WO2023176628A1 - Optical laminate and display system - Google Patents

Optical laminate and display system Download PDF

Info

Publication number
WO2023176628A1
WO2023176628A1 PCT/JP2023/008813 JP2023008813W WO2023176628A1 WO 2023176628 A1 WO2023176628 A1 WO 2023176628A1 JP 2023008813 W JP2023008813 W JP 2023008813W WO 2023176628 A1 WO2023176628 A1 WO 2023176628A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
optical laminate
adhesive
meth
weight
Prior art date
Application number
PCT/JP2023/008813
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 小野
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022077658A external-priority patent/JP2023166840A/en
Priority claimed from JP2022077676A external-priority patent/JP2023166851A/en
Priority claimed from JP2022077679A external-priority patent/JP2023166854A/en
Priority claimed from JP2022077677A external-priority patent/JP2023166852A/en
Priority claimed from JP2022077633A external-priority patent/JP2023166826A/en
Priority claimed from JP2022077678A external-priority patent/JP2023166853A/en
Priority claimed from JP2022077659A external-priority patent/JP2023166841A/en
Priority claimed from JP2022077657A external-priority patent/JP2023134317A/en
Priority claimed from JP2022077631A external-priority patent/JP2023134316A/en
Priority claimed from JP2022077634A external-priority patent/JP2023166827A/en
Priority claimed from JP2022077632A external-priority patent/JP2023166825A/en
Priority claimed from JP2022212221A external-priority patent/JP2024095149A/en
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176628A1 publication Critical patent/WO2023176628A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/66Transforming electric information into light information
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an optical laminate and a display system using the optical laminate.
  • Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices are rapidly becoming popular.
  • EL electroluminescence
  • optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
  • the main purpose of the present invention is to provide an optical laminate with stable optical properties even under harsh environments.
  • the optical laminate according to the embodiment of the present invention is an optical laminate including at least one optical member and at least one adhesive layer, and the total number of the adhesive layers included in the optical laminate. is N, the adhesive layer of N/2 or more has a linear expansion coefficient ⁇ 1 when the temperature is raised from 20°C to 30°C and a linear expansion coefficient ⁇ 2 when the temperature is lowered from 30°C to 20°C is 0.
  • the adhesive layer A satisfies the relationship: .8 ⁇ 1/ ⁇ 2 ⁇ 1.2.
  • the adhesive layer A may have a thickness of 1 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the optical laminate described in [1] or [2] above may be 100 ⁇ m or more and 300 ⁇ m or less.
  • the optical laminate according to any one of [1] to [3] above includes a first adhesive layer, a polarizing member, a second adhesive layer, a first retardation member, and a third adhesive layer.
  • the adhesive layer A may include an adhesive layer and a protective member in this order, and two or more selected from the first, second, and third adhesive layers may be the adhesive layer A.
  • the first retardation member may include a ⁇ /4 member.
  • the protective member may have a surface treatment layer.
  • the adhesive composition constituting the adhesive layer A is a (meth)acrylic adhesive composition having a weight average molecular weight of 1.5 million or more. May include polymers.
  • a display system according to an embodiment of the present invention includes the optical laminate according to any one of [1] to [7] above.
  • the display system according to [8] above includes a display element having a display surface that emits light representing an image forward through a polarizing member, and a display element that is disposed in front of the display element and that emits light from the display element.
  • a reflective polarizing member that reflects the reflected light
  • a first lens portion disposed on an optical path between the display element and the reflective polarizing member; and a first lens portion between the display element and the first lens portion.
  • a half mirror that is arranged and transmits the light emitted from the display element and reflects the light reflected by the reflective polarizing member toward the reflective polarizing member; and between the display element and the half mirror.
  • a first ⁇ /4 member disposed on the optical path between the half mirror and the reflective polarizing member, and a second ⁇ /4 member disposed on the optical path between the half mirror and the reflective polarizing member; ] may be arranged on the display element side of the half mirror so that the display element and the first ⁇ /4 plate are integrally provided.
  • the linear expansion coefficient ⁇ 1 when the temperature is raised in the range of 20°C to 30°C and the linear expansion coefficient ⁇ 2 when the temperature is lowered have a relationship of 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.2.
  • the adhesive layer A that satisfies the above conditions is used for more than half of the adhesive layers included in the optical laminate. This makes it possible to obtain an optical laminate with stable optical properties even under harsh environments.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention.
  • 1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention. It is a figure which shows the wet heat test result of the optical laminated body obtained in the Example and the comparative example.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • Refractive index (nx, ny, nz) "nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz” is the refractive index in the thickness direction.
  • In-plane phase difference (Re) "Re( ⁇ )” is an in-plane retardation measured with light having a wavelength of ⁇ nm at 23°C.
  • Re(550) is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Phase difference in thickness direction (Rth) is a retardation in the thickness direction measured with light having a wavelength of ⁇ nm at 23°C.
  • Rth (550) is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C.
  • substantially parallel includes cases within the range of 0° ⁇ 10°, for example, 0° ⁇ 5°, preferably 0° ⁇ 3°, more preferably 0° ⁇ 1 90° ⁇ 5°, preferably 90° ⁇ 3°, more preferably 90° ⁇ 1 within the range of °.
  • An optical laminate according to an embodiment of the present invention includes at least one optical member and at least one adhesive layer.
  • N/2 or more of the adhesive layers have linear expansion coefficient ⁇ 1 when the temperature is raised from 20°C to 30°C and from 30°C to 20°C.
  • the pressure-sensitive adhesive layer A has a linear expansion coefficient ⁇ 2 of 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.2 when the temperature is lowered to 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.2.
  • Adhesive layers with ⁇ 1/ ⁇ 2 of less than 0.8 or more than 1.2 tend to have a large difference in deformation rate when the temperature is raised and when the temperature is lowered, and the amount of deformation increases with repeated temperature changes.
  • the optical properties of the optical laminate may change, and as a result, when applied as a component of goggles with a display, the display properties thereof may be affected.
  • the adhesive layer satisfying the relationship of 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.2 at a predetermined ratio or more changes in the optical properties of the optical laminate due to deformation of the adhesive layer can be suppressed. can do.
  • optical members included in the optical laminate include absorption type polarizing members, reflective polarizing members, retardation members, and the like.
  • the total number N of adhesive layers included in the optical laminate is 1 or more, preferably 2 or more, more preferably 3 or more, and for example 6 or less. In one embodiment, the total number N of adhesive layers included in the optical laminate is 2 or more and 5 or less, preferably 3 or 4.
  • the optical laminate has, for example, an adhesive layer as the outermost layer, and can be attached to an adjacent member via the adhesive layer.
  • the ratio of the number of adhesive layers A to the total number of adhesive layers included in the optical laminate is 1/2 or more, preferably 2/3 or more, more preferably 3/4 or more, and 1. There may be.
  • the number of adhesive layers A is an integer
  • the number of adhesive layers A is an integer of N/2 or more and N or less.
  • the number of adhesive layers A is an integer of 2 or more and 3 or less, that is, 2 or 3, and when N is 4, the number of adhesive layers A is 2 or more and 4 or less. is an integer of 2, 3, or 4.
  • the linear expansion coefficient ⁇ 1 when the temperature is raised from 20°C to 30°C and the linear expansion coefficient ⁇ 2 when the temperature is lowered from 30°C to 20°C are 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.
  • the adhesive layer in general that satisfies the relationship 2 is referred to as adhesive layer A.
  • the plurality of adhesive layers included in the optical laminate are adhesive layers A
  • the plurality of adhesive layers have the same adhesive layer as long as the relationship of 0.8 ⁇ 1/ ⁇ 2 ⁇ 1.2 is satisfied.
  • the pressure-sensitive adhesive compositions do not need to have the same thickness, and may have the same or different thicknesses from pressure-sensitive adhesive compositions having different compositions.
  • the thickness of the optical laminate is, for example, 100 ⁇ m or more and 300 ⁇ m or less, preferably 110 ⁇ m or more and 250 ⁇ m or less, and more preferably 120 ⁇ m or more and 200 ⁇ m or less.
  • the present invention uses an adhesive layer that has a small difference in deformation rate when the temperature is raised and when the temperature is lowered. The following effects can be suitably obtained.
  • the thickness of the adhesive layer A is, for example, 1 ⁇ m or more and 15 ⁇ m or less, preferably 2 ⁇ m or more and less than 10 ⁇ m, and more preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • FIG. 1A is a schematic cross-sectional view of an optical laminate according to one embodiment of the invention.
  • the optical laminate 100a shown in FIG. 1A includes a first adhesive layer a1, a polarizing member 10, a second adhesive layer a2, a first retardation member 20, a third adhesive layer a3, and a protective member 30. and, in this order.
  • the polarizing member 10 and the first retardation member 20 are bonded together via the second adhesive layer a2
  • the first retardation member 20 and the protective member 30 are bonded together via the third adhesive layer a3. It is pasted together.
  • the first adhesive layer a1 is an adhesive layer for bonding the optical laminate 100a itself to an adjacent member (for example, another member constituting goggles with a display), and its surface is used for use. In the meantime, it may be protected by a release liner.
  • the total number of adhesive layers is three, and two or more of them are the adhesive layers A described above.
  • the thickness of the optical laminate 100a is, for example, 100 ⁇ m or more and 300 ⁇ m or less, preferably 110 ⁇ m or more and 250 ⁇ m or less, and more preferably 120 ⁇ m or more and 200 ⁇ m or less.
  • the optical laminate 100a has a total of three adhesive layers (first adhesive layer a1, second adhesive layer a2, and third adhesive layer a3), at least two of which are adhesive layers A. Preferably, all the adhesive layers are adhesive layers A.
  • the first adhesive layer a1 and the second adhesive layer a2 are adhesive layers A.
  • the effects of the present invention can be suitably obtained by arranging the adhesive layer A, which has high shape stability against temperature changes when the optical laminate is applied to VR goggles, near the display element and the first retardation member 20. be able to.
  • the adhesive layer A typically has a linear expansion coefficient ⁇ 1 when the temperature rises from 20°C to 30°C and a linear expansion coefficient ⁇ 2 when the temperature falls from 30°C to 20°C of 0.8 ⁇
  • the relationship ⁇ 1/ ⁇ 2 ⁇ 1.2 is satisfied, preferably 0.85 ⁇ 1/ ⁇ 2 ⁇ 1.15, and more preferably the relationship 0.9 ⁇ 1/ ⁇ 2 ⁇ 1.1.
  • ⁇ 1 of the adhesive layer A may be, for example, 5.0 ⁇ 10 ⁇ 4 /°C or more and 7.0 ⁇ 10 ⁇ 4 /°C or less.
  • ⁇ 2 of the adhesive layer A is, for example, 5.0 ⁇ 10 ⁇ 4 /°C or more and 7.0 ⁇ 10 ⁇ 4 /°C or less, and for example, 6.0 ⁇ 10 ⁇ 4 / °C or more and 7.0 ⁇ 10 ⁇ 4 /°C. It can be below °C.
  • the adhesive layer A has a coefficient of linear expansion ⁇ 1 when the temperature is raised from 60°C to 70°C and a coefficient of linear expansion ⁇ 2 when the temperature is lowered from 70°C to 60°C, for example, 1.0 ⁇ 1/ ⁇ 2 ⁇ 1.5.
  • the following relationship is satisfied, preferably 1.05 ⁇ 1/ ⁇ 2 ⁇ 1.45, more preferably 1.1 ⁇ 1/ ⁇ 2 ⁇ 1.4.
  • ⁇ 1 and ⁇ 2 of the adhesive layer A are not limited as long as the effects of the present invention can be obtained, and may be arbitrary values.
  • ⁇ 1 of the adhesive layer A may be, for example, 8.0 ⁇ 10 ⁇ 4 /°C or more and 9.0 ⁇ 10 ⁇ 4 /°C or less.
  • ⁇ 2 of the adhesive layer A may be, for example, 6.0 ⁇ 10 ⁇ 4 /°C or more and 7.0 ⁇ 10 ⁇ 4 /°C or less.
  • the storage modulus of the adhesive layer A at 25° C. is, for example, 5 ⁇ 10 4 Pa or more, preferably 10 ⁇ 10 4 Pa or more, more preferably 12 ⁇ 10 4 Pa or more, and, for example, 20 ⁇ 10 4 Pa or less. , preferably 15 ⁇ 10 4 Pa or less.
  • the storage modulus can be determined by dynamic viscoelasticity measurement (for example, parallel plate (8.0 mm ⁇ ), It can be determined using the measurement conditions of torsion mode and frequency range of 1 Hz).
  • the adhesive layer A may be formed from any suitable adhesive composition.
  • the adhesive composition forming the adhesive layer A includes an acrylic adhesive composition, a rubber adhesive composition, a silicone adhesive composition, a polyester adhesive composition, a urethane adhesive composition, and an epoxy adhesive composition. and polyether-based adhesive compositions. By adjusting the type, number, combination and blending ratio of monomers forming the base resin of the adhesive composition, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., desired characteristics can be achieved according to the purpose.
  • An adhesive composition can be prepared.
  • the base polymer of the adhesive composition may be used alone or in combination of two or more.
  • the adhesive layer is preferably composed of an acrylic adhesive composition containing a (meth)acrylic polymer as a base polymer.
  • the main component is a (meth)acrylic monomer represented by an alkyl group having 2 to 14 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 4 to 9 carbon atoms.
  • n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. are preferably used.
  • the monomer component constituting the (meth)acrylic polymer preferably further includes a nitrogen-containing monomer.
  • the content of the nitrogen-containing monomer is, for example, 0.1% to 35% by weight, preferably 3% to 30% by weight, and more preferably 5% to 25% by weight. . If the content of the nitrogen-containing monomer is within the above range, a pressure-sensitive adhesive layer with excellent durability in a heated environment and/or a high humidity environment can be obtained.
  • the nitrogen-containing monomer is a polymerizable monomer containing one or more nitrogen atoms in the monomer structure, and preferable examples include imide group-containing monomers and amide group-containing monomers. Among these, amide group-containing monomers are more preferred. In the above monomer components, the content of the amide group-containing monomer is, for example, 3% to 15% by weight, preferably 5% to 10% by weight.
  • the nitrogen-containing monomers may be used alone or in combination of two or more.
  • imide group-containing monomers examples include N-cyclohexylmaleimide, N-phenylmaleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-butylmaleimide, itaconimide, and the like.
  • nitrogen-containing monomers include amino group-containing monomers, (meth)acrylonitrile, N-(meth)acryloylmorpholine, N-vinyl-2-pyrrolidone, and the like.
  • the monomer component can contain other polymerizable monomers for adjusting the glass transition point and peelability of the (meth)acrylic polymer within a range that does not impair the effects of the present invention.
  • Examples of other polymerizable monomers include carboxyl group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, vinyl ester monomers, and aromatic vinyl monomers, which improve cohesive strength, heat resistance, etc. can contribute to Further examples include acid anhydride group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, etc., which can contribute to improving adhesive strength and have functional groups that act as crosslinking base points. Further, for example, a (meth)acrylic monomer having an alkyl group having 1 or 15 or more carbon atoms can be used. These polymerizable monomers may be used alone or in combination of two or more.
  • carboxyl group-containing monomers examples include acrylic acid, methacrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and the like. Among them, acrylic acid and methacrylic acid are preferably used.
  • sulfonic acid group-containing monomers examples include styrene sulfonic acid, allyl sulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, and (meth)acryloyloxy.
  • examples include naphthalenesulfonic acid.
  • Examples of the phosphoric acid group-containing monomer include 2-hydroxyethyl acryloyl phosphate and the like.
  • vinyl ester monomers examples include vinyl acetate, vinyl propionate, vinyl laurate, vinyl pyrrolidone, and the like.
  • aromatic vinyl monomers examples include styrene, chlorostyrene, chloromethylstyrene, ⁇ -methylstyrene, and the like.
  • acid anhydride group-containing monomers examples include maleic anhydride, itaconic anhydride, and the like.
  • Hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 6-hydroxyhexyl (meth)acrylate.
  • epoxy group-containing monomer examples include glycidyl (meth)acrylate, allyl glycidyl ether, and the like.
  • vinyl ether monomers examples include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, and the like.
  • Examples of the (meth)acrylic monomer having an alkyl group having 1 or 15 or more carbon atoms include methyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, and the like.
  • the content of the other polymerizable monomers is, for example, 0.1% to 10% by weight, preferably 0.2% to 7% by weight, more preferably 0.5% by weight. % to 5% by weight.
  • examples of copolymerizable monomers other than those mentioned above include silane monomers containing silicon atoms.
  • silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, -vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane, 10-acryloyloxydecyltriethoxysilane, and the like.
  • the silane monomers may be used alone or in combination of two or more.
  • the amount of the silane monomer blended is preferably 0.1 parts by weight to 3 parts by weight, more preferably 0.5 parts by weight to 2 parts by weight, based on 100 parts by weight of the (meth)acrylic polymer. preferable. Copolymerizing a silane monomer is preferable for improving durability.
  • the weight average molecular weight of the (meth)acrylic polymer is, for example, 600,000 or more, preferably 1,500,000 or more, more preferably 1,600,000 or more, and still more preferably 1,800,000 or more.
  • the weight average molecular weight of the (meth)acrylic polymer is, for example, 3 million or less, preferably 2.5 million or less.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated based on polystyrene conversion.
  • the glass transition temperature (Tg) of the above-mentioned (meth)acrylic polymer is, for example, -5°C or lower, preferably -10°C or lower, since it is easy to balance the adhesive performance. If the glass transition temperature is higher than -5°C, the polymer will be difficult to flow, resulting in insufficient wetting of the adherend, which may cause blisters to occur between layers.
  • the glass transition temperature (Tg) of the (meth)acrylic polymer can be adjusted within the above range by appropriately changing the monomer components and composition ratio used.
  • the (meth)acrylic polymer can be produced by appropriately selecting known production methods such as solution polymerization, bulk polymerization, emulsion polymerization, and various radical polymerizations.
  • solution polymerization for example, ethyl acetate, toluene, etc. are used as a polymerization solvent.
  • the reaction is carried out under a stream of inert gas such as nitrogen, and as a polymerization initiator, for example, 0.01 to 0.2 of azobisisobutyronitrile is used per 100 parts by weight of the total amount of monomers. parts by weight, and the reaction is usually carried out at about 50 to 70°C for about 8 to 30 hours.
  • the (meth)acrylic polymer obtained may be a random copolymer, a block copolymer, a graft copolymer, or the like.
  • any appropriate polymerization initiator, chain transfer agent, emulsifier, etc. can be selected and used as necessary.
  • the acrylic pressure-sensitive adhesive composition contains a (meth)acrylic polymer as a base polymer, and preferably further contains a peroxide and an isocyanate crosslinking agent.
  • any peroxide can be used as appropriate, as long as it generates radically active species upon heating or irradiation with light and promotes crosslinking of the base polymer of the adhesive composition.
  • a peroxide having a 1 minute half-life temperature of 80°C to 160°C more preferably a peroxide having a 1 minute half-life temperature of 90°C to 140°C. If the 1-minute half-life temperature is too low, the reaction may progress during storage before coating and drying, increasing the viscosity and making it impossible to apply. On the other hand, if the 1-minute half-life temperature is too high, As the temperature increases, side reactions may occur, and a large amount of unreacted peroxide may remain, resulting in progress of crosslinking over time.
  • Peroxides include di(2-ethylhexyl) peroxydicarbonate (1 minute half-life temperature: 90.6°C), di(4-t-butylcyclohexyl) peroxydicarbonate (1 minute half-life temperature: 92°C).
  • di(4-t-butylcyclohexyl) peroxydicarbonate (1-minute half-life temperature: 92.1°C) and dilauroyl peroxide (1-minute half-life temperature: 116.9°C) have excellent crosslinking reaction efficiency.
  • 4°C), dibenzoyl peroxide (1 minute half-life temperature: 130.0°C), etc. are preferably used.
  • Peroxides may be used alone or in combination of two or more.
  • the half-life of peroxide is an index representing the decomposition rate of peroxide, and refers to the time until the remaining amount of peroxide is reduced to half.
  • the decomposition temperature to obtain a half-life at a given time and the half-life time at a given temperature are described in manufacturer catalogs, etc. For example, the "Organic Peroxide Catalog 9th Edition" by Nippon Oil & Fats Co., Ltd. (May 2003)” etc.
  • the amount of peroxide blended is, for example, 0.02 parts by weight to 2 parts by weight, preferably 0.04 parts by weight to 1.5 parts by weight, more preferably is 0.05 part by weight to 1 part by weight.
  • amount of peroxide is within the above range, a pressure-sensitive adhesive layer with excellent durability and adhesiveness can be obtained.
  • isocyanate-based crosslinking agent examples include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate.
  • isocyanate crosslinking agents may be used alone or in combination of two or more.
  • lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate
  • alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate
  • 2,4-tolylene diisocyanate 4, Aromatic diisocyanates such as 4'-diphenylmethane diisocyanate, xylylene diisocyanate, and polymethylene polyphenylisocyanate, trimethylolpropane/tolylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo Co., Ltd., trade name Coronate L), trimethylolpropane / Isocyanate adducts such as hexamethylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo Co., Ltd.
  • the blending amount of the isocyanate crosslinking agent is, for example, 0.02 parts by weight to 2 parts by weight, preferably 0.04 parts by weight to 1.5 parts by weight, based on 100 parts by weight of the (meth)acrylic polymer. More preferably, it is 0.05 part by weight to 1 part by weight.
  • amount of the isocyanate crosslinking agent is within the above range, a pressure-sensitive adhesive layer with excellent cohesive force and adhesiveness can be obtained.
  • the blending amount of the crosslinking agent is such that the gel fraction of the crosslinked adhesive layer is, for example, 45% to 95% by weight, preferably 50% to 90% by weight, more preferably is adjusted to be 55% to 85% by weight.
  • An adhesive layer having a gel fraction within the above range has excellent durability and adhesiveness.
  • the gel fraction (wt%) of the adhesive layer is determined by immersing the dry weight W1 (g) of the adhesive layer in ethyl acetate at about 23°C for 7 days, and then removing the insoluble content of the adhesive layer from ethyl acetate.
  • the weight W2 (g) after being taken out and dried is measured, and may be a value calculated as (W2/W1) ⁇ 100.
  • the gel fraction can be adjusted to a desired range by adjusting the amount of peroxide and isocyanate crosslinking agent, crosslinking temperature, crosslinking time, etc.
  • the crosslinking temperature and crosslinking time are preferably set so that the decomposed amount of peroxide contained in the adhesive composition is 50% by weight or more, more preferably 60% by weight or more. Preferably, it is more preferably set to 70% by weight or more.
  • the crosslinking treatment temperature is 1 minute half-life temperature
  • the amount of peroxide decomposed in 1 minute is 50% by weight
  • the amount of peroxide decomposed in 2 minutes is 75% by weight. Processing time is required.
  • the half-life (half-life time) of peroxide at the cross-linking temperature is 30 seconds
  • a cross-linking time of 30 seconds or more is required; If the (half-life time) is 5 minutes, a crosslinking treatment time of 5 minutes or more is required.
  • the crosslinking treatment temperature and crosslinking treatment time can be calculated theoretically from the half-life (half-life time) assuming that the peroxide is linearly proportional. It can be adjusted as appropriate.
  • the crosslinking treatment temperature is preferably 170°C or lower.
  • the crosslinking treatment time is usually about 0.2 minutes to 20 minutes, preferably about 0.5 minutes to 10 minutes.
  • the crosslinking process may be performed at the temperature during the drying process of the adhesive layer, or a separate crosslinking process may be performed after the drying process.
  • a silane coupling agent may be added to the adhesive composition for the purpose of increasing adhesive strength and durability.
  • the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane.
  • Epoxy group-containing silane coupling agents such as methoxysilane, 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3- Silane coupling agents containing amino groups such as dimethylbutylidene) propylamine, silane coupling agents containing (meth)acrylic groups such as 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-isocyanatepropyl Examples include incyanate group-containing silane coupling agents such as triethoxysilane.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the blending amount of the silane coupling agent is, for example, 0.01 part by weight to 1 part by weight, preferably 0.02 part to 0.6 part by weight, more preferably 0. The amount is .05 parts by weight to 0.3 parts by weight.
  • the above-mentioned pressure-sensitive adhesive composition may further contain any suitable additives, if necessary.
  • additives include surfactants, plasticizers, tackifiers, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, ultraviolet absorbers, polymerization inhibitors, etc. .
  • a reducing agent may be added within a controllable range.
  • the adhesive layer A can be suitably obtained by crosslinking the above adhesive composition.
  • the adhesive layer A obtained by crosslinking the above adhesive composition has a small difference in deformation rate when the temperature rises and when the temperature falls, and even when the layer is made thin, it has durability under high temperature and high humidity conditions. Excellent in sex.
  • the adhesive composition may be crosslinked after being applied to the surface of a desired member (in the configuration of FIG. 1A, the polarizing member, the first retardation member, or the protective member), and may be applied onto a support such as a release liner.
  • the material may be applied to a material, crosslinked, and then transferred to a desired member.
  • the thickness of the adhesive layer A is, for example, 1 ⁇ m or more and 15 ⁇ m or less, preferably 2 ⁇ m or more and less than 10 ⁇ m, and more preferably 3 ⁇ m or more and 8 ⁇ m or less.
  • the optical laminate can include an adhesive layer other than the adhesive layer A described above.
  • Such an adhesive layer may also be formed from any suitable adhesive composition.
  • Adhesive compositions forming adhesive layers other than adhesive layer A include acrylic adhesive compositions, rubber adhesive compositions, silicone adhesive compositions, polyester adhesive compositions, and urethane adhesive compositions. Examples include adhesive compositions, epoxy adhesive compositions, and polyether adhesive compositions. Acrylic pressure-sensitive adhesive compositions are preferably used because they have excellent transparency, heat resistance, and the like.
  • the storage modulus at 25° C. of the adhesive layers other than adhesive layer A is, for example, 5 ⁇ 10 4 Pa or more, preferably 10 ⁇ 10 4 Pa or more, more preferably 14 ⁇ 10 4 Pa or more, for example, 20 ⁇ 10 4 Pa or less, preferably 15 ⁇ 10 4 Pa or less.
  • the thickness of the adhesive layers other than adhesive layer A is, for example, 12 ⁇ m or more and 100 ⁇ m or less, preferably 12 ⁇ m or more and 80 ⁇ m or less.
  • the polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include.
  • the protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer.
  • a typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
  • the cross transmittance (Tc) of the polarizing member (absorbing polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less.
  • the single transmittance (Ts) of the polarizing member (absorbing polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more.
  • the degree of polarization (P) of the polarizing member (absorbing polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
  • the above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer.
  • the degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula.
  • Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
  • Polarization degree P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the thickness of the absorption type polarizing film is, for example, 1 ⁇ m or more and 20 ⁇ m or less, may be 2 ⁇ m or more and 15 ⁇ m or less, may be 12 ⁇ m or less, may be 10 ⁇ m or less, or may be 8 ⁇ m or less, It may be 5 ⁇ m or less.
  • the above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
  • a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane.
  • An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
  • the above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution.
  • the stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
  • the laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material.
  • An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin.
  • a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film.
  • a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material.
  • Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching.
  • the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary.
  • the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction.
  • the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order.
  • the obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is.
  • Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
  • the protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film.
  • materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate.
  • COP cycloolefin
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate.
  • thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned.
  • Other examples include glassy polymers such as siloxane polymers.
  • the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain.
  • a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used.
  • the polymer film may be, for example, an extrusion molded product of the resin composition.
  • the materials for the resin film can be used alone or in combination.
  • the thickness of the protective layer is typically 100 ⁇ m or less, for example 5 ⁇ m to 80 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m, more preferably 15 ⁇ m to 35 ⁇ m.
  • the first phase difference member 20 includes a first ⁇ /4 member 20a.
  • the angle between the absorption axis of the polarizing member 10 (absorbing polarizing film) and the slow axis of the first ⁇ /4 member 20a is preferably 40° to 50°, more preferably 40° to 50°.
  • the angle is 42° to 48°, for example about 45°.
  • the in-plane retardation Re (550) of the first ⁇ /4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too.
  • the first ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • Re(450)/Re(550) of the first ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • the first ⁇ /4 member preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the Nz coefficient of the first ⁇ /4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
  • the first ⁇ /4 member is formed of any suitable material that can satisfy the above characteristics.
  • the first ⁇ /4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
  • the resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first ⁇ /4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
  • polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol.
  • the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. .
  • the polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the thickness of the first ⁇ /4 member made of a stretched resin film is, for example, 10 ⁇ m to 100 ⁇ m, preferably 10 ⁇ m to 70 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • the liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed.
  • the "alignment hardened layer” is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below.
  • rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first ⁇ /4 member (homogeneous alignment).
  • Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers.
  • the liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
  • the liquid crystal compound alignment and solidification layer is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
  • the alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound.
  • the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
  • liquid crystal compound any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound.
  • the liquid crystal polymer and the liquid crystal monomer may be used alone or in combination.
  • Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
  • the thickness of the first ⁇ /4 member composed of the liquid crystal alignment solidified layer is, for example, 1 ⁇ m to 10 ⁇ m, preferably 1 ⁇ m to 8 ⁇ m, more preferably 1 ⁇ m to 6 ⁇ m, and still more preferably 1 ⁇ m to 4 ⁇ m. be.
  • Protective member 30 typically includes a base material.
  • the substrate may be comprised of any suitable film.
  • Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins.
  • the thickness of the base material is preferably 5 ⁇ m to 80 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and even more preferably 15 ⁇ m to 35 ⁇ m.
  • the protective member preferably has a base material and a surface treatment layer formed on the base material.
  • the surface treatment layer may be located on the outermost surface of the optical laminate 100a.
  • the surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer.
  • the protective member may have two or more surface treatment layers.
  • the antireflection layer is provided to prevent reflection of external light and the like.
  • the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure). .
  • the thickness of the antireflection layer is preferably 0.05 ⁇ m to 1 ⁇ m.
  • methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method). curing method).
  • the hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency.
  • the hard coat layer may be formed from any suitable resin.
  • the hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins.
  • the thickness of the hard coat layer is, for example, 0.5 ⁇ m or more, preferably 1 ⁇ m or more, and, for example, 20 ⁇ m or less, preferably 15 ⁇ m or less.
  • FIG. 1B is a schematic cross-sectional view of an optical laminate according to one embodiment of the invention.
  • the angle between the absorption axis of the polarizing member 10 and the slow axis of the first ⁇ /4 member 20a is preferably 40° to 50°, more preferably 42° to 48°, for example about 45°. It is located.
  • the first retardation member 20 has a laminated structure of a first ⁇ /4 member 20a and a positive C plate 20b. Specifically, the first ⁇ /4 member 20a and the positive C plate 20b are laminated with an adhesive layer b1 in between. As shown in the illustrated example, it is preferable that the first ⁇ /4 member 20a is located closer to the polarizing member 10 than the positive C plate 20b, but these arrangements may be reversed.
  • the adhesive layer b1 is typically a pressure-sensitive adhesive layer or an adhesive layer. When the adhesive layer b1 is an adhesive layer, the total number of adhesive layers in the optical laminate 100b is three, two or more of which are adhesive layers A, and preferably all three are adhesive layers. This is agent layer A.
  • the adhesive layer b1 is an adhesive layer
  • the total number of adhesive layers in the optical laminate 100b is 4, and in this case also, two or more adhesive layers are the above-mentioned adhesive layer A, preferably three or more. More preferably, all four adhesive layers are adhesive layers A.
  • the adhesive layer is formed of, for example, an ultraviolet curing adhesive, and has a thickness of, for example, 0.05 ⁇ m to 30 ⁇ m.
  • the thickness of the optical laminate 100b is, for example, 100 ⁇ m or more and 300 ⁇ m or less, preferably 110 ⁇ m or more and 250 ⁇ m or less, and more preferably 120 ⁇ m or more and 200 ⁇ m or less.
  • the adhesive layer, polarizing member, first ⁇ /4 member, and protective member are as described in Section A-1.
  • the retardation Rth (550) in the thickness direction of the positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, still more preferably -90 nm to -200 nm, and particularly preferably is ⁇ 100 nm to ⁇ 180 nm.
  • the in-plane retardation Re (550) of the positive C plate is, for example, less than 10 nm.
  • the positive C-plate may be formed of any suitable material.
  • the positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation.
  • the liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of methods for forming such liquid crystal compounds and positive C plates include methods for forming liquid crystal compounds and retardation layers described in [0020] to [0028] of JP-A No. 2002-333642.
  • the thickness of the positive C plate is preferably 0.5 ⁇ m to 5 ⁇ m.
  • FIG. 2 is a schematic diagram showing a schematic configuration of an example of a display system (goggles with a display) including the optical laminate described in Section A. 2(a) schematically shows the arrangement and shape of the main components of the display system 2, and FIG. 2(b) shows that the display system 2 shown in FIG. 2(a) is a liquid crystal display system. It is a schematic diagram explaining arrangement
  • the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, and a second retardation member 20. It includes a retardation member 22 and a second lens portion 24.
  • the reflective polarizing member 14 is disposed in front of the display element 12 on the display surface 12' side, and can reflect light emitted from the display element 12.
  • the first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16.
  • the first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14.
  • the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
  • the components disposed in front of the half mirror are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
  • the display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12' for displaying images.
  • the light emitted from the display surface 12' passes through, for example, a polarizing member 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
  • the first retardation member 20 includes a first ⁇ /4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light.
  • the first retardation member may correspond to the first ⁇ /4 member.
  • the half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14.
  • the half mirror 18 is provided integrally with the first lens section 16.
  • the second retardation member 22 includes a second ⁇ /4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14.
  • the second retardation member may correspond to the second ⁇ /4 member.
  • the second retardation member 22 may be provided integrally with the first lens portion 16.
  • the first circularly polarized light emitted from the first ⁇ /4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second ⁇ /4 member converts the light into a second linearly polarized light.
  • the second linearly polarized light emitted from the second ⁇ /4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14.
  • the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
  • the second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second ⁇ /4 member included in the second retardation member 22, and is emitted from the second ⁇ /4 member.
  • the second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18.
  • the second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second ⁇ /4 member included in the second retardation member 22.
  • the third linearly polarized light is transmitted through the reflective polarizing member 14 .
  • the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
  • the display system 2 may include an absorbing polarizing member (typically, an absorbing polarizing film) in front of the reflective polarizing member 14 (on the side closer to the eyes).
  • the reflection axis of the reflective polarizing member 14 and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other.
  • the third linearly polarized light that has passed through the reflective polarizing member 14 can pass through the absorbing polarizing member as it is.
  • the reflective polarizing member and the absorbing polarizing member may be laminated with an adhesive layer interposed therebetween.
  • the light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
  • the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other.
  • the angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first ⁇ /4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ⁇ 48°, and may be about 45°.
  • the angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the second ⁇ /4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42°. ⁇ 48°, and may be about 45°.
  • the polarizing member 10 and the first retardation member 20 including the first ⁇ /4 member are each as described in Section A.
  • the in-plane retardation Re (550) of the second ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
  • the second ⁇ /4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light.
  • the second ⁇ /4 member preferably satisfies the relationship Re(450) ⁇ Re(550) ⁇ Re(650).
  • Re(450)/Re(550) of the second ⁇ /4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
  • FIG. 2(b) shows the arrangement of the optical laminate when the display system 2 is a liquid crystal display system.
  • the optical laminate 100 optical laminates 100a and 100b shown in FIG. 1A or 1B are preferably used.
  • the display element 12 includes a backlight unit 12a, a backlight-side polarizing member 12b, a liquid crystal cell 12c, and a polarizing member 10.
  • the backlight side polarizing member 12b and the polarizing member 10 are typically arranged so that their absorption axes are substantially orthogonal to each other, and together with the liquid crystal cell 12c, they constitute a liquid crystal panel.
  • the optical laminate 100 is disposed on the display element 12 side of the half mirror 18, where the polarizing member 10 is bonded to the liquid crystal cell 12c via the adhesive layer a1, and the first retardation The member 20 (first ⁇ /4 member) is bonded to the polarizing member 10 via the adhesive layer a2, and as a result, the display element 12 and the first retardation member 20 (first ⁇ /4 member) ) are integrated. Furthermore, by arranging the protective member 30 having a surface-treated layer such that the surface-treated layer is on the outermost surface, a space is formed between the half mirror 18 and the first retardation member 20 (protective member 30). Excellent anti-reflection effects can be obtained in display systems that use this technology.
  • the optical laminate 100 is bonded to a liquid crystal cell, but the optical laminate according to the embodiment of the present invention can also constitute an organic EL display system together with an organic EL panel.
  • a third retardation member including a third ⁇ /4 member may be disposed between the optical laminate 100 and the organic EL panel.
  • the third retardation member may be included in the optical laminate according to the embodiment of the present invention.
  • the optical laminate according to the embodiment of the present invention may include a third retardation member, a polarizing member, a first retardation member, and a protection member in this order via an adhesive layer.
  • the optical laminate has a configuration of [adhesive layer/third retardation member/adhesive layer/polarizing member/adhesive layer/first retardation member/adhesive layer/protective member]. and in such a configuration may include at least four adhesive layers. When the total number of adhesive layers is four, adhesive layer A is used for two or more of them, preferably three or four adhesive layers.
  • the in-plane retardation Re (550) of the third ⁇ /4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good.
  • the same explanation as for the first ⁇ /4 member can be applied to the third ⁇ /4 member.
  • the third retardation member is configured such that the slow axis of the third ⁇ /4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
  • the thickness is a value measured by the following measuring method.
  • ⁇ Thickness> The thickness of 10 ⁇ m or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
  • ⁇ Analyzer Tosoh Corporation, HLC-8120GPC ⁇ Data processing device: Tosoh Corporation, GPC-8020 ⁇ Column: Manufactured by Tosoh Corporation, G7000HXL-H+GMHXL+GMHXL ⁇ Column size: each 7.8 mm ⁇ x 30 cm (total 90 cm) ⁇ Flow rate: 0.8ml/min ⁇ Injected sample concentration: Approximately 0.1% by weight ⁇ Injection volume: 100 ⁇ l ⁇ Column temperature: 40°C ⁇ Eluent: Tetrahydrofuran ⁇ Detector: Differential refractometer (RI)
  • Acrylic adhesive solution 1 was prepared by mixing 0.6 parts by weight of a polyisocyanate crosslinking agent (Coronate L, manufactured by Nippon Polyurethane Industries, Ltd.).
  • Acrylic adhesive solution 1 was applied to one side of a silicone-treated polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 ⁇ m), and dried and crosslinked at 150 ° C. for 3 minutes. An adhesive layer 1 having a thickness of 5 ⁇ m after drying was formed.
  • PET polyethylene terephthalate
  • the polymerization reaction was carried out for 7 hours while maintaining the liquid temperature in the flask at 60°C. Next, ethyl acetate was added to the resulting reaction solution to adjust the solid content concentration to 30% by weight to obtain a solution of acrylic polymer 2.
  • the weight average molecular weight of acrylic polymer 2 was 2.2 million.
  • ⁇ Adhesive solution 2> Based on 100 parts by weight of the solid content of the solution of acrylic polymer 2, 0.6 parts by weight of a polyisocyanate crosslinking agent (trimethylolpropane/tolylene diisocyanate adduct, Coronate L, manufactured by Nippon Polyurethane Kogyo Co., Ltd.) and silane coupling.
  • Acrylic pressure-sensitive adhesive solution 2 was prepared by mixing 0.075 parts by weight of an adhesive (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403).
  • Acrylic adhesive solution 2 was applied to one side of a silicone-treated polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 ⁇ m), and dried at a predetermined temperature to form a film with a thickness of 12 ⁇ m and 15 ⁇ m. , or a 20 ⁇ m adhesive layer 2 was formed.
  • PET polyethylene terephthalate
  • the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times.
  • the boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight.
  • the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C.
  • the boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight.
  • the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C.
  • the potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight.
  • the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
  • a triacetyl cellulose (TAC) resin film (thickness: 22 ⁇ m) as a protective layer was bonded to both sides of the obtained absorption polarizing film via an ultraviolet curable adhesive.
  • an ultraviolet curable adhesive was applied so that the total thickness was about 1 ⁇ m, and the pieces were bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive.
  • a polarizing film 1 (thickness: 57 ⁇ m) having a configuration of [TAC film (protective layer)/absorption type polarizing film/TAC film (protective layer)] was obtained.
  • the oligomerized reaction liquid in the first reactor was transferred to the second reactor.
  • temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes.
  • polymerization was allowed to proceed until a predetermined stirring power was reached.
  • nitrogen was introduced into the reactor to restore the pressure nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
  • polyester carbonate resin pellets
  • a single-screw extruder manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C
  • T-die width 200mm, setting temperature: 250°C
  • a long resin film with a thickness of 135 ⁇ m was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder.
  • the obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times. Thereby, a stretched film ( ⁇ /4 member 1) having a thickness of 51 ⁇ m was obtained.
  • Re(590) of ⁇ /4 member 1 was 143 nm
  • Re(450)/Re(550) was 0.86
  • the Nz coefficient was 1.12.
  • a leveling agent By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared.
  • Anti-reflection layer forming material 100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 100 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator (manufactured by BASF, 3 parts by weight of the product (trade name "OMNIRAD907", solid content 100% by
  • a mixed solvent of tertiary butyl alcohol, methyl isobutyl ketone, and propylene glycol monomethyl ether acetate in a 60:25:15 weight ratio was added to the mixture so that the total solid content was 4% by weight, and the mixture was stirred.
  • An antireflection layer forming material was prepared.
  • Adhesive layer 1 (thickness 5 ⁇ m) is pasted together with the PET film on one side of polarizing film 1, another adhesive layer 1 (thickness 5 ⁇ m) is transferred from the PET film to the other side, and ⁇ /4 Member 1 was pasted together. At this time, the arrangement was such that the angle between the absorption axis of the absorption type polarizing film and the slow axis of the ⁇ /4 member 1 was 45°. Next, another adhesive layer 1 (thickness: 5 ⁇ m) was transferred from the PET film onto the surface of the ⁇ /4 member 1, and the protective member 1 was bonded thereon.
  • Example 2 Comparative Example 1-2
  • An optical laminate was obtained in the same manner as in Example 1 except that one or more of the three adhesive layers 1 was replaced with the adhesive layer 2.
  • Table 1 shows the configuration of each optical laminate.
  • the present invention is not limited to the above embodiments, and various modifications are possible.
  • it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
  • optical laminate according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mathematical Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention provides an optical laminate that has stable optical characteristics even in harsh environments. According to an embodiment of the present invention, an optical laminate includes at least one optical member and at least one adhesive layer. When N is the total number of adhesive layers included in the optical laminate, α1 is the coefficient of linear expansion upon heating from 20°C to 30°C, and α2 is the coefficient of linear expansion upon cooling from 30°C to 20°C, at least N/2 of the adhesive layers are an adhesive layer A that satisfies 0.8≤α1/α2≤1.2.

Description

光学積層体および表示システムOptical laminates and display systems
 本発明は、光学積層体および当該光学積層体を用いた表示システムに関する。 The present invention relates to an optical laminate and a display system using the optical laminate.
 液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置)に代表される画像表示装置が急速に普及している。画像表示装置においては、画像表示を実現し、画像表示の性能を高めるために、一般的に、偏光部材、位相差部材等の光学部材が用いられている(例えば、特許文献1を参照)。 Image display devices represented by liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices) are rapidly becoming popular. In image display devices, optical members such as polarizing members and retardation members are generally used to realize image display and improve image display performance (see, for example, Patent Document 1).
 近年、画像表示装置の新たな用途が開発されている。例えば、Virtual Reality(VR)を実現するためのディスプレイ付きゴーグル(VRゴーグル)が製品化され始めている。VRゴーグルは様々な場面での利用が検討されていることから、高温および/または高湿環境等の過酷な環境下での安定性の点においても、従来の画像表示装置に適用される光学積層体よりも高い要求がなされる。 In recent years, new uses for image display devices have been developed. For example, goggles with a display (VR goggles) for realizing Virtual Reality (VR) are beginning to be commercialized. Since VR goggles are being considered for use in a variety of situations, optical laminations that are applied to conventional image display devices are important in terms of stability in harsh environments such as high temperature and/or high humidity environments. Higher demands are made than the body.
特開2021-103286号公報JP2021-103286A
 本発明は、過酷な環境下でも光学特性が安定した光学積層体を提供することを主たる目的とする。 The main purpose of the present invention is to provide an optical laminate with stable optical properties even under harsh environments.
[1]本発明の実施形態による光学積層体は、少なくとも1つの光学部材と少なくとも1つの粘着剤層とを含む、光学積層体であって、上記光学積層体に含まれる上記粘着剤層の総数をNとしたときに、N/2以上の粘着剤層が、20℃から30℃まで昇温した際の線膨張係数α1と30℃から20℃まで降温した際の線膨張係数α2とが0.8≦α1/α2≦1.2の関係を満たす粘着剤層Aである。
[2]上記[1]に記載の光学積層体において、上記粘着剤層Aの厚みが、1μm以上15μm以下であってよい。
[3]上記[1]または[2]に記載の光学積層体の厚みが、100μm以上300μm以下であってよい。
[4]上記[1]から[3]のいずれかに記載の光学積層体が、第一粘着剤層と、偏光部材と、第二粘着剤層と、第一位相差部材と、第三粘着剤層と、保護部材と、を、この順に有し、上記第一、第二、および第三粘着剤層から選択される2つ以上が、上記粘着剤層Aであってよい。
[5]上記[4]に記載の光学積層体において、上記第一位相差部材が、λ/4部材を含んでよい。
[6]上記[4]または[5]に記載の光学積層体において、上記保護部材が、表面処理層を有してよい。
[7]上記[1]から[6]のいずれかに記載の光学積層体において、上記粘着剤層Aを構成する粘着剤組成物が、150万以上の重量平均分子量を有する(メタ)アクリル系ポリマーを含んでよい。
[8]本発明の実施形態による表示システムは、上記[1]から[7]のいずれかに記載の光学積層体を含む。
[9]上記[8]に記載の表示システムは、偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、上記表示素子の前方に配置され、上記表示素子から出射された光を反射する反射型偏光部材と、上記表示素子と上記反射型偏光部材との間の光路上に配置される第一レンズ部と、上記表示素子と上記第一レンズ部との間に配置され、上記表示素子から出射された光を透過させ、上記反射型偏光部材で反射された光を上記反射型偏光部材に向けて反射させるハーフミラーと、上記表示素子と上記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、上記ハーフミラーと上記反射型偏光部材との間の光路上に配置される第2のλ/4部材と、を備え、上記[5]に記載の光学積層体が、上記表示素子と上記第1のλ/4板とが一体に設けられるように、上記ハーフミラーの上記表示素子側に配置されてよい。
[1] The optical laminate according to the embodiment of the present invention is an optical laminate including at least one optical member and at least one adhesive layer, and the total number of the adhesive layers included in the optical laminate. is N, the adhesive layer of N/2 or more has a linear expansion coefficient α1 when the temperature is raised from 20°C to 30°C and a linear expansion coefficient α2 when the temperature is lowered from 30°C to 20°C is 0. The adhesive layer A satisfies the relationship: .8≦α1/α2≦1.2.
[2] In the optical laminate described in [1] above, the adhesive layer A may have a thickness of 1 μm or more and 15 μm or less.
[3] The thickness of the optical laminate described in [1] or [2] above may be 100 μm or more and 300 μm or less.
[4] The optical laminate according to any one of [1] to [3] above includes a first adhesive layer, a polarizing member, a second adhesive layer, a first retardation member, and a third adhesive layer. The adhesive layer A may include an adhesive layer and a protective member in this order, and two or more selected from the first, second, and third adhesive layers may be the adhesive layer A.
[5] In the optical laminate according to [4] above, the first retardation member may include a λ/4 member.
[6] In the optical laminate according to [4] or [5] above, the protective member may have a surface treatment layer.
[7] In the optical laminate according to any one of [1] to [6] above, the adhesive composition constituting the adhesive layer A is a (meth)acrylic adhesive composition having a weight average molecular weight of 1.5 million or more. May include polymers.
[8] A display system according to an embodiment of the present invention includes the optical laminate according to any one of [1] to [7] above.
[9] The display system according to [8] above includes a display element having a display surface that emits light representing an image forward through a polarizing member, and a display element that is disposed in front of the display element and that emits light from the display element. a reflective polarizing member that reflects the reflected light; a first lens portion disposed on an optical path between the display element and the reflective polarizing member; and a first lens portion between the display element and the first lens portion. a half mirror that is arranged and transmits the light emitted from the display element and reflects the light reflected by the reflective polarizing member toward the reflective polarizing member; and between the display element and the half mirror. a first λ/4 member disposed on the optical path between the half mirror and the reflective polarizing member, and a second λ/4 member disposed on the optical path between the half mirror and the reflective polarizing member; ] may be arranged on the display element side of the half mirror so that the display element and the first λ/4 plate are integrally provided.
 本発明の実施形態においては、20℃~30℃の範囲で昇温した際の線膨張係数α1と降温した際の線膨張係数α2とが0.8≦α1/α2≦1.2の関係を満たす粘着剤層Aを、光学積層体に含まれる粘着剤層の半数以上に用いる。これにより、過酷な環境下でも光学特性が安定した光学積層体を得ることができる。 In the embodiment of the present invention, the linear expansion coefficient α1 when the temperature is raised in the range of 20°C to 30°C and the linear expansion coefficient α2 when the temperature is lowered have a relationship of 0.8≦α1/α2≦1.2. The adhesive layer A that satisfies the above conditions is used for more than half of the adhesive layers included in the optical laminate. This makes it possible to obtain an optical laminate with stable optical properties even under harsh environments.
本発明の1つの実施形態による光学積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. 本発明の1つの実施形態による光学積層体の概略断面図である。FIG. 1 is a schematic cross-sectional view of an optical laminate according to one embodiment of the present invention. 本発明の1つの実施形態による表示システムの概略の構成を示す模式図である。1 is a schematic diagram showing a general configuration of a display system according to one embodiment of the present invention. 実施例および比較例で得られた光学積層体の湿熱試験結果を示す図である。It is a figure which shows the wet heat test result of the optical laminated body obtained in the Example and the comparative example.
 以下、図面を参照して本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。また、図面は説明をより明確にするため、実施の形態に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書中で、数値範囲を表す「~」は、その上限および下限の数値を含み、「(メタ)アクリル」は、「アクリルおよび/またはメタクリル」を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments. Further, in order to make the explanation more clear, the drawings may schematically represent the width, thickness, shape, etc. of each part compared to the embodiment, but this is just an example, and the interpretation of the present invention is It is not limited. Furthermore, in this specification, "~" representing a numerical range includes the upper and lower numerical limits thereof, and "(meth)acrylic" means "acrylic and/or methacrylic".
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は時計回りまたは反時計回りに45°を意味する。また、本明細書において、「略平行」は、0°±10°の範囲内である場合を包含し、例えば0°±5°、好ましくは0°±3°、より好ましくは0°±1°の範囲内であり、「略直交」は、90°±10°の範囲内である場合を包含し、例えば90°±5°、好ましくは90°±3°、より好ましくは90°±1°の範囲内である。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) Refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the direction perpendicular to the slow axis in the plane (i.e., fast axis direction) "nz" is the refractive index in the thickness direction.
(2) In-plane phase difference (Re)
"Re(λ)" is an in-plane retardation measured with light having a wavelength of λnm at 23°C. For example, "Re(550)" is an in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is determined by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Phase difference in thickness direction (Rth)
"Rth (λ)" is a retardation in the thickness direction measured with light having a wavelength of λ nm at 23°C. For example, "Rth (550)" is the retardation in the thickness direction measured with light having a wavelength of 550 nm at 23°C. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz coefficient The Nz coefficient is determined by Nz=Rth/Re.
(5) Angle When an angle is referred to in this specification, the angle includes both clockwise and counterclockwise directions with respect to the reference direction. Thus, for example, "45°" means 45° clockwise or counterclockwise. In addition, in this specification, "substantially parallel" includes cases within the range of 0°±10°, for example, 0°±5°, preferably 0°±3°, more preferably 0°±1 90°±5°, preferably 90°±3°, more preferably 90°±1 within the range of °.
A.光学積層体
 本発明の実施形態による光学積層体は、少なくとも1つの光学部材と少なくとも1つの粘着剤層とを含む。上記光学積層体に含まれる粘着剤層の総数をNとしたときに、N/2以上の粘着剤層が、20℃から30℃まで昇温した際の線膨張係数α1と30℃から20℃まで降温した際の線膨張係数α2とが0.8≦α1/α2≦1.2の関係を満たす粘着剤層Aである。α1/α2が0.8未満または1.2超である粘着剤層は、昇温時と降温時とで変形率の差が大きい傾向にあり、温度変化を繰り返すことで変形量が大きくなる結果、光学積層体の光学特性が変化する場合があり、結果として、ディスプレイ付きゴーグルの構成部材として適用された場合に、その表示特性に影響を及ぼす場合がある。これに対し、0.8≦α1/α2≦1.2の関係を満たす粘着剤層を所定の割合以上で用いることにより、粘着剤層の変形に起因する光学積層体の光学特性の変化を抑制することができる。
A. Optical Laminate An optical laminate according to an embodiment of the present invention includes at least one optical member and at least one adhesive layer. When the total number of adhesive layers included in the optical laminate is N, N/2 or more of the adhesive layers have linear expansion coefficient α1 when the temperature is raised from 20°C to 30°C and from 30°C to 20°C. The pressure-sensitive adhesive layer A has a linear expansion coefficient α2 of 0.8≦α1/α2≦1.2 when the temperature is lowered to 0.8≦α1/α2≦1.2. Adhesive layers with α1/α2 of less than 0.8 or more than 1.2 tend to have a large difference in deformation rate when the temperature is raised and when the temperature is lowered, and the amount of deformation increases with repeated temperature changes. , the optical properties of the optical laminate may change, and as a result, when applied as a component of goggles with a display, the display properties thereof may be affected. In contrast, by using an adhesive layer satisfying the relationship of 0.8≦α1/α2≦1.2 at a predetermined ratio or more, changes in the optical properties of the optical laminate due to deformation of the adhesive layer can be suppressed. can do.
 光学積層体に含まれる光学部材としては、例えば、吸収型偏光部材、反射型偏光部材、位相差部材等が挙げられる。 Examples of the optical members included in the optical laminate include absorption type polarizing members, reflective polarizing members, retardation members, and the like.
 光学積層体に含まれる粘着剤層の総数Nは、1以上であり、好ましくは2以上、より好ましくは3以上であり、例えば6以下である。1つの実施形態において、光学積層体に含まれる粘着剤層の総数Nは、2以上5以下であり、好ましくは3または4である。光学積層体は、例えば、最外層に粘着剤層を有し、当該粘着剤層を介して隣接する部材に貼着可能とされている。 The total number N of adhesive layers included in the optical laminate is 1 or more, preferably 2 or more, more preferably 3 or more, and for example 6 or less. In one embodiment, the total number N of adhesive layers included in the optical laminate is 2 or more and 5 or less, preferably 3 or 4. The optical laminate has, for example, an adhesive layer as the outermost layer, and can be attached to an adjacent member via the adhesive layer.
 光学積層体に含まれる粘着剤層の総数に対する粘着剤層Aの数の比率は、1/2以上であり、好ましくは2/3以上であり、より好ましくは3/4以上であり、1であってもよい。 The ratio of the number of adhesive layers A to the total number of adhesive layers included in the optical laminate is 1/2 or more, preferably 2/3 or more, more preferably 3/4 or more, and 1. There may be.
 言うまでもないが、粘着剤層Aの数は整数であることから、粘着剤層の総数Nが奇数のときの粘着剤層Aの数は、N/2以上N以下の整数である。具体的には、Nが3のとき、粘着剤層Aの数は2以上3以下の整数、すなわち、2または3であり、Nが4のとき、粘着剤層Aの数は2以上4以下の整数、すなわち、2、3、または4である。なお、本明細書においては、20℃から30℃まで昇温した際の線膨張係数α1と30℃から20℃まで降温した際の線膨張係数α2とが0.8≦α1/α2≦1.2の関係を満たす粘着剤層全般を粘着剤層Aと称する。よって、光学積層体に含まれる複数の粘着剤層が粘着剤層Aである場合、当該複数の粘着剤層は、0.8≦α1/α2≦1.2の関係を満たす限りにおいて、同一の組成を有する粘着剤組成物で同一の厚みに形成されている必要はなく、異なる組成を有する粘着剤組成物で同一または異なる厚みに形成されていてもよい。 Needless to say, since the number of adhesive layers A is an integer, when the total number N of adhesive layers is an odd number, the number of adhesive layers A is an integer of N/2 or more and N or less. Specifically, when N is 3, the number of adhesive layers A is an integer of 2 or more and 3 or less, that is, 2 or 3, and when N is 4, the number of adhesive layers A is 2 or more and 4 or less. is an integer of 2, 3, or 4. In this specification, the linear expansion coefficient α1 when the temperature is raised from 20°C to 30°C and the linear expansion coefficient α2 when the temperature is lowered from 30°C to 20°C are 0.8≦α1/α2≦1. The adhesive layer in general that satisfies the relationship 2 is referred to as adhesive layer A. Therefore, when the plurality of adhesive layers included in the optical laminate are adhesive layers A, the plurality of adhesive layers have the same adhesive layer as long as the relationship of 0.8≦α1/α2≦1.2 is satisfied. The pressure-sensitive adhesive compositions do not need to have the same thickness, and may have the same or different thicknesses from pressure-sensitive adhesive compositions having different compositions.
 光学積層体の厚みは、例えば100μm以上300μm以下であり、好ましくは110μm以上250μm以下であり、より好ましくは120μm以上200μm以下である。このように全体としての厚みが小さい光学積層体においては、粘着剤層の変形の影響が大きいことから、昇温時と降温時とにおける変形率の差が小さい粘着剤層を用いることによる本発明の効果が好適に得られ得る。 The thickness of the optical laminate is, for example, 100 μm or more and 300 μm or less, preferably 110 μm or more and 250 μm or less, and more preferably 120 μm or more and 200 μm or less. In such an optical laminate having a small overall thickness, the influence of deformation of the adhesive layer is large. Therefore, the present invention uses an adhesive layer that has a small difference in deformation rate when the temperature is raised and when the temperature is lowered. The following effects can be suitably obtained.
 1つの実施形態において、粘着剤層Aの厚みは、例えば1μm以上15μm以下であり、好ましくは2μm以上10μm未満、より好ましくは3μm以上8μm以下である。昇温時と降温時の変形率の差が小さく、かつ、厚みが小さい粘着剤層を用いることにより、光学特性等の安定性に優れた光学積層体を好適に得ることができる。 In one embodiment, the thickness of the adhesive layer A is, for example, 1 μm or more and 15 μm or less, preferably 2 μm or more and less than 10 μm, and more preferably 3 μm or more and 8 μm or less. By using a pressure-sensitive adhesive layer with a small difference in deformation rate when the temperature rises and when the temperature falls, and a small thickness, an optical laminate having excellent stability in optical properties and the like can be suitably obtained.
 以下、図面を参照しながら、本発明の実施形態による光学積層体について具体的に説明する。 Hereinafter, an optical laminate according to an embodiment of the present invention will be specifically described with reference to the drawings.
A-1.実施形態1
 図1Aは、本発明の1つの実施形態による光学積層体の概略断面図である。図1Aに示す光学積層体100aは、第一粘着剤層a1と、偏光部材10と、第二粘着剤層a2と、第一位相差部材20と、第三粘着剤層a3と、保護部材30と、を、この順に有する。具体的には、偏光部材10と第一位相差部材20とが第二粘着剤層a2を介して貼り合わせられ、第一位相差部材20と保護部材30とが第三粘着剤層a3を介して貼り合わせられている。第一粘着剤層a1は、光学積層体100a自身を隣接する部材(例えば、ディスプレイ付きゴーグルを構成する他の部材)と貼り合わせるための粘着剤層であり、その表面は、使用に供されるまでの間、はく離ライナーによって保護されていてもよい。光学積層体100aにおいて、粘着剤層の総数は3であり、その中の2つ以上が上記粘着剤層Aである。
A-1. Embodiment 1
FIG. 1A is a schematic cross-sectional view of an optical laminate according to one embodiment of the invention. The optical laminate 100a shown in FIG. 1A includes a first adhesive layer a1, a polarizing member 10, a second adhesive layer a2, a first retardation member 20, a third adhesive layer a3, and a protective member 30. and, in this order. Specifically, the polarizing member 10 and the first retardation member 20 are bonded together via the second adhesive layer a2, and the first retardation member 20 and the protective member 30 are bonded together via the third adhesive layer a3. It is pasted together. The first adhesive layer a1 is an adhesive layer for bonding the optical laminate 100a itself to an adjacent member (for example, another member constituting goggles with a display), and its surface is used for use. In the meantime, it may be protected by a release liner. In the optical laminate 100a, the total number of adhesive layers is three, and two or more of them are the adhesive layers A described above.
 光学積層体100aの厚みは、例えば100μm以上300μm以下であり、好ましくは110μm以上250μm以下であり、より好ましくは120μm以上200μm以下である。 The thickness of the optical laminate 100a is, for example, 100 μm or more and 300 μm or less, preferably 110 μm or more and 250 μm or less, and more preferably 120 μm or more and 200 μm or less.
<粘着剤層>
 光学積層体100aは、合計で3つの粘着剤層(第一粘着剤層a1、第二粘着剤層a2、および第三粘着剤層a3)を有し、そのうちの少なくとも2つが粘着剤層Aであり、好ましくはすべてが粘着剤層Aである。
<Adhesive layer>
The optical laminate 100a has a total of three adhesive layers (first adhesive layer a1, second adhesive layer a2, and third adhesive layer a3), at least two of which are adhesive layers A. Preferably, all the adhesive layers are adhesive layers A.
 3つの粘着剤層のうち2つが粘着剤層Aである場合、第一粘着剤層a1および第二粘着剤層a2が粘着剤層Aであることが好ましい。光学積層体をVRゴーグルに適用した際に温度変化に対する形状安定性が高い粘着剤層Aを、表示素子および第一位相差部材20の近くに配置することにより、本発明の効果を好適に得ることができる。 When two of the three adhesive layers are adhesive layers A, it is preferable that the first adhesive layer a1 and the second adhesive layer a2 are adhesive layers A. The effects of the present invention can be suitably obtained by arranging the adhesive layer A, which has high shape stability against temperature changes when the optical laminate is applied to VR goggles, near the display element and the first retardation member 20. be able to.
 粘着剤層Aは、上述のとおり、20℃から30℃まで昇温した際の線膨張係数α1と30℃から20℃まで降温した際の線膨張係数α2とが代表的には0.8≦α1/α2≦1.2の関係を満たし、好ましくは0.85≦α1/α2≦1.15、より好ましくは0.9≦α1/α2≦1.1の関係を満たす。このような粘着剤層Aを用いることにより、過酷な環境下であっても光学特性の安定性に優れた光学積層体が得られ得る。粘着剤層Aのα1およびα2はそれぞれ、本発明の効果が得られる限りにおいて制限されず、任意の値であってよい。粘着剤層Aのα1は、例えば5.0×10-4/℃以上7.0×10-4/℃以下であり得る。粘着剤層Aのα2は、例えば5.0×10-4/℃以上7.0×10-4/℃以下、また例えば6.0×10-4/℃以上7.0×10-4/℃以下であり得る。 As mentioned above, the adhesive layer A typically has a linear expansion coefficient α1 when the temperature rises from 20°C to 30°C and a linear expansion coefficient α2 when the temperature falls from 30°C to 20°C of 0.8≦ The relationship α1/α2≦1.2 is satisfied, preferably 0.85≦α1/α2≦1.15, and more preferably the relationship 0.9≦α1/α2≦1.1. By using such an adhesive layer A, an optical laminate with excellent stability of optical properties can be obtained even under harsh environments. α1 and α2 of the adhesive layer A are not limited as long as the effects of the present invention can be obtained, and may be arbitrary values. α1 of the adhesive layer A may be, for example, 5.0×10 −4 /°C or more and 7.0×10 −4 /°C or less. α2 of the adhesive layer A is, for example, 5.0×10 −4 /°C or more and 7.0×10 −4 /°C or less, and for example, 6.0×10 −4 / °C or more and 7.0×10 −4 /°C. It can be below ℃.
 粘着剤層Aは、60℃から70℃まで昇温した際の線膨張係数β1と70℃から60℃まで降温した際の線膨張係数β2とが例えば1.0≦β1/β2≦1.5の関係を満たし、好ましくは1.05≦β1/β2≦1.45、より好ましくは1.1≦β1/β2≦1.4の関係を満たす。このような粘着剤層を用いることにより、過酷な環境下であっても光学特性の安定性に優れた光学積層体が得られ得る。粘着剤層Aのβ1およびβ2はそれぞれ、本発明の効果が得られる限りにおいて制限されず、任意の値であってよい。粘着剤層Aのβ1は、例えば8.0×10-4/℃以上9.0×10-4/℃以下であり得る。粘着剤層Aのβ2は、例えば6.0×10-4/℃以上7.0×10-4/℃以下であり得る。 The adhesive layer A has a coefficient of linear expansion β1 when the temperature is raised from 60°C to 70°C and a coefficient of linear expansion β2 when the temperature is lowered from 70°C to 60°C, for example, 1.0≦β1/β2≦1.5. The following relationship is satisfied, preferably 1.05≦β1/β2≦1.45, more preferably 1.1≦β1/β2≦1.4. By using such an adhesive layer, an optical laminate with excellent stability of optical properties can be obtained even under harsh environments. β1 and β2 of the adhesive layer A are not limited as long as the effects of the present invention can be obtained, and may be arbitrary values. β1 of the adhesive layer A may be, for example, 8.0×10 −4 /°C or more and 9.0×10 −4 /°C or less. β2 of the adhesive layer A may be, for example, 6.0×10 −4 /°C or more and 7.0×10 −4 /°C or less.
 粘着剤層Aの25℃での貯蔵弾性率は、例えば5×10Pa以上、好ましくは10×10Pa以上、より好ましくは12×10Pa以上であり、例えば20×10Pa以下、好ましくは15×10Pa以下である。昇温時と降温時の変形率の差が小さく、かつ、このような貯蔵弾性率を有する粘着剤層を用いることにより、過酷な環境下であっても光学特性の安定性に優れた光学積層体が得られ得る。貯蔵弾性率は、例えば、動的粘弾性測定測定装置(「Advanced Rheometric Expansion System(ARES)」、Rheometric Scientific社製)を用いた、動的粘弾性測定(例えば、パラレルプレート(8.0mmφ)、ねじりモード、周波数範囲1Hzの測定条件)により求めることができる。 The storage modulus of the adhesive layer A at 25° C. is, for example, 5×10 4 Pa or more, preferably 10×10 4 Pa or more, more preferably 12×10 4 Pa or more, and, for example, 20×10 4 Pa or less. , preferably 15×10 4 Pa or less. By using an adhesive layer that has a small difference in deformation rate when the temperature rises and when the temperature falls, and has such a storage modulus, an optical laminate with excellent stability of optical properties even under harsh environments can be achieved. body can be obtained. The storage modulus can be determined by dynamic viscoelasticity measurement (for example, parallel plate (8.0 mmφ), It can be determined using the measurement conditions of torsion mode and frequency range of 1 Hz).
 粘着剤層Aは、任意の適切な粘着剤組成物によって形成され得る。粘着剤層Aを形成する粘着剤組成物としては、アクリル系粘着剤組成物、ゴム系粘着剤組成物、シリコーン系粘着剤組成物、ポリエステル系粘着剤組成物、ウレタン系粘着剤組成物、エポキシ系粘着剤組成物、およびポリエーテル系粘着剤組成物が挙げられる。粘着剤組成物のベース樹脂を形成するモノマーの種類、数、組み合わせおよび配合比、ならびに、架橋剤の配合量、反応温度、反応時間等を調整することにより、目的に応じた所望の特性を有する粘着剤組成物を調製することができる。粘着剤組成物のベースポリマーは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。粘着剤層は、好ましくはベースポリマーとして(メタ)アクリル系ポリマーを含むアクリル系粘着剤組成物で構成される。 The adhesive layer A may be formed from any suitable adhesive composition. The adhesive composition forming the adhesive layer A includes an acrylic adhesive composition, a rubber adhesive composition, a silicone adhesive composition, a polyester adhesive composition, a urethane adhesive composition, and an epoxy adhesive composition. and polyether-based adhesive compositions. By adjusting the type, number, combination and blending ratio of monomers forming the base resin of the adhesive composition, as well as the amount of crosslinking agent, reaction temperature, reaction time, etc., desired characteristics can be achieved according to the purpose. An adhesive composition can be prepared. The base polymer of the adhesive composition may be used alone or in combination of two or more. The adhesive layer is preferably composed of an acrylic adhesive composition containing a (meth)acrylic polymer as a base polymer.
 1つの実施形態において、上記(メタ)アクリル系ポリマーを構成するモノマー成分は、一般式CH=C(R)COOR(ただし、Rは水素またはメチル基であり、Rは炭素数2~14、好ましくは炭素数3~12、より好ましくは炭素数4~9のアルキル基である)で表される(メタ)アクリル系モノマーを主成分として含む。 In one embodiment, the monomer component constituting the (meth)acrylic polymer has the general formula CH 2 =C(R 1 )COOR 2 (wherein R 1 is hydrogen or a methyl group, and R 2 is the number of carbon atoms The main component is a (meth)acrylic monomer represented by an alkyl group having 2 to 14 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 4 to 9 carbon atoms.
 一般式CH=C(R)COORで表される(メタ)アクリル系モノマーとしては、例えば、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、s-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、イソペンチル(メタ)アクリレート、へキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、イソアミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、n-トリデシル(メタ)アクリレート、n-テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等が挙げられる。なかでも、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が好適に用いられる。一般式CH=C(R)COORで表される(メタ)アクリル系モノマーは、単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of the (meth)acrylic monomer represented by the general formula CH 2 =C(R 1 )COOR 2 include ethyl (meth)acrylate, n-butyl (meth)acrylate, s-butyl (meth)acrylate, t -Butyl (meth)acrylate, isobutyl (meth)acrylate, n-pentyl (meth)acrylate, isopentyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, isoamyl (meth)acrylate, 2-ethylhexyl ( meth)acrylate, n-octyl(meth)acrylate, isooctyl(meth)acrylate, n-nonyl(meth)acrylate, isononyl(meth)acrylate, n-decyl(meth)acrylate, isodecyl(meth)acrylate, n-dodecyl( Examples include meth)acrylate, isomyristyl(meth)acrylate, n-tridecyl(meth)acrylate, n-tetradecyl(meth)acrylate, stearyl(meth)acrylate, isostearyl(meth)acrylate, phenoxyethyl(meth)acrylate, etc. . Among them, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, etc. are preferably used. The (meth)acrylic monomer represented by the general formula CH 2 =C(R 1 )COOR 2 may be used alone or in combination of two or more.
 (メタ)アクリル系ポリマーを構成するモノマー成分において、一般式CH=C(R)COORで表される(メタ)アクリル系モノマーの含有割合は、例えば50重量%~98重量%であり、好ましくは60重量%~90重量%であり、より好ましくは70重量%~80重量%である。 In the monomer components constituting the (meth)acrylic polymer, the content of the (meth)acrylic monomer represented by the general formula CH 2 =C(R 1 )COOR 2 is, for example, 50% to 98% by weight. , preferably 60% to 90% by weight, more preferably 70% to 80% by weight.
 (メタ)アクリル系ポリマーを構成するモノマー成分は、好ましくは窒素含有モノマーをさらに含む。上記モノマー成分において、窒素含有モノマーの含有割合は、例えば0.1重量%~35重量%であり、好ましくは3重量%~30重量%であり、より好ましくは5重量%~25重量%である。窒素含有モノマーの含有割合が上記範囲内であれば、加熱環境下および/または高湿環境下での耐久性に優れる粘着剤層が得られ得る。 The monomer component constituting the (meth)acrylic polymer preferably further includes a nitrogen-containing monomer. In the above monomer component, the content of the nitrogen-containing monomer is, for example, 0.1% to 35% by weight, preferably 3% to 30% by weight, and more preferably 5% to 25% by weight. . If the content of the nitrogen-containing monomer is within the above range, a pressure-sensitive adhesive layer with excellent durability in a heated environment and/or a high humidity environment can be obtained.
 窒素含有モノマーは、モノマー構造中に1以上の窒素原子を含有する重合性モノマーであり、イミド基含有モノマー、アミド基含有モノマー等を好ましく例示できる。なかでも、アミド基含有モノマーがより好ましい。上記モノマー成分において、アミド基含有モノマーの含有割合は、例えば3重量%~15重量%、好ましくは5重量%~10重量%である。窒素含有モノマーは、単独で用いてもよく、2種以上を混合して用いてもよい。 The nitrogen-containing monomer is a polymerizable monomer containing one or more nitrogen atoms in the monomer structure, and preferable examples include imide group-containing monomers and amide group-containing monomers. Among these, amide group-containing monomers are more preferred. In the above monomer components, the content of the amide group-containing monomer is, for example, 3% to 15% by weight, preferably 5% to 10% by weight. The nitrogen-containing monomers may be used alone or in combination of two or more.
 イミド基含有モノマーとしては、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-ブチルマレイミド、イタコンイミド等が挙げられる。 Examples of imide group-containing monomers include N-cyclohexylmaleimide, N-phenylmaleimide, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-butylmaleimide, itaconimide, and the like.
 アミド基含有モノマーとしては、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジエチルメタクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル、ダイアセトン(メタ)アクリルアミド、N-ビニルアセトアミド、N,N’-メチレンビス(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-ビニルカプロラクタム等が挙げられる。 As the amide group-containing monomer, (meth)acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N,N-diethylmethacrylamide, N-isopropyl(meth)acrylamide, N- Methylol (meth)acrylamide, N-methoxymethyl (meth)acrylamide, N-butoxymethyl (meth)acrylamide, dimethylaminoethyl (meth)acrylate, t-butylaminoethyl (meth)acrylate, diacetone (meth)acrylamide , N-vinylacetamide, N,N'-methylenebis(meth)acrylamide, N,N-dimethylaminopropyl(meth)acrylamide, N-vinylcaprolactam and the like.
 その他の窒素含有モノマーとしては、アミノ基含有モノマー、(メタ)アクリロニトリル、N-(メタ)アクリロイルモルフォリン、N-ビニル-2-ピロリドン等が挙げられる。 Other nitrogen-containing monomers include amino group-containing monomers, (meth)acrylonitrile, N-(meth)acryloylmorpholine, N-vinyl-2-pyrrolidone, and the like.
 モノマー成分は、(メタ)アクリル系ポリマーのガラス転移点や剥離性を調整するためのその他の重合性モノマーを、本発明の効果を損なわない範囲で含むことができる。 The monomer component can contain other polymerizable monomers for adjusting the glass transition point and peelability of the (meth)acrylic polymer within a range that does not impair the effects of the present invention.
 その他の重合性モノマーとしては、例えば、カルボキシル基含有モノマー、スルホン酸基含有モノマー、リン酸基含有モノマー、ビニルエステルモノマー、芳香族ビニルモノマー等が挙げられ、これらは凝集力、耐熱性等の向上に寄与し得る。また例えば、酸無水物基含有モノマー、ヒドロキシル基含有モノマー、エポキシ基含有モノマー、ビニルエーテルモノマー等が挙げられ、これらは接着力の向上に寄与し得るとともに、架橋化基点として働く官能基を有する。また例えば、炭素数1または炭素数15以上のアルキル基を有する(メタ)アクリル系モノマー等を用いることができる。これらの重合性モノマーは、単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of other polymerizable monomers include carboxyl group-containing monomers, sulfonic acid group-containing monomers, phosphoric acid group-containing monomers, vinyl ester monomers, and aromatic vinyl monomers, which improve cohesive strength, heat resistance, etc. can contribute to Further examples include acid anhydride group-containing monomers, hydroxyl group-containing monomers, epoxy group-containing monomers, vinyl ether monomers, etc., which can contribute to improving adhesive strength and have functional groups that act as crosslinking base points. Further, for example, a (meth)acrylic monomer having an alkyl group having 1 or 15 or more carbon atoms can be used. These polymerizable monomers may be used alone or in combination of two or more.
 カルボキシル基含有モノマーとしては、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸等が挙げられる。なかでも、アクリル酸およびメタクリル酸が好ましく用いられる。 Examples of carboxyl group-containing monomers include acrylic acid, methacrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid, and the like. Among them, acrylic acid and methacrylic acid are preferably used.
 スルホン酸基含有モノマーとしては、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等が挙げられる。 Examples of sulfonic acid group-containing monomers include styrene sulfonic acid, allyl sulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl (meth)acrylate, and (meth)acryloyloxy. Examples include naphthalenesulfonic acid.
 リン酸基含有モノマーとしては、2-ヒドロキシエチルアクリロイルホスフェート等が挙げられる。 Examples of the phosphoric acid group-containing monomer include 2-hydroxyethyl acryloyl phosphate and the like.
 ビニルエステルモノマーとしては、酢酸ビニル、プロピオン酸ビニル、ラウリン酸ビニル、ビニルピロリドン等が挙げられる。 Examples of vinyl ester monomers include vinyl acetate, vinyl propionate, vinyl laurate, vinyl pyrrolidone, and the like.
 芳香族ビニルモノマーとしては、スチレン、クロロスチレン、クロロメチルスチレン、α-メチルスチレン等が挙げられる。 Examples of aromatic vinyl monomers include styrene, chlorostyrene, chloromethylstyrene, α-methylstyrene, and the like.
 酸無水物基含有モノマーとしては、無水マレイン酸、無水イタコン酸等が挙げられる。 Examples of acid anhydride group-containing monomers include maleic anhydride, itaconic anhydride, and the like.
 ヒドロキシル基含有モノマーとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、8-ヒドロキシオクチル(メタ)アクリレート、10-ヒドロキシデシル(メタ)アクリレート、12-ヒドロキシラウリル(メタ)アクリレート、(4-ヒドロキシメチルシクロへキシル)メチルアクリレート、N-メチロール(メタ)アクリルアミド、N-ヒドロキシ(メタ)アクリルアミド、ビニルアルコール、アリルアルコール、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル、ジエチレングリコールモノビニルエーテル等が挙げられる。 Hydroxyl group-containing monomers include 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 6-hydroxyhexyl (meth)acrylate. Acrylate, 8-hydroxyoctyl (meth)acrylate, 10-hydroxydecyl (meth)acrylate, 12-hydroxylauryl (meth)acrylate, (4-hydroxymethylcyclohexyl)methyl acrylate, N-methylol (meth)acrylamide, N -Hydroxy(meth)acrylamide, vinyl alcohol, allyl alcohol, 2-hydroxyethyl vinyl ether, 4-hydroxybutyl vinyl ether, diethylene glycol monovinyl ether, and the like.
 エポキシ基含有モノマーとしては、グリシジル(メタ)アクリレート、アリルグリシジルエーテル等が挙げられる。 Examples of the epoxy group-containing monomer include glycidyl (meth)acrylate, allyl glycidyl ether, and the like.
 ビニルエーテルモノマーとしては、メチルビニルエーテル、エチルビニルエーテル、イソブチルビニルエーテル等が挙げられる。 Examples of vinyl ether monomers include methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, and the like.
 炭素数1または炭素数15以上のアルキル基を有する(メタ)アクリル系モノマーとしては、たとえば、メチル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート等が挙げられる。 Examples of the (meth)acrylic monomer having an alkyl group having 1 or 15 or more carbon atoms include methyl (meth)acrylate, pentadecyl (meth)acrylate, hexadecyl (meth)acrylate, and the like.
 上記モノマー成分において、上記その他の重合性モノマーの含有割合は、例えば0.1重量%~10重量%であり、好ましくは0.2重量%~7重量%であり、より好ましくは0.5重量%~5重量%である。 In the monomer component, the content of the other polymerizable monomers is, for example, 0.1% to 10% by weight, preferably 0.2% to 7% by weight, more preferably 0.5% by weight. % to 5% by weight.
 さらに、上記以外の共重合可能なモノマーとして、ケイ素原子を含有するシラン系モノマー等が挙げられる。シラン系モノマーとしては、3-アクリロキシプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、4-ビニルブチルトリメトキシシラン、4-ビニルブチルトリエトキシシラン、8-ビニルオクチルトリメトキシシラン、8-ビニルオクチルトリエトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、10-アクリロイルオキシデシルトリメトキシシラン、10-メタクリロイルオキシデシルトリエトキシシラン、10-アクリロイルオキシデシルトリエトキシシラン等が挙げられる。シラン系モノマーは、単独で用いてもよく、2種以上を混合して用いてもよい。 Furthermore, examples of copolymerizable monomers other than those mentioned above include silane monomers containing silicon atoms. Examples of silane monomers include 3-acryloxypropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 4-vinylbutyltrimethoxysilane, 4-vinylbutyltriethoxysilane, 8-vinyloctyltrimethoxysilane, -vinyloctyltriethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltriethoxysilane, 10-acryloyloxydecyltriethoxysilane, and the like. The silane monomers may be used alone or in combination of two or more.
 上記シラン系モノマーの配合量は(メタ)アクリル系ポリマー100重量部に対して、0.1重量部~3重量部であることが好ましく、0.5重量部~2重量部であることがより好ましい。シラン系モノマーを共重合させることは、耐久性の向上に好ましい。 The amount of the silane monomer blended is preferably 0.1 parts by weight to 3 parts by weight, more preferably 0.5 parts by weight to 2 parts by weight, based on 100 parts by weight of the (meth)acrylic polymer. preferable. Copolymerizing a silane monomer is preferable for improving durability.
 (メタ)アクリル系ポリマーの重量平均分子量は、例えば60万以上であり、好ましくは150万以上であり、より好ましくは160万以上であり、さらに好ましくは180万以上である。(メタ)アクリル系ポリマーの重量平均分子量は、例えば300万以下であり、好ましくは250万以下である。重量平均分子量が上記範囲内であると、上記α1/α2の関係を満たし、耐久性および作業性に優れる粘着剤層が好適に得られ得る。なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値をいう。 The weight average molecular weight of the (meth)acrylic polymer is, for example, 600,000 or more, preferably 1,500,000 or more, more preferably 1,600,000 or more, and still more preferably 1,800,000 or more. The weight average molecular weight of the (meth)acrylic polymer is, for example, 3 million or less, preferably 2.5 million or less. When the weight average molecular weight is within the above range, an adhesive layer that satisfies the above α1/α2 relationship and has excellent durability and workability can be obtained. Note that the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated based on polystyrene conversion.
 上記(メタ)アクリル系ポリマーのガラス転移温度(Tg)は、粘着性能のバランスが取りやすいことから、例えば-5℃以下、好ましくは-10℃以下である。ガラス転移温度が-5℃より高い場合、ポリマーが流動しにくく被着体への濡れが不十分となり、層間に発生するフクレの原因となる場合がある。なお、(メタ)アクリル系ポリマーのガラス転移温度(Tg)は、用いるモノマー成分や組成比を適宜変えることにより上記範囲内に調整することができる。 The glass transition temperature (Tg) of the above-mentioned (meth)acrylic polymer is, for example, -5°C or lower, preferably -10°C or lower, since it is easy to balance the adhesive performance. If the glass transition temperature is higher than -5°C, the polymer will be difficult to flow, resulting in insufficient wetting of the adherend, which may cause blisters to occur between layers. The glass transition temperature (Tg) of the (meth)acrylic polymer can be adjusted within the above range by appropriately changing the monomer components and composition ratio used.
 (メタ)アクリル系ポリマーの製造は、溶液重合、塊状重合、乳化重合、各種ラジカル重合等の公知の製造方法を適宜選択できる。溶液重合においては、重合溶媒として、たとえば、酢酸エチル、トルエン等が用いられる。具体的な溶液重合例としては、反応は窒素等の不活性ガス気流下で、重合開始剤として、たとえば、モノマー全量100重量部に対して、アゾビスイソブチロニトリル0.01~0.2重量部加え、通常、50~70℃程度で、8~30時間程度行われる。得られる(メタ)アクリル系ポリマーは、ランダム共重合体、ブロック共重合体、グラフト共重合体等のいずれであってもよい。 The (meth)acrylic polymer can be produced by appropriately selecting known production methods such as solution polymerization, bulk polymerization, emulsion polymerization, and various radical polymerizations. In solution polymerization, for example, ethyl acetate, toluene, etc. are used as a polymerization solvent. As a specific example of solution polymerization, the reaction is carried out under a stream of inert gas such as nitrogen, and as a polymerization initiator, for example, 0.01 to 0.2 of azobisisobutyronitrile is used per 100 parts by weight of the total amount of monomers. parts by weight, and the reaction is usually carried out at about 50 to 70°C for about 8 to 30 hours. The (meth)acrylic polymer obtained may be a random copolymer, a block copolymer, a graft copolymer, or the like.
 重合においては、任意の適切な重合開始剤、連鎖移動剤、乳化剤等を、必要に応じて適宜選択して用いることができる。 In the polymerization, any appropriate polymerization initiator, chain transfer agent, emulsifier, etc. can be selected and used as necessary.
 アクリル系粘着剤組成物は、(メタ)アクリル系ポリマーをベースポリマーとして含み、好ましくは過酸化物およびイソシアネート系架橋剤をさらに含む。 The acrylic pressure-sensitive adhesive composition contains a (meth)acrylic polymer as a base polymer, and preferably further contains a peroxide and an isocyanate crosslinking agent.
 過酸化物としては、加熱または光照射によりラジカル活性種を発生して粘着剤組成物のベースポリマーの架橋を進行させるものであれば適宜使用可能であるが、作業性や安定性を勘案して、1分間半減期温度が80℃~160℃である過酸化物を使用することが好ましく、90℃~140℃である過酸化物を使用することがより好ましい。1分間半減期温度が低すぎると、塗布乾燥する前の保存時に反応が進行し、粘度が高くなり塗布不能となる場合があり、一方、1分間半減期温度が高すぎると、架橋反応時の温度が高くなるため副反応が起こり、また未反応の過酸化物が多く残存して経時での架橋が進行する場合がある。 Any peroxide can be used as appropriate, as long as it generates radically active species upon heating or irradiation with light and promotes crosslinking of the base polymer of the adhesive composition. However, in consideration of workability and stability, It is preferable to use a peroxide having a 1 minute half-life temperature of 80°C to 160°C, more preferably a peroxide having a 1 minute half-life temperature of 90°C to 140°C. If the 1-minute half-life temperature is too low, the reaction may progress during storage before coating and drying, increasing the viscosity and making it impossible to apply. On the other hand, if the 1-minute half-life temperature is too high, As the temperature increases, side reactions may occur, and a large amount of unreacted peroxide may remain, resulting in progress of crosslinking over time.
 過酸化物としては、ジ(2-エチルヘキシル)パーオキシジカーボネート(1分間半減期温度:90.6℃)、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度:92.1℃)、ジ-sec-ブチルパーオキシジカーボネート(1分間半減期温度:92.4℃)、t-ブチルパーオキシネオデカノエート(1分間半減期温度:103.5℃)、t-ヘキシルパーオキシピバレート(1分間半減期温度:109.1℃)、t-ブチルパーオキシピバレート(1分間半減期温度:110.3℃)、ジラウロイルパーオキシド(1分間半減期温度:116.4℃)、ジ-n-オクタノイルパーオキシド(1分間半減期温度:117.4℃)、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート(1分間半減期温度:124.3℃)、ジ(4-メチルベンゾイル)パーオキシド(1分間半減期温度:128.2℃)、ジベンゾイルパーオキシド(1分間半減期温度:130.0℃)、t-ブチルパーオキシイソブチレート(1分間半減期温度:136.1℃)、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン(1分間半減期温度:149.2℃)等が挙げられる。なかでも、架橋反応効率が優れることから、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(1分間半減期温度:92.1℃)、ジラウロイルパーオキシド(1分間半減期温度:116.4℃)、ジベンゾイルパーオキシド(1分間半減期温度:130.0℃)等が好ましく用いられる。過酸化物は、単独で用いてもよく、2種以上を混合して用いてもよい。 Peroxides include di(2-ethylhexyl) peroxydicarbonate (1 minute half-life temperature: 90.6°C), di(4-t-butylcyclohexyl) peroxydicarbonate (1 minute half-life temperature: 92°C). .1°C), di-sec-butyl peroxydicarbonate (1 minute half-life temperature: 92.4°C), t-butyl peroxyneodecanoate (1 minute half-life temperature: 103.5°C), t -Hexyl peroxypivalate (1 minute half-life temperature: 109.1°C), t-butyl peroxypivalate (1 minute half-life temperature: 110.3°C), dilauroyl peroxide (1 minute half-life temperature: 116.4°C), di-n-octanoyl peroxide (1 minute half-life temperature: 117.4°C), 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate (1 minute Half-life temperature: 124.3°C), di(4-methylbenzoyl) peroxide (1-minute half-life temperature: 128.2°C), dibenzoyl peroxide (1-minute half-life temperature: 130.0°C), t- Examples include butyl peroxyisobutyrate (1 minute half-life temperature: 136.1°C), 1,1-di(t-hexylperoxy)cyclohexane (1 minute half-life temperature: 149.2°C), and the like. Among them, di(4-t-butylcyclohexyl) peroxydicarbonate (1-minute half-life temperature: 92.1°C) and dilauroyl peroxide (1-minute half-life temperature: 116.9°C) have excellent crosslinking reaction efficiency. 4°C), dibenzoyl peroxide (1 minute half-life temperature: 130.0°C), etc. are preferably used. Peroxides may be used alone or in combination of two or more.
 なお、過酸化物の半減期とは、過酸化物の分解速度を表す指標であり、過酸化物の残存量が半分になるまでの時間をいう。任意の時間で半減期を得るための分解温度や、任意の温度での半減期時間に関しては、メーカーカタログ等に記載されており、たとえば、日本油脂株式会社の「有機過酸化物カタログ第9版(2003年5月)」等に記載されている。 Note that the half-life of peroxide is an index representing the decomposition rate of peroxide, and refers to the time until the remaining amount of peroxide is reduced to half. The decomposition temperature to obtain a half-life at a given time and the half-life time at a given temperature are described in manufacturer catalogs, etc. For example, the "Organic Peroxide Catalog 9th Edition" by Nippon Oil & Fats Co., Ltd. (May 2003)” etc.
 過酸化物の配合量は、(メタ)アクリル系ポリマー100重量部に対し、例えば0.02重量部~2重量部であり、好ましく0.04重量部~1.5重量部であり、より好ましくは0.05重量部~1重量部である。過酸化物の配合量が上記範囲内であると、耐久性および接着性に優れた粘着剤層が得られ得る。 The amount of peroxide blended is, for example, 0.02 parts by weight to 2 parts by weight, preferably 0.04 parts by weight to 1.5 parts by weight, more preferably is 0.05 part by weight to 1 part by weight. When the amount of peroxide is within the above range, a pressure-sensitive adhesive layer with excellent durability and adhesiveness can be obtained.
 イソシアネート系架橋剤としては、トリレンジイソシアネート、キシレンジイソシアネート等の芳香族イソシアネート、イソホロンジイソシアネート等の脂環族イソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート等が挙げられる。イソシアネート系架橋剤は、単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of the isocyanate-based crosslinking agent include aromatic isocyanates such as tolylene diisocyanate and xylene diisocyanate, alicyclic isocyanates such as isophorone diisocyanate, and aliphatic isocyanates such as hexamethylene diisocyanate. Isocyanate crosslinking agents may be used alone or in combination of two or more.
 より具体的には、ブチレンジイソシアネート、ヘキサメチレンジイソシアネート等の低級脂肪族ポリイソシアネート類、シクロペンチレンジイソシアネート、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート等の脂環族イソシアネート類、2,4-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニルイソシアネート等の芳香族ジイソシアネート類、トリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名コロネートL)、トリメチロールプロパン/ヘキサメチレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名コロネートHL)、ヘキサメチレンジイソシアネートのイソシアヌレート体(日本ポリウレタン工業社製、商品名コロネートHX)等のイソシアネート付加物、ポリエーテルポリイソシアネート、ポリエステルポリイソシアネート、ならびにこれらと各種のポリオールとの付加物、イソシアヌレート結合、ビューレット結合、アロファネート結合等で多官能化したポリイソシアネート等を挙げることができる。 More specifically, lower aliphatic polyisocyanates such as butylene diisocyanate and hexamethylene diisocyanate, alicyclic isocyanates such as cyclopentylene diisocyanate, cyclohexylene diisocyanate and isophorone diisocyanate, 2,4-tolylene diisocyanate, 4, Aromatic diisocyanates such as 4'-diphenylmethane diisocyanate, xylylene diisocyanate, and polymethylene polyphenylisocyanate, trimethylolpropane/tolylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo Co., Ltd., trade name Coronate L), trimethylolpropane / Isocyanate adducts such as hexamethylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Kogyo Co., Ltd., trade name Coronate HL), isocyanurate of hexamethylene diisocyanate (manufactured by Nippon Polyurethane Kogyo Co., Ltd., trade name Coronate HX), polyether poly Examples include isocyanates, polyester polyisocyanates, adducts of these with various polyols, polyisocyanates polyfunctionalized with isocyanurate bonds, biuret bonds, allophanate bonds, etc.
 イソシアネート系架橋剤の配合量は、(メタ)アクリル系ポリマー100重量部に対し、例えば0.02重量部~2重量部であり、好ましくは0.04重量部~1.5重量部であり、より好ましくは0.05重量部~1重量部である。イソシアネート系架橋剤の配合量が上記範囲内であると、凝集力および接着性に優れた粘着剤層が得られ得る。 The blending amount of the isocyanate crosslinking agent is, for example, 0.02 parts by weight to 2 parts by weight, preferably 0.04 parts by weight to 1.5 parts by weight, based on 100 parts by weight of the (meth)acrylic polymer. More preferably, it is 0.05 part by weight to 1 part by weight. When the amount of the isocyanate crosslinking agent is within the above range, a pressure-sensitive adhesive layer with excellent cohesive force and adhesiveness can be obtained.
 架橋剤(過酸化物およびイソシアネート系架橋剤)の配合量は、架橋された粘着剤層のゲル分率が、例えば45重量%~95重量%、好ましくは50重量%~90重量%、より好ましくは55重量%~85重量%となるように調整される。ゲル分率が上記範囲内である粘着剤層は、耐久性および接着性に優れる。 The blending amount of the crosslinking agent (peroxide and isocyanate crosslinking agent) is such that the gel fraction of the crosslinked adhesive layer is, for example, 45% to 95% by weight, preferably 50% to 90% by weight, more preferably is adjusted to be 55% to 85% by weight. An adhesive layer having a gel fraction within the above range has excellent durability and adhesiveness.
 粘着剤層のゲル分率(重量%)は、粘着剤層の乾燥重量W1(g)を酢酸エチルに約23℃下で7日間浸漬した後、上記粘着剤層の不溶分を酢酸エチル中から取り出し、乾燥後の重量W2(g)を測定し、(W2/W1)×100として計算される値であり得る。 The gel fraction (wt%) of the adhesive layer is determined by immersing the dry weight W1 (g) of the adhesive layer in ethyl acetate at about 23°C for 7 days, and then removing the insoluble content of the adhesive layer from ethyl acetate. The weight W2 (g) after being taken out and dried is measured, and may be a value calculated as (W2/W1)×100.
 過酸化物およびイソシアネート系架橋剤の配合量、架橋処理温度、架橋処理時間等を調整することにより、上記ゲル分率を所望の範囲に調整することができる。 The gel fraction can be adjusted to a desired range by adjusting the amount of peroxide and isocyanate crosslinking agent, crosslinking temperature, crosslinking time, etc.
 架橋処理温度や架橋処理時間は、粘着剤組成物に含まれる過酸化物の分解量が50重量%以上になるように設定することが好ましく、60重量%以上になるように設定することがより好ましく、70重量%以上になるように設定することがさらに好ましい。 The crosslinking temperature and crosslinking time are preferably set so that the decomposed amount of peroxide contained in the adhesive composition is 50% by weight or more, more preferably 60% by weight or more. Preferably, it is more preferably set to 70% by weight or more.
 例えば、架橋処理温度が1分間半減期温度では、1分間で過酸化物の分解量は50重量%であり、2分間で過酸化物の分解量は75重量%であり、1分間以上の架橋処理時間が必要となる。また、例えば、架橋処理温度における過酸化物の半減期(半減時間)が30秒であれば、30秒以上の架橋処理時間が必要となり、また、例えば、架橋処理温度における過酸化物の半減期(半減時間)が5分であれば、5分間以上の架橋処理時間が必要となる。 For example, when the crosslinking treatment temperature is 1 minute half-life temperature, the amount of peroxide decomposed in 1 minute is 50% by weight, and the amount of peroxide decomposed in 2 minutes is 75% by weight. Processing time is required. Further, for example, if the half-life (half-life time) of peroxide at the cross-linking temperature is 30 seconds, a cross-linking time of 30 seconds or more is required; If the (half-life time) is 5 minutes, a crosslinking treatment time of 5 minutes or more is required.
 このように、使用する過酸化物によって架橋処理温度や架橋処理時間は、過酸化物が一次比例すると仮定して半減期(半減時間)から理論計算により算出することが可能であり、添加量を適宜調節することができる。一方、より高温にするほど、副反応が生じる可能性が高くなることから、架橋処理温度は170℃以下であることが好ましい。 In this way, depending on the peroxide used, the crosslinking treatment temperature and crosslinking treatment time can be calculated theoretically from the half-life (half-life time) assuming that the peroxide is linearly proportional. It can be adjusted as appropriate. On the other hand, since the higher the temperature, the higher the possibility of side reactions occurring, the crosslinking treatment temperature is preferably 170°C or lower.
 架橋処理時間は、通常0.2分~20分程度であり、好ましくは0.5分~10分程度である。 The crosslinking treatment time is usually about 0.2 minutes to 20 minutes, preferably about 0.5 minutes to 10 minutes.
 架橋処理は、粘着剤層の乾燥工程時の温度で行ってもよいし、乾燥工程後に別途架橋処理工程を設けて行ってもよい。 The crosslinking process may be performed at the temperature during the drying process of the adhesive layer, or a separate crosslinking process may be performed after the drying process.
 粘着剤組成物には、接着力、耐久力を上げる目的でシランカップリング剤を配合してもよい。シランカップリング剤としては、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ基含有シランカップリング剤、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミン等のアミノ基含有シランカップリング剤、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン等の(メタ)アクリル基含有シランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のインシアネート基含有シランカップリング剤等が挙げられる。シランカップリング剤は単独で用いてもよく、2種以上を混合して用いてもよい。 A silane coupling agent may be added to the adhesive composition for the purpose of increasing adhesive strength and durability. Examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, and 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. Epoxy group-containing silane coupling agents such as methoxysilane, 3-aminopropyltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N-(1,3- Silane coupling agents containing amino groups such as dimethylbutylidene) propylamine, silane coupling agents containing (meth)acrylic groups such as 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-isocyanatepropyl Examples include incyanate group-containing silane coupling agents such as triethoxysilane. The silane coupling agents may be used alone or in combination of two or more.
 シランカップリング剤の配合量は、(メタ)アクリル系ポリマー100重量部に対し、例えば0.01重量部~1重量部、好ましくは0.02重量部~0.6重量部、より好ましくは0.05重量部~0.3重量部である。 The blending amount of the silane coupling agent is, for example, 0.01 part by weight to 1 part by weight, preferably 0.02 part to 0.6 part by weight, more preferably 0. The amount is .05 parts by weight to 0.3 parts by weight.
 上記粘着剤組成物は、必要に応じて、任意の適切な添加剤をさらに含んでもよい。添加剤としては、界面活性剤、可塑剤、粘着性付与剤、表面潤滑剤、レベリング剤、軟化剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、重合禁止剤等が挙げられる。制御できる範囲内で、還元剤を加えてもよい。 The above-mentioned pressure-sensitive adhesive composition may further contain any suitable additives, if necessary. Examples of additives include surfactants, plasticizers, tackifiers, surface lubricants, leveling agents, softeners, antioxidants, anti-aging agents, light stabilizers, ultraviolet absorbers, polymerization inhibitors, etc. . A reducing agent may be added within a controllable range.
 上記粘着剤組成物を架橋することによって粘着剤層Aが好適に得られ得る。上記粘着剤組成物を架橋して得られる粘着剤層Aは、昇温時と降温時の変形率の差が小さく、また、薄層化した場合であっても、高温高湿下での耐久性に優れる。粘着剤組成物は、所望の部材(図1Aの構成においては、偏光部材、第一位相差部材、または保護部材)の表面に塗布された後に架橋されてもよく、はく離ライナー等の支持体上に塗布され、架橋された後に所望の部材に転写されてもよい。 The adhesive layer A can be suitably obtained by crosslinking the above adhesive composition. The adhesive layer A obtained by crosslinking the above adhesive composition has a small difference in deformation rate when the temperature rises and when the temperature falls, and even when the layer is made thin, it has durability under high temperature and high humidity conditions. Excellent in sex. The adhesive composition may be crosslinked after being applied to the surface of a desired member (in the configuration of FIG. 1A, the polarizing member, the first retardation member, or the protective member), and may be applied onto a support such as a release liner. The material may be applied to a material, crosslinked, and then transferred to a desired member.
 粘着剤層Aの厚みは、上述のとおり、例えば1μm以上15μm以下、好ましくは2μm以上10μm未満、より好ましくは3μm以上8μm以下である。 As mentioned above, the thickness of the adhesive layer A is, for example, 1 μm or more and 15 μm or less, preferably 2 μm or more and less than 10 μm, and more preferably 3 μm or more and 8 μm or less.
 光学積層体は、上記粘着剤層A以外の粘着剤層を含むことができる。このような粘着剤層もまた、任意の適切な粘着剤組成物によって形成され得る。粘着剤層A以外の粘着剤層を形成する粘着剤組成物としては、アクリル系粘着剤組成物、ゴム系粘着剤組成物、シリコーン系粘着剤組成物、ポリエステル系粘着剤組成物、ウレタン系粘着剤組成物、エポキシ系粘着剤組成物、およびポリエーテル系粘着剤組成物が挙げられる。透明性、耐熱性等に優れることから、アクリル系粘着剤組成物が好ましく用いられる。 The optical laminate can include an adhesive layer other than the adhesive layer A described above. Such an adhesive layer may also be formed from any suitable adhesive composition. Adhesive compositions forming adhesive layers other than adhesive layer A include acrylic adhesive compositions, rubber adhesive compositions, silicone adhesive compositions, polyester adhesive compositions, and urethane adhesive compositions. Examples include adhesive compositions, epoxy adhesive compositions, and polyether adhesive compositions. Acrylic pressure-sensitive adhesive compositions are preferably used because they have excellent transparency, heat resistance, and the like.
 粘着剤層A以外の粘着剤層の25℃での貯蔵弾性率は、例えば5×10Pa以上、好ましくは10×10Pa以上、より好ましくは14×10Pa以上であり、例えば20×10Pa以下、好ましくは15×10Pa以下である。 The storage modulus at 25° C. of the adhesive layers other than adhesive layer A is, for example, 5 × 10 4 Pa or more, preferably 10 × 10 4 Pa or more, more preferably 14 × 10 4 Pa or more, for example, 20 ×10 4 Pa or less, preferably 15 × 10 4 Pa or less.
 粘着剤層A以外の粘着剤層の厚みは、例えば12μm以上100μm以下、好ましくは12μm以上80μm以下である。 The thickness of the adhesive layers other than adhesive layer A is, for example, 12 μm or more and 100 μm or less, preferably 12 μm or more and 80 μm or less.
<偏光部材>
 偏光部材10は、代表的には、二色性物質を含む樹脂フィルム(吸収型偏光膜と称する場合がある)を含む吸収型偏光部材であり、必要に応じて、その片側又は両側に保護層をさらに含み得る。保護層は、代表的には、任意の適切な接着剤層を介して吸収型偏光膜に貼り合わされている。接着剤層を形成する接着剤として、代表的には紫外線硬化型接着剤が挙げられる。
<Polarizing member>
The polarizing member 10 is typically an absorption type polarizing member including a resin film containing a dichroic substance (sometimes referred to as an absorption type polarizing film), and if necessary, a protective layer is provided on one or both sides thereof. may further include. The protective layer is typically bonded to the absorption polarizing film via any suitable adhesive layer. A typical example of the adhesive forming the adhesive layer is an ultraviolet curable adhesive.
 偏光部材(吸収型偏光膜)の直交透過率(Tc)は、0.5%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.05%以下である。偏光部材(吸収型偏光膜)の単体透過率(Ts)は、例えば41.0%~45.0%であり、好ましくは42.0%以上である。偏光部材(吸収型偏光膜)の偏光度(P)は、例えば99.0%~99.997%であり、好ましくは99.9%以上である。 The cross transmittance (Tc) of the polarizing member (absorbing polarizing film) is preferably 0.5% or less, more preferably 0.1% or less, and still more preferably 0.05% or less. The single transmittance (Ts) of the polarizing member (absorbing polarizing film) is, for example, 41.0% to 45.0%, preferably 42.0% or more. The degree of polarization (P) of the polarizing member (absorbing polarizing film) is, for example, 99.0% to 99.997%, preferably 99.9% or more.
 上記直交透過率、単体透過率および偏光度は、例えば、紫外可視分光光度計を用いて測定することができる。偏光度Pは、紫外可視分光光度計を用いて、単体透過率Ts、平行透過率Tpおよび直交透過率Tcを測定し、得られたTpおよびTcから、下記式により求めることができる。なお、Ts、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。
 偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
The above-mentioned orthogonal transmittance, single transmittance, and degree of polarization can be measured using, for example, an ultraviolet-visible spectrophotometer. The degree of polarization P can be determined by measuring the single transmittance Ts, parallel transmittance Tp, and cross transmittance Tc using an ultraviolet-visible spectrophotometer, and from the obtained Tp and Tc using the following formula. Note that Ts, Tp, and Tc are Y values measured using a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
Polarization degree P (%) = {(Tp-Tc)/(Tp+Tc)} 1/2 ×100
 吸収型偏光膜の厚みは、例えば1μm以上20μm以下であり、2μm以上15μm以下であってもよく、12μm以下であってもよく、10μm以下であってもよく、8μm以下であってもよく、5μm以下であってもよい。 The thickness of the absorption type polarizing film is, for example, 1 μm or more and 20 μm or less, may be 2 μm or more and 15 μm or less, may be 12 μm or less, may be 10 μm or less, or may be 8 μm or less, It may be 5 μm or less.
 上記吸収型偏光膜は、単層の樹脂フィルムから作製してもよく、二層以上の積層体を用いて作製してもよい。 The above-mentioned absorption type polarizing film may be produced from a single layer resin film, or may be produced using a laminate of two or more layers.
 単層の樹脂フィルムから作製する場合、例えば、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理、延伸処理等を施すことにより吸収型偏光膜を得ることができる。中でも、PVA系フィルムをヨウ素で染色し一軸延伸して得られる吸収型偏光膜が好ましい。 When manufacturing from a single-layer resin film, for example, a hydrophilic polymer film such as a polyvinyl alcohol (PVA) film, a partially formalized PVA film, or a partially saponified ethylene/vinyl acetate copolymer film is coated with iodine or dichloromethane. An absorption type polarizing film can be obtained by performing a dyeing treatment with a dichroic substance such as a color dye, a stretching treatment, and the like. Among these, an absorption type polarizing film obtained by dyeing a PVA film with iodine and uniaxially stretching it is preferred.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。 The above-mentioned staining with iodine is performed, for example, by immersing the PVA-based film in an iodine aqueous solution. The stretching ratio of the above-mentioned uniaxial stretching is preferably 3 to 7 times. Stretching may be performed after the dyeing process or may be performed while dyeing. Alternatively, it may be dyed after being stretched. If necessary, the PVA film is subjected to swelling treatment, crosslinking treatment, washing treatment, drying treatment, etc.
 上記二層以上の積層体を用いて作製する場合の積層体としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる吸収型偏光膜は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を吸収型偏光膜とすること;により作製され得る。本実施形態においては、好ましくは、樹脂基材の片側に、ハロゲン化物とポリビニルアルコール系樹脂とを含むポリビニルアルコール系樹脂層を形成する。延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。加えて、本実施形態においては、好ましくは、積層体は、長手方向に搬送しながら加熱することにより幅方向に2%以上収縮させる乾燥収縮処理に供される。代表的には、本実施形態の製造方法は、積層体に、空中補助延伸処理と染色処理と水中延伸処理と乾燥収縮処理とをこの順に施すことを含む。補助延伸を導入することにより、熱可塑性樹脂上にPVAを塗布する場合でも、PVAの結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVAの配向性を事前に高めることで、後の染色工程や延伸工程で水に浸漬された時に、PVAの配向性の低下や溶解等の問題を防止することができ、高い光学特性を達成することが可能になる。さらに、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理等、積層体を液体に浸漬して行う処理工程を経て得られる吸収型偏光膜の光学特性は向上し得る。さらに、乾燥収縮処理により積層体を幅方向に収縮させることにより、光学特性を向上させることができる。得られた樹脂基材/吸収型偏光膜の積層体はそのまま用いてもよく(すなわち、樹脂基材を吸収型偏光膜の保護層としてもよく)、樹脂基材/吸収型偏光膜の積層体から樹脂基材を剥離した剥離面に、もしくは、剥離面とは反対側の面に目的に応じた任意の適切な保護層を積層して用いてもよい。このような吸収型偏光膜の製造方法の詳細は、例えば特開2012-73580号公報、特許第6470455号に記載されている。これらの公報は、その全体の記載が本明細書に参考として援用される。 The laminate produced using the above-mentioned laminate of two or more layers is a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or a laminate of a resin base material and a PVA resin layer (PVA resin film) laminated on the resin base material, or Examples include a laminate of a material and a PVA-based resin layer formed by coating on the resin base material. An absorption type polarizing film obtained by using a laminate of a resin base material and a PVA resin layer coated on the resin base material can be obtained by, for example, applying a PVA resin solution to the resin base material, drying it, and applying the resin. Forming a PVA-based resin layer on a base material to obtain a laminate of the resin base material and the PVA-based resin layer; stretching and dyeing the laminate to make the PVA-based resin layer an absorption type polarizing film. can be produced by; In this embodiment, preferably, a polyvinyl alcohol resin layer containing a halide and a polyvinyl alcohol resin is formed on one side of the resin base material. Stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, the stretching may further include stretching the laminate in air at a high temperature (for example, 95° C. or higher) before stretching in the boric acid aqueous solution, if necessary. In addition, in the present embodiment, the laminate is preferably subjected to a drying shrinkage treatment in which the laminate is heated while being conveyed in the longitudinal direction to shrink by 2% or more in the width direction. Typically, the manufacturing method of this embodiment includes subjecting the laminate to an in-air auxiliary stretching process, a dyeing process, an underwater stretching process, and a drying shrinkage process in this order. By introducing auxiliary stretching, even when PVA is applied onto a thermoplastic resin, it becomes possible to improve the crystallinity of PVA and achieve high optical properties. At the same time, by increasing the orientation of PVA in advance, it is possible to prevent problems such as deterioration of orientation and dissolution of PVA when it is immersed in water during the subsequent dyeing and stretching processes, resulting in high optical properties. becomes possible to achieve. Furthermore, when the PVA-based resin layer is immersed in a liquid, disturbance in the orientation of polyvinyl alcohol molecules and deterioration of orientation can be suppressed compared to when the PVA-based resin layer does not contain a halide. Thereby, the optical properties of an absorption type polarizing film obtained through a treatment process performed by immersing the laminate in a liquid, such as dyeing treatment and underwater stretching treatment, can be improved. Furthermore, optical properties can be improved by shrinking the laminate in the width direction by drying shrinkage treatment. The obtained resin base material/absorption type polarizing film laminate may be used as is (that is, the resin base material may be used as a protective layer of the absorption type polarizing film), or the resin base material/absorption type polarizing film laminate may be used as is. Any suitable protective layer depending on the purpose may be laminated on the peeled surface from which the resin base material is peeled off, or on the surface opposite to the peeled surface. Details of the manufacturing method of such an absorption type polarizing film are described in, for example, Japanese Patent Application Publication No. 2012-73580 and Japanese Patent No. 6470455. The entire descriptions of these publications are incorporated herein by reference.
 保護層は、吸収型偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、ポリノルボルネン系等のシクロオレフィン(COP)系、ポリエチレンテレフタレート(PET)系等のポリエステル系、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリカーボネート(PC)系、(メタ)アクリル系、ポリビニルアルコール系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリオレフィン系、アセテート系等の透明樹脂が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。樹脂フィルムの材料は、単独でまたは組み合わせて使用できる。 The protective layer is formed of any suitable film that can be used as a protective layer of an absorption polarizing film. Specific examples of materials that are the main components of the film include cycloolefin (COP) systems such as polynorbornene systems, polyester systems such as polyethylene terephthalate (PET) systems, cellulose resins such as triacetyl cellulose (TAC), and polycarbonate. Examples include transparent resins such as (PC), (meth)acrylic, polyvinyl alcohol, polyamide, polyimide, polyethersulfone, polysulfone, polystyrene, polyolefin, and acetate. Further, thermosetting resins or ultraviolet curable resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone resins may also be mentioned. Other examples include glassy polymers such as siloxane polymers. Furthermore, the polymer film described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in its side chain, and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in its side chain. For example, a resin composition containing an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile/styrene copolymer can be used. The polymer film may be, for example, an extrusion molded product of the resin composition. The materials for the resin film can be used alone or in combination.
 保護層の厚みは、代表的には100μm以下であり、例えば5μm~80μm、好ましくは10μm~50μm、より好ましくは15μm~35μmである。 The thickness of the protective layer is typically 100 μm or less, for example 5 μm to 80 μm, preferably 10 μm to 50 μm, more preferably 15 μm to 35 μm.
<第一位相差部材>
 第一位相差部材20は、第1のλ/4部材20aを含む。第1のλ/4部材20aは、偏光部材10(吸収型偏光膜)の吸収軸と第1のλ/4部材20aの遅相軸とのなす角度が、好ましくは40°~50°、より好ましくは42°~48°、例えば約45°となるように配置されている。
<First phase difference member>
The first phase difference member 20 includes a first λ/4 member 20a. In the first λ/4 member 20a, the angle between the absorption axis of the polarizing member 10 (absorbing polarizing film) and the slow axis of the first λ/4 member 20a is preferably 40° to 50°, more preferably 40° to 50°. Preferably, the angle is 42° to 48°, for example about 45°.
 第1のλ/4部材20aの面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第1のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第1のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The in-plane retardation Re (550) of the first λ/4 member 20a is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. Good too. The first λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. Re(450)/Re(550) of the first λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 第1のλ/4部材は、好ましくは、屈折率特性がnx>ny≧nzの関係を示す。ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。第1のλ/4部材のNz係数は、好ましくは0.9~3であり、より好ましくは0.9~2.5であり、さらに好ましくは0.9~1.5であり、特に好ましくは0.9~1.3である。 The first λ/4 member preferably exhibits a refractive index characteristic of nx>ny≧nz. Here, "ny=nz" includes not only the case where ny and nz are completely equal, but also the case where ny and nz are substantially equal. Therefore, there may be a case where ny<nz within a range that does not impair the effects of the present invention. The Nz coefficient of the first λ/4 member is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, and particularly preferably is 0.9 to 1.3.
 第1のλ/4部材は、上記特性を満足し得る任意の適切な材料で形成される。第1のλ/4部材は、例えば、樹脂フィルムの延伸フィルムまたは液晶化合物の配向固化層であり得る。 The first λ/4 member is formed of any suitable material that can satisfy the above characteristics. The first λ/4 member may be, for example, a stretched resin film or an oriented solidified layer of a liquid crystal compound.
 上記樹脂フィルムに含まれる樹脂としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂等が挙げられる。これらの樹脂は、単独で用いてもよく、組み合わせて用いてもよい。組み合わせる方法としては、例えば、ブレンド、共重合が挙げられる。第1のλ/4部材が逆分散波長特性を示す場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)を含む樹脂フィルムが好適に用いられ得る。 The resins contained in the above resin film include polycarbonate resin, polyester carbonate resin, polyester resin, polyvinyl acetal resin, polyarylate resin, cyclic olefin resin, cellulose resin, polyvinyl alcohol resin, and polyamide resin. , polyimide resin, polyether resin, polystyrene resin, acrylic resin, and the like. These resins may be used alone or in combination. Examples of the combination method include blending and copolymerization. When the first λ/4 member exhibits reverse dispersion wavelength characteristics, a resin film containing a polycarbonate resin or a polyester carbonate resin (hereinafter sometimes simply referred to as a polycarbonate resin) may be suitably used.
 上記ポリカーボネート系樹脂としては、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、第1のλ/4部材に好適に用いられ得るポリカーボネート系樹脂および第1のλ/4部材の形成方法の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、これらの公報の記載は本明細書に参考として援用される。 Any suitable polycarbonate resin can be used as the polycarbonate resin. For example, polycarbonate resins contain structural units derived from fluorene-based dihydroxy compounds, structural units derived from isosorbide-based dihydroxy compounds, alicyclic diols, alicyclic dimethanols, di-, tri-, or polyethylene glycols, and alkylene-based dihydroxy compounds. a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycol or spiroglycol. Preferably, the polycarbonate resin contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or a di, tri, or polyethylene glycol. More preferably, it contains a structural unit derived from a fluorene dihydroxy compound, a structural unit derived from an isosorbide dihydroxy compound, and a structural unit derived from di, tri or polyethylene glycol. . The polycarbonate resin may contain structural units derived from other dihydroxy compounds as necessary. In addition, details of the polycarbonate resin that can be suitably used for the first λ/4 member and the method for forming the first λ/4 member can be found in, for example, JP 2014-10291A and JP 2014-26266A. , JP 2015-212816, A, JP 2015-212817, and JP 2015-212818, and the descriptions of these publications are incorporated herein by reference.
 樹脂フィルムの延伸フィルムで構成される第1のλ/4部材の厚みは、例えば10μm~100μmであり、好ましくは10μm~70μmであり、より好ましくは20μm~60μmである。 The thickness of the first λ/4 member made of a stretched resin film is, for example, 10 μm to 100 μm, preferably 10 μm to 70 μm, and more preferably 20 μm to 60 μm.
 上記液晶化合物の配向固化層は、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層である。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。第1のλ/4部材においては、代表的には、棒状の液晶化合物が第1のλ/4部材の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。棒状の液晶化合物として、例えば、液晶ポリマーおよび液晶モノマーが挙げられる。液晶化合物は、好ましくは、重合可能である。液晶化合物が重合可能であると、液晶化合物を配向させた後に重合させることで、液晶化合物の配向状態を固定できる。 The liquid crystal compound alignment and solidification layer is a layer in which the liquid crystal compound is aligned in a predetermined direction within the layer, and the alignment state is fixed. In addition, the "alignment hardened layer" is a concept that includes an orientation hardened layer obtained by curing a liquid crystal monomer as described below. In the first λ/4 member, rod-shaped liquid crystal compounds are typically aligned in the slow axis direction of the first λ/4 member (homogeneous alignment). Examples of rod-shaped liquid crystal compounds include liquid crystal polymers and liquid crystal monomers. The liquid crystal compound is preferably polymerizable. If the liquid crystal compound is polymerizable, the alignment state of the liquid crystal compound can be fixed by aligning the liquid crystal compound and then polymerizing it.
 上記液晶化合物の配向固化層(液晶配向固化層)は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 The liquid crystal compound alignment and solidification layer (liquid crystal alignment solidification layer) is produced by subjecting the surface of a predetermined base material to an alignment treatment, applying a coating liquid containing the liquid crystal compound to the surface, and subjecting the liquid crystal compound to the alignment treatment. It can be formed by orienting it in a corresponding direction and fixing the orientation state. Any suitable orientation treatment may be employed as the orientation treatment. Specifically, mechanical alignment treatment, physical alignment treatment, and chemical alignment treatment can be mentioned. Specific examples of mechanical alignment treatment include rubbing treatment and stretching treatment. Specific examples of physical alignment treatment include magnetic field alignment treatment and electric field alignment treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo alignment treatment. As the treatment conditions for various orientation treatments, any appropriate conditions may be adopted depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。 The alignment of the liquid crystal compound is carried out by treatment at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is oriented in accordance with the orientation treatment direction of the substrate surface.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性または架橋性である場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is polymerizable or crosslinkable, the alignment state is fixed by subjecting the liquid crystal compound aligned as described above to polymerization treatment or crosslinking treatment.
 上記液晶化合物としては、任意の適切な液晶ポリマーおよび/または液晶モノマーが用いられる。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。液晶化合物の具体例および液晶配向固化層の作製方法は、例えば、特開2006-163343号公報、特開2006-178389号公報、国際公開第2018/123551号公報に記載されている。これらの公報の記載は本明細書に参考として援用される。 Any suitable liquid crystal polymer and/or liquid crystal monomer can be used as the liquid crystal compound. The liquid crystal polymer and the liquid crystal monomer may be used alone or in combination. Specific examples of liquid crystal compounds and methods for producing liquid crystal alignment solidified layers are described in, for example, JP 2006-163343A, JP 2006-178389A, and WO 2018/123551A. The descriptions of these publications are incorporated herein by reference.
 液晶配向固化層で構成される第1のλ/4部材の厚みは、例えば1μm~10μmであり、好ましくは1μm~8μmであり、より好ましくは1μm~6μmであり、さらに好ましくは1μm~4μmである。 The thickness of the first λ/4 member composed of the liquid crystal alignment solidified layer is, for example, 1 μm to 10 μm, preferably 1 μm to 8 μm, more preferably 1 μm to 6 μm, and still more preferably 1 μm to 4 μm. be.
<保護部材>
 保護部材30は、代表的には、基材を含む。基材は、任意の適切なフィルムで構成され得る。基材を構成するフィルムの主成分となる材料としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン等のシクロオレフィン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の樹脂が挙げられる。基材の厚みは、好ましくは5μm~80μmであり、より好ましくは10μm~40μmであり、さらに好ましくは15μm~35μmである。
<Protective member>
Protective member 30 typically includes a base material. The substrate may be comprised of any suitable film. Materials that are the main components of the film constituting the base material include, for example, cellulose resins such as triacetyl cellulose (TAC), polyesters, polyvinyl alcohols, polycarbonates, polyamides, polyimides, polyethersulfones, Examples include polysulfone-based, polystyrene-based, cycloolefin-based resins such as polynorbornene, polyolefin-based resins, (meth)acrylic-based resins, and acetate-based resins. The thickness of the base material is preferably 5 μm to 80 μm, more preferably 10 μm to 40 μm, and even more preferably 15 μm to 35 μm.
 保護部材は、好ましくは、基材と基材上に形成される表面処理層とを有する。表面処理層は、光学積層体100aの最表面に位置し得る。表面処理層は、任意の適切な機能を有し得る。表面処理層としては、例えば、ハードコート層、反射防止層、スティッキング防止層、アンチグレア層が挙げられる。保護部材は、2以上の表面処理層を有していてもよい。 The protective member preferably has a base material and a surface treatment layer formed on the base material. The surface treatment layer may be located on the outermost surface of the optical laminate 100a. The surface treatment layer may have any suitable function. Examples of the surface treatment layer include a hard coat layer, an antireflection layer, an antisticking layer, and an antiglare layer. The protective member may have two or more surface treatment layers.
 反射防止層は、外光等の反射を防止するために設けられる。反射防止層としては、例えば、フッ素樹脂層、ナノ粒子(代表的には中空ナノ粒子、例えば中空ナノシリカ粒子)を含む樹脂層、または、ナノ構造(例えばモスアイ構造)を有する反射防止層が挙げられる。反射防止層の厚みは、好ましくは0.05μm~1μmである。上記樹脂層の形成方法としては、例えば、ゾルゲル法、イソシアネートを用いた熱硬化法、架橋性モノマー(例えば多官能アクリレート)と光重合開始剤とを用いた電離放射線硬化法(代表的には光硬化法)が挙げられる。 The antireflection layer is provided to prevent reflection of external light and the like. Examples of the antireflection layer include a fluororesin layer, a resin layer containing nanoparticles (typically hollow nanoparticles, such as hollow nanosilica particles), or an antireflection layer having a nanostructure (e.g. moth-eye structure). . The thickness of the antireflection layer is preferably 0.05 μm to 1 μm. Examples of methods for forming the resin layer include a sol-gel method, a thermosetting method using isocyanate, and an ionizing radiation curing method using a crosslinking monomer (e.g., polyfunctional acrylate) and a photopolymerization initiator (typically a photopolymerization method). curing method).
 ハードコート層は、好ましくは、十分な表面硬度、優れた機械的強度、および優れた光透過性を有する。ハードコート層は、任意の適切な樹脂から形成され得る。ハードコート層は、代表的には紫外線硬化型樹脂から形成される。紫外線硬化型樹脂としては、例えば、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系が挙げられる。ハードコート層の厚みは、例えば0.5μm以上、好ましくは1μm以上、例えば20μm以下、好ましくは15μm以下である。 The hard coat layer preferably has sufficient surface hardness, excellent mechanical strength, and excellent light transparency. The hard coat layer may be formed from any suitable resin. The hard coat layer is typically formed from an ultraviolet curable resin. Examples of the ultraviolet curable resin include polyester, acrylic, urethane, amide, silicone, and epoxy resins. The thickness of the hard coat layer is, for example, 0.5 μm or more, preferably 1 μm or more, and, for example, 20 μm or less, preferably 15 μm or less.
A-2.実施形態2
 図1Bは、本発明の1つの実施形態による光学積層体の概略断面図である。図1Bに示す光学積層体100bは、第一粘着剤層a1と、偏光部材10と、第二粘着剤層a2と、第1のλ/4部材20aを含む第一位相差部材20と、第三粘着剤層a3と、保護部材30と、を、この順に有し、第一位相差部材20が第1のλ/4部材20aに加えて屈折率特性がnz>nx=nyの関係を示し得る部材(いわゆる、ポジティブCプレート)20bを含んでいる点において光学積層体100aと異なっている。偏光部材10の吸収軸と第1のλ/4部材20aの遅相軸とのなす角度は、好ましくは40°~50°、より好ましくは42°~48°、例えば約45°となるように配置されている。
A-2. Embodiment 2
FIG. 1B is a schematic cross-sectional view of an optical laminate according to one embodiment of the invention. The optical laminate 100b shown in FIG. 1B includes a first adhesive layer a1, a polarizing member 10, a second adhesive layer a2, a first retardation member 20 including a first λ/4 member 20a, and a first retardation member 20 including a first λ/4 member 20a. It has three adhesive layers a3 and a protective member 30 in this order, and the first retardation member 20 has a refractive index characteristic exhibiting the relationship nz>nx=ny in addition to the first λ/4 member 20a. It differs from the optical laminate 100a in that it includes a member (so-called positive C plate) 20b. The angle between the absorption axis of the polarizing member 10 and the slow axis of the first λ/4 member 20a is preferably 40° to 50°, more preferably 42° to 48°, for example about 45°. It is located.
 第一位相差部材20は、第1のλ/4部材20aとポジティブCプレート20bとの積層構造を有している。具体的には、第1のλ/4部材20aとポジティブCプレート20bとは、接着層b1を介して積層されている。図示例のように、第1のλ/4部材20aがポジティブCプレート20bよりも偏光部材10側に位置していることが好ましいが、これらの配置が逆であってもよい。接着層b1は、代表的には粘着剤層または接着剤層である。接着層b1が接着剤層である場合、光学積層体100bにおける粘着剤層の総数は3であり、そのうちの2つ以上の粘着剤層が粘着剤層Aであり、好ましくは3つ全てが粘着剤層Aである。接着層b1が粘着剤層である場合、光学積層体100bにおける粘着剤層の総数は4であり、この場合も2つ以上の粘着剤層が上記粘着剤層Aであり、好ましくは3つ以上、より好ましくは4つ全ての粘着剤層が粘着剤層Aである。接着剤層は、例えば紫外線硬化型接着剤で形成され、その厚みは、例えば0.05μm~30μmである。 The first retardation member 20 has a laminated structure of a first λ/4 member 20a and a positive C plate 20b. Specifically, the first λ/4 member 20a and the positive C plate 20b are laminated with an adhesive layer b1 in between. As shown in the illustrated example, it is preferable that the first λ/4 member 20a is located closer to the polarizing member 10 than the positive C plate 20b, but these arrangements may be reversed. The adhesive layer b1 is typically a pressure-sensitive adhesive layer or an adhesive layer. When the adhesive layer b1 is an adhesive layer, the total number of adhesive layers in the optical laminate 100b is three, two or more of which are adhesive layers A, and preferably all three are adhesive layers. This is agent layer A. When the adhesive layer b1 is an adhesive layer, the total number of adhesive layers in the optical laminate 100b is 4, and in this case also, two or more adhesive layers are the above-mentioned adhesive layer A, preferably three or more. More preferably, all four adhesive layers are adhesive layers A. The adhesive layer is formed of, for example, an ultraviolet curing adhesive, and has a thickness of, for example, 0.05 μm to 30 μm.
 光学積層体100bの厚みは、例えば100μm以上300μm以下であり、好ましくは110μm以上250μm以下であり、より好ましくは120μm以上200μm以下である。 The thickness of the optical laminate 100b is, for example, 100 μm or more and 300 μm or less, preferably 110 μm or more and 250 μm or less, and more preferably 120 μm or more and 200 μm or less.
 粘着剤層、偏光部材、第1のλ/4部材、および保護部材については、A-1項において記載したとおりである。 The adhesive layer, polarizing member, first λ/4 member, and protective member are as described in Section A-1.
<ポジティブCプレート>
 ポジティブCプレート20bの厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nmであり、より好ましくは-70nm~-250nmであり、さらに好ましくは-90nm~-200nmであり、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。ポジティブCプレートの面内位相差Re(550)は、例えば10nm未満である。
<Positive C plate>
The retardation Rth (550) in the thickness direction of the positive C plate 20b is preferably -50 nm to -300 nm, more preferably -70 nm to -250 nm, still more preferably -90 nm to -200 nm, and particularly preferably is −100 nm to −180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal, but also the case where nx and ny are substantially equal. The in-plane retardation Re (550) of the positive C plate is, for example, less than 10 nm.
 ポジティブCプレートは、任意の適切な材料で形成され得る。ポジティブCプレートは、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムから構成される。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであってもよいし、液晶ポリマーであってもよい。このような液晶化合物およびポジティブCプレートの形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および位相差層の形成方法が挙げられる。この場合、ポジティブCプレートの厚みは、好ましくは0.5μm~5μmである。 The positive C-plate may be formed of any suitable material. The positive C-plate preferably consists of a film containing liquid crystal material fixed in a homeotropic orientation. The liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of methods for forming such liquid crystal compounds and positive C plates include methods for forming liquid crystal compounds and retardation layers described in [0020] to [0028] of JP-A No. 2002-333642. In this case, the thickness of the positive C plate is preferably 0.5 μm to 5 μm.
B.表示システム
 図2は、A項に記載の光学積層体を含む表示システム(ディスプレイ付きゴーグル)の一例の概略構成を示す模式図である。図2(a)では、表示システム2の主要な構成要素の配置および形状等を模式的に図示しており、図2(b)は、図2(a)に示す表示システム2が液晶表示システムである場合における上記光学積層体の配置を説明する模式図である。
B. Display System FIG. 2 is a schematic diagram showing a schematic configuration of an example of a display system (goggles with a display) including the optical laminate described in Section A. 2(a) schematically shows the arrangement and shape of the main components of the display system 2, and FIG. 2(b) shows that the display system 2 shown in FIG. 2(a) is a liquid crystal display system. It is a schematic diagram explaining arrangement|positioning of the said optical laminated body in case.
 図2(a)に示されるとおり、表示システム2は、表示素子12と、反射型偏光部材14と、第一レンズ部16と、ハーフミラー18と、第一位相差部材20と、第二位相差部材22と、第二レンズ部24とを備えている。反射型偏光部材14は、表示素子12の表示面12’側である前方に配置され、表示素子12から出射された光を反射し得る。第一レンズ部16は表示素子12と反射型偏光部材14との間の光路上に配置され、ハーフミラー18は表示素子12と第一レンズ部16との間に配置されている。第一位相差部材20は表示素子12とハーフミラー18との間の光路上に配置され、第二位相差部材22はハーフミラー18と反射型偏光部材14との間の光路上に配置されている。図示しないが、表示システム2は、反射型偏光部材14と第二レンズ部24との間に吸収型偏光部材をさらに備えることができる。 As shown in FIG. 2(a), the display system 2 includes a display element 12, a reflective polarizing member 14, a first lens section 16, a half mirror 18, a first retardation member 20, and a second retardation member 20. It includes a retardation member 22 and a second lens portion 24. The reflective polarizing member 14 is disposed in front of the display element 12 on the display surface 12' side, and can reflect light emitted from the display element 12. The first lens section 16 is arranged on the optical path between the display element 12 and the reflective polarizing member 14, and the half mirror 18 is arranged between the display element 12 and the first lens section 16. The first retardation member 20 is arranged on the optical path between the display element 12 and the half mirror 18, and the second retardation member 22 is arranged on the optical path between the half mirror 18 and the reflective polarizing member 14. There is. Although not shown, the display system 2 may further include an absorptive polarizing member between the reflective polarizing member 14 and the second lens section 24.
 ハーフミラーから前方に配置される構成要素(図示例では、ハーフミラー18、第一レンズ部16、第二位相差部材22、反射型偏光部材14および第二レンズ部24)をまとめてレンズ部(レンズ部4)と称する場合がある。 The components disposed in front of the half mirror (in the illustrated example, the half mirror 18, the first lens section 16, the second retardation member 22, the reflective polarizing member 14, and the second lens section 24) are collectively assembled into a lens section ( It may also be referred to as a lens section 4).
 表示素子12は、例えば、液晶ディスプレイまたは有機ELディスプレイであり、画像を表示するための表示面12’を有している。表示面12’から出射される光は、例えば、表示素子12に含まれ得る偏光部材10を通過して出射され、第1の直線偏光とされている。 The display element 12 is, for example, a liquid crystal display or an organic EL display, and has a display surface 12' for displaying images. The light emitted from the display surface 12' passes through, for example, a polarizing member 10 that may be included in the display element 12, and is emitted as first linearly polarized light.
 第一位相差部材20は、第一位相差部材20に入射した第1の直線偏光を第1の円偏光に変換し得る第1のλ/4部材を含む。第一位相差部材が第1のλ/4部材以外の部材を含まない場合は、第一位相差部材は第1のλ/4部材に相当し得る。なお、図示例では、説明のため、第一位相差部材20と表示素子12との間に空間が介在しているが、後述のとおり、本発明の実施形態による表示システムにおいては、A項に記載されるような偏光部材と第一位相差部材(第1のλ/4部材)とを含む光学積層体を用いることにより、第一位相差部材20と表示素子12とが一体に設けられている。 The first retardation member 20 includes a first λ/4 member that can convert the first linearly polarized light incident on the first retardation member 20 into first circularly polarized light. When the first retardation member does not include any member other than the first λ/4 member, the first retardation member may correspond to the first λ/4 member. In the illustrated example, there is a space between the first retardation member 20 and the display element 12 for the sake of explanation, but as will be described later, in the display system according to the embodiment of the present invention, By using an optical laminate including a polarizing member and a first retardation member (first λ/4 member) as described, the first retardation member 20 and the display element 12 are integrally provided. There is.
 ハーフミラー18は、表示素子12から出射された光を透過させ、反射型偏光部材14で反射された光を反射型偏光部材14に向けて反射させる。ハーフミラー18は、第一レンズ部16に一体に設けられている。 The half mirror 18 transmits the light emitted from the display element 12 and reflects the light reflected by the reflective polarizing member 14 toward the reflective polarizing member 14. The half mirror 18 is provided integrally with the first lens section 16.
 第二位相差部材22は、反射型偏光部材14およびハーフミラー18で反射させた光を、反射型偏光部材14を透過させ得る第2のλ/4部材を含む。第二位相差部材が第2のλ/4部材以外の部材を含まない場合は、第二位相差部材は第2のλ/4部材に相当し得る。第二位相差部材22は、第一レンズ部16に一体に設けられてもよい。 The second retardation member 22 includes a second λ/4 member that can transmit the light reflected by the reflective polarizing member 14 and the half mirror 18 through the reflective polarizing member 14. When the second retardation member does not include any member other than the second λ/4 member, the second retardation member may correspond to the second λ/4 member. The second retardation member 22 may be provided integrally with the first lens portion 16.
 第一位相差部材20に含まれる第1のλ/4部材から出射された第1の円偏光は、ハーフミラー18および第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第2の直線偏光に変換される。第2のλ/4部材から出射された第2の直線偏光は、反射型偏光部材14を透過せずにハーフミラー18に向けて反射される。このとき、反射型偏光部材14に入射した第2の直線偏光の偏光方向は、反射型偏光部材14の反射軸と同方向である。そのため、反射型偏光部材14に入射した第2の直線偏光は、反射型偏光部材14で反射される。 The first circularly polarized light emitted from the first λ/4 member included in the first retardation member 20 passes through the half mirror 18 and the first lens portion 16, and The second λ/4 member converts the light into a second linearly polarized light. The second linearly polarized light emitted from the second λ/4 member is reflected toward the half mirror 18 without passing through the reflective polarizing member 14. At this time, the polarization direction of the second linearly polarized light incident on the reflective polarizing member 14 is the same direction as the reflection axis of the reflective polarizing member 14. Therefore, the second linearly polarized light incident on the reflective polarizing member 14 is reflected by the reflective polarizing member 14.
 反射型偏光部材14で反射された第2の直線偏光は第二位相差部材22に含まれる第2のλ/4部材により第2の円偏光に変換され、第2のλ/4部材から出射された第2の円偏光は第一レンズ部16を通過してハーフミラー18で反射される。ハーフミラー18で反射された第2の円偏光は、第一レンズ部16を通過し、第二位相差部材22に含まれる第2のλ/4部材により第3の直線偏光に変換される。第3の直線偏光は、反射型偏光部材14を透過する。このとき、反射型偏光部材14に入射した第3の直線偏光の偏光方向は、反射型偏光部材14の透過軸と同方向である。そのため、反射型偏光部材14に入射した第3の直線偏光は、反射型偏光部材14を透過する。 The second linearly polarized light reflected by the reflective polarizing member 14 is converted into second circularly polarized light by the second λ/4 member included in the second retardation member 22, and is emitted from the second λ/4 member. The second circularly polarized light passes through the first lens section 16 and is reflected by the half mirror 18. The second circularly polarized light reflected by the half mirror 18 passes through the first lens section 16 and is converted into third linearly polarized light by the second λ/4 member included in the second retardation member 22. The third linearly polarized light is transmitted through the reflective polarizing member 14 . At this time, the polarization direction of the third linearly polarized light incident on the reflective polarizing member 14 is the same direction as the transmission axis of the reflective polarizing member 14. Therefore, the third linearly polarized light incident on the reflective polarizing member 14 is transmitted through the reflective polarizing member 14.
 上述のとおり、表示システム2は、反射型偏光部材14の前方(目に近い側)に吸収型偏光部材(代表的には、吸収型偏光フィルム)を含んでいてもよい。反射型偏光部材14の反射軸と吸収型偏光部材の吸収軸とは互いに略平行に配置され得、反射型偏光部材の透過軸と吸収型偏光部材の透過軸とは互いに略平行に配置され得る。これにより、反射型偏光部材14を透過した第3の直線偏光は、そのまま吸収型偏光部材を透過することができる。反射型偏光部材と吸収型偏光部材とは、例えば、接着層を介して積層されていてもよい。 As described above, the display system 2 may include an absorbing polarizing member (typically, an absorbing polarizing film) in front of the reflective polarizing member 14 (on the side closer to the eyes). The reflection axis of the reflective polarizing member 14 and the absorption axis of the absorptive polarizing member may be arranged substantially parallel to each other, and the transmission axis of the reflective polarizing member and the transmission axis of the absorptive polarizing member may be arranged substantially parallel to each other. . Thereby, the third linearly polarized light that has passed through the reflective polarizing member 14 can pass through the absorbing polarizing member as it is. For example, the reflective polarizing member and the absorbing polarizing member may be laminated with an adhesive layer interposed therebetween.
 反射型偏光部材14を透過した光は、第二レンズ部24を通過して、ユーザの目26に入射する。 The light transmitted through the reflective polarizing member 14 passes through the second lens section 24 and enters the user's eyes 26.
 例えば、表示素子12に含まれる偏光部材10の吸収軸と反射型偏光部材14の反射軸とは、互いに略平行に配置されてもよいし、略直交に配置されてもよい。表示素子12に含まれる偏光部材10の吸収軸と第一位相差部材20に含まれる第1のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。表示素子12に含まれる偏光部材10の吸収軸と第二位相差部材22に含まれる第2のλ/4部材の遅相軸とのなす角度は、例えば40°~50°であり、42°~48°であってもよく、約45°であってもよい。偏光部材10および第1のλ/4部材を含む第一位相差部材20はそれぞれ、A項に記載のとおりである。 For example, the absorption axis of the polarizing member 10 and the reflection axis of the reflective polarizing member 14 included in the display element 12 may be arranged substantially parallel to each other, or may be arranged substantially perpendicular to each other. The angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the first λ/4 member included in the first retardation member 20 is, for example, 40° to 50°, and 42°. ˜48°, and may be about 45°. The angle between the absorption axis of the polarizing member 10 included in the display element 12 and the slow axis of the second λ/4 member included in the second retardation member 22 is, for example, 40° to 50°, and 42°. ˜48°, and may be about 45°. The polarizing member 10 and the first retardation member 20 including the first λ/4 member are each as described in Section A.
 第2のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第2のλ/4部材は、好ましくは、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示す。第2のλ/4部材は、好ましくは、Re(450)<Re(550)<Re(650)の関係を満たす。第2のλ/4部材のRe(450)/Re(550)は、例えば0.75以上1未満であり、0.8以上0.95以下であってもよい。 The in-plane retardation Re (550) of the second λ/4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good. The second λ/4 member preferably exhibits inverse dispersion wavelength characteristics in which the retardation value increases depending on the wavelength of the measurement light. The second λ/4 member preferably satisfies the relationship Re(450)<Re(550)<Re(650). Re(450)/Re(550) of the second λ/4 member is, for example, 0.75 or more and less than 1, and may be 0.8 or more and 0.95 or less.
 図2(b)は、表示システム2が液晶表示システムである場合における光学積層体の配置を示す。光学積層体100としては、図1Aまたは図1Bに記載の光学積層体100a、100bが好ましく用いられる。図示例において、表示素子12は、バックライトユニット12aと、バックライト側偏光部材12bと、液晶セル12cと、偏光部材10と、を含む。バックライト側偏光部材12bと偏光部材10とは、代表的には、吸収軸方向が互いに略直交となるように配置され、液晶セル12cとともに液晶パネルを構成している。光学積層体100は、ハーフミラー18の表示素子12側に配置されており、ここで、偏光部材10は粘着剤層a1を介して液晶セル12cに貼り合わせられており、また、第一位相差部材20(第1のλ/4部材)は粘着剤層a2を介して偏光部材10と貼り合わせられており、結果として、表示素子12と第一位相差部材20(第1のλ/4部材)とが一体に設けられた構成となる。また、表面処理層を有する保護部材30の当該表面処理層が最表面となるように配置されることにより、ハーフミラー18と第一位相差部材20(保護部材30)との間に空間が形成されている表示システムにおいて、優れた反射防止効果を得ることができる。なお、図示例の実施形態では、光学積層体100は液晶セルに貼り合わせられているが、本発明の実施形態による光学積層体は有機ELパネルと共に有機EL表示システムを構成することもできる。この場合、光学積層体100と有機ELパネルとの間には第3のλ/4部材を含む第三位相差部材が配置され得る。第三位相差部材は、本発明の実施形態による光学積層体に含まれていてもよい。例えば、本発明の実施形態による光学積層体は、第三位相差部材、偏光部材、第一位相差部材、および保護部材を接着層を介してこの順に有していてもよい。具体的には、光学積層体は、[粘着剤層/第三位相差部材/粘着剤層/偏光部材/粘着剤層/第一位相差部材/粘着剤層/保護部材]の構成を有することができ、当該構成においては、少なくとも4つの粘着剤層を含み得る。粘着剤層の総数が4である場合、そのうちの2つ以上、好ましくは3つまたは4つの粘着剤層に粘着剤層Aが用いられる。第3のλ/4部材の面内位相差Re(550)は、例えば100nm~190nmであり、110nm~180nmであってもよく、130nm~160nmであってもよく、135nm~155nmであってもよい。第3のλ/4部材としては、第1のλ/4部材と同様の説明を適用することができる。第三位相差部材は、第3のλ/4部材の遅相軸が偏光部材10の吸収軸と、例えば40°~50°、42°~48°、または約45°の角度をなすように配置され得る。 FIG. 2(b) shows the arrangement of the optical laminate when the display system 2 is a liquid crystal display system. As the optical laminate 100, optical laminates 100a and 100b shown in FIG. 1A or 1B are preferably used. In the illustrated example, the display element 12 includes a backlight unit 12a, a backlight-side polarizing member 12b, a liquid crystal cell 12c, and a polarizing member 10. The backlight side polarizing member 12b and the polarizing member 10 are typically arranged so that their absorption axes are substantially orthogonal to each other, and together with the liquid crystal cell 12c, they constitute a liquid crystal panel. The optical laminate 100 is disposed on the display element 12 side of the half mirror 18, where the polarizing member 10 is bonded to the liquid crystal cell 12c via the adhesive layer a1, and the first retardation The member 20 (first λ/4 member) is bonded to the polarizing member 10 via the adhesive layer a2, and as a result, the display element 12 and the first retardation member 20 (first λ/4 member) ) are integrated. Furthermore, by arranging the protective member 30 having a surface-treated layer such that the surface-treated layer is on the outermost surface, a space is formed between the half mirror 18 and the first retardation member 20 (protective member 30). Excellent anti-reflection effects can be obtained in display systems that use this technology. In the illustrated embodiment, the optical laminate 100 is bonded to a liquid crystal cell, but the optical laminate according to the embodiment of the present invention can also constitute an organic EL display system together with an organic EL panel. In this case, a third retardation member including a third λ/4 member may be disposed between the optical laminate 100 and the organic EL panel. The third retardation member may be included in the optical laminate according to the embodiment of the present invention. For example, the optical laminate according to the embodiment of the present invention may include a third retardation member, a polarizing member, a first retardation member, and a protection member in this order via an adhesive layer. Specifically, the optical laminate has a configuration of [adhesive layer/third retardation member/adhesive layer/polarizing member/adhesive layer/first retardation member/adhesive layer/protective member]. and in such a configuration may include at least four adhesive layers. When the total number of adhesive layers is four, adhesive layer A is used for two or more of them, preferably three or four adhesive layers. The in-plane retardation Re (550) of the third λ/4 member is, for example, 100 nm to 190 nm, may be 110 nm to 180 nm, may be 130 nm to 160 nm, or may be 135 nm to 155 nm. good. The same explanation as for the first λ/4 member can be applied to the third λ/4 member. The third retardation member is configured such that the slow axis of the third λ/4 member makes an angle of, for example, 40° to 50°, 42° to 48°, or about 45° with the absorption axis of the polarizing member 10. may be placed.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。なお、厚みは下記の測定方法により測定した値である。
<厚み>
 10μm以下の厚みは、走査型電子顕微鏡(日本電子社製、製品名「JSM-7100F」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
<面内位相差>
 王子計測機器社製「KOBRA-WPR」を用いて、23℃における面内位相差を測定した。
<線膨張係数>
 粘着剤層(厚み1mm)を約5mm角に切削したものを測定試料として用いた。測定試料を測定装置の試料台に設置して下記条件でTMA測定を行った。
・測定装置:エスアイアイ・ナノテクノロジー社製「TMA/SS6000」
・測定モード:圧縮膨張法
・測定荷重:9.8mN
・プローブ径:3.5mmφ(圧縮膨張法)
・温度プログラム:-60℃→210℃→-70℃→200℃
・昇温/降温速度:10℃/min
・測定雰囲気:N(流量:200ml/min)
<分子量の測定>
 (メタ)アクリル系ポリマーの重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算で算出した。
・分析装置:東ソー社製、HLC-8120GPC
・データ処理装置:東ソー社製、GPC-8020
・カラム:東ソー社製、G7000HXL-H+GMHXL+GMHXL
・カラムサイズ;各7.8mmφ×30cm(計90cm)
・流量:0.8ml/min
・注入試料濃度:約0.1重量%
・注入量:100μl
・カラム温度:40℃
・溶離液:テトラヒドロフラン
・検出器:示差屈折計(RI)
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples. Note that the thickness is a value measured by the following measuring method.
<Thickness>
The thickness of 10 μm or less was measured using a scanning electron microscope (manufactured by JEOL Ltd., product name “JSM-7100F”). Thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Corporation, product name “KC-351C”).
<In-plane phase difference>
The in-plane phase difference at 23° C. was measured using “KOBRA-WPR” manufactured by Oji Scientific Instruments.
<Linear expansion coefficient>
An adhesive layer (thickness: 1 mm) cut into approximately 5 mm squares was used as a measurement sample. A measurement sample was placed on a sample stage of a measurement device, and TMA measurement was performed under the following conditions.
・Measuring device: “TMA/SS6000” manufactured by SII Nanotechnology
・Measurement mode: Compression and expansion method ・Measurement load: 9.8mN
・Probe diameter: 3.5mmφ (compression expansion method)
・Temperature program: -60℃→210℃→-70℃→200℃
・Temperature increase/cooling rate: 10℃/min
・Measurement atmosphere: N2 (flow rate: 200ml/min)
<Measurement of molecular weight>
The weight average molecular weight of the (meth)acrylic polymer was measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
・Analyzer: Tosoh Corporation, HLC-8120GPC
・Data processing device: Tosoh Corporation, GPC-8020
・Column: Manufactured by Tosoh Corporation, G7000HXL-H+GMHXL+GMHXL
・Column size: each 7.8 mmφ x 30 cm (total 90 cm)
・Flow rate: 0.8ml/min
・Injected sample concentration: Approximately 0.1% by weight
・Injection volume: 100μl
・Column temperature: 40℃
・Eluent: Tetrahydrofuran ・Detector: Differential refractometer (RI)
[製造例1A:粘着剤層1の作製]
<アクリル系ポリマー1>
 攪拌羽根、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート92重量部、N-アクリロイルモルフォリン(ACMO)5重量部、アクリル酸2.9重量部、2-ヒドロキシエチルアクリレート0.1重量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.1重量部、酢酸エチル100重量部を仕込み、緩やかに攪拌しながら窒素ガスを導入して窒素置換した後、フラスコ内の液温を55℃付近に保って8時間重合反応を行い、アクリル系ポリマー1の溶液を調製した。アクリル系ポリマー1の重量平均分子量は200万であった。
[Manufacture example 1A: Preparation of adhesive layer 1]
<Acrylic polymer 1>
In a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser, 92 parts by weight of butyl acrylate, 5 parts by weight of N-acryloylmorpholine (ACMO), 2.9 parts by weight of acrylic acid, 2- 0.1 part by weight of hydroxyethyl acrylate, 0.1 part by weight of 2,2'-azobisisobutyronitrile as a polymerization initiator, and 100 parts by weight of ethyl acetate were charged, and nitrogen gas was introduced while stirring gently to add nitrogen. After the substitution, a polymerization reaction was carried out for 8 hours while maintaining the liquid temperature in the flask at around 55° C. to prepare a solution of acrylic polymer 1. The weight average molecular weight of acrylic polymer 1 was 2 million.
<粘着剤溶液1>
 アクリル系ポリマー1の溶液の固形分100重量部に対して、架橋剤としてジベンゾイルパーオキシド(1分間半減期:130℃)0.15重量部、およびトリレンジイソシアネートのトリメチロールプロパン付加物からなるポリイソシアネート系架橋剤(日本ポリウレタン工業社製、コロネートL)0.6重量部を混合してアクリル系粘着剤溶液1を調製した。
<Adhesive solution 1>
Consisting of 0.15 parts by weight of dibenzoyl peroxide (1 minute half-life: 130°C) as a crosslinking agent, and a trimethylolpropane adduct of tolylene diisocyanate, based on 100 parts by weight of the solid content of the solution of acrylic polymer 1. Acrylic adhesive solution 1 was prepared by mixing 0.6 parts by weight of a polyisocyanate crosslinking agent (Coronate L, manufactured by Nippon Polyurethane Industries, Ltd.).
<粘着剤層1>
 アクリル系粘着剤溶液1を、シリコーン処理を施したポリエチレンテレフタレート(PET)フィルム(三菱化学ポリエステルフィルム社製、厚さ:38μm)の片面に塗布し、150℃で3分間乾燥・架橋処理を行い、乾燥後の厚さが5μmの粘着剤層1を形成した。
<Adhesive layer 1>
Acrylic adhesive solution 1 was applied to one side of a silicone-treated polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 μm), and dried and crosslinked at 150 ° C. for 3 minutes. An adhesive layer 1 having a thickness of 5 μm after drying was formed.
[製造例1B:粘着剤層2の作製]
<アクリル系ポリマー2>
 攪拌羽根、温度計、窒素ガス導入管および冷却器を備えた4つ口フラスコに、ブチルアクリレート94.9重量部、アクリル酸5重量部および2-ヒドロキシエチルアクリレート0.1重量部を含有するモノマー混合物を仕込んだ。さらに、このモノマー混合物100重量部に対して、重合開始剤としてジベンゾイルパーオキシド0.3重量部を酢酸エチルと共に仕込み、緩やかに攪拌しながら窒素ガスを導入してフラスコ内を窒素置換した後、フラスコ内の液温を60℃に保って7時間重合反応を行った。次いで、得られた反応液に酢酸エチルを加えて固形分濃度30重量%に調整して、アクリル系ポリマー2の溶液を得た。アクリル系ポリマー2の重量平均分子量は220万であった。
[Manufacture example 1B: Preparation of adhesive layer 2]
<Acrylic polymer 2>
A monomer containing 94.9 parts by weight of butyl acrylate, 5 parts by weight of acrylic acid, and 0.1 parts by weight of 2-hydroxyethyl acrylate was placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser. Brew the mixture. Further, to 100 parts by weight of this monomer mixture, 0.3 parts by weight of dibenzoyl peroxide as a polymerization initiator was charged together with ethyl acetate, and nitrogen gas was introduced while stirring gently to replace the inside of the flask with nitrogen. The polymerization reaction was carried out for 7 hours while maintaining the liquid temperature in the flask at 60°C. Next, ethyl acetate was added to the resulting reaction solution to adjust the solid content concentration to 30% by weight to obtain a solution of acrylic polymer 2. The weight average molecular weight of acrylic polymer 2 was 2.2 million.
<粘着剤溶液2>
 アクリル系ポリマー2の溶液の固形分100重量部に対して、ポリイソシアネート系架橋剤(トリメチロールプロパン/トリレンジイソシアネート付加物、日本ポリウレタン工業社製、コロネートL)0.6重量部およびシランカップリング剤(信越化学工業社製、KBM403)0.075重量部を混合してアクリル系粘着剤溶液2を調製した。
<Adhesive solution 2>
Based on 100 parts by weight of the solid content of the solution of acrylic polymer 2, 0.6 parts by weight of a polyisocyanate crosslinking agent (trimethylolpropane/tolylene diisocyanate adduct, Coronate L, manufactured by Nippon Polyurethane Kogyo Co., Ltd.) and silane coupling. Acrylic pressure-sensitive adhesive solution 2 was prepared by mixing 0.075 parts by weight of an adhesive (manufactured by Shin-Etsu Chemical Co., Ltd., KBM403).
<粘着剤層2>
 アクリル系粘着剤溶液2を、シリコーン処理を施したポリエチレンテレフタレート(PET)フィルム(三菱化学ポリエステルフィルム社製、厚さ:38μm)の片面に塗布し、所定の温度で乾燥させて、厚み12μm、15μm、または20μmの粘着剤層2を形成した。
<Adhesive layer 2>
Acrylic adhesive solution 2 was applied to one side of a silicone-treated polyethylene terephthalate (PET) film (manufactured by Mitsubishi Chemical Polyester Film Co., Ltd., thickness: 38 μm), and dried at a predetermined temperature to form a film with a thickness of 12 μm and 15 μm. , or a 20 μm adhesive layer 2 was formed.
[製造例2:偏光フィルム1の作製]
 厚み30μmのポリビニルアルコール(PVA)系樹脂フィルム(クラレ社製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長手方向に5.9倍になるように長手方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの吸収型偏光膜を作製した。
 具体的には、膨潤処理は20℃の純水で処理しながら2.2倍に延伸した。次いで、染色処理は得られる吸収型偏光膜の単体透過率が45.0%になるようにヨウ素濃度が調整されたヨウ素とヨウ化カリウムの重量比が1:7である30℃の水溶液中において処理しながら1.4倍に延伸した。更に、架橋処理は、2段階の架橋処理を採用し、1段階目の架橋処理は40℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.2倍に延伸した。1段階目の架橋処理の水溶液のホウ酸含有量は5.0重量%で、ヨウ化カリウム含有量は3.0重量%とした。2段階目の架橋処理は65℃のホウ酸とヨウ化カリウムを溶解した水溶液において処理しながら1.6倍に延伸した。2段階目の架橋処理の水溶液のホウ酸含有量は4.3重量%で、ヨウ化カリウム含有量は5.0重量%とした。また、洗浄処理は、20℃のヨウ化カリウム水溶液で処理した。洗浄処理の水溶液のヨウ化カリウム含有量は2.6重量%とした。最後に、乾燥処理は70℃で5分間乾燥させて吸収型偏光膜を得た。
 得られた吸収型偏光膜の両面に、保護層としてのトリアセチルセルロース(TAC)系樹脂フィルム(厚み:22μm)を、紫外線硬化型接着剤を介して貼り合わせた。具体的には、紫外線硬化型接着剤の総厚みが約1μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線をTACフィルム側から照射して接着剤を硬化させた。
 これにより、[TACフィルム(保護層)/吸収型偏光膜/TACフィルム(保護層)]の構成を有する偏光フィルム1(厚み57μm)を得た。
[Production Example 2: Production of polarizing film 1]
A long roll of polyvinyl alcohol (PVA) resin film (manufactured by Kuraray Co., Ltd., product name "PE3000") with a thickness of 30 μm was uniaxially stretched in the longitudinal direction so as to be 5.9 times the length in the longitudinal direction using a roll stretching machine. At the same time, swelling, dyeing, crosslinking, and washing treatments were performed, and finally a drying treatment was performed to prepare an absorption type polarizing film with a thickness of 12 μm.
Specifically, in the swelling treatment, the film was stretched 2.2 times while being treated with pure water at 20°C. Next, the dyeing process was carried out in an aqueous solution at 30°C in which the weight ratio of iodine and potassium iodide was 1:7, and the iodine concentration was adjusted so that the single transmittance of the obtained absorption type polarizing film was 45.0%. It was stretched 1.4 times during processing. Furthermore, a two-stage crosslinking process was adopted for the crosslinking process, and the first crosslinking process was performed in an aqueous solution containing boric acid and potassium iodide at 40°C, and was stretched to 1.2 times. The boric acid content of the aqueous solution for the first stage crosslinking treatment was 5.0% by weight, and the potassium iodide content was 3.0% by weight. In the second stage of crosslinking treatment, the film was stretched to 1.6 times while being treated in an aqueous solution containing boric acid and potassium iodide at 65°C. The boric acid content of the aqueous solution for the second stage crosslinking treatment was 4.3% by weight, and the potassium iodide content was 5.0% by weight. Further, the cleaning treatment was performed using a potassium iodide aqueous solution at 20°C. The potassium iodide content of the aqueous solution for cleaning treatment was 2.6% by weight. Finally, the drying process was carried out at 70° C. for 5 minutes to obtain an absorption type polarizing film.
A triacetyl cellulose (TAC) resin film (thickness: 22 μm) as a protective layer was bonded to both sides of the obtained absorption polarizing film via an ultraviolet curable adhesive. Specifically, an ultraviolet curable adhesive was applied so that the total thickness was about 1 μm, and the pieces were bonded together using a roll machine. Thereafter, UV light was irradiated from the TAC film side to cure the adhesive.
As a result, a polarizing film 1 (thickness: 57 μm) having a configuration of [TAC film (protective layer)/absorption type polarizing film/TAC film (protective layer)] was obtained.
[製造例3:λ/4部材1の作製]
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
[Production Example 3: Production of λ/4 member 1]
Polymerization was carried out using a batch polymerization apparatus consisting of two vertical reactors equipped with a stirring blade and a reflux condenser controlled at 100°C. Bis[9-(2-phenoxycarbonylethyl)fluoren-9-yl]methane 29.60 parts by mass (0.046 mol), isosorbide (ISB) 29.21 parts by mass (0.200 mol), spiroglycol (SPG) 42 .28 parts by mass (0.139 mol), 63.77 parts by mass (0.298 mol) of diphenyl carbonate (DPC), and 1.19×10 −2 parts by mass (6.78×10 −2 of calcium acetate monohydrate as a catalyst ). 5 mol) was prepared. After the inside of the reactor was replaced with nitrogen under reduced pressure, it was heated with a heating medium, and when the internal temperature reached 100°C, stirring was started. 40 minutes after the start of temperature rise, the internal temperature was controlled to reach 220°C, and at the same time, pressure reduction was started to maintain this temperature, and the pressure was reduced to 13.3 kPa in 90 minutes after reaching 220°C. Phenol vapor produced as a by-product during the polymerization reaction was led to a reflux condenser at 100°C, a small amount of monomer component contained in the phenol vapor was returned to the reactor, and uncondensed phenol vapor was led to a condenser at 45°C for recovery. After nitrogen was introduced into the first reactor and the pressure was once restored to atmospheric pressure, the oligomerized reaction liquid in the first reactor was transferred to the second reactor. Next, temperature increase and pressure reduction in the second reactor were started, and the internal temperature was 240° C. and the pressure was 0.2 kPa in 50 minutes. Thereafter, polymerization was allowed to proceed until a predetermined stirring power was reached. When a predetermined power was reached, nitrogen was introduced into the reactor to restore the pressure, the produced polyester carbonate resin was extruded into water, and the strands were cut to obtain pellets.
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み135μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、幅方向に、延伸温度143℃、延伸倍率2.8倍で延伸した。これにより、厚み51μmの延伸フィルム(λ/4部材1)を得た。λ/4部材1のRe(590)は143nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。 After vacuum drying the obtained polyester carbonate resin (pellets) at 80°C for 5 hours, a single-screw extruder (manufactured by Toshiba Machine Co., Ltd., cylinder temperature setting: 250°C) and a T-die (width 200mm, setting temperature: 250°C) were used. A long resin film with a thickness of 135 μm was produced using a film forming apparatus equipped with a chill roll (set temperature: 120 to 130° C.), a winder and a winder. The obtained elongated resin film was stretched in the width direction at a stretching temperature of 143° C. and a stretching ratio of 2.8 times. Thereby, a stretched film (λ/4 member 1) having a thickness of 51 μm was obtained. Re(590) of λ/4 member 1 was 143 nm, Re(450)/Re(550) was 0.86, and the Nz coefficient was 1.12.
[製造例4:保護部材1の作製]
 ラクトン環構造を有するアクリルフィルムに、下記に示すハードコート層形成用材料を塗布し、塗布層を乾燥させて厚み0.5μmのハードコート層を形成した。次いで、ハードコート層表面に下記に示す反射防止層形成材料を塗布して80℃で1分間加熱し、加熱後の塗布層に高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して塗布層を硬化させ、厚み0.1μmの反射防止層を形成した。これにより、[アクリルフィルム/ハードコート層/反射防止層]の構成を有する保護部材1(厚み44μm)を得た。
[Manufacture example 4: Production of protective member 1]
A hard coat layer forming material shown below was applied to an acrylic film having a lactone ring structure, and the applied layer was dried to form a 0.5 μm thick hard coat layer. Next, the antireflection layer forming material shown below was applied to the surface of the hard coat layer, heated at 80°C for 1 minute, and the heated coating layer was irradiated with ultraviolet rays at a cumulative light intensity of 300 mJ/cm 2 using a high-pressure mercury lamp. The coating layer was cured to form an antireflection layer with a thickness of 0.1 μm. As a result, a protective member 1 (thickness: 44 μm) having a configuration of [acrylic film/hard coat layer/antireflection layer] was obtained.
(ハードコート層形成用材料)
 アクリル系樹脂原料(大日本インキ社製、商品名:GRANDIC PC1071)に、レベリング剤0.5重量%を加え、さらに、固形分濃度が50重量%となるように酢酸エチルで希釈することにより、ハードコート層形成用材料を調製した。なお、レベリング剤は、ジメチルシロキサン:ヒドロキシプロピルシロキサン:6-イソシアネートヘキシルイソシアヌル酸:脂肪族ポリエステル=6.3:1.0:2.2:1.0のモル比で共重合させた共重合物である。
(Material for forming hard coat layer)
By adding 0.5% by weight of a leveling agent to acrylic resin raw material (manufactured by Dainippon Ink Co., Ltd., product name: GRANDIC PC1071), and further diluting with ethyl acetate so that the solid content concentration is 50% by weight, A material for forming a hard coat layer was prepared. The leveling agent is a copolymer copolymerized at a molar ratio of dimethylsiloxane: hydroxypropylsiloxane: 6-isocyanatehexylisocyanuric acid: aliphatic polyester = 6.3:1.0:2.2:1.0. It is.
(反射防止層形成材料)
 ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業株式会社製、商品名「ビスコート#300」、固形分100重量%)100重量部、中空ナノシリカ粒子(日揮触媒化成工業株式会社製、商品名「スルーリア5320」、固形分20重量%、重量平均粒子径75nm)100重量部、中実ナノシリカ粒子(日産化学工業株式会社製、商品名「MEK-2140Z-AC」、固形分30重量%、重量平均粒子径10nm)、フッ素含有添加剤(信越化学工業株式会社製、商品名「KY-1203」、固形分20重量%)12重量部、および光重合開始剤(BASF社製、商品名「OMNIRAD907」、固形分100重量%)3重量部を混合した。その混合物に、ターシャリーブチルアルコール、メチルイソブチルケトンおよびプロピレングリコールモノメチルエーテルアセテートを60:25:15重量比で混合した混合溶媒を添加し、全体の固形分が4重量%となるようにし、攪拌して反射防止層形成材料を調製した。
(Anti-reflection layer forming material)
100 parts by weight of polyfunctional acrylate whose main component is pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., product name "Viscoat #300", solid content 100% by weight), hollow nano silica particles (JGC Catalysts & Chemicals Co., Ltd.) 100 parts by weight, solid nano silica particles (manufactured by Nissan Chemical Industries, Ltd., trade name "MEK-2140Z-AC", solid content 20% by weight, weight average particle diameter 75 nm), solid content 30% (wt%, weight average particle diameter 10 nm), 12 parts by weight of a fluorine-containing additive (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KY-1203", solid content 20 wt%), and a photopolymerization initiator (manufactured by BASF, 3 parts by weight of the product (trade name "OMNIRAD907", solid content 100% by weight) were mixed. A mixed solvent of tertiary butyl alcohol, methyl isobutyl ketone, and propylene glycol monomethyl ether acetate in a 60:25:15 weight ratio was added to the mixture so that the total solid content was 4% by weight, and the mixture was stirred. An antireflection layer forming material was prepared.
[実施例1]
 偏光フィルム1の一方の面に粘着剤層1(厚み5μm)をPETフィルムごと貼り合わせ、他方の面に別の粘着剤層1(厚み5μm)をPETフィルムから転写し、その上にλ/4部材1を貼り合わせた。このとき、吸収型偏光膜の吸収軸とλ/4部材1の遅相軸とのなす角度が45°となるように配置した。
 次いで、λ/4部材1の表面に別の粘着剤層1(厚み5μm)をPETフィルムから転写し、その上に保護部材1を貼り合わせた。このとき、保護部材1のアクリルフィルム側表面がλ/4部材1側になるように(換言すると、表面処理層が最表面となるように)貼り合わせた。
 以上のようにして、[はく離ライナー(PETフィルム)/粘着剤層1/偏光フィルム1/粘着剤層1/λ/4部材1/粘着剤層1/保護部材1]の構成を有する光学積層体を得た。
[Example 1]
Adhesive layer 1 (thickness 5 μm) is pasted together with the PET film on one side of polarizing film 1, another adhesive layer 1 (thickness 5 μm) is transferred from the PET film to the other side, and λ/4 Member 1 was pasted together. At this time, the arrangement was such that the angle between the absorption axis of the absorption type polarizing film and the slow axis of the λ/4 member 1 was 45°.
Next, another adhesive layer 1 (thickness: 5 μm) was transferred from the PET film onto the surface of the λ/4 member 1, and the protective member 1 was bonded thereon. At this time, they were bonded together so that the surface of the protective member 1 on the acrylic film side was on the λ/4 member 1 side (in other words, so that the surface treatment layer was on the outermost surface).
As described above, an optical laminate having the configuration of [release liner (PET film)/adhesive layer 1/polarizing film 1/adhesive layer 1/λ/4 member 1/adhesive layer 1/protective member 1] is obtained. I got it.
[実施例2、比較例1-2]
 3つの粘着剤層1の1つ以上を粘着剤層2に変えたこと以外は実施例1と同様にして光学積層体を得た。各光学積層体の構成を表1に示す。また、粘着剤層1および2の線膨張係数(N=2の平均値)を表2に示す。
[Example 2, Comparative Example 1-2]
An optical laminate was obtained in the same manner as in Example 1 except that one or more of the three adhesive layers 1 was replaced with the adhesive layer 2. Table 1 shows the configuration of each optical laminate. Table 2 also shows the linear expansion coefficients (average value of N=2) of adhesive layers 1 and 2.
<湿熱試験>
 実施例および比較例で得た光学積層体からはく離ライナーを剥離し、露出した粘着剤層を介してガラス板に貼り合わせて試験サンプルを得た。試験サンプルを65℃90RH%の湿熱オーブン内に240時間放置した。試験前、120時間または240時間放置した光学積層体の面内位相差を測定した。面内位相差の測定は、オーブンから試験サンプルを取り出し、ガラス板側から測定光を照射して行った。結果を表1および図3に示す。なお、表1中、位相差変化は、試験前の光学積層体のRe(590)beforeと240時間放置後の光学積層体のRe(590)afterとの差(Re(590)before-Re(590)after)を表す。
<Moist heat test>
The release liner was peeled off from the optical laminates obtained in Examples and Comparative Examples, and the optical laminates were bonded to a glass plate via the exposed adhesive layer to obtain test samples. The test sample was left in a moist heat oven at 65° C. and 90 RH% for 240 hours. Before the test, the in-plane retardation of the optical laminate that had been left for 120 hours or 240 hours was measured. The in-plane retardation was measured by taking the test sample out of the oven and irradiating the measurement light from the glass plate side. The results are shown in Table 1 and FIG. 3. In Table 1, the retardation change is the difference (Re(590) before -Re ( 590) represents " after ".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示されるとおり、合計3つの粘着剤層のうち2つ以上の粘着剤層が0.8≦α1/α2≦1.2の関係を満たす実施例の光学積層体は、湿熱条件下での光学特性の安定性に優れる。 As shown in Tables 1 and 2, the optical laminate of the example in which two or more adhesive layers out of a total of three adhesive layers satisfy the relationship 0.8≦α1/α2≦1.2, Excellent stability of optical properties under various conditions.
 本発明は、上記実施形態に限定されるものではなく、種々の変形が可能である。例えば、上記実施形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成または同一の目的を達成することができる構成で置き換えることができる。 The present invention is not limited to the above embodiments, and various modifications are possible. For example, it can be replaced with a configuration that is substantially the same as the configuration shown in the above embodiment, a configuration that has the same effect, or a configuration that can achieve the same objective.
 本発明の実施形態に係る光学積層体は、例えば、VRゴーグル等のディスプレイ付きゴーグルの製造に用いられ得る。 The optical laminate according to the embodiment of the present invention can be used, for example, to manufacture goggles with a display such as VR goggles.
  2   表示システム
  4   レンズ部
 10   偏光部材
 12   表示素子
 14   反射型偏光部材
 16   第一レンズ部
 18   ハーフミラー
 20   第一位相差部材
 22   第二位相差部材
 24   第二レンズ部
100   光学積層体

 
2 Display system 4 Lens section 10 Polarizing member 12 Display element 14 Reflective polarizing member 16 First lens section 18 Half mirror 20 First retardation member 22 Second retardation member 24 Second lens section 100 Optical laminate

Claims (9)

  1.  少なくとも1つの光学部材と少なくとも1つの粘着剤層とを含む、光学積層体であって、
     前記光学積層体に含まれる前記粘着剤層の総数をNとしたときに、N/2以上の粘着剤層が、20℃から30℃まで昇温した際の線膨張係数α1と30℃から20℃まで降温した際の線膨張係数α2とが0.8≦α1/α2≦1.2の関係を満たす粘着剤層Aである、光学積層体。
    An optical laminate comprising at least one optical member and at least one adhesive layer,
    When the total number of the adhesive layers included in the optical laminate is N, N/2 or more of the adhesive layers have a linear expansion coefficient α1 when the temperature is raised from 20°C to 30°C and a coefficient of linear expansion α1 from 30°C to 20°C. An optical laminate, the adhesive layer A having a linear expansion coefficient α2 of 0.8≦α1/α2≦1.2 when the temperature is lowered to ℃.
  2.  前記粘着剤層Aの厚みが、1μm以上15μm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the adhesive layer A has a thickness of 1 μm or more and 15 μm or less.
  3.  厚みが、100μm以上300μm以下である、請求項1に記載の光学積層体。 The optical laminate according to claim 1, having a thickness of 100 μm or more and 300 μm or less.
  4.  前記光学積層体が、第一粘着剤層と、偏光部材と、第二粘着剤層と、第一位相差部材と、第三粘着剤層と、保護部材と、を、この順に有し、
     前記第一、第二、および第三粘着剤層から選択される2つ以上が、前記粘着剤層Aである、請求項1に記載の光学積層体。
    The optical laminate includes, in this order, a first adhesive layer, a polarizing member, a second adhesive layer, a first retardation member, a third adhesive layer, and a protective member,
    The optical laminate according to claim 1, wherein two or more selected from the first, second, and third adhesive layers are the adhesive layer A.
  5.  前記第一位相差部材が、λ/4部材を含む、請求項4に記載の光学積層体。 The optical laminate according to claim 4, wherein the first retardation member includes a λ/4 member.
  6.  前記保護部材が、表面処理層を有する、請求項4に記載の光学積層体。 The optical laminate according to claim 4, wherein the protective member has a surface treatment layer.
  7.  前記粘着剤層Aを構成する粘着剤組成物が、150万以上の重量平均分子量を有する(メタ)アクリル系ポリマーを含む、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the adhesive composition constituting the adhesive layer A contains a (meth)acrylic polymer having a weight average molecular weight of 1.5 million or more.
  8.  請求項1から7のいずれかに記載の光学積層体を含む、表示システム。 A display system comprising the optical laminate according to any one of claims 1 to 7.
  9.  偏光部材を介して画像を表す光を前方に出射する表示面を有する表示素子と、
     前記表示素子の前方に配置され、前記表示素子から出射された光を反射する反射型偏光部材と、
     前記表示素子と前記反射型偏光部材との間の光路上に配置される第一レンズ部と、
     前記表示素子と前記第一レンズ部との間に配置され、前記表示素子から出射された光を透過させ、前記反射型偏光部材で反射された光を前記反射型偏光部材に向けて反射させるハーフミラーと、
     前記表示素子と前記ハーフミラーとの間の光路上に配置される第1のλ/4部材と、
     前記ハーフミラーと前記反射型偏光部材との間の光路上に配置される第2のλ/4部材と、
     を備え、
     請求項5に記載の光学積層体が、前記表示素子と前記第1のλ/4板とが一体に設けられるように、前記ハーフミラーの前記表示素子側に配置されている、請求項8に記載の表示システム。
     

     
    a display element having a display surface that emits light representing an image forward through a polarizing member;
    a reflective polarizing member disposed in front of the display element and reflecting light emitted from the display element;
    a first lens portion disposed on an optical path between the display element and the reflective polarizing member;
    a half disposed between the display element and the first lens section, which transmits the light emitted from the display element and reflects the light reflected by the reflective polarizing member toward the reflective polarizing member; mirror and
    a first λ/4 member disposed on an optical path between the display element and the half mirror;
    a second λ/4 member disposed on the optical path between the half mirror and the reflective polarizing member;
    Equipped with
    The optical laminate according to claim 5 is arranged on the display element side of the half mirror so that the display element and the first λ/4 plate are integrally provided. Display system as described.


PCT/JP2023/008813 2022-03-14 2023-03-08 Optical laminate and display system WO2023176628A1 (en)

Applications Claiming Priority (28)

Application Number Priority Date Filing Date Title
JP2022039285 2022-03-14
JP2022-039285 2022-03-14
JP2022-039286 2022-03-14
JP2022039286 2022-03-14
JP2022077679A JP2023166854A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077678 2022-05-10
JP2022077677A JP2023166852A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077633A JP2023166826A (en) 2022-05-10 2022-05-10 Display method
JP2022077678A JP2023166853A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077657 2022-05-10
JP2022-077677 2022-05-10
JP2022077658A JP2023166840A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022077632A JP2023166825A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077634 2022-05-10
JP2022-077679 2022-05-10
JP2022-077633 2022-05-10
JP2022-077631 2022-05-10
JP2022-077659 2022-05-10
JP2022-077676 2022-05-10
JP2022-077658 2022-05-10
JP2022077676A JP2023166851A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022-077632 2022-05-10
JP2022077634A JP2023166827A (en) 2022-05-10 2022-05-10 Lens portion, laminate, display body, method for manufacturing display body, and display method
JP2022077631A JP2023134316A (en) 2022-03-14 2022-05-10 Lens part, laminated body, display body, display body production method, and display method
JP2022077657A JP2023134317A (en) 2022-03-14 2022-05-10 Display system, display method, display body, and display body production method
JP2022077659A JP2023166841A (en) 2022-05-10 2022-05-10 Display system, display method, display body, and method for manufacturing display body
JP2022212221A JP2024095149A (en) 2022-12-28 Optical laminate and display system
JP2022-212221 2022-12-28

Publications (1)

Publication Number Publication Date
WO2023176628A1 true WO2023176628A1 (en) 2023-09-21

Family

ID=88023250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008813 WO2023176628A1 (en) 2022-03-14 2023-03-08 Optical laminate and display system

Country Status (2)

Country Link
TW (1) TW202346089A (en)
WO (1) WO2023176628A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138147A (en) * 2005-10-18 2007-06-07 Nitto Denko Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, method for producing the layer, and optical member with pressure-sensitive adhesive
KR20170120853A (en) * 2016-04-22 2017-11-01 삼성에스디아이 주식회사 Adhesive film, optical member comprising the same and optical display apparatus comprising the same
JP2019526075A (en) * 2016-08-02 2019-09-12 アップル インコーポレイテッドApple Inc. Optical system for head mounted display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138147A (en) * 2005-10-18 2007-06-07 Nitto Denko Corp Pressure-sensitive adhesive composition, pressure-sensitive adhesive layer, method for producing the layer, and optical member with pressure-sensitive adhesive
KR20170120853A (en) * 2016-04-22 2017-11-01 삼성에스디아이 주식회사 Adhesive film, optical member comprising the same and optical display apparatus comprising the same
JP2019526075A (en) * 2016-08-02 2019-09-12 アップル インコーポレイテッドApple Inc. Optical system for head mounted display

Also Published As

Publication number Publication date
TW202346089A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
KR101780570B1 (en) Light-diffusing adhesive and optical member and polarizing plate using said light-diffusing adhesive
KR101927432B1 (en) High durable polarizing plate and display device comprising thereof
KR101545379B1 (en) Pressure sensitive adhesive
KR101821801B1 (en) Polarizing plate, method for preparing the same and optical display apparatus comprising the same
JP7184549B2 (en) Optical laminate and organic EL display device
TW200811504A (en) Liquid crystal panel and liquid crystal display apparatus
KR20200127018A (en) Polarizing plate with retardation layer and organic EL display device
KR101992002B1 (en) Adhesive film for polarizing plate, polarizing plate comprising the same and optical display apparatus comprising the same
JP2017049574A (en) Optical laminate
KR20210002457A (en) Polarizing plate and organic EL display device with retardation layer
WO2023176628A1 (en) Optical laminate and display system
KR20130023181A (en) Polarizing plate
JP2024095149A (en) Optical laminate and display system
EP3951455A1 (en) Optical film set and optical layered body
WO2019203121A1 (en) Polarizing plate having phase difference layer attached thereto, and organic el display device
WO2023176590A1 (en) Optical laminate with surface protection films and method for manufacturing display system
WO2022224494A1 (en) Retardation layer-equipped polarizing plate
WO2023042518A1 (en) Optical layered body
WO2023074037A1 (en) Polarizing plate with retardation layer
KR101742335B1 (en) Polarizer
WO2022004284A1 (en) Polarizing plate equipped with retardation layer and adhesive layer, and image display device using polarizing plate equipped with retardation layer and adhesive layer
WO2023176589A1 (en) Optical laminate equipped with surface protection film, and production method therefor
WO2019203122A1 (en) Polarizing plate having phase difference layer attached thereto, and organic el display device
JP2024095263A (en) Image display device
JP2024095021A (en) Method for manufacturing optical laminate with surface protective film and display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770584

Country of ref document: EP

Kind code of ref document: A1