01質量%以上10質量%以下である。 A hydroxyl group-containing monomer is a compound that contains a hydroxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Examples of hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethyl cyclohexyl)-methyl acrylate, preferably 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, more preferably 2-hydroxyethyl (meth)acrylate. When the (meth)acrylic polymer contains a structural unit derived from a hydroxyl group-containing monomer, the durability of the adhesive layer can be improved. When the (meth)acrylic polymer contains a structural unit derived from a hydroxyl group-containing monomer, the content of the structural unit derived from the hydroxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass in the (meth)acrylic polymer. % or less.
 (メタ)アクリル系ポリマーの重量平均分子量Mwは、例えば10万~200万であり、好ましくは20万~100万である。 The weight average molecular weight Mw of the (meth)acrylic polymer is, for example, 100,000 to 2,000,000, preferably 200,000 to 1,000,000.
 また、(メタ)アクリル系粘着剤は、架橋剤を含有することができる。架橋剤としては、代表的には、有機系架橋剤および多官能性金属キレートが挙げられ、好ましくは有機系架橋剤が挙げられる。有機系架橋剤としては、例えば、イソシアネート系架橋剤、過酸化物系架橋剤、エポキシ系架橋剤、イミン系架橋剤が挙げられ、より好ましくは、イソシアネート系架橋剤が挙げられる。粘着剤が架橋剤を含有する場合、架橋剤の含有割合は、(メタ)アクリル系ポリマー100質量部に対して、通常0.01質量部以上15質量部以下である。 Additionally, the (meth)acrylic pressure-sensitive adhesive can contain a crosslinking agent. The crosslinking agent typically includes an organic crosslinking agent and a polyfunctional metal chelate, preferably an organic crosslinking agent. Examples of the organic crosslinking agent include an isocyanate crosslinking agent, a peroxide crosslinking agent, an epoxy crosslinking agent, and an imine crosslinking agent, and more preferably an isocyanate crosslinking agent. When the adhesive contains a crosslinking agent, the content of the crosslinking agent is usually 0.01 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the (meth)acrylic polymer.
 上記粘着剤((メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤)は、必要に応じて、種々の添加剤を適切な割合で含有していてもよい。ベースポリマーの組成(例えば、モノマーの種類、含有割合等、架橋剤の種類、含有割合等)、ベースポリマーの分子量、添加剤の種類または含有割合等を調整することにより、被着体に対して所望の粘着性を有する粘着剤層を得ることができる。 The above adhesives ((meth)acrylic adhesives, urethane adhesives, and silicone adhesives) may contain various additives in appropriate proportions, if necessary. By adjusting the composition of the base polymer (for example, the type and content ratio of monomers, the type and content ratio of crosslinking agents, etc.), the molecular weight of the base polymer, and the type or content ratio of additives, An adhesive layer having desired adhesiveness can be obtained.
 添加剤としては、重合開始剤、溶媒、重合触媒、架橋触媒、シランカップリング剤、粘着性付与剤、可塑剤、軟化剤、劣化防止剤、充填剤、着色剤(顔料、染料等)、紫外線吸収剤、酸化防止剤、界面活性剤、帯電防止剤、連鎖移動剤等が挙げられる。 Additives include polymerization initiators, solvents, polymerization catalysts, crosslinking catalysts, silane coupling agents, tackifiers, plasticizers, softeners, deterioration inhibitors, fillers, colorants (pigments, dyes, etc.), and ultraviolet rays. Examples include absorbents, antioxidants, surfactants, antistatic agents, chain transfer agents, and the like.
 第一粘着剤層の厚みは、代表的には1μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、代表的には30μm以下、好ましくは20μm以下である。 The thickness of the first adhesive layer is typically 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and typically 30 μm or less, preferably 20 μm or less.
 第一粘着剤層は、第一基材の表面に直写により形成されてもよく、転写により形成されてもよい。直写の場合、粘着剤を第一基材の表面に直接塗布して第一粘着剤層を形成する。転写の場合、粘着剤をはく離ライナーの表面に塗布して第一粘着剤層を形成した後、当該第一粘着剤層に基材を貼り付ける。特に第一基材が、比較的低いガラス転移温度Tg(例えば150℃以下)を有する非晶性樹脂を含む場合、第一粘着剤層は、好ましくは転写プロセスにより形成される。転写プロセスであれば、第一粘着剤層の形成に必要な乾燥時の高温が、第一基材に影響することを抑制できる。 The first adhesive layer may be formed on the surface of the first base material by direct copying or by transfer. In the case of direct copying, the adhesive is directly applied to the surface of the first base material to form the first adhesive layer. In the case of transfer, a first adhesive layer is formed by applying an adhesive to the surface of a release liner, and then a base material is attached to the first adhesive layer. In particular, when the first base material includes an amorphous resin having a relatively low glass transition temperature Tg (for example, 150° C. or lower), the first adhesive layer is preferably formed by a transfer process. With the transfer process, it is possible to prevent the high temperature during drying required for forming the first adhesive layer from affecting the first base material.
<はく離ライナー>
 はく離ライナー116は、はく離ライナーとして使用できる任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンが挙げられる。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。はく離ライナー116は、透明であってもよく、透明でなくてもよい。
<Release liner>
Release liner 116 is formed from any suitable resin film that can be used as a release liner. Specific examples of the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The materials for the resin film can be used alone or in combination. Release liner 116 may or may not be transparent.
 はく離ライナー116における第一粘着剤層114の表面114aとの接触面には、離型処理層が設けられていてもよい。離型処理層を形成する離型処理剤としては、例えば、シリコーン系離型処理剤、フッ素系離型処理剤、長鎖アルキルアクリレート系離型処理剤が挙げられ、好ましくはシリコーン系離型処理剤が挙げられ、さらに好ましくはビニル基含有付加型シリコーンが挙げられる。離型処理剤は、単独でまたは組み合わせて使用できる。離型処理層の厚みは、代表的には50nm以上400nm以下である。 A release treatment layer may be provided on the surface of the release liner 116 that contacts the surface 114a of the first adhesive layer 114. Examples of the mold release agent forming the mold release treatment layer include silicone-based mold release agents, fluorine-based mold release agents, and long-chain alkyl acrylate-based mold release agents, and preferably silicone-based mold release agents. Examples include vinyl group-containing addition type silicones, and more preferably vinyl group-containing addition type silicones. The mold release treatment agents can be used alone or in combination. The thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
 はく離ライナー116における第一粘着剤層114の表面114aとの接触面は、平滑である。具体的には、はく離ライナー116の第一粘着剤層114との接触面における最大山高さ(Sp)の絶対値は、代表的には500nm以下、好ましくは400nm以下、より好ましくは300nm以下、さらに好ましくは100nm以下である。接触面における最大山高さ(Sp)の絶対値が上記上限以下であれば、第一粘着剤層における第一基材と反対側の表面の最大谷深さ(Sv)を上記上限以下に安定して調整できる。また、接触面における最大山高さ(Sp)の絶対値が上記上限以下であれば、第一粘着剤層における第一基材と反対側の表面が上記式(1)を満足するように安定して調整できる。接触面における最大山高さ(Sp)の絶対値は、代表的には10nm以上である。なお、最大山高さ(Sp)は、JIS B0681-2:2018に準拠して測定できる。 The contact surface of the release liner 116 with the surface 114a of the first adhesive layer 114 is smooth. Specifically, the absolute value of the maximum peak height (Sp) at the contact surface of the release liner 116 with the first adhesive layer 114 is typically 500 nm or less, preferably 400 nm or less, more preferably 300 nm or less, and Preferably it is 100 nm or less. If the absolute value of the maximum peak height (Sp) on the contact surface is below the above upper limit, the maximum valley depth (Sv) on the surface opposite to the first base material in the first adhesive layer is stabilized below the above upper limit. can be adjusted. Further, if the absolute value of the maximum peak height (Sp) on the contact surface is below the above upper limit, the surface of the first adhesive layer on the opposite side to the first base material is stabilized so as to satisfy the above formula (1). can be adjusted. The absolute value of the maximum peak height (Sp) on the contact surface is typically 10 nm or more. Note that the maximum peak height (Sp) can be measured in accordance with JIS B0681-2:2018.
 はく離ライナー116における第一粘着剤層114の表面114aとの接触面の算術平均高さ(Sa)の絶対値は、代表的には30nm以下、好ましくは20nm以下、より好ましくは10nm以下、さらに好ましくは5nm以下である。接触面の算術平均高さ(Sa)の絶対値は、代表的には0nm以上である。 The absolute value of the arithmetic mean height (Sa) of the contact surface of the release liner 116 with the surface 114a of the first adhesive layer 114 is typically 30 nm or less, preferably 20 nm or less, more preferably 10 nm or less, and even more preferably is 5 nm or less. The absolute value of the arithmetic mean height (Sa) of the contact surface is typically 0 nm or more.
 はく離ライナー116の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には60μm以下、好ましくは45μm以下である。なお、離型処理層が施されている場合、はく離ライナーの厚みは、離型処理層の厚みを含めた厚みである。 The thickness of the release liner 116 is typically 5 μm or more, preferably 20 μm or more, and typically 60 μm or less, preferably 45 μm or less. In addition, when a mold release treatment layer is applied, the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
A-2.第二表面保護フィルム
 図1に示されるとおり、第二表面保護フィルム120は、第二基材122と、第二基材に積層されている第二粘着剤層124と、を有する。第一表面保護フィルムと同様に、第二表面保護フィルムが使用に供されるまでの間、第二粘着剤層には、はく離ライナーが貼着(仮着)されており、第二粘着剤層を保護している。
A-2. Second Surface Protection Film As shown in FIG. 1, the second surface protection film 120 includes a second base material 122 and a second adhesive layer 124 laminated on the second base material. Similar to the first surface protection film, a release liner is attached (temporarily attached) to the second adhesive layer until the second surface protection film is put into use. is protected.
 第二の表面保護フィルムは、透明(例えば、ヘイズ≦5%)であってもよく、不透明であってもよい。 The second surface protection film may be transparent (for example, haze ≦5%) or opaque.
 第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する90°きっかけ剥離力は、例えば0.01N~0.20N、好ましくは0.03N~0.15N、より好ましくは0.05N~0.12Nである。第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する180°きっかけ剥離力は、例えば0.01N~0.20N、好ましくは0.03N~0.15N、より好ましくは0.05N~0.12Nである。 The 90° trigger peeling force of the second surface protection film against the first surface protection film (the surface of the first surface protection film on the first base material side) is, for example, 0.01N to 0.20N, preferably 0.03N to 0.01N. 15N, more preferably 0.05N to 0.12N. The 180° triggered peeling force of the second surface protection film against the first surface protection film (the surface of the first surface protection film on the first base material side) is, for example, 0.01N to 0.20N, preferably 0.03N to 0.2N. 15N, more preferably 0.05N to 0.12N.
 第二表面保護フィルムの第一表面保護フィルム(第一表面保護フィルムの第一基材側表面)に対する通常剥離力(はく離角度180°、引張速度300mm/分)は、例えば0.01N/25mm~0.2N/25mm、好ましくは0.03N/25mm~0.15N/25mm、より好ましくは0.05N/25mm~0.1N/25mmである。 The normal peeling force (peel angle 180°, tensile speed 300 mm/min) of the second surface protection film against the first surface protection film (the surface of the first surface protection film on the first substrate side) is, for example, 0.01 N/25 mm to 0.2N/25mm, preferably 0.03N/25mm to 0.15N/25mm, more preferably 0.05N/25mm to 0.1N/25mm.
<第二基材>
 第二基材は、表面保護フィルムとして使用できる任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、第一基材に関して上述したとおりである。
<Second base material>
The second base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of the material that is the main component of the resin film are as described above regarding the first base material.
 第二基材には、酸化防止剤、紫外線吸収剤、光安定剤、造核剤、充填剤、顔料、界面活性剤、帯電防止剤等が含まれていてもよい。第二基材の表面(第二粘着剤層と反対側の表面)には、易接着層、易滑層、ブロッキング防止層、帯電防止層、反射防止層、オリゴマー防止層等が設けられていてもよい。 The second base material may contain antioxidants, ultraviolet absorbers, light stabilizers, nucleating agents, fillers, pigments, surfactants, antistatic agents, and the like. The surface of the second base material (the surface opposite to the second adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
 第二基材の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には200μm以下であり、好ましくは100μm以下である。 The thickness of the second base material is typically 5 μm or more, preferably 20 μm or more, and typically 200 μm or less, preferably 100 μm or less.
<第二粘着剤層>
 第二粘着剤層は、代表的には、(メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤からなる群から選択される少なくとも1種の粘着剤を含有する。好ましくは、第二粘着剤層は、(メタ)アクリル系粘着剤を含有する。(メタ)アクリル系粘着剤の詳細については、第一粘着剤層に関して上述したとおりである。
<Second adhesive layer>
The second adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. Preferably, the second adhesive layer contains a (meth)acrylic adhesive. The details of the (meth)acrylic adhesive are as described above regarding the first adhesive layer.
 上記粘着剤((メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤)は、ベースポリマー(またはその構成モノマー成分)、および必要に応じて添加剤を含有し得る。添加剤の具体例は、第一粘着剤層に関して上述したとおりである。 The above-mentioned adhesives ((meth)acrylic adhesives, urethane adhesives, and silicone adhesives) may contain a base polymer (or its constituent monomer components) and, if necessary, additives. Specific examples of the additive are as described above for the first adhesive layer.
 第二粘着剤層の厚みは、代表的には1μm以上、好ましくは5μm以上であり、代表的には30μm以下、好ましくは15μm以下である。 The thickness of the second adhesive layer is typically 1 μm or more, preferably 5 μm or more, and typically 30 μm or less, preferably 15 μm or less.
 第二粘着剤層の形成方法としては、第一粘着剤層の形成方法と同様の方法が挙げられる。 The method for forming the second adhesive layer includes the same method as the method for forming the first adhesive layer.
A-3.光学積層体
 光学積層体は、少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる。光学部材としては、例えば、偏光部材(吸収型偏光部材、反射型偏光部材)、位相差部材等が挙げられる。
A-3. Optical Laminate The optical laminate includes at least one optical member and is used in goggles with a display. Examples of the optical member include polarizing members (absorbing polarizing member, reflective polarizing member), retardation members, and the like.
A-3-1.光学積層体が適用され得る表示システム
 図3は、光学積層体が適用され得る表示システム(ディスプレイ付きゴーグル)の概略の構成を示す模式図である。図3では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射型偏光部材14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射型偏光部材14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射型偏光部材14との間の光路上に配置されている。図示しないが、表示システム2は、反射型偏光部材14と第二レンズ部24との間に吸収型偏光部材をさらに備えることができる。
A-3-1. Display system to which the optical laminate can be applied FIG. 3 is a schematic diagram showing a general configuration of a display system (goggles with a display) to which the optical laminate can be applied. FIG. 3 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with The reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is. Although not shown, the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
 ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射型偏光部材14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflective polarizing member 14, and the second lens section 24) are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
 表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材(代表的には、偏光フィルム)10を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. For example, the light emitted from the display surface 12a passes through a polarizing member (typically, a polarizing film) 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
 第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得る第1のλ/4部材を含む。第一位相差部材が第1のλ/4部材以外の部材を含まない場合は、第一位相差部材は第1のλ/4部材に相当し得る。第一位相差部材20は、表示素子12に一体に設けられてもよい。 The first retardation member 20 includes a first λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light. When the first retardation member does not include any member other than the first λ/4 member, the first retardation member may correspond to the first λ/4 member. The first retardation member 20 may be provided integrally with the display element 12.
 ハーフミラー18は、表示素子12から出射された光を透過させ、反射型偏光部材14で反射された光を反射型偏光部材14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14. The half mirror 18 is provided integrally with the first lens section 16.
 第二位相差部材22は、反射型偏光部材14およびハーフミラー18で反射させた光を、反射型偏光部材14を透過させ得る第2のλ/4部材を含む。第二位相差部材が第2のλ/4部材以外の部材を含まない場合は、第二位相差部材は第2のλ/4部材に相当し得る。第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 includes a second λ/4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14. When the second retardation member does not include any member other than the second λ/4 member, the second retardation member may correspond to the second λ/4 member. The second retardation member 22 may be provided integrally with the first lens portion 16.
 第一位相差部材20に含まれる第1のλ/4部材から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第2の直線偏光に変換される。第2のλ/4部材から出射された第2の直線偏光は、反射型偏光部材14を透過せずにハーフミラー18に向けて反射される。このとき、反射型偏光部材14に入射した第2の直線偏光の偏光方向は、反射型偏光部材14の反射軸と同方向である。そのため、反射型偏光部材14に入射した第2の直線偏光は、反射型偏光部材14で反射される。 The first circularly polarized light emitted from the first λ/4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second λ/4 member converts the light into a second linearly polarized light. The second linearly polarized light emitted from the second λ/4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14. At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
 反射型偏光部材14で反射された第2の直線偏光は第二位相差部材22に含まれる第2のλ/4部材により第2の円偏光に変換され、第2のλ/4部材から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第3の直線偏光に変換される。第3の直線偏光は、反射型偏光部材14を透過する。このとき、反射型偏光部材14に入射した第3の直線偏光の偏光方向は、反射型偏光部材14の透過軸と同方向である。そのため、反射型偏光部材14に入射した第3の直線偏光は、反射型偏光部材14を透過する。 The second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second λ/4 member included in the second retardation member 22, and is emitted from the second λ/4 member. The second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member included in the second retardation member 22. The third linearly polarized light is transmitted through the reflective polarizing member 14 . At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
 反射型偏光部材14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
 例えば、表示素子12に含まれる偏光部材10の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材10の吸収軸と第一位相差部材20に含まれる第1のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22に含まれる第2のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。 For example, the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first λ/4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ˜48°, and may be about 45°. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second λ/4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
 レンズ部4において、第一レンズ部16と第二レンズ部24との間には空間が形成され得る。この場合、第一レンズ部16と第二レンズ部24との間に配置される部材は、第一レンズ部16と第二レンズ部24のいずれかに一体に設けられることが好ましい。例えば、第一レンズ部16と第二レンズ部24との間に配置される部材は、接着層を介して第一レンズ部16と第二レンズ部24のいずれかに一体化させることが好ましい。このような形態によれば、例えば、各部材の取扱い性に優れ得る。接着層は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。具体的には、接着層は、接着剤層であってもよいし、粘着剤層であってもよい。接着層の厚みは、例えば0.05μm~30μmである。 In the lens portion 4, a space may be formed between the first lens portion 16 and the second lens portion 24. In this case, the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24. For example, it is preferable that the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled. The adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive. Specifically, the adhesive layer may be an adhesive layer or an adhesive layer. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm.
A-3-2.光学積層体の構成
 図4は、図3に例示する表示システムにおいて用いられ得る光学積層体の概略断面図である。光学積層体100aは、粘着剤層31と、偏光部材10と、第一位相差部材20と、第一保護部材41とをこの順に含む。偏光部材10、第一位相差部材20、および第一保護部材41は、接着層51、52を介して積層されている。接着層51、52は、代表的には、接着剤層または粘着剤層であり、好ましくは粘着剤層である。接着層の厚みは、例えば0.05μm~30μmである。粘着剤層31の表面は、使用に供されるまでの間、はく離ライナー61によって保護されている。なお、第一表面保護フィルムおよび第二表面保護フィルムは、光学積層体100aの第一保護部材41側表面に貼着される。
A-3-2. Configuration of Optical Laminate FIG. 4 is a schematic cross-sectional view of an optical layered body that can be used in the display system illustrated in FIG. 3. The optical laminate 100a includes an adhesive layer 31, a polarizing member 10, a first retardation member 20, and a first protective member 41 in this order. The polarizing member 10, the first retardation member 20, and the first protection member 41 are laminated with adhesive layers 51 and 52 interposed therebetween. The adhesive layers 51 and 52 are typically adhesive layers or adhesive layers, preferably adhesive layers. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm. The surface of the adhesive layer 31 is protected by a release liner 61 until it is used. Note that the first surface protection film and the second surface protection film are attached to the surface of the optical laminate 100a on the first protection member 41 side.
 図4に示す例では、第一位相差部材20は、第1のλ/4部材20aに加えて、屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)20bを含んでいる。第一位相差部材20は、第1のλ/4部材20aと第1のポジティブCプレート20bとの積層構造を有している。図示例のように、第1のλ/4部材20aが第1のポジティブCプレート20bよりも偏光部材10側に位置していることが好ましいが、これらの配置が逆であってもよい。また、第1のポジティブCプレート20bは省略されてもよい。第1のλ/4部材20aと第1のポジティブCプレート20bとは、例えば、図示しない接着層を介して積層される。また、第一位相差部材20においては、偏光部材10の吸収軸と第1のλ/4部材20aの遅相軸とのなす角度が、好ましくは40°~50°、より好ましくは42°~48°、例えば約45°となるように配置されている。 In the example shown in FIG. 4, the first retardation member 20 includes, in addition to the first λ/4 member 20a, a member (so-called positive C plate) 20b whose refractive index characteristics can exhibit the relationship nz>nx=ny. Contains. The first retardation member 20 has a laminated structure of a first λ/4 member 20a and a first positive C plate 20b. As shown in the illustrated example, it is preferable that the first λ/4 member 20a is located closer to the polarizing member 10 than the first positive C plate 20b, but these arrangements may be reversed. Furthermore, the first positive C plate 20b may be omitted. The first λ/4 member 20a and the first positive C plate 20b are laminated, for example, via an adhesive layer (not shown). Further, in the first retardation member 20, the angle between the absorption axis of the polarizing member 10 and the slow axis of the first λ/4 member 20a is preferably 40° to 50°, more preferably 42° to The angle is 48°, for example about 45°.
 光学積層体100aは、例えば、図3に例示する表示システムにおいて、第一位相差部材20が表示素子12に一体に設けられた実施形態による表示システムの製造に適用され得る。例えば、光学積層体100aからはく離ライナー61を剥離し、偏光部材10が液晶セルの前方側(視認側)偏光部材となるように、背面側偏光部材とともに液晶セルに貼り合せることにより、第一位相差部材20が液晶パネル(表示素子)と一体に設けられた表示システムを製造することができる。また例えば、光学積層体100aからはく離ライナー61を剥離して、粘着剤層31を介して有機ELパネルの前方に貼り合せることにより、第一位相差部材20が有機ELパネル(表示素子)と一体に設けられた表示システムを製造することができる。この場合、反射防止の観点から、光学積層体100aと有機ELパネルとの間には第3のλ/4部材を含む第三位相差部材が配置され得る。第三位相差部材は、光学積層体に含まれていてもよい。例えば、光学積層体は、粘着剤層、第三位相差部材、偏光部材、第一位相差部材、および保護部材をこの順に有していてもよい。第3のλ/4部材としては、第1のλ/4部材と同様の説明を適用することができる。第三位相差部材は、第3のλ/4部材の遅相軸が偏光部材10の吸収軸と、例えば40°~50°、42°~48°、または約45°の角度をなすように配置され得る。 The optical laminate 100a can be applied, for example, to manufacturing a display system illustrated in FIG. 3, in which the first retardation member 20 is integrally provided with the display element 12. For example, the release liner 61 is peeled off from the optical laminate 100a, and the polarizing member 10 is attached to the liquid crystal cell together with the back side polarizing member so that the polarizing member 10 becomes the front side (viewing side) polarizing member of the liquid crystal cell. A display system in which the retardation member 20 is integrally provided with a liquid crystal panel (display element) can be manufactured. Further, for example, the first retardation member 20 is integrated with the organic EL panel (display element) by peeling off the release liner 61 from the optical laminate 100a and bonding it to the front of the organic EL panel via the adhesive layer 31. A display system can be manufactured that is provided with a display system. In this case, from the viewpoint of antireflection, a third retardation member including a third λ/4 member may be disposed between the optical laminate 100a and the organic EL panel. The third retardation member may be included in the optical laminate. For example, the optical laminate may include an adhesive layer, a third retardation member, a polarizing member, a first retardation member, and a protection member in this order. The same explanation as for the first λ/4 member can be applied to the third λ/4 member. The third retardation member is configured such that the slow axis of the third λ/4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
<偏光部材>
 偏光部材10は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含む吸収型偏光部材であり、必要に応じて、その片側又は両側に保護層をさらに含み得る。保護層は、代表的には、任意の適切な接着剤層を介して吸収型偏光膜に貼り合わされている。接着剤層を形成する接着剤として、代表的には紫外線硬化型接着剤が挙げられる。
<Polarizing member>
The polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include. The protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer. A typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
 吸収型偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。吸収型偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。吸収型偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。 The orthogonal transmittance (Tc) of the absorption type polarizing member (absorption type polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. be. The single transmittance (Ts) of the absorption type polarizing member (absorption type polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the absorption type polarizing member (absorption type polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
 上記直交透過率、単体透過率および偏光度は、例えば、紫外可視分光光度計を用いて測定することができる。偏光度Pは、紫外可視分光光度計を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、得られたTpおよびTcから、下記式により求めることができる。なお、Ts、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
 偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer. The degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula. Note that Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
 吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。 The thickness of the absorption type polarizing film is, for example, 1 μm or more and 20 μm or less, may be 2 μm or more and 15 μm or less, may be 12 μm or less, may be 10 μm or less, or may be 8 μm or less, It may be 5 μm or less.
 上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。 The above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
 単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。 When manufacturing from a single-layer resin film, for example, a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane. An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 The above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
 上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 The laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material. An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin. Forming a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film. can be produced by; In this embodiment, preferably, a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order. By introducing auxiliary stretching, even when PVA is applied onto a thermoplastic resin, it becomes possible to improve the crystallinity of PVA and achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when it is immersed in water during the subsequent dyeing and stretching processes, resulting in high optical properties. becomes possible to achieve. Furthermore, when the PVA-based resin layer is immersed in a liquid, disturbance in the orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. Thereby, the optical properties of an absorption polarizing film obtained through a treatment process performed by immersing the laminate in a liquid, such as dyeing treatment and underwater stretching treatment, can be improved. Furthermore, optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. The obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is. Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
 保護層は、吸収型偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。 The protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film. Specific examples of materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate. Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned. Note that "(meth)acrylic resin" refers to acrylic resin and/or methacrylic resin. Other examples include glassy polymers such as siloxane polymers. Furthermore, the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain. For example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used. The polymer film may be, for example, an extrusion molded product of the resin composition. The materials for the resin film can be used alone or in combination.
 保護層の厚みは、代表的には100μm以下であり、例えば5μm~80μm、好ましくは10μm~50μm、より好ましくは15μm~35μmである。 The thickness of the protective layer is typically 100 μm or less, for example 5 μm to 80 μm, preferably 10 μm to 50 μm, more preferably 15 μm to 35 μm.
<第1のλ/4部材>
 第1のλ/4部材20aの面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第1のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第1のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
<First λ/4 member>
The in-plane retardation Re (550) of the first λ/4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The first λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第1のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第1のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The first λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第1のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第1のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。 The first λ/4 member is formed of any suitable material that can satisfy the above characteristics. The first λ/4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
 上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。組み合わせる方法としては、例えば、ブレンド、共重合が挙げられる。第1のλ/4部材が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。 The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first λ/4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
 上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第1のλ/4部材に好適に用いられ得るポリカーボネート系樹脂および第1のλ/4部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。 Any suitable polycarbonate resin can be used as the polycarbonate resin. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. In addition, details of the polycarbonate resin that can be suitably used for the first λ/4 member and the method for forming the first λ/4 member can be found in, for example, JP 2014-10291A and JP 2014-26266A. , JP 2015-212816, A, JP 2015-212817, and JP 2015-212818, and the descriptions of these publications are incorporated herein by reference.
 樹脂フィルムの延伸フィルムで構成される第1のλ/4部材の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μmであり、より好ましくは20μm~60μmである。 The thickness of the first λ/4 member made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, and more preferably 20 μm to 60 μm.
 上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第1のλ/4部材においては、代表的には、棒状の液晶化合物が第1のλ/4部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。 The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first λ/4 member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first λ/4 member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
 上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
 上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
 液晶配向固化層で構成される第1のλ/4部材の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μmであり、より好ましくは1μm~6μmであり、さらに好ましくは1μm~4μmである。 The thickness of the first λ/4 member composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm. be.
<第1のポジティブCプレート>
 第1のポジティブCプレート20bの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。第1のポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
<First positive C plate>
The retardation Rth (550) in the thickness direction of the first positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. The in-plane retardation Re (550) of the first positive C plate is, for example, less than 10 nm.
 第1のポジティブCプレートは、任意の適切な材料で形成され得る。第1のポジティブCプレートは、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであってもよいし、液晶ポリマーであってもよい。このような液晶化合物およびポジティブCプレートの形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第1のポジティブCプレートの厚みは、好ましくは0.5μm~5μmである。 The first positive C-plate may be formed of any suitable material. The first positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method for forming such a liquid crystal compound and positive C plate include the method for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A No. 2002-333642. In this case, the thickness of the first positive C plate is preferably 0.5 μm to 5 μm.
<第一保護部材>
 第一保護部材41は、代表的には、基材を含む。基材は、任意の適切なフィルムで構成され得る。基材を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。基材の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~40μmであり、さらに好ましくは15μm~35μmである。
<First protection member>
The first protection member 41 typically includes a base material. The substrate may be comprised of any suitable film. Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. The thickness of the base material is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 15 μm to 35 μm.
 第一保護部材は、好ましくは、基材と基材上に形成される表面処理層とを有する。表面処理層を有する第一保護部材は、表面処理層が前方側に位置するように配置され得る。具体的には、表面処理層が光学積層体100aの最表面に位置し得る。表面処理層は、任意の適切な機能を有し得る。表面処理層としては、例えば、ハードコート層、反射防止層、スティッキング防止層、アンチグレア層が挙げられる。第一保護部材は、2以上の表面処理層を有していてもよい。表面処理層表面の水接触角は、例えば90°以上125°以下、また例えば、100°以上115°以下であり得る。 The first protective member preferably has a base material and a surface treatment layer formed on the base material. The first protection member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the optical laminate 100a. The surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer. The first protection member may have two or more surface treatment layers. The water contact angle on the surface of the surface treatment layer may be, for example, 90° or more and 125° or less, or, for example, 100° or more and 115° or less.
 反射防止層は、外光等の反射を防止するために設けられる。反射防止層としては、例えば、フッ素樹脂層、ナノ粒子(代表的には中空ナノ粒子、例えば中空ナノシリカ粒子)を含む樹脂層、または、ナノ構造(例えばモスアイ構造)を有する反射防止層が挙げられる。反射防止層の厚みは、好ましくは0.05μm~1μmである。上記樹脂層の形成方法としては、例えば、ゾルゲル法、イソシアネートを用いた熱硬化法、架橋性モノマー(例えば多官能アクリレート)と光重合開始剤とを用いた電離放射線硬化法(代表的には光硬化法)が挙げられる。1つの実施形態において、反射防止層は、第一保護部材の最表面に設けられ、反射防止層表面に第一表面保護フィルムが貼着される。反射防止層が第一保護部材の最表面に設けられる実施形態によれば、ハーフミラー18と第一位相差部材20との間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。 The antireflection layer is provided to prevent reflection of external light and the like. Examples of the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure). . The thickness of the antireflection layer is preferably 0.05 μm to 1 μm. Examples of methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method). curing method). In one embodiment, the antireflection layer is provided on the outermost surface of the first protective member, and the first surface protection film is attached to the surface of the antireflection layer. According to the embodiment in which the antireflection layer is provided on the outermost surface of the first protective member, an excellent antireflection effect can be achieved in a display system in which a space is formed between the half mirror 18 and the first retardation member 20. Obtainable.
 ハードコート層は、好ましくは、十分な表面硬度、優れた機械的強度、および優れた光透過性を有する。ハードコート層は、任意の適切な樹脂から形成され得る。ハードコート層は、代表的には紫外線硬化型樹脂から形成される。紫外線硬化型樹脂としては、例えば、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系が挙げられる。ハードコート層の厚みは、例えば0.5μm以上、好ましくは1μm以上、例えば20μm以下、好ましくは15μm以下である。 The hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency. The hard coat layer may be formed from any suitable resin. The hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins. The thickness of the hard coat layer is, for example, 0.5 μm or more, preferably 1 μm or more, and, for example, 20 μm or less, preferably 15 μm or less.
<粘着剤層>
 粘着剤層31は、任意の適切な粘着剤で構成され得る。具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。ベース樹脂としては、アクリル系樹脂が好ましく用いられる。具体的には、粘着剤層は、好ましくはアクリル系粘着剤で構成される。
<Adhesive layer>
Adhesive layer 31 may be composed of any suitable adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination, and blending ratio of monomers that form the base resin of the adhesive, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., adhesives can have desired characteristics depending on the purpose. can be prepared. The base resin of the adhesive may be used alone or in combination of two or more types. As the base resin, acrylic resin is preferably used. Specifically, the adhesive layer is preferably composed of an acrylic adhesive.
 粘着剤層の厚みは、代表的には1μm以上、好ましくは5μm以上、より好ましくは12μm以上であり、代表的には60μm以下、好ましくは30μm以下、より好ましくは23μm以下である。 The thickness of the adhesive layer is typically 1 μm or more, preferably 5 μm or more, more preferably 12 μm or more, and typically 60 μm or less, preferably 30 μm or less, more preferably 23 μm or less.
<はく離ライナー>
 はく離ライナー61は、任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンが挙げられる。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。はく離ライナーは、透明(例えば、ヘイズが5%以下、また例えば3%以下)であってもよく、透明でなくてもよい。
<Release liner>
Release liner 61 is formed of any suitable resin film. Specific examples of the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The materials for the resin film can be used alone or in combination. The release liner may be transparent (eg, haze of 5% or less, and such as 3% or less) or non-transparent.
 はく離ライナー61における粘着剤層31との接触面には、離型処理層が設けられていてもよい。離型処理層を形成する離型処理剤としては、例えば、シリコーン系離型処理剤、フッ素系離型処理剤、長鎖アルキルアクリレート系離型処理剤が挙げられる。離型処理剤は、単独でまたは組み合わせて使用できる。離型処理層の厚みは、代表的には50nm以上400nm以下である。 A release treatment layer may be provided on the surface of the release liner 61 that comes into contact with the adhesive layer 31. Examples of the mold release treatment agent forming the mold release treatment layer include silicone mold release treatment agents, fluorine mold release treatment agents, and long chain alkyl acrylate type mold release treatment agents. The mold release treatment agents can be used alone or in combination. The thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
 はく離ライナーの厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には60μm以下、好ましくは45μm以下である。なお、離型処理層が施されている場合、はく離ライナーの厚みは、離型処理層の厚みを含めた厚みである。 The thickness of the release liner is typically 5 μm or more, preferably 20 μm or more, and typically 60 μm or less, preferably 45 μm or less. In addition, when a mold release treatment layer is applied, the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
 図5は、図3に例示する表示システムにおいて用いられ得る別の光学積層体の概略断面図である。光学積層体100bは、粘着剤層32と、第二位相差部材22と、第二保護部材42と、をこの順に含む。第二位相差部材22および第二保護部材42は、接着層53を介して積層されている。接着層53は、代表的には、接着剤層または粘着剤層であり、好ましくは粘着剤層である。接着層の厚みは、例えば0.05μm~30μmである。粘着剤層32の表面は、使用に供されるまでの間、はく離ライナー62によって保護されている。第一表面保護フィルムおよび第二表面保護フィルムは、光学積層体100bの第二保護部材42側に貼着される。 FIG. 5 is a schematic cross-sectional view of another optical laminate that may be used in the display system illustrated in FIG. 3. The optical laminate 100b includes an adhesive layer 32, a second retardation member 22, and a second protection member 42 in this order. The second retardation member 22 and the second protection member 42 are laminated with an adhesive layer 53 in between. The adhesive layer 53 is typically an adhesive layer or an adhesive layer, and preferably an adhesive layer. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm. The surface of the adhesive layer 32 is protected by a release liner 62 until it is ready for use. The first surface protection film and the second surface protection film are attached to the second protection member 42 side of the optical laminate 100b.
 図5に示す例では、第二位相差部材22は、第2のλ/4部材22aに加えて、屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)22bを含んでいる。第二位相差部材22は、第2のλ/4部材22aと第2のポジティブCプレート22bとの積層構造を有している。図示例のように、第2のλ/4部材22aが第2のポジティブCプレート22bよりも第二保護部材42側に位置していることが好ましいが、これらの配置が逆であってもよい。また、第2のポジティブCプレート22bは省略されてもよい。第2のλ/4部材22aと第2のポジティブCプレート22bとは、例えば、図示しない接着層を介して積層される。 In the example shown in FIG. 5, the second retardation member 22 includes, in addition to the second λ/4 member 22a, a member (so-called positive C plate) 22b whose refractive index characteristics can exhibit the relationship nz>nx=ny. Contains. The second retardation member 22 has a laminated structure of a second λ/4 member 22a and a second positive C plate 22b. As shown in the illustrated example, it is preferable that the second λ/4 member 22a is located closer to the second protection member 42 than the second positive C plate 22b, but these arrangements may be reversed. . Further, the second positive C plate 22b may be omitted. The second λ/4 member 22a and the second positive C plate 22b are laminated, for example, via an adhesive layer (not shown).
 光学積層体100bは、例えば、図3に例示する表示システムにおいて、第二位相差部材22が第一レンズ部16に一体に設けられた実施形態における表示システムの製造に適用され得る。具体的には、光学積層体100bからはく離ライナー62を剥離し、粘着剤層32を介して第一レンズ部16に貼り合せることにより、第二位相差部材22が第一レンズ部16に一体に設けられた表示システムを製造することができる。 The optical laminate 100b can be applied, for example, to manufacturing a display system in an embodiment in which the second retardation member 22 is integrally provided with the first lens portion 16 in the display system illustrated in FIG. Specifically, by peeling off the release liner 62 from the optical laminate 100b and bonding it to the first lens part 16 via the adhesive layer 32, the second retardation member 22 is integrally attached to the first lens part 16. A display system provided can be manufactured.
<第2のλ/4部材>
 第2のλ/4部材22aの面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第2のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第2のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
<Second λ/4 member>
The in-plane retardation Re (550) of the second λ/4 member 22a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The second λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第2のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第2のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The second λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第2のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第2のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第2のλ/4部材については、上記第1のλ/4部材と同様の説明を適用することができる。第1のλ/4部材と第2のλ/4部材とは、構成(例えば、形成材料、厚み、光学特性等)が同じであってもよく、異なる構成であってもよい。 The second λ/4 member is formed of any suitable material that can satisfy the above characteristics. The second λ/4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the first λ/4 member can be applied to the second λ/4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The first λ/4 member and the second λ/4 member may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
<第2のポジティブCプレート>
 第2のポジティブCプレート22bの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。第2のポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
<Second positive C plate>
The retardation Rth (550) in the thickness direction of the second positive C plate 22b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. The in-plane retardation Re (550) of the second positive C plate is, for example, less than 10 nm.
 第2のポジティブCプレートは、上記特性を満足し得る任意の適切な材料で形成される。第2のポジティブCプレートの構成材料については、第1のポジティブCプレートと同様の説明を適用することができる。第1のポジティブCプレートと第2のポジティブCプレートとは、構成(例えば、形成材料、厚み、光学特性等)が同じであってもよく、異なる構成であってもよい。 The second positive C plate is formed of any suitable material that can satisfy the above characteristics. The same explanation as for the first positive C plate can be applied to the constituent material of the second positive C plate. The first positive C plate and the second positive C plate may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
<第二保護部材>
 第二保護部材42は、代表的には、基材を含み、好ましくは、基材と基材上に形成される表面処理層とを有する。この場合、表面処理層が光学積層体100bの最表面に位置し得る。基材および表面処理層の詳細については、第一保護部材と同様の説明を適用することができる。表面処理層として反射防止層が第二保護部材42の最表面に設けられる実施形態によれば、第二位相差部材22が第一レンズ部16と一体化され、反射型偏光部材14が第二レンズ部24と一体化され、これらの間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。
<Second protection member>
The second protection member 42 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material. In this case, the surface treatment layer may be located on the outermost surface of the optical laminate 100b. Regarding the details of the base material and the surface treatment layer, the same explanation as for the first protective member can be applied. According to an embodiment in which an antireflection layer is provided as a surface treatment layer on the outermost surface of the second protection member 42, the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 42. In a display system that is integrated with the lens portion 24 and a space is formed between them, an excellent antireflection effect can be obtained.
 光学積層体100bに用いられる粘着剤層32およびはく離ライナー62についてはそれぞれ、光学積層体100aに用いられる粘着剤層31およびはく離ライナー61と同様の説明を適用することができる。 The same explanation as for the adhesive layer 31 and release liner 61 used in the optical laminate 100a can be applied to the adhesive layer 32 and release liner 62 used in the optical laminate 100b, respectively.
B.表示システムの製造方法
 本発明の別の局面によれば、A項に記載の表面保護フィルム付光学積層体を用いた表示システム(ディスプレイ付きゴーグル)の製造方法が提供される。本発明の実施形態による表示システムの製造方法は、A項に記載の表面保護フィルム付光学積層体から第二表面保護フィルムを剥離して、第一表面保護フィルムのみが貼着された光学積層体を得ること、第一表面保護フィルムのみが貼着された光学積層体が他の部材に貼り合わせられた構成の被検査物を欠点検査することを含む。第二表面保護フィルムの剥離は、被検査物の作製(すなわち、表面保護フィルム付光学積層体と他の部材との貼り合わせ)前であってもよく、作製後であってもよい。
 本発明の1つの実施形態による表示システムの製造方法は、
 A項に記載の表面保護フィルム付光学積層体の第一表面保護フィルムおよび第二表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、
 該表面保護フィルム付二次積層体から上記第二表面保護フィルムを剥離すること、
 該表面保護フィルム付二次積層体を欠点検査すること、および
 該表面保護フィルム付二次積層体から上記第一表面保護フィルムを剥離して、二次積層体を得ること、
 をこの順に含む。
 得られた二次積層体は、アセンブリ工程に供され、他の部材とともに組み立てられて表示システムを構成する。以下、図6を参照しながら、本発明の上記表示システムの製造方法の一例を説明する。
B. Method for manufacturing a display system According to another aspect of the present invention, there is provided a method for manufacturing a display system (goggles with a display) using the optical laminate with a surface protection film described in Section A. A method for manufacturing a display system according to an embodiment of the present invention includes peeling off the second surface protection film from the optical laminate with a surface protection film described in Section A, and producing an optical laminate to which only the first surface protection film is attached. and inspecting for defects an object to be inspected in which an optical laminate to which only the first surface protection film is attached is bonded to another member. The second surface protection film may be peeled off before or after the production of the object to be inspected (that is, bonding the optical laminate with the surface protection film to another member).
A method of manufacturing a display system according to one embodiment of the present invention includes:
Another member is pasted on the side opposite to the side to which the first surface protection film and the second surface protection film of the optical laminate with a surface protection film according to item A are pasted, to form a secondary surface protection film-attached optical laminate. obtaining a laminate;
Peeling the second surface protection film from the surface protection film-attached secondary laminate;
inspecting the secondary laminate with the surface protection film for defects; and peeling the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate;
In this order.
The obtained secondary laminate is subjected to an assembly process and assembled with other members to form a display system. Hereinafter, an example of a method for manufacturing the display system of the present invention will be described with reference to FIG. 6.
 図6Aに示される表面保護フィルム付光学積層体200は、図4に例示する光学積層体100aを有し、光学積層体100aの第一保護材41表面に第一表面保護フィルム110および第二表面保護フィルム120が外方に向かってこの順に貼着されている。1つの実施形態において、光学積層体100aは、被貼着体(図6(b)に示す別の部材300)の形状に対応する形状に加工されている。例えば、表面保護フィルム付光学積層体200は、切断、打抜き、切削等により、所望の形状に加工されている。
 図6Bに示されるように、表面保護フィルム付光学積層体200からはく離ライナー61を剥離し、露出した粘着剤層31を介して光学部材(例えば、液晶セル、有機ELパネル)300の視認側(前方)表面に貼り合わせて、表面保護フィルム付二次積層体400aを得る。
 次いで、図6Cに示されるように、表面保護フィルム付二次積層体400aから第二表面保護フィルム120を剥離して、表面保護フィルム付二次積層体400bを得る。
 次いで、図6Dに示されるように、第一表面保護フィルム110で表面を保護された状態の表面保護フィルム付二次積層体400bについて欠点検査を実施する。
 次いで、図6Eに示されるように、欠点検査において良品と判断された表面保護フィルム付二次積層体400bから第一表面保護フィルム110を剥離して、二次積層体400cを得る。二次積層体400cは、表示システムの組み立てに供される。
The optical laminate 200 with a surface protection film shown in FIG. 6A has the optical laminate 100a illustrated in FIG. The protective film 120 is pasted outward in this order. In one embodiment, the optical laminate 100a is processed into a shape corresponding to the shape of the object to be adhered (another member 300 shown in FIG. 6(b)). For example, the optical laminate 200 with a surface protection film is processed into a desired shape by cutting, punching, machining, or the like.
As shown in FIG. 6B, the release liner 61 is peeled off from the optical laminate 200 with a surface protection film, and the viewing side of the optical member (e.g., liquid crystal cell, organic EL panel) 300 ( (front) surface to obtain a secondary laminate 400a with a surface protection film.
Next, as shown in FIG. 6C, the second surface protection film 120 is peeled off from the surface protection film-attached secondary laminate 400a to obtain a surface protection film-attached secondary laminate 400b.
Next, as shown in FIG. 6D, a defect inspection is performed on the surface protection film-equipped secondary laminate 400b whose surface is protected by the first surface protection film 110.
Next, as shown in FIG. 6E, the first surface protection film 110 is peeled off from the surface protection film-attached secondary laminate 400b, which was determined to be good in the defect inspection, to obtain a secondary laminate 400c. The secondary laminate 400c is used for assembly of a display system.
 上記製造方法によれば、表示システムに組み込む直前まで、光学積層体の表面にキズ、異物、汚れ等が付着することを好適に防止できるとともに、表示システムに組み込む直前の光学部材について精密な欠点検査を行うことができる。このような効果は、光学積層体の製造、表示素子の製造、表示システムの組み立て(アセンブリ)等の工程が別々の場所で行われる場合に特に有利である。1つの実施形態において、光学積層体は、2つの表面保護フィルムが貼着された表面保護フィルム付光学積層体の状態で第1の半製品として表示素子製造業者に出荷され(例えば、図6A);該表面保護フィルム付光学積層体を、液晶セル、有機EL素子等の光学部材に貼着することにより、表面保護フィルム付光学積層体が貼着された表示素子(液晶パネル、有機ELパネル等)が得られ(例えば、図6B);ここから、第二表面保護フィルムを剥離して、表面が第一表面保護フィルムで保護された状態で、当該表示素子の欠点検査が行われ(例えば、図6CおよびD);欠点検査で良品と判定された表示素子は第一表面保護フィルムを貼着した状態で第2の半製品として表示システムの製造業者に出荷され;当該表示素子は、第一表面保護フィルムを剥離した後に、他の部材とのアセンブリに供され得る(例えば、図6E)。本実施形態の製造方法によれば、第1の半製品を出荷する際の欠点(キズ、異物、汚れ等)の防止、第2の半製品を製造する際の欠点検査、および、第2の半製品を出荷する際の欠点(キズ、異物、汚れ等)の防止を好適に行うことができ、結果として、最終製品の効率的な製造に寄与し得る。 According to the above manufacturing method, it is possible to suitably prevent scratches, foreign matter, dirt, etc. from adhering to the surface of the optical laminate until immediately before it is incorporated into the display system, and it is also possible to conduct precise defect inspection on the optical member immediately before it is incorporated into the display system. It can be performed. Such an effect is particularly advantageous when processes such as manufacturing the optical laminate, manufacturing the display element, and assembling the display system are performed at different locations. In one embodiment, the optical laminate is shipped to a display element manufacturer as a first semi-finished product in the state of an optical laminate with a surface protection film to which two surface protection films are attached (for example, FIG. 6A). ; By pasting the optical laminate with a surface protection film on an optical member such as a liquid crystal cell or an organic EL element, the display element (liquid crystal panel, organic EL panel, etc.) to which the optical laminate with a surface protection film is pasted can be produced. ) is obtained (for example, FIG. 6B); from here, the second surface protection film is peeled off, and the display element is inspected for defects with the surface protected by the first surface protection film (for example, 6C and D); Display elements determined to be non-defective in the defect inspection are shipped to a display system manufacturer as a second semi-finished product with the first surface protection film attached; After peeling off the surface protection film, it can be assembled with other components (eg, FIG. 6E). According to the manufacturing method of the present embodiment, defects (scratches, foreign objects, dirt, etc.) can be prevented when shipping the first semi-finished product, defect inspection can be performed when manufacturing the second semi-finished product, and It is possible to suitably prevent defects (scratches, foreign objects, dirt, etc.) when shipping semi-finished products, and as a result, it can contribute to efficient production of final products.
 表示システムの製造方法は図示例に限定されない。例えば、第二表面保護フィルムの剥離は、はく離ライナーの剥離および光学部材への貼着の前であってもよく、また、欠点検査は、光学部材への貼着前に行われてもよい。例えば、第二表面保護フィルムおよびはく離ライナーを剥離し、第一表面保護フィルムのみが貼着された状態の光学積層体を欠点検査した後に、光学積層体を光学部材に貼り合わせることができる。また例えば、第二表面保護フィルムを剥離し、第一表面保護フィルムとはく離ライナーが貼着された状態の光学積層体を欠点検査した後に、はく離ライナーを剥離して光学積層体を光学部材に貼り合わせることができる。 The method of manufacturing the display system is not limited to the illustrated example. For example, the second surface protection film may be peeled off before the release liner is peeled off and attached to the optical member, and the defect inspection may be performed before the release liner is attached to the optical member. For example, after the second surface protection film and release liner are peeled off and the optical laminate with only the first surface protection film attached is inspected for defects, the optical laminate can be bonded to the optical member. For example, after peeling off the second surface protection film and inspecting the optical laminate with the first surface protection film and release liner attached, the release liner is peeled off and the optical laminate is attached to the optical member. Can be matched.
 欠点検査は、自動光学検査(AOI)、目視検査等によって行われ得る。好ましくは、欠点検査は、自動光学検査(AOI)を含む。欠点検査は、目的に応じて、透過光学系で行われてもよく、反射光学系で行われてもよく、これらの組み合わせであってもよい。 Defect inspection may be performed by automated optical inspection (AOI), visual inspection, etc. Preferably, the defect inspection includes automated optical inspection (AOI). Defect inspection may be performed using a transmission optical system, a reflection optical system, or a combination thereof depending on the purpose.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みは下記の測定方法により測定した値である。
<厚み>
 10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
<表面保護フィルムのヘイズ>
 各表面保護フィルムにおいて、はく離ライナーを粘着剤層から剥離して、ヘイズメーター(日本電色工業社製「NDH-5000」)により、表面保護フィルムの基材側から光を照射して、JIS K7136に準じてヘイズを測定した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Note that the thickness is a value measured by the following measuring method.
<Thickness>
The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
<Haze of surface protection film>
For each surface protection film, the release liner is peeled off from the adhesive layer, and light is irradiated from the base material side of the surface protection film using a haze meter ("NDH-5000" manufactured by Nippon Denshoku Industries Co., Ltd.) to meet JIS K7136. Haze was measured according to .
[製造例1A:表面保護フィルムAの作製]
<アクリルポリマーA>
 温度計、攪拌機、冷却器および窒素ガス導入管を備える反応容器内に、モノマー成分として、2-エチルヘキシルアクリレート(2EHA)96.2質量部、およびヒドロキシエチルアクリレート(HEA)3.8質量部、ならびに重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を酢酸エチル150質量部とともに仕込み、23℃で緩やかに攪拌しながら窒素ガスを導入して窒素置換を行った。その後、液温を65℃付近に保って6時間重合反応を行い、アクリルポリマーAの溶液(濃度40質量%)を調製した。アクリルポリマーAの重量平均分子量は54万であった。
[Production Example 1A: Production of surface protection film A]
<Acrylic polymer A>
In a reaction vessel equipped with a thermometer, a stirrer, a cooler, and a nitrogen gas introduction tube, 96.2 parts by mass of 2-ethylhexyl acrylate (2EHA) and 3.8 parts by mass of hydroxyethyl acrylate (HEA) were placed as monomer components. 0.2 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) as a polymerization initiator was charged together with 150 parts by mass of ethyl acetate, and nitrogen gas was introduced while stirring gently at 23°C to perform nitrogen substitution. Ta. Thereafter, a polymerization reaction was carried out for 6 hours while maintaining the liquid temperature at around 65° C. to prepare a solution of acrylic polymer A (concentration: 40% by mass). The weight average molecular weight of acrylic polymer A was 540,000.
<粘着剤組成物A>
 アクリルポリマーAの溶液に酢酸エチルを加えて濃度20質量%に希釈した。この溶液500質量部(固形分100質量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(東ソー社製「コロネートHX」)4質量部、および架橋触媒としてジラウリン酸ジブチルスズ(1質量%酢酸エチル溶液)3質量部(固形分0.03質量部)を加えて攪拌し、粘着剤組成物Aを調製した。
<Adhesive composition A>
Ethyl acetate was added to the solution of acrylic polymer A to dilute it to a concentration of 20% by mass. To 500 parts by mass of this solution (solid content: 100 parts by mass), 4 parts by mass of an isocyanurate of hexamethylene diisocyanate ("Coronate HX" manufactured by Tosoh Corporation) as a crosslinking agent, and dibutyltin dilaurate (1% by mass ethyl acetate) as a crosslinking catalyst. Solution) 3 parts by mass (solid content: 0.03 parts by mass) were added and stirred to prepare adhesive composition A.
<表面保護フィルムA>
 基材(PETフィルム、KOLON社製「CE905-38」、厚み38μm)の片面に、粘着剤組成物Aを塗布し、その後乾燥させて粘着剤層(厚み15μm)を形成した。次いで、粘着剤層の基材と反対側の表面に、はく離ライナー(東洋紡社製、品番TG704)を貼り付けた。これにより表面保護フィルムAを得た。表面保護フィルムAのヘイズは、1.8%であった。
<Surface protection film A>
Adhesive composition A was applied to one side of a base material (PET film, "CE905-38" manufactured by KOLON, thickness 38 μm), and then dried to form an adhesive layer (thickness 15 μm). Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material. As a result, surface protection film A was obtained. The haze of surface protection film A was 1.8%.
[製造例1B:表面保護フィルムBの作製]
 基材としてPETフィルム(KOLON社製「CE901-38」、厚み38μm)を用いたこと以外は製造例1Aと同様にして粘着剤層(厚み15μm)を形成した。次いで、粘着剤層の基材と反対側の表面に、はく離ライナー(東洋紡社製、品番TG704)を貼り付けた。これにより表面保護フィルムBを得た。表面保護フィルムBのヘイズは、3.9%であった。
[Production Example 1B: Production of surface protection film B]
An adhesive layer (thickness: 15 μm) was formed in the same manner as in Production Example 1A, except that a PET film (“CE901-38” manufactured by KOLON, thickness: 38 μm) was used as the base material. Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material. As a result, surface protection film B was obtained. The haze of surface protection film B was 3.9%.
[製造例1C:表面保護フィルムCの作製]
 基材としてPETフィルム(三菱ケミカル社製「品番T100C38」、厚み38μm)を用い、そのコロナ処理面に粘着剤組成物Aを塗布して厚み5μmの粘着剤層を形成したこと以外は製造例1Aと同様にして表面保護フィルムCを得た。表面保護フィルムCのヘイズは、2.6%であった。
[Production Example 1C: Production of surface protection film C]
Production Example 1A except that a PET film (product number T100C38 manufactured by Mitsubishi Chemical Corporation, thickness 38 μm) was used as the base material, and adhesive composition A was applied to the corona-treated surface of the film to form an adhesive layer with a thickness of 5 μm. A surface protection film C was obtained in the same manner as above. The haze of surface protection film C was 2.6%.
 上記表面保護フィルムBおよびその製造に用いたはく離ライナーに関して、下記(1)~(5)の評価を行った。
(1)粘着剤層の表面形状評価試験
 表面保護フィルムにおいて、はく離ライナーを粘着剤層から剥離して、粘着剤層における基材と反対側の表面を露出させた。
 次いで、露出させた粘着剤層表面と対物レンズとが向かい合うように、はく離ライナーが除去された表面保護フィルムを白色干渉計(Zygo社製、商品名 Zygo NewView7300)にセットして、粘着剤層表面の干渉データを下記の条件で測定した。
 白色干渉計の測定条件:
対物レンズ;×10
内部レンズ;×1.0
分解能;1.09μm
測定視野面積(S);0.3641mm
Removed;Cylinder
 得られた干渉データを、周波数領域解析(計算ソフト;MetroPro)により、測定面(基準面)に対して-1000nm~-2000nmの解析範囲(深さ方向)で演算して、該当箇所が黒色領域となる二次元画像を得た。
 なお、測定面(基準面)は、測定視野面積内の平均の高さとなる面に基づいて設定した。二次元画像における黒色領域の面積(B-BA)を表2に示す。
 次いで、二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得た。二値化画像における白色領域の面積(A-WA)を表2に示す。
 次いで、白色干渉計の測定視野面積Sに対する、二次元画像における黒色領域の面積(B-BA)と二値化画像における白色領域の面積(A-WA)との総和の割合を算出した(上記(式(1)~(3)参照)。その結果を表2に示す。
Regarding the surface protection film B and the release liner used in its production, the following evaluations (1) to (5) were performed.
(1) Surface shape evaluation test of adhesive layer In the surface protection film, the release liner was peeled off from the adhesive layer to expose the surface of the adhesive layer on the side opposite to the base material.
Next, the surface protective film from which the release liner was removed was set in a white interferometer (manufactured by Zygo, trade name: Zygo NewView 7300) so that the exposed surface of the adhesive layer faced the objective lens, and the surface of the adhesive layer was exposed. Interference data was measured under the following conditions.
Measurement conditions for white interferometer:
Objective lens; ×10
Internal lens; ×1.0
Resolution: 1.09μm
Measurement visual field area (S): 0.3641mm 2
Removed; Cylinder
The obtained interference data is calculated in the analysis range (depth direction) from -1000 nm to -2000 nm with respect to the measurement surface (reference surface) using frequency domain analysis (calculation software; MetroPro), and the corresponding location is determined as a black area. A two-dimensional image was obtained.
Note that the measurement plane (reference plane) was set based on the plane that was the average height within the measurement visual field area. Table 2 shows the area of the black area (B-BA) in the two-dimensional image.
Next, the two-dimensional image was binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface, to obtain a binarized image in which the portion below −100 nm was a white region. Table 2 shows the area (A-WA) of the white region in the binarized image.
Next, the ratio of the sum of the area of the black area in the two-dimensional image (B-BA) and the area of the white area in the binarized image (A-WA) to the measurement field area S of the white interferometer was calculated (as described above). (See formulas (1) to (3).) The results are shown in Table 2.
(2)粘着剤層の表面の最大谷深さおよび算術平均高さ測定
 前述の白色干渉計の測定から得られた二次元画像の内、測定視野面積内の平均面に対する最小値を最大谷深さ(Sv)とした。また、Raの値を算術平均高さ(Sa)とした。なお、最大谷深さおよび算術平均高さは、無作為に選んだ3点のデータを平均した値を採用した。その結果を表2に示す。
(2) Measurement of the maximum valley depth and arithmetic mean height of the surface of the adhesive layer Among the two-dimensional images obtained from the above-mentioned white interferometer measurement, the maximum valley depth is determined by the minimum value with respect to the average plane within the measurement field of view area. It was set as (Sv). Further, the value of Ra was defined as the arithmetic mean height (Sa). Note that the maximum valley depth and arithmetic mean height were determined by averaging data from three randomly selected points. The results are shown in Table 2.
(3)はく離ライナーの最大山高さおよび算術平均高さ測定
 上記(1)において、粘着剤層から剥離したはく離ライナーを、上記白色干渉計にセットして、はく離ライナーの干渉データを上記の条件で測定し、二次元画像を得た。得られた二次元画像の内、測定視野面積内の平均面に対する最大値を最大山高さ(Sp)とした。また、Raの値を算術平均高さ(Sa)とした。なお、最大山高さおよび算術平均高さは無作為に選んだ3点のデータを平均した値を採用した。その結果を表1に示す。
(3) Measurement of maximum peak height and arithmetic mean height of release liner In (1) above, the release liner that has been peeled off from the adhesive layer is set in the above white interferometer, and the interference data of the release liner is measured under the above conditions. Measurements were taken to obtain two-dimensional images. Among the obtained two-dimensional images, the maximum value with respect to the average plane within the measurement visual field area was defined as the maximum peak height (Sp). Further, the value of Ra was defined as the arithmetic mean height (Sa). In addition, the maximum peak height and the arithmetic mean height were determined by averaging data from three randomly selected points. The results are shown in Table 1.
(4)基材の顕微鏡観察による欠点数測定
 基材の表面を顕微鏡(OLYMPUS社製、商品名BX51、接眼レンズ倍率10×、対物レンズ倍率10×)にて観察した。次いで、観察視野の中から無作為に0.1mm×0.1mmの領域を選択し、最大フェレ径が10μm以上の欠点数を目視にて測定した。
 その結果を表1に示す。
(4) Determination of the number of defects by microscopic observation of the substrate The surface of the substrate was observed with a microscope (manufactured by OLYMPUS, trade name BX51, eyepiece magnification 10×, objective lens magnification 10×). Next, a 0.1 mm x 0.1 mm area was randomly selected from the observation field, and the number of defects with a maximum Feret diameter of 10 μm or more was visually measured.
The results are shown in Table 1.
(5)基材の引裂強さの測定
 基本的にはJIS K7128-1:1998に準拠して測定した。
 具体的には、基材を、150mm×50mmのサイズに切断した。次いで、長辺と平行な方向に短辺側の端部中心から75mmスリットを入れ、サンプル片を準備した。なお、MD方向の引裂強さは長辺方向がMD方向と平行になる様に、TD方向の引裂強さは長辺方向がTD方向と平行になる様にサンプルを準備した。
 得られた試験片を引張試験機に取り付け、引張速度200mm/min(温度23℃/相対湿度50%雰囲気下)にて評価し、引裂力を測定した。得られた引裂力より、引裂強さfを算出した。(f=Ft/d(Ft:試験片の引裂力[N],d:試験片の厚さ[mm]))その結果を表1に示す。
(5) Measurement of tear strength of base material Measurement was basically based on JIS K7128-1:1998.
Specifically, the base material was cut into a size of 150 mm x 50 mm. Next, a 75 mm slit was made from the center of the short side end in a direction parallel to the long side to prepare a sample piece. The sample was prepared so that the tear strength in the MD direction was such that the long side direction was parallel to the MD direction, and the tear strength in the TD direction was such that the long side direction was parallel to the TD direction.
The obtained test piece was attached to a tensile testing machine and evaluated at a tensile rate of 200 mm/min (in an atmosphere of 23° C./50% relative humidity) to measure the tear force. Tear strength f was calculated from the obtained tear force. (f=Ft/d (Ft: tear force of test piece [N], d: thickness of test piece [mm])) The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[剥離力評価:きっかけ剥離力]
 表面保護フィルムAおよびBについて、後述の製造例5で作製した保護部材の表面処理層側表面に対する90°および180°きっかけ剥離力を測定した。また、表面保護フィルムCについて、表面保護フィルムAまたはBの基材側表面に対する90°および180°きっかけ剥離力を測定した。測定はN=10で行い、その平均値をきっかけ剥離力とした。結果を表3に示す。なお、きっかけ剥離力の測定方法は以下のとおりである。
<きっかけ剥離力の測定方法>
(1)表面保護フィルムAおよびB
 保護部材を長方形状のフィルム片(50mm×50mm)に切り出し、両面粘着テープ(日東電工社製、「No.535A」)を介してSUS板に貼り合わせた。このとき、アクリルフィルム側がSUS板側となるように貼り合わせた。次いで、同形状に切り出した表面保護フィルムAまたはBを該保護部材の表面処理層面にハンドローラ1往復にて重ねて貼り合わせ、これにより、[SUS板/保護部材/表面保護フィルム]の構成を有する積層体を得た。当該積層体の表面保護フィルムの角部から2cmの地点に約10cmの長さにカットした粘着テープ(日東電工社製、「No.315」、幅25mm)を置き、2kgローラー1往復で貼り合わせることで測定サンプルを得た。
 上記測定サンプルについて、以下の条件で表面保護フィルムを測定サンプルの角部から剥離する際の剥離力を測定し、測定開始直後のピーク値を表面保護フィルムAまたはBのきっかけ剥離力とした。
・測定装置:引っ張り試験機(協和界面科学社製、粘着被膜剥離解析装置「VPA-2」、電源を立ち上げて30分以上エージングする。)
・測定環境:23±5℃、60±20RH%
・剥離速度:300mm/分
・剥離角度:90°または180°
(2)表面保護フィルムC
 表面保護フィルムAまたはBを長方形状のフィルム片(50mm×50mm)に切り出し、はく離ライナーを剥離して露出した粘着剤層を介してSUS板に貼り合わせ、該表面保護フィルムの基材層表面に表面保護フィルムCを貼り合わせたこと以外は上記(1)と同様にして、保護フィルムCのきっかけ剥離力を測定した。
Figure JPOXMLDOC01-appb-T000010
[Peeling force evaluation: triggered peeling force]
Regarding the surface protection films A and B, the 90° and 180° trigger peel forces against the surface-treated layer side surface of the protective member produced in Production Example 5, which will be described later, were measured. Further, for the surface protection film C, the 90° and 180° trigger peel forces against the substrate side surface of the surface protection film A or B were measured. The measurement was performed with N=10, and the average value was taken as the trigger peeling force. The results are shown in Table 3. The method for measuring the triggered peel force is as follows.
<Measurement method of triggered peel force>
(1) Surface protection films A and B
The protective member was cut into a rectangular film piece (50 mm x 50 mm) and bonded to a SUS board via double-sided adhesive tape (manufactured by Nitto Denko Corporation, "No. 535A"). At this time, the acrylic film side was attached to the SUS plate side. Next, the surface protection film A or B cut out in the same shape is laminated and laminated on the surface treated layer surface of the protection member using one reciprocation of a hand roller, thereby forming the structure of [SUS board/protection member/surface protection film]. A laminate having the following properties was obtained. Place an adhesive tape (manufactured by Nitto Denko Corporation, "No. 315", width 25 mm) cut to a length of about 10 cm at a point 2 cm from the corner of the surface protection film of the laminate, and paste together with one round trip with a 2 kg roller. A measurement sample was obtained.
Regarding the above measurement sample, the peeling force when peeling the surface protection film from the corner of the measurement sample was measured under the following conditions, and the peak value immediately after the start of the measurement was taken as the trigger peeling force of the surface protection film A or B.
・Measuring device: Tensile tester (manufactured by Kyowa Interface Science Co., Ltd., adhesive film peeling analyzer "VPA-2", turn on the power and let it age for at least 30 minutes.)
・Measurement environment: 23±5℃, 60±20RH%
・Peeling speed: 300mm/min ・Peeling angle: 90° or 180°
(2) Surface protection film C
Cut out the surface protection film A or B into a rectangular film piece (50 mm x 50 mm), peel off the release liner and attach it to the SUS board via the exposed adhesive layer, and apply it to the surface of the base layer of the surface protection film. The trigger peeling force of the protective film C was measured in the same manner as in (1) above, except that the surface protective film C was attached.
Figure JPOXMLDOC01-appb-T000010
[剥離力評価:通常剥離力]
 表面保護フィルムAおよびBについて、後述の実施例1で作製した光学積層体の保護部材の表面処理層側表面に対する通常剥離力を測定した。また、表面保護フィルムCについて、表面保護フィルムAまたはBの基材側表面に対する通常剥離力を測定した。測定はN=30で行い、その平均値を通常剥離力とした。結果を表4に示す。なお、通常剥離力の測定方法は以下のとおりである。
<通常剥離力の測定方法>
 表面保護フィルムを幅25mm、長さ100mmのサイズに切り出し、はく離ライナーを粘着剤層から剥離して、被着体に、圧力0.25MPa、送り速度0.3m/分でロール圧着した。この試料を、温度23℃、相対湿度50%の環境に30分間静置した後、同環境下で、剥離角度180°、引張速度300mm/分でピール試験を行い、180°剥離力を測定した。
Figure JPOXMLDOC01-appb-T000011
[Peeling force evaluation: Normal peeling force]
Regarding the surface protection films A and B, the normal peeling force against the surface of the surface treatment layer side of the protective member of the optical laminate produced in Example 1, which will be described later, was measured. Furthermore, the normal peeling force of surface protection film C against the substrate side surface of surface protection film A or B was measured. The measurement was performed with N=30, and the average value was taken as the normal peeling force. The results are shown in Table 4. Note that the peeling force is usually measured as follows.
<Normal peeling force measurement method>
The surface protection film was cut into a size of 25 mm in width and 100 mm in length, the release liner was peeled off from the adhesive layer, and the film was roll-bonded to the adherend at a pressure of 0.25 MPa and a feed rate of 0.3 m/min. This sample was allowed to stand for 30 minutes in an environment with a temperature of 23°C and a relative humidity of 50%, and then a peel test was conducted under the same environment at a peel angle of 180° and a tensile speed of 300 mm/min, and the 180° peel force was measured. .
Figure JPOXMLDOC01-appb-T000011
[製造例2:偏光フィルムの作製]
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ社製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの吸収型偏光膜を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる吸収型偏光膜の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて吸収型偏光膜を得た。
 得られた吸収型偏光膜の一方の面にHC付トリアセチルセルロース(TAC)系樹脂フィルム(TAC厚み:25μm、HC厚み:7μm)を、他方の面にシクロオレフィン系樹脂フィルム(厚み:13μm)を、それぞれ保護層として貼り合わせた。具体的には、硬化型接着剤の総厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をTACフィルム側から照射して接着剤を硬化させた。
 これにより、[TACフィルム(保護層)/吸収型偏光膜/COPフィルム(保護層)]の構成を有する偏光フィルムを得た。
[Production Example 2: Production of polarizing film]
A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray Co., Ltd., product name "PE3000") with a thickness of 30 μm was uniaxially stretched in the longitudinal direction so as to be 5.9 times the length in the longitudinal direction using a roll stretching machine. At the same time, swelling, dyeing, crosslinking, and washing treatments were performed, and finally a drying treatment was performed to prepare an absorption type polarizing film with a thickness of 12 μm.
Specifically, in the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times. The boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second stage of crosslinking treatment, the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Further, the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C. The potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight. Finally, the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
A triacetyl cellulose (TAC) resin film with HC (TAC thickness: 25 μm, HC thickness: 7 μm) was placed on one side of the obtained absorption type polarizing film, and a cycloolefin resin film (thickness: 13 μm) was placed on the other side. were laminated together as a protective layer. Specifically, the curable adhesive was coated to a total thickness of about 1 μm, and then bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive.
Thereby, a polarizing film having the structure of [TAC film (protective layer)/absorption type polarizing film/COP film (protective layer)] was obtained.
[製造例3:λ/4部材の作製]
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
[Manufacturing Example 3: Fabrication of λ/4 member]
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC), and 1.19×10 −2 parts by mass (6.78×10 −2 of calcium acetate monohydrate as a catalyst ). 5 mol) was prepared. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度143℃、延伸倍率2.8倍で延伸し、厚み47μmの延伸フィルム(λ/4部材)を得た。得られた延伸フィルムのRe(550)は143nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。 After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 135 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder. The obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times to obtain a stretched film (λ/4 member) with a thickness of 47 μm. The obtained stretched film had Re(550) of 143 nm, Re(450)/Re(550) of 0.86, and Nz coefficient of 1.12.
[製造例4:ポジティブCプレートの作製]
 下記化学式(1)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、厚みが4μm、Rth(550)が-100nmのポジティブCプレートを基材上に形成した。
Figure JPOXMLDOC01-appb-C000012
[Manufacture example 4: Preparation of positive C plate]
20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (1) (numbers 65 and 35 in the formula indicate mol% of monomer units, and are conveniently expressed as a block polymer: weight average molecular weight 5000), 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF, trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name Irgacure 907) were dissolved in 200 parts by weight of cyclopentanone. A liquid crystal coating solution was prepared. Then, the coating solution was applied to a PET substrate subjected to vertical alignment treatment using a bar coater, and then heated and dried at 80° C. for 4 minutes to align the liquid crystal. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a positive C plate having a thickness of 4 μm and an Rth (550) of −100 nm was formed on the base material.
Figure JPOXMLDOC01-appb-C000012
[製造例5:保護部材の作製]
 ラクトン環構造を有するアクリルフィルム(厚み40μm)に、下記に示すハードコート層形成用材料を塗布し、塗布層を乾燥させて厚み0.5μmのハードコート層を形成した。次いで、ハードコート層表面に下記に示す反射防止層形成材料を塗布して80℃で1分間加熱し、加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚み0.1μmの反射防止層が形成した。これにより、[アクリルフィルム/ハードコート層/反射防止層]の構成を有する保護部材を得た。
[Production Example 5: Production of protective member]
A hard coat layer forming material shown below was applied to an acrylic film (40 μm thick) having a lactone ring structure, and the applied layer was dried to form a 0.5 μm thick hard coat layer. Next, the antireflection layer forming material shown below was applied to the surface of the hard coat layer, heated at 80°C for 1 minute, and the heated coating layer was irradiated with ultraviolet rays at a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp. The coating layer was cured to form an antireflection layer with a thickness of 0.1 μm. Thereby, a protective member having the structure of [acrylic film/hard coat layer/antireflection layer] was obtained.
(ハードコート層形成用材料)
 アクリル系樹脂原料(大日本インキ社製、商品名:GRANDIC PC1071)に、レベリング剤0.5重量%を加え、さらに、固形分濃度が50重量%となるように酢酸エチルで希釈することにより、ハードコート層形成用材料を調製した。なお、レベリング剤は、ジメチルシロキサン:ヒドロキシプロピルシロキサン:6-イソシアネートヘキシルイソシアヌル酸:脂肪族ポリエステル=6.3:1.0:2.2:1.0のモル比で共重合させた共重合物である。
(Material for forming hard coat layer)
By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared. The leveling agent is a copolymer copolymerized at a molar ratio of dimethylsiloxane: hydroxypropylsiloxane: 6-isocyanatehexylisocyanuric acid: aliphatic polyester = 6.3:1.0:2.2:1.0. It is.
(反射防止層形成材料)
 ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)150重量部、中実ナノシリカ粒子(日産化学工業株式会社製、商品名「MEK-2140Z-AC」、固形分30重量%、重量平均粒子径10nm)50重量部、フッ素元素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒としてTBA(ターシャリーブチルアルコール)、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を60:25:15重量比で混合した混合溶媒を添加して全体の固形分が4重量%となるようにし、攪拌して反射防止層形成材料を調製した。
(Anti-reflection layer forming material)
100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content: 100% by weight) were mixed. To the mixture, a mixed solvent of TBA (tertiary butyl alcohol), MIBK (methyl isobutyl ketone) and PMA (propylene glycol monomethyl ether acetate) mixed in a weight ratio of 60:25:15 was added as a diluting solvent to dissolve the entire solid. The content was adjusted to 4% by weight and stirred to prepare an antireflection layer forming material.
[製造例6:粘着剤層の作製]
 撹拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート80.3部、フェノキシエチルアクリレート16部、N-ビニル-2-ピロリドン(NVP)3部、アクリル酸0.3部、4-ヒドロキシブチルアクリレート0.4部を含有するモノマー混合物を仕込んだ。さらに、上記モノマー混合物(固形分)100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み、緩やかに撹拌しながら窒素ガスを導入して窒素置換した。次いで、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、アクリル系ポリマー溶液を調製した。アクリル系ポリマーの重量平均分子量は150万であった。得られたアクリル系ポリマー溶液の固形分100部に対して、架橋剤としてベンゾイルパーオキサイド(BPO:日本油脂社製のナイパーBMT)を0.3部配合し、アクリル系粘着剤溶液を調製した。
 得られた粘着剤組成物を、はく離ライナー(東レ社製、セラピール)の剥離処理層面に塗布し、155℃で3分間乾燥させて、厚み20μmの粘着剤層を形成した。
[Production Example 6: Preparation of adhesive layer]
In a four-neck flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube, and condenser, add 80.3 parts of butyl acrylate, 16 parts of phenoxyethyl acrylate, 3 parts of N-vinyl-2-pyrrolidone (NVP), and acrylic acid. A monomer mixture containing 0.3 parts and 0.4 parts of 4-hydroxybutyl acrylate was charged. Further, to 100 parts of the above monomer mixture (solid content), 0.1 part of 2,2'-azobisisobutyronitrile as a polymerization initiator was charged together with 100 parts of ethyl acetate, and nitrogen gas was added while stirring gently. The atmosphere was replaced with nitrogen. Next, a polymerization reaction was carried out for 8 hours while maintaining the liquid temperature in the flask at around 55° C. to prepare an acrylic polymer solution. The weight average molecular weight of the acrylic polymer was 1.5 million. An acrylic adhesive solution was prepared by adding 0.3 parts of benzoyl peroxide (BPO: Niper BMT manufactured by NOF Corporation) as a crosslinking agent to 100 parts of the solid content of the obtained acrylic polymer solution.
The obtained adhesive composition was applied to the release-treated layer surface of a release liner (manufactured by Toray Industries, Inc., Therapel) and dried at 155° C. for 3 minutes to form an adhesive layer with a thickness of 20 μm.
[実施例1]
(1)第一表面保護フィルムとして表面保護フィルムAを用い、第二表面保護フィルムとして表面保護フィルムCを用いて表面保護フィルム積層体を得た。具体的には、表面保護フィルムCからはく離ライナーを剥離し、表面保護フィルムAの基材面に貼り合わせて、[はく離ライナー/表面保護フィルムA/表面保護フィルムC]の構成を有する表面保護フィルム積層体を得た。
(2)製造例2で得た偏光フィルムのCOP保護層側表面に、製造例6で得た粘着剤層をはく離ライナーとともに貼り合せて、粘着剤層付偏光フィルムを得た。
(3)λ/4部材(延伸フィルム)に紫外線硬化型接着剤(硬化後の厚み1μm)を介して上記ポジティブCプレートを転写して、位相差部材を得た。得られた位相差部材のポジティブCプレート側に別のアクリル系粘着剤層を介して製造例5で得た保護部材を貼り合わせた。このとき、保護部材のアクリルフィルムが位相差部材側に位置するように(換言すると、反射防止層が最表面となるように)貼り合わせた。次いで、はく離ライナー上に形成した別のアクリル系粘着剤層をλ/4部材側表面に貼り合わせた。これにより、[保護部材/ポジティブCプレート/λ/4部材/アクリル系粘着剤層/はく離ライナー]の構成を有する積層体を得た。
(4)(1)で得た表面保護フィルム積層体を、表面保護フィルムA側はく離ライナーを剥離して露出した粘着剤層を介して(3)で得た積層体の保護部材側表面に貼り合わせた。貼り合わせた直後に上から刃を入れることで長方形状のフィルムAを打ち抜いた。なお、長方形状のフィルムAはλ/4部材の遅相軸が短手方向に平行になるような刃型で打ち抜いている。同様に、(2)で得た粘着剤層付偏光フィルムに上から刃を入れることで長方形状のフィルムBを打ち抜いた。なお、長方形状のフィルムBは吸収型偏光膜の吸収軸が長手方向に対して斜め45°になるような刃型で打ち抜いている。フィルムAのはく離ライナーを剥離してテンションをかけずにフィルムBに長手方向を揃えて貼り合わせた。上記のとおり、フィルムAはλ/4部材の遅相軸が短手方向と平行となるように、フィルムBは吸収型偏光膜の吸収軸が斜め45°になるように打ち抜かれているため、吸収型偏光膜の吸収軸とλ/4部材の遅相軸とのなす角度は45°になっている。
 以上のようにして、[光学積層体(はく離ライナー/粘着剤層/偏光部材/λ/4部材/ポジティブCプレート/保護部材)/表面保護フィルムA/表面保護フィルムC]の構成を有する表面保護フィルム付光学積層体を得た。
[Example 1]
(1) A surface protection film laminate was obtained using surface protection film A as the first surface protection film and surface protection film C as the second surface protection film. Specifically, a release liner is peeled off from surface protection film C and bonded to the base material surface of surface protection film A to form a surface protection film having the configuration of [release liner/surface protection film A/surface protection film C]. A laminate was obtained.
(2) The adhesive layer obtained in Production Example 6 was laminated together with a release liner on the COP protective layer side surface of the polarizing film obtained in Production Example 2 to obtain a polarizing film with an adhesive layer.
(3) The positive C plate was transferred to a λ/4 member (stretched film) via an ultraviolet curable adhesive (thickness after curing: 1 μm) to obtain a retardation member. The protective member obtained in Production Example 5 was bonded to the positive C plate side of the obtained retardation member via another acrylic adhesive layer. At this time, they were bonded together so that the acrylic film of the protective member was located on the retardation member side (in other words, so that the antireflection layer was on the outermost surface). Next, another acrylic adhesive layer formed on the release liner was attached to the λ/4 member side surface. Thereby, a laminate having the structure of [protective member/positive C plate/λ/4 member/acrylic adhesive layer/release liner] was obtained.
(4) Apply the surface protection film laminate obtained in (1) to the protective member side surface of the laminate obtained in (3) via the adhesive layer exposed by peeling off the release liner on the surface protection film A side. Combined. Immediately after bonding, rectangular film A was punched out by inserting a blade from above. Note that the rectangular film A is punched out with a blade such that the slow axis of the λ/4 member is parallel to the transverse direction. Similarly, a rectangular film B was punched out by inserting a blade into the adhesive layer-attached polarizing film obtained in (2) from above. Note that the rectangular film B is punched out with a blade so that the absorption axis of the absorption type polarizing film is inclined at 45 degrees with respect to the longitudinal direction. The release liner of Film A was peeled off and the film was bonded to Film B with the longitudinal direction aligned without applying tension. As mentioned above, film A is punched so that the slow axis of the λ/4 member is parallel to the transverse direction, and film B is punched so that the absorption axis of the absorption type polarizing film is diagonally 45 degrees. The angle between the absorption axis of the absorption type polarizing film and the slow axis of the λ/4 member is 45°.
As described above, the surface protection having the structure of [optical laminate (release liner/adhesive layer/polarizing member/λ/4 member/positive C plate/protective member)/surface protection film A/surface protection film C] An optical laminate with film was obtained.
[実施例2]
 第一表面保護フィルムとして、上記表面保護フィルムBを用いたこと以外は実施例1と同様にして、[光学積層体/表面保護フィルムB/表面保護フィルムC]の構成を有する表面保護フィルム付光学積層体を得た。
[Example 2]
An optical film with a surface protection film having the structure of [optical laminate/surface protection film B/surface protection film C] was prepared in the same manner as in Example 1 except that the above-mentioned surface protection film B was used as the first surface protection film. A laminate was obtained.
[比較例1]
 上記実施例1の(3)で得た積層体の保護部材側表面(反射防止層表面)に表面保護フィルムCのみを貼り合わせたこと以外は実施例1と同様にして、[光学積層体/表面保護フィルムC]の構成を有する表面保護フィルム付光学積層体を得た。
[Comparative example 1]
[Optical laminate/ An optical laminate with a surface protection film having the structure of [Surface Protection Film C] was obtained.
[比較例2]
 上記実施例1の(3)で得た積層体の保護部材側表面(反射防止層表面)に表面保護フィルムAのみを貼り合わせたこと以外は実施例1と同様にして、[光学積層体/表面保護フィルムA]の構成を有する表面保護フィルム付光学積層体を得た。
[Comparative example 2]
[Optical laminate/ An optical laminate with a surface protection film having the structure of [Surface Protection Film A] was obtained.
[比較例3]
 上記実施例1の(3)で得た積層体の保護部材側表面(反射防止層表面)に表面保護フィルムBのみを貼り合わせたこと以外は実施例1と同様にして、[光学積層体/表面保護フィルムB]の構成を有する表面保護フィルム付光学積層体を得た。
[Comparative example 3]
[Optical laminate/ An optical laminate with a surface protection film having the structure of [Surface Protection Film B] was obtained.
[欠点検査]
 上記実施例および比較例で得られた表面保護フィルム付光学積層体を371.87mm×236.58mmサイズに切り出して、被検査サンプルとして用いた。実施例1および2の被検査サンプルは、はく離ライナーおよび第二表面保護フィルムを剥離した状態で、比較例1~3の被検査サンプルは、はく離ライナーを剥離した状態で、欠点検査に供した。具体的には、上記被検査サンプルを、光学式自動外観検査装置のチャッキング部にセットし、当該サンプル中における100μm以上のサイズの欠点(キズ、異物、気泡等)を検出した。次いで、100μm以上のサイズの欠点が検出された箇所を顕微鏡で観察することにより、表面保護フィルムに起因する欠点の誤検出であるか、光学積層体の欠点であるかを確認した。「式:検査不良発生率(%)=誤検出数/総検出数×100」に基づいて検査不良発生率を算出し、下記基準に基づいて、検査の実効性評価を行った。また、表面保護フィルム表面における100μm以上のサイズのキズの有無を確認し、下記基準に基づいてキズ評価を行った。結果を表5に示す。
<検査の実効性評価>
  〇(良):検査不良発生率:0%
  △(可):検査不良発生率:0%を超え10%未満
  ×(不良):検査不良発生率10%以上
<キズ評価>
  〇(良):100μm以上のキズ無し
  ×(不良):100μm以上のキズ有り
[Defect inspection]
The optical laminates with surface protection films obtained in the above Examples and Comparative Examples were cut into a size of 371.87 mm x 236.58 mm and used as samples to be tested. The samples to be inspected in Examples 1 and 2 were subjected to defect inspection with the release liner and second surface protection film removed, and the samples to be inspected in Comparative Examples 1 to 3 were subjected to defect inspection with the release liner removed. Specifically, the sample to be inspected was set in the chucking part of an automatic optical visual inspection device, and defects (scratches, foreign objects, air bubbles, etc.) with a size of 100 μm or more in the sample were detected. Next, by observing with a microscope the locations where defects with a size of 100 μm or more were detected, it was confirmed whether the defects were erroneously detected due to the surface protection film or defects in the optical laminate. The inspection failure rate was calculated based on the formula: Inspection failure rate (%) = number of false positives/total number of detections x 100, and the effectiveness of the test was evaluated based on the following criteria. In addition, the presence or absence of scratches with a size of 100 μm or more on the surface of the surface protection film was checked, and scratch evaluation was performed based on the following criteria. The results are shown in Table 5.
<Evaluation of effectiveness of inspection>
〇 (Good): Inspection defect rate: 0%
△ (Acceptable): Inspection failure rate: More than 0% and less than 10% × (Poor): Inspection failure rate 10% or more <Flaw evaluation>
〇 (Good): No scratches of 100 μm or more × (Bad): Scratches of 100 μm or more
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表5に示されるとおり、光学積層体の表面に表面保護フィルムが二重に貼着された構成を有する実施例の表面保護フィルム付光学積層体は、欠点検査前においては外側の表面保護フィルムによってキズ付きが防止される。また、欠点検査の際に外側の表面保護フィルムを剥離除去しても、内側の表面保護フィルムが貼着された状態で光学積層体を欠点検査することができ、アセンブリに供するまでその表面を好適に保護することができる。さらに、内側の表面保護フィルムとしてヘイズが小さいものを用いることにより、表面保護フィルムが貼着された状態で光学積層体の自動検査を好適に行うことができる。 As shown in Table 5, the optical laminate with a surface protection film of the example, which has a structure in which the surface protection film is double affixed to the surface of the optical laminate, is Scratches are prevented. In addition, even if the outer surface protection film is peeled off and removed during defect inspection, the optical laminate can be inspected for defects with the inner surface protection film attached, and the surface remains unchanged until it is used for assembly. can be protected. Furthermore, by using a film with a small haze as the inner surface protection film, the optical laminate can be suitably inspected automatically with the surface protection film attached.
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
 本発明の実施形態に係る保護フィルム付光学積層体は、例えば、VRゴーグル等のディスプレイ付きゴーグルの製造に用いられ得る。 The optical laminate with a protective film according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.
  2   表示システム
  4   レンズ部
 10   偏光部材
 12   表示素子
 14   反射型偏光部材
 16   第一レンズ部
 18   ハーフミラー
 20   第一位相差部材
 22   第二位相差部材
 24   第二レンズ部
100   光学積層体
110   第一表面保護フィルム
120   第二表面保護フィルム
200   表面保護フィルム付光学積層体

 
2 Display system 4 Lens section 10 Polarizing member 12 Display element 14 Reflective polarizing member 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section 100 Optical laminate 110 First surface Protective film 120 Second surface protection film 200 Optical laminate with surface protection film

Claims (11)

  1.  少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体と、
     該光学積層体の一方の面に外方に向かってこの順に貼着されている、第一表面保護フィルムおよび第二表面保護フィルムと、
     を有する、表面保護フィルム付光学積層体。
    An optical laminate including at least one optical member and used for goggles with a display;
    a first surface protection film and a second surface protection film that are attached to one surface of the optical laminate in this order outward;
    An optical laminate with a surface protection film.
  2.  前記第一表面保護フィルムのヘイズが5%未満である、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein the first surface protection film has a haze of less than 5%.
  3.  前記第一表面保護フィルムとして、
     第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
     該第一粘着剤層における該第一基材と反対側の表面の最大谷深さ(Sv)の絶対値が500nm以下であり、
     該第一基材を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、表面保護フィルムを、前記光学積層体に貼着して得られる、請求項1に記載の表面保護フィルム付光学積層体。
    As the first surface protection film,
    comprising a first base material and a first adhesive layer laminated on the first base material,
    The absolute value of the maximum valley depth (Sv) of the surface of the first adhesive layer opposite to the first base material is 500 nm or less,
    A surface protection film is attached to the optical laminate, in which the number of defects with a maximum Feret diameter of 10 μm or more is less than 3 in an observation area of 100 μm x 100 μm when the first base material is observed under a microscope. An optical laminate with a surface protection film according to claim 1 obtained.
  4.  前記第一粘着剤層における前記第一基材と反対側の表面の算術平均高さ(Sa)の絶対値が25nm以下である、請求項3に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 3, wherein the absolute value of the arithmetic mean height (Sa) of the surface of the first adhesive layer opposite to the first base material is 25 nm or less.
  5.  前記第一表面保護フィルムとして、
     第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
     該第一粘着剤層における該第一基材と反対側の表面は、下記式(1)を満足する、表面保護フィルムを、前記光学積層体に貼着して得られる、請求項1に記載の表面保護フィルム付光学積層体;
    Figure JPOXMLDOC01-appb-M000001
    (式(1)中、Sは下記表面形状評価試験における白色干渉計の測定視野面積を示し;B-BAは下記表面形状評価試験において得られる二値化前の二次元画像における黒色領域の面積を示し;A-WAは下記表面形状評価試験において得られる二値化後の二次元画像おける白色領域の面積を示す。)
    <表面形状評価試験>
     該第一粘着剤層における該第一基材と反対側の表面を白色干渉計により測定し;
     得られた干渉データを、周波数領域解析により、測定面に対して-1000nm~-2000nmの解析範囲で演算して、該当箇所が黒色領域となる二次元画像を得た後;
     該二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得る。
    As the first surface protection film,
    comprising a first base material and a first adhesive layer laminated on the first base material,
    According to claim 1, the surface of the first adhesive layer opposite to the first base material is obtained by attaching a surface protection film to the optical laminate that satisfies the following formula (1). Optical laminate with surface protection film;
    Figure JPOXMLDOC01-appb-M000001
    (In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test. (A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.)
    <Surface shape evaluation test>
    measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer;
    After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area;
    The two-dimensional image is binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below −100 nm is a white region.
  6.  前記第一基材を顕微鏡観察したときに、100μm×100μmの観測領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、請求項5に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 5, wherein when the first base material is observed under a microscope, the number of defects with a maximum Feret diameter of 10 μm or more is less than 3 in an observation area of 100 μm x 100 μm.
  7.  前記光学積層体が、偏光部材と、第一位相差部材と、保護部材とを、前記第一表面保護フィルムに向かってこの順に有する、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein the optical laminate includes a polarizing member, a first retardation member, and a protection member in this order toward the first surface protection film.
  8.  前記保護部材が、表面処理層を含み、
     該表面処理層に、前記第一表面保護フィルムが貼着されている、請求項7に記載の表面保護フィルム付光学積層体。
    The protective member includes a surface treatment layer,
    The optical laminate with a surface protection film according to claim 7, wherein the first surface protection film is attached to the surface treatment layer.
  9.  前記光学積層体が、前記第一表面保護フィルムおよび前記第二表面保護フィルムが貼着されている側と反対側の面に粘着剤層を有する、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein the optical laminate has an adhesive layer on a surface opposite to the side to which the first surface protection film and the second surface protection film are attached. body.
  10.  表面保護フィルム付光学積層体の製造方法であって、
     少なくとも1つの光学部材を有する光学積層体の一方の面に、第一表面保護フィルムおよび第二表面保護フィルムを貼着することを含み、
     該第一の表面保護フィルムが、(i)および(ii)から選択される、製造方法;
    (i)第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
     該第一粘着剤層における該第一基材と反対側の表面の最大谷深さ(Sv)の絶対値が500nm以下であり、
     該第一基材を顕微鏡観察したときに、100μm×100μmの観察領域において、最大フェレ径が10μm以上の欠点数が3つ未満である、表面保護フィルム;
    (ii)第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
     該第一粘着剤層における該第一基材と反対側の表面は、下記式(1)を満足する、表面保護フィルム;
    Figure JPOXMLDOC01-appb-M000002
    (式(1)中、Sは下記表面形状評価試験における白色干渉計の測定視野面積を示し;B-BAは下記表面形状評価試験において得られる二値化前の二次元画像における黒色領域の面積を示し;A-WAは下記表面形状評価試験において得られる二値化後の二次元画像おける白色領域の面積を示す。)
    <表面形状評価試験>
     該第一粘着剤層における該第一基材と反対側の表面を白色干渉計により測定し;
     得られた干渉データを、周波数領域解析により、測定面に対して-1000nm~-2000nmの解析範囲で演算して、該当箇所が黒色領域となる二次元画像を得た後;
     該二次元画像を、測定面に対して-100nmを閾値として二値化解析して、-100nm以下の部分が白色領域となる二値化画像を得る。
    A method for producing an optical laminate with a surface protection film, the method comprising:
    Affixing a first surface protection film and a second surface protection film to one surface of an optical laminate having at least one optical member,
    A manufacturing method, wherein the first surface protection film is selected from (i) and (ii);
    (i) having a first base material and a first adhesive layer laminated on the first base material,
    The absolute value of the maximum valley depth (Sv) of the surface of the first adhesive layer opposite to the first base material is 500 nm or less,
    A surface protection film having less than three defects with a maximum Feret diameter of 10 μm or more in an observation area of 100 μm x 100 μm when the first base material is observed under a microscope;
    (ii) having a first base material and a first adhesive layer laminated on the first base material,
    The surface of the first adhesive layer opposite to the first base material is a surface protection film that satisfies the following formula (1);
    Figure JPOXMLDOC01-appb-M000002
    (In formula (1), S represents the measurement field area of the white interferometer in the following surface shape evaluation test; B-BA is the area of the black area in the two-dimensional image before binarization obtained in the following surface shape evaluation test. (A-WA indicates the area of the white region in the two-dimensional image after binarization obtained in the surface shape evaluation test below.)
    <Surface shape evaluation test>
    measuring the surface of the first adhesive layer opposite to the first base material using a white interferometer;
    After calculating the obtained interference data by frequency domain analysis in the analysis range of -1000 nm to -2000 nm with respect to the measurement surface to obtain a two-dimensional image in which the corresponding location becomes a black area;
    The two-dimensional image is binarized and analyzed using −100 nm as a threshold value with respect to the measurement surface to obtain a binarized image in which the portion below −100 nm is a white region.
  11.  表示システムの製造方法であって、
     請求項1から9のいずれか一項に記載の表面保護フィルム付光学積層体の前記第一表面保護フィルムおよび前記第二表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、
     該表面保護フィルム付二次積層体から前記第二表面保護フィルムを剥離すること、
     該表面保護フィルム付二次積層体を欠点検査すること、および
     該表面保護フィルム付二次積層体から前記第一表面保護フィルムを剥離して、二次積層体を得ること、
     をこの順に含み、
     該表示システムが、ディスプレイ付きゴーグルである、製造方法。
    A method of manufacturing a display system, the method comprising:
    Another member is pasted on the side opposite to the side to which the first surface protection film and the second surface protection film of the optical laminate with a surface protection film according to any one of claims 1 to 9 are pasted. to obtain a secondary laminate with a surface protection film,
    Peeling the second surface protection film from the surface protection film-attached secondary laminate;
    inspecting the secondary laminate with the surface protection film for defects; and peeling off the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate.
    In this order,
    A manufacturing method, wherein the display system is goggles with a display.
PCT/JP2023/008560 2022-03-14 2023-03-07 Optical laminate equipped with surface protection film, and production method therefor WO2023176589A1 (en)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
JP2022039286 2022-03-14
JP2022039285 2022-03-14
JP2022-039286 2022-03-14
JP2022-039285 2022-03-14
JP2022077634A JP2023166827A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077657 2022-05-10
JP2022-077677 2022-05-10
JP2022077631A JP2023134316A (en) 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method
JP2022-077658 2022-05-10
JP2022-077633 2022-05-10
JP2022-077678 2022-05-10
JP2022-077632 2022-05-10
JP2022077679A JP2023166854A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077634 2022-05-10
JP2022077677A JP2023166852A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077632A JP2023166825A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077659 2022-05-10
JP2022-077631 2022-05-10
JP2022077657A JP2023134317A (en) 2022-03-14 2022-05-10 Display system, display method, display body, and display body production method
JP2022077678A JP2023166853A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077658A JP2023166840A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022077676A JP2023166851A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077633A JP2023166826A (en) 2022-05-10 2022-05-10 Display method
JP2022-077676 2022-05-10
JP2022077659A JP2023166841A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022-077679 2022-05-10
JP2022211997 2022-12-28
JP2022-211997 2022-12-28

Publications (1)

Publication Number Publication Date
WO2023176589A1 true WO2023176589A1 (en) 2023-09-21

Family

ID=88023217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008560 WO2023176589A1 (en) 2022-03-14 2023-03-07 Optical laminate equipped with surface protection film, and production method therefor

Country Status (2)

Country Link
TW (1) TW202402524A (en)
WO (1) WO2023176589A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030427A (en) * 1999-07-23 2001-02-06 Teijin Ltd Laminated film for surface protection and laminate comprising the same
JP2008268363A (en) * 2007-04-17 2008-11-06 Riken Technos Corp Protection film for retardation film
JP2015027764A (en) * 2013-07-30 2015-02-12 日東電工株式会社 Surface protective film and optical member
JP2016064666A (en) * 2015-12-09 2016-04-28 藤森工業株式会社 Adherend adhesive film, and optical component and industrial product to which adherend adhesive film is stuck
WO2018016288A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Optical film set and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001030427A (en) * 1999-07-23 2001-02-06 Teijin Ltd Laminated film for surface protection and laminate comprising the same
JP2008268363A (en) * 2007-04-17 2008-11-06 Riken Technos Corp Protection film for retardation film
JP2015027764A (en) * 2013-07-30 2015-02-12 日東電工株式会社 Surface protective film and optical member
JP2016064666A (en) * 2015-12-09 2016-04-28 藤森工業株式会社 Adherend adhesive film, and optical component and industrial product to which adherend adhesive film is stuck
WO2018016288A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Optical film set and production method therefor

Also Published As

Publication number Publication date
TW202402524A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5324316B2 (en) Adhesive polarizing plate, image display device, and manufacturing method thereof
KR101510572B1 (en) Polarizing plate and image display device
JP4971022B2 (en) Method for producing multilayer laminated film
CN105319636B (en) Polarizing plate, polarizing plate with adhesive and liquid crystal display device
KR102092974B1 (en) Method for producing polarizing plate
US20140168544A1 (en) Transparent double-sided adhesive sheet having linearly polarized light eliminating function
KR20170063557A (en) Polarizing plate
KR20180103974A (en) Polarizer, polarizing protective film, polarizing film with pressure-sensitive adhesive layer, image display apparatus and continuous manufacturing method thereof
WO2019188743A1 (en) Circularly polarizing plate
KR20170003422A (en) Polarizing plate, liquid crystal panel and liquid crystal display device
JP2020086429A (en) Optical laminate and image display device including the same
KR20160049481A (en) Polarizing plate and liquid crystal display device
KR20190109267A (en) Method of manufacturing optical laminate and method of manufacturing optical laminate with adhesive layer
KR101803675B1 (en) Polarizing plate and image display device
KR20210114945A (en) Head-up display device and manufacturing method thereof
WO2023176631A1 (en) Optical laminate, lens part, and display method
WO2023140067A1 (en) Surface-protective film and optical member with surface-protective film
WO2023176589A1 (en) Optical laminate equipped with surface protection film, and production method therefor
KR20170113168A (en) Optical film and polarizing plate
KR20210002457A (en) Polarizing plate and organic EL display device with retardation layer
WO2023176590A1 (en) Optical laminate with surface protection films and method for manufacturing display system
KR20190109266A (en) Method for manufacturing optical laminate with adhesive layer
KR20180081568A (en) Polarizer and liquid crystal display
JP2019191570A (en) Polarizing plate with retardation layer and organic EL display device
WO2022244301A1 (en) Circular polarizing plate and image display device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770545

Country of ref document: EP

Kind code of ref document: A1