WO2023176590A1 - Optical laminate with surface protection films and method for manufacturing display system - Google Patents

Optical laminate with surface protection films and method for manufacturing display system Download PDF

Info

Publication number
WO2023176590A1
WO2023176590A1 PCT/JP2023/008561 JP2023008561W WO2023176590A1 WO 2023176590 A1 WO2023176590 A1 WO 2023176590A1 JP 2023008561 W JP2023008561 W JP 2023008561W WO 2023176590 A1 WO2023176590 A1 WO 2023176590A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface protection
protection film
optical laminate
film
laminate
Prior art date
Application number
PCT/JP2023/008561
Other languages
French (fr)
Japanese (ja)
Inventor
光貴 野口
理 小島
咲美 ▲徳▼岡
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022077678A external-priority patent/JP2023166853A/en
Priority claimed from JP2022077634A external-priority patent/JP2023166827A/en
Priority claimed from JP2022077677A external-priority patent/JP2023166852A/en
Priority claimed from JP2022077631A external-priority patent/JP2023134316A/en
Priority claimed from JP2022077679A external-priority patent/JP2023166854A/en
Priority claimed from JP2022077657A external-priority patent/JP2023134317A/en
Priority claimed from JP2022077658A external-priority patent/JP2023166840A/en
Priority claimed from JP2022077632A external-priority patent/JP2023166825A/en
Priority claimed from JP2022077676A external-priority patent/JP2023166851A/en
Priority claimed from JP2022077633A external-priority patent/JP2023166826A/en
Priority claimed from JP2022077659A external-priority patent/JP2023166841A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176590A1 publication Critical patent/WO2023176590A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus

Definitions

  • the present invention relates to an optical laminate with a surface protection film and a method for manufacturing a display system using the optical laminate with a surface protection film.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
  • EL electroluminescence
  • optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
  • VR goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized.
  • VR goggles the image displayed on the display panel is enlarged for the viewer to see, so the optical laminate used in VR goggles is more expensive than the optical laminate used in conventional image display devices. Strict defect management is also required.
  • the main object of the present invention is to provide an optical laminate that can be applied to VR goggles and that can be inspected for defects multiple times with its surface protected.
  • the present inventors have studied to solve the above problems, and found that the optical laminate protected with a surface protection film is subjected to defect inspection, and the inspection object (i.e., the surface protection film protected).
  • the inspection object i.e., the surface protection film protected
  • the inspection object i.e., the surface protection film protected
  • the inspection object i.e., the surface protection film protected
  • the inspection object i.e., the surface protection film protected
  • the present inventors increased the thickness of the adhesive layer of the outer surface protection film and investigated the relationship between the peeling force of the outer surface protection film and the peeling force of the inner surface protection film. It has been discovered that by making adjustments, the above problems can be solved while avoiding these problems, and the present invention has been completed.
  • the second surface protection film has a second base material, and a second adhesive layer laminated on the second base material, and the second adhesive layer has a thickness of is 8 ⁇ m or more, and the peeling force P1 of the first surface protection film to the optical laminate and the peeling force P2 of the second surface protection film to the first surface protection film are P2/P1 ⁇ 0.
  • the ratio (L2/L1) of the total light transmittance L1 of the first surface protection film to the total light transmittance L2 of the second surface protection film is 0.8 to 1.2, [1 ] to [3].
  • the optical laminate has (1) an absorptive polarizing member, a first retardation member, and a protective member in this order toward the first surface protection film, or (2) the second one.
  • a retardation member and a protective member are provided in this order toward the first surface protection film, or (3) a reflective polarizing member and a protection member are provided in this order toward the first surface protection film.
  • the optical laminate with a surface protection film according to any one of [1] to [4].
  • the surface treatment layer includes an antireflection layer, and the first surface protection film is attached to the antireflection layer.
  • a method for manufacturing a display system comprising inspecting the optical laminate with a surface protection film according to any one of [1] to [8] for defects, Obtaining a secondary laminate with a surface protection film by attaching another member to the side opposite to the side to which the surface protection film and the second surface protection film are attached, the secondary laminate with the surface protection film. Peeling the second surface protection film from the body, inspecting the secondary laminate with the surface protection film for defects, and peeling the first surface protection film from the secondary laminate with the surface protection film, obtaining a secondary laminate, the display system being goggles with a display.
  • the optical laminate with a surface protection film can be attached to the surface of the optical laminate while suppressing the problems of air bubble formation between the surface protection films (resulting in erroneous detection of defects) and poor peeling. Can be inspected for defects multiple times while being protected.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention.
  • 1 is a schematic diagram showing a general configuration of a display system in which an optical laminate according to an embodiment of the present invention can be used.
  • 3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2.
  • FIG. 3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2.
  • FIG. 3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2.
  • FIG. 1 is a schematic diagram illustrating a method of manufacturing a display system according to one embodiment of the present invention.
  • FIG. 6A It is a figure following FIG. 6B.
  • FIG. 6C It is a figure following FIG. 6D.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
  • Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
  • substantially parallel includes cases within the range of 0° ⁇ 10°, for example, 0° ⁇ 5°, preferably 0° ⁇ 3°, more preferably 0° ⁇ 1 90° ⁇ 5°, preferably 90° ⁇ 3°, more preferably 90° ⁇ 1 within the range of °.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention.
  • the optical laminate 200 with a surface protection film includes at least one optical member, and is attached in this order outward to the optical laminate 100 and one surface of the optical laminate 100, which is used for goggles with a display. It has a first surface protection film 110 and a second surface protection film 120.
  • the first surface protection film 110 has a first base material 112 and a first adhesive layer 114 laminated on the first base material 112.
  • the second surface protection film 120 has a second base material 122 and a second adhesive layer 124 laminated on the second base material 122.
  • the first surface protection film 110 and the second surface protection film 120 are process members that are temporarily attached (temporary attachment) to the optical laminate 100, and when the optical laminate 100 is put into use. It is peeled off and removed.
  • the first surface protection film may be referred to as an inner surface protection film
  • the second surface protection film may be referred to as an outer surface protection film.
  • the optical laminate with a surface protection film can be produced by attaching a first surface protection film and a second surface protection film to one surface of the optical laminate.
  • a first surface protection film and a second surface protection film may be attached in this order to one surface of the optical laminate, or a laminate of the first surface protection film and the second surface protection film may be attached to the optical laminate. You may wear it.
  • the adhesive layer side surface of each of the first surface protection film and the second surface protection film may be protected by a release liner until it is used.
  • the first surface protection film 110 includes a first base material 112 and a first adhesive layer 114 laminated on the first base material 112.
  • the total light transmittance L1 of the first surface protection film is, for example, 85% or more, preferably 88% or more, and more preferably 90% or more. If the total light transmittance L1 is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film.
  • the haze of the first surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, and typically 0.05% or more. As long as the haze is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film.
  • a surface protection film having a haze within the above range can be obtained, for example, by using a low haze base material and/or an adhesive layer.
  • the peel force P1 (peel speed: 300 mm/min, peel angle: 180°) of the first surface protection film against the optical laminate is, for example, 1.0 N/50 mm or less, preferably 0.5 N/50 mm or less, more preferably 0. 3N/50mm or less, for example 0.05N/50mm or more, preferably 0.08N/50mm or more, more preferably 0.10N/50mm or more. If the peeling force P1 is within the above range, the problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off can be suitably prevented. I can do it.
  • the first base material is formed of any suitable resin film that can be used as a surface protection film.
  • suitable resin film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose systems such as triacetylcellulose (TAC), and polycarbonates.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetylcellulose
  • PC transparent resins
  • (meth)acrylic polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate.
  • thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • (meth)acrylic resin refers to acrylic resin and/or methacrylic resin.
  • Other examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • the materials for the resin film can be used alone or in combination.
  • the first base material preferably contains at least one transparent resin selected from the group consisting of COP-based, PET-based, TAC-based, PC-based, and (meth)acrylic-based, and more preferably COP-based, PET-based, etc.
  • the resin contains at least one transparent resin selected from the group consisting of COP-based, PC-based, and (meth)acrylic-based, and more preferably at least one transparent resin selected from the group consisting of COP-based, PET-based, and PC-based. Contains resin.
  • the first base material may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a nucleating agent, a filler, a pigment, a surfactant, an antistatic agent, and the like.
  • the surface of the first base material (the surface opposite to the first adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
  • the thickness of the first base material is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the first adhesive layer is composed of any suitable adhesive.
  • the adhesive constituting the first adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. .
  • the first adhesive layer contains a (meth)acrylic adhesive.
  • the (meth)acrylic pressure-sensitive adhesive contains a polymer (hereinafter referred to as (meth)acrylic polymer) of a monomer component whose main component is alkyl (meth)acrylate.
  • the (meth)acrylic polymer contains a structural unit derived from alkyl (meth)acrylate.
  • the content of structural units derived from alkyl (meth)acrylate is typically 50% by mass or more, preferably 80% by mass or more, more preferably 93% by mass or more, for example 100% by mass or more, preferably 80% by mass or more, and more preferably 93% by mass or more in the (meth)acrylic polymer. It is not more than 98% by mass, preferably not more than 98% by mass.
  • the alkyl group that the alkyl (meth)acrylate has may be linear or branched.
  • the number of carbon atoms in the alkyl group is, for example, 1 or more and 18 or less.
  • Examples of the alkyl group include methyl group, ethyl group, butyl group, 2-ethylhexyl group, decyl group, isodecyl group, and octadecyl group.
  • Alkyl (meth)acrylates can be used alone or in combination.
  • the average number of carbon atoms in the alkyl group is preferably 3 to 10.
  • the (meth)acrylic polymer may also contain structural units derived from copolymerizable monomers that are polymerizable with alkyl (meth)acrylates.
  • copolymerizable monomers include carboxyl group-containing monomers and hydroxyl group-containing monomers. Copolymerizable monomers can be used alone or in combination.
  • a carboxyl group-containing monomer is a compound that contains a carboxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group.
  • the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, maleic acid, fumaric acid, and crotonic acid, with (meth)acrylic acid being preferred.
  • the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the adhesive properties of the adhesive layer can be improved.
  • the content ratio of the structural unit derived from the carboxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass or less.
  • a hydroxyl group-containing monomer is a compound that contains a hydroxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group.
  • hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethyl cyclohexyl)-methyl acrylate, preferably 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, more preferably 2-hydroxyethyl (meth)acrylate.
  • the durability of the adhesive layer can be improved.
  • the content of the structural unit derived from the hydroxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass in the (meth)acrylic polymer. % or less.
  • the weight average molecular weight Mw of the (meth)acrylic polymer is, for example, 100,000 to 2,000,000, preferably 200,000 to 1,000,000.
  • the (meth)acrylic pressure-sensitive adhesive can contain a crosslinking agent.
  • the crosslinking agent typically includes an organic crosslinking agent and a polyfunctional metal chelate, preferably an organic crosslinking agent.
  • examples of the organic crosslinking agent include an isocyanate crosslinking agent, a peroxide crosslinking agent, an epoxy crosslinking agent, and an imine crosslinking agent, and more preferably an isocyanate crosslinking agent.
  • the content of the crosslinking agent is usually 0.01 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the (meth)acrylic polymer.
  • the above adhesives may contain various additives in appropriate proportions, if necessary.
  • the composition of the base polymer for example, the type and content ratio of monomers, the type and content ratio of crosslinking agents, etc.
  • the molecular weight of the base polymer for example, the type and content ratio of crosslinking agents, etc.
  • An adhesive layer having desired adhesiveness can be obtained.
  • Additives include polymerization initiators, solvents, polymerization catalysts, crosslinking catalysts, silane coupling agents, tackifiers, plasticizers, softeners, deterioration inhibitors, fillers, colorants (pigments, dyes, etc.), light Examples include stabilizers, ultraviolet absorbers, antioxidants, surfactants, antistatic agents, chain transfer agents, and the like.
  • the thickness of the first adhesive layer is, for example, 10 ⁇ m or more, preferably 12 ⁇ m or more, and is, for example, 40 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less.
  • the first adhesive layer has the above thickness, good protection for the optical laminate can be achieved.
  • the ratio (T1/T2) between the thickness T1 of the first adhesive layer and the thickness T2 of the second adhesive layer of the second surface protection film is, for example, 2 or less, preferably 1.8 or less, More preferably 1.5 or less, still more preferably 1.2 or less, even more preferably 1 or less, particularly preferably 0.8 or less, for example 0.1 or more, preferably 0.2 or more, more preferably is 0.3 or more, more preferably 0.4 or more, even more preferably 0.5 or more. If the ratio (T1/T2) is within the above range, generation of bubbles and poor peeling between the first surface protection film and the second surface protection film can be suitably suppressed. Also, good protection for the optical laminate can be provided.
  • the first adhesive layer may be formed on the surface of the first base material by direct copying or by transfer.
  • direct copying the adhesive is directly applied to the surface of the first base material to form the first adhesive layer.
  • transfer a first adhesive layer is formed by applying an adhesive to the surface of a release liner, and then a base material is attached to the first adhesive layer.
  • the first base material includes an amorphous resin having a relatively low glass transition temperature Tg (for example, 150° C. or lower)
  • Tg glass transition temperature
  • the first adhesive layer is preferably formed by a transfer process. With the transfer process, it is possible to prevent the high temperature during drying required for forming the first adhesive layer from affecting the first base material.
  • the second surface protection film 120 includes a second base material 122 and a second adhesive layer 124 laminated on the second base material.
  • the total light transmittance L2 of the second surface protection film is, for example, 85% or more, preferably 88% or more, and more preferably 90% or more. If the total light transmittance L2 is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film. .
  • the ratio (L2/L1) between the total light transmittance L1 of the first surface protection film and the total light transmittance L2 of the second surface protection film is, for example, 0.8 to 1.2, preferably 0.85 to 1. 15, more preferably 0.9 to 1.1. If the ratio (L2/L1) is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film. can.
  • the haze of the second surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, and typically 0.05% or more. If the haze is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film.
  • the peel force P2 (peel speed: 300 mm/min, peel angle: 180°) of the second surface protection film against the first surface protection film is, for example, 0.5 N/50 mm or less, preferably 0.3 N/50 mm or less, more preferably is 0.2N/50mm or less, more preferably 0.1N/50mm or less, for example 0.01N/50mm or more, preferably 0.03N/50mm or more, and even more preferably 0.05N/50mm. It is 50 mm or more. If the peeling force P2 is within the above range, it is possible to suitably prevent the problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off. can. Moreover, generation of air bubbles between the first surface protection film and the second surface protection film can be suitably suppressed.
  • Peeling force P1 peeling speed: 300 mm/min, peeling angle: 180°
  • P2 peeling speed: 300 mm/min
  • the ratio (P2/P1) is typically 0.8 or less, preferably 0.6 or less, more preferably 0.5 or less, for example 0.2 or more. . If the ratio of peeling force (P2/P1) is within the above range, there will be a problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off. can be suitably prevented. Moreover, generation of air bubbles between the first surface protection film and the second surface protection film can be suitably suppressed.
  • the second base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of the material that is the main component of the resin film are as described above regarding the first base material.
  • the second base material may contain antioxidants, ultraviolet absorbers, light stabilizers, nucleating agents, fillers, pigments, surfactants, antistatic agents, and the like.
  • the surface of the second base material (the surface opposite to the second adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
  • the thickness of the second base material is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 200 ⁇ m or less, preferably 100 ⁇ m or less.
  • the second adhesive layer is made of any suitable adhesive.
  • the adhesive constituting the second adhesive layer typically contains at least one adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. .
  • the second adhesive layer contains a (meth)acrylic adhesive. The details of the (meth)acrylic adhesive are as described above regarding the first adhesive layer.
  • the above-mentioned adhesives may contain a base polymer (or its constituent monomer components) and, if necessary, additives.
  • Specific examples of the additive are as described above for the first adhesive layer.
  • the thickness of the second adhesive layer is typically 8 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and, for example, 50 ⁇ m or less, preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the second adhesive layer has the above-mentioned thickness, the generation of air bubbles between the first surface protection film and the second surface protection film is suppressed, and the optical laminate is formed with these surface protection films attached. Defect inspection can be performed satisfactorily.
  • the method for forming the second adhesive layer includes the same method as the method for forming the first adhesive layer.
  • the optical laminate includes at least one optical member and is used in goggles with a display.
  • the optical member include an absorptive polarizing member, a reflective polarizing member, a retardation member, and the like.
  • the optical laminate may have an adhesive layer on the surface opposite to the side to which the first surface protection film and the second surface protection film are attached.
  • FIG. 2 is a schematic diagram showing a general configuration of a display system (goggles with a display) to which the optical laminate can be applied.
  • FIG. 2 schematically shows the arrangement, shape, etc. of each component of the display system 2.
  • the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with The reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12.
  • the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
  • the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14.
  • the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
  • the components disposed in front of the half mirror are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
  • the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images.
  • the light emitted from the display surface 12a passes through a polarizing member 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
  • the first retardation member 20 includes a first ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light.
  • the first retardation member may correspond to the first ⁇ /4 member.
  • the first retardation member 20 may be provided integrally with the display element 12.
  • the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14.
  • the half mirror 18 is provided integrally with the first lens section 16.
  • the second retardation member 22 includes a second ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14.
  • the second retardation member may correspond to the second ⁇ /4 member.
  • the second retardation member 22 may be provided integrally with the first lens portion 16.
  • the first circularly polarized light emitted from the first ⁇ /4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second ⁇ /4 member converts the light into a second linearly polarized light.
  • the second linearly polarized light emitted from the second ⁇ /4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14.
  • the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
  • the second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second ⁇ /4 member included in the second retardation member 22, and is emitted from the second ⁇ /4 member.
  • the second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18.
  • the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member included in the second retardation member 22.
  • the third linearly polarized light is transmitted through the reflective polarizing member 14 .
  • the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
  • the display system 2 may include an absorbing polarizing member (typically, an absorbing polarizing film) in front of the reflective polarizing member 14 (on the side closer to the eyes).
  • the reflection axis of the reflective polarizing member 14 and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other.
  • the third linearly polarized light that has passed through the reflective polarizing member 14 can pass through the absorbing polarizing member as it is.
  • the reflective polarizing member and the absorbing polarizing member may be laminated with an adhesive layer interposed therebetween.
  • the light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
  • the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
  • the angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first ⁇ /4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ⁇ 48°, and may be about 45°.
  • the angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second ⁇ /4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
  • a space may be formed between the first lens portion 16 and the second lens portion 24.
  • the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24.
  • the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled.
  • the adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive.
  • the adhesive layer may be an adhesive layer or an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • FIG. 3 is a schematic cross-sectional view of an optical laminate that can be used in the display system illustrated in FIG. 2.
  • the optical laminate 100a includes an adhesive layer 31, a polarizing member 10, a first retardation member 20, and a first protective member 41 in this order.
  • the polarizing member 10, the first retardation member 20, and the first protection member 41 are laminated with adhesive layers 51 and 52 interposed therebetween.
  • the adhesive layers 51 and 52 are typically adhesive layers or adhesive layers, preferably adhesive layers.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the surface of the adhesive layer 31 is protected by a release liner 61 until it is used. Note that the first surface protection film and the second surface protection film are attached to the surface of the optical laminate 100a on the first protection member 41 side.
  • the first retardation member 20 has a laminated structure of a first ⁇ /4 member 20a and a first positive C plate 20b.
  • the first positive C plate 20b may be located closer to the polarizing member 10 than the first ⁇ /4 member 20a, or the first positive C plate 20b may be omitted. good.
  • the first ⁇ /4 member 20a and the first positive C plate 20b are laminated, for example, via an adhesive layer (not shown).
  • the angle between the absorption axis of the polarizing member 10 and the slow axis of the first ⁇ /4 member 20a is preferably 40° to 50°, more preferably 42° to 48°. 45°, for example, about 45°.
  • the optical laminate 100a can be applied, for example, to manufacturing a display system illustrated in FIG. 2, in which the first retardation member 20 is integrally provided with the display element 12.
  • the release liner 61 is peeled off from the optical laminate 100a, and the polarizing member 10 is attached to the liquid crystal cell together with the back side polarizing member so that the polarizing member 10 becomes the front side (viewing side) polarizing member of the liquid crystal cell.
  • a display system in which the retardation member 20 is integrally provided with a liquid crystal panel (display element) can be manufactured.
  • the first retardation member 20 is integrated with the organic EL panel (display element) by peeling off the release liner 61 from the optical laminate 100a and bonding it to the front of the organic EL panel via the adhesive layer 31.
  • a display system can be manufactured that is provided with a display system.
  • a third retardation member including a third ⁇ /4 member may be disposed between the optical laminate 100a and the organic EL panel.
  • the third retardation member may be included in the optical laminate.
  • the optical laminate may include an adhesive layer, a third retardation member, a polarizing member, a first retardation member, and a protection member in this order.
  • the same explanation as for the first ⁇ /4 member can be applied to the third ⁇ /4 member.
  • the third retardation member is configured such that the slow axis of the third ⁇ /4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
  • the polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include.
  • the protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer.
  • a typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
  • the cross transmittance (Tc) of the polarizing member (absorbing polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less.
  • the single transmittance (Ts) of the polarizing member (absorbing polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
  • the degree of polarization (P) of the polarizing member (absorbing polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
  • the above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer.
  • the degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula.
  • Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
  • Polarization degree P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, may be 2 ⁇ m or more and 15 ⁇ m or less, may be 12 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less, It may be 5 ⁇ m or less.
  • the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
  • An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
  • the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
  • the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
  • the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
  • An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin.
  • a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film.
  • a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
  • Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
  • the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
  • the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
  • the obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is.
  • Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
  • the protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film.
  • materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate.
  • thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • (meth)acrylic resin refers to acrylic resin and/or methacrylic resin.
  • Other examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • the materials for the resin film can be used alone or in combination.
  • the thickness of the protective layer is typically 100 ⁇ m or less, for example 5 ⁇ m to 80 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m, more preferably 15 ⁇ m to 35 ⁇ m.
  • the in-plane retardation Re (550) of the first ⁇ /4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the first ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the first ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the first ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the first ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the first ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the first ⁇ /4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first ⁇ /4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
  • polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
  • the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the thickness of the first ⁇ /4 member made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
  • the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first ⁇ /4 member (homogeneous alignment).
  • Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
  • the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
  • the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
  • the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
  • the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
  • liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
  • the thickness of the first ⁇ /4 member composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m. be.
  • the retardation Rth (550) in the thickness direction of the first positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm.
  • the in-plane retardation Re (550) of the first positive C plate is, for example, less than 10 nm.
  • the first positive C-plate may be formed of any suitable material.
  • the first positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method for forming such a liquid crystal compound and positive C plate include the method for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A No. 2002-333642.
  • the thickness of the first positive C plate is preferably 0.5 ⁇ m to 5 ⁇ m.
  • the first protection member 41 typically includes a base material.
  • the substrate may be comprised of any suitable film.
  • Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins.
  • the thickness of the base material is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 15 ⁇ m to 35 ⁇ m.
  • the first protective member preferably has a base material and a surface treatment layer formed on the base material.
  • the first protection member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the optical laminate 100a.
  • the surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer.
  • the first protection member may have two or more surface treatment layers.
  • the antireflection layer is provided to prevent reflection of external light and the like.
  • the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure).
  • the thickness of the antireflection layer is preferably 0.05 ⁇ m to 1 ⁇ m.
  • methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method).
  • the antireflection layer is provided on the outermost surface of the first protective member, and an inner surface protection film is attached to the surface of the antireflection layer. According to the embodiment in which the antireflection layer is provided on the outermost surface of the first protective member, an excellent antireflection effect can be achieved in a display system in which a space is formed between the half mirror 18 and the first retardation member 20. Obtainable.
  • the hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency.
  • the hard coat layer may be formed from any suitable resin.
  • the hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • Adhesive layer 31 may be composed of any suitable adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination, and blending ratio of monomers that form the base resin of the adhesive, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., adhesives can have desired characteristics depending on the purpose. can be prepared.
  • the base resin of the adhesive may be used alone or in combination of two or more types. As the base resin, acrylic resin is preferably used.
  • the adhesive layer is preferably composed of an acrylic adhesive.
  • the thickness of the adhesive layer is typically 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 12 ⁇ m or more, and typically 60 ⁇ m or less, preferably 30 ⁇ m or less, more preferably 23 ⁇ m or less.
  • Release liner 61 is formed of any suitable resin film.
  • the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene.
  • PET polyethylene terephthalate
  • the materials for the resin film can be used alone or in combination.
  • the release liner may be transparent (eg, haze of 5% or less, and such as 3% or less) or non-transparent. When inspecting the optical laminate with a surface protection film attached with a release liner, the release liner is preferably transparent.
  • a release treatment layer may be provided on the surface of the release liner 61 that comes into contact with the adhesive layer 31.
  • the mold release treatment agent forming the mold release treatment layer include silicone mold release treatment agents, fluorine mold release treatment agents, and long chain alkyl acrylate type mold release treatment agents.
  • the mold release treatment agents can be used alone or in combination.
  • the thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
  • the thickness of the release liner is typically 5 ⁇ m or more, preferably 20 ⁇ m or more, and typically 60 ⁇ m or less, preferably 45 ⁇ m or less.
  • the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
  • FIG. 4 is a schematic cross-sectional view of another optical laminate that may be used in the display system illustrated in FIG. 2.
  • the optical laminate 100b includes an adhesive layer 32, a second retardation member 22, and a second protection member 42 in this order.
  • the second retardation member 22 and the second protection member 42 are laminated with an adhesive layer 53 in between.
  • the adhesive layer 53 is typically an adhesive layer or an adhesive layer, and preferably an adhesive layer.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the surface of the adhesive layer 32 is protected by a release liner 62 until it is ready for use.
  • the inner surface protection film and the outer surface protection film are attached to the surface of the optical laminate 100b on the second protection member 42 side.
  • the second retardation member 22 has a laminated structure of a second ⁇ /4 member 22a and a second positive C plate 22b. Unlike the illustrated example, the second positive C plate 22b may be located closer to the second protection member 42 than the second ⁇ /4 member 22a, and the second positive C plate 22b may be omitted. It's okay.
  • the second ⁇ /4 member 22a and the second positive C plate 22b are laminated, for example, via an adhesive layer (not shown).
  • the optical laminate 100b can be applied, for example, to manufacturing a display system illustrated in FIG. 2 in which the second retardation member 22 is integrally provided with the first lens portion 16. Specifically, by peeling off the release liner 62 from the optical laminate 100b and bonding it to the first lens part 16 via the adhesive layer 32, the second retardation member 22 is integrally attached to the first lens part 16. A display system provided can be manufactured.
  • the in-plane retardation Re (550) of the second ⁇ /4 member 22a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the second ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the second ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the second ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the second ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the second ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the second ⁇ /4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound.
  • the same explanation as for the first ⁇ /4 member can be applied to the second ⁇ /4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the first ⁇ /4 member and the second ⁇ /4 member may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
  • the retardation Rth (550) in the thickness direction of the second positive C plate 22b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm.
  • the in-plane retardation Re (550) of the second positive C plate is, for example, less than 10 nm.
  • the second positive C plate is formed of any suitable material that can satisfy the above characteristics.
  • the same explanation as for the first positive C plate can be applied to the constituent material of the second positive C plate.
  • the first positive C plate and the second positive C plate may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
  • the second protection member 42 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material.
  • the surface treatment layer may be located on the outermost surface of the optical laminate 100b.
  • the same explanation as for the first protective member can be applied.
  • the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 42.
  • an excellent antireflection effect can be obtained.
  • FIG. 5 is a schematic cross-sectional view of yet another optical laminate that can be used in the display system illustrated in FIG. 2.
  • the optical laminate 100c includes an adhesive layer 33, an absorptive polarizing member 11, a reflective polarizing member 14, and a third protection member 43 in this order.
  • the absorption axis of the absorption type polarization member 11 and the reflection axis of the reflection type polarization member 14 are arranged to be substantially parallel to each other, and the transmission axis of the absorption type polarization member 11 and the transmission axis of the reflection type polarization member 14 are arranged to be substantially parallel to each other. are arranged substantially parallel to each other.
  • the absorptive polarizing member 11, the reflective polarizing member 14, and the third protection member 43 are laminated with adhesive layers 54 and 55 interposed therebetween.
  • the adhesive layers 54 and 55 are typically adhesive layers or adhesive layers, preferably adhesive layers.
  • the thickness of the adhesive layer is, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the surface of the adhesive layer 33 is protected by a release liner 63 until it is used.
  • the inner surface protection film and the outer surface protection film are attached to the third protection member 43 side surface of the optical laminate 100c.
  • the optical laminate 100c can be applied, for example, to manufacturing a display system of an embodiment that further includes an absorptive polarizing member between the reflective polarizing member 14 and the second lens part 24 in the display system illustrated in FIG. . Specifically, by peeling off the release liner 63 from the optical laminate 100c and bonding it to the second lens part 24 via the adhesive layer 33, the reflective polarizing member 14 and the absorbing polarizing member 11 are separated from each other by the second lens part 24. A display system integrated with the lens portion 24 can be manufactured.
  • the reflective polarizing member 14 can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light with other polarized states.
  • the cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%.
  • the single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45 to 47%.
  • the degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%.
  • the reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF” and Nitto Denko's product name "APCF”.
  • the third protection member 43 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material.
  • the surface treatment layer may be located on the outermost surface of the optical laminate 100c.
  • the same explanation as for the first protective member can be applied.
  • the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 43.
  • an excellent antireflection effect can be obtained.
  • the absorption type polarizing member 11, adhesive layer 33, and release liner 63 used in the optical laminate 100c are explained in the same manner as the polarizing member 10, adhesive layer 31, and release liner 61 used in the optical laminate 100a, respectively. can be applied.
  • a method of manufacturing a display system includes: Inspecting the optical laminate with a surface protection film according to item A for defects; Adhering another member to the side opposite to the side to which the inner surface protection film and the outer surface protection film are attached of the optical laminate with the surface protection film to obtain a secondary laminate with the surface protection film; Peeling the outer surface protection film from the secondary laminate with the surface protection film, inspecting the secondary laminate with the surface protection film for defects; and peeling the inner surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate; In this order.
  • the obtained secondary laminate is subjected to an assembly process and assembled with other members to form a display system.
  • an example of a method for manufacturing a display system using an optical laminate with a surface protection film having the optical laminate 100a illustrated in FIG. 3 will be described with reference to FIGS. 6A to 6E.
  • the optical laminate 200 with a surface protection film to be inspected has an optical laminate 100a, and an inner surface protection film 110 and an outer surface on the surface of the optical laminate 100a on the first protection member 41 side.
  • the protective film 120 is pasted outward in this order.
  • Defect inspection performed on the optical laminate with a surface protection film includes visual defect inspection and automatic optical inspection (AOI) using a known automatic defect inspection device.
  • the defect inspection may be of a transmission type or a reflection type. In one embodiment, the defect inspection is reflective.
  • an inspection light is irradiated from a light source onto the surface of the outer surface protection film 120 side of the optical laminate with a surface protection film 200, and the reflected light image is acquired by an imaging device C such as a line sensor or a two-dimensional camera. Then, defect detection is performed based on the acquired image data.
  • the defect inspection is transparent.
  • an inspection light is irradiated from a light source to the release liner 61 side surface of the optical laminate 200 with a surface protection film, a transmitted light image is acquired by the imaging device C, and based on the acquired image data, , performs defect detection. If necessary, the reflection type inspection and the transmission type inspection may be combined.
  • the inspection is performed in a clean room.
  • Detected defects include scratches, foreign objects, bubbles, dirt, and the like.
  • the size of the defect can be, for example, between 45 ⁇ m and 500 ⁇ m.
  • another surface protection film may be provided on the outside of the outer surface protection film and/or release liner of the optical laminate with a surface protection film to be inspected until it is subjected to inspection. By peeling off another surface protection film immediately before inspection, it is possible to prevent scratches, foreign matter, dirt, etc. from adhering to the outer surface protection film and/or release liner surface, and as a result, these can be removed from the optical laminate. It is possible to prevent erroneous detection, which is a drawback.
  • another surface protection film one is preferably used that has a lower adhesion force to the outer surface protection film or release liner than the adhesion force of the outer surface protection film or release liner to the adherend.
  • a secondary laminate with film is obtained.
  • the release liner 61 is peeled off from the optical laminate 200 with the surface protection film attached, and the release liner 61 is attached to another member 300 using the exposed adhesive layer 31.
  • a secondary laminate 400a is obtained.
  • the other member 300 is an optical member such as an organic EL panel or a liquid crystal cell, and the optical laminate with a surface protection film is bonded to the viewing side (front) surface thereof.
  • the optical laminate 200 with a surface protection film When attached to another member 300, the optical laminate 200 with a surface protection film may have a shape corresponding to the shape of the other member 300.
  • the optical laminate 200 with a surface protection film is formed into a long shape, and after the defect inspection described above, it can be processed into a desired shape by cutting, punching, machining, or the like.
  • the optical laminate 200 with a surface protection film may be subjected to defect inspection after being processed into a desired shape.
  • the outer surface protection film 120 is peeled off from the surface protection film-attached secondary laminate 400a, and the obtained surface protection film-attached secondary laminate 400b is inspected for defects.
  • An example of the defect inspection performed on the secondary laminate with a surface protection film is the same inspection as the defect inspection performed on the optical laminate 200 with a surface protection film.
  • the inner surface protection film 110 is peeled off from the surface protection film-attached secondary laminate 400b, which was determined to be good in the defect inspection, to obtain a secondary laminate 400c.
  • the secondary laminate 400c is subjected to an assembly process and assembled with other members (for example, the optical laminate shown in FIG. 4 or 5) to configure a display system.
  • the above manufacturing method it is possible to perform multiple defect inspections on the optical laminate while the surface is protected, and there is no need for scratches, dirt, etc. to adhere to the surface until just before it is incorporated into a display system. can be suitably prevented.
  • This effect occurs when processes such as manufacturing the optical laminate, manufacturing intermediate products (e.g. display elements) using the optical laminate, and manufacturing (assembly) the display system using the intermediate products are performed at different locations.
  • an optical laminate manufactured by an optical laminate manufacturer is inspected for defects in the form of an optical laminate with a surface protection film to which inner and outer surface protection films have been applied (e.g., FIG.
  • FIG. 6A Items judged to be good in the defect inspection are shipped as the first semi-finished product to a display element manufacturer; The display element manufacturer then converts the optical laminate with a surface protection film into liquid crystal cells, organic EL panels, etc.
  • a display element liquid crystal display element, organic EL display element, etc.
  • Fig. 6B A display element (liquid crystal display element, organic EL display element, etc.) is produced (for example, Fig. 6B); from here, the outer surface protection film is peeled off and the inner surface protection film is protected.
  • a defect inspection is performed on the display element in the state shown in FIG.
  • the display element which is ready for use after the inner surface protective film is peeled off by the display system manufacturer, can be assembled with other components (eg, FIG. 6E).
  • defects scratches, foreign objects, dirt, etc.
  • defect inspection when manufacturing a display element that is a second semi-finished product
  • prevention of defects when shipping the second semi-finished product.
  • the method of manufacturing the display system is not limited to the illustrated example.
  • the outer surface protective film may be peeled off before the release liner is peeled off and attached to another component, and a second defect inspection may be performed before attachment to another component. It's okay.
  • the inner surface protection film may be peeled off after the optical laminate is placed at a predetermined position of the display system.
  • the thickness is a value measured by the following measuring method.
  • ⁇ Thickness> The thickness was measured using a digital micrometer (manufactured by Anritsu Corporation, product name "KC-351C").
  • ⁇ In-plane phase difference or thickness direction phase difference> A sample was prepared by cutting out the central part in the width direction of the member to be measured into a square shape with a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation and thickness direction retardation of the sample were measured using "KOBRA-WPR" manufactured by Oji Scientific Instruments.
  • an isocyanurate of hexamethylene diisocyanate (“Coronate HX” manufactured by Tosoh Corporation)
  • a surfactant (“Aqualon” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) HS-10''
  • Adhesive composition A was applied to the surface (corona treated surface) of a base material (PET film, "CE901-38" manufactured by KOLON, thickness 38 ⁇ m), and then dried to form an adhesive layer (thickness 10 ⁇ m). .
  • a release liner manufactured by Toyobo Co., Ltd., product number TG704 was attached to the surface of the adhesive layer opposite to the base material.
  • Adhesive composition B was applied to the surface (corona-treated surface) of a base material (PET film, manufactured by Mitsubishi Chemical Corporation, product number T100C38, thickness 38 ⁇ m), and then dried to form an adhesive layer (thickness 20 ⁇ m). Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material.
  • a base material PET film, manufactured by Mitsubishi Chemical Corporation, product number T100C38, thickness 38 ⁇ m
  • ⁇ Surface protection film C> A PET film (product number T100C38, manufactured by Mitsubishi Chemical Corporation, thickness 38 ⁇ m) was used as a base material, and adhesive composition C was applied to the corona-treated surface of the film, followed by drying to form an adhesive layer (thickness 5 ⁇ m). Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material. As a result, a surface protection film C was obtained.
  • Production of surface protection film D Same as Production Example 1C except that a PET film ("CE905-38" manufactured by KOLON, thickness 38 ⁇ m) was used as the base material, and adhesive composition C was applied to one side of the film to form an adhesive layer with a thickness of 15 ⁇ m. A surface protection film D was obtained.
  • a PET film (“CE905-38" manufactured by KOLON, thickness 38 ⁇ m) was used as the base material, and adhesive composition C was applied to one side of the film to form an adhesive layer with a thickness of 15 ⁇ m.
  • a surface protection film D was obtained.
  • the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times.
  • the boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C.
  • the potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight.
  • the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
  • a triacetyl cellulose (TAC) resin film with HC (TAC thickness: 25 ⁇ m, HC thickness: 7 ⁇ m) was placed on one side of the obtained absorption type polarizing film, and a cycloolefin resin film (thickness: 13 ⁇ m) was placed on the other side. were laminated together as a protective layer.
  • the curable adhesive was coated to a total thickness of about 1 ⁇ m, and then bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive. Thereby, a polarizing film A having the structure of [TAC film (protective layer)/absorption type polarizing film/COP film (protective layer)] was obtained.
  • the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
  • temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
  • polymerization was allowed to proceed until a predetermined stirring power was reached.
  • nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
  • polyester carbonate resin pellets
  • a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
  • T-die width 200mm, setting temperature: 250°C
  • a long resin film with a thickness of 135 ⁇ m was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder.
  • the obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times. Thereby, a stretched film ( ⁇ /4 member A) having a thickness of 47 ⁇ m was obtained.
  • Re(590) of ⁇ /4 member A was 143 nm
  • Re(450)/Re(550) was 0.86
  • the Nz coefficient was 1.12.
  • the coating solution was applied to a PET substrate subjected to vertical alignment treatment using a bar coater, and then heated and dried at 80° C. for 4 minutes to align the liquid crystal.
  • a positive C plate A having a thickness of 4 ⁇ m and an Rth (550) of ⁇ 100 nm was formed on the base material.
  • a leveling agent By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared.
  • Coating liquid for forming antireflection layer 100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content
  • a mixed solvent of TBA tertiary butyl alcohol
  • MIBK methyl isobutyl ketone
  • PMA propylene glycol monomethyl ether acetate
  • an acrylic polymer solution was prepared by adding 0.3 parts of benzoyl peroxide (BPO: Niper BMT manufactured by NOF Corporation) as a crosslinking agent to 100 parts of the solid content of the obtained acrylic polymer solution.
  • BPO benzoyl peroxide
  • the obtained adhesive composition was applied to the release-treated layer surface of a release liner (manufactured by Toray Industries, Inc., Therapel) and dried at 155° C. for 3 minutes to form an adhesive layer with a thickness of 20 ⁇ m.
  • Example 1 The above-mentioned adhesive layer A was attached to the COP protective layer side surface of the above-mentioned polarizing film A together with a release liner.
  • positive C plate A was bonded to ⁇ /4 member A via an ultraviolet curable adhesive (thickness after curing: 1 ⁇ m), and then the base material was peeled off to obtain a retardation member.
  • the obtained retardation member was bonded to the TAC film side surface of polarizing film A via an acrylic adhesive layer (thickness: 15 ⁇ m).
  • the surface of the retardation member on the ⁇ /4 member A side should be on the polarizing film A side, and the angle between the absorption axis of the absorption type polarizing film and the slow axis of the ⁇ /4 member A should be 45°.
  • the protective member A was bonded to the surface of the retardation member via an acrylic adhesive layer (thickness: 12 ⁇ m). At this time, the protective member A was attached so that the surface on the acrylic film side was on the retardation member side (in other words, so that the antireflection layer was on the outermost surface).
  • an optical laminate A having the configuration of [release liner/adhesive layer A/polarizing film A/ ⁇ /4 member A/positive C plate A/protective member A] was obtained.
  • the release liner was peeled off from the surface protection film D, and it was bonded to the protective member A side surface (antireflection layer surface) of the optical laminate A as an inner surface protection film.
  • the release liner was peeled off from the surface protection film A, and was bonded to the base material side surface of the surface protection film D as an outer surface protection film.
  • Example 2 An optical laminate with a surface protection film having the structure of [optical laminate A/surface protection film D/surface protection film B] was prepared in the same manner as in Example 1 except that surface protection film B was used as the outer surface protection film. I got a body.
  • the optical laminate with a surface protection film of the example suppresses the generation of air bubbles between the inner surface protection film and the outer surface protection film, and therefore, when subjected to defect inspection. , it can be seen that erroneous detection of air bubbles as a defect is prevented.
  • an optical laminate with a surface protection film having such a structure can be inspected for defects multiple times with the surface protection film attached, and the surface of the optical laminate can be inspected for defects until it is used for final assembly. can be suitably protected.
  • the optical laminate with a surface protection film of the example has excellent peeling stability.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
  • optical laminate with a protective film according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.
  • Second lens section 100 Optical laminate 110 First surface Protective film 120 Second surface protection film 200 Optical laminate with surface protection film

Abstract

The present invention is an optical laminate with surface protection films comprising: an optical laminate which includes at least one optical member and which is used for goggles with a display; and a first surface protection film and a second surface protection film attached to one surface of the optical laminate in the stated order toward the outside. The first surface protection film includes a first base material and a first adhesive layer laminated on the first base material, the second surface protection film includes a second base material and a second adhesive layer laminated on the second base material, the thickness of the second adhesive layer is 8 μm or more, and peel strength P1 of the first surface protection film to the optical laminate and peel strength P2 of the second surface protection film to the first surface protection film satisfy the relationship of P2/P1≤0.8.

Description

表面保護フィルム付光学積層体および表示システムの製造方法Method for manufacturing optical laminate with surface protection film and display system
 本発明は、表面保護フィルム付光学積層体および該表面保護フィルム付光学積層体を用いた表示システムの製造方法に関する。 The present invention relates to an optical laminate with a surface protection film and a method for manufacturing a display system using the optical laminate with a surface protection film.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
 近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルでは、表示パネルに表示される画像を拡大して視認者に視認させることから、VRゴーグルに適用される光学積層体に対しては、従来の画像表示装置に適用される光学積層体よりも厳しい欠点管理が必要となる。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. In VR goggles, the image displayed on the display panel is enlarged for the viewer to see, so the optical laminate used in VR goggles is more expensive than the optical laminate used in conventional image display devices. Strict defect management is also required.
特開2021-103286号公報JP2021-103286A
 上述のとおり、VRゴーグルに適用される光学積層体に対しては、厳しい欠点管理が必要となることから、最終製品になるまでに、より具体的には、最終的なアセンブリ工程に供されるまでに、複数回の欠点検査が行われ得る。その一方で、最終的なアセンブリ工程に供されるまでの間、光学積層体の表面は保護されていることが好ましい。よって、本発明は、VRゴーグルに適用される光学積層体であって、表面が保護された状態で複数回の欠点検査を行うことが可能な光学積層体の提供を主たる目的とする。 As mentioned above, optical laminates applied to VR goggles require strict defect control, so the optical laminates applied to VR goggles must be subjected to the final assembly process before they become final products. Up to this point, multiple defect inspections may be performed. On the other hand, the surface of the optical laminate is preferably protected until it is subjected to the final assembly process. Therefore, the main object of the present invention is to provide an optical laminate that can be applied to VR goggles and that can be inspected for defects multiple times with its surface protected.
 本発明者らが上記課題を解決すべく検討したところ、表面保護フィルムで保護された状態の光学積層体を欠点検査に供すること、および、検査対象(すなわち、表面保護フィルムで保護された状態の光学積層体)を、別の表面保護フィルムでさらに保護することにより、上記課題を解決できるとの着想を得た。当該着想に基づいて、2枚の表面保護フィルムが積層された表面保護フィルム付光学積層体を作製し、欠点検査に供したところ、2枚の表面保護フィルム間に気泡が生じ、この気泡が光学積層体の欠点として誤検出される場合があることがわかった。また、外側の表面保護フィルムを剥離して、内側の表面保護フィルムのみで保護された状態の光学積層体を得る際に、内側の表面保護フィルムも一緒に剥がれてしまう場合があることがわかった。 The present inventors have studied to solve the above problems, and found that the optical laminate protected with a surface protection film is subjected to defect inspection, and the inspection object (i.e., the surface protection film protected We came up with the idea that the above problem could be solved by further protecting the optical laminate (optical laminate) with another surface protection film. Based on this idea, when we produced an optical laminate with a surface protection film in which two surface protection films were laminated and subjected it to defect inspection, air bubbles were generated between the two surface protection films, and these air bubbles caused the optical It has been found that there are cases where it is erroneously detected as a defect in the laminate. Additionally, when peeling off the outer surface protection film to obtain an optical laminate protected only by the inner surface protection film, it was found that the inner surface protection film was sometimes peeled off as well. .
 上記問題に対し、本発明者らは、外側の表面保護フィルムの粘着剤層の厚みを大きくすること、および、外側の表面保護フィルムの剥離力と内側の表面保護フィルムの剥離力との関係を調整することにより、これらの問題を回避しつつ、上記課題を解決できることを見出し、本発明を完成するに至った。 In order to solve the above problem, the present inventors increased the thickness of the adhesive layer of the outer surface protection film and investigated the relationship between the peeling force of the outer surface protection film and the peeling force of the inner surface protection film. It has been discovered that by making adjustments, the above problems can be solved while avoiding these problems, and the present invention has been completed.
 本発明の1つの局面によれば、[1]~[8]の表面保護フィルム付光学積層体、および[9]の表示システムの製造方法が提供される。
[1]少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体と、該光学積層体の一方の表面に外方に向かってこの順に貼着されている、第一表面保護フィルムおよび第二表面保護フィルムと、を有する、表面保護フィルム付光学積層体であって、該第一表面保護フィルムが、第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、該第二表面保護フィルムが、第二基材と、該第二基材に積層されている第二粘着剤層と、を有し、該第二粘着剤層の厚みが、8μm以上であり、該第一表面保護フィルムの該光学積層体に対する剥離力P1と、該第二表面保護フィルムの該第一表面保護フィルムに対する剥離力P2とが、P2/P1≦0.8の関係を満たす、表面保護フィルム付光学積層体。
[2]上記第二表面保護フィルムの上記第一表面保護フィルムに対する剥離力P2が、0.5N/50mm以下である、[1]に記載の表面保護フィルム付光学積層体。
[3]上記第一表面保護フィルムおよび上記第二表面保護フィルムの全光線透過率がそれぞれ、85%以上である、[1]または[2]に記載の表面保護フィルム付光学積層体。
[4]上記第一表面保護フィルムの全光線透過率L1と上記第二表面保護フィルムの全光線透過率L2との比(L2/L1)が、0.8~1.2である、[1]から[3]のいずれかに記載の表面保護フィルム付光学積層体。
[5]上記光学積層体が、(1)吸収型偏光部材と、第一位相差部材と、保護部材とを、上記第一表面保護フィルムに向かってこの順に有するか、(2)第二位相差部材と、保護部材とを、上記第一表面保護フィルムに向かってこの順に有するか、または(3)反射型偏光部材と、保護部材とを、上記第一表面保護フィルムに向かってこの順に有する、[1]から[4]のいずれかに記載の表面保護フィルム付光学積層体。
[6]上記保護部材が、表面処理層を含み、該表面処理層に、上記第一表面保護フィルムが貼着されている、[5]に記載の表面保護フィルム付光学積層体。
[7]上記表面処理層が、反射防止層を含み、該反射防止層に、上記第一表面保護フィルムが貼着されている、[6]に記載の表面保護フィルム付光学積層体。
[8]上記光学積層体が、上記第一表面保護フィルムおよび上記第二表面保護フィルムが貼着されている側と反対側の面に粘着剤層を有する、[1]から[7]のいずれかに記載の表面保護フィルム付光学積層体。
[9]表示システムの製造方法であって、[1]から[8]のいずれかに記載の表面保護フィルム付光学積層体を欠点検査すること、上記表面保護フィルム付光学積層体の上記第一表面保護フィルムおよび上記第二表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、該表面保護フィルム付二次積層体から上記第二表面保護フィルムを剥離すること、該表面保護フィルム付二次積層体を欠点検査すること、および該表面保護フィルム付二次積層体から上記第一表面保護フィルムを剥離して、二次積層体を得ること、をこの順に含み、該表示システムが、ディスプレイ付きゴーグルである、製造方法。
According to one aspect of the present invention, there are provided the optical laminates with a surface protection film according to [1] to [8] and the method for manufacturing a display system according to [9].
[1] An optical laminate that includes at least one optical member and is used for goggles with a display, and a first surface protection film that is adhered to one surface of the optical laminate in this order outward. and a second surface protection film, the first surface protection film includes a first base material, and a first adhesive layer laminated on the first base material. layer, the second surface protection film has a second base material, and a second adhesive layer laminated on the second base material, and the second adhesive layer has a thickness of is 8 μm or more, and the peeling force P1 of the first surface protection film to the optical laminate and the peeling force P2 of the second surface protection film to the first surface protection film are P2/P1≦0. An optical laminate with a surface protection film that satisfies the relationship 8.
[2] The optical laminate with a surface protection film according to [1], wherein a peeling force P2 of the second surface protection film with respect to the first surface protection film is 0.5 N/50 mm or less.
[3] The optical laminate with a surface protection film according to [1] or [2], wherein the first surface protection film and the second surface protection film each have a total light transmittance of 85% or more.
[4] The ratio (L2/L1) of the total light transmittance L1 of the first surface protection film to the total light transmittance L2 of the second surface protection film is 0.8 to 1.2, [1 ] to [3]. The optical laminate with a surface protection film according to any one of [3].
[5] The optical laminate has (1) an absorptive polarizing member, a first retardation member, and a protective member in this order toward the first surface protection film, or (2) the second one. A retardation member and a protective member are provided in this order toward the first surface protection film, or (3) a reflective polarizing member and a protection member are provided in this order toward the first surface protection film. , the optical laminate with a surface protection film according to any one of [1] to [4].
[6] The optical laminate with a surface protection film according to [5], wherein the protective member includes a surface treatment layer, and the first surface protection film is attached to the surface treatment layer.
[7] The optical laminate with a surface protection film according to [6], wherein the surface treatment layer includes an antireflection layer, and the first surface protection film is attached to the antireflection layer.
[8] Any one of [1] to [7], wherein the optical laminate has an adhesive layer on the side opposite to the side to which the first surface protection film and the second surface protection film are attached. An optical laminate with a surface protection film according to claim 1.
[9] A method for manufacturing a display system, comprising inspecting the optical laminate with a surface protection film according to any one of [1] to [8] for defects, Obtaining a secondary laminate with a surface protection film by attaching another member to the side opposite to the side to which the surface protection film and the second surface protection film are attached, the secondary laminate with the surface protection film. Peeling the second surface protection film from the body, inspecting the secondary laminate with the surface protection film for defects, and peeling the first surface protection film from the secondary laminate with the surface protection film, obtaining a secondary laminate, the display system being goggles with a display.
 本発明の実施形態による表面保護フィルム付光学積層体によれば、表面保護フィルム間における気泡の発生(結果として、欠点の誤検出)および剥離不良の問題を抑制しつつ、光学積層体をその表面が保護された状態で複数回欠点検査することができる。 According to the optical laminate with a surface protection film according to the embodiment of the present invention, the optical laminate can be attached to the surface of the optical laminate while suppressing the problems of air bubble formation between the surface protection films (resulting in erroneous detection of defects) and poor peeling. Can be inspected for defects multiple times while being protected.
本発明の1つの実施形態による表面保護フィルム付光学積層体の概略断面図である。1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention. 本発明の実施形態による光学積層体が用いられ得る表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system in which an optical laminate according to an embodiment of the present invention can be used. 図2に示す表示システムに用いられ得る光学積層体の一例を示す模式的な断面図である。3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2. FIG. 図2に示す表示システムに用いられ得る光学積層体の一例を示す模式的な断面図である。3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2. FIG. 図2に示す表示システムに用いられ得る光学積層体の一例を示す模式的な断面図である。3 is a schematic cross-sectional view showing an example of an optical laminate that can be used in the display system shown in FIG. 2. FIG. 本発明の1つの実施形態による表示システムの製造方法を説明する概略図である。1 is a schematic diagram illustrating a method of manufacturing a display system according to one embodiment of the present invention. FIG. 図6Aに続く図である。It is a figure following FIG. 6A. 図6Bに続く図である。It is a figure following FIG. 6B. 図6Cに続く図である。It is a figure following FIG. 6C. 図6Dに続く図である。It is a figure following FIG. 6D.
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は時計回りまたは反時計回りに45°を意味する。また、本明細書において、「略平行」は、0°±10°の範囲内である場合を包含し、例えば0°±5°、好ましくは0°±3°、より好ましくは0°±1°の範囲内であり、「略直交」は、90°±10°の範囲内である場合を包含し、例えば90°±5°、好ましくは90°±3°、より好ましくは90°±1°の範囲内である。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Thus, for example, "45°" means 45° clockwise or counterclockwise. In addition, in this specification, "substantially parallel" includes cases within the range of 0°±10°, for example, 0°±5°, preferably 0°±3°, more preferably 0°±1 90°±5°, preferably 90°±3°, more preferably 90°±1 within the range of °.
A.表面保護フィルム付光学積層体
 図1は、本発明の1つの実施形態による表面保護フィルム付光学積層体の概略断面図である。表面保護フィルム付光学積層体200は、少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体100と、光学積層体100の一方の表面に外方に向かってこの順に貼着されている、第一表面保護フィルム110および第二表面保護フィルム120と、を有する。第一表面保護フィルム110は、第一基材112と、第一基材112に積層されている第一粘着剤層114と、を有する。第二表面保護フィルム120は、第二基材122と、第二基材122に積層されている第二粘着剤層124と、を有する。第一表面保護フィルム110および第二表面保護フィルム120は、光学積層体100に一時的に貼着(仮着)される工程用部材であり、光学積層体100が使用に供される際には剥離除去される。なお、本明細書中、第一表面保護フィルムを内側表面保護フィルム、第二表面保護フィルムを外側表面保護フィルムと称する場合がある。
A. Optical laminate with surface protection film FIG. 1 is a schematic cross-sectional view of an optical laminate with a surface protection film according to one embodiment of the present invention. The optical laminate 200 with a surface protection film includes at least one optical member, and is attached in this order outward to the optical laminate 100 and one surface of the optical laminate 100, which is used for goggles with a display. It has a first surface protection film 110 and a second surface protection film 120. The first surface protection film 110 has a first base material 112 and a first adhesive layer 114 laminated on the first base material 112. The second surface protection film 120 has a second base material 122 and a second adhesive layer 124 laminated on the second base material 122. The first surface protection film 110 and the second surface protection film 120 are process members that are temporarily attached (temporary attachment) to the optical laminate 100, and when the optical laminate 100 is put into use. It is peeled off and removed. In this specification, the first surface protection film may be referred to as an inner surface protection film, and the second surface protection film may be referred to as an outer surface protection film.
 表面保護フィルム付光学積層体は、光学積層体の一方の表面に、第一表面保護フィルムおよび第二表面保護フィルムを貼着することによって製造され得る。光学積層体の一方の表面に第一表面保護フィルムおよび第二表面保護フィルムをこの順に貼着してもよく、第一表面保護フィルムと第二表面保護フィルムとの積層体を光学積層体に貼着してもよい。第一表面保護フィルムおよび第二表面保護フィルムはそれぞれ、使用に供されるまでの間、はく離ライナーによって粘着剤層側表面を保護されていてもよい。 The optical laminate with a surface protection film can be produced by attaching a first surface protection film and a second surface protection film to one surface of the optical laminate. A first surface protection film and a second surface protection film may be attached in this order to one surface of the optical laminate, or a laminate of the first surface protection film and the second surface protection film may be attached to the optical laminate. You may wear it. The adhesive layer side surface of each of the first surface protection film and the second surface protection film may be protected by a release liner until it is used.
A-1.第一表面保護フィルム(内側表面保護フィルム)
 図1に示されるように、第一表面保護フィルム110は、第一基材112と、第一基材112に積層されている第一粘着剤層114と、を有する。
A-1. First surface protection film (inner surface protection film)
As shown in FIG. 1, the first surface protection film 110 includes a first base material 112 and a first adhesive layer 114 laminated on the first base material 112.
 第一表面保護フィルムの全光線透過率L1は、例えば85%以上、好ましくは88%以上、より好ましくは90%以上である。全光線透過率L1が上記範囲内であれば、光学積層体の表面が第一表面保護フィルムで保護された状態であっても精密な欠点検査を好適に行うことができる。 The total light transmittance L1 of the first surface protection film is, for example, 85% or more, preferably 88% or more, and more preferably 90% or more. If the total light transmittance L1 is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film.
 第一表面保護フィルムのヘイズは、例えば5%以下、好ましくは4%以下、より好ましく3%以下であり、代表的には0.05%以上である。ヘイズが上記範囲内であれば、光学積層体の表面が第一表面保護フィルムで保護された状態であっても精密な欠点検査を好適に行うことができる。上記範囲のヘイズを有する表面保護フィルムは、例えば、低ヘイズの基材および/または粘着剤層を用いることによって得ることができる。 The haze of the first surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, and typically 0.05% or more. As long as the haze is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film. A surface protection film having a haze within the above range can be obtained, for example, by using a low haze base material and/or an adhesive layer.
 第一表面保護フィルムの光学積層体に対する剥離力P1(剥離速度:300mm/分、剥離角度:180°)、例えば1.0N/50mm以下、好ましくは0.5N/50mm以下、より好ましくは0.3N/50mm以下であり、例えば0.05N/50mm以上、好ましくは0.08N/50mm以上であり、より好ましくは0.10N/50mm以上である。剥離力P1が、上記範囲内であれば、第二表面保護フィルムを剥離する際に第一表面保護フィルムが第二表面保護フィルムと一緒に剥がれてしまうという剥離不良の問題を好適に防止することができる。 The peel force P1 (peel speed: 300 mm/min, peel angle: 180°) of the first surface protection film against the optical laminate is, for example, 1.0 N/50 mm or less, preferably 0.5 N/50 mm or less, more preferably 0. 3N/50mm or less, for example 0.05N/50mm or more, preferably 0.08N/50mm or more, more preferably 0.10N/50mm or more. If the peeling force P1 is within the above range, the problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off can be suitably prevented. I can do it.
<第一基材>
 第一基材は、表面保護フィルムとして使用できる任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。
<First base material>
The first base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of materials that are the main components of the resin film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose systems such as triacetylcellulose (TAC), and polycarbonates. Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned. Note that "(meth)acrylic resin" refers to acrylic resin and/or methacrylic resin. Other examples include glassy polymers such as siloxane polymers. Furthermore, the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain. For example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used. The polymer film may be, for example, an extrusion molded product of the resin composition. The materials for the resin film can be used alone or in combination.
 第一基材は、好ましくは、COP系、PET系、TAC系、PC系および(メタ)アクリル系からなる群から選択される少なくとも1種の透明樹脂を含み、より好ましくは、COP系、PET系、PC系および(メタ)アクリル系からなる群から選択される少なくとも1種の透明樹脂を含み、さらに好ましくは、COP系、PET系およびPC系からなる群から選択される少なくとも1種の透明樹脂を含む。第一基材が上記の透明樹脂を含むと、欠点検査において表面保護フィルムに起因する誤検出をより安定して低減できる。 The first base material preferably contains at least one transparent resin selected from the group consisting of COP-based, PET-based, TAC-based, PC-based, and (meth)acrylic-based, and more preferably COP-based, PET-based, etc. The resin contains at least one transparent resin selected from the group consisting of COP-based, PC-based, and (meth)acrylic-based, and more preferably at least one transparent resin selected from the group consisting of COP-based, PET-based, and PC-based. Contains resin. When the first base material contains the above-mentioned transparent resin, false detections caused by the surface protection film can be more stably reduced in defect inspection.
 第一基材には、酸化防止剤、紫外線吸収剤、光安定剤、造核剤、充填剤、顔料、界面活性剤、帯電防止剤等が含まれていてもよい。第一基材の表面(第一粘着剤層と反対側の表面)には、易接着層、易滑層、ブロッキング防止層、帯電防止層、反射防止層、オリゴマー防止層等が設けられていてもよい。 The first base material may contain an antioxidant, an ultraviolet absorber, a light stabilizer, a nucleating agent, a filler, a pigment, a surfactant, an antistatic agent, and the like. The surface of the first base material (the surface opposite to the first adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
 第一基材の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には200μm以下であり、好ましくは100μm以下である。 The thickness of the first base material is typically 5 μm or more, preferably 20 μm or more, and typically 200 μm or less, preferably 100 μm or less.
<第一粘着剤層>
 第一粘着剤層は、任意の適切な粘着剤で構成されている。第一粘着剤層を構成する粘着剤は、代表的には、(メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤からなる群から選択される少なくとも1種の粘着剤を含有する。好ましくは、第一粘着剤層は、(メタ)アクリル系粘着剤を含有する。
<First adhesive layer>
The first adhesive layer is composed of any suitable adhesive. The adhesive constituting the first adhesive layer typically contains at least one type of adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. . Preferably, the first adhesive layer contains a (meth)acrylic adhesive.
 (メタ)アクリル系粘着剤は、アルキル(メタ)アクリレートを主成分とするモノマー成分の重合体(以下(メタ)アクリル系ポリマーとする。)を含有する。言い換えれば、(メタ)アクリル系ポリマーは、アルキル(メタ)アクリレート由来の構造単位を含む。アルキル(メタ)アクリレート由来の構造単位の含有割合は、(メタ)アクリル系ポリマーにおいて、代表的には50質量%以上、好ましくは80質量%以上、より好ましくは93質量%以上であり、例えば100質量%以下、好ましくは98質量%以下である。 The (meth)acrylic pressure-sensitive adhesive contains a polymer (hereinafter referred to as (meth)acrylic polymer) of a monomer component whose main component is alkyl (meth)acrylate. In other words, the (meth)acrylic polymer contains a structural unit derived from alkyl (meth)acrylate. The content of structural units derived from alkyl (meth)acrylate is typically 50% by mass or more, preferably 80% by mass or more, more preferably 93% by mass or more, for example 100% by mass or more, preferably 80% by mass or more, and more preferably 93% by mass or more in the (meth)acrylic polymer. It is not more than 98% by mass, preferably not more than 98% by mass.
 アルキル(メタ)アクリレートが有するアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。アルキル基の炭素数は、例えば1以上18以下である。アルキル基としては、例えば、メチル基、エチル基、ブチル基、2-エチルヘキシル基、デシル基、イソデシル基、オクタデシル基が挙げられる。アルキル(メタ)アクリレートは、単独でまたは組み合わせて使用できる。アルキル基の平均炭素数は3~10であることが好ましい。 The alkyl group that the alkyl (meth)acrylate has may be linear or branched. The number of carbon atoms in the alkyl group is, for example, 1 or more and 18 or less. Examples of the alkyl group include methyl group, ethyl group, butyl group, 2-ethylhexyl group, decyl group, isodecyl group, and octadecyl group. Alkyl (meth)acrylates can be used alone or in combination. The average number of carbon atoms in the alkyl group is preferably 3 to 10.
 (メタ)アクリル系ポリマーは、アルキル(メタ)アクリレート由来の構造単位以外にも、アルキル(メタ)アクリレートと重合可能な共重合モノマー由来の構造単位を含有してもよい。共重合モノマーとして、例えば、カルボキシル基含有モノマー、ヒドロキシル基含有モノマーが挙げられる。共重合モノマーは、単独でまたは組み合わせて使用できる。 In addition to structural units derived from alkyl (meth)acrylates, the (meth)acrylic polymer may also contain structural units derived from copolymerizable monomers that are polymerizable with alkyl (meth)acrylates. Examples of the copolymerizable monomer include carboxyl group-containing monomers and hydroxyl group-containing monomers. Copolymerizable monomers can be used alone or in combination.
 カルボキシル基含有モノマーは、その構造中にカルボキシル基を含み、かつ(メタ)アクリロイル基、ビニル基などの重合性不飽和二重結合を含む化合物である。カルボキシル基含有モノマーとしては、例えば、(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、マレイン酸、フマル酸、クロトン酸が挙げられ、好ましくは(メタ)アクリル酸が挙げられる。(メタ)アクリル系ポリマーがカルボキシル基含有モノマー由来の構造単位を含むと、粘着剤層の粘着特性の向上を図り得る。(メタ)アクリル系ポリマーがカルボキシル基含有モノマー由来の構造単位を含む場合、カルボキシル基含有モノマー由来の構造単位の含有割合は、好ましくは0.01質量%以上10質量%以下である。 A carboxyl group-containing monomer is a compound that contains a carboxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Examples of the carboxyl group-containing monomer include (meth)acrylic acid, carboxyethyl (meth)acrylate, maleic acid, fumaric acid, and crotonic acid, with (meth)acrylic acid being preferred. When the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the adhesive properties of the adhesive layer can be improved. When the (meth)acrylic polymer contains a structural unit derived from a carboxyl group-containing monomer, the content ratio of the structural unit derived from the carboxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass or less.
 ヒドロキシル基含有モノマーは、その構造中にヒドロキシル基を含み、かつ(メタ)アクリロイル基、ビニル基などの重合性不飽和二重結合を含む化合物である。ヒドロキシル基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートが挙げられ、好ましくは、2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートが挙げられ、より好ましくは、2-ヒドロキシエチル(メタ)アクリレートが挙げられる。(メタ)アクリル系ポリマーがヒドロキシル基含有モノマー由来の構造単位を含むと、粘着剤層の耐久性の向上を図り得る。(メタ)アクリル系ポリマーがヒドロキシル基含有モノマー由来の構造単位を含む場合、ヒドロキシル基含有モノマー由来の構造単位の含有割合は、(メタ)アクリル系ポリマーにおいて、好ましくは0.01質量%以上10質量%以下である。 A hydroxyl group-containing monomer is a compound that contains a hydroxyl group in its structure and also contains a polymerizable unsaturated double bond such as a (meth)acryloyl group or a vinyl group. Examples of hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 8-hydroxyoctyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethyl cyclohexyl)-methyl acrylate, preferably 2-hydroxyethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, more preferably 2-hydroxyethyl (meth)acrylate. When the (meth)acrylic polymer contains a structural unit derived from a hydroxyl group-containing monomer, the durability of the adhesive layer can be improved. When the (meth)acrylic polymer contains a structural unit derived from a hydroxyl group-containing monomer, the content of the structural unit derived from the hydroxyl group-containing monomer is preferably 0.01% by mass or more and 10% by mass in the (meth)acrylic polymer. % or less.
 (メタ)アクリル系ポリマーの重量平均分子量Mwは、例えば10万~200万であり、好ましくは20万~100万である。 The weight average molecular weight Mw of the (meth)acrylic polymer is, for example, 100,000 to 2,000,000, preferably 200,000 to 1,000,000.
 また、(メタ)アクリル系粘着剤は、架橋剤を含有することができる。架橋剤としては、代表的には、有機系架橋剤および多官能性金属キレートが挙げられ、好ましくは有機系架橋剤が挙げられる。有機系架橋剤としては、例えば、イソシアネート系架橋剤、過酸化物系架橋剤、エポキシ系架橋剤、イミン系架橋剤が挙げられ、より好ましくは、イソシアネート系架橋剤が挙げられる。粘着剤が架橋剤を含有する場合、架橋剤の含有割合は、(メタ)アクリル系ポリマー100質量部に対して、通常0.01質量部以上15質量部以下である。 Additionally, the (meth)acrylic pressure-sensitive adhesive can contain a crosslinking agent. The crosslinking agent typically includes an organic crosslinking agent and a polyfunctional metal chelate, preferably an organic crosslinking agent. Examples of the organic crosslinking agent include an isocyanate crosslinking agent, a peroxide crosslinking agent, an epoxy crosslinking agent, and an imine crosslinking agent, and more preferably an isocyanate crosslinking agent. When the adhesive contains a crosslinking agent, the content of the crosslinking agent is usually 0.01 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the (meth)acrylic polymer.
 上記粘着剤((メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤)は、必要に応じて、種々の添加剤を適切な割合で含有していてもよい。ベースポリマーの組成(例えば、モノマーの種類、含有割合等、架橋剤の種類、含有割合等)、ベースポリマーの分子量、添加剤の種類または含有割合等を調整することにより、被着体に対して所望の粘着性を有する粘着剤層を得ることができる。 The above adhesives ((meth)acrylic adhesives, urethane adhesives, and silicone adhesives) may contain various additives in appropriate proportions, if necessary. By adjusting the composition of the base polymer (for example, the type and content ratio of monomers, the type and content ratio of crosslinking agents, etc.), the molecular weight of the base polymer, and the type or content ratio of additives, An adhesive layer having desired adhesiveness can be obtained.
 添加剤としては、重合開始剤、溶媒、重合触媒、架橋触媒、シランカップリング剤、粘着性付与剤、可塑剤、軟化剤、劣化防止剤、充填剤、着色剤(顔料、染料等)、光安定剤、紫外線吸収剤、酸化防止剤、界面活性剤、帯電防止剤、連鎖移動剤等が挙げられる。 Additives include polymerization initiators, solvents, polymerization catalysts, crosslinking catalysts, silane coupling agents, tackifiers, plasticizers, softeners, deterioration inhibitors, fillers, colorants (pigments, dyes, etc.), light Examples include stabilizers, ultraviolet absorbers, antioxidants, surfactants, antistatic agents, chain transfer agents, and the like.
 第一粘着剤層の厚みは、例えば10μm以上、好ましくは12μm以上であり、例えば40μm以下、好ましくは30μm以下、より好ましくは25μm以下である。第一粘着剤層が上記厚みを有する場合、光学積層体に対する良好な保護が行われ得る。 The thickness of the first adhesive layer is, for example, 10 μm or more, preferably 12 μm or more, and is, for example, 40 μm or less, preferably 30 μm or less, more preferably 25 μm or less. When the first adhesive layer has the above thickness, good protection for the optical laminate can be achieved.
 1つの実施形態において、第一粘着剤層の厚みT1と第二表面保護フィルムの第二粘着剤層の厚みT2との比(T1/T2)は、例えば2以下、好ましくは1.8以下、より好ましくは1.5以下、さらに好ましくは1.2以下、さらにより好ましくは1以下であり、特に好ましくは0.8以下であり、例えば0.1以上、好ましくは0.2以上、より好ましくは0.3以上、さらに好ましくは0.4以上、さらにより好ましくは0.5以上である。比(T1/T2)が上記範囲内であれば、第一表面保護フィルムと第二表面保護フィルムとの間における気泡の発生および剥離不良の抑制が好適に行われ得る。また、光学積層体に対する良好な保護が行われ得る。 In one embodiment, the ratio (T1/T2) between the thickness T1 of the first adhesive layer and the thickness T2 of the second adhesive layer of the second surface protection film is, for example, 2 or less, preferably 1.8 or less, More preferably 1.5 or less, still more preferably 1.2 or less, even more preferably 1 or less, particularly preferably 0.8 or less, for example 0.1 or more, preferably 0.2 or more, more preferably is 0.3 or more, more preferably 0.4 or more, even more preferably 0.5 or more. If the ratio (T1/T2) is within the above range, generation of bubbles and poor peeling between the first surface protection film and the second surface protection film can be suitably suppressed. Also, good protection for the optical laminate can be provided.
 第一粘着剤層は、第一基材の表面に直写により形成されてもよく、転写により形成されてもよい。直写の場合、粘着剤を第一基材の表面に直接塗布して第一粘着剤層を形成する。転写の場合、粘着剤をはく離ライナーの表面に塗布して第一粘着剤層を形成した後、当該第一粘着剤層に基材を貼り付ける。特に第一基材が、比較的低いガラス転移温度Tg(例えば150℃以下)を有する非晶性樹脂を含む場合、第一粘着剤層は、好ましくは転写プロセスにより形成される。転写プロセスであれば、第一粘着剤層の形成に必要な乾燥時の高温が、第一基材に影響することを抑制できる。 The first adhesive layer may be formed on the surface of the first base material by direct copying or by transfer. In the case of direct copying, the adhesive is directly applied to the surface of the first base material to form the first adhesive layer. In the case of transfer, a first adhesive layer is formed by applying an adhesive to the surface of a release liner, and then a base material is attached to the first adhesive layer. In particular, when the first base material includes an amorphous resin having a relatively low glass transition temperature Tg (for example, 150° C. or lower), the first adhesive layer is preferably formed by a transfer process. With the transfer process, it is possible to prevent the high temperature during drying required for forming the first adhesive layer from affecting the first base material.
A-2.第二表面保護フィルム(外側表面保護フィルム)
 図1に示されるとおり、第二表面保護フィルム120は、第二基材122と、第二基材に積層されている第二粘着剤層124と、を有する。
A-2. Second surface protection film (outer surface protection film)
As shown in FIG. 1, the second surface protection film 120 includes a second base material 122 and a second adhesive layer 124 laminated on the second base material.
 第二表面保護フィルムの全光線透過率L2は、例えば85%以上、好ましくは88%以上、より好ましくは90%以上である。全光線透過率L2が上記範囲内であれば、光学積層体の表面が第一表面保護フィルムおよび第二表面保護フィルムで保護された状態であっても精密な欠点検査を好適に行うことができる。 The total light transmittance L2 of the second surface protection film is, for example, 85% or more, preferably 88% or more, and more preferably 90% or more. If the total light transmittance L2 is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film. .
 第一表面保護フィルムの全光線透過率L1と第二表面保護フィルムの全光線透過率L2との比(L2/L1)は、例えば0.8~1.2、好ましくは0.85~1.15、より好ましくは0.9~1.1である。比(L2/L1)が上記範囲内であれば、光学積層体の表面が第一表面保護フィルムおよび第二表面保護フィルムで保護された状態であっても精密な欠点検査を好適に行うことができる。 The ratio (L2/L1) between the total light transmittance L1 of the first surface protection film and the total light transmittance L2 of the second surface protection film is, for example, 0.8 to 1.2, preferably 0.85 to 1. 15, more preferably 0.9 to 1.1. If the ratio (L2/L1) is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film. can.
 第二表面保護フィルムのヘイズは、例えば5%以下、好ましくは4%以下、より好ましく3%以下であり、代表的には0.05%以上である。ヘイズが上記範囲内であれば、光学積層体の表面が第一表面保護フィルムおよび第二表面保護フィルムで保護された状態であっても精密な欠点検査を好適に行うことができる。 The haze of the second surface protection film is, for example, 5% or less, preferably 4% or less, more preferably 3% or less, and typically 0.05% or more. If the haze is within the above range, precise defect inspection can be suitably performed even when the surface of the optical laminate is protected by the first surface protection film and the second surface protection film.
 第二表面保護フィルムの第一表面保護フィルムに対する剥離力P2(剥離速度:300mm/分、剥離角度:180°)は、例えば0.5N/50mm以下、好ましくは0.3N/50mm以下、より好ましくは0.2N/50mm以下であり、さらに好ましくは0.1N/50mm以下であり、例えば0.01N/50mm以上であり、好ましくは0.03N/50mm以上であり、さらに好ましくは0.05N/50mm以上である。剥離力P2が上記範囲内であれば、第二表面保護フィルムを剥離する際に第一表面保護フィルムが第二表面保護フィルムと一緒に剥がれてしまうという剥離不良の問題を好適に防止することができる。また、第一表面保護フィルムと第二表面保護フィルムとの間における気泡の発生を好適に抑制することができる。 The peel force P2 (peel speed: 300 mm/min, peel angle: 180°) of the second surface protection film against the first surface protection film is, for example, 0.5 N/50 mm or less, preferably 0.3 N/50 mm or less, more preferably is 0.2N/50mm or less, more preferably 0.1N/50mm or less, for example 0.01N/50mm or more, preferably 0.03N/50mm or more, and even more preferably 0.05N/50mm. It is 50 mm or more. If the peeling force P2 is within the above range, it is possible to suitably prevent the problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off. can. Moreover, generation of air bubbles between the first surface protection film and the second surface protection film can be suitably suppressed.
 第一表面保護フィルムの光学積層体に対する剥離力P1(剥離速度:300mm/分、剥離角度:180°)に対する、第二表面保護フィルムの第一表面保護フィルムに対する剥離力P2(剥離速度:300mm/分、剥離角度:180°)の比(P2/P1)は、代表的には0.8以下、好ましくは0.6以下、より好ましくは0.5以下であり、例えば0.2以上である。剥離力の比(P2/P1)が、上記範囲内であれば、第二表面保護フィルムを剥離する際に第一表面保護フィルムが第二表面保護フィルムと一緒に剥がれてしまうという剥離不良の問題を好適に防止することができる。また、第一表面保護フィルムと第二表面保護フィルムとの間における気泡の発生を好適に抑制することができる。 Peeling force P1 (peeling speed: 300 mm/min, peeling angle: 180°) of the first surface protective film against the optical laminate, P2 (peeling speed: 300 mm/min) of the second surface protective film against the first surface protective film The ratio (P2/P1) is typically 0.8 or less, preferably 0.6 or less, more preferably 0.5 or less, for example 0.2 or more. . If the ratio of peeling force (P2/P1) is within the above range, there will be a problem of poor peeling in which the first surface protective film is peeled off together with the second surface protective film when the second surface protective film is peeled off. can be suitably prevented. Moreover, generation of air bubbles between the first surface protection film and the second surface protection film can be suitably suppressed.
<第二基材>
 第二基材は、表面保護フィルムとして使用できる任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、第一基材に関して上述したとおりである。
<Second base material>
The second base material is formed of any suitable resin film that can be used as a surface protection film. Specific examples of the material that is the main component of the resin film are as described above regarding the first base material.
 第二基材には、酸化防止剤、紫外線吸収剤、光安定剤、造核剤、充填剤、顔料、界面活性剤、帯電防止剤等が含まれていてもよい。第二基材の表面(第二粘着剤層と反対側の表面)には、易接着層、易滑層、ブロッキング防止層、帯電防止層、反射防止層、オリゴマー防止層等が設けられていてもよい。 The second base material may contain antioxidants, ultraviolet absorbers, light stabilizers, nucleating agents, fillers, pigments, surfactants, antistatic agents, and the like. The surface of the second base material (the surface opposite to the second adhesive layer) is provided with an easy-adhesion layer, an easy-slip layer, an anti-blocking layer, an antistatic layer, an anti-reflection layer, an anti-oligomer layer, etc. Good too.
 第二基材の厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には200μm以下であり、好ましくは100μm以下である。 The thickness of the second base material is typically 5 μm or more, preferably 20 μm or more, and typically 200 μm or less, preferably 100 μm or less.
<第二粘着剤層>
 第二粘着剤層は、任意の適切な粘着剤で構成されている。第二粘着剤層を構成する粘着剤は、代表的には、(メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤からなる群から選択される少なくとも1種の粘着剤を含有する。好ましくは、第二粘着剤層は、(メタ)アクリル系粘着剤を含有する。(メタ)アクリル系粘着剤の詳細については、第一粘着剤層に関して上述したとおりである。
<Second adhesive layer>
The second adhesive layer is made of any suitable adhesive. The adhesive constituting the second adhesive layer typically contains at least one adhesive selected from the group consisting of (meth)acrylic adhesives, urethane adhesives, and silicone adhesives. . Preferably, the second adhesive layer contains a (meth)acrylic adhesive. The details of the (meth)acrylic adhesive are as described above regarding the first adhesive layer.
 上記粘着剤((メタ)アクリル系粘着剤、ウレタン系粘着剤およびシリコーン系粘着剤)は、ベースポリマー(またはその構成モノマー成分)、および必要に応じて添加剤を含有し得る。添加剤の具体例は、第一粘着剤層に関して上述したとおりである。ベースポリマーの組成(例えば、モノマーの種類、含有割合等、架橋剤の種類、含有割合等)、ベースポリマーの分子量、添加剤の種類または含有割合等を調整することにより、被着体に対して所望の粘着性を有する粘着剤層を得ることができる。 The above-mentioned adhesives ((meth)acrylic adhesives, urethane adhesives, and silicone adhesives) may contain a base polymer (or its constituent monomer components) and, if necessary, additives. Specific examples of the additive are as described above for the first adhesive layer. By adjusting the composition of the base polymer (for example, the type and content ratio of monomers, the type and content ratio of crosslinking agents, etc.), the molecular weight of the base polymer, and the type or content ratio of additives, An adhesive layer having desired adhesiveness can be obtained.
 第二粘着剤層の厚みは、代表的には8μm以上、好ましくは10μm以上、より好ましくは15μm以上であり、例えば50μm以下、好ましくは40μm以下、より好ましくは30μm以下である。第二粘着剤層が上記厚みを有する場合、第一表面保護フィルムと第二表面保護フィルムとの間における気泡の発生が抑制され、これらの表面保護フィルムが貼着された状態で光学積層体の欠点検査を良好に行うことができる。 The thickness of the second adhesive layer is typically 8 μm or more, preferably 10 μm or more, more preferably 15 μm or more, and, for example, 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. When the second adhesive layer has the above-mentioned thickness, the generation of air bubbles between the first surface protection film and the second surface protection film is suppressed, and the optical laminate is formed with these surface protection films attached. Defect inspection can be performed satisfactorily.
 第二粘着剤層の形成方法としては、第一粘着剤層の形成方法と同様の方法が挙げられる。 The method for forming the second adhesive layer includes the same method as the method for forming the first adhesive layer.
A-3.光学積層体
 光学積層体は、少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる。光学部材としては、例えば、吸収型偏光部材、反射型偏光部材、位相差部材等が挙げられる。光学積層体は、第一表面保護フィルムおよび第二表面保護フィルムが貼着されている側と反対側の面に粘着剤層を有していてもよい。
A-3. Optical Laminate The optical laminate includes at least one optical member and is used in goggles with a display. Examples of the optical member include an absorptive polarizing member, a reflective polarizing member, a retardation member, and the like. The optical laminate may have an adhesive layer on the surface opposite to the side to which the first surface protection film and the second surface protection film are attached.
A-3-1.光学積層体が適用され得る表示システム
 図2は、光学積層体が適用され得る表示システム(ディスプレイ付きゴーグル)の概略の構成を示す模式図である。図2では、表示システム2の各構成要素の配置および形状等を模式的に図示している。表示システム2は、表示素子12と、反射型偏光部材14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射型偏光部材14は、表示素子12の表示面12a側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射型偏光部材14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射型偏光部材14との間の光路上に配置されている。図示しないが、表示システム2は、反射型偏光部材14と第二レンズ部24との間に吸収型偏光部材をさらに備えることができる。
A-3-1. Display system to which the optical laminate can be applied FIG. 2 is a schematic diagram showing a general configuration of a display system (goggles with a display) to which the optical laminate can be applied. FIG. 2 schematically shows the arrangement, shape, etc. of each component of the display system 2. As shown in FIG. The display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, a second retardation member 22, and a second lens section 24. It is equipped with The reflective polarizing member 14 is disposed at the front of the display element 12 on the display surface 12a side, and can reflect light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is. Although not shown, the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
 ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射型偏光部材14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflective polarizing member 14, and the second lens section 24) are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
 表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12aを有している。表示面12aから出射される光は、例えば、表示素子12に含まれ得る偏光部材10を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12a for displaying images. For example, the light emitted from the display surface 12a passes through a polarizing member 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
 第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得る第1のλ/4部材を含む。第一位相差部材が第1のλ/4部材以外の部材を含まない場合は、第一位相差部材は第1のλ/4部材に相当し得る。第一位相差部材20は、表示素子12に一体に設けられてもよい。 The first retardation member 20 includes a first λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light. When the first retardation member does not include any member other than the first λ/4 member, the first retardation member may correspond to the first λ/4 member. The first retardation member 20 may be provided integrally with the display element 12.
 ハーフミラー18は、表示素子12から出射された光を透過させ、反射型偏光部材14で反射された光を反射型偏光部材14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14. The half mirror 18 is provided integrally with the first lens section 16.
 第二位相差部材22は、反射型偏光部材14およびハーフミラー18で反射させた光を、反射型偏光部材14を透過させ得る第2のλ/4部材を含む。第二位相差部材が第2のλ/4部材以外の部材を含まない場合は、第二位相差部材は第2のλ/4部材に相当し得る。第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 includes a second λ/4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14. When the second retardation member does not include any member other than the second λ/4 member, the second retardation member may correspond to the second λ/4 member. The second retardation member 22 may be provided integrally with the first lens portion 16.
 第一位相差部材20に含まれる第1のλ/4部材から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第2の直線偏光に変換される。第2のλ/4部材から出射された第2の直線偏光は、反射型偏光部材14を透過せずにハーフミラー18に向けて反射される。このとき、反射型偏光部材14に入射した第2の直線偏光の偏光方向は、反射型偏光部材14の反射軸と同方向である。そのため、反射型偏光部材14に入射した第2の直線偏光は、反射型偏光部材14で反射される。 The first circularly polarized light emitted from the first λ/4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second λ/4 member converts the light into a second linearly polarized light. The second linearly polarized light emitted from the second λ/4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14. At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
 反射型偏光部材14で反射された第2の直線偏光は第二位相差部材22に含まれる第2のλ/4部材により第2の円偏光に変換され、第2のλ/4部材から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第3の直線偏光に変換される。第3の直線偏光は、反射型偏光部材14を透過する。このとき、反射型偏光部材14に入射した第3の直線偏光の偏光方向は、反射型偏光部材14の透過軸と同方向である。そのため、反射型偏光部材14に入射した第3の直線偏光は、反射型偏光部材14を透過する。 The second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second λ/4 member included in the second retardation member 22, and is emitted from the second λ/4 member. The second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member included in the second retardation member 22. The third linearly polarized light is transmitted through the reflective polarizing member 14 . At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
 上述のとおり、表示システム2は、反射型偏光部材14の前方(目に近い側)に吸収型偏光部材(代表的には、吸収型偏光フィルム)を含んでいてもよい。反射型偏光部材14の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得る。これにより、反射型偏光部材14を透過した第3の直線偏光は、そのまま吸収型偏光部材を透過することができる。反射型偏光部材と吸収型偏光部材とは、例えば、接着層を介して積層されていてもよい。 As described above, the display system 2 may include an absorbing polarizing member (typically, an absorbing polarizing film) in front of the reflective polarizing member 14 (on the side closer to the eyes). The reflection axis of the reflective polarizing member 14 and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other. Thereby, the third linearly polarized light that has passed through the reflective polarizing member 14 can pass through the absorbing polarizing member as it is. For example, the reflective polarizing member and the absorbing polarizing member may be laminated with an adhesive layer interposed therebetween.
 反射型偏光部材14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
 例えば、表示素子12に含まれる偏光部材10の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材10の吸収軸と第一位相差部材20に含まれる第1のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材の吸収軸と第二位相差部材22に含まれる第2のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。 For example, the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first λ/4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ˜48°, and may be about 45°. The angle between the absorption axis of the polarizing member included in the display element 12 and the slow axis of the second λ/4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42° to 50°. It may be 48° or about 45°.
 レンズ部4において、第一レンズ部16と第二レンズ部24との間には空間が形成され得る。この場合、第一レンズ部16と第二レンズ部24との間に配置される部材は、第一レンズ部16と第二レンズ部24のいずれかに一体に設けられることが好ましい。例えば、第一レンズ部16と第二レンズ部24との間に配置される部材は、接着層を介して第一レンズ部16と第二レンズ部24のいずれかに一体化させることが好ましい。このような形態によれば、例えば、各部材の取扱い性に優れ得る。接着層は、接着剤で形成されてもよいし、粘着剤で形成されてもよい。具体的には、接着層は、接着剤層であってもよいし、粘着剤層であってもよい。接着層の厚みは、例えば0.05μm~30μmである。 In the lens portion 4, a space may be formed between the first lens portion 16 and the second lens portion 24. In this case, the member disposed between the first lens section 16 and the second lens section 24 is preferably provided integrally with either the first lens section 16 or the second lens section 24. For example, it is preferable that the member disposed between the first lens part 16 and the second lens part 24 be integrated with either the first lens part 16 or the second lens part 24 via an adhesive layer. According to such a configuration, for example, each member can be easily handled. The adhesive layer may be formed of an adhesive or a pressure-sensitive adhesive. Specifically, the adhesive layer may be an adhesive layer or an adhesive layer. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm.
A-3-2.光学積層体の構成
 図3は、図2に例示する表示システムにおいて用いられ得る光学積層体の概略断面図である。光学積層体100aは、粘着剤層31と、偏光部材10と、第一位相差部材20と、第一保護部材41とをこの順に含む。偏光部材10、第一位相差部材20、および第一保護部材41は、接着層51、52を介して積層されている。接着層51、52は、代表的には、接着剤層または粘着剤層であり、好ましくは粘着剤層である。接着層の厚みは、例えば0.05μm~30μmである。粘着剤層31の表面は、使用に供されるまでの間、はく離ライナー61によって保護されている。なお、第一表面保護フィルムおよび第二表面保護フィルムは、光学積層体100aの第一保護部材41側表面に貼着される。
A-3-2. Configuration of optical laminate FIG. 3 is a schematic cross-sectional view of an optical laminate that can be used in the display system illustrated in FIG. 2. The optical laminate 100a includes an adhesive layer 31, a polarizing member 10, a first retardation member 20, and a first protective member 41 in this order. The polarizing member 10, the first retardation member 20, and the first protection member 41 are laminated with adhesive layers 51 and 52 interposed therebetween. The adhesive layers 51 and 52 are typically adhesive layers or adhesive layers, preferably adhesive layers. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm. The surface of the adhesive layer 31 is protected by a release liner 61 until it is used. Note that the first surface protection film and the second surface protection film are attached to the surface of the optical laminate 100a on the first protection member 41 side.
 図3に示す例では、第一位相差部材20は、第1のλ/4部材20aに加えて、屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)20bを含んでいる。第一位相差部材20は、第1のλ/4部材20aと第1のポジティブCプレート20bとの積層構造を有している。図示例とは異なり、第1のポジティブCプレート20bが第1のλ/4部材20aよりも偏光部材10側に位置していてもよく、また、第1のポジティブCプレート20bは省略されてもよい。第1のλ/4部材20aと第1のポジティブCプレート20bとは、例えば、図示しない接着層を介して積層される。また、第一位相差部材20は、偏光部材10の吸収軸と第1のλ/4部材20aの遅相軸とのなす角度が、好ましくは40°~50°、より好ましくは42°~48°、例えば約45°となるように配置されている。 In the example shown in FIG. 3, the first retardation member 20 includes, in addition to the first λ/4 member 20a, a member (so-called positive C plate) 20b whose refractive index characteristics can exhibit the relationship nz>nx=ny. Contains. The first retardation member 20 has a laminated structure of a first λ/4 member 20a and a first positive C plate 20b. Unlike the illustrated example, the first positive C plate 20b may be located closer to the polarizing member 10 than the first λ/4 member 20a, or the first positive C plate 20b may be omitted. good. The first λ/4 member 20a and the first positive C plate 20b are laminated, for example, via an adhesive layer (not shown). Further, in the first retardation member 20, the angle between the absorption axis of the polarizing member 10 and the slow axis of the first λ/4 member 20a is preferably 40° to 50°, more preferably 42° to 48°. 45°, for example, about 45°.
 光学積層体100aは、例えば、図2に例示する表示システムにおいて、第一位相差部材20が表示素子12に一体に設けられた実施形態による表示システムの製造に適用され得る。例えば、光学積層体100aからはく離ライナー61を剥離し、偏光部材10が液晶セルの前方側(視認側)偏光部材となるように、背面側偏光部材とともに液晶セルに貼り合せることにより、第一位相差部材20が液晶パネル(表示素子)と一体に設けられた表示システムを製造することができる。また例えば、光学積層体100aからはく離ライナー61を剥離して、粘着剤層31を介して有機ELパネルの前方に貼り合せることにより、第一位相差部材20が有機ELパネル(表示素子)と一体に設けられた表示システムを製造することができる。この場合、反射防止の観点から、光学積層体100aと有機ELパネルとの間には第3のλ/4部材を含む第三位相差部材が配置され得る。第三位相差部材は、光学積層体に含まれていてもよい。例えば、光学積層体は、粘着剤層、第三位相差部材、偏光部材、第一位相差部材、および保護部材をこの順に有していてもよい。第3のλ/4部材としては、第1のλ/4部材と同様の説明を適用することができる。第三位相差部材は、第3のλ/4部材の遅相軸が偏光部材10の吸収軸と、例えば40°~50°、42°~48°、または約45°の角度をなすように配置され得る。 The optical laminate 100a can be applied, for example, to manufacturing a display system illustrated in FIG. 2, in which the first retardation member 20 is integrally provided with the display element 12. For example, the release liner 61 is peeled off from the optical laminate 100a, and the polarizing member 10 is attached to the liquid crystal cell together with the back side polarizing member so that the polarizing member 10 becomes the front side (viewing side) polarizing member of the liquid crystal cell. A display system in which the retardation member 20 is integrally provided with a liquid crystal panel (display element) can be manufactured. Further, for example, the first retardation member 20 is integrated with the organic EL panel (display element) by peeling off the release liner 61 from the optical laminate 100a and bonding it to the front of the organic EL panel via the adhesive layer 31. A display system can be manufactured that is provided with a display system. In this case, from the viewpoint of antireflection, a third retardation member including a third λ/4 member may be disposed between the optical laminate 100a and the organic EL panel. The third retardation member may be included in the optical laminate. For example, the optical laminate may include an adhesive layer, a third retardation member, a polarizing member, a first retardation member, and a protection member in this order. The same explanation as for the first λ/4 member can be applied to the third λ/4 member. The third retardation member is configured such that the slow axis of the third λ/4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
<偏光部材>
 偏光部材10は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含む吸収型偏光部材であり、必要に応じて、その片側又は両側に保護層をさらに含み得る。保護層は、代表的には、任意の適切な接着剤層を介して吸収型偏光膜に貼り合わされている。接着剤層を形成する接着剤として、代表的には紫外線硬化型接着剤が挙げられる。
<Polarizing member>
The polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include. The protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer. A typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
 偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。 The cross transmittance (Tc) of the polarizing member (absorbing polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. The single transmittance (Ts) of the polarizing member (absorbing polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the polarizing member (absorbing polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
 上記直交透過率、単体透過率および偏光度は、例えば、紫外可視分光光度計を用いて測定することができる。偏光度Pは、紫外可視分光光度計を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、得られたTpおよびTcから、下記式により求めることができる。なお、Ts、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
 偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer. The degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula. Note that Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
 吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。 The thickness of the absorption type polarizing film is, for example, 1 μm or more and 20 μm or less, may be 2 μm or more and 15 μm or less, may be 12 μm or less, may be 10 μm or less, or may be 8 μm or less, It may be 5 μm or less.
 上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。 The above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
 単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。 When manufacturing from a single-layer resin film, for example, a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane. An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 The above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
 上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 The laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material. An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin. Forming a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film. can be produced by; In this embodiment, preferably, a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order. By introducing auxiliary stretching, even when PVA is applied onto a thermoplastic resin, it becomes possible to improve the crystallinity of PVA and achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when it is immersed in water during the subsequent dyeing and stretching processes, resulting in high optical properties. becomes possible to achieve. Furthermore, when the PVA-based resin layer is immersed in a liquid, disturbance in the orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. Thereby, the optical properties of an absorption polarizing film obtained through a treatment process performed by immersing the laminate in a liquid, such as dyeing treatment and underwater stretching treatment, can be improved. Furthermore, optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. The obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is. Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
 保護層は、吸収型偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。なお、「(メタ)アクリル系樹脂」とは、アクリル系樹脂および/またはメタクリル系樹脂をいう。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。 The protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film. Specific examples of materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate. Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned. Note that "(meth)acrylic resin" refers to acrylic resin and/or methacrylic resin. Other examples include glassy polymers such as siloxane polymers. Furthermore, the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain. For example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used. The polymer film may be, for example, an extrusion molded product of the resin composition. The materials for the resin film can be used alone or in combination.
 保護層の厚みは、代表的には100μm以下であり、例えば5μm~80μm、好ましくは10μm~50μm、より好ましくは15μm~35μmである。 The thickness of the protective layer is typically 100 μm or less, for example 5 μm to 80 μm, preferably 10 μm to 50 μm, more preferably 15 μm to 35 μm.
<第1のλ/4部材>
 第1のλ/4部材20aの面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第1のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第1のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
<First λ/4 member>
The in-plane retardation Re (550) of the first λ/4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The first λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第1のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第1のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The first λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第1のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第1のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。 The first λ/4 member is formed of any suitable material that can satisfy the above characteristics. The first λ/4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
 上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。組み合わせる方法としては、例えば、ブレンド、共重合が挙げられる。第1のλ/4部材が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。 The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first λ/4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
 上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第1のλ/4部材に好適に用いられ得るポリカーボネート系樹脂および第1のλ/4部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。 Any suitable polycarbonate resin can be used as the polycarbonate resin. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. In addition, details of the polycarbonate resin that can be suitably used for the first λ/4 member and the method for forming the first λ/4 member can be found in, for example, JP 2014-10291A and JP 2014-26266A. , JP 2015-212816, A, JP 2015-212817, and JP 2015-212818, and the descriptions of these publications are incorporated herein by reference.
 樹脂フィルムの延伸フィルムで構成される第1のλ/4部材の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μmであり、より好ましくは20μm~60μmである。 The thickness of the first λ/4 member made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, and more preferably 20 μm to 60 μm.
 上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第1のλ/4部材においては、代表的には、棒状の液晶化合物が第1のλ/4部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。 The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first λ/4 member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first λ/4 member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
 上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
 上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
 液晶配向固化層で構成される第1のλ/4部材の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μmであり、より好ましくは1μm~6μmであり、さらに好ましくは1μm~4μmである。 The thickness of the first λ/4 member composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm. be.
<第1のポジティブCプレート>
 第1のポジティブCプレート20bの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。第1のポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
<First positive C plate>
The retardation Rth (550) in the thickness direction of the first positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. The in-plane retardation Re (550) of the first positive C plate is, for example, less than 10 nm.
 第1のポジティブCプレートは、任意の適切な材料で形成され得る。第1のポジティブCプレートは、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであってもよいし、液晶ポリマーであってもよい。このような液晶化合物およびポジティブCプレートの形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第1のポジティブCプレートの厚みは、好ましくは0.5μm~5μmである。 The first positive C-plate may be formed of any suitable material. The first positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method for forming such a liquid crystal compound and positive C plate include the method for forming the liquid crystal compound and the retardation layer described in [0020] to [0028] of JP-A No. 2002-333642. In this case, the thickness of the first positive C plate is preferably 0.5 μm to 5 μm.
<第一保護部材>
 第一保護部材41は、代表的には、基材を含む。基材は、任意の適切なフィルムで構成され得る。基材を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。基材の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~40μmであり、さらに好ましくは15μm~35μmである。
<First protection member>
The first protection member 41 typically includes a base material. The substrate may be comprised of any suitable film. Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. The thickness of the base material is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 15 μm to 35 μm.
 第一保護部材は、好ましくは、基材と基材上に形成される表面処理層とを有する。表面処理層を有する第一保護部材は、表面処理層が前方側に位置するように配置され得る。具体的には、表面処理層が光学積層体100aの最表面に位置し得る。表面処理層は、任意の適切な機能を有し得る。表面処理層としては、例えば、ハードコート層、反射防止層、スティッキング防止層、アンチグレア層が挙げられる。第一保護部材は、2以上の表面処理層を有していてもよい。 The first protective member preferably has a base material and a surface treatment layer formed on the base material. The first protection member having the surface treatment layer may be arranged such that the surface treatment layer is located on the front side. Specifically, the surface treatment layer may be located on the outermost surface of the optical laminate 100a. The surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer. The first protection member may have two or more surface treatment layers.
 反射防止層は、外光等の反射を防止するために設けられる。反射防止層としては、例えば、フッ素樹脂層、ナノ粒子(代表的には中空ナノ粒子、例えば中空ナノシリカ粒子)を含む樹脂層、または、ナノ構造(例えばモスアイ構造)を有する反射防止層が挙げられる。反射防止層の厚みは、好ましくは0.05μm~1μmである。上記樹脂層の形成方法としては、例えば、ゾルゲル法、イソシアネートを用いた熱硬化法、架橋性モノマー(例えば多官能アクリレート)と光重合開始剤とを用いた電離放射線硬化法(代表的には光硬化法)が挙げられる。1つの実施形態において、反射防止層は、第一保護部材の最表面に設けられ、反射防止層表面に内側表面保護フィルムが貼着される。反射防止層が第一保護部材の最表面に設けられる実施形態によれば、ハーフミラー18と第一位相差部材20との間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。 The antireflection layer is provided to prevent reflection of external light and the like. Examples of the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure). . The thickness of the antireflection layer is preferably 0.05 μm to 1 μm. Examples of methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method). curing method). In one embodiment, the antireflection layer is provided on the outermost surface of the first protective member, and an inner surface protection film is attached to the surface of the antireflection layer. According to the embodiment in which the antireflection layer is provided on the outermost surface of the first protective member, an excellent antireflection effect can be achieved in a display system in which a space is formed between the half mirror 18 and the first retardation member 20. Obtainable.
 ハードコート層は、好ましくは、十分な表面硬度、優れた機械的強度、および優れた光透過性を有する。ハードコート層は、任意の適切な樹脂から形成され得る。ハードコート層は、代表的には紫外線硬化型樹脂から形成される。紫外線硬化型樹脂としては、例えば、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系が挙げられる。ハードコート層の厚みは、例えば0.5μm以上、好ましくは1μm以上、例えば20μm以下、好ましくは15μm以下である。 The hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency. The hard coat layer may be formed from any suitable resin. The hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins. The thickness of the hard coat layer is, for example, 0.5 μm or more, preferably 1 μm or more, and, for example, 20 μm or less, preferably 15 μm or less.
<粘着剤層>
 粘着剤層31は、任意の適切な粘着剤で構成され得る。具体例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ウレタン系粘着剤、エポキシ系粘着剤、およびポリエーテル系粘着剤が挙げられる。粘着剤のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤を調製することができる。粘着剤のベース樹脂は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。ベース樹脂としては、アクリル系樹脂が好ましく用いられる。具体的には、粘着剤層は、好ましくはアクリル系粘着剤で構成される。
<Adhesive layer>
Adhesive layer 31 may be composed of any suitable adhesive. Specific examples include acrylic adhesives, rubber adhesives, silicone adhesives, polyester adhesives, urethane adhesives, epoxy adhesives, and polyether adhesives. By adjusting the type, number, combination, and blending ratio of monomers that form the base resin of the adhesive, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., adhesives can have desired characteristics depending on the purpose. can be prepared. The base resin of the adhesive may be used alone or in combination of two or more types. As the base resin, acrylic resin is preferably used. Specifically, the adhesive layer is preferably composed of an acrylic adhesive.
 粘着剤層の厚みは、代表的には1μm以上、好ましくは5μm以上、より好ましくは12μm以上であり、代表的には60μm以下、好ましくは30μm以下、より好ましくは23μm以下である。 The thickness of the adhesive layer is typically 1 μm or more, preferably 5 μm or more, more preferably 12 μm or more, and typically 60 μm or less, preferably 30 μm or less, more preferably 23 μm or less.
<はく離ライナー>
 はく離ライナー61は、任意の適切な樹脂フィルムで形成される。当該樹脂フィルムの主成分となる材料の具体例としては、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレンが挙げられる。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。はく離ライナーは、透明(例えば、ヘイズが5%以下、また例えば3%以下)であってもよく、透明でなくてもよい。はく離ライナーを貼り合わせた状態で表面保護フィルム付光学積層体を検査する場合、はく離ライナーは透明であることが好ましい。
<Release liner>
Release liner 61 is formed of any suitable resin film. Specific examples of the material that is the main component of the resin film include polyethylene terephthalate (PET), polyethylene, and polypropylene. The materials for the resin film can be used alone or in combination. The release liner may be transparent (eg, haze of 5% or less, and such as 3% or less) or non-transparent. When inspecting the optical laminate with a surface protection film attached with a release liner, the release liner is preferably transparent.
 はく離ライナー61における粘着剤層31との接触面には、離型処理層が設けられていてもよい。離型処理層を形成する離型処理剤としては、例えば、シリコーン系離型処理剤、フッ素系離型処理剤、長鎖アルキルアクリレート系離型処理剤が挙げられる。離型処理剤は、単独でまたは組み合わせて使用できる。離型処理層の厚みは、代表的には50nm以上400nm以下である。 A release treatment layer may be provided on the surface of the release liner 61 that comes into contact with the adhesive layer 31. Examples of the mold release treatment agent forming the mold release treatment layer include silicone mold release treatment agents, fluorine mold release treatment agents, and long chain alkyl acrylate type mold release treatment agents. The mold release treatment agents can be used alone or in combination. The thickness of the release treatment layer is typically 50 nm or more and 400 nm or less.
 はく離ライナーの厚みは、代表的には5μm以上、好ましくは20μm以上であり、代表的には60μm以下、好ましくは45μm以下である。なお、離型処理層が施されている場合、はく離ライナーの厚みは、離型処理層の厚みを含めた厚みである。 The thickness of the release liner is typically 5 μm or more, preferably 20 μm or more, and typically 60 μm or less, preferably 45 μm or less. In addition, when a mold release treatment layer is applied, the thickness of the release liner is the thickness including the thickness of the mold release treatment layer.
 図4は、図2に例示する表示システムにおいて用いられ得る別の光学積層体の概略断面図である。光学積層体100bは、粘着剤層32と、第二位相差部材22と、第二保護部材42と、をこの順に含む。第二位相差部材22および第二保護部材42は、接着層53を介して積層されている。接着層53は、代表的には、接着剤層または粘着剤層であり、好ましくは粘着剤層である。接着層の厚みは、例えば0.05μm~30μmである。粘着剤層32の表面は、使用に供されるまでの間、はく離ライナー62によって保護されている。内側表面保護フィルムおよび外側表面保護フィルムは、光学積層体100bの第二保護部材42側表面に貼着される。 FIG. 4 is a schematic cross-sectional view of another optical laminate that may be used in the display system illustrated in FIG. 2. The optical laminate 100b includes an adhesive layer 32, a second retardation member 22, and a second protection member 42 in this order. The second retardation member 22 and the second protection member 42 are laminated with an adhesive layer 53 in between. The adhesive layer 53 is typically an adhesive layer or an adhesive layer, and preferably an adhesive layer. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm. The surface of the adhesive layer 32 is protected by a release liner 62 until it is ready for use. The inner surface protection film and the outer surface protection film are attached to the surface of the optical laminate 100b on the second protection member 42 side.
 図4に示す例では、第二位相差部材22は、第2のλ/4部材22aに加えて、屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)22bを含んでいる。第二位相差部材22は、第2のλ/4部材22aと第2のポジティブCプレート22bとの積層構造を有している。図示例とは異なり、第2のポジティブCプレート22bが第2のλ/4部材22aよりも第二保護部材42側に位置していてもよく、また、第2のポジティブCプレート22bは省略されてもよい。第2のλ/4部材22aと第2のポジティブCプレート22bとは、例えば、図示しない接着層を介して積層される。 In the example shown in FIG. 4, the second retardation member 22 includes, in addition to the second λ/4 member 22a, a member (so-called positive C plate) 22b whose refractive index characteristics can exhibit the relationship nz>nx=ny. Contains. The second retardation member 22 has a laminated structure of a second λ/4 member 22a and a second positive C plate 22b. Unlike the illustrated example, the second positive C plate 22b may be located closer to the second protection member 42 than the second λ/4 member 22a, and the second positive C plate 22b may be omitted. It's okay. The second λ/4 member 22a and the second positive C plate 22b are laminated, for example, via an adhesive layer (not shown).
 光学積層体100bは、例えば、図2に例示する表示システムにおいて、第二位相差部材22が第一レンズ部16に一体に設けられた実施形態における表示システムの製造に適用され得る。具体的には、光学積層体100bからはく離ライナー62を剥離し、粘着剤層32を介して第一レンズ部16に貼り合せることにより、第二位相差部材22が第一レンズ部16に一体に設けられた表示システムを製造することができる。 The optical laminate 100b can be applied, for example, to manufacturing a display system illustrated in FIG. 2 in which the second retardation member 22 is integrally provided with the first lens portion 16. Specifically, by peeling off the release liner 62 from the optical laminate 100b and bonding it to the first lens part 16 via the adhesive layer 32, the second retardation member 22 is integrally attached to the first lens part 16. A display system provided can be manufactured.
<第2のλ/4部材>
 第2のλ/4部材22aの面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第2のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第2のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。
<Second λ/4 member>
The in-plane retardation Re (550) of the second λ/4 member 22a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The second λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the second λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第2のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第2のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The second λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the second λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第2のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第2のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層で構成される第2のλ/4部材については、上記第1のλ/4部材と同様の説明を適用することができる。第1のλ/4部材と第2のλ/4部材とは、構成(例えば、形成材料、厚み、光学特性等)が同じであってもよく、異なる構成であってもよい。 The second λ/4 member is formed of any suitable material that can satisfy the above characteristics. The second λ/4 member may be, for example, a stretched film of a resin film or an oriented solidified layer of a liquid crystal compound. The same explanation as for the first λ/4 member can be applied to the second λ/4 member composed of a stretched resin film or an oriented solidified layer of a liquid crystal compound. The first λ/4 member and the second λ/4 member may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
<第2のポジティブCプレート>
 第2のポジティブCプレート22bの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。第2のポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
<Second positive C plate>
The retardation Rth (550) in the thickness direction of the second positive C plate 22b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, and still more preferably -90 nm to -200 nm. , particularly preferably -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. The in-plane retardation Re (550) of the second positive C plate is, for example, less than 10 nm.
 第2のポジティブCプレートは、上記特性を満足し得る任意の適切な材料で形成される。第2のポジティブCプレートの構成材料については、第1のポジティブCプレートと同様の説明を適用することができる。第1のポジティブCプレートと第2のポジティブCプレートとは、構成(例えば、形成材料、厚み、光学特性等)が同じであってもよく、異なる構成であってもよい。 The second positive C plate is formed of any suitable material that can satisfy the above characteristics. The same explanation as for the first positive C plate can be applied to the constituent material of the second positive C plate. The first positive C plate and the second positive C plate may have the same configuration (for example, forming material, thickness, optical properties, etc.) or may have different configurations.
<第二保護部材>
 第二保護部材42は、代表的には、基材を含み、好ましくは、基材と基材上に形成される表面処理層とを有する。この場合、表面処理層が光学積層体100bの最表面に位置し得る。基材および表面処理層の詳細については、第一保護部材と同様の説明を適用することができる。表面処理層として反射防止層が第二保護部材42の最表面に設けられる実施形態によれば、第二位相差部材22が第一レンズ部16と一体化され、反射型偏光部材14が第二レンズ部24と一体化され、これらの間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。
<Second protection member>
The second protection member 42 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material. In this case, the surface treatment layer may be located on the outermost surface of the optical laminate 100b. Regarding the details of the base material and the surface treatment layer, the same explanation as for the first protective member can be applied. According to an embodiment in which an antireflection layer is provided as a surface treatment layer on the outermost surface of the second protection member 42, the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 42. In a display system that is integrated with the lens portion 24 and a space is formed between them, an excellent antireflection effect can be obtained.
 光学積層体100bに用いられる粘着剤層32およびはく離ライナー62についてはそれぞれ、光学積層体100aに用いられる粘着剤層31およびはく離ライナー61と同様の説明を適用することができる。 The same explanation as for the adhesive layer 31 and release liner 61 used in the optical laminate 100a can be applied to the adhesive layer 32 and release liner 62 used in the optical laminate 100b, respectively.
 図5は、図2に例示する表示システムにおいて用いられ得るさらに別の光学積層体の概略断面図である。光学積層体100cは、粘着剤層33と、吸収型偏光部材11と、反射型偏光部材14と、第三保護部材43と、をこの順に含む。吸収型偏光部材11の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行となるように配置されており、吸収型偏光部材11の透過軸と反射型偏光部材14の透過軸とは、互いに略平行となるように配置されている。吸収型偏光部材11、反射型偏光部材14、および第三保護部材43は、接着層54、55を介して積層されている。接着層54、55は、代表的には、接着剤層または粘着剤層であり、好ましくは粘着剤層である。接着層の厚みは、例えば0.05μm~30μmである。粘着剤層33の表面は、使用に供されるまでの間、はく離ライナー63によって保護されている。内側表面保護フィルムおよび外側表面保護フィルムは、光学積層体100cの第三保護部材43側表面に貼着される。 FIG. 5 is a schematic cross-sectional view of yet another optical laminate that can be used in the display system illustrated in FIG. 2. The optical laminate 100c includes an adhesive layer 33, an absorptive polarizing member 11, a reflective polarizing member 14, and a third protection member 43 in this order. The absorption axis of the absorption type polarization member 11 and the reflection axis of the reflection type polarization member 14 are arranged to be substantially parallel to each other, and the transmission axis of the absorption type polarization member 11 and the transmission axis of the reflection type polarization member 14 are arranged to be substantially parallel to each other. are arranged substantially parallel to each other. The absorptive polarizing member 11, the reflective polarizing member 14, and the third protection member 43 are laminated with adhesive layers 54 and 55 interposed therebetween. The adhesive layers 54 and 55 are typically adhesive layers or adhesive layers, preferably adhesive layers. The thickness of the adhesive layer is, for example, 0.05 μm to 30 μm. The surface of the adhesive layer 33 is protected by a release liner 63 until it is used. The inner surface protection film and the outer surface protection film are attached to the third protection member 43 side surface of the optical laminate 100c.
 光学積層体100cは、例えば、図2に例示する表示システムにおいて、反射型偏光部材14と第二レンズ部24との間に吸収型偏光部材をさらに備える実施形態の表示システムの製造に適用され得る。具体的には、光学積層体100cからはく離ライナー63を剥離し、粘着剤層33を介して第二レンズ部24に貼り合せることにより、反射型偏光部材14と吸収型偏光部材11とが第二レンズ部24に一体に設けられた表示システムを製造することができる。 The optical laminate 100c can be applied, for example, to manufacturing a display system of an embodiment that further includes an absorptive polarizing member between the reflective polarizing member 14 and the second lens part 24 in the display system illustrated in FIG. . Specifically, by peeling off the release liner 63 from the optical laminate 100c and bonding it to the second lens part 24 via the adhesive layer 33, the reflective polarizing member 14 and the absorbing polarizing member 11 are separated from each other by the second lens part 24. A display system integrated with the lens portion 24 can be manufactured.
<反射型偏光部材>
 反射型偏光部材14は、その透過軸に平行な偏光(代表的には、直線偏光)をその偏光状態を維持したまま透過させ、それ以外の偏光状態の光を反射し得る。反射型偏光部材の直交透過率(Tc)は、例えば0.01%~3%であり得る。反射型偏光部材の単体透過率(Ts)は、例えば43%~49%、好ましくは45~47%であり得る。反射型偏光部材の偏光度(P)は、例えば92%~99.99%であり得る。反射型偏光部材としては、代表的には、多層構造を有するフィルム(反射型偏光フィルムと称する場合がある)で構成される。反射型偏光フィルムの市販品として、例えば、3M社製の商品名「DBEF」、「APF」、日東電工社製の商品名「APCF」が挙げられる。
<Reflective polarizing member>
The reflective polarizing member 14 can transmit polarized light parallel to its transmission axis (typically, linearly polarized light) while maintaining its polarized state, and can reflect light with other polarized states. The cross transmittance (Tc) of the reflective polarizing member may be, for example, 0.01% to 3%. The single transmittance (Ts) of the reflective polarizing member may be, for example, 43% to 49%, preferably 45 to 47%. The degree of polarization (P) of the reflective polarizing member may be, for example, 92% to 99.99%. The reflective polarizing member is typically composed of a film having a multilayer structure (sometimes referred to as a reflective polarizing film). Commercially available reflective polarizing films include, for example, 3M's product names "DBEF" and "APF" and Nitto Denko's product name "APCF".
<第三保護部材>
 第三保護部材43は、代表的には、基材を含み、好ましくは、基材と基材上に形成される表面処理層とを有する。この場合、表面処理層が光学積層体100cの最表面に位置し得る。基材および表面処理層の詳細については、第一保護部材と同様の説明を適用することができる。表面処理層として反射防止層が第三保護部材43の最表面に設けられる実施形態によれば、第二位相差部材22が第一レンズ部16と一体化され、反射型偏光部材14が第二レンズ部24と一体化され、これらの間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。
<Third protection member>
The third protection member 43 typically includes a base material, and preferably includes a base material and a surface treatment layer formed on the base material. In this case, the surface treatment layer may be located on the outermost surface of the optical laminate 100c. Regarding the details of the base material and the surface treatment layer, the same explanation as for the first protective member can be applied. According to the embodiment in which an antireflection layer is provided as a surface treatment layer on the outermost surface of the third protection member 43, the second retardation member 22 is integrated with the first lens portion 16, and the reflective polarizing member 14 is integrated with the second protection member 43. In a display system that is integrated with the lens portion 24 and a space is formed between them, an excellent antireflection effect can be obtained.
 光学積層体100cに用いられる吸収型偏光部材11、粘着剤層33、およびはく離ライナー63についてはそれぞれ、光学積層体100aに用いられる偏光部材10、粘着剤層31、およびはく離ライナー61と同様の説明を適用することができる。 The absorption type polarizing member 11, adhesive layer 33, and release liner 63 used in the optical laminate 100c are explained in the same manner as the polarizing member 10, adhesive layer 31, and release liner 61 used in the optical laminate 100a, respectively. can be applied.
B.表示システムの製造方法
 本発明の別の局面によれば、A項に記載の表面保護フィルム付光学積層体を用いた表示システム(ディスプレイ付きゴーグル)の製造方法が提供される。本発明の1つの実施形態による表示システムの製造方法は、
 A項に記載の表面保護フィルム付光学積層体を欠点検査すること、
 該表面保護フィルム付光学積層体の内側表面保護フィルムおよび外側表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、
 該表面保護フィルム付二次積層体から外側表面保護フィルムを剥離すること、
 該表面保護フィルム付二次積層体を欠点検査すること、および
 該表面保護フィルム付二次積層体から内側表面保護フィルムを剥離して、二次積層体を得ること、
 をこの順に含む。
 得られた二次積層体は、アセンブリ工程に供され、他の部材とともに組み立てられて表示システムを構成する。以下、図3に例示される光学積層体100aを有する表面保護フィルム付光学積層体を用いた表示システムの製造方法の一例について、図6A~6Eを参照しながら説明する。
B. Method for manufacturing a display system According to another aspect of the present invention, there is provided a method for manufacturing a display system (goggles with a display) using the optical laminate with a surface protection film described in Section A. A method of manufacturing a display system according to one embodiment of the present invention includes:
Inspecting the optical laminate with a surface protection film according to item A for defects;
Adhering another member to the side opposite to the side to which the inner surface protection film and the outer surface protection film are attached of the optical laminate with the surface protection film to obtain a secondary laminate with the surface protection film;
Peeling the outer surface protection film from the secondary laminate with the surface protection film,
inspecting the secondary laminate with the surface protection film for defects; and peeling the inner surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate;
In this order.
The obtained secondary laminate is subjected to an assembly process and assembled with other members to form a display system. Hereinafter, an example of a method for manufacturing a display system using an optical laminate with a surface protection film having the optical laminate 100a illustrated in FIG. 3 will be described with reference to FIGS. 6A to 6E.
 図6Aに示されるように、検査対象の表面保護フィルム付光学積層体200は、光学積層体100aを有し、光学積層体100aの第一保護部材41側表面に内側表面保護フィルム110および外側表面保護フィルム120が外方に向かってこの順に貼着されている。表面保護フィルム付光学積層体に対して行われる欠点検査としては、目視による欠点検査、公知の自動欠点検査装置を用いた自動光学検査(AOI)が挙げられる。欠点検査は、透過式であってもよく、反射式であってもよい。1つの実施形態において、欠点検査は反射式である。この場合、例えば、光源から検査光を表面保護フィルム付光学積層体200の外側表面保護フィルム120側表面に対して照射し、その反射光像をラインセンサー、2次元カメラ等の撮像装置Cによって取得し、取得された画像データに基づいて、欠点検出を行う。別の実施形態において、欠点検査は透過式である。この場合、例えば、光源から検査光を表面保護フィルム付光学積層体200のはく離ライナー61側表面に対して照射し、その透過光像を撮像装置Cによって取得し、取得された画像データに基づいて、欠点検出を行う。必要により、反射式の検査と透過式の検査とを組み合わせてもよい。検査は、クリーンルーム内で行われることが好ましい。検出される欠点としては、キズ、異物、気泡、汚れ等が挙げられる。欠点のサイズは、例えば45μm~500μmであり得る。なお、検査対象の表面保護フィルム付光学積層体の外側表面保護フィルムおよび/またははく離ライナーの外側には、検査に供されるまでの間、別の表面保護フィルムを設けておいてもよい。検査直前に別の表面保護フィルムを剥離することにより、外側表面保護フィルムおよび/またははく離ライナー表面にキズ、異物、汚れ等が付着することを防止することができ、結果として、これらが光学積層体の欠点として誤検出されることを防止することができる。このような別の表面保護フィルムとしてはそれぞれ、外側表面保護フィルムまたははく離ライナーに対する粘着力が、外側表面保護フィルムまたははく離ライナーの被着体に対する粘着力よりも弱いものが好ましく用いられる。 As shown in FIG. 6A, the optical laminate 200 with a surface protection film to be inspected has an optical laminate 100a, and an inner surface protection film 110 and an outer surface on the surface of the optical laminate 100a on the first protection member 41 side. The protective film 120 is pasted outward in this order. Defect inspection performed on the optical laminate with a surface protection film includes visual defect inspection and automatic optical inspection (AOI) using a known automatic defect inspection device. The defect inspection may be of a transmission type or a reflection type. In one embodiment, the defect inspection is reflective. In this case, for example, an inspection light is irradiated from a light source onto the surface of the outer surface protection film 120 side of the optical laminate with a surface protection film 200, and the reflected light image is acquired by an imaging device C such as a line sensor or a two-dimensional camera. Then, defect detection is performed based on the acquired image data. In another embodiment, the defect inspection is transparent. In this case, for example, an inspection light is irradiated from a light source to the release liner 61 side surface of the optical laminate 200 with a surface protection film, a transmitted light image is acquired by the imaging device C, and based on the acquired image data, , performs defect detection. If necessary, the reflection type inspection and the transmission type inspection may be combined. Preferably, the inspection is performed in a clean room. Detected defects include scratches, foreign objects, bubbles, dirt, and the like. The size of the defect can be, for example, between 45 μm and 500 μm. Note that another surface protection film may be provided on the outside of the outer surface protection film and/or release liner of the optical laminate with a surface protection film to be inspected until it is subjected to inspection. By peeling off another surface protection film immediately before inspection, it is possible to prevent scratches, foreign matter, dirt, etc. from adhering to the outer surface protection film and/or release liner surface, and as a result, these can be removed from the optical laminate. It is possible to prevent erroneous detection, which is a drawback. As such another surface protection film, one is preferably used that has a lower adhesion force to the outer surface protection film or release liner than the adhesion force of the outer surface protection film or release liner to the adherend.
 次いで、上記欠点検査で良品と判断された表面保護フィルム付光学積層体の内側表面保護フィルムおよび外側表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得る。具体的には、図6Bに示すように、表面保護フィルム付光学積層体200から、はく離ライナー61を剥離し、露出した粘着剤層31によって別の部材300に貼着して、表面保護フィルム付二次積層体400aを得る。1つの実施形態において、別の部材300は有機ELパネル、液晶セル等の光学部材であり、表面保護フィルム付光学積層体は、その視認側(前方)表面に貼り合わせられる。 Next, another member is attached to the side opposite to the side to which the inner surface protection film and the outer surface protection film of the optical laminate with the surface protection film that was determined to be good in the defect inspection described above is applied to protect the surface. A secondary laminate with film is obtained. Specifically, as shown in FIG. 6B, the release liner 61 is peeled off from the optical laminate 200 with the surface protection film attached, and the release liner 61 is attached to another member 300 using the exposed adhesive layer 31. A secondary laminate 400a is obtained. In one embodiment, the other member 300 is an optical member such as an organic EL panel or a liquid crystal cell, and the optical laminate with a surface protection film is bonded to the viewing side (front) surface thereof.
 別の部材300と貼着する際、表面保護フィルム付光学積層体200は、別の部材300の形状に対応する形状を有し得る。例えば、表面保護フィルム付光学積層体200は、長尺状に形成され、上記欠点検査後に切断、打抜き、切削等により、所望の形状に加工され得る。あるいは、表面保護フィルム付光学積層体200は、所望の形状に加工された後に欠点検査に供され得る。 When attached to another member 300, the optical laminate 200 with a surface protection film may have a shape corresponding to the shape of the other member 300. For example, the optical laminate 200 with a surface protection film is formed into a long shape, and after the defect inspection described above, it can be processed into a desired shape by cutting, punching, machining, or the like. Alternatively, the optical laminate 200 with a surface protection film may be subjected to defect inspection after being processed into a desired shape.
 次いで、図6Cおよび6Dに示すように、表面保護フィルム付二次積層体400aから外側表面保護フィルム120を剥離して、得られた表面保護フィルム付二次積層体400bを欠点検査する。表面保護フィルム付二次積層体に対して行われる欠点検査としては、表面保護フィルム付光学積層体200に対して行われる欠点検査と同様の検査が例示できる。 Next, as shown in FIGS. 6C and 6D, the outer surface protection film 120 is peeled off from the surface protection film-attached secondary laminate 400a, and the obtained surface protection film-attached secondary laminate 400b is inspected for defects. An example of the defect inspection performed on the secondary laminate with a surface protection film is the same inspection as the defect inspection performed on the optical laminate 200 with a surface protection film.
 次いで、図6Eに示すように、上記欠点検査で良品と判断された表面保護フィルム付二次積層体400bから内側表面保護フィルム110を剥離して、二次積層体400cを得る。 Next, as shown in FIG. 6E, the inner surface protection film 110 is peeled off from the surface protection film-attached secondary laminate 400b, which was determined to be good in the defect inspection, to obtain a secondary laminate 400c.
 二次積層体400cは、アセンブリ工程に供され、他の部材(例えば、図4または図5に示す光学積層体等)と共に組み立てられて表示システムを構成する。 The secondary laminate 400c is subjected to an assembly process and assembled with other members (for example, the optical laminate shown in FIG. 4 or 5) to configure a display system.
 上記製造方法によれば、表面を保護した状態で光学積層体に対して複数回の欠点検査を行うことができ、かつ、表示システムに組み込む直前まで、その表面にキズ、汚れ等が付着することを好適に防止できる。このような効果は、光学積層体の製造、光学積層体を用いた中間製品(例えば、表示素子)の製造、中間製品を用いた表示システムの製造(アセンブリ)等の工程が別々の場所で行われる場合に特に有利である。1つの実施形態において、光学積層体の製造業者によって製造された光学積層体は、内側および外側表面保護フィルムが貼着された表面保護フィルム付光学積層体の状態で欠点検査され(例えば、図6A);欠点検査において良品と判断されたものが第1の半製品として表示素子の製造業者に出荷され;表示素子の製造業者によって、表面保護フィルム付光学積層体が、液晶セル、有機ELパネル等の光学部材に貼着されて、表示素子(液晶表示素子、有機EL表示素子等)が製造され(例えば、図6B);ここから、外側表面保護フィルムを剥離して、内側表面保護フィルムで保護された状態の表示素子の欠点検査が行われ(例えば、図6CおよびD);欠点検査で良品と判定された表示素子が内側表面保護フィルムで保護された状態で第2の半製品として表示システムの製造業者に出荷され;表示システムの製造業者によって、内側表面保護フィルムが剥離されて使用状態となった表示素子は、他の部材とのアセンブリに供され得る(例えば、図6E)。本実施形態の製造方法によれば、第1の半製品である光学積層体の欠点検査と、欠点検査で良品と判断された第1の半製品を出荷する際の欠点(キズ、異物、汚れ等)の防止と、第2の半製品である表示素子を製造する際の欠点検査と、第2の半製品を出荷する際の欠点(キズ、異物、汚れ等)の防止とを好適に行うことができ、結果として、最終製品の効率的な製造に寄与し得る。 According to the above manufacturing method, it is possible to perform multiple defect inspections on the optical laminate while the surface is protected, and there is no need for scratches, dirt, etc. to adhere to the surface until just before it is incorporated into a display system. can be suitably prevented. This effect occurs when processes such as manufacturing the optical laminate, manufacturing intermediate products (e.g. display elements) using the optical laminate, and manufacturing (assembly) the display system using the intermediate products are performed at different locations. This is particularly advantageous when In one embodiment, an optical laminate manufactured by an optical laminate manufacturer is inspected for defects in the form of an optical laminate with a surface protection film to which inner and outer surface protection films have been applied (e.g., FIG. 6A ); Items judged to be good in the defect inspection are shipped as the first semi-finished product to a display element manufacturer; The display element manufacturer then converts the optical laminate with a surface protection film into liquid crystal cells, organic EL panels, etc. A display element (liquid crystal display element, organic EL display element, etc.) is produced (for example, Fig. 6B); from here, the outer surface protection film is peeled off and the inner surface protection film is protected. A defect inspection is performed on the display element in the state shown in FIG. The display element, which is ready for use after the inner surface protective film is peeled off by the display system manufacturer, can be assembled with other components (eg, FIG. 6E). According to the manufacturing method of this embodiment, defects (scratches, foreign objects, dirt, etc.), defect inspection when manufacturing a display element that is a second semi-finished product, and prevention of defects (scratches, foreign objects, dirt, etc.) when shipping the second semi-finished product. As a result, it can contribute to efficient manufacturing of final products.
 表示システムの製造方法は図示例に限定されない。例えば、外側表面保護フィルムの剥離は、はく離ライナーの剥離および別の部材への貼着の前であってもよく、また、2回目の欠点検査は、別の部材への貼着前に行われてもよい。また例えば、内側表面保護フィルムは、表示システムの所定の位置に光学積層体を配置した後に剥離してもよい。 The method of manufacturing the display system is not limited to the illustrated example. For example, the outer surface protective film may be peeled off before the release liner is peeled off and attached to another component, and a second defect inspection may be performed before attachment to another component. It's okay. For example, the inner surface protection film may be peeled off after the optical laminate is placed at a predetermined position of the display system.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みは下記の測定方法により測定した値である。
<厚み>
 厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
<面内位相差または厚み方向の位相差>
 測定対象の部材の幅方向中央部を、一辺が当該部材の幅方向と平行となるようにして幅50mm、長さ50mmの正方形状に切り出して試料を作製した。王子計測機器社製「KOBRA-WPR」を用いて、試料の面内位相差および厚み方向位相差を測定した。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Note that the thickness is a value measured by the following measuring method.
<Thickness>
The thickness was measured using a digital micrometer (manufactured by Anritsu Corporation, product name "KC-351C").
<In-plane phase difference or thickness direction phase difference>
A sample was prepared by cutting out the central part in the width direction of the member to be measured into a square shape with a width of 50 mm and a length of 50 mm, with one side parallel to the width direction of the member. The in-plane retardation and thickness direction retardation of the sample were measured using "KOBRA-WPR" manufactured by Oji Scientific Instruments.
[製造例1A:表面保護フィルムAの作製]
<アクリルポリマーA>
 温度計、攪拌機、冷却器および窒素ガス導入管を備える反応容器内に、モノマー成分として、2-エチルヘキシルアクリレート(2EHA)100質量部およびヘキシルアクリレート4質量部、ならびに重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を酢酸エチル150質量部とともに仕込み、23℃で緩やかに攪拌しながら窒素ガスを導入して窒素置換を行った。その後、液温を65℃付近に保って6時間重合反応を行い、アクリルポリマーAの溶液(濃度40質量%)を調製した。アクリルポリマーAの重量平均分子量は53万であった。
[Production Example 1A: Production of surface protection film A]
<Acrylic polymer A>
In a reaction vessel equipped with a thermometer, a stirrer, a cooler, and a nitrogen gas introduction tube, 100 parts by mass of 2-ethylhexyl acrylate (2EHA) and 4 parts by mass of hexyl acrylate were added as monomer components, and 2,2'- as a polymerization initiator. 0.2 parts by mass of azobisisobutyronitrile (AIBN) was charged together with 150 parts by mass of ethyl acetate, and while stirring gently at 23°C, nitrogen gas was introduced to perform nitrogen substitution. Thereafter, a polymerization reaction was carried out for 6 hours while maintaining the liquid temperature at around 65° C. to prepare a solution of acrylic polymer A (concentration: 40% by mass). The weight average molecular weight of acrylic polymer A was 530,000.
<粘着剤組成物A>
 アクリルポリマーAの溶液に酢酸エチルを加えて濃度20質量%に希釈した。この溶液500質量部(固形分100質量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(東ソー社製「コロネートHX」)5質量部、および界面活性剤(第一工業製薬社製「アクアロンHS-10」)0.3質量部を加えて攪拌し、粘着剤組成物Aを調製した。
<Adhesive composition A>
Ethyl acetate was added to the solution of acrylic polymer A to dilute it to a concentration of 20% by mass. To 500 parts by mass of this solution (solid content: 100 parts by mass), 5 parts by mass of an isocyanurate of hexamethylene diisocyanate ("Coronate HX" manufactured by Tosoh Corporation) as a crosslinking agent, and a surfactant ("Aqualon" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) HS-10'') was added and stirred to prepare adhesive composition A.
<表面保護フィルムA>
 基材(PETフィルム、KOLON社製「CE901-38」、厚み38μm)の表面(コロナ処理面)に、粘着剤組成物Aを塗布し、その後乾燥させて粘着剤層(厚み10μm)を形成した。次いで、粘着剤層の基材と反対側の表面に、はく離ライナー(東洋紡社製、品番TG704)を貼り付けた。
<Surface protection film A>
Adhesive composition A was applied to the surface (corona treated surface) of a base material (PET film, "CE901-38" manufactured by KOLON, thickness 38 μm), and then dried to form an adhesive layer (thickness 10 μm). . Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material.
[製造例1B:表面保護フィルムBの作製]
<粘着剤組成物B>
 製造例1Aで得たアクリルポリマーAの溶液に酢酸エチルを加えて濃度20質量%に希釈した。この溶液500質量部(固形分100質量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(東ソー社製「コロネートHX」)4質量部、および界面活性剤(第一工業製薬社製「アクアロンHS-10」)0.2質量部を加えて攪拌し、粘着剤組成物Bを調製した。
[Production Example 1B: Production of surface protection film B]
<Adhesive composition B>
Ethyl acetate was added to the solution of acrylic polymer A obtained in Production Example 1A to dilute the solution to a concentration of 20% by mass. To 500 parts by mass of this solution (solid content 100 parts by mass), 4 parts by mass of an isocyanurate of hexamethylene diisocyanate ("Coronate HX" manufactured by Tosoh Corporation) as a crosslinking agent, and a surfactant ("Aqualon" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) HS-10'') was added and stirred to prepare adhesive composition B.
<表面保護フィルムB>
 基材(PETフィルム、三菱ケミカル社製、品番T100C38、厚み38μm)の表面(コロナ処理面)に、粘着剤組成物Bを塗布し、その後乾燥させて粘着剤層(厚み20μm)を形成した。次いで、粘着剤層の基材と反対側の表面に、はく離ライナー(東洋紡社製、品番TG704)を貼り付けた。
<Surface protection film B>
Adhesive composition B was applied to the surface (corona-treated surface) of a base material (PET film, manufactured by Mitsubishi Chemical Corporation, product number T100C38, thickness 38 μm), and then dried to form an adhesive layer (thickness 20 μm). Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material.
[製造例1C:表面保護フィルムCの作製]
<アクリルポリマーC>
 温度計、攪拌機、冷却器および窒素ガス導入管を備える反応容器内に、モノマー成分として、2-エチルヘキシルアクリレート(2EHA)96.2質量部およびヒドロキシエチルアクリレート(HEA)3.8質量部、ならびに重合開始剤として2,2’-アゾビスイソブチロニトリル(AIBN)0.2質量部を酢酸エチル150質量部とともに仕込み、23℃で緩やかに攪拌しながら窒素ガスを導入して窒素置換を行った。その後、液温を65℃付近に保って6時間重合反応を行い、アクリルポリマーCの溶液(濃度40質量%)を調製した。アクリルポリマーCの重量平均分子量は54万であった。
[Production Example 1C: Production of surface protection film C]
<Acrylic polymer C>
In a reaction vessel equipped with a thermometer, a stirrer, a cooler, and a nitrogen gas introduction tube, 96.2 parts by mass of 2-ethylhexyl acrylate (2EHA) and 3.8 parts by mass of hydroxyethyl acrylate (HEA) were placed as monomer components, and the polymerization As an initiator, 0.2 parts by mass of 2,2'-azobisisobutyronitrile (AIBN) was charged together with 150 parts by mass of ethyl acetate, and nitrogen gas was introduced while stirring gently at 23°C to perform nitrogen substitution. . Thereafter, a polymerization reaction was carried out for 6 hours while maintaining the liquid temperature at around 65° C. to prepare a solution of acrylic polymer C (concentration: 40% by mass). The weight average molecular weight of acrylic polymer C was 540,000.
<粘着剤組成物C>
 アクリルポリマーCの溶液に酢酸エチルを加えて濃度20質量%に希釈した。この溶液500質量部(固形分100質量部)に、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(東ソー社製「コロネートHX」)4質量部、および架橋触媒としてジラウリン酸ジブチルスズ(1質量%酢酸エチル溶液)3質量部(固形分0.03質量部)を加えて攪拌し、粘着剤組成物Cを調製した。
<Adhesive composition C>
Ethyl acetate was added to the solution of acrylic polymer C to dilute it to a concentration of 20% by mass. To 500 parts by mass of this solution (solid content: 100 parts by mass), 4 parts by mass of an isocyanurate of hexamethylene diisocyanate ("Coronate HX" manufactured by Tosoh Corporation) as a crosslinking agent, and dibutyltin dilaurate (1% by mass ethyl acetate) as a crosslinking catalyst. Solution) 3 parts by mass (solid content: 0.03 parts by mass) were added and stirred to prepare adhesive composition C.
<表面保護フィルムC>
 基材としてPETフィルム(三菱ケミカル社製「品番T100C38」、厚み38μm)を用い、そのコロナ処理面に粘着剤組成物Cを塗布し、その後乾燥させて粘着剤層(厚み5μm)を形成した。次いで、粘着剤層の基材と反対側の表面に、はく離ライナー(東洋紡社製、品番TG704)を貼り付けた。これにより表面保護フィルムCを得た。
<Surface protection film C>
A PET film (product number T100C38, manufactured by Mitsubishi Chemical Corporation, thickness 38 μm) was used as a base material, and adhesive composition C was applied to the corona-treated surface of the film, followed by drying to form an adhesive layer (thickness 5 μm). Next, a release liner (manufactured by Toyobo Co., Ltd., product number TG704) was attached to the surface of the adhesive layer opposite to the base material. As a result, a surface protection film C was obtained.
[製造例1D:表面保護フィルムDの作製]
 基材としてPETフィルム(KOLON社製「CE905-38」、厚み38μm)を用い、その片面に粘着剤組成物Cを塗布して厚み15μmの粘着剤層を形成したこと以外は製造例1Cと同様にして表面保護フィルムDを得た。
[Production Example 1D: Production of surface protection film D]
Same as Production Example 1C except that a PET film ("CE905-38" manufactured by KOLON, thickness 38 μm) was used as the base material, and adhesive composition C was applied to one side of the film to form an adhesive layer with a thickness of 15 μm. A surface protection film D was obtained.
 上記表面保護フィルムA~Dに関して、下記(1)および(2)の評価を行った。基材および粘着剤層の厚みと共に、結果を表1に示す。
(1)全光線透過率およびヘイズ
 各表面保護フィルムに関して、はく離ライナーを粘着剤層から剥離して、ヘイズメーター(スガ試験機株式会社製「HZ―V3」)により基材側から光を照射し、JIS-K-7136に準拠して、ヘイズ(%)=(Td/Tt)×100(Td:拡散透過率、Tt:全光線透過率)によりヘイズを算出した。全光線透過率は、JIS-K-7316に準拠して測定した。
(2)剥離力
 表面保護フィルムを幅50mm、長さ100mmのサイズに切り出し、はく離ライナーを粘着剤層から剥離して、被着体に、圧力0.25MPa、送り速度0.3m/分でロール圧着した。この試料を、温度23℃、相対湿度50%の環境に30分間静置した後、同環境下で、剥離角度180°、引張速度300mm/分でピール試験を行い、180°剥離力を測定した。なお、表面保護フィルムA~Cに関しては、表面保護フィルムDを被着体として用い、表面保護フィルムDの基材側表面に対する剥離力を測定した。表面保護フィルムDに関しては、後述の実施例1で作成した光学積層体Aを被着体として用い、その保護部材A側表面に対する剥離力を測定した。測定はN=10で行い、その平均値を剥離力とした。
The following evaluations (1) and (2) were performed on the above surface protection films A to D. The results are shown in Table 1 along with the thicknesses of the base material and adhesive layer.
(1) Total light transmittance and haze For each surface protection film, the release liner was peeled off from the adhesive layer, and light was irradiated from the substrate side using a haze meter (“HZ-V3” manufactured by Suga Test Instruments Co., Ltd.). According to JIS-K-7136, haze was calculated using haze (%) = (Td/Tt) x 100 (Td: diffuse transmittance, Tt: total light transmittance). Total light transmittance was measured in accordance with JIS-K-7316.
(2) Peeling force Cut the surface protection film into a size of 50 mm in width and 100 mm in length, peel off the release liner from the adhesive layer, and roll it onto the adherend at a pressure of 0.25 MPa and a feed speed of 0.3 m/min. It was crimped. This sample was allowed to stand for 30 minutes in an environment with a temperature of 23°C and a relative humidity of 50%, and then a peel test was conducted under the same environment at a peel angle of 180° and a tensile speed of 300 mm/min, and the 180° peel force was measured. . Regarding surface protection films A to C, surface protection film D was used as an adherend, and the peeling force of surface protection film D against the substrate side surface was measured. Regarding the surface protection film D, the optical laminate A prepared in Example 1 described below was used as an adherend, and the peeling force against the surface of the protection member A was measured. The measurement was performed with N=10, and the average value was taken as the peeling force.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[製造例2:偏光フィルムAの作製]
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ社製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの吸収型偏光膜を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる吸収型偏光膜の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて吸収型偏光膜を得た。
 得られた吸収型偏光膜の一方の面にHC付トリアセチルセルロース(TAC)系樹脂フィルム(TAC厚み:25μm、HC厚み:7μm)を、他方の面にシクロオレフィン系樹脂フィルム(厚み:13μm)を、それぞれ保護層として貼り合わせた。具体的には、硬化型接着剤の総厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をTACフィルム側から照射して接着剤を硬化させた。
 これにより、[TACフィルム(保護層)/吸収型偏光膜/COPフィルム(保護層)]の構成を有する偏光フィルムAを得た。
[Production Example 2: Production of polarizing film A]
A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray Co., Ltd., product name "PE3000") with a thickness of 30 μm was uniaxially stretched in the longitudinal direction so as to be 5.9 times the length in the longitudinal direction using a roll stretching machine. At the same time, swelling, dyeing, crosslinking, and washing treatments were performed, and finally a drying treatment was performed to prepare an absorption type polarizing film with a thickness of 12 μm.
Specifically, in the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times. The boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second stage of crosslinking treatment, the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Further, the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C. The potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight. Finally, the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
A triacetyl cellulose (TAC) resin film with HC (TAC thickness: 25 μm, HC thickness: 7 μm) was placed on one side of the obtained absorption type polarizing film, and a cycloolefin resin film (thickness: 13 μm) was placed on the other side. were laminated together as a protective layer. Specifically, the curable adhesive was coated to a total thickness of about 1 μm, and then bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive.
Thereby, a polarizing film A having the structure of [TAC film (protective layer)/absorption type polarizing film/COP film (protective layer)] was obtained.
[製造例3:λ/4部材Aの作製]
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
[Production Example 3: Production of λ/4 member A]
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC), and 1.19×10 −2 parts by mass (6.78×10 −2 of calcium acetate monohydrate as a catalyst ). 5 mol) was prepared. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度143℃、延伸倍率2.8倍で延伸した。これにより、厚み47μmの延伸フィルム(λ/4部材A)を得た。λ/4部材AのRe(590)は143nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。 After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 135 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder. The obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times. Thereby, a stretched film (λ/4 member A) having a thickness of 47 μm was obtained. Re(590) of λ/4 member A was 143 nm, Re(450)/Re(550) was 0.86, and the Nz coefficient was 1.12.
[製造例4:ポジティブCプレートAの作製]
 下記化学式(1)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、垂直配向処理を施したPET基材に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、厚みが4μm、Rth(550)が-100nmのポジティブCプレートAを基材上に形成した。
Figure JPOXMLDOC01-appb-C000002
[Production Example 4: Production of positive C plate A]
20 parts by weight of a side chain type liquid crystal polymer represented by the following chemical formula (1) (numbers 65 and 35 in the formula indicate mol% of monomer units, and are conveniently expressed as a block polymer: weight average molecular weight 5000), 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF, trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals, trade name Irgacure 907) were dissolved in 200 parts by weight of cyclopentanone. A liquid crystal coating solution was prepared. Then, the coating solution was applied to a PET substrate subjected to vertical alignment treatment using a bar coater, and then heated and dried at 80° C. for 4 minutes to align the liquid crystal. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a positive C plate A having a thickness of 4 μm and an Rth (550) of −100 nm was formed on the base material.
Figure JPOXMLDOC01-appb-C000002
[製造例5:保護部材Aの作製]
 ラクトン環構造を有するアクリルフィルム(厚み40μm)に、下記に示すハードコート層形成用材料を塗布し、塗布層を乾燥させて厚み0.5μmのハードコート層を形成した。次いで、ハードコート層表面に下記に示す反射防止層形成用塗工液を塗布して80℃で1分間加熱し、加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚み0.1μmの反射防止層が形成した。これにより、[アクリルフィルム/ハードコート層/反射防止層]の構成を有する保護部材Aを得た。
[Manufacture example 5: Production of protective member A]
A hard coat layer forming material shown below was applied to an acrylic film (40 μm thick) having a lactone ring structure, and the applied layer was dried to form a 0.5 μm thick hard coat layer. Next, the coating solution for forming an antireflection layer shown below was applied to the surface of the hard coat layer, heated at 80°C for 1 minute, and the heated coating layer was exposed to ultraviolet rays at a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp. The coating layer was cured by irradiation to form an antireflection layer with a thickness of 0.1 μm. As a result, a protective member A having a structure of [acrylic film/hard coat layer/antireflection layer] was obtained.
(ハードコート層形成用材料)
 アクリル系樹脂原料(大日本インキ社製、商品名:GRANDIC PC1071)に、レベリング剤0.5重量%を加え、さらに、固形分濃度が50重量%となるように酢酸エチルで希釈することにより、ハードコート層形成用材料を調製した。なお、レベリング剤は、ジメチルシロキサン:ヒドロキシプロピルシロキサン:6-イソシアネートヘキシルイソシアヌル酸:脂肪族ポリエステル=6.3:1.0:2.2:1.0のモル比で共重合させた共重合物である。
(Material for forming hard coat layer)
By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared. The leveling agent is a copolymer copolymerized at a molar ratio of dimethylsiloxane: hydroxypropylsiloxane: 6-isocyanatehexylisocyanuric acid: aliphatic polyester = 6.3:1.0:2.2:1.0. It is.
(反射防止層形成用塗工液)
 ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)150重量部、中実ナノシリカ粒子(日産化学工業株式会社製、商品名「MEK-2140Z-AC」、固形分30重量%、重量平均粒子径10nm)50重量部、フッ素元素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、希釈溶媒としてTBA(ターシャリーブチルアルコール)、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を60:25:15重量比で混合した混合溶媒を添加して全体の固形分が4重量%となるようにし、攪拌して反射防止層形成用塗工液を調製した。
(Coating liquid for forming antireflection layer)
100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 150 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% 50 parts by weight (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine element-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator ( 3 parts by weight of "OMNIRAD907" (trade name, manufactured by BASF, solid content: 100% by weight) were mixed. To the mixture, a mixed solvent of TBA (tertiary butyl alcohol), MIBK (methyl isobutyl ketone) and PMA (propylene glycol monomethyl ether acetate) mixed in a weight ratio of 60:25:15 was added as a diluting solvent to dissolve the entire solid. The coating solution for forming an antireflection layer was prepared by stirring the mixture so that the amount thereof was 4% by weight.
[製造例6:粘着剤層Aの作製]
 撹拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート80.3部、フェノキシエチルアクリレート16部、N-ビニル-2-ピロリドン(NVP)3部、アクリル酸0.3部、4-ヒドロキシブチルアクリレート0.4部を含有するモノマー混合物を仕込んだ。さらに、上記モノマー混合物(固形分)100部に対して、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1部を酢酸エチル100部と共に仕込み、緩やかに撹拌しながら窒素ガスを導入して窒素置換した。次いで、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、アクリル系ポリマー溶液を調製した。アクリル系ポリマーの重量平均分子量は150万であった。得られたアクリル系ポリマー溶液の固形分100部に対して、架橋剤としてベンゾイルパーオキサイド(BPO:日本油脂社製のナイパーBMT)を0.3部配合し、アクリル系粘着剤溶液を調製した。
 得られた粘着剤組成物を、はく離ライナー(東レ社製、セラピール)の剥離処理層面に塗布し、155℃で3分間乾燥させて、厚み20μmの粘着剤層を形成した。
[Production Example 6: Preparation of adhesive layer A]
In a four-neck flask equipped with a stirring blade, thermometer, nitrogen gas inlet tube, and condenser, add 80.3 parts of butyl acrylate, 16 parts of phenoxyethyl acrylate, 3 parts of N-vinyl-2-pyrrolidone (NVP), and acrylic acid. A monomer mixture containing 0.3 parts and 0.4 parts of 4-hydroxybutyl acrylate was charged. Further, to 100 parts of the above monomer mixture (solid content), 0.1 part of 2,2'-azobisisobutyronitrile as a polymerization initiator was charged together with 100 parts of ethyl acetate, and nitrogen gas was added while stirring gently. The atmosphere was replaced with nitrogen. Next, a polymerization reaction was carried out for 8 hours while maintaining the liquid temperature in the flask at around 55° C. to prepare an acrylic polymer solution. The weight average molecular weight of the acrylic polymer was 1.5 million. An acrylic adhesive solution was prepared by adding 0.3 parts of benzoyl peroxide (BPO: Niper BMT manufactured by NOF Corporation) as a crosslinking agent to 100 parts of the solid content of the obtained acrylic polymer solution.
The obtained adhesive composition was applied to the release-treated layer surface of a release liner (manufactured by Toray Industries, Inc., Therapel) and dried at 155° C. for 3 minutes to form an adhesive layer with a thickness of 20 μm.
[実施例1]
 上記偏光フィルムAのCOP保護層側表面に、上記粘着剤層Aをはく離ライナーとともに貼り合せた。
 一方、λ/4部材Aに紫外線硬化型接着剤(硬化後の厚み1μm)を介してポジティブCプレートAを貼り合わせ、次いで基材を剥離除去して、位相差部材を得た。
 得られた位相差部材を、偏光フィルムAのTACフィルム側表面に、アクリル系粘着剤層(厚み15μm)を介して貼り合わせた。このとき、位相差部材のλ/4部材A側表面が偏光フィルムA側となるように、かつ、吸収型偏光膜の吸収軸とλ/4部材Aの遅相軸とのなす角度が45°となるように貼り合わせた。
 次いで、位相差部材の表面にアクリル系粘着剤層(厚み12μm)を介して上記保護部材Aを貼り合わせた。このとき、保護部材Aのアクリルフィルム側表面が位相差部材側になるように(換言すると、反射防止層が最表面となるように)貼り合わせた。以上のようにして、[はく離ライナー/粘着剤層A/偏光フィルムA/λ/4部材A/ポジティブCプレートA/保護部材A]の構成を有する光学積層体Aを得た。
 次いで、上記表面保護フィルムDからはく離ライナーを剥離し、内側表面保護フィルムとして光学積層体Aの保護部材A側表面(反射防止層表面)に貼り合わせた。次いで、上記表面保護フィルムAからはく離ライナーを剥離し、外側表面保護フィルムとして表面保護フィルムDの基材側表面に貼り合わせた。これにより、[光学積層体A/表面保護フィルムD/表面保護フィルムA]の構成を有する表面保護フィルム付光学積層体を得た。
[Example 1]
The above-mentioned adhesive layer A was attached to the COP protective layer side surface of the above-mentioned polarizing film A together with a release liner.
On the other hand, positive C plate A was bonded to λ/4 member A via an ultraviolet curable adhesive (thickness after curing: 1 μm), and then the base material was peeled off to obtain a retardation member.
The obtained retardation member was bonded to the TAC film side surface of polarizing film A via an acrylic adhesive layer (thickness: 15 μm). At this time, the surface of the retardation member on the λ/4 member A side should be on the polarizing film A side, and the angle between the absorption axis of the absorption type polarizing film and the slow axis of the λ/4 member A should be 45°. I pasted them together so that
Next, the protective member A was bonded to the surface of the retardation member via an acrylic adhesive layer (thickness: 12 μm). At this time, the protective member A was attached so that the surface on the acrylic film side was on the retardation member side (in other words, so that the antireflection layer was on the outermost surface). As described above, an optical laminate A having the configuration of [release liner/adhesive layer A/polarizing film A/λ/4 member A/positive C plate A/protective member A] was obtained.
Next, the release liner was peeled off from the surface protection film D, and it was bonded to the protective member A side surface (antireflection layer surface) of the optical laminate A as an inner surface protection film. Next, the release liner was peeled off from the surface protection film A, and was bonded to the base material side surface of the surface protection film D as an outer surface protection film. Thereby, an optical laminate with a surface protection film having the structure of [Optical laminate A/Surface protection film D/Surface protection film A] was obtained.
[実施例2]
 外側表面保護フィルムとして、表面保護フィルムBを用いたこと以外は実施例1と同様にして、[光学積層体A/表面保護フィルムD/表面保護フィルムB]の構成を有する表面保護フィルム付光学積層体を得た。
[Example 2]
An optical laminate with a surface protection film having the structure of [optical laminate A/surface protection film D/surface protection film B] was prepared in the same manner as in Example 1 except that surface protection film B was used as the outer surface protection film. I got a body.
[比較例1]
 外側表面保護フィルムとして、表面保護フィルムCを用いたこと以外は実施例1と同様にして、[光学積層体A/表面保護フィルムD/表面保護フィルムC]の構成を有する表面保護フィルム付光学積層体を得た。
[Comparative example 1]
An optical laminate with a surface protection film having the structure of [optical laminate A/surface protection film D/surface protection film C] was prepared in the same manner as in Example 1 except that surface protection film C was used as the outer surface protection film. I got a body.
<気泡評価>
 上記実施例および比較例で得られた表面保護フィルム付光学積層体を、371.87mm×236.58mmサイズに切り出して、評価サンプルとして用いた。評価サンプルを自動光学検査装置にセットし、反射式の外観検査を実施して、内側表面保護フィルムと外側表面フィルムとの間に存在する気泡の個数をカウントした。1m当たりの気泡発生数を表2に示す。
<Bubble evaluation>
The optical laminates with surface protection films obtained in the above Examples and Comparative Examples were cut into a size of 371.87 mm x 236.58 mm and used as evaluation samples. The evaluation sample was set in an automatic optical inspection device, and a reflective visual inspection was performed to count the number of air bubbles present between the inner surface protection film and the outer surface film. Table 2 shows the number of bubbles generated per 1 m2.
<剥離安定性評価>
 実施例および比較例で得られた表面保護フィルム付光学積層体を、室温下で、表面保護フィルム側を上にして実験台に載置し180°の剥離角度および300mm/分の剥離速度で、外側表面保護フィルムを剥離し、下記基準で評価した。結果を表2に示す。
  良:外側表面保護フィルムのみ剥離できた
  不良:外側表面保護フィルムおよび内側表面保護フィルムのどちらも剥離した
<Peeling stability evaluation>
The optical laminates with surface protection films obtained in Examples and Comparative Examples were placed on a laboratory bench with the surface protection film side up at room temperature, and peeled at a peeling angle of 180° and a peeling speed of 300 mm/min. The outer surface protective film was peeled off, and evaluation was made according to the following criteria. The results are shown in Table 2.
Good: Only the outer surface protection film was peeled off. Bad: Both the outer and inner surface protection films were peeled off.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示されるとおり、実施例の表面保護フィルム付光学積層体は、内側表面保護フィルムと外側表面保護フィルムとの間における気泡の発生が抑制されており、よって、欠点検査に供した場合に、気泡を欠点として検出する誤検出が防止されることがわかる。また、このような構成を有する表面保護フィルム付光学積層体は、表面保護フィルムが貼着された状態で複数回の欠点検査をすることができ、最終的なアセンブリに供するまで光学積層体の表面を好適に保護することができる。さらに、実施例の表面保護フィルム付光学積層体は、剥離安定性にも優れている。 As shown in Table 2, the optical laminate with a surface protection film of the example suppresses the generation of air bubbles between the inner surface protection film and the outer surface protection film, and therefore, when subjected to defect inspection. , it can be seen that erroneous detection of air bubbles as a defect is prevented. In addition, an optical laminate with a surface protection film having such a structure can be inspected for defects multiple times with the surface protection film attached, and the surface of the optical laminate can be inspected for defects until it is used for final assembly. can be suitably protected. Furthermore, the optical laminate with a surface protection film of the example has excellent peeling stability.
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
 本発明の実施形態に係る保護フィルム付光学積層体は、例えば、VRゴーグル等のディスプレイ付きゴーグルの製造に用いられ得る。 The optical laminate with a protective film according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.
  2   表示システム
  4   レンズ部
 10   偏光部材
 12   表示素子
 14   反射型偏光部材
 16   第一レンズ部
 18   ハーフミラー
 20   第一位相差部材
 22   第二位相差部材
 24   第二レンズ部
100   光学積層体
110   第一表面保護フィルム
120   第二表面保護フィルム
200   表面保護フィルム付光学積層体

 
2 Display system 4 Lens section 10 Polarizing member 12 Display element 14 Reflective polarizing member 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section 100 Optical laminate 110 First surface Protective film 120 Second surface protection film 200 Optical laminate with surface protection film

Claims (9)

  1.  少なくとも1つの光学部材を含み、ディスプレイ付きゴーグルに用いられる、光学積層体と、
     該光学積層体の一方の表面に外方に向かってこの順に貼着されている、第一表面保護フィルムおよび第二表面保護フィルムと、
     を有する、表面保護フィルム付光学積層体であって、
     該第一表面保護フィルムが、第一基材と、該第一基材に積層されている第一粘着剤層と、を有し、
     該第二表面保護フィルムが、第二基材と、該第二基材に積層されている第二粘着剤層と、を有し、
     該第二粘着剤層の厚みが、8μm以上であり、
     該第一表面保護フィルムの該光学積層体に対する剥離力P1と、該第二表面保護フィルムの該第一表面保護フィルムに対する剥離力P2とが、P2/P1≦0.8の関係を満たす、表面保護フィルム付光学積層体。
    An optical laminate including at least one optical member and used for goggles with a display;
    A first surface protection film and a second surface protection film, which are attached in this order outward to one surface of the optical laminate;
    An optical laminate with a surface protection film, comprising:
    The first surface protection film has a first base material and a first adhesive layer laminated on the first base material,
    The second surface protection film has a second base material and a second adhesive layer laminated on the second base material,
    The thickness of the second adhesive layer is 8 μm or more,
    A surface in which a peeling force P1 of the first surface protection film to the optical laminate and a peeling force P2 of the second surface protection film to the first surface protection film satisfy the relationship P2/P1≦0.8. Optical laminate with protective film.
  2.  前記第二表面保護フィルムの前記第一表面保護フィルムに対する剥離力P2が、0.5N/50mm以下である、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein a peeling force P2 of the second surface protection film with respect to the first surface protection film is 0.5 N/50 mm or less.
  3.  前記第一表面保護フィルムおよび前記第二表面保護フィルムの全光線透過率がそれぞれ、85%以上である、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein the first surface protection film and the second surface protection film each have a total light transmittance of 85% or more.
  4.  前記第一表面保護フィルムの全光線透過率L1と前記第二表面保護フィルムの全光線透過率L2との比(L2/L1)が、0.8~1.2である、請求項1に記載の表面保護フィルム付光学積層体。 According to claim 1, the ratio (L2/L1) of the total light transmittance L1 of the first surface protection film to the total light transmittance L2 of the second surface protection film is 0.8 to 1.2. Optical laminate with surface protection film.
  5.  前記光学積層体が、
    (1)吸収型偏光部材と、第一位相差部材と、保護部材とを、前記第一表面保護フィルムに向かってこの順に有するか、
    (2)第二位相差部材と、保護部材とを、前記第一表面保護フィルムに向かってこの順に有するか、または
    (3)反射型偏光部材と、保護部材とを、前記第一表面保護フィルムに向かってこの順に有する、
     請求項1に記載の表面保護フィルム付光学積層体。
    The optical laminate includes:
    (1) An absorption type polarizing member, a first retardation member, and a protective member are provided in this order toward the first surface protection film, or
    (2) A second retardation member and a protection member are provided in this order toward the first surface protection film, or (3) a reflective polarizing member and a protection member are provided in the first surface protection film. have in this order towards,
    The optical laminate with a surface protection film according to claim 1.
  6.  前記保護部材が、表面処理層を含み、
     該表面処理層に、前記第一表面保護フィルムが貼着されている、請求項5に記載の表面保護フィルム付光学積層体。
    The protective member includes a surface treatment layer,
    The optical laminate with a surface protection film according to claim 5, wherein the first surface protection film is attached to the surface treatment layer.
  7.  前記表面処理層が、反射防止層を含み、
     該反射防止層に、前記第一表面保護フィルムが貼着されている、請求項6に記載の表面保護フィルム付光学積層体。
    the surface treatment layer includes an antireflection layer,
    The optical laminate with a surface protection film according to claim 6, wherein the first surface protection film is attached to the antireflection layer.
  8.  前記光学積層体が、前記第一表面保護フィルムおよび前記第二表面保護フィルムが貼着されている側と反対側の面に粘着剤層を有する、請求項1に記載の表面保護フィルム付光学積層体。 The optical laminate with a surface protection film according to claim 1, wherein the optical laminate has an adhesive layer on a surface opposite to the side to which the first surface protection film and the second surface protection film are attached. body.
  9.  表示システムの製造方法であって、
     請求項1から8のいずれか一項に記載の表面保護フィルム付光学積層体を欠点検査すること、
     前記表面保護フィルム付光学積層体の前記第一表面保護フィルムおよび前記第二表面保護フィルムが貼着された側と反対側に、別の部材を貼着して、表面保護フィルム付二次積層体を得ること、
     該表面保護フィルム付二次積層体から前記第二表面保護フィルムを剥離すること、
     該表面保護フィルム付二次積層体を欠点検査すること、および
     該表面保護フィルム付二次積層体から前記第一表面保護フィルムを剥離して、二次積層体を得ること、
     をこの順に含み、
     該表示システムが、ディスプレイ付きゴーグルである、製造方法。
     

     
    A method of manufacturing a display system, the method comprising:
    Inspecting the optical laminate with a surface protection film according to any one of claims 1 to 8 for defects;
    Another member is attached to the side opposite to the side to which the first surface protection film and the second surface protection film are attached of the optical laminate with a surface protection film, thereby producing a secondary laminate with a surface protection film. to obtain,
    Peeling the second surface protection film from the surface protection film-attached secondary laminate;
    inspecting the secondary laminate with the surface protection film for defects; and peeling off the first surface protection film from the secondary laminate with the surface protection film to obtain a secondary laminate.
    In this order,
    A manufacturing method, wherein the display system is goggles with a display.


PCT/JP2023/008561 2022-03-14 2023-03-07 Optical laminate with surface protection films and method for manufacturing display system WO2023176590A1 (en)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
JP2022039286 2022-03-14
JP2022039285 2022-03-14
JP2022-039285 2022-03-14
JP2022-039286 2022-03-14
JP2022077634A JP2023166827A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077677A JP2023166852A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077677 2022-05-10
JP2022077631A JP2023134316A (en) 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method
JP2022-077658 2022-05-10
JP2022-077633 2022-05-10
JP2022077679A JP2023166854A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077678 2022-05-10
JP2022-077632 2022-05-10
JP2022077678A JP2023166853A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077634 2022-05-10
JP2022-077657 2022-05-10
JP2022-077659 2022-05-10
JP2022-077631 2022-05-10
JP2022077657A JP2023134317A (en) 2022-03-14 2022-05-10 Display system, display method, display body, and display body production method
JP2022077658A JP2023166840A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022077632A JP2023166825A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077676A JP2023166851A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077633A JP2023166826A (en) 2022-05-10 2022-05-10 Display method
JP2022-077676 2022-05-10
JP2022077659A JP2023166841A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022-077679 2022-05-10
JP2022211998 2022-12-28
JP2022-211998 2022-12-28

Publications (1)

Publication Number Publication Date
WO2023176590A1 true WO2023176590A1 (en) 2023-09-21

Family

ID=88023085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008561 WO2023176590A1 (en) 2022-03-14 2023-03-07 Optical laminate with surface protection films and method for manufacturing display system

Country Status (2)

Country Link
TW (1) TW202345432A (en)
WO (1) WO2023176590A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268363A (en) * 2007-04-17 2008-11-06 Riken Technos Corp Protection film for retardation film
JP2015027764A (en) * 2013-07-30 2015-02-12 日東電工株式会社 Surface protective film and optical member
WO2018016288A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Optical film set and production method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008268363A (en) * 2007-04-17 2008-11-06 Riken Technos Corp Protection film for retardation film
JP2015027764A (en) * 2013-07-30 2015-02-12 日東電工株式会社 Surface protective film and optical member
WO2018016288A1 (en) * 2016-07-22 2018-01-25 日東電工株式会社 Optical film set and production method therefor

Also Published As

Publication number Publication date
TW202345432A (en) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5324316B2 (en) Adhesive polarizing plate, image display device, and manufacturing method thereof
CN105319636B (en) Polarizing plate, polarizing plate with adhesive and liquid crystal display device
JP7184549B2 (en) Optical laminate and organic EL display device
KR20170063557A (en) Polarizing plate
JP7300906B2 (en) Optical layered body and image display device provided with the same
WO2019188743A1 (en) Circularly polarizing plate
KR101803675B1 (en) Polarizing plate and image display device
KR20210114945A (en) Head-up display device and manufacturing method thereof
WO2023176631A1 (en) Optical laminate, lens part, and display method
KR102392232B1 (en) Polarizing plate for curved image display panel
WO2023176590A1 (en) Optical laminate with surface protection films and method for manufacturing display system
KR20210002457A (en) Polarizing plate and organic EL display device with retardation layer
KR20210069635A (en) head-up display device
WO2023176589A1 (en) Optical laminate equipped with surface protection film, and production method therefor
KR20180081568A (en) Polarizer and liquid crystal display
EP3699671B1 (en) Head-up display device
CN113748018A (en) Optical laminate and image display device
WO2022244301A1 (en) Circular polarizing plate and image display device using same
WO2023176630A1 (en) Optical laminate, lens unit, and display method
JP2019191570A (en) Polarizing plate with retardation layer and organic EL display device
WO2023176629A1 (en) Optical laminate, lens portion, and display method
WO2023176628A1 (en) Optical laminate and display system
WO2023176624A1 (en) Lens part, display body, and display method
WO2023176632A1 (en) Optical laminate, lens, and display method
WO2023176625A1 (en) Lens part, display body, and display method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770546

Country of ref document: EP

Kind code of ref document: A1