WO2022185802A1 - Circular polarizing plate and image display device using same - Google Patents

Circular polarizing plate and image display device using same Download PDF

Info

Publication number
WO2022185802A1
WO2022185802A1 PCT/JP2022/003086 JP2022003086W WO2022185802A1 WO 2022185802 A1 WO2022185802 A1 WO 2022185802A1 JP 2022003086 W JP2022003086 W JP 2022003086W WO 2022185802 A1 WO2022185802 A1 WO 2022185802A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing plate
liquid crystal
layer
resin
circularly polarizing
Prior art date
Application number
PCT/JP2022/003086
Other languages
French (fr)
Japanese (ja)
Inventor
遼太 藤野
寛 友久
洋平 山岡
聡司 三田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237026552A priority Critical patent/KR20230151987A/en
Priority to CN202280013415.5A priority patent/CN116848443A/en
Publication of WO2022185802A1 publication Critical patent/WO2022185802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to a circularly polarizing plate and an image display device using the same.
  • the present invention has been made to solve the above-described conventional problems, and its main purpose is to suppress the change in phase difference in a high-temperature environment, and to suppress the phenomenon that the reflected hue is viewed as red.
  • An object of the present invention is to provide a circularly polarizing plate.
  • the circularly polarizing plate of the present invention comprises a polarizing plate, a first liquid crystal alignment fixed layer, a second liquid crystal alignment fixed layer and a protective layer in this order from the viewing side, and the protective layer has a moisture permeability of 920 (g / m 2 ⁇ 24 hr) or less.
  • the in-plane retardation Re (550) of the first liquid crystal alignment fixed layer is 100 nm to 180 nm, and the relationship Re (450) ⁇ Re (550) ⁇ Re (650) Fulfill.
  • the protective layer contains an epoxy-based resin or an acrylic-based resin, and the protective layer is a solidified product or a heat-cured product of a coating film of an organic solvent solution of the resin.
  • the protective layer has a glass transition temperature of 85° C. or higher, and the resin has a weight average molecular weight Mw of 25,000 or higher.
  • the circularly polarizing plate of the present invention comprises at least one additional protective layer between the polarizing plate and the first liquid crystal alignment fixed layer.
  • the thickness of the circularly polarizing plate of the present invention is 100 ⁇ m or less.
  • the polarizing plate, the first liquid crystal alignment fixed layer, the second liquid crystal alignment fixed layer, and the protective layer are provided in this order from the viewing side, and the protective layer has a moisture permeability of 920 (g /m 2 ⁇ 24 hr) or less, it is possible to obtain a thin circularly polarizing plate in which a change in retardation in a high-temperature environment is suppressed and a phenomenon in which the reflected hue is visually perceived as red is suppressed.
  • FIG. 1 is a schematic cross-sectional view of a circular polarizer according to one embodiment of the invention.
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • FIG. 1 is a schematic cross-sectional view of a circularly polarizing plate according to one embodiment of the present invention.
  • the illustrated circularly polarizing plate 100 has a polarizing plate 10, a first liquid crystal alignment fixed layer 20, a second liquid crystal alignment fixed layer 30, and a protective layer 40 in this order from the viewing side.
  • the polarizing plate 10 typically includes a polarizer 11 and a polarizer protective film 12 arranged on the viewing side of the polarizer 11 .
  • another polarizer protective film may be provided on the opposite side of the polarizer 11 from the viewing side.
  • the first liquid crystal alignment fixed layer 20 is typically a retardation layer having a circularly polarized light function or an elliptically polarized light function.
  • the moisture permeability of the protective layer 40 is 920 (g/m 2 ⁇ 24 hr) or less.
  • a thin circularly polarizing plate can be realized in which a change in retardation in a high-temperature environment is suppressed and a phenomenon in which the reflected hue is visually perceived as red is suppressed.
  • another protective layer may be provided between the polarizing plate and the first liquid crystal alignment fixed layer.
  • another protective layer only one layer may be provided between the polarizing plate and the first liquid crystal alignment fixed layer, or two layers may be provided.
  • the circularly polarizing plate may further contain other retardation layers.
  • Other optical properties of the retardation layer for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. can be appropriately set according to the purpose.
  • the adhesive layer 50 may be provided as the outermost layer on the surface of the protective layer 40 opposite to the second liquid crystal alignment fixed layer 30 .
  • the circularly polarizing plate can be attached to an image display device (substantially, an image display panel).
  • a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the circularly polarizing plate is used. Temporarily attaching the release film protects the pressure-sensitive adhesive layer and enables roll formation of the circularly polarizing plate.
  • the thickness of the circularly polarizing plate is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, even more preferably 70 ⁇ m or less, and particularly preferably 60 ⁇ m or less.
  • a lower limit for the total thickness can be, for example, 40 ⁇ m.
  • the thickness of the circularly polarizing plate means the total thickness from the polarizing plate to the pressure-sensitive adhesive layer. According to embodiments of the present invention, extremely thin circular polarizers can be realized.
  • the circularly polarizing plate may be sheet-shaped or elongated.
  • the term "long shape” means an elongated shape whose length is sufficiently long relative to its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width. include.
  • a long circularly polarizing plate can be wound into a roll.
  • the components of the circularly polarizing plate will be described in more detail.
  • the pressure-sensitive adhesive layer a structure well-known in the industry can be employed, so the detailed structure of the pressure-sensitive adhesive layer is omitted.
  • the polarizing plate includes a polarizer and a polarizer protective film disposed on at least one side of the polarizer.
  • the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
  • the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
  • hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films.
  • oriented polyene films such as those dyed with dichroic substances such as iodine and dichroic dyes and stretched, and dehydrated PVA and dehydrochlorinated polyvinyl chloride films.
  • a polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is preferably used because of its excellent optical properties.
  • the dyeing with iodine is performed, for example, by immersing the PVA-based film in an aqueous iodine solution.
  • the draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing. Moreover, you may dye after extending
  • the PVA-based film is subjected to swelling treatment, cross-linking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, not only can dirt and anti-blocking agents on the surface of the PVA-based film be washed away, but also the PVA-based film can be swollen to remove uneven dyeing. can be prevented.
  • the polarizer obtained using a laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin
  • a polarizer obtained by using a laminate with a PVA-based resin layer formed by coating on a substrate can be mentioned.
  • a polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material is obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material.
  • stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary.
  • the obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a polarizer protective film), or the resin substrate may be peeled off from the resin substrate/polarizer laminate.
  • Any suitable polarizer protective film may be laminated on the release surface according to the purpose. Details of such a polarizer manufacturing method are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (Patent No. 5414738) and Japanese Patent No. 6470455. The publication is incorporated herein by reference in its entirety.
  • the thickness of the polarizer is preferably 25 ⁇ m or less, more preferably 1 ⁇ m to 22 ⁇ m, even more preferably 1 ⁇ m to 12 ⁇ m, particularly preferably 3 ⁇ m to 12 ⁇ m. If the thickness of the polarizer is within such a range, it is possible to satisfactorily suppress curling during heating, and obtain excellent durability in appearance during heating.
  • the polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above.
  • the degree of polarization of the polarizer is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
  • the polarizer protective film is formed of any appropriate film.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, polynorbornene-based, polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins.
  • TAC triacetyl cellulose
  • polyester-based polyvinyl alcohol-based
  • polycarbonate-based polyamide-based
  • polyimide-based polyimide-based
  • polyethersulfone-based polysulfone-based resins.
  • polystyrene-based polynorbornene-based
  • polyolefin-based polyolefin-based
  • (meth)acrylic-based and
  • Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used.
  • a glassy polymer such as a siloxane-based polymer can also be used.
  • polymer films described in JP-A-2001-343529 can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain.
  • the polymer film can be, for example, an extrudate of the resin composition.
  • the circularly polarizing plate is typically arranged on the viewing side of the image display device, and the polarizer protective film 12 is typically arranged on the viewing side. Therefore, the polarizer protective film 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary. Further/or, the polarizer protective film may optionally be treated to improve visibility when viewed through polarized sunglasses (typically, imparting an (elliptically) polarizing function, super imparting a high retardation) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. Therefore, the circularly polarizing plate can be suitably applied to an image display device that can be used outdoors.
  • surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, anti-glare treatment, etc.
  • the polarizer protective film may optionally be treated to improve visibility when viewed through polarized sunglasses (typical
  • Another polarizer protective film is preferably optically isotropic in one embodiment.
  • “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is ⁇ 10 nm to +10 nm.
  • Preferred materials for forming another polarizer protective film include cyclic olefin-based (eg, polynorbornene-based), cellulose-based resins (eg, TAC), and acrylic-based resins.
  • the thickness of the polarizer protective film is preferably 10 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the thickness of the outer polarizer protective film 12 is the thickness including the thickness of the surface treatment layer.
  • the first liquid crystal alignment fixed layer 20 uses a liquid crystal compound, so that the difference between nx and ny can be significantly increased compared to a non-liquid crystal material.
  • the thickness of the first liquid crystal alignment fixed layer for obtaining retardation can be significantly reduced.
  • the thickness of the circularly polarizing plate can be further reduced.
  • the term “liquid crystal alignment fixed layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within the layer and the alignment state is fixed.
  • the "alignment fixed layer” is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, typically, rod-like liquid crystal compounds are aligned in the slow axis direction of the first liquid crystal alignment fixed layer (homogeneous alignment).
  • the first liquid crystal alignment fixed layer is typically provided to impart antireflection properties to the polarizing plate and can function as a ⁇ /4 plate.
  • the in-plane retardation Re(550) of the first liquid crystal alignment fixed layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, still more preferably 130 nm to 160 nm.
  • the Nz coefficient of the first liquid crystal alignment fixed layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3.
  • the first liquid crystal alignment fixed layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. and a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light.
  • the first liquid crystal alignment fixed layer preferably exhibits reverse dispersion wavelength characteristics. That is, the first liquid crystal alignment fixed layer preferably satisfies the relationship Re(450) ⁇ Re(550) ⁇ Re(650). In this case, Re(450)/Re(550) of the first liquid crystal alignment fixed layer is preferably 0.8 or more and less than 1, more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection properties can be achieved.
  • the angle ⁇ between the slow axis of the first liquid crystal alignment fixed layer and the absorption axis of the polarizer 11 is preferably 40° to 50°, more preferably 42° to 48°, and more preferably about 45°. If the angle ⁇ is in such a range, by using the ⁇ /4 plate as the first liquid crystal alignment fixed layer as described above, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics ) can be obtained.
  • the thickness of the first liquid crystal alignment fixed layer is preferably 0.5 ⁇ m to 7 ⁇ m, more preferably 1 ⁇ m to 5 ⁇ m.
  • Liquid crystal compounds include, for example, liquid crystal compounds whose liquid crystal phase is a nematic phase (nematic liquid crystal).
  • a liquid crystal compound for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound.
  • the liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
  • the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer.
  • the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers.
  • a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline.
  • the formed first liquid crystal orientation fixed layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to, for example, temperature changes peculiar to liquid crystalline compounds.
  • the first liquid crystal alignment fixed layer becomes a liquid crystal alignment fixed layer that is not affected by temperature changes and has extremely excellent stability.
  • the temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
  • liquid crystal monomer Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer.
  • polymerizable mesogenic compounds described in JP-T-2002-533742 WO00/37585
  • EP358208 US5211877
  • EP66137 US4388453
  • WO93/22397 EP0261712, DE19504224, DE4408171, and GB2280445
  • Specific examples of such polymerizable mesogenic compounds include LC242 (trade name) available from BASF, E7 (trade name) available from Merck, and LC-Sillicon-CC3767 (trade name) available from Wacker-Chem.
  • LC242 trade name
  • E7 trade name
  • LC-Sillicon-CC3767 trade name
  • the liquid crystal alignment fixed layer is obtained by subjecting the surface of a predetermined base material to alignment treatment, coating the surface with a coating liquid containing a liquid crystal compound, and orienting the liquid crystal compound in the direction corresponding to the alignment treatment, and It can be formed by fixing the state.
  • the substrate is any suitable resin film, and the liquid crystal alignment solidified layer formed on the substrate can be transferred to the surface of an adjacent layer (eg, protective layer).
  • orientation treatment can be adopted as the orientation treatment.
  • Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment.
  • Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment.
  • Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment.
  • Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment.
  • Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
  • the alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
  • the alignment state is fixed by cooling the liquid crystal compound aligned as described above.
  • the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
  • liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of the publication is incorporated herein by reference.
  • a positive C plate as the second liquid crystal orientation fixed layer, it is possible to satisfactorily prevent reflection in oblique directions and widen the viewing angle of the antireflection function.
  • the thickness direction retardation Rth (550) of the second liquid crystal alignment fixed layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, further preferably ⁇ 90 nm to ⁇ 200 nm, particularly preferably is -100 nm to -180 nm.
  • the second liquid crystal alignment fixed layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment.
  • a liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the method for forming the liquid crystal compound and the liquid crystal alignment fixed layer include the liquid crystal compound and the liquid crystal alignment fixed layer described in [0020] to [0028] of JP-A-2002-333642 (Patent No. 4174192).
  • a method for forming the In this case, the thickness of the second liquid crystal alignment fixing layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m.
  • the protective layer is disposed between the second liquid crystal alignment solidifying layer and the adhesive layer. Furthermore, the moisture permeability of the protective layer is 920 g/m 2 ⁇ 24 hr or less, preferably 900 g/m 2 ⁇ 24 hr or less, more preferably 880 g/m 2 ⁇ 24 hr or less. The lower limit of the moisture permeability of the protective layer can be, for example, 700 g/m 2 ⁇ 24 hr.
  • the protective layer is arranged between the second liquid crystal alignment solidified layer and the adhesive layer, and the moisture permeability of the protective layer is in such a range, whereby the retardation change in a high temperature environment is suppressed, and , a thin circularly polarizing plate can be obtained in which the phenomenon that the reflected hue is visually perceived as red is suppressed.
  • the protective layer is a solidified or thermoset coating film of an organic solvent solution of a resin. With such a configuration, the thickness can be made very thin (for example, 10 ⁇ m or less).
  • the thickness of the protective layer is preferably 0.01 ⁇ m to 5 ⁇ m, more preferably 0.02 ⁇ m to 3 ⁇ m, still more preferably 0.03 ⁇ m to 1 ⁇ m, and particularly preferably 0.04 ⁇ m to 0.6 ⁇ m.
  • the protective layer can be directly formed on the adjacent layer (for example, the liquid crystal alignment solidifying layer) (that is, without an adhesive layer or a pressure-sensitive adhesive layer).
  • the polarizer, the liquid crystal alignment fixing layer and the protective layer are very thin, and the adhesive layer or adhesive layer for laminating the protective layer can be omitted.
  • the total thickness of the circular polarizer can be made very thin.
  • such a protective layer has the advantage of being excellent in humidification durability because it has lower hygroscopicity and moisture permeability than a solidified aqueous coating film such as an aqueous solution or aqueous dispersion. As a result, it is possible to realize a circularly polarizing plate having excellent durability and capable of maintaining optical properties even in a high-temperature and high-humidity environment.
  • a protective layer can suppress adverse effects on the polarizing plate (polarizer) due to ultraviolet irradiation, compared to, for example, a cured product of an ultraviolet curable resin.
  • the protective layer is preferably a solidified product of a coating film of an organic solvent solution of a resin. The solidified product shrinks less during film formation than the cured product, and since it does not contain residual monomers, etc., deterioration of the film itself is suppressed. Adverse effects can be suppressed.
  • the resin constituting the protective layer has a glass transition temperature (Tg) of 85°C or higher and a weight average molecular weight Mw of 25000 or higher.
  • Tg glass transition temperature
  • Mw weight average molecular weight
  • the Tg of the resin is more preferably 90° C. or higher, still more preferably 100° C. or higher, particularly preferably 110° C. or higher, and most preferably 120° C. or higher.
  • the upper limit of Tg can be, for example, 200°C.
  • Mw of the resin is more preferably 30,000 or more, still more preferably 35,000 or more, and particularly preferably 40,000 or more.
  • the upper limit of Mw can be 150,000, for example.
  • the protective layer adjacent to the liquid crystal alignment fixed layer may further contain an isocyanate compound in addition to the above resin.
  • Isocyanate compounds include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and derivatives thereof (eg, modified products and adducts).
  • the isocyanate compounds may be used alone or in combination.
  • the content ratio of the resin and the isocyanate compound (resin/isocyanate compound) is 95/5 to 10/90 as described above.
  • the content ratio (resin/isocyanate compound) is, for example, 95/5 to 50/50, for example, 90/10 to 60/40, for example, 85/15 to 70/30, or for example, 85/15 to 75/25.
  • the content ratio may also be for example from 40/60 to 5/95, also for example from 30/70 to 5/95, also for example from 20/80 to 10/90. With such a configuration, peeling between the protective layer and the liquid crystal alignment fixing layer can be significantly suppressed.
  • the resin constituting the protective layer is preferably any appropriate thermoplastic as long as it can form a solidified product or a thermoset product of a coating film of an organic solvent solution and has the Tg and Mw as described above. Resins or thermosetting resins can be used. Thermoplastic resins are preferred. Examples of thermoplastic resins include epoxy resins and acrylic resins. An epoxy resin and an acrylic resin may be used in combination. Representative examples of epoxy-based resins and acrylic-based resins that can be used for the protective layer are described below.
  • an epoxy resin having an aromatic ring is preferably used.
  • adhesion to the polarizer can be improved when the protective layer is arranged adjacent to the polarizer.
  • the anchoring force of the adhesive layer can be improved.
  • epoxy resins having an aromatic ring examples include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin; phenol novolak epoxy resin, cresol novolak epoxy resin, hydroxybenzaldehyde phenol novolak Novolac type epoxy resins such as epoxy resins; polyfunctional epoxy resins such as glycidyl ether of tetrahydroxyphenylmethane, glycidyl ether of tetrahydroxybenzophenone, epoxidized polyvinylphenol, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like.
  • Bisphenol A type epoxy resin, biphenyl type epoxy resin, and bisphenol F type epoxy resin are preferably used.
  • Epoxy resins may be used alone or in combination of two or more.
  • Acrylic resins typically contain, as a main component, repeating units derived from (meth)acrylic acid ester monomers having a linear or branched structure.
  • (meth)acryl refers to acryl and/or methacryl.
  • the acrylic resin may contain repeating units derived from any appropriate comonomers depending on the purpose.
  • copolymerizable monomers include carboxyl group-containing monomers, hydroxyl group-containing monomers, amide group-containing monomers, aromatic ring-containing (meth)acrylates, and heterocyclic ring-containing vinyl monomers.
  • the acrylic resin is more than 50 parts by weight of a (meth)acrylic monomer and more than 0 parts by weight and less than 50 parts by weight of the monomer represented by formula (1) (hereinafter , may be referred to as a copolymer monomer) and a copolymer obtained by polymerizing a monomer mixture (hereinafter sometimes referred to as a boron-containing acrylic resin) including: (Wherein, X is a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, a hydroxyl group, an amino group, an aldehyde group, and a group consisting of a carboxyl group Represents a selected functional group containing at least one reactive group, and R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, or
  • a boron-containing acrylic resin typically has a repeating unit represented by the following formula.
  • the boron-containing acrylic resin has a substituent containing boron in the side chain (e.g., repeating unit k in the following formula).
  • the boron-containing substituent may be included continuously (that is, in blocks) in the boron-containing acrylic resin, or may be included randomly. (Wherein, R6 represents an arbitrary functional group, and j and k represent integers of 1 or more).
  • Any appropriate (meth)acrylic monomer can be used as the (meth)acrylic monomer.
  • Examples thereof include (meth)acrylic acid ester-based monomers having a linear or branched structure and (meth)acrylic acid ester-based monomers having a cyclic structure.
  • Examples of (meth)acrylic ester-based monomers having a linear or branched structure include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and (meth)acrylic acid. isopropyl, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, methyl 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate and the like. . Preferably, methyl (meth)acrylate is used.
  • the (meth)acrylic acid ester-based monomers may be used alone or in combination of two or more.
  • Examples of (meth)acrylic ester-based monomers having a cyclic structure include cyclohexyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate, ( meth)dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, biphenyl (meth)acrylate, o-biphenyloxyethyl (meth)acrylate, o-biphenyloxyethoxy Ethyl (meth)acrylate, m-biphenyloxyethyl acrylate, p-biphenyloxyethyl (meth)acrylate, o-biphenyloxy-2-hydroxypropyl (meth)acrylate, p-biphenyloxy-2-hydroxypropyl (meth)acrylate ,
  • 1-adamantyl (meth)acrylate and dicyclopentanyl (meth)acrylate are used.
  • a polymer having a high glass transition temperature can be obtained by using these monomers. These monomers may be used alone or in combination of two or more.
  • a silsesquioxane compound having a (meth)acryloyl group may also be used instead of the (meth)acrylic acid ester-based monomer.
  • a silsesquioxane compound By using a silsesquioxane compound, an acrylic polymer having a high glass transition temperature can be obtained.
  • Silsesquioxane compounds are known to have various skeleton structures, such as cage structures, ladder structures, and random structures. The silsesquioxane compound may have only one of these structures, or may have two or more. Silsesquioxane compounds may be used alone or in combination of two or more.
  • silsesquioxane compound containing a (meth)acryloyl group for example, Toagosei Co., Ltd. SQ series MAC grade and AC grade can be used.
  • MAC grade is a silsesquioxane compound containing a methacryloyl group, and specific examples thereof include MAC-SQ TM-100, MAC-SQ SI-20, MAC-SQ HDM, and the like.
  • AC grade is a silsesquioxane compound containing an acryloyl group, and specific examples thereof include AC-SQ TA-100 and AC-SQ SI-20.
  • the (meth)acrylic monomer is used in an amount exceeding 50 parts by weight with respect to 100 parts by weight of the monomer mixture.
  • Comonomer> A monomer represented by the above formula (1) is used as the comonomer. By using such a comonomer, a substituent containing boron is introduced into the side chain of the resulting polymer. Comonomers may be used alone or in combination of two or more.
  • aliphatic hydrocarbon group in the above formula (1) a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, 3 to 3 carbon atoms which may have a substituent 20 cyclic alkyl groups and alkenyl groups having 2 to 20 carbon atoms.
  • the aryl group include an optionally substituted phenyl group having 6 to 20 carbon atoms and a naphthyl group having 10 to 20 carbon atoms which may have a substituent.
  • the heterocyclic group includes a 5- or 6-membered ring group containing at least one optionally substituted heteroatom.
  • R 1 and R 2 may be linked together to form a ring.
  • R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
  • Reactive groups contained in the functional group represented by X include vinyl group, (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, hydroxyl group, amino group, aldehyde group, and at least one selected from the group consisting of carboxyl groups.
  • the reactive groups are (meth)acryl and/or (meth)acrylamide groups.
  • the functional group represented by X is preferably a functional group represented by ZY-.
  • Z is selected from the group consisting of a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, a hydroxyl group, an amino group, an aldehyde group, and a carboxyl group.
  • Y represents a phenylene group or an alkylene group.
  • the following compounds can be used as the comonomer.
  • the comonomer is used in a content of more than 0 parts by weight and less than 50 parts by weight with respect to 100 parts by weight of the monomer mixture. It is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight, even more preferably 0.1 to 10 parts by weight, and particularly preferably 0.1 part by weight to 10 parts by weight. 5 to 5 parts by weight.
  • the acrylic resin has a repeating unit containing a ring structure selected from lactone ring units, glutaric anhydride units, glutarimide units, maleic anhydride units and maleimide (N-substituted maleimide) units.
  • the repeating unit containing a ring structure only one type may be included in the repeating unit of the acrylic resin, or two or more types may be included.
  • the lactone ring unit is preferably represented by the following general formula (2):
  • R 2 , R 3 and R 4 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • the acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units in which R 2 , R 3 and R 4 in the general formula (2) are different. .
  • An acrylic resin having a lactone ring unit is described, for example, in JP-A-2008-181078, and the description of the publication is incorporated herein by reference.
  • the glutarimide unit is preferably represented by the following general formula (3):
  • R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms; R 13 is an alkyl group having 1 to 18 carbon atoms; or an aryl group having 6 to 10 carbon atoms.
  • R 11 and R 12 are each independently hydrogen or methyl, and R 13 is hydrogen, methyl, butyl or cyclohexyl. More preferably, R 11 is a methyl group, R 12 is hydrogen and R 13 is a methyl group.
  • the acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units in which R 11 , R 12 and R 13 in the general formula (3) are different. .
  • Acrylic resins having a glutarimide unit for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491 (Patent No. 4695439), It is described in JP-A-2006-337492, JP-A-2006-337493 (Japanese Patent No. 4686261), and JP-A-2006-337569, and the descriptions of these publications are incorporated herein by reference.
  • the glutaric anhydride unit the above explanation regarding the glutarimide unit applies, except that the nitrogen atom substituted by R 13 in the general formula (3) becomes an oxygen atom.
  • the structure is specified from the name, so a specific description is omitted.
  • the content of repeating units containing a ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, still more preferably 20 mol% to 30 mol%.
  • acrylic resin contains the repeating unit derived from said (meth)acrylic-type monomer as a main repeating unit.
  • the protective layer can be formed by applying an organic solvent solution of the resin as described above to form a coating film, and solidifying or thermally curing the coating film.
  • Any appropriate organic solvent that can dissolve or uniformly disperse the acrylic resin can be used as the organic solvent.
  • Specific examples of organic solvents include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone.
  • the resin concentration of the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed.
  • the solution may be applied to any appropriate base material, or may be applied to an adjacent layer (eg, liquid crystal alignment and solidification layer).
  • the solidified product (protective layer) of the coating film formed on the substrate is transferred to the adjacent layer.
  • the protective layer is directly formed on the adjacent layer by drying (solidifying) the applied film.
  • the solution is applied to the adjacent layer to form the protective layer directly on the adjacent layer.
  • the adhesive layer or adhesive layer required for transfer can be omitted, so the circularly polarizing plate can be made even thinner.
  • Any appropriate method can be adopted as a method of applying the solution. Specific examples include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.).
  • a protective layer can be formed by solidifying or thermally curing the coating film of the solution.
  • the heating temperature for solidification or heat curing is preferably 100°C or less, more preferably 50°C to 70°C. If the heating temperature is within this range, it is possible to prevent adverse effects on the polarizer.
  • the heating time can vary depending on the heating temperature. The heating time can be, for example, 1 minute to 10 minutes.
  • the protective layer may contain any appropriate additive depending on the purpose.
  • additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol, phosphorus, and sulfur; stabilizers such as light stabilizers, weather stabilizers, and heat stabilizers; Reinforcing materials such as carbon fiber; near-infrared absorbers; flame retardants such as tris(dibromopropyl) phosphate, triallyl phosphate, and antimony oxide; antistatic agents such as anionic, cationic, and nonionic surfactants; inorganic pigments , organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers or inorganic fillers; plasticizers; The type, number, combination, addition amount, etc. of additives can be appropriately set according to the purpose.
  • image Display Device The circularly polarizing plate described in the above items A to E can be applied to an image display device. Accordingly, embodiments of the present invention include image display devices using such circularly polarizing plates. Typical examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices).
  • An image display device according to an embodiment of the present invention includes the circularly polarizing plate according to the above items A to E on the viewing side thereof. The circularly polarizing plate is laminated so that the liquid crystal alignment fixed layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (so that the polarizer is on the viewing side).
  • the image display device has a curved shape (substantially a curved display screen) and/or is foldable or foldable.
  • Thickness A thickness of 10 ⁇ m or less was measured using an interferometric film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). A thickness exceeding 10 ⁇ m was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
  • the in-plane retardation was measured at a wavelength of 590 nm and at a temperature of 23°C.
  • the circularly polarizing plate obtained in the heating retardation change Examples and Comparative Examples to prepare a sample by bonding to the glass via an adhesive layer, retardation in the same manner as in the measurement of the retardation was measured. After the measured sample was placed in an environment of 85° C. for 120 hours, the sample was taken out, the phase difference was measured again, and the rate of change (%) of Re(590) was obtained.
  • the absolute value of the phase difference change rate (%) is less than 0.9% Poor: The absolute value of the phase difference change rate (%) is 0.9% or more (6) Red discoloration Examples and Comparative Examples
  • the circularly polarizing plate obtained in 1) was attached to a glass plate via an adhesive, and subjected to a heating test at 100°C for 120 hours, and the appearance before and after the heating test was visually observed. Good: Red discoloration was not observed Poor: Red discoloration was observed
  • Polyvinyl alcohol degree of polymerization: 4,200, degree of saponification: 99.2 mol% and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z410") mixed at 9:1: 100 weight of PVA-based resin 13 parts by weight of potassium iodide was added to parts by weight, and dissolved in water to prepare an aqueous PVA solution (coating solution). The above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, thereby producing a laminate.
  • the obtained laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
  • the finally obtained polarizer is added to a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C.
  • the film was uniaxially stretched so that the total draw ratio was 5.5 times (underwater stretching treatment).
  • the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
  • washing treatment aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water
  • drying treatment while drying in an oven kept at 90° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75° C. for about 2 seconds
  • the shrinkage ratio in the width direction of the laminate due to the drying shrinkage treatment was 5.2%.
  • a polarizer A having a thickness of 5 ⁇ m was formed on the resin substrate.
  • HC-TAC film as a polarizer protective film was attached to the surface of the polarizer A obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. .
  • the curable adhesive was applied so as to have a total thickness of 1.0 ⁇ m, and was bonded using a roll machine. After that, UV rays were irradiated from the polarizer protective film side to cure the adhesive.
  • the HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 ⁇ m) is formed on a triacetyl cellulose (TAC) film (thickness 25 ⁇ m), and is attached so that the TAC film faces the polarizer side. Matched.
  • the resin substrate was peeled off to obtain a polarizing plate A having a structure of HC layer/TAC film/adhesive layer/polarizer A.
  • HC-COP film is a film in which a hard coat (HC) layer (2 ⁇ m thick) is formed on a cycloolefin (COP) film (manufactured by Zeon Corporation, product name “ZF12”, thickness 25 ⁇ m).
  • the resulting coating film was rubbed to form an alignment film.
  • the rubbing treatment was performed using a commercially available rubbing device.
  • the polymerizable composition obtained above was applied to a substrate (substantially an alignment film) by a spin coating method and dried at 100° C. for 2 minutes. After the obtained coating film was cooled to room temperature, it was irradiated with ultraviolet rays for 30 seconds at an intensity of 30 mW/cm 2 using a high-pressure mercury lamp to obtain a first liquid crystal alignment fixed layer.
  • the in-plane retardation Re(550) of the first liquid crystal alignment fixed layer was 130 nm.
  • the Re(450)/Re(550) of the liquid crystal alignment fixed layer was 0.851, showing reverse dispersion wavelength characteristics.
  • the second liquid crystal alignment fixed layer Represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol % of the monomer units, and are expressed in block polymer form for convenience: weight average molecular weight 5000) 20 parts by weight of a side chain type liquid crystal polymer, 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) was dissolved in 200 parts by weight of cyclopentanone to prepare a liquid crystal coating solution.
  • chemical formula (I) number 65 and 35 in the formula indicate mol % of the monomer units, and are expressed in block polymer form for convenience: weight average molecular weight 5000
  • 20 parts by weight of a side chain type liquid crystal polymer 80 parts by weight of a polymeriz
  • the liquid crystal is formed by heating and drying at 80 ° C. for 4 minutes. Oriented.
  • a second liquid crystal alignment fixed layer (thickness: 0.58 ⁇ m) was formed on the substrate.
  • Example 1 The boron-containing acrylic resin prepared in Production Example 1 is applied onto the first liquid crystal alignment fixed layer obtained in Production Example 7 so that the thickness after drying is 0.5 ⁇ m, forming another protective layer. did.
  • the polarizing plate E obtained in Production Example 6 was laminated on the surface of another protective layer via an acrylic adhesive (thickness: 5 ⁇ m).
  • the second liquid crystal alignment fixed layer obtained in Production Example 7 was transferred to the opposite side of the first liquid crystal alignment fixed layer to the polarizer. At this time, they were attached so that the angle formed by the absorption axis of the polarizer and the slow axis of the first liquid crystal alignment fixed layer was +45°.
  • Copolymer 1 obtained in Production Example 1 (boron-containing acrylic resin) 15 parts (solid content conversion) and thermoplastic epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30”) 85 parts (solid content conversion) were blended.
  • the resin blend had a Tg of 125°C and a weight average molecular weight of 46,000.
  • This mixture was dissolved in 80 parts of a mixed solvent of ethyl acetate/cyclopentanone (70/30) to obtain a resin solution (20%).
  • This resin solution is applied to the surface of the second liquid crystal alignment fixed layer of the laminate obtained above using a wire bar, the coating film is dried at 60 ° C.
  • a protective layer (thickness: 0.5 ⁇ m) was formed as a solidified product of Next, an adhesive layer (thickness 15 ⁇ m) is provided on the surface of the protective layer, and the HC layer/TAC film/adhesive layer/polarizer/acrylic adhesive layer/another protective layer/first liquid crystal alignment solidifying layer/adhesive
  • a circularly polarizing plate having a structure of layer/second liquid crystal alignment fixed layer/protective layer/adhesive layer was obtained.
  • the moisture permeability of the protective layer was 869.8 (g/m 2 ⁇ 24 hr).
  • the total thickness of the obtained circularly polarizing plate was 65 ⁇ m.
  • the resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 2 Copolymer 1 obtained in Production Example 1 (boron-containing acrylic resin) 15 parts (solid content conversion) and thermoplastic epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30”) 85 parts 5 parts of an isocyanate compound (manufactured by Tosoh Corporation, "Coronate L”: trimethylolpropane adduct of tolylene diisocyanate) was added to 95 parts of the blend (in terms of solid content).
  • the resin blend had a Tg of 23° C. and a weight average molecular weight of 50,000.
  • a circularly polarizing plate was obtained in the same manner as in Example 1 using this mixture.
  • the protective layer had a moisture permeability of 901.7 (g/m 2 ⁇ 24 hr), and the total thickness of the resulting circularly polarizing plate was 65 ⁇ m.
  • the resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 1 A circularly polarizing plate was obtained in the same manner as in Example 1, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 3 A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate B was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 61 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 4 A circularly polarizing plate was obtained in the same manner as in Example 2 except that the polarizing plate B was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 61 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 3 A circularly polarizing plate was obtained in the same manner as in Example 3, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 60 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 5 A circularly polarizing plate was obtained in the same manner as in Example 2 except that the polarizing plate C was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 54 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 4 A circularly polarizing plate was obtained in the same manner as in Example 5, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 53 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 6 A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate D was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 96 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 5 A circularly polarizing plate was obtained in the same manner as in Example 5, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 95 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 7 A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate A was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 65 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 6 A circularly polarizing plate was obtained in the same manner as in Example 7, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 8 A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate A was used and the copolymer obtained in Production Example 1 was not applied to the first liquid crystal alignment fixed layer. The total thickness of the obtained circularly polarizing plate was 65 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • Example 7 A circularly polarizing plate was obtained in the same manner as in Example 8, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 ⁇ m. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
  • the circularly polarizing plate of the present invention is suitably used as a circularly polarizing plate for liquid crystal display devices, organic EL display devices and inorganic EL display devices.

Abstract

Provided is a thin circular polarizing plate in which phase difference changes in high temperature environments are suppressed, and the phenomenon whereby the reflection hue appears red is suppressed. This circular polarizing plate comprises a polarizing plate, a first liquid crystal orientation fixed layer, a second liquid crystal orientation fixed layer, and a protection layer, in that order from the viewing side, wherein the moisture permeability of the protection layer is 920 (g/m2・ 24 h) or less.

Description

円偏光板およびそれを用いた画像表示装置Circularly polarizing plate and image display device using the same
 本発明は、円偏光板およびそれを用いた画像表示装置に関する。 The present invention relates to a circularly polarizing plate and an image display device using the same.
 薄型ディスプレイの普及と共に、有機ELパネルを搭載したディスプレイが提案されている。有機ELパネルは反射性の高い金属層を有しており、外光反射や背景の映り込み等の問題を生じやすい。そこで、λ/4位相差フィルムを有する円偏光板を視認側に設けることにより、これらの問題を防ぐことが知られている。 With the spread of thin displays, displays equipped with organic EL panels have been proposed. Since the organic EL panel has a highly reflective metal layer, problems such as reflection of external light and reflection of the background tend to occur. Therefore, it is known to prevent these problems by providing a circularly polarizing plate having a λ/4 retardation film on the viewing side.
 近年、ディスプレイの薄型化に伴い、上記円偏光板の薄型化が求められるようになっている。しかし、このような薄型の円偏光板においては、高温環境下に長時間暴露された場合に、位相差フィルムの位相差が変化する、反射色相が赤く視認されるなどの課題がある。 In recent years, as displays have become thinner, there has been a demand for thinner circularly polarizing plates. However, such a thin circularly polarizing plate has problems such as that the retardation of the retardation film changes when exposed to a high-temperature environment for a long period of time, and that the reflected hue is visually perceived as red.
特許第3325560号公報Japanese Patent No. 3325560
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、高温環境下における位相差変化が抑制され、かつ、反射色相が赤く視認される現象が抑制された薄型の円偏光板を提供することにある。 The present invention has been made to solve the above-described conventional problems, and its main purpose is to suppress the change in phase difference in a high-temperature environment, and to suppress the phenomenon that the reflected hue is viewed as red. An object of the present invention is to provide a circularly polarizing plate.
 本発明の円偏光板は、偏光板と第1の液晶配向固化層と第2の液晶配向固化層と保護層とを、視認側からこの順に備え、該保護層の透湿度は920(g/m・24hr)以下である。
 1つの実施形態においては、上記第1の液晶配向固化層の面内位相差Re(550)は100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たす。
 1つの実施形態においては、上記第2の液晶配向固化層は、nz>nx=nyの屈折率特性を示す。
 1つの実施形態においては、上記保護層は、エポキシ系樹脂またはアクリル系樹脂を含み、かつ、該保護層は、該樹脂の有機溶媒溶液の塗布膜の固化物または熱硬化物である。
 1つの実施形態においては、上記保護層のガラス転移温度は85℃以上であり、かつ、前記樹脂の重量平均分子量Mwは25000以上である。
 1つの実施形態においては、本発明の円偏光板は、上記偏光板と前記第1の液晶配向固化層との間に別の保護層を少なくとも1つ備える。
 1つの実施形態においては、本発明の円偏光板の厚みは100μm以下である。
 本発明の別の局面においては、画像表示装置が提供される。この画像表示装置は、上記円偏光板を含む。
The circularly polarizing plate of the present invention comprises a polarizing plate, a first liquid crystal alignment fixed layer, a second liquid crystal alignment fixed layer and a protective layer in this order from the viewing side, and the protective layer has a moisture permeability of 920 (g / m 2 ·24 hr) or less.
In one embodiment, the in-plane retardation Re (550) of the first liquid crystal alignment fixed layer is 100 nm to 180 nm, and the relationship Re (450) < Re (550) < Re (650) Fulfill.
In one embodiment, the second liquid crystal alignment fixed layer exhibits a refractive index characteristic of nz>nx=ny.
In one embodiment, the protective layer contains an epoxy-based resin or an acrylic-based resin, and the protective layer is a solidified product or a heat-cured product of a coating film of an organic solvent solution of the resin.
In one embodiment, the protective layer has a glass transition temperature of 85° C. or higher, and the resin has a weight average molecular weight Mw of 25,000 or higher.
In one embodiment, the circularly polarizing plate of the present invention comprises at least one additional protective layer between the polarizing plate and the first liquid crystal alignment fixed layer.
In one embodiment, the thickness of the circularly polarizing plate of the present invention is 100 µm or less.
An image display device is provided in another aspect of the present invention. This image display device includes the circularly polarizing plate.
 本発明の実施形態によれば、偏光板と第1の液晶配向固化層と第2の液晶配向固化層と保護層とを、視認側からこの順に備え、該保護層の透湿度が920(g/m・24hr)以下であることにより、高温環境下における位相差変化が抑制され、かつ、反射色相が赤く視認される現象が抑制された薄型の円偏光板を得ることができる。 According to the embodiment of the present invention, the polarizing plate, the first liquid crystal alignment fixed layer, the second liquid crystal alignment fixed layer, and the protective layer are provided in this order from the viewing side, and the protective layer has a moisture permeability of 920 (g /m 2 ·24 hr) or less, it is possible to obtain a thin circularly polarizing plate in which a change in retardation in a high-temperature environment is suppressed and a phenomenon in which the reflected hue is visually perceived as red is suppressed.
本発明の1つの実施形態による円偏光板の概略断面図である。1 is a schematic cross-sectional view of a circular polarizer according to one embodiment of the invention; FIG.
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。 Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments.
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
(Definition of terms and symbols)
Definitions of terms and symbols used herein are as follows.
(1) refractive index (nx, ny, nz)
"nx" is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny" is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
“Re(λ)” is an in-plane retardation measured at 23° C. with light having a wavelength of λ nm. For example, "Re(550)" is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C. Re(λ) is obtained by the formula: Re(λ)=(nx−ny)×d, where d (nm) is the thickness of the layer (film).
(3) Thickness direction retardation (Rth)
“Rth(λ)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of λ nm. For example, “Rth(550)” is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm. Rth(λ) is determined by the formula: Rth(λ)=(nx−nz)×d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz=Rth/Re.
(5) Angle When referring to an angle in this specification, the angle includes both clockwise and counterclockwise directions with respect to a reference direction. Thus, for example, "45°" means ±45°.
A.円偏光板の全体構成
 図1は、本発明の1つの実施形態による円偏光板の概略断面図である。図示例の円偏光板100は、偏光板10と第1の液晶配向固化層20と第2の液晶配向固化層30と保護層40と、を視認側からこの順に有する。偏光板10は、代表的には、偏光子11と、偏光子11の視認側に配置された偏光子保護フィルム12と、を含む。目的に応じて、偏光子11の視認側と反対側に別の偏光子保護フィルム(図示せず)が設けられてもよい。第1の液晶配向固化層20は、代表的には、円偏光機能または楕円偏光機能を有する位相差層である。
A. Overall Configuration of Circularly Polarizing Plate FIG. 1 is a schematic cross-sectional view of a circularly polarizing plate according to one embodiment of the present invention. The illustrated circularly polarizing plate 100 has a polarizing plate 10, a first liquid crystal alignment fixed layer 20, a second liquid crystal alignment fixed layer 30, and a protective layer 40 in this order from the viewing side. The polarizing plate 10 typically includes a polarizer 11 and a polarizer protective film 12 arranged on the viewing side of the polarizer 11 . Depending on the purpose, another polarizer protective film (not shown) may be provided on the opposite side of the polarizer 11 from the viewing side. The first liquid crystal alignment fixed layer 20 is typically a retardation layer having a circularly polarized light function or an elliptically polarized light function.
 本発明の実施形態においては、上記保護層40の透湿度は920(g/m・24hr)以下である。保護層の透湿度がこのような範囲であることにより、高温環境下における位相差変化が抑制され、かつ、反射色相が赤く視認される現象が抑制された薄型の円偏光板が実現され得る。 In the embodiment of the present invention, the moisture permeability of the protective layer 40 is 920 (g/m 2 ·24 hr) or less. When the moisture permeability of the protective layer is within such a range, a thin circularly polarizing plate can be realized in which a change in retardation in a high-temperature environment is suppressed and a phenomenon in which the reflected hue is visually perceived as red is suppressed.
 本願発明の一つの実施形態においては、上記偏光板と上記第1の液晶配向固化層との間に別の保護層が設けられていてもよい。別の保護層は、当該偏光板と当該第1の液晶配向固化層との間に1層のみが設けられていてもよく、2層設けられていてもよい。 In one embodiment of the present invention, another protective layer may be provided between the polarizing plate and the first liquid crystal alignment fixed layer. As for another protective layer, only one layer may be provided between the polarizing plate and the first liquid crystal alignment fixed layer, or two layers may be provided.
 円偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。 The circularly polarizing plate may further contain other retardation layers. Other optical properties of the retardation layer (for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. can be appropriately set according to the purpose.
 実用的には、保護層40の第2の液晶配向固化層30と反対側の面に、粘着剤層50が最外層として設けられてもよい。粘着剤層を設けることにより、円偏光板は画像表示装置(実質的には、画像表示パネル)に貼り付け可能とされている。さらに、粘着剤層の表面には、円偏光板が使用に供されるまで剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、円偏光板のロール形成が可能となる。 Practically, the adhesive layer 50 may be provided as the outermost layer on the surface of the protective layer 40 opposite to the second liquid crystal alignment fixed layer 30 . By providing an adhesive layer, the circularly polarizing plate can be attached to an image display device (substantially, an image display panel). Furthermore, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the circularly polarizing plate is used. Temporarily attaching the release film protects the pressure-sensitive adhesive layer and enables roll formation of the circularly polarizing plate.
 円偏光板の厚みは、好ましくは100μm以下であり、より好ましくは80μm以下であり、さらに好ましくは70μm以下であり、特に好ましくは60μm以下である。総厚みの下限は、例えば40μmであり得る。円偏光板の厚みとは、偏光板から粘着剤層までの厚みの合計をいう。本発明の実施形態によれば、きわめて薄い円付偏光板を実現することができる。 The thickness of the circularly polarizing plate is preferably 100 µm or less, more preferably 80 µm or less, even more preferably 70 µm or less, and particularly preferably 60 µm or less. A lower limit for the total thickness can be, for example, 40 μm. The thickness of the circularly polarizing plate means the total thickness from the polarizing plate to the pressure-sensitive adhesive layer. According to embodiments of the present invention, extremely thin circular polarizers can be realized.
 円偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の円偏光板は、ロール状に巻回可能である。 The circularly polarizing plate may be sheet-shaped or elongated. As used herein, the term "long shape" means an elongated shape whose length is sufficiently long relative to its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width. include. A long circularly polarizing plate can be wound into a roll.
 以下、円偏光板の構成要素について、より詳細に説明する。なお、粘着剤層については業界で周知の構成が採用され得るので、粘着剤層の詳細な構成については記載を省略する。 Below, the components of the circularly polarizing plate will be described in more detail. As for the pressure-sensitive adhesive layer, a structure well-known in the industry can be employed, so the detailed structure of the pressure-sensitive adhesive layer is omitted.
B.偏光板
 偏光板は、偏光子と該偏光子の少なくとも片面に配置された偏光子保護フィルムとを備える。
B. Polarizing Plate The polarizing plate includes a polarizer and a polarizer protective film disposed on at least one side of the polarizer.
B-1.偏光子
 偏光子としては、任意の適切な偏光子が採用され得る。例えば、偏光子を形成する樹脂フィルムは、単層の樹脂フィルムであってもよく、二層以上の積層体であってもよい。
B-1. Polarizer Any appropriate polarizer can be employed as the polarizer. For example, the resin film forming the polarizer may be a single-layer resin film or a laminate of two or more layers.
 単層の樹脂フィルムから構成される偏光子の具体例としては、ポリビニルアルコール(PVA)系フィルム、部分ホルマール化PVA系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質による染色処理および延伸処理が施されたもの、PVAの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。好ましくは、光学特性に優れることから、PVA系フィルムをヨウ素で染色し一軸延伸して得られた偏光子が用いられる。 Specific examples of the polarizer composed of a single-layer resin film include hydrophilic polymer films such as polyvinyl alcohol (PVA) films, partially formalized PVA films, and partially saponified ethylene/vinyl acetate copolymer films. In addition, oriented polyene films such as those dyed with dichroic substances such as iodine and dichroic dyes and stretched, and dehydrated PVA and dehydrochlorinated polyvinyl chloride films. A polarizer obtained by dyeing a PVA-based film with iodine and uniaxially stretching the film is preferably used because of its excellent optical properties.
 上記ヨウ素による染色は、例えば、PVA系フィルムをヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系フィルムに、膨潤処理、架橋処理、洗浄処理、乾燥処理等が施される。例えば、染色の前にPVA系フィルムを水に浸漬して水洗することで、PVA系フィルム表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系フィルムを膨潤させて染色ムラなどを防止することができる。 The dyeing with iodine is performed, for example, by immersing the PVA-based film in an aqueous iodine solution. The draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing. Moreover, you may dye after extending|stretching. If necessary, the PVA-based film is subjected to swelling treatment, cross-linking treatment, washing treatment, drying treatment, and the like. For example, by immersing the PVA-based film in water and washing it with water before dyeing, not only can dirt and anti-blocking agents on the surface of the PVA-based film be washed away, but also the PVA-based film can be swollen to remove uneven dyeing. can be prevented.
 積層体を用いて得られる偏光子の具体例としては、樹脂基材と当該樹脂基材に積層されたPVA系樹脂層(PVA系樹脂フィルム)との積層体、あるいは、樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子が挙げられる。樹脂基材と当該樹脂基材に塗布形成されたPVA系樹脂層との積層体を用いて得られる偏光子は、例えば、PVA系樹脂溶液を樹脂基材に塗布し、乾燥させて樹脂基材上にPVA系樹脂層を形成して、樹脂基材とPVA系樹脂層との積層体を得ること;当該積層体を延伸および染色してPVA系樹脂層を偏光子とすること;により作製され得る。本実施形態においては、延伸は、代表的には積層体をホウ酸水溶液中に浸漬させて延伸することを含む。さらに、延伸は、必要に応じて、ホウ酸水溶液中での延伸の前に積層体を高温(例えば、95℃以上)で空中延伸することをさらに含み得る。得られた樹脂基材/偏光子の積層体はそのまま用いてもよく(すなわち、樹脂基材を偏光子保護フィルムとしてもよく)、樹脂基材/偏光子の積層体から樹脂基材を剥離し、当該剥離面に目的に応じた任意の適切な偏光子保護フィルムを積層して用いてもよい。このような偏光子の製造方法の詳細は、例えば特開2012-73580号公報(特許第5414738号)、特許第6470455号公報に記載されている。当該公報は、その全体の記載が本明細書に参考として援用される。 Specific examples of the polarizer obtained using a laminate include a laminate of a resin substrate and a PVA-based resin layer (PVA-based resin film) laminated on the resin substrate, or a resin substrate and the resin A polarizer obtained by using a laminate with a PVA-based resin layer formed by coating on a substrate can be mentioned. A polarizer obtained by using a laminate of a resin base material and a PVA-based resin layer formed by coating on the resin base material is obtained, for example, by applying a PVA-based resin solution to the resin base material and drying the resin base material. forming a PVA-based resin layer thereon to obtain a laminate of a resin substrate and a PVA-based resin layer; stretching and dyeing the laminate to use the PVA-based resin layer as a polarizer; obtain. In this embodiment, stretching typically includes immersing the laminate in an aqueous boric acid solution and stretching. Furthermore, stretching may further include stretching the laminate in air at a high temperature (eg, 95° C. or higher) before stretching in an aqueous boric acid solution, if necessary. The obtained resin substrate/polarizer laminate may be used as it is (that is, the resin substrate may be used as a polarizer protective film), or the resin substrate may be peeled off from the resin substrate/polarizer laminate. Any suitable polarizer protective film may be laminated on the release surface according to the purpose. Details of such a polarizer manufacturing method are described in, for example, Japanese Patent Application Laid-Open No. 2012-73580 (Patent No. 5414738) and Japanese Patent No. 6470455. The publication is incorporated herein by reference in its entirety.
 偏光子の厚みは、好ましくは25μm以下であり、より好ましくは1μm~22μmであり、さらに好ましくは1μm~12μmであり、特に好ましくは3μm~12μmである。偏光子の厚みがこのような範囲であれば、加熱時のカールを良好に抑制することができ、および、良好な加熱時の外観耐久性が得られる。 The thickness of the polarizer is preferably 25 μm or less, more preferably 1 μm to 22 μm, even more preferably 1 μm to 12 μm, particularly preferably 3 μm to 12 μm. If the thickness of the polarizer is within such a range, it is possible to satisfactorily suppress curling during heating, and obtain excellent durability in appearance during heating.
 偏光子は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光子の単体透過率は、上記のとおり43.0%~46.0%であり、好ましくは44.5%~46.0%である。偏光子の偏光度は、好ましくは97.0%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.9%以上である。 The polarizer preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm. The single transmittance of the polarizer is 43.0% to 46.0%, preferably 44.5% to 46.0%, as described above. The degree of polarization of the polarizer is preferably 97.0% or higher, more preferably 99.0% or higher, still more preferably 99.9% or higher.
B-2.偏光子保護フィルム
 上記偏光子保護フィルムは、任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
B-2. Polarizer Protective Film The polarizer protective film is formed of any appropriate film. Specific examples of the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, polynorbornene-based, polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins. Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used. In addition, for example, a glassy polymer such as a siloxane-based polymer can also be used. Further, polymer films described in JP-A-2001-343529 (WO01/37007) can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain. can be used, for example, a resin composition comprising an alternating copolymer of isobutene and N-methylmaleimide and an acrylonitrile-styrene copolymer. The polymer film can be, for example, an extrudate of the resin composition.
 上記円偏光板は、後述するように代表的には画像表示装置の視認側に配置され、偏光子保護フィルム12は、代表的にはその視認側に配置される。したがって、上記偏光子保護フィルム12には、必要に応じて、ハードコート処理、反射防止処理、スティッキング防止処理、アンチグレア処理等の表面処理が施されていてもよい。さらに/あるいは、該偏光子保護フィルムには、必要に応じて、偏光サングラスを介して視認する場合の視認性を改善する処理(代表的には、(楕)円偏光機能を付与すること、超高位相差を付与すること)が施されていてもよい。このような処理を施すことにより、偏光サングラス等の偏光レンズを介して表示画面を視認した場合でも、優れた視認性を実現することができる。したがって、上記円偏光板は、屋外で用いられ得る画像表示装置にも好適に適用され得る。 As will be described later, the circularly polarizing plate is typically arranged on the viewing side of the image display device, and the polarizer protective film 12 is typically arranged on the viewing side. Therefore, the polarizer protective film 12 may be subjected to surface treatment such as hard coat treatment, antireflection treatment, anti-sticking treatment, anti-glare treatment, etc., if necessary. Further/or, the polarizer protective film may optionally be treated to improve visibility when viewed through polarized sunglasses (typically, imparting an (elliptically) polarizing function, super imparting a high retardation) may be applied. By performing such processing, excellent visibility can be achieved even when the display screen is viewed through polarized lenses such as polarized sunglasses. Therefore, the circularly polarizing plate can be suitably applied to an image display device that can be used outdoors.
 別の偏光子保護フィルムは、1つの実施形態においては、光学的に等方性であることが好ましい。本明細書において「光学的に等方性である」とは、面内位相差Re(550)が0nm~10nmであり、厚み方向の位相差Rth(550)が-10nm~+10nmであることをいう。別の偏光子保護フィルムを構成する材料としては、好ましくは、環状オレフィン系(例えば、ポリノルボルネン系)、セルロース系樹脂(例えば、TAC)、アクリル系樹脂が挙げられる。 Another polarizer protective film is preferably optically isotropic in one embodiment. As used herein, “optically isotropic” means that the in-plane retardation Re (550) is 0 nm to 10 nm and the thickness direction retardation Rth (550) is −10 nm to +10 nm. Say. Preferred materials for forming another polarizer protective film include cyclic olefin-based (eg, polynorbornene-based), cellulose-based resins (eg, TAC), and acrylic-based resins.
 偏光子保護フィルムの厚みは、好ましくは10μm~50μm、より好ましくは10μm~30μmである。なお、表面処理が施されている場合、外側偏光子保護フィルム12の厚みは、表面処理層の厚みを含めた厚みである。 The thickness of the polarizer protective film is preferably 10 μm to 50 μm, more preferably 10 μm to 30 μm. In addition, when the surface treatment is performed, the thickness of the outer polarizer protective film 12 is the thickness including the thickness of the surface treatment layer.
C.第1の液晶配向固化層
 第1の液晶配向固化層20は、液晶化合物を用いることにより、nxとnyとの差を非液晶材料に比べて格段に大きくすることができるので、所望の面内位相差を得るための第1の液晶配向固化層の厚みを格段に小さくすることができる。その結果、円偏光板のさらなる薄型化を実現することができる。本明細書において「液晶配向固化層」とは、液晶化合物が層内で所定の方向に配向し、その配向状態が固定されている層をいう。なお、「配向固化層」は、後述のように液晶モノマーを硬化させて得られる配向硬化層を包含する概念である。本実施形態においては、代表的には、棒状の液晶化合物が第1の液晶配向固化層の遅相軸方向に並んだ状態で配向している(ホモジニアス配向)。
C. First liquid crystal alignment fixed layer The first liquid crystal alignment fixed layer 20 uses a liquid crystal compound, so that the difference between nx and ny can be significantly increased compared to a non-liquid crystal material. The thickness of the first liquid crystal alignment fixed layer for obtaining retardation can be significantly reduced. As a result, the thickness of the circularly polarizing plate can be further reduced. As used herein, the term “liquid crystal alignment fixed layer” refers to a layer in which a liquid crystal compound is aligned in a predetermined direction within the layer and the alignment state is fixed. In addition, the "alignment fixed layer" is a concept including an alignment cured layer obtained by curing a liquid crystal monomer as described later. In the present embodiment, typically, rod-like liquid crystal compounds are aligned in the slow axis direction of the first liquid crystal alignment fixed layer (homogeneous alignment).
 第1の液晶配向固化層は、代表的には、屈折率特性がnx>ny=nzの関係を示す。第1の液晶配向固化層は、代表的には偏光板に反射防止特性を付与するために設けられ、λ/4板として機能し得る。この場合、第1の液晶配向固化層の面内位相差Re(550)は、好ましくは100nm~180nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny>nzまたはny<nzとなる場合があり得る。 The first liquid crystal alignment fixed layer typically exhibits a refractive index characteristic of nx>ny=nz. The first liquid crystal alignment fixed layer is typically provided to impart antireflection properties to the polarizing plate and can function as a λ/4 plate. In this case, the in-plane retardation Re(550) of the first liquid crystal alignment fixed layer is preferably 100 nm to 180 nm, more preferably 110 nm to 170 nm, still more preferably 130 nm to 160 nm. Here, "ny=nz" includes not only the case where ny and nz are completely equal but also the case where they are substantially equal. Therefore, ny>nz or ny<nz may be satisfied within a range that does not impair the effects of the present invention.
 第1の液晶配向固化層のNz係数は、好ましくは0.9~1.5であり、より好ましくは0.9~1.3である。このような関係を満たすことにより、得られる円偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。 The Nz coefficient of the first liquid crystal alignment fixed layer is preferably 0.9 to 1.5, more preferably 0.9 to 1.3. By satisfying such a relationship, when the obtained circularly polarizing plate is used in an image display device, a very excellent reflection hue can be achieved.
 第1の液晶配向固化層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の液晶配向固化層は、好ましくは逆分散波長特性を示す。すなわち、第1の液晶配向固化層は、好ましくはRe(450)<Re(550)<Re(650)の関係を満たす。この場合、第1の液晶配向固化層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。 The first liquid crystal alignment fixed layer may exhibit a reverse dispersion wavelength characteristic in which the retardation value increases according to the wavelength of the measurement light, and a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. and a flat wavelength dispersion characteristic in which the retardation value hardly changes even with the wavelength of the measurement light. In one embodiment, the first liquid crystal alignment fixed layer preferably exhibits reverse dispersion wavelength characteristics. That is, the first liquid crystal alignment fixed layer preferably satisfies the relationship Re(450)<Re(550)<Re(650). In this case, Re(450)/Re(550) of the first liquid crystal alignment fixed layer is preferably 0.8 or more and less than 1, more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection properties can be achieved.
 第1の液晶配向固化層の遅相軸と偏光子11の吸収軸とのなす角度θは、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、上記のように第1の液晶配向固化層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する円偏光板が得られ得る。 The angle θ between the slow axis of the first liquid crystal alignment fixed layer and the absorption axis of the polarizer 11 is preferably 40° to 50°, more preferably 42° to 48°, and more preferably about 45°. If the angle θ is in such a range, by using the λ/4 plate as the first liquid crystal alignment fixed layer as described above, very excellent circular polarization characteristics (as a result, very excellent antireflection characteristics ) can be obtained.
 第1の液晶配向固化層の厚みは、好ましくは0.5μm~7μmであり、より好ましくは1μm~5μmである。液晶化合物を用いることにより、樹脂フィルムよりも格段に薄い厚みで樹脂フィルムと同等の面内位相差を実現することができる。 The thickness of the first liquid crystal alignment fixed layer is preferably 0.5 μm to 7 μm, more preferably 1 μm to 5 μm. By using a liquid crystal compound, it is possible to realize an in-plane retardation equivalent to that of a resin film with a thickness much thinner than that of a resin film.
 液晶化合物としては、例えば、液晶相がネマチック相である液晶化合物(ネマチック液晶)が挙げられる。このような液晶化合物として、例えば、液晶ポリマーや液晶モノマーが使用可能である。液晶化合物の液晶性の発現機構は、リオトロピックでもサーモトロピックでもどちらでもよい。液晶ポリマーおよび液晶モノマーは、それぞれ単独で用いてもよく、組み合わせてもよい。 Liquid crystal compounds include, for example, liquid crystal compounds whose liquid crystal phase is a nematic phase (nematic liquid crystal). As such a liquid crystal compound, for example, a liquid crystal polymer or a liquid crystal monomer can be used. Either lyotropic or thermotropic mechanism may be used to develop the liquid crystallinity of the liquid crystal compound. The liquid crystal polymer and liquid crystal monomer may be used alone or in combination.
 液晶化合物が液晶モノマーである場合、当該液晶モノマーは、重合性モノマーおよび架橋性モノマーであることが好ましい。液晶モノマーを重合または架橋(すなわち、硬化)させることにより、液晶モノマーの配向状態を固定できるからである。液晶モノマーを配向させた後に、例えば、液晶モノマー同士を重合または架橋させれば、それによって上記配向状態を固定することができる。ここで、重合によりポリマーが形成され、架橋により3次元網目構造が形成されることとなるが、これらは非液晶性である。したがって、形成された第1の液晶配向固化層は、例えば、液晶性化合物に特有の温度変化による液晶相、ガラス相、結晶相への転移が起きることはない。その結果、第1の液晶配向固化層は、温度変化に影響されない、極めて安定性に優れた液晶配向固化層となる。 When the liquid crystal compound is a liquid crystal monomer, the liquid crystal monomer is preferably a polymerizable monomer and a crosslinkable monomer. This is because the alignment state of the liquid crystal monomer can be fixed by polymerizing or cross-linking (that is, curing) the liquid crystal monomer. After aligning the liquid crystal monomers, for example, the alignment state can be fixed by polymerizing or cross-linking the liquid crystal monomers. Here, a polymer is formed by polymerization and a three-dimensional network structure is formed by cross-linking, but these are non-liquid crystalline. Therefore, the formed first liquid crystal orientation fixed layer does not undergo a transition to a liquid crystal phase, a glass phase, or a crystal phase due to, for example, temperature changes peculiar to liquid crystalline compounds. As a result, the first liquid crystal alignment fixed layer becomes a liquid crystal alignment fixed layer that is not affected by temperature changes and has extremely excellent stability.
 液晶モノマーが液晶性を示す温度範囲は、その種類に応じて異なる。具体的には、当該温度範囲は、好ましくは40℃~120℃であり、さらに好ましくは50℃~100℃であり、最も好ましくは60℃~90℃である。 The temperature range in which the liquid crystal monomer exhibits liquid crystallinity differs depending on the type. Specifically, the temperature range is preferably 40°C to 120°C, more preferably 50°C to 100°C, and most preferably 60°C to 90°C.
 上記液晶モノマーとしては、任意の適切な液晶モノマーが採用され得る。例えば、特表2002-533742(WO00/37585)、EP358208(US5211877)、EP66137(US4388453)、WO93/22397、EP0261712、DE19504224、DE4408171、およびGB2280445等に記載の重合性メソゲン化合物等が使用できる。このような重合性メソゲン化合物の具体例としては、例えば、BASF社の商品名LC242、Merck社の商品名E7、Wacker-Chem社の商品名LC-Sillicon-CC3767が挙げられる。液晶モノマーとしては、例えばネマチック性液晶モノマーが好ましい。 Any appropriate liquid crystal monomer can be adopted as the liquid crystal monomer. For example, polymerizable mesogenic compounds described in JP-T-2002-533742 (WO00/37585), EP358208 (US5211877), EP66137 (US4388453), WO93/22397, EP0261712, DE19504224, DE4408171, and GB2280445 can be used. Specific examples of such polymerizable mesogenic compounds include LC242 (trade name) available from BASF, E7 (trade name) available from Merck, and LC-Sillicon-CC3767 (trade name) available from Wacker-Chem. As the liquid crystal monomer, for example, a nematic liquid crystal monomer is preferable.
 液晶配向固化層は、所定の基材の表面に配向処理を施し、当該表面に液晶化合物を含む塗工液を塗工して当該液晶化合物を上記配向処理に対応する方向に配向させ、当該配向状態を固定することにより形成され得る。1つの実施形態においては、基材は任意の適切な樹脂フィルムであり、当該基材上に形成された液晶配向固化層は、隣接層(例えば、保護層)の表面に転写され得る。 The liquid crystal alignment fixed layer is obtained by subjecting the surface of a predetermined base material to alignment treatment, coating the surface with a coating liquid containing a liquid crystal compound, and orienting the liquid crystal compound in the direction corresponding to the alignment treatment, and It can be formed by fixing the state. In one embodiment, the substrate is any suitable resin film, and the liquid crystal alignment solidified layer formed on the substrate can be transferred to the surface of an adjacent layer (eg, protective layer).
 上記配向処理としては、任意の適切な配向処理が採用され得る。具体的には、機械的な配向処理、物理的な配向処理、化学的な配向処理が挙げられる。機械的な配向処理の具体例としては、ラビング処理、延伸処理が挙げられる。物理的な配向処理の具体例としては、磁場配向処理、電場配向処理が挙げられる。化学的な配向処理の具体例としては、斜方蒸着法、光配向処理が挙げられる。各種配向処理の処理条件は、目的に応じて任意の適切な条件が採用され得る。 Any appropriate orientation treatment can be adopted as the orientation treatment. Specific examples include mechanical orientation treatment, physical orientation treatment, and chemical orientation treatment. Specific examples of mechanical orientation treatment include rubbing treatment and stretching treatment. Specific examples of physical orientation treatment include magnetic orientation treatment and electric field orientation treatment. Specific examples of chemical alignment treatment include oblique vapor deposition and photo-alignment treatment. Arbitrary appropriate conditions can be adopted as the processing conditions for various alignment treatments depending on the purpose.
 液晶化合物の配向は、液晶化合物の種類に応じて液晶相を示す温度で処理することにより行われる。このような温度処理を行うことにより、液晶化合物が液晶状態をとり、基材表面の配向処理方向に応じて当該液晶化合物が配向する。  The alignment of the liquid crystal compound is performed by processing at a temperature that exhibits a liquid crystal phase depending on the type of liquid crystal compound. By performing such a temperature treatment, the liquid crystal compound assumes a liquid crystal state, and the liquid crystal compound is aligned in accordance with the orientation treatment direction of the surface of the base material.
 配向状態の固定は、1つの実施形態においては、上記のように配向した液晶化合物を冷却することにより行われる。液晶化合物が重合性モノマーまたは架橋性モノマーである場合には、配向状態の固定は、上記のように配向した液晶化合物に重合処理または架橋処理を施すことにより行われる。 In one embodiment, the alignment state is fixed by cooling the liquid crystal compound aligned as described above. When the liquid crystal compound is a polymerizable monomer or a crosslinkable monomer, the orientation state is fixed by subjecting the liquid crystal compound oriented as described above to a polymerization treatment or a crosslinking treatment.
 液晶化合物の具体例および配向固化層の形成方法の詳細は、特開2006-163343号公報に記載されている。当該公報の記載は本明細書に参考として援用される。 Specific examples of the liquid crystal compound and details of the method for forming the alignment fixed layer are described in JP-A-2006-163343. The description of the publication is incorporated herein by reference.
D.第2の液晶配向固化層
 第2の液晶配向固化層は、好ましくはnz>nx=nyの屈折率特性を示す、いわゆるポジティブCプレートであり得る。第2の液晶配向固化層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の液晶配向固化層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の液晶配向固化層の面内位相差Re(550)は10nm未満であり得る。
D. Second Liquid Crystal Alignment Fixed Layer The second liquid crystal alignment fixed layer can be a so-called positive C plate, which preferably exhibits refractive index characteristics of nz>nx=ny. By using a positive C plate as the second liquid crystal orientation fixed layer, it is possible to satisfactorily prevent reflection in oblique directions and widen the viewing angle of the antireflection function. In this case, the thickness direction retardation Rth (550) of the second liquid crystal alignment fixed layer is preferably −50 nm to −300 nm, more preferably −70 nm to −250 nm, further preferably −90 nm to −200 nm, particularly preferably is -100 nm to -180 nm. Here, "nx=ny" includes not only the case where nx and ny are strictly equal but also the case where nx and ny are substantially equal. That is, the in-plane retardation Re(550) of the second liquid crystal alignment fixed layer may be less than 10 nm.
 nz>nx=nyの屈折率特性を有する第2の液晶配向固化層は、任意の適切な材料で形成され得る。第2の液晶配向固化層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該液晶配向固化層の形成方法の具体例としては、特開2002-333642号公報(特許第4174192号)の[0020]~[0028]に記載の液晶化合物および当該液晶配向固化層の形成方法が挙げられる。この場合、第2の液晶配向固化層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。 The second liquid crystal alignment fixed layer having a refractive index characteristic of nz>nx=ny can be made of any suitable material. The second liquid crystal alignment fixed layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment. A liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer. Specific examples of the method for forming the liquid crystal compound and the liquid crystal alignment fixed layer include the liquid crystal compound and the liquid crystal alignment fixed layer described in [0020] to [0028] of JP-A-2002-333642 (Patent No. 4174192). A method for forming the In this case, the thickness of the second liquid crystal alignment fixing layer is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 8 μm, still more preferably 0.5 μm to 5 μm.
E.保護層
 上記のとおり、保護層は、第2の液晶配向固化層と粘着剤層との間に配置される。さらに、当該保護層の透湿度は920g/m・24hr以下であり、好ましくは900g/m・24hr以下であり、より好ましくは880g/m・24hr以下である。保護層の透湿度の下限は、例えば700g/m・24hrであり得る。保護層が第2の液晶配向固化層と粘着剤層との間に配置され、さらに当該保護層の透湿度がこのような範囲であることにより、高温環境下における位相差変化が抑制され、かつ、反射色相が赤く視認される現象が抑制された薄型の円偏光板が得られ得る。
E. Protective Layer As described above, the protective layer is disposed between the second liquid crystal alignment solidifying layer and the adhesive layer. Furthermore, the moisture permeability of the protective layer is 920 g/m 2 ·24 hr or less, preferably 900 g/m 2 ·24 hr or less, more preferably 880 g/m 2 ·24 hr or less. The lower limit of the moisture permeability of the protective layer can be, for example, 700 g/m 2 ·24 hr. The protective layer is arranged between the second liquid crystal alignment solidified layer and the adhesive layer, and the moisture permeability of the protective layer is in such a range, whereby the retardation change in a high temperature environment is suppressed, and , a thin circularly polarizing plate can be obtained in which the phenomenon that the reflected hue is visually perceived as red is suppressed.
 上記保護層は、樹脂の有機溶媒溶液の塗布膜の固化物または熱硬化物である。このような構成であれば、厚みを非常に薄く(例えば、10μm以下に)することができる。保護層の厚みは、好ましくは0.01μm~5μmであり、より好ましくは0.02μm~3μmであり、さらに好ましくは0.03μm~1μmであり、特に好ましくは0.04μm~0.6μmである。さらに、このような構成であれば、保護層を隣接層(例えば、液晶配向固化層)に直接(すなわち、接着剤層または粘着剤層を介することなく)形成することができる。本発明の実施形態によれば、上記のとおり偏光子、液晶配向固化層および保護層が非常に薄く、かつ、保護層を積層するための接着剤層または粘着剤層を省略することができるので、円偏光板の総厚みをきわめて薄くすることができる。さらに、このような保護層は、水溶液または水分散体のような水系の塗布膜の固化物に比べて吸湿性および透湿性が小さいので加湿耐久性に優れるという利点を有する。その結果、高温高湿環境下においても光学特性を維持し得る、耐久性に優れた円偏光板を実現することができる。また、このような保護層は、例えば紫外線硬化性樹脂の硬化物に比べて紫外線照射による偏光板(偏光子)に対する悪影響を抑制することができる。保護層は、好ましくは、樹脂の有機溶媒溶液の塗布膜の固化物である。固化物は、硬化物に比べてフィルム成形時の収縮が小さい、および、残存モノマー等が含まれないのでフィルム自体の劣化が抑制され、かつ、残存モノマー等に起因する偏光板(偏光子)に対する悪影響を抑制することができる。 The protective layer is a solidified or thermoset coating film of an organic solvent solution of a resin. With such a configuration, the thickness can be made very thin (for example, 10 μm or less). The thickness of the protective layer is preferably 0.01 μm to 5 μm, more preferably 0.02 μm to 3 μm, still more preferably 0.03 μm to 1 μm, and particularly preferably 0.04 μm to 0.6 μm. . Furthermore, with such a configuration, the protective layer can be directly formed on the adjacent layer (for example, the liquid crystal alignment solidifying layer) (that is, without an adhesive layer or a pressure-sensitive adhesive layer). According to the embodiment of the present invention, as described above, the polarizer, the liquid crystal alignment fixing layer and the protective layer are very thin, and the adhesive layer or adhesive layer for laminating the protective layer can be omitted. , the total thickness of the circular polarizer can be made very thin. Furthermore, such a protective layer has the advantage of being excellent in humidification durability because it has lower hygroscopicity and moisture permeability than a solidified aqueous coating film such as an aqueous solution or aqueous dispersion. As a result, it is possible to realize a circularly polarizing plate having excellent durability and capable of maintaining optical properties even in a high-temperature and high-humidity environment. In addition, such a protective layer can suppress adverse effects on the polarizing plate (polarizer) due to ultraviolet irradiation, compared to, for example, a cured product of an ultraviolet curable resin. The protective layer is preferably a solidified product of a coating film of an organic solvent solution of a resin. The solidified product shrinks less during film formation than the cured product, and since it does not contain residual monomers, etc., deterioration of the film itself is suppressed. Adverse effects can be suppressed.
 さらに、保護層を構成する樹脂のガラス転移温度(Tg)は85℃以上であり、かつ、重量平均分子量Mwは25000以上である。当該樹脂のTgおよびMwがこのような範囲であれば、保護層を樹脂の有機溶媒溶液の塗布膜の固化物または熱硬化物で構成することによる効果との相乗的な効果により、非常に薄いにもかかわらず、偏光子中のヨウ素の画像表示セルへの移行を顕著に抑制することができる。当該樹脂のTgは、より好ましくは90℃以上であり、さらに好ましくは100℃以上であり、特に好ましくは110℃以上であり、最も好ましくは120℃以上である。Tgの上限は、例えば200℃であり得る。また、当該樹脂のMwは、より好ましくは30000以上であり、さらに好ましくは35000以上であり、特に好ましくは40000以上である。Mwの上限は、例えば150000であり得る。 Further, the resin constituting the protective layer has a glass transition temperature (Tg) of 85°C or higher and a weight average molecular weight Mw of 25000 or higher. When the Tg and Mw of the resin are in such ranges, the synergistic effect with the effect of forming the protective layer from the solidified or thermoset coating film of the organic solvent solution of the resin results in a very thin film. Nevertheless, migration of iodine in the polarizer to the image display cell can be remarkably suppressed. The Tg of the resin is more preferably 90° C. or higher, still more preferably 100° C. or higher, particularly preferably 110° C. or higher, and most preferably 120° C. or higher. The upper limit of Tg can be, for example, 200°C. Moreover, Mw of the resin is more preferably 30,000 or more, still more preferably 35,000 or more, and particularly preferably 40,000 or more. The upper limit of Mw can be 150,000, for example.
 さらに、液晶配向固化層に隣接する保護層は、上記樹脂に加えてイソシアネート化合物をさらに含み得る。イソシアネート化合物としては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、これらの誘導体(例えば、変性物、付加物)が挙げられる。イソシアネート化合物は、単独で用いてもよく組み合わせて用いてもよい。樹脂とイソシアネート化合物との含有割合(樹脂/イソシアネート化合物)は、上記のとおり95/5~10/90である。含有割合(樹脂/イソシアネート化合物)は、例えば95/5~50/50、また例えば90/10~60/40、また例えば85/15~70/30、また例えば85/15~75/25であってもよい。含有割合(樹脂/イソシアネート化合物)は、また例えば40/60~5/95、また例えば30/70~5/95、また例えば20/80~10/90であってもよい。このような構成であれば、保護層と液晶配向固化層との剥がれを顕著に抑制することができる。 Furthermore, the protective layer adjacent to the liquid crystal alignment fixed layer may further contain an isocyanate compound in addition to the above resin. Isocyanate compounds include tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate, and derivatives thereof (eg, modified products and adducts). The isocyanate compounds may be used alone or in combination. The content ratio of the resin and the isocyanate compound (resin/isocyanate compound) is 95/5 to 10/90 as described above. The content ratio (resin/isocyanate compound) is, for example, 95/5 to 50/50, for example, 90/10 to 60/40, for example, 85/15 to 70/30, or for example, 85/15 to 75/25. may The content ratio (resin/isocyanate compound) may also be for example from 40/60 to 5/95, also for example from 30/70 to 5/95, also for example from 20/80 to 10/90. With such a configuration, peeling between the protective layer and the liquid crystal alignment fixing layer can be significantly suppressed.
 保護層を構成する樹脂としては、好ましくは、有機溶媒溶液の塗布膜の固化物または熱硬化物を形成可能であり、かつ上記のようなTgおよびMwを有する限りにおいて、任意の適切な熱可塑性樹脂または熱硬化性樹脂を用いることができる。好ましくは、熱可塑性樹脂である。熱可塑性樹脂としては、例えば、エポキシ系樹脂、アクリル系樹脂が挙げられる。エポキシ系樹脂とアクリル系樹脂とを組み合わせて用いてもよい。以下、保護層に用いられ得るエポキシ系樹脂およびアクリル系樹脂の代表例を説明する。 The resin constituting the protective layer is preferably any appropriate thermoplastic as long as it can form a solidified product or a thermoset product of a coating film of an organic solvent solution and has the Tg and Mw as described above. Resins or thermosetting resins can be used. Thermoplastic resins are preferred. Examples of thermoplastic resins include epoxy resins and acrylic resins. An epoxy resin and an acrylic resin may be used in combination. Representative examples of epoxy-based resins and acrylic-based resins that can be used for the protective layer are described below.
<エポキシ樹脂>
 エポキシ樹脂としては、好ましくは芳香族環を有するエポキシ樹脂が用いられる。芳香族環を有するエポキシ樹脂をエポキシ樹脂として用いることにより、保護層を偏光子に隣接して配置した場合に偏光子との密着性が向上し得る。さらに、保護層に隣接して粘着剤層を配置した場合に、粘着剤層の投錨力が向上し得る。芳香族環を有するエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラックエポキシ樹脂、ヒドロキシベンズアルデヒドフェノールノボラックエポキシ樹脂などのノボラック型のエポキシ樹脂;テトラヒドロキシフェニルメタンのグリシジルエーテル、テトラヒドロキシベンゾフェノンのグリシジルエーテル、エポキシ化ポリビニルフェノールなどの多官能型のエポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂などが挙げられる。好ましくは、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールF型エポキシ樹脂が用いられる。エポキシ樹脂は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
<Epoxy resin>
As the epoxy resin, an epoxy resin having an aromatic ring is preferably used. By using an epoxy resin having an aromatic ring as the epoxy resin, adhesion to the polarizer can be improved when the protective layer is arranged adjacent to the polarizer. Furthermore, when the adhesive layer is arranged adjacent to the protective layer, the anchoring force of the adhesive layer can be improved. Examples of epoxy resins having an aromatic ring include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin; phenol novolak epoxy resin, cresol novolak epoxy resin, hydroxybenzaldehyde phenol novolak Novolac type epoxy resins such as epoxy resins; polyfunctional epoxy resins such as glycidyl ether of tetrahydroxyphenylmethane, glycidyl ether of tetrahydroxybenzophenone, epoxidized polyvinylphenol, naphthol type epoxy resin, naphthalene type epoxy resin, biphenyl type epoxy resin and the like. Bisphenol A type epoxy resin, biphenyl type epoxy resin, and bisphenol F type epoxy resin are preferably used. Epoxy resins may be used alone or in combination of two or more.
<アクリル系樹脂>
 アクリル系樹脂は、代表的には、直鎖または分岐構造を有する(メタ)アクリル酸エステル系単量体由来の繰り返し単位を主成分として含有する。本明細書において、(メタ)アクリルとは、アクリルおよび/またはメタクリルをいう。アクリル系樹脂は、目的に応じた任意の適切な共重合単量体由来の繰り返し単位を含有し得る。共重合単量体(共重合モノマー)としては、例えば、カルボキシル基含有モノマー、ヒドロキシル基含有モノマー、アミド基含有モノマー、芳香環含有(メタ)アクリレート、複素環含有ビニル系モノマーが挙げられる。モノマー単位の種類、数、組み合わせおよび共重合比等を適切に設定することにより、上記所定のTgおよびMwを有するアクリル系樹脂が得られ得る。
<Acrylic resin>
Acrylic resins typically contain, as a main component, repeating units derived from (meth)acrylic acid ester monomers having a linear or branched structure. As used herein, (meth)acryl refers to acryl and/or methacryl. The acrylic resin may contain repeating units derived from any appropriate comonomers depending on the purpose. Examples of copolymerizable monomers (copolymerizable monomers) include carboxyl group-containing monomers, hydroxyl group-containing monomers, amide group-containing monomers, aromatic ring-containing (meth)acrylates, and heterocyclic ring-containing vinyl monomers. By appropriately setting the kind, number, combination and copolymerization ratio of the monomer units, an acrylic resin having the predetermined Tg and Mw can be obtained.
<ホウ素含有アクリル系樹脂>
 アクリル系樹脂は、1つの実施形態においては、50重量部を超える(メタ)アクリル系単量体と0重量部を超えて50重量部未満の式(1)で表される単量体(以下、共重合単量体と称する場合がある)とを含むモノマー混合物を重合することにより得られる共重合体(以下、ホウ素含有アクリル系樹脂と称する場合がある)を含む:
Figure JPOXMLDOC01-appb-C000001
(式中、Xはビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、ヒドロキシル基、アミノ基、アルデヒド基、および、カルボキシル基からなる群より選択される少なくとも1種の反応性基を含む官能基を表し、RおよびRはそれぞれ独立して、水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基、または、置換基を有していてもよいヘテロ環基を表し、RおよびRは互いに連結して環を形成してもよい)。
<Boron-containing acrylic resin>
In one embodiment, the acrylic resin is more than 50 parts by weight of a (meth)acrylic monomer and more than 0 parts by weight and less than 50 parts by weight of the monomer represented by formula (1) (hereinafter , may be referred to as a copolymer monomer) and a copolymer obtained by polymerizing a monomer mixture (hereinafter sometimes referred to as a boron-containing acrylic resin) including:
Figure JPOXMLDOC01-appb-C000001
(Wherein, X is a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, a hydroxyl group, an amino group, an aldehyde group, and a group consisting of a carboxyl group Represents a selected functional group containing at least one reactive group, and R 1 and R 2 each independently represent a hydrogen atom, an optionally substituted aliphatic hydrocarbon group, or a substituted or an optionally substituted heterocyclic group, and R 1 and R 2 may be linked together to form a ring).
 ホウ素含有アクリル系樹脂は、代表的には下記式で表される繰り返し単位を有する。式(1)で表される共重合単量体と(メタ)アクリル系単量体とを含むモノマー混合物を重合することにより、ホウ素含有アクリル系樹脂は側鎖にホウ素を含む置換基(例えば、下記式中kの繰り返し単位)を有する。これにより、保護層を偏光子に隣接して配置した場合に偏光子との密着性が向上し得る。このホウ素を含む置換基は、ホウ素含有アクリル系樹脂に連続して(すなわち、ブロック状に)含まれていてもよく、ランダムに含まれていてもよい。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは任意の官能基を表し、jおよびkは1以上の整数を表す)。
A boron-containing acrylic resin typically has a repeating unit represented by the following formula. By polymerizing a monomer mixture containing a copolymerizable monomer represented by formula (1) and a (meth)acrylic monomer, the boron-containing acrylic resin has a substituent containing boron in the side chain (e.g., repeating unit k in the following formula). Thereby, when the protective layer is arranged adjacent to the polarizer, the adhesion to the polarizer can be improved. The boron-containing substituent may be included continuously (that is, in blocks) in the boron-containing acrylic resin, or may be included randomly.
Figure JPOXMLDOC01-appb-C000002
(Wherein, R6 represents an arbitrary functional group, and j and k represent integers of 1 or more).
<(メタ)アクリル系単量体>
 (メタ)アクリル系単量体としては任意の適切な(メタ)アクリル系単量体を用いることができる。例えば、直鎖または分岐構造を有する(メタ)アクリル酸エステル系単量体、および、環状構造を有する(メタ)アクリル酸エステル系単量体が挙げられる。
<(Meth) acrylic monomer>
Any appropriate (meth)acrylic monomer can be used as the (meth)acrylic monomer. Examples thereof include (meth)acrylic acid ester-based monomers having a linear or branched structure and (meth)acrylic acid ester-based monomers having a cyclic structure.
 直鎖または分岐構造を有する(メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸メチル2-エチルヘキシル、(メタ)アクリル酸2-ヒドロキシエチル等が挙げられる。好ましくは、(メタ)アクリル酸メチルが用いられる。(メタ)アクリル酸エステル系単量体は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of (meth)acrylic ester-based monomers having a linear or branched structure include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and (meth)acrylic acid. isopropyl, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, methyl 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate and the like. . Preferably, methyl (meth)acrylate is used. The (meth)acrylic acid ester-based monomers may be used alone or in combination of two or more.
 環状構造を有する(メタ)アクリル酸エステル系単量体としては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル、(メタ)アクリル酸ジシクロペンタニル、ビフェニル(メタ)アクリレート、o-ビフェニルオキシエチル(メタ)アクリレート、o-ビフェニルオキシエトキシエチル(メタ)アクリレート、m-ビフェニルオキシエチルアクリレート、p-ビフェニルオキシエチル(メタ)アクリレート、o-ビフェニルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、p-ビフェニルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、m-ビフェニルオキシ-2-ヒドロキシプロピル(メタ)アクリレート、N-(メタ)アクリロイルオキシエチル-o-ビフェニル=カルバマート、N-(メタ)アクリロイルオキシエチル-p-ビフェニル=カルバマート、N-(メタ)アクリロイルオキシエチル-m-ビフェニル=カルバマート、o-フェニルフェノールグリシジルエーテルアクリレート等のビフェニル基含有モノマー、ターフェニル(メタ)アクリレート、o-ターフェニルオキシエチル(メタ)アクリレート等が挙げられる。好ましくは、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸ジシクロペンタニルが用いられる。これらの単量体を用いることにより、ガラス転移温度の高い重合体が得られる。これらの単量体は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of (meth)acrylic ester-based monomers having a cyclic structure include cyclohexyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, 1-adamantyl (meth)acrylate, ( meth)dicyclopentenyl acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate, biphenyl (meth)acrylate, o-biphenyloxyethyl (meth)acrylate, o-biphenyloxyethoxy Ethyl (meth)acrylate, m-biphenyloxyethyl acrylate, p-biphenyloxyethyl (meth)acrylate, o-biphenyloxy-2-hydroxypropyl (meth)acrylate, p-biphenyloxy-2-hydroxypropyl (meth)acrylate , m-biphenyloxy-2-hydroxypropyl (meth)acrylate, N-(meth)acryloyloxyethyl-o-biphenyl=carbamate, N-(meth)acryloyloxyethyl-p-biphenyl=carbamate, N-(meth) Acryloyloxyethyl-m-biphenyl=carbamate, biphenyl group-containing monomers such as o-phenylphenol glycidyl ether acrylate, terphenyl (meth)acrylate, o-terphenyloxyethyl (meth)acrylate and the like. Preferably, 1-adamantyl (meth)acrylate and dicyclopentanyl (meth)acrylate are used. A polymer having a high glass transition temperature can be obtained by using these monomers. These monomers may be used alone or in combination of two or more.
 また、上記(メタ)アクリル酸エステル系単量体に代えて、(メタ)アクリロイル基を有するシルセスキオキサン化合物を用いてもよい。シルセスキオキサン化合物を用いることにより、ガラス転移温度が高いアクリル系重合体が得られる。シルセスキオキサン化合物は、種々の骨格構造、例えば、カゴ型構造、ハシゴ型構造、ランダム構造などの骨格を持つものが知られている。シルセスキオキサン化合物は、これらの構造を1種のみを有するものでもよく、2種以上を有するものでもよい。シルセスキオキサン化合物は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。 A silsesquioxane compound having a (meth)acryloyl group may also be used instead of the (meth)acrylic acid ester-based monomer. By using a silsesquioxane compound, an acrylic polymer having a high glass transition temperature can be obtained. Silsesquioxane compounds are known to have various skeleton structures, such as cage structures, ladder structures, and random structures. The silsesquioxane compound may have only one of these structures, or may have two or more. Silsesquioxane compounds may be used alone or in combination of two or more.
 (メタ)アクリロイル基を含有するシルセスキオキサン化合物として、例えば、東亜合成株式会社SQシリーズのMACグレード、および、ACグレードを用いることができる。MACグレードは、メタクリロイル基を含有するシルセスキオキサン化合物であり、具体的には、例えば、MAC-SQ TM-100、MAC-SQ SI-20、MAC-SQ HDM等が挙げられる。ACグレードは、アクリロイル基を含有するシルセスキオキサン化合物であり、具体的には、例えば、AC-SQ TA-100、AC-SQ SI-20等が挙げられる。 As the silsesquioxane compound containing a (meth)acryloyl group, for example, Toagosei Co., Ltd. SQ series MAC grade and AC grade can be used. MAC grade is a silsesquioxane compound containing a methacryloyl group, and specific examples thereof include MAC-SQ TM-100, MAC-SQ SI-20, MAC-SQ HDM, and the like. AC grade is a silsesquioxane compound containing an acryloyl group, and specific examples thereof include AC-SQ TA-100 and AC-SQ SI-20.
 (メタ)アクリル系単量体は、モノマー混合物100重量部に対して、50重量部を超えて用いられる。 The (meth)acrylic monomer is used in an amount exceeding 50 parts by weight with respect to 100 parts by weight of the monomer mixture.
<共重合単量体>
 共重合単量体としては、上記式(1)で表される単量体が用いられる。このような共重合単量体を用いることにより、得られる重合体の側鎖にホウ素を含む置換基が導入される。共重合単量体は1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
<Comonomer>
A monomer represented by the above formula (1) is used as the comonomer. By using such a comonomer, a substituent containing boron is introduced into the side chain of the resulting polymer. Comonomers may be used alone or in combination of two or more.
 上記式(1)における脂肪族炭化水素基としては、置換基を有していてもよい炭素数1~20の直鎖または分岐のアルキル基、置換基を有していてもよい炭素数3~20の環状アルキル基、炭素数2~20のアルケニル基が挙げられる。上記アリール基としては、置換基を有していてもよい炭素数6~20のフェニル基、置換基を有していてもよい炭素数10~20のナフチル基等が挙げられる。ヘテロ環基としては、置換基を有していてもよい少なくとも1つのヘテロ原子を含む5員環基または6員環基が挙げられる。なお、RおよびRは互いに連結して環を形成してもよい。RおよびRは、好ましくは水素原子、もしくは、炭素数1~3の直鎖または分岐のアルキル基であり、より好ましくは水素原子である。 As the aliphatic hydrocarbon group in the above formula (1), a linear or branched alkyl group having 1 to 20 carbon atoms which may have a substituent, 3 to 3 carbon atoms which may have a substituent 20 cyclic alkyl groups and alkenyl groups having 2 to 20 carbon atoms. Examples of the aryl group include an optionally substituted phenyl group having 6 to 20 carbon atoms and a naphthyl group having 10 to 20 carbon atoms which may have a substituent. The heterocyclic group includes a 5- or 6-membered ring group containing at least one optionally substituted heteroatom. R 1 and R 2 may be linked together to form a ring. R 1 and R 2 are preferably a hydrogen atom or a linear or branched alkyl group having 1 to 3 carbon atoms, more preferably a hydrogen atom.
 Xで表される官能基が含む反応性基は、ビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、ヒドロキシル基、アミノ基、アルデヒド基、および、カルボキシル基からなる群より選択される少なくとも1種である。好ましくは、反応性基は(メタ)アクリル基および/または(メタ)アクリルアミド基である。これらの反応性基を有することにより、保護層を偏光子に隣接して配置した場合に偏光子との密着性がさらに向上し得る。 Reactive groups contained in the functional group represented by X include vinyl group, (meth)acryl group, styryl group, (meth)acrylamide group, vinyl ether group, epoxy group, oxetane group, hydroxyl group, amino group, aldehyde group, and at least one selected from the group consisting of carboxyl groups. Preferably, the reactive groups are (meth)acryl and/or (meth)acrylamide groups. By having these reactive groups, the adhesion to the polarizer can be further improved when the protective layer is arranged adjacent to the polarizer.
 1つの実施形態においては、Xで表される官能基は、Z-Y-で表される官能基であることが好ましい。ここで、Zはビニル基、(メタ)アクリル基、スチリル基、(メタ)アクリルアミド基、ビニルエーテル基、エポキシ基、オキセタン基、ヒドロキシル基、アミノ基、アルデヒド基、および、カルボキシル基からなる群より選択される少なくとも1種の反応性基を含む官能基を表し、Yはフェニレン基またはアルキレン基を表す。 In one embodiment, the functional group represented by X is preferably a functional group represented by ZY-. Here, Z is selected from the group consisting of a vinyl group, a (meth)acryl group, a styryl group, a (meth)acrylamide group, a vinyl ether group, an epoxy group, an oxetane group, a hydroxyl group, an amino group, an aldehyde group, and a carboxyl group. and Y represents a phenylene group or an alkylene group.
 共重合単量体としては、具体的には以下の化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Specifically, the following compounds can be used as the comonomer.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 共重合単量体は、モノマー混合物100重量部に対して、0重量部を超えて50重量部未満の含有量で用いられる。好ましくは0.01重量部以上50重量部未満であり、より好ましくは0.05重量部~20重量部であり、さらに好ましくは0.1重量部~10重量部であり、特に好ましくは0.5重量部~5重量部である。 The comonomer is used in a content of more than 0 parts by weight and less than 50 parts by weight with respect to 100 parts by weight of the monomer mixture. It is preferably 0.01 to 50 parts by weight, more preferably 0.05 to 20 parts by weight, even more preferably 0.1 to 10 parts by weight, and particularly preferably 0.1 part by weight to 10 parts by weight. 5 to 5 parts by weight.
<ラクトン環等含有アクリル系樹脂>
 アクリル系樹脂は、別の実施形態においては、ラクトン環単位、無水グルタル酸単位、グルタルイミド単位、無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位から選択される環構造を含む繰り返し単位を有する。環構造を含む繰り返し単位は、1種類のみがアクリル系樹脂の繰り返し単位に含まれていてもよく、2種類以上が含まれていてもよい。
<Acrylic resin containing lactone ring, etc.>
In another embodiment, the acrylic resin has a repeating unit containing a ring structure selected from lactone ring units, glutaric anhydride units, glutarimide units, maleic anhydride units and maleimide (N-substituted maleimide) units. . As for the repeating unit containing a ring structure, only one type may be included in the repeating unit of the acrylic resin, or two or more types may be included.
 ラクトン環単位は、好ましくは、下記一般式(2)で表される: The lactone ring unit is preferably represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000005
一般式(2)において、R、RおよびRは、それぞれ独立して、水素原子または炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。アクリル系樹脂には、単一のラクトン環単位のみが含まれていてもよく、上記一般式(2)におけるR、RおよびRが異なる複数のラクトン環単位が含まれていてもよい。ラクトン環単位を有するアクリル系樹脂は、例えば特開2008-181078号公報に記載されており、当該公報の記載は本明細書に参考として援用される。
Figure JPOXMLDOC01-appb-C000005
In general formula (2), R 2 , R 3 and R 4 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms. In addition, the organic residue may contain an oxygen atom. The acrylic resin may contain only a single lactone ring unit, or may contain a plurality of lactone ring units in which R 2 , R 3 and R 4 in the general formula (2) are different. . An acrylic resin having a lactone ring unit is described, for example, in JP-A-2008-181078, and the description of the publication is incorporated herein by reference.
 グルタルイミド単位は、好ましくは、下記一般式(3)で表される: The glutarimide unit is preferably represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(3)において、R11およびR12は、それぞれ独立して、水素または炭素数1~8のアルキル基を示し、R13は、炭素数1~18のアルキル基、炭素数3~12のシクロアルキル基、または炭素数6~10のアリール基を示す。一般式(3)において、好ましくは、R11およびR12は、それぞれ独立して水素またはメチル基であり、R13は水素、メチル基、ブチル基またはシクロヘキシル基である。より好ましくは、R11はメチル基であり、R12は水素であり、R13はメチル基である。アクリル系樹脂には、単一のグルタルイミド単位のみが含まれていてもよく、上記一般式(3)におけるR11、R12およびR13が異なる複数のグルタルイミド単位が含まれていてもよい。グルタルイミド単位を有するアクリル系樹脂は、例えば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328334号公報、特開2006-337491号公報(特許4695439号)、特開2006-337492号公報、特開2006-337493号公報(特許4686261号)、特開2006-337569号公報に記載されており、当該公報の記載は本明細書に参考として援用される。なお、無水グルタル酸単位については、上記一般式(3)におけるR13で置換された窒素原子が酸素原子となること以外は、グルタルイミド単位に関する上記の説明が適用される。 In general formula (3), R 11 and R 12 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms; R 13 is an alkyl group having 1 to 18 carbon atoms; or an aryl group having 6 to 10 carbon atoms. In general formula (3), preferably R 11 and R 12 are each independently hydrogen or methyl, and R 13 is hydrogen, methyl, butyl or cyclohexyl. More preferably, R 11 is a methyl group, R 12 is hydrogen and R 13 is a methyl group. The acrylic resin may contain only a single glutarimide unit, or may contain a plurality of glutarimide units in which R 11 , R 12 and R 13 in the general formula (3) are different. . Acrylic resins having a glutarimide unit, for example, JP-A-2006-309033, JP-A-2006-317560, JP-A-2006-328334, JP-A-2006-337491 (Patent No. 4695439), It is described in JP-A-2006-337492, JP-A-2006-337493 (Japanese Patent No. 4686261), and JP-A-2006-337569, and the descriptions of these publications are incorporated herein by reference. As for the glutaric anhydride unit, the above explanation regarding the glutarimide unit applies, except that the nitrogen atom substituted by R 13 in the general formula (3) becomes an oxygen atom.
 無水マレイン酸単位およびマレイミド(N-置換マレイミド)単位については、名称から構造が特定されるので、具体的な説明は省略する。 Regarding the maleic anhydride unit and the maleimide (N-substituted maleimide) unit, the structure is specified from the name, so a specific description is omitted.
 アクリル系樹脂における環構造を含む繰り返し単位の含有割合は、好ましくは1モル%~50モル%、より好ましくは10モル%~40モル%、さらに好ましくは20モル%~30モル%である。なお、アクリル系樹脂は、主たる繰り返し単位として、上記の(メタ)アクリル系単量体由来の繰り返し単位を含む。 The content of repeating units containing a ring structure in the acrylic resin is preferably 1 mol% to 50 mol%, more preferably 10 mol% to 40 mol%, still more preferably 20 mol% to 30 mol%. In addition, acrylic resin contains the repeating unit derived from said (meth)acrylic-type monomer as a main repeating unit.
 保護層は、上記のような樹脂の有機溶媒溶液を塗布して塗布膜を形成し、当該塗布膜を固化または熱硬化させることにより形成され得る。有機溶媒としては、アクリル系樹脂を溶解または均一に分散し得る任意の適切な有機溶媒を用いることができる。有機溶媒の具体例としては、酢酸エチル、トルエン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノンが挙げられる。溶液の樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、均一な塗布膜を形成することができる。 The protective layer can be formed by applying an organic solvent solution of the resin as described above to form a coating film, and solidifying or thermally curing the coating film. Any appropriate organic solvent that can dissolve or uniformly disperse the acrylic resin can be used as the organic solvent. Specific examples of organic solvents include ethyl acetate, toluene, methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclopentanone, and cyclohexanone. The resin concentration of the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, a uniform coating film can be formed.
 溶液は、任意の適切な基材に塗布してもよく、隣接層(例えば、液晶配向固化層)に塗布してもよい。溶液を基材に塗布する場合には、基材上に形成された塗布膜の固化物(保護層)が隣接層に転写される。溶液を隣接層に塗布する場合には、塗布膜を乾燥(固化)させることにより、隣接層上に保護層が直接形成される。好ましくは、溶液は隣接層に塗布され、隣接層上に保護層が直接形成される。このような構成であれば、転写に必要とされる接着剤層または粘着剤層を省略することができるので、円偏光板をさらに薄くすることができる。溶液の塗布方法としては、任意の適切な方法を採用することができる。具体例としては、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)が挙げられる。 The solution may be applied to any appropriate base material, or may be applied to an adjacent layer (eg, liquid crystal alignment and solidification layer). When the solution is applied to the substrate, the solidified product (protective layer) of the coating film formed on the substrate is transferred to the adjacent layer. When the solution is applied to the adjacent layer, the protective layer is directly formed on the adjacent layer by drying (solidifying) the applied film. Preferably, the solution is applied to the adjacent layer to form the protective layer directly on the adjacent layer. With such a configuration, the adhesive layer or adhesive layer required for transfer can be omitted, so the circularly polarizing plate can be made even thinner. Any appropriate method can be adopted as a method of applying the solution. Specific examples include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.).
 溶液の塗布膜を固化または熱硬化させることにより、保護層が形成され得る。固化または熱硬化の加熱温度は、好ましくは100℃以下であり、より好ましくは50℃~70℃である。加熱温度がこのような範囲であれば、偏光子に対する悪影響を防止することができる。加熱時間は、加熱温度に応じて変化し得る。加熱時間は、例えば1分~10分であり得る。 A protective layer can be formed by solidifying or thermally curing the coating film of the solution. The heating temperature for solidification or heat curing is preferably 100°C or less, more preferably 50°C to 70°C. If the heating temperature is within this range, it is possible to prevent adverse effects on the polarizer. The heating time can vary depending on the heating temperature. The heating time can be, for example, 1 minute to 10 minutes.
 保護層(実質的には、上記樹脂の有機溶媒溶液)は、目的に応じて任意の適切な添加剤を含んでいてもよい。添加剤の具体例としては、紫外線吸収剤;レベリング剤;ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;アニオン系、カチオン系、ノニオン系の界面活性剤等の帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーまたは無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;可塑剤;滑剤;帯電防止剤;難燃剤;などが挙げられる。添加剤の種類、数、組み合わせ、添加量等は、目的に応じて適切に設定され得る。 The protective layer (substantially an organic solvent solution of the above resin) may contain any appropriate additive depending on the purpose. Specific examples of additives include ultraviolet absorbers; leveling agents; antioxidants such as hindered phenol, phosphorus, and sulfur; stabilizers such as light stabilizers, weather stabilizers, and heat stabilizers; Reinforcing materials such as carbon fiber; near-infrared absorbers; flame retardants such as tris(dibromopropyl) phosphate, triallyl phosphate, and antimony oxide; antistatic agents such as anionic, cationic, and nonionic surfactants; inorganic pigments , organic pigments, colorants such as dyes; organic fillers or inorganic fillers; resin modifiers; organic fillers or inorganic fillers; plasticizers; The type, number, combination, addition amount, etc. of additives can be appropriately set according to the purpose.
F.画像表示装置
 上記A項からE項に記載の円偏光板は、画像表示装置に適用され得る。したがって、本発明の実施形態は、そのような円偏光板を用いた画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。本発明の実施形態による画像表示装置は、その視認側に上記A項からE項に記載の円偏光板を備える。円偏光板は、液晶配向固化層が画像表示セル(例えば、液晶セル、有機ELセル、無機ELセル)側となるように(偏光子が視認側となるように)積層されている。1つの実施形態においては、画像表示装置は、湾曲した形状(実質的には、湾曲した表示画面)を有し、および/または、折り曲げもしくは折り畳み可能である。
F. Image Display Device The circularly polarizing plate described in the above items A to E can be applied to an image display device. Accordingly, embodiments of the present invention include image display devices using such circularly polarizing plates. Typical examples of image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices). An image display device according to an embodiment of the present invention includes the circularly polarizing plate according to the above items A to E on the viewing side thereof. The circularly polarizing plate is laminated so that the liquid crystal alignment fixed layer is on the image display cell (for example, liquid crystal cell, organic EL cell, inorganic EL cell) side (so that the polarizer is on the viewing side). In one embodiment, the image display device has a curved shape (substantially a curved display screen) and/or is foldable or foldable.
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。 The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. The measurement method of each characteristic is as follows. "Parts" and "%" in Examples and Comparative Examples are by weight unless otherwise specified.
(1)厚み
 10μm以下の厚みは、干渉膜厚計(大塚電子社製、製品名「MCPD-3000」)を用いて測定した。10μmを超える厚みは、デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)ガラス転移温度(Tg)
 樹脂のガラス転移温度は、エスアイアイ・ナノテクノロジー社製示差走査熱量計DSC6220を用いて測定した。約10mgの樹脂試料を同社製アルミパンに入れて密封し、50mL/分の窒素気流下、昇温速度20℃/分で30℃から200℃まで昇温した。3分間温度を保持した後、30℃まで20℃/分の速度で冷却した。30℃で3分保持し、再び200℃まで20℃/分の速度で昇温した。2回目の昇温で得られたDSCデータより、低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線の勾配が最大になるような点で引いた接線との交点の温度である、補外ガラス転移開始温度を求め、それをガラス転移温度(Tg)とした。
(3)透湿度
 実施例および比較例で得られた保護層をトリアセチルセルロース(TAC)フィルムに塗布し、テクノロックス社製「DELTAPERM」を用いて、40℃、90%RHの試験条件で透湿度(g/m2・24hr)を測定した。
(4)位相差値
 実施例および比較例で得られた位相差フィルムから50mm×50mmのサンプルを切り出して測定サンプルとした。作製した測定サンプルについて、王子計測機器株式会社製の位相差測定装置(製品名「KOBRA21―ADH」)を用いて面内位相差を測定した。面内位相差の測定波長は590nmであり、測定温度は23℃であった。
(5)加熱位相差変化
 実施例および比較例で得られた円偏光板を、粘着剤層を介してガラスに貼り合わせることによりサンプルを作製し、前記位相差の測定と同様の方法で位相差を測定した。測定後のサンプルを85℃の環境下に120時間置いた後、サンプルを取り出し、再度位相差を測定し、Re(590)の変化率(%)を求めた。
 良:位相差変化率(%)の絶対値が0.9%未満である
 不良:位相差変化率(%)の絶対値が0.9%以上である
(6)赤変
 実施例および比較例で得られた円偏光板を、粘着剤を介してガラス板に張り付け、100℃、120時間の加熱試験を行い、加熱試験前後の外観を目視により観察した。
 良:赤変が認められなかった
 不良:赤変が認められた
(1) Thickness A thickness of 10 μm or less was measured using an interferometric film thickness meter (manufactured by Otsuka Electronics Co., Ltd., product name “MCPD-3000”). A thickness exceeding 10 μm was measured using a digital micrometer (manufactured by Anritsu Co., Ltd., product name “KC-351C”).
(2) Glass transition temperature (Tg)
The glass transition temperature of the resin was measured using a differential scanning calorimeter DSC6220 manufactured by SII Nanotechnology. About 10 mg of a resin sample was placed in an aluminum pan manufactured by the same company, sealed, and heated from 30° C. to 200° C. at a temperature elevation rate of 20° C./min under a nitrogen stream of 50 mL/min. After holding the temperature for 3 minutes, it was cooled to 30°C at a rate of 20°C/min. The temperature was maintained at 30° C. for 3 minutes, and the temperature was again raised to 200° C. at a rate of 20° C./min. From the DSC data obtained in the second temperature increase, a straight line extending the baseline on the low temperature side to the high temperature side and a tangent line drawn at the point where the slope of the curve of the stepwise change part of the glass transition becomes maximum. The extrapolated glass transition start temperature, which is the temperature at the intersection of , was determined and taken as the glass transition temperature (Tg).
(3) Moisture Permeability The protective layers obtained in Examples and Comparative Examples were applied to a triacetyl cellulose (TAC) film, and the permeability was measured using "DELTAPERM" manufactured by Technolox under test conditions of 40°C and 90% RH. Humidity (g/m 2 ·24 hr) was measured.
(4) Retardation Value A sample of 50 mm×50 mm was cut out from the retardation film obtained in Examples and Comparative Examples to be used as a measurement sample. The in-plane phase difference of the prepared measurement sample was measured using a phase difference measuring device (product name: "KOBRA21-ADH") manufactured by Oji Scientific Instruments Co., Ltd. The in-plane retardation was measured at a wavelength of 590 nm and at a temperature of 23°C.
(5) The circularly polarizing plate obtained in the heating retardation change Examples and Comparative Examples, to prepare a sample by bonding to the glass via an adhesive layer, retardation in the same manner as in the measurement of the retardation was measured. After the measured sample was placed in an environment of 85° C. for 120 hours, the sample was taken out, the phase difference was measured again, and the rate of change (%) of Re(590) was obtained.
Good: The absolute value of the phase difference change rate (%) is less than 0.9% Poor: The absolute value of the phase difference change rate (%) is 0.9% or more (6) Red discoloration Examples and Comparative Examples The circularly polarizing plate obtained in 1) was attached to a glass plate via an adhesive, and subjected to a heating test at 100°C for 120 hours, and the appearance before and after the heating test was visually observed.
Good: Red discoloration was not observed Poor: Red discoloration was observed
[製造例1:ホウ素含有アクリル系樹脂の作製]
 メタクリル酸メチル(MMA、富士フイルム和光純薬製、商品名:メタクリル酸メチルモノマー)97.0重量部、一般式(1e)の単量体3.0重量部、重合開始剤(富士フイルム和光純薬社製、商品名:2,2´-アゾビス(イソブチロニトリル))0.2重量部をトルエン200重量部に溶解した。次いで、窒素雰囲気下で70℃に加熱しながら5.5時間重合反応を行い、共重合体1(固形分濃度:33重量%)を得た。共重合体1のTgは110℃、重量平均分子量は80,000であった。
[Production Example 1: Production of boron-containing acrylic resin]
Methyl methacrylate (MMA, manufactured by Fujifilm Wako Pure Chemical Industries, trade name: methyl methacrylate monomer) 97.0 parts by weight, 3.0 parts by weight of the monomer of general formula (1e), polymerization initiator (Fujifilm Wako Pure 0.2 parts by weight of 2,2′-azobis(isobutyronitrile), manufactured by Yakusha, was dissolved in 200 parts by weight of toluene. Then, a polymerization reaction was carried out for 5.5 hours while heating at 70° C. in a nitrogen atmosphere to obtain Copolymer 1 (solid concentration: 33% by weight). Copolymer 1 had a Tg of 110° C. and a weight average molecular weight of 80,000.
[製造例2:偏光板Aの作製]
1.偏光子Aの作製
 熱可塑性樹脂基材として、長尺状で、吸水率0.75%、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用いた。樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマーZ410」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で周速の異なるロール間で縦方向(長手方向)に2.4倍に自由端一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる偏光子の単体透過率(Ts)が43.0%以上となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4.0重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、90℃に保たれたオーブン中で乾燥しながら、表面温度が75℃に保たれたSUS製の加熱ロールに約2秒接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は5.2%であった。
 このようにして、樹脂基材上に厚み5μmの偏光子Aを形成した。
[Production Example 2: Production of polarizing plate A]
1. Production of Polarizer A As a thermoplastic resin substrate, a long amorphous isophthalate-copolymerized polyethylene terephthalate film (thickness: 100 μm) having a water absorption of 0.75% and a Tg of about 75° C. was used. Corona treatment was applied to one side of the resin substrate.
Polyvinyl alcohol (degree of polymerization: 4,200, degree of saponification: 99.2 mol%) and acetoacetyl-modified PVA (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER Z410") mixed at 9:1: 100 weight of PVA-based resin 13 parts by weight of potassium iodide was added to parts by weight, and dissolved in water to prepare an aqueous PVA solution (coating solution).
The above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 μm, thereby producing a laminate.
The obtained laminate was uniaxially stretched 2.4 times at the free end in the machine direction (longitudinal direction) between rolls with different peripheral speeds in an oven at 130° C. (in-air auxiliary stretching treatment).
Next, the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C. for 30 seconds (insolubilizing treatment).
Then, the finally obtained polarizer is added to a dyeing bath (iodine aqueous solution obtained by blending iodine and potassium iodide at a weight ratio of 1:7 with respect to 100 parts by weight of water) at a liquid temperature of 30 ° C. It was immersed for 60 seconds while adjusting the concentration so that the single transmittance (Ts) was 43.0% or more (dyeing treatment).
Next, it was immersed for 30 seconds in a cross-linking bath at a liquid temperature of 40°C (an aqueous solution of boric acid obtained by blending 3 parts by weight of potassium iodide and 5 parts by weight of boric acid with respect to 100 parts by weight of water). (crosslinking treatment).
After that, while immersing the laminate in an aqueous solution of boric acid (boric acid concentration: 4.0% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70°C, the laminate is placed between rolls having different peripheral speeds in the vertical direction (longitudinal direction). Then, the film was uniaxially stretched so that the total draw ratio was 5.5 times (underwater stretching treatment).
After that, the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
After that, while drying in an oven kept at 90° C., it was brought into contact with a heating roll made of SUS whose surface temperature was kept at 75° C. for about 2 seconds (drying shrinkage treatment). The shrinkage ratio in the width direction of the laminate due to the drying shrinkage treatment was 5.2%.
Thus, a polarizer A having a thickness of 5 μm was formed on the resin substrate.
2.偏光板Aの作製
 上記で得られた偏光子Aの表面(樹脂基材とは反対側の面)に、偏光子保護フィルムとしてHC-TACフィルムを、紫外線硬化型接着剤を介して貼り合せた。具体的には、硬化型接着剤の総厚みが1.0μmになるように塗工し、ロール機を使用して貼り合わせた。その後、UV光線を偏光子保護フィルム側から照射して接着剤を硬化させた。なお、HC-TACフィルムは、トリアセチルセルロース(TAC)フィルム(厚み25μm)にハードコート(HC)層(厚み7μm)が形成されたフィルムであり、TACフィルムが偏光子側となるようにして貼り合わせた。次いで、樹脂基材を剥離し、HC層/TACフィルム/接着剤層/偏光子Aの構成を有する偏光板Aを得た。
2. Preparation of polarizing plate A An HC-TAC film as a polarizer protective film was attached to the surface of the polarizer A obtained above (the surface opposite to the resin substrate) via an ultraviolet curable adhesive. . Specifically, the curable adhesive was applied so as to have a total thickness of 1.0 μm, and was bonded using a roll machine. After that, UV rays were irradiated from the polarizer protective film side to cure the adhesive. The HC-TAC film is a film in which a hard coat (HC) layer (thickness 7 μm) is formed on a triacetyl cellulose (TAC) film (thickness 25 μm), and is attached so that the TAC film faces the polarizer side. Matched. Next, the resin substrate was peeled off to obtain a polarizing plate A having a structure of HC layer/TAC film/adhesive layer/polarizer A.
[製造例3:偏光板Bの作製]
 偏光子保護フィルムとしてHC-COPフィルムを用いたこと以外は製造例1と同様にして、偏光板Bを得た。なお、HC-COPフィルムは、シクロオレフィン(COP)フィルム(日本ゼオン社製、製品名「ZF12」、厚み25μm)にハードコート(HC)層(厚み2μm)が形成されたフィルムである。
[Production Example 3: Production of polarizing plate B]
A polarizing plate B was obtained in the same manner as in Production Example 1, except that an HC-COP film was used as the polarizer protective film. The HC-COP film is a film in which a hard coat (HC) layer (2 μm thick) is formed on a cycloolefin (COP) film (manufactured by Zeon Corporation, product name “ZF12”, thickness 25 μm).
[製造例4:偏光板Cの作製]
 製造例1で得られた偏光子Aを用いて、偏光子保護フィルムとしてアクリル系フィルム(厚み20μm)を用いたこと以外は製造例1と同様にして、偏光板Cを得た。
[Production Example 4: Production of polarizing plate C]
A polarizing plate C was obtained in the same manner as in Production Example 1 except that the polarizer A obtained in Production Example 1 was used and an acrylic film (thickness: 20 μm) was used as the polarizer protective film.
[製造例5:偏光板Dの作製]
 厚み30μmのポリビニルアルコールフィルム(クラレ製、製品名「PE3000」)の長尺ロールを、ロール延伸機により長尺方向に5.9倍になるように長尺方向に一軸延伸しながら同時に膨潤、染色、架橋、洗浄処理を施し、最後に乾燥処理を施すことにより厚み12μmの偏光子Dを得た。当該偏光子DにPVA系接着剤を介して、偏光子保護フィルムとして、製造例1の同様のHC-TACフィルムを貼り合わせた。次いで、樹脂基材を剥離し、当該剥離面にトリアセチルセルロース(TAC)フィルム(厚み25μm)を、PVA系接着剤を介して貼り合せて、偏光板Dを得た。
[Production Example 5: Production of polarizing plate D]
A long roll of polyvinyl alcohol film (manufactured by Kuraray, product name “PE3000”) with a thickness of 30 μm is uniaxially stretched in the long direction by a roll stretching machine so as to be 5.9 times the length in the long direction while simultaneously being swollen and dyed. , cross-linking, washing, and finally drying to obtain a polarizer D having a thickness of 12 μm. An HC-TAC film similar to that of Production Example 1 was attached as a polarizer protective film to the polarizer D via a PVA-based adhesive. Next, the resin substrate was peeled off, and a triacetyl cellulose (TAC) film (thickness: 25 μm) was attached to the peeled surface via a PVA-based adhesive to obtain a polarizing plate D.
[製造例6:偏光板Eの作製]
 偏光子保護フィルムとしてHC―TACフィルムを、PVA系接着剤を用いて貼り合わせたこと以外は製造例1と同様にして、偏光板Eを得た。
[Production Example 6: Production of polarizing plate E]
A polarizing plate E was obtained in the same manner as in Production Example 1, except that an HC-TAC film as a polarizer protective film was adhered using a PVA-based adhesive.
[製造例7:第1の液晶配向固化層および第2の液晶配向固化層の作製]
1.第1の液晶配向固化層の作製
 式(I)で表される化合物55部、式(II)で表される化合物25部、式(III)で表される化合物20部をシクロペンタノン(CPN)400部に加えた後、60℃に加温、撹拌して溶解させ、溶解が確認された後、室温に戻し、イルガキュア907(BASFジャパン株式会社製)3部、メガファックF-554(DIC株式会社製)0.2部、p-メトキシフェノール(MEHQ)0.1部を加えて、さらに撹拌を行い、溶液を得た。溶液は、透明で均一であった。得られた溶液を0.20μmのメンブランフィルターでろ過し、重合性組成物を得た。一方、配向膜用ポリイミド溶液を厚さ0.7mmのガラス基材にスピンコート法を用いて塗布し、100℃で10分乾燥した後、200℃で60分焼成することにより塗膜を得た。得られた塗膜をラビング処理し、配向膜を形成した。ラビング処理は、市販のラビング装置を用いて行った。基材(実質的には、配向膜)に、上記で得られた重合性組成物をスピンコート法で塗布し、100℃で2分乾燥した。得られた塗布膜を室温まで冷却した後、高圧水銀ランプを用いて、30mW/cmの強度で30秒間紫外線を照射して第1の液晶配向固化層を得た。第1の液晶配向固化層の面内位相差Re(550)は130nmであった。また、液晶配向固化層のRe(450)/Re(550)は0.851であり、逆分散波長特性を示した。
[Production Example 7: Production of First Liquid Crystal Alignment Fixed Layer and Second Liquid Crystal Alignment Fixed Layer]
1. Preparation of First Liquid Crystal Alignment Fixed Layer 55 parts of the compound represented by the formula (I), 25 parts of the compound represented by the formula (II), and 20 parts of the compound represented by the formula (III) were mixed with cyclopentanone (CPN). ) after adding to 400 parts, heated to 60 ° C., stirred and dissolved, after confirmation of dissolution, returned to room temperature, 3 parts of Irgacure 907 (manufactured by BASF Japan Co., Ltd.), Megafac F-554 (DIC Co., Ltd.) and 0.1 part of p-methoxyphenol (MEHQ) were added and further stirred to obtain a solution. The solution was clear and homogeneous. The resulting solution was filtered through a 0.20 μm membrane filter to obtain a polymerizable composition. On the other hand, a polyimide solution for an alignment film was applied to a glass substrate having a thickness of 0.7 mm by spin coating, dried at 100° C. for 10 minutes, and then baked at 200° C. for 60 minutes to obtain a coating film. . The resulting coating film was rubbed to form an alignment film. The rubbing treatment was performed using a commercially available rubbing device. The polymerizable composition obtained above was applied to a substrate (substantially an alignment film) by a spin coating method and dried at 100° C. for 2 minutes. After the obtained coating film was cooled to room temperature, it was irradiated with ultraviolet rays for 30 seconds at an intensity of 30 mW/cm 2 using a high-pressure mercury lamp to obtain a first liquid crystal alignment fixed layer. The in-plane retardation Re(550) of the first liquid crystal alignment fixed layer was 130 nm. In addition, the Re(450)/Re(550) of the liquid crystal alignment fixed layer was 0.851, showing reverse dispersion wavelength characteristics.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
2.第2の液晶配向固化層の作製
 下記化学式(I)(式中の数字65および35はモノマーユニットのモル%を示し、便宜的にブロックポリマー体で表している:重量平均分子量5000)で示される側鎖型液晶ポリマー20重量部、ネマチック液晶相を示す重合性液晶(BASF社製:商品名PaliocolorLC242)80重量部および光重合開始剤(チバスペシャリティーケミカルズ社製:商品名イルガキュア907)5重量部をシクロペンタノン200重量部に溶解して液晶塗工液を調製した。そして、基材フィルム(ノルボルネン系樹脂フィルム:日本ゼオン(株)製、商品名「ゼオネックス」)に当該塗工液をバーコーターにより塗工した後、80℃で4分間加熱乾燥することによって液晶を配向させた。この液晶層に紫外線を照射し、液晶層を硬化させることにより、基材上に第2の液晶配向固化層(厚み:0.58μm)を形成した。この層のRe(550)は0nm、Rth(550)は-80nmであり、nz>nx=nyの屈折率特性を示した。
2. Preparation of the second liquid crystal alignment fixed layer Represented by the following chemical formula (I) (numbers 65 and 35 in the formula indicate mol % of the monomer units, and are expressed in block polymer form for convenience: weight average molecular weight 5000) 20 parts by weight of a side chain type liquid crystal polymer, 80 parts by weight of a polymerizable liquid crystal exhibiting a nematic liquid crystal phase (manufactured by BASF: trade name Paliocolor LC242) and 5 parts by weight of a photopolymerization initiator (manufactured by Ciba Specialty Chemicals: trade name Irgacure 907) was dissolved in 200 parts by weight of cyclopentanone to prepare a liquid crystal coating solution. Then, after coating the coating solution on a substrate film (norbornene resin film: Nippon Zeon Co., Ltd., trade name “Zeonex”) with a bar coater, the liquid crystal is formed by heating and drying at 80 ° C. for 4 minutes. Oriented. By irradiating this liquid crystal layer with ultraviolet rays and curing the liquid crystal layer, a second liquid crystal alignment fixed layer (thickness: 0.58 μm) was formed on the substrate. This layer had an Re(550) of 0 nm and an Rth(550) of −80 nm, showing refractive index characteristics of nz>nx=ny.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
[実施例1]
 製造例7で得られた第1の液晶配向固化層上に、製造例1で作製したホウ素含有アクリル系樹脂を乾燥後の厚みが0.5μmとなるように塗布し、別の保護層を形成した。次いで、別の保護層表面に、アクリル系粘着剤(厚み5μm)を介して、製造例6で得られた偏光板Eを積層した。続いて、第1の液晶配向固化層の偏光子とは反対側に、製造例7で得られた第2の液晶配向固化層を転写した。このとき、偏光子の吸収軸と第1の液晶配向固化層の遅相軸とのなす角度が+45°となるように貼り合わせた。なお、それぞれの転写(貼り合わせ)は、製造例2で用いた紫外線硬化型接着剤(厚み1.0μm)を介して行った。このようにして、HC層/TACフィルム/接着剤層/偏光子/アクリル系粘着剤層/別の保護層/第1の液晶配向固化層/接着剤層/第2の液晶配向固化層の構成を有する積層体を作製した。
[Example 1]
The boron-containing acrylic resin prepared in Production Example 1 is applied onto the first liquid crystal alignment fixed layer obtained in Production Example 7 so that the thickness after drying is 0.5 μm, forming another protective layer. did. Next, the polarizing plate E obtained in Production Example 6 was laminated on the surface of another protective layer via an acrylic adhesive (thickness: 5 μm). Subsequently, the second liquid crystal alignment fixed layer obtained in Production Example 7 was transferred to the opposite side of the first liquid crystal alignment fixed layer to the polarizer. At this time, they were attached so that the angle formed by the absorption axis of the polarizer and the slow axis of the first liquid crystal alignment fixed layer was +45°. Each transfer (bonding) was performed through the ultraviolet curing adhesive (thickness: 1.0 μm) used in Production Example 2. Thus, the structure of HC layer/TAC film/adhesive layer/polarizer/acrylic pressure-sensitive adhesive layer/another protective layer/first liquid crystal alignment fixed layer/adhesive layer/second liquid crystal alignment fixed layer A laminate having
 製造例1で得られた共重合体1(ホウ素含有アクリル系樹脂)15部(固形分換算)および熱可塑性エポキシ樹脂(三菱ケミカル株式会社製、商品名「jER(登録商標)YX6954BH30」)85部(固形分換算)をブレンドした。当該樹脂ブレンドのTgは125℃、重量平均分子量は46000であった。この混合物を酢酸エチル/シクロペンタノン(70/30)の混合溶媒80部に溶解し、樹脂溶液(20%)を得た。この樹脂溶液を、上記で得られた積層体の第2の液晶配向固化層表面にワイヤーバーを用いて塗布し、塗布膜を60℃で5分間乾燥して、樹脂の有機溶媒溶液の塗布膜の固化物として構成される保護層(厚み0.5μm)を形成した。次いで、保護層表面に粘着剤層(厚み15μm)を設け、HC層/TACフィルム/接着剤層/偏光子/アクリル系粘着剤層/別の保護層/第1の液晶配向固化層/接着剤層/第2の液晶配向固化層/保護層/粘着剤層の構成を有する円偏光板を得た。保護層の透湿度は869.8(g/m・24hr)であった。得られた円偏光板の総厚みは65μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。 Copolymer 1 obtained in Production Example 1 (boron-containing acrylic resin) 15 parts (solid content conversion) and thermoplastic epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30") 85 parts (solid content conversion) were blended. The resin blend had a Tg of 125°C and a weight average molecular weight of 46,000. This mixture was dissolved in 80 parts of a mixed solvent of ethyl acetate/cyclopentanone (70/30) to obtain a resin solution (20%). This resin solution is applied to the surface of the second liquid crystal alignment fixed layer of the laminate obtained above using a wire bar, the coating film is dried at 60 ° C. for 5 minutes, and the coating film of the resin organic solvent solution is A protective layer (thickness: 0.5 µm) was formed as a solidified product of Next, an adhesive layer (thickness 15 μm) is provided on the surface of the protective layer, and the HC layer/TAC film/adhesive layer/polarizer/acrylic adhesive layer/another protective layer/first liquid crystal alignment solidifying layer/adhesive A circularly polarizing plate having a structure of layer/second liquid crystal alignment fixed layer/protective layer/adhesive layer was obtained. The moisture permeability of the protective layer was 869.8 (g/m 2 ·24 hr). The total thickness of the obtained circularly polarizing plate was 65 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例2]
 製造例1で得られた共重合体1(ホウ素含有アクリル系樹脂)15部(固形分換算)および熱可塑性エポキシ樹脂(三菱ケミカル株式会社製、商品名「jER(登録商標)YX6954BH30」)85部(固形分換算)のブレンド95部に対して、イソシアネート化合物(東ソー社製、「コロネートL」:トリレンジイソシアネートのトリメチロールプロパンアダクト体)5部を加えた。当該樹脂ブレンドのTgは23℃、重量平均分子量は50000であった。この混合物を用いて、実施例1と同様にして円偏光板を得た。保護層の透湿度は901.7(g/m・24hr)であった得られた円偏光板の総厚みは65μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 2]
Copolymer 1 obtained in Production Example 1 (boron-containing acrylic resin) 15 parts (solid content conversion) and thermoplastic epoxy resin (manufactured by Mitsubishi Chemical Corporation, trade name "jER (registered trademark) YX6954BH30") 85 parts 5 parts of an isocyanate compound (manufactured by Tosoh Corporation, "Coronate L": trimethylolpropane adduct of tolylene diisocyanate) was added to 95 parts of the blend (in terms of solid content). The resin blend had a Tg of 23° C. and a weight average molecular weight of 50,000. A circularly polarizing plate was obtained in the same manner as in Example 1 using this mixture. The protective layer had a moisture permeability of 901.7 (g/m 2 ·24 hr), and the total thickness of the resulting circularly polarizing plate was 65 µm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例1]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例1と同様にして、円偏光板を得た。得られた円偏光板の総厚みは64μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 1]
A circularly polarizing plate was obtained in the same manner as in Example 1, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例2]
 第2の液晶配向固化層と粘着剤層の間の保護層にトリメチロールプロパン/トリレンジイソシアネート3量体付加物(日本ポリウレタン工業社製、商品名「コロネートL」)を用いたこと以外は実施例1と同様にして、円偏光板を得た。保護層の透湿度は944.6(g/m・24hr)であった得られた円偏光板の総厚みは66μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 2]
Implemented except that a trimethylolpropane/tolylene diisocyanate trimer adduct (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name "Coronate L") was used for the protective layer between the second liquid crystal alignment solidified layer and the adhesive layer. A circularly polarizing plate was obtained in the same manner as in Example 1. The protective layer had a moisture permeability of 944.6 (g/m 2 ·24 hr), and the total thickness of the obtained circularly polarizing plate was 66 µm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例3]
 偏光板として偏光板Bを用いたこと以外は実施例1と同様にして、円偏光板を得た。得られた円偏光板の総厚みは61μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 3]
A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate B was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 61 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例4]
 偏光板として偏光板Bを用いたこと以外は実施例2と同様にして、円偏光板を得た。得られた円偏光板の総厚みは61μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 4]
A circularly polarizing plate was obtained in the same manner as in Example 2 except that the polarizing plate B was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 61 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例3]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例3と同様にして、円偏光板を得た。得られた円偏光板の総厚みは60μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 3]
A circularly polarizing plate was obtained in the same manner as in Example 3, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 60 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例5]
 偏光板として偏光板Cを用いたこと以外は実施例2と同様にして、円偏光板を得た。得られた円偏光板の総厚みは54μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 5]
A circularly polarizing plate was obtained in the same manner as in Example 2 except that the polarizing plate C was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 54 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例4]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例5と同様にして、円偏光板を得た。得られた円偏光板の総厚みは53μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 4]
A circularly polarizing plate was obtained in the same manner as in Example 5, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 53 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例6]
 偏光板として偏光板Dを用いたこと以外は実施例1と同様にして、円偏光板を得た。得られた円偏光板の総厚みは96μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 6]
A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate D was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 96 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例5]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例5と同様にして、円偏光板を得た。得られた円偏光板の総厚みは95μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 5]
A circularly polarizing plate was obtained in the same manner as in Example 5, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 95 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例7]
 偏光板として偏光板Aを用いたこと以外は実施例1と同様にして、円偏光板を得た。得られた円偏光板の総厚みは65μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 7]
A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate A was used as the polarizing plate. The total thickness of the obtained circularly polarizing plate was 65 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例6]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例7と同様にして、円偏光板を得た。得られた円偏光板の総厚みは64μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 6]
A circularly polarizing plate was obtained in the same manner as in Example 7, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[実施例8]
 偏光板Aを用いたこと、第1の液晶配向固化層に、製造例1で得られた共重合体を塗布しなかったこと以外は実施例1と同様にして、円偏光板を得た。得られた円偏光板の総厚みは65μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Example 8]
A circularly polarizing plate was obtained in the same manner as in Example 1, except that the polarizing plate A was used and the copolymer obtained in Production Example 1 was not applied to the first liquid crystal alignment fixed layer. The total thickness of the obtained circularly polarizing plate was 65 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
[比較例7]
 第2の液晶配向固化層と粘着剤層の間に保護層を設けなかったこと以外は実施例8と同様にして、円偏光板を得た。得られた円偏光板の総厚みは64μmであった。得られた円偏光板を上記(4)~(6)の評価に供した。結果を表1に示す。
[Comparative Example 7]
A circularly polarizing plate was obtained in the same manner as in Example 8, except that no protective layer was provided between the second liquid crystal alignment solidified layer and the adhesive layer. The total thickness of the obtained circularly polarizing plate was 64 μm. The resulting circularly polarizing plate was subjected to the above evaluations (4) to (6). Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[評価]
 表1から明らかなとおり、本発明の実施例の円偏光板は、加熱環境下における位相差変化が抑制されている。さらに、本発明の実施例の円偏光板は、円偏光板の赤変が抑制されていることがわかる。
[evaluation]
As is clear from Table 1, in the circularly polarizing plates of the examples of the present invention, the retardation change in the heating environment is suppressed. Furthermore, it can be seen that the circularly polarizing plate of the example of the present invention is suppressed from red discoloration.
 本発明の円偏光板は、液晶表示装置、有機EL表示装置および無機EL表示装置用の円偏光板として好適に用いられる。 The circularly polarizing plate of the present invention is suitably used as a circularly polarizing plate for liquid crystal display devices, organic EL display devices and inorganic EL display devices.
 10   偏光板
 11   偏光子
 12   偏光子保護フィルム
 20   第1の液晶配向固化層
 30   第2の液晶配向固化層
 40   保護層
 50   粘着剤層
100   円偏光板        
REFERENCE SIGNS LIST 10 polarizing plate 11 polarizer 12 polarizer protective film 20 first liquid crystal alignment fixed layer 30 second liquid crystal alignment fixed layer 40 protective layer 50 adhesive layer 100 circularly polarizing plate

Claims (8)

  1.  偏光板と第1の液晶配向固化層と第2の液晶配向固化層と保護層とを、視認側からこの順に備え、該保護層の透湿度が920(g/m・24hr)以下である、円偏光板。 A polarizing plate, a first liquid crystal alignment fixed layer, a second liquid crystal alignment fixed layer, and a protective layer are provided in this order from the viewing side, and the moisture permeability of the protective layer is 920 (g/m 2 · 24 hr) or less. , circular polarizer.
  2.  前記第1の液晶配向固化層の面内位相差Re(550)が100nm~180nmであり、かつ、Re(450)<Re(550)<Re(650)の関係を満たす、請求項1に記載の円偏光板。 The in-plane retardation Re(550) of the first liquid crystal alignment fixed layer is 100 nm to 180 nm, and satisfies the relationship Re(450)<Re(550)<Re(650). circular polarizer.
  3.  前記第2の液晶配向固化層が、nz>nx=nyの屈折率特性を示す、請求項1または2に記載の円偏光板。 The circularly polarizing plate according to claim 1 or 2, wherein the second liquid crystal alignment fixed layer exhibits a refractive index characteristic of nz>nx=ny.
  4.  前記保護層が、エポキシ系樹脂またはアクリル系樹脂を含み、かつ、該保護層が、該樹脂の有機溶媒溶液の塗布膜の固化物または熱硬化物である、請求項1から3のいずれかに記載の円偏光板。 4. Any one of claims 1 to 3, wherein the protective layer contains an epoxy-based resin or an acrylic-based resin, and the protective layer is a solidified product or a heat-cured product of a coating film of an organic solvent solution of the resin. Circular polarizer as described.
  5.  前記保護層のガラス転移温度が85℃以上であり、かつ、前記樹脂の重量平均分子量Mwが25000以上である、請求項4に記載の円偏光板。 The circularly polarizing plate according to claim 4, wherein the protective layer has a glass transition temperature of 85°C or higher, and the resin has a weight average molecular weight Mw of 25000 or higher.
  6.  前記偏光板と前記第1の液晶配向固化層との間に別の保護層を少なくとも1つ備える、請求項1から5のいずれかに記載の円偏光板。 The circularly polarizing plate according to any one of claims 1 to 5, comprising at least one other protective layer between said polarizing plate and said first liquid crystal alignment fixed layer.
  7.  厚みが100μm以下である、請求項1から6のいずれかに記載の円偏光板。 The circularly polarizing plate according to any one of claims 1 to 6, having a thickness of 100 µm or less.
  8.  請求項1から7のいずれかに記載の円偏光板を含む、画像表示装置。 An image display device comprising the circularly polarizing plate according to any one of claims 1 to 7.
PCT/JP2022/003086 2021-03-04 2022-01-27 Circular polarizing plate and image display device using same WO2022185802A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237026552A KR20230151987A (en) 2021-03-04 2022-01-27 Circular polarizer and image display device using the same
CN202280013415.5A CN116848443A (en) 2021-03-04 2022-01-27 Circularly polarizing plate and image display device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-034318 2021-03-04
JP2021034318A JP2022134862A (en) 2021-03-04 2021-03-04 Circularly polarizing plate and image display device using the same

Publications (1)

Publication Number Publication Date
WO2022185802A1 true WO2022185802A1 (en) 2022-09-09

Family

ID=83154987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003086 WO2022185802A1 (en) 2021-03-04 2022-01-27 Circular polarizing plate and image display device using same

Country Status (5)

Country Link
JP (1) JP2022134862A (en)
KR (1) KR20230151987A (en)
CN (1) CN116848443A (en)
TW (1) TW202246818A (en)
WO (1) WO2022185802A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2017102443A (en) * 2015-11-20 2017-06-08 日東電工株式会社 Optical laminated body and organic electroluminescence display device using same
JP2019120951A (en) * 2017-12-28 2019-07-22 住友化学株式会社 Polarizing plate
WO2020174787A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Resin composition for protecting polarizer, and polarizing plate including protective layer formed from said composition
JP2020201507A (en) * 2020-08-25 2020-12-17 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325560B2 (en) 1998-10-30 2002-09-17 帝人株式会社 Retardation film and optical device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008163107A (en) * 2006-12-27 2008-07-17 Mitsubishi Gas Chem Co Inc Optical member
JP2017102443A (en) * 2015-11-20 2017-06-08 日東電工株式会社 Optical laminated body and organic electroluminescence display device using same
JP2019120951A (en) * 2017-12-28 2019-07-22 住友化学株式会社 Polarizing plate
WO2020174787A1 (en) * 2019-02-28 2020-09-03 日東電工株式会社 Resin composition for protecting polarizer, and polarizing plate including protective layer formed from said composition
JP2020201507A (en) * 2020-08-25 2020-12-17 日東電工株式会社 Polarizing plate with optical compensation layer and organic el panel using the same

Also Published As

Publication number Publication date
JP2022134862A (en) 2022-09-15
CN116848443A (en) 2023-10-03
TW202246818A (en) 2022-12-01
KR20230151987A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2017170019A1 (en) Polarizing plate set and ips mode liquid crystal display using same
JP2024007555A (en) Polarizing plate having retardation layer and picture display unit using the same
JP2018060152A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP7114664B2 (en) Polarizing plate with retardation layer and image display device using the same
WO2022185802A1 (en) Circular polarizing plate and image display device using same
JP7273769B2 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using these
JP2018060150A (en) Set of polarizing plates for ips mode and ips mode liquid crystal display using the same
JP7258829B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7114665B2 (en) Polarizing plate with retardation layer and image display device using the same
JP7046127B6 (en) Image display device including an optical laminate and a polarizing plate with a retardation layer of the optical laminate
WO2021149311A1 (en) Retardation layer–equipped polarizing plate and image display device using same
JP7273768B2 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using these
WO2022201907A1 (en) Polarizing plate with retardation layer and production method therefor, and image display device using said polarizing plate with retardation layer
WO2021149312A1 (en) Retardation-layer-equipped polarizing plate and image display device using same
JP7411520B2 (en) Polarizing plate, polarizing plate with retardation layer, and organic electroluminescent display device
JP2018060149A (en) Set of polarizing plates and ips mode liquid crystal display using the same
WO2021149314A1 (en) Polarizing plate, polarizing plate with retardation layer, and image display device using said plates
WO2021149313A1 (en) Polarizing plate and phase difference layer-equipped polarizing plate, and image display device using same
JP6699514B2 (en) Set of polarizing plates for IPS mode and IPS mode liquid crystal display device using the same
JP2018054887A (en) Polarizing plate set and ips mode liquid crystal display using the same
JP6699513B2 (en) Polarizing plate set and IPS mode liquid crystal display device using the same
JP2022141116A (en) Polarizing plate with retardation layers
JP2023075790A (en) Polarizing plate with retardation layer, and image display device using the same
JP2023075748A (en) Polarizing plate with retardation layer, and image display device using the same
JP2018060147A (en) Set of polarizing plates and ips mode liquid crystal display using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762861

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280013415.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762861

Country of ref document: EP

Kind code of ref document: A1