WO2022200915A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2022200915A1
WO2022200915A1 PCT/IB2022/052305 IB2022052305W WO2022200915A1 WO 2022200915 A1 WO2022200915 A1 WO 2022200915A1 IB 2022052305 W IB2022052305 W IB 2022052305W WO 2022200915 A1 WO2022200915 A1 WO 2022200915A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
pixel
sub
emitting
Prior art date
Application number
PCT/IB2022/052305
Other languages
English (en)
French (fr)
Inventor
久保田大介
初見亮
桃純平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023508137A priority Critical patent/JPWO2022200915A1/ja
Priority to US18/281,593 priority patent/US20240164167A1/en
Priority to KR1020237034710A priority patent/KR20230158533A/ko
Priority to CN202280022591.5A priority patent/CN117063145A/zh
Publication of WO2022200915A1 publication Critical patent/WO2022200915A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • H10K39/34Organic image sensors integrated with organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors

Definitions

  • One embodiment of the present invention relates to a display device, a display module, and an electronic device.
  • one embodiment of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices (e.g., touch sensors), and input/output devices (e.g., touch panels). ), their driving methods, or their manufacturing methods.
  • information terminal devices such as mobile phones such as smart phones, tablet information terminals, and notebook PCs (personal computers) have become widespread.
  • Such information terminal equipment often contains personal information and the like, and various authentication techniques have been developed to prevent unauthorized use.
  • information terminal equipment having various functions such as an image display function, a touch sensor function, and a fingerprint imaging function for authentication.
  • Patent Literature 1 discloses an electronic device having a fingerprint sensor in a push button switch section.
  • a light-emitting device having a light-emitting device As a display device, for example, a light-emitting device having a light-emitting device (also referred to as a light-emitting element) has been developed.
  • a light-emitting device also referred to as an EL device or EL element
  • EL the phenomenon of electroluminescence
  • EL is a DC constant-voltage power supply that can easily be made thin and light, can respond quickly to an input signal, and It is applied to a display device.
  • Information terminal equipment that can be operated without contact is desired from the viewpoint of measures against infectious diseases and hygiene.
  • An object of one embodiment of the present invention is to provide an electronic device that can be operated without contact.
  • An object of one embodiment of the present invention is to provide a high-definition display device having a photodetection function.
  • An object of one embodiment of the present invention is to provide a high-resolution display device having a photodetection function.
  • An object of one embodiment of the present invention is to provide a highly reliable display device having a photodetection function.
  • One embodiment of the present invention is an electronic device including a display portion, a processing portion, and a storage portion, and the display portion includes a display device including a light-emitting device and a light-receiving device.
  • the display unit has a function of displaying an image using a light emitting device and a function of capturing an image using a light receiving device.
  • the storage unit has a machine learning model using a neural network.
  • the processing unit has a function of inferring position information of an object that is not in contact with the electronic device from image data captured by the display unit using a machine learning model.
  • one embodiment of the present invention is an electronic device including a display portion, a processing portion, and a storage portion, and the display portion includes a display device including a first pixel.
  • the first pixel has a first light-emitting device, a first light-receiving device, and a second light-receiving device, and the wavelength range of light detected by the first light-receiving device is the light emitted by the first light-emitting device.
  • the second light receiving device has the function of detecting infrared light, including the maximum peak wavelength of the spectrum.
  • the display unit has a function of displaying an image using the first light emitting device and a function of capturing an image using one or both of the first light receiving device and the second light receiving device.
  • the storage unit has a machine learning model using a neural network.
  • the processing unit has a function of inferring position information of an object that is not in contact with the electronic device from image data captured by the display unit using a machine learning model.
  • one embodiment of the present invention is an electronic device including a display portion, a processing portion, and a storage portion, and the display portion includes a display device including a first pixel.
  • the first pixel has a first subpixel, a second subpixel, a third subpixel, a fourth subpixel, and a fifth subpixel.
  • the first subpixel has a first light emitting device and has the function of emitting red light.
  • the second sub-pixel has a second light emitting device and has the function of emitting green light.
  • the third sub-pixel has a third light-emitting device and has the function of emitting blue light.
  • the fourth sub-pixel has a first light-receiving device, and the wavelength range of light detected by the first light-receiving device is the first light-emitting device, the second light-emitting device, and the third light-emitting device. It includes the maximum peak wavelength of the emission spectrum of at least one of the devices.
  • a fifth sub-pixel has a second light receiving device and has a function of detecting infrared light.
  • the display unit has a function of displaying an image using the first to third sub-pixels and a function of capturing an image using one or both of the first light receiving device and the second light receiving device. .
  • the storage unit has a machine learning model using a neural network.
  • the processing unit has a function of inferring position information of an object that is not in contact with the electronic device from image data captured by the display unit using a machine learning model.
  • the area of the light receiving region of the first light receiving device is smaller than the area of the light receiving region of the second light receiving device.
  • the display device comprises a second pixel comprising a first light emitting device, a first light receiving device and a sensor device.
  • Electronic devices use sensor devices to measure force, displacement, position, velocity, acceleration, angular velocity, number of rotations, distance, magnetism, temperature, chemicals, time, hardness, electric field, current, voltage, power, radiation, flow rate, It preferably has a function of measuring at least one of humidity, gradient, vibration, smell, physical condition, pulse, body temperature, and blood oxygen concentration.
  • the display device preferably has a second pixel with a first light-emitting device, a fourth light-emitting device and a first light-receiving device.
  • the fourth light emitting device preferably has a function of emitting infrared light.
  • the electronic device of one embodiment of the present invention may include, outside the display device, a fourth light-emitting device having a function of emitting infrared light.
  • the fourth light emitting device may emit light to the outside of the electronic device through the display device.
  • a display device that can be operated without contact can be provided.
  • a high-definition display device having a photodetection function can be provided.
  • a high-resolution display device having a photodetection function can be provided.
  • a highly reliable display device having a photodetection function can be provided.
  • FIG. 1A is a diagram illustrating an example of an electronic device
  • FIG. 1B is a diagram illustrating an example of processing executed by an electronic device
  • 2A to 2G are diagrams showing examples of pixels of a display device
  • 3A and 3B are diagrams showing examples of pixels of a display device.
  • 3C and 3D are cross-sectional views showing examples of electronic devices.
  • 4A and 4B are cross-sectional views showing examples of electronic devices.
  • 5A to 5D are diagrams showing examples of pixels of a display device.
  • FIG. 5E is a cross-sectional view showing an example of an electronic device
  • FIG. 6 is a diagram showing an example of the layout of the display device.
  • FIG. 7 is a diagram showing an example of the layout of the display device.
  • FIG. 1A is a diagram illustrating an example of an electronic device
  • FIG. 1B is a diagram illustrating an example of processing executed by an electronic device
  • 2A to 2G are diagrams showing examples of pixels of a display device.
  • FIG. 8 is a diagram showing an example of the layout of the display device.
  • FIG. 9 is a diagram showing an example of the layout of the display device.
  • FIG. 10 is a diagram showing an example of a pixel circuit.
  • FIG. 11A is a top view showing an example of a display device.
  • FIG. 11B is a cross-sectional view showing an example of a display device;
  • 12A to 12C are cross-sectional views showing examples of display devices.
  • 13A and 13B are cross-sectional views showing examples of display devices.
  • 14A to 14C are cross-sectional views showing examples of display devices.
  • 15A to 15F are cross-sectional views showing examples of display devices.
  • FIG. 16 is a perspective view showing an example of a display device.
  • FIG. 16 is a perspective view showing an example of a display device.
  • 17A is a cross-sectional view showing an example of a display device
  • 17B and 17C are cross-sectional views showing examples of transistors
  • 18A to 18D are cross-sectional views showing examples of display devices.
  • 19A to 19F are diagrams showing configuration examples of light-emitting devices.
  • 20A and 20B are diagrams illustrating examples of electronic devices.
  • 21A to 21D are diagrams illustrating examples of electronic devices.
  • 22A to 22F are diagrams illustrating examples of electronic devices.
  • FIG. 23A is a diagram illustrating an explanation of the evaluation method of the example.
  • 23B to 23D are photographs captured by the display device.
  • film and “layer” can be interchanged depending on the case or situation.
  • conductive layer can be changed to the term “conductive film.”
  • insulating film can be changed to the term “insulating layer”.
  • One embodiment of the present invention is an electronic device including a display portion, a processing portion, and a storage portion.
  • the display has a display device with a light emitting device and a light receiving device.
  • the display unit has a function of displaying an image using a light emitting device and a function of capturing an image using a light receiving device.
  • the storage unit has a machine learning model using a neural network.
  • the processing unit has a function of inferring position information of an object that is not in contact with the electronic device from image data captured by the display unit using a machine learning model.
  • the electronic device can be multifunctional without increasing the number of components of the electronic device.
  • the electronic device of one embodiment of the present invention preferably uses artificial intelligence (AI) for at least part of processing.
  • AI artificial intelligence
  • An electronic device of one embodiment of the present invention preferably uses an artificial neural network (ANN: hereinafter simply referred to as a neural network).
  • ANN artificial neural network
  • a neural network is realized by a circuit (hardware) or a program (software).
  • neural network refers to a general model that imitates the neural network of an organism, determines the strength of connections between neurons through learning, and has problem-solving ability.
  • a neural network has an input layer, an intermediate layer (hidden layer), and an output layer.
  • determining the connection strength (also referred to as a weighting factor) between neurons from existing information may be referred to as "learning.”
  • connection strength obtained by learning and deriving a new conclusion therefrom may be referred to as "inference”.
  • FIG. 1A shows a block diagram of an electronic device of one embodiment of the present invention.
  • An electronic device 10 shown in FIG. 1A has a processing unit 11 , a display unit 12 and a storage unit 13 .
  • the display unit 12 has a display device having a light-emitting device and a light-receiving device.
  • FIG. 1A shows an example of using a display device having a pixel 110 having a sub-pixel G, a sub-pixel B, a sub-pixel R, and a sub-pixel S in the display portion 12 .
  • Subpixel G, subpixel B, and subpixel R each have a light emitting device.
  • Sub-pixel R emits red light
  • sub-pixel G emits green light
  • sub-pixel B emits blue light.
  • the sub-pixel S has a light receiving device.
  • the wavelength of light detected by the light receiving device is not particularly limited.
  • the sub-pixels S can be light receiving devices that detect one or both of visible light and infrared light.
  • the display unit 12 has a function of displaying an image using the sub-pixels G, B, and R (light-emitting device) and a function of capturing an image using the sub-pixel S (light-receiving device).
  • the storage unit 13 has a machine learning model using a neural network. Note that the storage unit 13 may be part of the processing unit 11 .
  • the processing unit 11 has a function of inferring the position information of the target object from the imaging data captured by the display unit 12 using a machine learning model.
  • the object may or may not be in contact with the electronic device 10 .
  • a convolutional neural network (CNN) is preferably used for the machine learning model.
  • the machine learning model is preferably trained using image data of the object to be detected.
  • image data of one or more objects such as a finger, hand, and pen can be used.
  • learning is performed using image data of objects of various materials and colors, for example, not only with bare hands but also with gloves.
  • the position of the object can be inferred with high accuracy.
  • learning is performed using image data when dust or water droplets are attached to the surface of the display unit 12 . As a result, even when dust or water droplets adhere to the surface of the display unit 12, the position of the object can be inferred with high accuracy.
  • Either supervised machine learning or unsupervised machine learning may be used for learning the machine learning model.
  • a machine learning model is not particularly limited, and for example, a regression model, a classification model, or a clustering model can be used.
  • classification model For example, it is preferable to use supervised machine learning in which image data is given as input data (example) and classification data is given as output data (answer) for learning.
  • the electronic device 10 can image an object on the display unit 12 and infer the position information of the object on the processing unit 11 .
  • the processing unit 11 performs processing using a neural network NN.
  • Image data 15 imaged by the display unit 12 is input to the processing unit 11 .
  • An image 17 of an object is captured in the imaging data 15 .
  • the imaging data 15 including the image 17 is obtained by detecting the light from the light source reflected by the object with the light receiving device.
  • the processing unit 11 infers the position information 19 of the image 17 using a machine learning model using a neural network NN.
  • the processing unit 11 can execute processing based on the inferred positional information. For example, the signal or potential supplied to the display unit 12 can be controlled.
  • the non-contact sensor function of the electronic device 10 can be realized by detecting a non-contact object and inferring position information using the processing unit 11 and the display unit 12 .
  • the non-contact sensor function can also be called a hover sensor function, a hover touch sensor function, a near touch sensor function, a touchless sensor function, or the like.
  • the touch sensor function also referred to as a direct touch sensor function of the electronic device 10 can be achieved. can also be realized.
  • the electronic device 10 By realizing one or both of the non-contact sensor function and the touch sensor function, the electronic device 10 detects operations such as tap, long tap, flick, drag, scroll, multi-touch, swipe, pinch-in, pinch-out, etc. Processing according to each operation can be executed.
  • the processing unit 11 has a function of performing calculation, inference, etc. using data supplied from the display unit 12, the storage unit 13, and the like.
  • the processing unit 11 can supply calculation results, inference results, and the like to the storage unit 13 and the like. Also, the processing unit 11 can control the signal or potential supplied to the display unit 12 based on the calculation result, the inference result, and the like.
  • the processing unit 11 has, for example, an arithmetic circuit or a central processing unit (CPU: Central Processing Unit).
  • CPU Central Processing Unit
  • the processing unit 11 may have a microprocessor such as a DSP (Digital Signal Processor) or a GPU (Graphics Processing Unit).
  • the microprocessor may have a configuration realized by PLD (Programmable Logic Device) such as FPGA (Field Programmable Gate Array), FPAA (Field Programmable Analog Array).
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • FPAA Field Programmable Analog Array
  • the processing unit 11 can perform various data processing and program control by interpreting and executing instructions from various programs by the processor. Programs that can be executed by the processor are stored in at least one of the memory area of the processor and the storage unit 13 .
  • the processing unit 11 may have a main memory.
  • the main memory has at least one of volatile memory such as RAM (Random Access Memory) and non-volatile memory such as ROM (Read Only Memory).
  • RAM for example, DRAM (Dynamic Random Access Memory), SRAM (Static Random Access Memory), etc. are used, and a memory space is virtually allocated and used as the work space of the processing unit 11 .
  • the operating system, application programs, program modules, program data, lookup tables, etc. stored in the storage unit 13 are loaded into the RAM for execution. These data, programs, and program modules loaded into the RAM are directly accessed and manipulated by the processing unit 11, respectively.
  • the ROM can store BIOS (Basic Input/Output System), firmware, etc., which do not require rewriting.
  • BIOS Basic Input/Output System
  • Examples of ROM include mask ROM, OTPROM (One Time Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory), and the like.
  • Examples of EPROM include UV-EPROM (Ultra-Violet Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash memory, etc., which enables erasing of stored data by ultraviolet irradiation.
  • a transistor also referred to as an OS transistor
  • a metal oxide also referred to as an oxide semiconductor
  • the processing portion 11 is preferably used for the processing portion 11 . Since the off-state current of the OS transistor is extremely low, the data can be held for a long time by using the OS transistor as a switch for holding charge (data) flowing into the capacitor functioning as a memory element. .
  • the processing unit 11 is operated only when necessary, and in other cases, the information of the immediately preceding process is saved in the storage element. Thus, the processing section 11 can be turned off. That is, normally-off computing becomes possible, and low power consumption of electronic devices can be achieved.
  • a transistor containing silicon in a channel formation region (also referred to as a Si transistor) may be used for the processing unit 11 .
  • the storage unit 13 has a function of storing programs executed by the processing unit 11 .
  • the storage unit 13 may also have a function of storing calculation results and inference results generated by the processing unit 11, image data captured by the display unit 12, and the like.
  • the storage unit 13 has at least one of a volatile memory and a nonvolatile memory.
  • the storage unit 13 may have, for example, volatile memory such as DRAM and SRAM.
  • the storage unit 13 includes, for example, ReRAM (Resistive Random Access Memory), PRAM (Phase Change Random Access Memory), FeRAM (Ferroelectric Random Access Memory), MRAM (Magnetoresistive Random Access Memory), MRAM ), or non-volatile memory such as flash memory.
  • the storage unit 13 may also have a recording media drive such as a hard disk drive (HDD) and a solid state drive (SSD).
  • HDD hard disk drive
  • SSD solid state drive
  • Display unit 12 As described above, a display device having a light emitting device and a light receiving device can be used for the display section 12 .
  • the three sub-pixels are R, G, and B sub-pixels, yellow (Y), cyan (C ), and magenta (M).
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y four-color sub-pixels. be done.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • top surface shapes of sub-pixels include polygons such as triangles, quadrilaterals (including rectangles and squares), pentagons, and hexagons, and polygons with rounded corners, ellipses, and circles.
  • the top surface shape of the sub-pixel corresponds to the top surface shape of the light emitting region of the light emitting device or the light receiving region of the light receiving device.
  • the pixel 110 shown in FIGS. 2A-2C has G sub-pixel, B sub-pixel, R sub-pixel, and S sub-pixel. Note that there is no particular limitation on the order in which the sub-pixels are arranged. Note that when the sub-pixel S detects light of a specific color, it is preferable to arrange a sub-pixel that emits light of that color next to the sub-pixel S so that the detection accuracy can be improved. Also, sub-pixels with more reliable light-emitting devices can be made smaller.
  • a pixel 110 shown in FIG. 2A is similar to the pixel 110 shown in FIG. 1A, and a stripe arrangement is applied.
  • 1A and 2A show an example in which the sub-pixel R is located between the sub-pixel B and the sub-pixel S, but the sub-pixel R and the sub-pixel G may be adjacent to each other, for example.
  • FIG. 2B shows an example in which sub-pixel R and sub-pixel S are located in the same row, and sub-pixel B and sub-pixel G are located in the same row. may be located on the same line.
  • the sub-pixel R and the sub-pixel B are positioned in the same column and the sub-pixel S and the sub-pixel G are positioned in the same column is shown. may be located in the same column.
  • a pixel 110 shown in FIG. 2C has a configuration in which a fourth sub-pixel is added to the S-stripe arrangement.
  • the pixel 110 in FIG. 2C shows an example having vertically elongated sub-pixel B and horizontally elongated sub-pixels R, G, and S.
  • the vertically elongated sub-pixel is either sub-pixel R, sub-pixel G, or sub-pixel S. , and the order in which the horizontally long sub-pixels are arranged is not limited.
  • FIG. 2D shows an example in which pixels 109a and pixels 109b are alternately arranged.
  • the pixel 109a has sub-pixel B, sub-pixel G, and sub-pixel S
  • the pixel 109b has sub-pixel R, sub-pixel G, and sub-pixel S.
  • FIG. 2D shows an example in which the sub-pixels included in both the pixel 109a and the pixel 109b are the sub-pixel G and the sub-pixel S, but the present invention is not particularly limited. It is preferable that both the pixel 109a and the pixel 109b have the sub-pixel S, so that the definition of imaging can be improved.
  • the sub-pixel S detects the light emitted by the sub-pixel (the sub-pixel G in FIG. 2D) included in both the pixel 109a and the pixel 109b.
  • FIG. 2E is a modification in which the sub-pixels of the pixels 109a and 109b shown in FIG. 2D each have a substantially rectangular top surface shape with rounded corners.
  • FIG. 2F Two-dimensional hexagonal close-packing is applied to the pixel layout shown in FIG. 2F.
  • a hexagonal close-packed layout is preferable because the aperture ratio of each sub-pixel can be increased.
  • FIG. 2F shows an example in which each sub-pixel has a hexagonal top surface shape.
  • FIG. 2G is a variation in which the pixel 110 shown in FIG. 2F has a substantially hexagonal top shape with rounded corners.
  • the top surface shape of the sub-pixel may be a polygonal shape with rounded corners, an elliptical shape, a circular shape, or the like.
  • the EL layer is processed into an island shape using a resist mask.
  • the resist film formed on the EL layer needs to be cured at a temperature lower than the heat resistance temperature of the EL layer. Therefore, depending on the heat resistance temperature of the EL layer material and the curing temperature of the resist material, curing of the resist film may be insufficient.
  • a resist film that is insufficiently hardened may take a shape away from the desired shape during processing.
  • the top surface shape of the EL layer may be a polygon with rounded corners, an ellipse, or a circle. For example, when a resist mask having a square top surface is formed, a resist mask having a circular top surface is formed, and the EL layer may have a circular top surface.
  • a technique for correcting the mask pattern in advance so that the design pattern and the transfer pattern match.
  • OPC Optical Proximity Correction
  • a pattern for correction is added to a corner portion of a figure on a mask pattern.
  • one pixel may have two or more types of light receiving devices.
  • a display device of one embodiment of the present invention includes a first pixel including a light-emitting device, a first light-receiving device, and a second light-receiving device.
  • the first light receiving device has a smaller light receiving region area (also simply referred to as light receiving area) than the second light receiving device.
  • the first light-receiving device can perform higher-definition imaging than the second light-receiving device.
  • the first light receiving device can be used for imaging for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • the first light receiving device can appropriately determine the wavelength of light to be detected according to the application.
  • the first light receiving device preferably detects visible light.
  • the second light receiving device can be used as a touch sensor, a non-contact sensor, or the like.
  • the second light receiving device can appropriately determine the wavelength of light to be detected according to the application.
  • the second light receiving device preferably detects infrared light. This enables detection even in dark places.
  • the second light-receiving device detects infrared light, compared to a capacitive touch sensor, even if dust or water droplets adhere to the surface of the electronic device, it can be detected with high sensitivity.
  • touch sensors or non-contact sensors can detect the proximity or contact of an object (such as a finger, hand, or pen).
  • a touch sensor can detect an object by direct contact between the electronic device and the object.
  • the non-contact sensor can detect the target even if the target does not come into contact with the electronic device.
  • the display device can detect the object when the distance between the display device (or electronic device) and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less.
  • the electronic device can be operated without direct contact with the target object, in other words, the display device can be operated without contact (touchless).
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 1 Hz to 240 Hz) according to the content displayed on the display device.
  • the drive frequency of the touch sensor or the non-contact sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the non-contact sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the non-contact sensor can be increased.
  • the detection method of the object may be selected according to the function based on the difference in detection accuracy between the first light receiving device and the second light receiving device.
  • the swipe function and the scroll function of the display screen are realized by a non-contact sensor function using the second light receiving device, and the input function with the keyboard displayed on the screen is realized by the first light receiving device. It may be realized by the high-definition touch sensor function used.
  • the first light-receiving device is preferably provided for all pixels included in the display device in order to perform high-definition imaging.
  • the second light-receiving device used for a touch sensor, a non-contact sensor, or the like does not require high accuracy compared to detection using the first light-receiving device, and is provided in some pixels of the display device. It is good if there is The detection speed can be increased by reducing the number of the second light-receiving devices included in the display device compared to the number of the first light-receiving devices.
  • a display device of one embodiment of the present invention can have a structure in which a plurality of each of the above first pixels and second pixels is provided.
  • the second pixel is similar to the first pixel in that it has a light-emitting device and a first light-receiving device, and does not have a second light-receiving device, but instead has another device. and is different from the first pixel.
  • the second pixel can have various sensor devices, or light emitting devices that emit infrared light, or the like. By providing the second pixel with a device different from that of the first pixel in this manner, the display device can be multifunctional.
  • a pixel when a pixel is provided with light-emitting devices of three colors of red, green, and blue in order to perform full-color display, by further providing two light-receiving devices, one pixel can be obtained from five sub-pixels. It will be configured. Thus, it is extremely difficult to achieve a high aperture ratio in a pixel having many sub-pixels. Alternatively, it is difficult to realize a high-definition display device using a pixel having many sub-pixels.
  • the island-shaped EL layer is not formed using a fine metal mask, but is formed by forming an EL layer over one surface and then processing the EL layer. preferable.
  • a high-definition display device or a display device with a high aperture ratio which has been difficult to achieve.
  • the display device of one embodiment of the present invention can have a high aperture ratio, high definition, and multiple functions.
  • FIG. 3A shows an example of a pixel included in a display device of one embodiment of the present invention.
  • Pixel 180A shown in FIG. 3A has sub-pixel G, sub-pixel B, sub-pixel R, sub-pixel PS, and sub-pixel IRS.
  • FIG. 3A shows an example in which one pixel 180A is composed of 2 rows and 3 columns.
  • the pixel 180A has three sub-pixels (sub-pixel G, sub-pixel B, and sub-pixel R) in the upper row (first row) and two sub-pixels (sub-pixel R) in the lower row (second row).
  • sub-pixel PS, sub-pixel IRS sub-pixel PS, sub-pixel IRS.
  • the pixel 110 has two sub-pixels (sub-pixel G, sub-pixel PS) in the left column (first column) and sub-pixel B in the center column (second column). It has sub-pixels R in the right column (third column), and sub-pixels IRS from the center column to the right column.
  • the lower row may also have three sub-pixels (sub-pixel PS and two sub-pixels IRS).
  • sub-pixel PS sub-pixel PS
  • IRS sub-pixels
  • the two sub-pixels IRS may each have their own light receiving device, or may have one light receiving device in common. That is, the pixel 110 shown in FIG. 3B can be configured to have one light receiving device for the subpixel PS and one or two light receiving devices for the subpixel IRS.
  • the light receiving area of the sub-pixel PS is smaller than the light receiving area of the sub-pixel IRS.
  • the sub-pixels PS can be used to capture images for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • the resolution of the sub-pixels PS should be 100 ppi or more, preferably 200 ppi or more, more preferably 300 ppi or more, more preferably 400 ppi or more, still more preferably 500 ppi or more, and 2000 ppi or less, 1000 ppi or less, or 600 ppi or less. can be done.
  • by arranging the light-receiving device with a resolution of 200 ppi to 600 ppi, preferably 300 ppi to 600 ppi it can be suitably used for fingerprint imaging.
  • the resolution is 500 ppi or more, it is preferable because it can conform to standards such as the US National Institute of Standards and Technology (NIST). Assuming that the resolution of the light-receiving device is 500 ppi, the size of one pixel is 50.8 ⁇ m. I understand.
  • a clear fingerprint image can be obtained by setting the array interval of the light receiving devices to be smaller than the distance between two protrusions of the fingerprint, preferably smaller than the distance between adjacent recesses and protrusions. It is said that the distance between the concave and convex portions of a human fingerprint is approximately 200 ⁇ m.
  • the width of a human fingerprint is said to be 300 ⁇ m or more and 500 ⁇ m or less, or 460 ⁇ m ⁇ 150 ⁇ m.
  • the arrangement interval of the light receiving devices is 400 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, still more preferably 100 ⁇ m or less, further preferably 50 ⁇ m or less, and 1 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more.
  • the light-receiving device included in the subpixel PS preferably detects visible light, and preferably detects one or more of blue, purple, blue-violet, green, yellow-green, yellow, orange, and red light. . Also, the light receiving device included in the sub-pixel PS may detect infrared light (including near-infrared light).
  • the sub-pixel IRS can be used for a touch sensor, a non-contact sensor, or the like.
  • the sub-pixel IRS can appropriately determine the wavelength of light to be detected according to the application.
  • sub-pixel IRS preferably detects infrared light. This enables touch detection even in dark places.
  • 3C and 3D illustrate examples of cross-sectional views of electronic devices each including the display device of one embodiment of the present invention.
  • the electronic devices shown in FIGS. 3C and 3D each have display device 100 and light source 104 between housing 103 and protective member 105 .
  • the light source 104 has a light emitting device that emits infrared light 31IR.
  • a light emitting diode LED: Light Emitting Diode
  • FIG. 3C shows an example in which the light source 104 is arranged at a position that does not overlap with the display device 100 . At this time, light emitted from the light source 104 is emitted to the outside of the electronic device through the protective member 105 .
  • FIG. 3D shows an example in which the display device and the light source 104 are overlapped. At this time, light emitted from the light source 104 is emitted to the outside of the electronic device through the display device 100 and the protective member 105 .
  • the display device 100 shown in FIGS. 3C and 3D corresponds to the cross-sectional structure along the dashed-dotted line A1-A2 in FIG. 3A.
  • Display device 100 has a plurality of light emitting devices and a plurality of light receiving devices between substrate 106 and substrate 102 .
  • Subpixel R has a light emitting device 130R that emits red light 31R.
  • Subpixel G has a light emitting device 130G that emits green light 31G.
  • Subpixel B has a light emitting device 130B that emits blue light 31B.
  • the sub-pixel PS has a light receiving device 150PS and the sub-pixel IRS has a light receiving device 150IRS.
  • the wavelength of light detected by the sub-pixels PS and IRS is not particularly limited.
  • the infrared light 31IR emitted by the light source 104 is reflected by the object 108 (finger here), and the reflected light 32IR from the object 108 is incident on the light receiving device 150IRS.
  • the receiving device 150IRS can be used to detect the object 108 .
  • the wavelength of light detected by light receiving device 150IRS is not particularly limited.
  • the light receiving device 150IRS preferably detects infrared light.
  • the light receiving device 150IRS may detect visible light, or both infrared light and visible light.
  • detection of the object 108 may be performed using both the light receiving device 150PS and the light receiving device 150IRS.
  • infrared light 31IR emitted by light source 104 is reflected by object 108 (here, a finger), and reflected light 32IR from object 108 is incident on light receiving device 150IRS. be done.
  • green light 31G emitted by light emitting device 130G is also reflected by object 108, and reflected light 32G from object 108 is incident on light receiving device 150PS.
  • the object 108 is not in contact with the electronics, the object 108 can be detected using the light receiving device 150IRS and the light receiving device 150PS.
  • the light receiving device 150IRS (and the light receiving device 150PS) can also be used to detect the object 108 in contact with the electronic device.
  • green light 31G emitted by light emitting device 130G is reflected by target 108, and reflected light 32G from target 108 is incident on light receiving device 150PS.
  • a fingerprint of the object 108 can be imaged using the light receiving device 150PS.
  • green light 31G emitted by light emitting device 130G is used to detect an object by light receiving device 150PS, but the wavelength of light detected by light receiving device 150PS is not particularly limited.
  • the light-receiving device 150PS preferably detects visible light, preferably one or more of blue, purple, blue-violet, green, yellow-green, yellow, orange, and red light. Also, the light receiving device 150PS may detect infrared light.
  • the light receiving device 150PS may have the function of detecting red light 31R emitted by the light emitting device 130R. Also, the light receiving device 150PS may have a function of detecting the blue light 31B emitted by the light emitting device 130B.
  • the light-emitting device that emits the light detected by the light-receiving device 150PS is provided in a sub-pixel close to the sub-pixel PS in the pixel.
  • the light receiving device 150PS detects light emitted from the light emitting device 130G of the subpixel G adjacent to the subpixel PS. With such a configuration, detection accuracy can be improved.
  • all pixels may have the structure of the pixel 180A, some pixels may have the structure of the pixel 180A, and other pixels may have the structure of the pixel 180A. configuration may be applied.
  • a display device of one embodiment of the present invention may include both the pixel 180A illustrated in FIG. 5A and the pixel 180B illustrated in FIG. 5B.
  • a pixel 180B shown in FIG. 5B has sub-pixel G, sub-pixel B, sub-pixel R, sub-pixel PS, and sub-pixel X.
  • FIG. 5B A pixel 180B shown in FIG. 5B has sub-pixel G, sub-pixel B, sub-pixel R, sub-pixel PS, and sub-pixel X.
  • the pixel may have three sub-pixels (sub-pixel PS and two sub-pixels X) in the bottom row (second row).
  • sub-pixel PS sub-pixel PS
  • sub-pixel X sub-pixel X
  • a device included in the sub-pixel X can be used to realize various functions in a display device or an electronic device equipped with the display device.
  • a display device or an electronic device uses a device possessed by the sub-pixel X to detect force, displacement, position, speed, acceleration, angular velocity, number of rotations, distance, magnetism, temperature, chemicals, time, electric field, current, voltage, and so on. , power, radiation, flow rate, humidity, gradient, vibration, smell, physical condition, pulse, body temperature, blood oxygen concentration, and arterial blood oxygen saturation.
  • Functions of the display device or electronic device include, for example, a strobe light function, a flash light function, a deterioration correction function, an acceleration sensor function, an odor sensor function, a physical condition detection function, a pulse detection function, a body temperature detection function, and a pulse oximeter. function as a monitor, blood oxygen concentration measurement function, and the like.
  • the strobe light function can be realized, for example, by repeating light emission and non-light emission in a short cycle.
  • the flashlight function can be realized by, for example, a configuration that generates a flash of light by instantaneously discharging using the principle of an electric double layer or the like.
  • the strobe light function and the flash light function can be used, for example, for security purposes or self-defense purposes.
  • white is preferable as the emission color of the strobe light and the flash light.
  • the practitioner can select one of the most suitable emission colors, such as white, blue, purple, blue-violet, green, yellow-green, yellow, orange, and red. Or you can select multiple.
  • the deterioration correcting function there is a function of correcting the deterioration of the light-emitting device of at least one sub-pixel selected from the sub-pixel G, sub-pixel B, and sub-pixel R. More specifically, when the reliability of the material used for the light-emitting device included in the sub-pixel G is poor, the sub-pixel X has the same configuration as the sub-pixel G so that two sub-pixels G can be formed in the pixel 180B. can be provided. With this structure, the area of the sub-pixel G can be doubled. By doubling the area of the sub-pixel G, it is possible to increase the reliability by about two times compared to the configuration in which the sub-pixel G is one.
  • the other sub-pixel G can be used to A configuration in which the light emission of the pixel G is supplemented may be employed.
  • the sub-pixel G has been described above, the sub-pixel B and the sub-pixel R can also have the same configuration.
  • the acceleration sensor function, the odor sensor function, the physical condition detection function, the pulse detection function, the body temperature detection function, and the blood oxygen concentration measurement function can be realized by providing the sub-pixel X with a sensor device necessary for detection. can. Further, it can be said that the display device or the electronic device can realize various functions according to the sensor device provided in the sub-pixel X.
  • the display device having the pixel 180B can be called a multi-function display device or a multi-function panel.
  • the function of the sub-pixel X may be one or two or more, and the operator can appropriately select the optimum function.
  • the display device of one embodiment of the present invention may include a pixel including four subpixels, which does not include both the subpixel X and the subpixel IRS. That is, it may have a pixel having sub-pixel G, sub-pixel B, sub-pixel R, and sub-pixel PS. Further, the display device may have different numbers of sub-pixels depending on the pixel. On the other hand, in order to make the quality of each pixel uniform, it is preferable that all pixels have the same number of sub-pixels.
  • the display device of one embodiment of the present invention may include both the pixel 180A illustrated in FIG. 5A and the pixel 180C illustrated in FIG. 5D.
  • Pixel 180C shown in FIG. 5D has sub-pixel G, sub-pixel B, sub-pixel R, sub-pixel PS, and sub-pixel IR.
  • Sub-pixel IR has a light-emitting device that emits infrared light. That is, the sub-pixel IR can be used as the light source of the sensor. Since the display device includes a light-emitting device that emits infrared light, it is not necessary to provide a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • FIG. 5E illustrates an example of a cross-sectional view of an electronic device including a display device of one embodiment of the present invention.
  • the electronic device shown in FIG. 5E has display device 100 between housing 103 and protective member 105 .
  • the display device 100 shown in FIG. 5E corresponds to the cross-sectional structure along the dashed-dotted line A1-A2 in FIG. 5A and the cross-sectional structure along the dashed-dotted line A3-A4 in FIG. 5D. That is, the display device 100 shown in FIG. 5E has a pixel 180A and a pixel 180C.
  • Subpixel R has a light emitting device 130R that emits red light 31R.
  • Subpixel G has a light emitting device 130G that emits green light 31G.
  • Subpixel B has a light emitting device 130B that emits blue light 31B.
  • the sub-pixel PS has a light receiving device 150PS and the sub-pixel IRS has a light receiving device 150IRS.
  • Subpixel IR has a light emitting device 130IR that emits infrared light 31IR.
  • the infrared light 31IR emitted by the light emitting device 130IR is reflected by the object 108 (finger in this case), and the reflected light 32IR from the object 108 enters the light receiving device 150IRS.
  • the receiving device 150IRS can be used to detect the object 108 .
  • 6 to 9 show an example of the layout of the display device.
  • the non-contact sensor function for example, illuminates an object (such as a finger, hand, or pen) with a light source fixed at a specific location, detects the reflected light from the object with a plurality of subpixels IRS, and detects a plurality of subpixels It can be realized by estimating the position of the object from the detection intensity ratio in the IRS.
  • an object such as a finger, hand, or pen
  • the pixels 180A having the sub-pixels IRS can be arranged in the display section at regular intervals, or arranged in the periphery of the display section.
  • the driving frequency can be increased by performing non-contact detection using only some pixels.
  • the sub-pixel X or the sub-pixel IR can be mounted in another pixel, the display device can be multi-functionalized.
  • the display device 100A shown in FIG. 6 has two types of pixels: pixels 180A and pixels 180B.
  • one pixel 180A is provided for 3 ⁇ 3 pixels (9 pixels), and the configuration of the pixel 180B is applied to the other pixels.
  • the period of arranging the pixels 180A is not limited to one per 3 ⁇ 3 pixels.
  • the pixels used for touch detection are 1 pixel per 4 pixels (2 ⁇ 2 pixels), 1 pixel per 16 pixels (4 ⁇ 4 pixels), 1 pixel per 100 pixels (10 ⁇ 10 pixels), or 900 pixels (30 pixels). x30 pixels) can be determined as appropriate.
  • the display device 100B shown in FIG. 7 has two types of pixels: pixels 180A and pixels 180C.
  • one pixel 180A is provided for 3 ⁇ 3 pixels (9 pixels), and the configuration of the pixel 180C is applied to the other pixels.
  • the display device 100C shown in FIG. 8 has two types of pixels: pixels 180A and pixels 180B.
  • the pixels 180A are provided on the periphery of the display portion, and the configuration of the pixels 180B is applied to the other pixels.
  • the pixels 180A When the pixels 180A are provided around the periphery of the display portion, the pixels 180A may be arranged so as to surround all four sides as shown in FIG. can be arranged and various arrangements can be applied.
  • the display device 100D shown in FIG. 9 has two types of pixels: pixels 180A and pixels 180C.
  • the pixels 180A are provided on the periphery of the display portion, and the configuration of the pixels 180C is applied to the other pixels.
  • infrared light 31IR emitted by a light source 104 provided outside the display unit of the display device is reflected by an object 108, and reflected light 32IR from the object 108 enters a plurality of pixels 180A. be done.
  • the reflected light 32IR is detected by the sub-pixel IRS provided in the pixel 180A, and the position of the target object 108 can be estimated from the detection intensity ratio of the plurality of sub-pixels IRS.
  • the light source 104 is provided at least outside the display portion of the display device, and may be built in the display device or may be mounted in an electronic device separately from the display device.
  • a light emitting diode that emits infrared light can be used.
  • the infrared light 31IR emitted by the sub-pixel IR of the pixel 180C is reflected by the target 108, and the reflected light 32IR from the target 108 is incident on the plurality of pixels 180A.
  • the reflected light 32IR is detected by the sub-pixel IRS provided in the pixel 180A, and the position of the target object 108 can be estimated from the detection intensity ratio of the plurality of sub-pixels IRS.
  • the layout of the display device can take various forms.
  • FIG. 10 shows an example of a pixel circuit with two light receiving devices.
  • the pixel shown in FIG. 10 comprises transistors M11, M12, M13, M14, M15, capacitor C1, and photodetectors PD1, PD2.
  • the transistor M11 has a gate electrically connected to the wiring TX, one of its source and drain electrically connected to the anode electrode of the light receiving device PD1 and one of the source and drain of the transistor M15. The other is electrically connected to one of the source and drain of the transistor M12, the first electrode of the capacitor C1, and the gate of the transistor M13.
  • the transistor M12 has a gate electrically connected to the wiring RS and the other of the source and the drain electrically connected to the wiring VRS.
  • the transistor M13 has one of its source and drain electrically connected to the wiring VPI, and the other of its source and drain electrically connected to one of its source and drain of the transistor M14.
  • the transistor M14 has a gate electrically connected to the wiring SE and the other of the source and the drain electrically connected to the wiring WX.
  • the transistor M15 has a gate electrically connected to the wiring SW, and the other of the source and the drain electrically connected to the anode electrode of the light receiving device PD2.
  • Cathode electrodes of the light receiving device PD1 and the light receiving device PD2 are electrically connected to the wiring CL.
  • a second electrode of the capacitor C1 is electrically connected to the wiring VCP.
  • Transistor M11, transistor M12, transistor M14, and transistor M15 function as switches.
  • the transistor M13 functions as an amplifying element (amplifier).
  • transistors also referred to as OS transistors
  • a metal oxide also referred to as an oxide semiconductor
  • An OS transistor has extremely low off-state current and can hold charge accumulated in a capacitor connected in series with the transistor for a long time. Further, with the use of the OS transistor, power consumption of the display device can be reduced.
  • transistors including silicon in a semiconductor layer in which a channel is formed are preferably used for all the transistors included in the pixel circuit.
  • silicon include monocrystalline silicon, polycrystalline silicon, amorphous silicon, and the like.
  • a transistor including low-temperature polysilicon (LTPS) in a semiconductor layer hereinafter also referred to as an LTPS transistor.
  • the LTPS transistor has high field effect mobility and can operate at high speed.
  • the pixel circuit preferably includes an OS transistor and an LTPS transistor.
  • OS transistor an OS transistor
  • LTPS transistor an LTPS transistor
  • LTPS transistors using low-temperature polysilicon for semiconductor layers are preferably used for all of the transistors M11 to M15.
  • an OS transistor using a metal oxide for a semiconductor layer as the transistor M11, the transistor M12, and the transistor M15, and use an LTPS transistor as the transistor M13.
  • an OS transistor or an LTPS transistor may be used as the transistor M14.
  • the potential held at the gate of the transistor M13 changes based on the charges generated in the light receiving device PD1 and the light receiving device PD2. Leakage through transistor M15 can be prevented.
  • an LTPS transistor is preferably used as the transistor M13.
  • An LTPS transistor can achieve higher field-effect mobility than an OS transistor, and has excellent driving capability and current capability. Therefore, the transistor M13 can operate faster than the transistors M11, M12, and M15. By using an LTPS transistor for the transistor M13, it is possible to quickly output to the transistor M14 a minute potential based on the amount of light received by the light receiving device PD1 or the light receiving device PD2.
  • the transistors M11, M12, and M15 have low leakage current, and the transistor M13 has high driving capability. And the charge transferred through the transistor M15 can be held without leaking, and reading can be performed at high speed.
  • the transistor M14 functions as a switch that passes the output from the transistor M13 to the wiring WX, unlike the transistors M11 to M13 and the transistor M15, low off-state current, high-speed operation, and the like are not necessarily required. Therefore, low-temperature polysilicon or an oxide semiconductor may be applied to the semiconductor layer of the transistor M14.
  • transistors are shown as n-channel transistors in FIG. 10, p-channel transistors can also be used.
  • the aperture ratio (light-receiving area) of the light-receiving device is small.
  • the aperture ratio (light receiving area) of the light receiving device is large. Therefore, it is preferable that the aperture ratio (light-receiving area) of the light-receiving device PD1 is smaller than the aperture ratio (light-receiving area) of the light-receiving device PD2.
  • imaging that requires high definition, it is preferable to perform imaging using only the light receiving device PD1 by turning on the transistor M11 and turning off the transistor M15.
  • the amount of light that can be imaged can be increased, making it easier to detect an object at a distance from the electronic device.
  • the electronic device of one embodiment of the present invention can detect non-contact objects and infer position information using the processing portion and the display portion. Inference accuracy can be improved by using a machine learning model in the processing unit.
  • the display device of one embodiment of the present invention can have two functions in addition to a display function by mounting two types of light-receiving devices in one pixel. becomes possible. For example, it is possible to realize a high-definition imaging function and a sensing function such as a touch sensor or a non-contact sensor.
  • a pixel equipped with two types of light receiving devices and a pixel with another configuration the functions of the electronic device can be further increased. For example, a light-emitting device that emits infrared light, or a pixel having various sensor devices can be used.
  • a display device of one embodiment of the present invention includes a light-emitting device and a light-receiving device in a pixel.
  • pixels have a light-receiving function, contact or proximity of an object can be detected while displaying an image. For example, in addition to displaying an image with all the sub-pixels of the display device, some sub-pixels exhibit light as a light source, some other sub-pixels perform light detection, and the remaining sub-pixels You can also display images with
  • light-emitting devices are arranged in matrix in the display portion, and an image can be displayed on the display portion.
  • light receiving devices are arranged in a matrix in the display section, and the display section has one or both of an imaging function and a sensing function in addition to an image display function.
  • the display part can be used for an image sensor or a touch sensor. That is, by detecting light on the display portion, an image can be captured, or proximity or contact of an object (a finger, hand, pen, or the like) can be detected.
  • the display device of one embodiment of the present invention can use a light-emitting device as a light source of a sensor. Therefore, it is not necessary to provide a light receiving portion and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light-receiving device when an object reflects (or scatters) light emitted by a light-emitting device included in the display portion, the light-receiving device can detect the reflected light (or scattered light).
  • the reflected light or scattered light.
  • imaging or touch detection is possible.
  • a display device of one embodiment of the present invention has a function of displaying an image using a light-emitting device.
  • the light-emitting device functions as a display device (also referred to as a display element).
  • an OLED Organic Light Emitting Diode
  • a QLED Quadantum-dot Light Emitting Diode
  • Light-emitting substances also referred to as light-emitting materials
  • Light-emitting substances included in the light-emitting device include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescence materials), and substances that exhibit thermally activated delayed fluorescence (thermally activated delayed fluorescence). Delayed Fluorescence (TADF) material) and the like.
  • TADF Delayed Fluorescence
  • As the TADF material a material in which a singlet excited state and a triplet excited state are in thermal equilibrium may be used.
  • TADF material has a short emission lifetime (excitation lifetime), it is possible to suppress a decrease in efficiency in a high-luminance region of a light-emitting device.
  • LEDs such as micro LED (Light Emitting Diode)
  • micro LED Light Emitting Diode
  • an inorganic compound quantum dot material or the like
  • a display device of one embodiment of the present invention has a function of detecting light using a light-receiving device.
  • the display device can capture an image using the light receiving device.
  • the display device of this embodiment can be used as a scanner.
  • an image sensor can be used to acquire biometric data such as fingerprints and palm prints. That is, the biometric authentication sensor can be incorporated in the display device.
  • the biometric authentication sensor can be incorporated into the display device.
  • the display device can detect proximity or contact of an object using the light receiving device.
  • a pn-type or pin-type photodiode can be used as the light receiving device.
  • a light-receiving device functions as a photoelectric conversion device (also referred to as a photoelectric conversion element) that detects light incident on the light-receiving device and generates an electric charge. The amount of charge generated from the light receiving device is determined based on the amount of light incident on the light receiving device.
  • organic photodiode having a layer containing an organic compound as the light receiving device.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so that they can be applied to various display devices.
  • an organic EL device is used as the light-emitting device and an organic photodiode is used as the light-receiving device.
  • An organic EL device and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL device.
  • the organic photodiode has many layers that can have the same configuration as the organic EL device, the layers that can have the same configuration can be formed at once, thereby suppressing an increase in the number of film forming steps.
  • one of the pair of electrodes can be a layer having a structure common to the light receiving device and the light emitting device.
  • at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer is preferably a layer having a common configuration in the light receiving device and the light emitting device.
  • a layer shared by the light-receiving device and the light-emitting device may have different functions in the light-emitting device and in the light-receiving device. Components are referred to herein based on their function in the light emitting device.
  • a hole-injecting layer functions as a hole-injecting layer in light-emitting devices and as a hole-transporting layer in light-receiving devices.
  • an electron-injecting layer functions as an electron-injecting layer in light-emitting devices and as an electron-transporting layer in light-receiving devices.
  • a layer shared by the light-receiving device and the light-emitting device may have the same function in the light-emitting device as in the light-receiving device.
  • a hole-transporting layer functions as a hole-transporting layer in both a light-emitting device and a light-receiving device
  • an electron-transporting layer functions as an electron-transporting layer in both a light-emitting device and a light-receiving device.
  • an island-shaped light-emitting layer can be formed by a vacuum evaporation method using a metal mask (also referred to as a shadow mask).
  • a metal mask also referred to as a shadow mask.
  • island-like formations occur due to various influences such as precision of the metal mask, misalignment between the metal mask and the substrate, bending of the metal mask, and broadening of the contour of the deposited film due to vapor scattering. Since the shape and position of the light-emitting layer deviate from the design, it is difficult to increase the definition and aperture ratio of the display device.
  • an island-shaped pixel electrode (which can also be called a lower electrode) is formed, and a first layer (EL layer or EL layer) including a light-emitting layer that emits light of a first color is formed. layer) is formed over the entire surface, a first sacrificial layer is formed on the first layer. Then, a first resist mask is formed over the first sacrificial layer, and the first layer and the first sacrificial layer are processed using the first resist mask, thereby forming an island-shaped first layer.
  • a second layer (which can be called an EL layer or part of an EL layer) including a light-emitting layer that emits light of a second color is formed as a second sacrificial layer. and an island shape using a second resist mask.
  • the island-shaped EL layer is not formed using a fine metal mask, but is processed after the EL layer is formed over one surface. It is formed. Therefore, it is possible to realize a high-definition display device or a display device with a high aperture ratio, which has hitherto been difficult to achieve. Furthermore, since the EL layer can be separately formed for each color, a display device with extremely vivid, high-contrast, and high-quality display can be realized.
  • a sacrificial layer (which may also be referred to as a mask layer) over the EL layer, damage to the EL layer during the manufacturing process of the display device can be reduced, and the reliability of the light-emitting device can be improved.
  • the pattern of the EL layer itself (which can also be called a processing size) can be made much smaller than when a metal mask is used.
  • the thickness of the EL layer varies between the center and the edge, so the effective area that can be used as the light emitting region is smaller than the area of the EL layer. Become.
  • the manufacturing method described above since the EL layer is formed by processing a film formed to have a uniform thickness, the thickness can be made uniform within the EL layer, and even a fine pattern can be formed in almost the entire area. can be used as the light emitting region. Therefore, a display device having both high definition and high aperture ratio can be manufactured.
  • the first layer and the second layer each include at least a light-emitting layer, and preferably consist of a plurality of layers. Specifically, it is preferable to have one or more layers on the light-emitting layer.
  • the light-emitting layer can be prevented from being exposed to the outermost surface during the manufacturing process of the display device, and damage to the light-emitting layer can be reduced. This can improve the reliability of the light emitting device.
  • a light-emitting device that emits light of different colors, it is not necessary to separately form all the layers constituting the EL layer, and some of the layers can be formed in the same process.
  • the sacrificial layer is removed, and the remaining layers forming the EL layer are shared.
  • An electrode also referred to as an upper electrode is formed in common for the light emitting devices of each color.
  • a manufacturing method similar to that for the light-emitting device can also be applied to the light-receiving device.
  • the island-shaped active layer (also called photoelectric conversion layer) of the light receiving device is not formed using a fine metal mask, but is formed by forming a film that will become the active layer over the surface and then processing it. Therefore, the island-shaped active layer can be formed with a uniform thickness. Further, by providing the sacrificial layer over the active layer, the damage to the active layer during the manufacturing process of the display device can be reduced, and the reliability of the light receiving device can be improved.
  • FIG. 11A and 11B illustrate a display device of one embodiment of the present invention.
  • FIG. 11A shows a top view of the display device 100E.
  • the display device 100E has a display section in which a plurality of pixels 110 are arranged in a matrix and a connection section 140 outside the display section.
  • One pixel 110 is composed of five sub-pixels 110a, 110b, 110c, 110d, and 110e. Note that the pixel is not limited to the configuration in FIG. 11A, and for example, each configuration exemplified in Embodiment 1 can be applied.
  • FIG. 11A shows an example in which one pixel 110 is composed of 2 rows and 3 columns.
  • the pixel 110 has three sub-pixels (sub-pixels 110a, 110b, 110c) in the upper row (first row) and two sub-pixels (sub-pixels 110d, 110d, 110c) in the lower row (second row). 110e).
  • pixel 110 has two sub-pixels (sub-pixels 110a and 110d) in the left column (first column), has sub-pixel 110b in the center column (second column), and has sub-pixel 110b in the middle column (second column). It has a sub-pixel 110c in the column (third column), and further has sub-pixels 110e from the center column to the right column.
  • sub-pixels 110a, 110b, and 110c each have light-emitting devices that emit light of different colors
  • sub-pixels 110d and 110e each have light-receiving devices with different light-receiving areas.
  • sub-pixels 110a, 110b, and 110c correspond to sub-pixels G, B, and R shown in FIG. 5A and the like.
  • the sub-pixel 110d corresponds to the sub-pixel PS shown in FIG. 5A and the like
  • the sub-pixel 110e corresponds to the sub-pixel IRS shown in FIG. 5A and the like.
  • sub-pixel 110e may be changed for each pixel.
  • some sub-pixels 110e may correspond to sub-pixels IRS, and other sub-pixels 110e may correspond to sub-pixels X (see FIG. 5B) or sub-pixels IR (see FIG. 5D).
  • connection portion 140 is positioned below the display portion in a top view
  • the connecting portion 140 may be provided at least one of the upper side, the right side, the left side, and the lower side of the display portion when viewed from above, and may be provided so as to surround the four sides of the display portion.
  • the number of connection parts 140 may be singular or plural.
  • FIG. 11B shows cross-sectional views along dashed-dotted lines X1-X2, X3-X4, and Y1-Y2 in FIG. 11A.
  • FIGS. 12A to 12C, FIGS. 13A and 13B, and FIGS. 14A to 14C show cross-sectional views along dashed-dotted lines X1-X2 and Y1-Y2 in FIG. 11A.
  • light emitting devices 130a, 130b, 130c and light receiving devices 150d, 150e are provided on a layer 101 including transistors, and a protective layer 131 is provided to cover these light emitting devices and light receiving devices. is provided.
  • a substrate 120 is bonded onto the protective layer 131 with a resin layer 122 .
  • an insulating layer 125 and an insulating layer 127 on the insulating layer 125 are provided in a region between two adjacent devices (a light-emitting device and a light-receiving device, two light-emitting devices, or two light-receiving devices). ing.
  • a display device of one embodiment of the present invention is a top emission type in which light is emitted in a direction opposite to a substrate over which a light-emitting device is formed, and light is emitted toward a substrate over which a light-emitting device is formed.
  • a bottom emission type bottom emission type
  • a double emission type dual emission type in which light is emitted from both sides may be used.
  • the layer 101 including transistors for example, a stacked-layer structure in which a plurality of transistors are provided over a substrate and an insulating layer is provided to cover the transistors can be applied.
  • the layer 101 containing the transistors may have recesses between two adjacent devices.
  • recesses may be provided in the insulating layer located on the outermost surface of the layer 101 including the transistor.
  • a structural example of the layer 101 including a transistor will be described later in Embodiment 3.
  • Light emitting devices 130a, 130b, 130c each emit different colors of light.
  • Light-emitting devices 130a, 130b, and 130c are preferably a combination that emits three colors of light, red (R), green (G), and blue (B), for example.
  • a light-emitting device has an EL layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the pixel electrode functions as an anode and the common electrode functions as a cathode will be described below as an example.
  • the light-emitting device 130a includes a conductive layer 111a on the layer 101 including the transistor, a first island-shaped layer 113a on the conductive layer 111a, a fourth layer 114 on the first island-shaped layer 113a, and a fourth layer 114 on the conductive layer 111a. a common electrode 115 on the four layers 114;
  • the conductive layer 111a functions as a pixel electrode.
  • the first layer 113a and the fourth layer 114 can be collectively called an EL layer.
  • the description in Embodiment 4 can be referred to for the structure example of the light-emitting device.
  • the first layer 113a has, for example, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer.
  • the first layer 113a has, for example, a first light-emitting unit, a charge generation layer, and a second light-emitting unit.
  • the fourth layer 114 has, for example, an electron injection layer.
  • the fourth layer 114 may have a laminate of an electron transport layer and an electron injection layer.
  • the light emitting device 130b includes a conductive layer 111b on the layer 101 including the transistor, a second island layer 113b on the conductive layer 111b, a fourth layer 114 on the second island layer 113b, and a fourth layer 114 on the second layer 113b. a common electrode 115 on the four layers 114;
  • the conductive layer 111b functions as a pixel electrode.
  • the second layer 113b and the fourth layer 114 can be collectively called an EL layer.
  • the light-emitting device 130c includes a conductive layer 111c on the layer 101 including the transistor, an island-shaped third layer 113c on the conductive layer 111c, a fourth layer 114 on the island-shaped third layer 113c, and a third layer 113c on the conductive layer 111c. a common electrode 115 on the four layers 114;
  • the conductive layer 111c functions as a pixel electrode.
  • the third layer 113c and the fourth layer 114 can be collectively referred to as EL layers.
  • Light emitting devices 130a, 130b, 130c each emit different colors of light.
  • Light-emitting devices 130a, 130b, and 130c are preferably a combination that emits three colors of light, red (R), green (G), and blue (B), for example.
  • a light receiving device has an active layer between a pair of electrodes.
  • one of a pair of electrodes may be referred to as a pixel electrode and the other may be referred to as a common electrode.
  • one electrode functions as an anode and the other electrode functions as a cathode.
  • the pixel electrode functions as an anode and the common electrode functions as a cathode will be described below as an example. That is, the light-receiving device can be driven by applying a reverse bias between the pixel electrode and the common electrode to detect light incident on the light-receiving device, generate charges, and extract them as current.
  • the pixel electrode may function as a cathode and the common electrode may function as an anode.
  • the light-receiving device 150d includes a conductive layer 111d on the layer 101 including the transistor, a fifth island-shaped layer 113d on the conductive layer 111d, a fourth layer 114 on the fifth island-shaped layer 113d, and a fifth layer 113d. a common electrode 115 on the four layers 114;
  • the conductive layer 111d functions as a pixel electrode.
  • the fifth layer 113d has, for example, a hole transport layer, an active layer, and an electron transport layer.
  • the light-receiving device 150e includes a conductive layer 111e on the layer 101 including the transistor, a sixth island-shaped layer 113e on the conductive layer 111e, a fourth layer 114 on the sixth island-shaped layer 113e, and a fourth layer 114 on the sixth layer 113e. a common electrode 115 on the four layers 114;
  • the conductive layer 111e functions as a pixel electrode.
  • the sixth layer 113e has, for example, a hole transport layer, an active layer and an electron transport layer.
  • a fourth layer 114 is a layer common to the light-emitting device and the light-receiving device.
  • the fourth layer 114 comprises, for example, an electron injection layer, as described above.
  • the fourth layer 114 may have a laminate of an electron transport layer and an electron injection layer.
  • the common electrode 115 is electrically connected to the conductive layer 123 provided in the connecting portion 140 .
  • FIG. 11B shows an example in which the fourth layer 114 is provided over the conductive layer 123 and the conductive layer 123 and the common electrode 115 are electrically connected through the fourth layer 114 .
  • the connection portion 140 may not be provided with the fourth layer 114 .
  • FIG. 12C shows an example in which the conductive layer 123 and the common electrode 115 are directly connected without the fourth layer 114 provided on the conductive layer 123 .
  • regions where the fourth layer 114 and the common electrode 115 are formed can be changed.
  • the fourth layer 114 includes the conductive layers 111a to 111e, the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and Contact with either side surface of the sixth layer 113e can be suppressed, and short-circuiting of the light emitting device and the light receiving device can be suppressed. Thereby, the reliability of the light-emitting device and the light-receiving device can be improved.
  • the insulating layer 125 preferably covers at least side surfaces of the conductive layers 111a to 111e. Furthermore, the insulating layer 125 preferably covers the side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e. The insulating layer 125 is in contact with side surfaces of the conductive layers 111a to 111e, the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e. can be configured.
  • the insulating layer 127 is provided on the insulating layer 125 so as to fill the recess formed in the insulating layer 125 .
  • the insulating layer 127 includes the conductive layers 111a to 111e, the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer with the insulating layer 125 interposed therebetween.
  • 113e can be overlapped with each side surface (it can also be said that the side surface is covered).
  • the space between adjacent island-shaped layers can be filled. can be made flatter. Therefore, it is possible to improve the coverage of the common electrode and prevent disconnection of the common electrode.
  • the insulating layer 125 or the insulating layer 127 can be provided so as to be in contact with the island-shaped layer. This can prevent film peeling of the island-shaped layer. Adhesion between the insulating layer and the island-shaped layer has the effect of fixing or bonding the adjacent island-shaped layers by the insulating layer.
  • An organic resin film is suitable for the insulating layer 127 .
  • organic solvents and the like that may be contained in the photosensitive organic resin film may damage the EL layer.
  • ALD atomic layer deposition
  • one of the insulating layer 125 and the insulating layer 127 may be omitted.
  • the insulating layer 125 by forming the insulating layer 125 with a single-layer structure using an inorganic material, the insulating layer 125 can be used as a protective insulating layer of the EL layer. Thereby, the reliability of the display device can be improved.
  • the insulating layer 127 having a single-layer structure using an organic material the gap between the adjacent EL layers can be filled with the insulating layer 127 and planarized. Accordingly, the coverage of the common electrode (upper electrode) formed over the EL layer and the insulating layer 127 can be improved.
  • FIG. 12A shows an example in which the insulating layer 125 is not provided.
  • the insulating layer 127 includes the conductive layers 111a to 111e, the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer. It can be configured to be in contact with each side of the layer 113e.
  • the insulating layer 127 can be provided so as to fill the space between the EL layers of each light-emitting device.
  • the insulating layer 127 an organic material that causes little damage to the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e is used. is preferred.
  • the insulating layer 127 is preferably made of an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin.
  • FIG. 12B shows an example in which the insulating layer 127 is not provided.
  • the fourth layer 114 and the common electrode 115 are formed on the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, the sixth layer 113e, the insulating layer 125, and the insulating layer 127.
  • a step is caused between a region where the pixel electrode and the EL layer are provided and a region where the pixel electrode and the EL layer are not provided (a region between the light emitting devices). ing.
  • the step can be planarized, and coverage with the fourth layer 114 and the common electrode 115 can be improved. Therefore, it is possible to suppress poor connection due to disconnection. Alternatively, it is possible to prevent the common electrode 115 from being locally thinned due to a step and increasing the electrical resistance.
  • the heights of the upper surface of the insulating layer 125 and the upper surface of the insulating layer 127 are adjusted to the heights of the first layer 113a and the second layer 113b, respectively. , third layer 113c, fifth layer 113d, and sixth layer 113e.
  • the upper surface of the insulating layer 127 preferably has a flat shape, and may have a convex portion, a convex curved surface, a concave curved surface, or a concave portion.
  • the insulating layer 125 has regions in contact with side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e. , the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e.
  • impurities oxygen, moisture, etc.
  • a highly reliable display device can be obtained.
  • the width (thickness) of the insulating layer 125 in the region in contact with the side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e is If it is large, the gaps between the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e are increased, and the aperture ratio may be lowered. .
  • the width (thickness) of the insulating layer 125 is small, the inner portions of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e are exposed from the sides. In some cases, the effect of suppressing the intrusion of impurities into the film becomes small.
  • the width (thickness) of the insulating layer 125 in the region in contact with the side surfaces of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e is 3 nm or more.
  • the display device can have a high aperture ratio and high reliability.
  • Insulating layer 125 can be an insulating layer comprising an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • Examples include a hafnium film and a tantalum oxide film.
  • Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • aluminum oxide is preferable because it has a high etching selectivity with respect to the EL layer and has a function of protecting the EL layer during formation of the insulating layer 127 described later.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an ALD method to the insulating layer 125, the insulating layer 125 with few pinholes and an excellent function of protecting the EL layer can be obtained. can be formed.
  • the insulating layer 125 may have a layered structure of a film formed by an ALD method and a film formed by a sputtering method.
  • the insulating layer 125 may have a laminated structure of, for example, an aluminum oxide film formed by ALD and a silicon nitride film formed by sputtering.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • the insulating layer 125 can be formed by a sputtering method, a chemical vapor deposition (CVD) method, a pulsed laser deposition (PLD) method, an ALD method, or the like.
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • the insulating layer 127 provided on the insulating layer 125 has a function of planarizing the concave portions of the insulating layer 125 formed between adjacent light emitting devices. In other words, the presence of the insulating layer 127 has the effect of improving the flatness of the surface on which the common electrode 115 is formed.
  • an insulating layer containing an organic material can be preferably used.
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used for the insulating layer 127 .
  • a photosensitive resin can be used as the insulating layer 127 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • the height of the upper surface of the insulating layer 127 is preferably 0.5 times or less the thickness of the insulating layer 127, and more preferably 0.3 times or less.
  • the upper surface of any one of the first layer 113a, the second layer 113b, the third layer 113c, the fifth layer 113d, and the sixth layer 113e is higher than the upper surface of the insulating layer 127.
  • an insulating layer 127 may be provided.
  • the insulating layer 127 may be provided so that the top surface of the insulating layer 127 is higher than the top surface of the light-emitting layer included in the first layer 113a, the second layer 113b, or the third layer 113c. good.
  • a protective layer 131 on the light emitting devices 130a, 130b, 130c and the light receiving devices 150d, 150e.
  • the conductivity of the protective layer 131 does not matter. At least one of an insulating film, a semiconductor film, and a conductive film can be used as the protective layer 131 .
  • the protective layer 131 Since the protective layer 131 has an inorganic film, it prevents oxidation of the common electrode 115, suppresses the entry of impurities (moisture, oxygen, etc.) into the light-emitting devices 130a, 130b, 130c and the light-receiving devices 150d, 150e. Degradation of the light emitting device and the light receiving device can be suppressed, and the reliability of the display device can be improved.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used.
  • the oxide insulating film include a silicon oxide film, an aluminum oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, a hafnium oxide film, a tantalum oxide film, and the like.
  • nitride insulating film examples include a silicon nitride film and an aluminum nitride film.
  • oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • the protective layer 131 preferably has a nitride insulating film or a nitride oxide insulating film, and more preferably has a nitride insulating film.
  • the protective layer 131 includes In—Sn oxide (also referred to as ITO), In—Zn oxide, Ga—Zn oxide, Al—Zn oxide, or indium gallium zinc oxide (In—Ga—Zn oxide).
  • Inorganic films containing materials such as IGZO can also be used.
  • the inorganic film preferably has a high resistance, and specifically, preferably has a higher resistance than the common electrode 115 .
  • the inorganic film may further contain nitrogen.
  • the protective layer 131 When the light emitted from the light-emitting device is taken out through the protective layer 131, the protective layer 131 preferably has high transparency to visible light.
  • the protective layer 131 preferably has high transparency to visible light.
  • ITO, IGZO, and aluminum oxide are preferable because they are inorganic materials with high transparency to visible light.
  • the protective layer 131 for example, a stacked structure of an aluminum oxide film and a silicon nitride film over the aluminum oxide film, or a stacked structure of an aluminum oxide film and an IGZO film over the aluminum oxide film, or the like can be used. can be done. By using the stacked structure, entry of impurities (water, oxygen, or the like) into the EL layer can be suppressed.
  • the protective layer 131 may have an organic film.
  • protective layer 131 may have both an organic film and an inorganic film.
  • Edges of the upper surfaces of the conductive layers 111a to 111c are not covered with an insulating layer. Therefore, the interval between adjacent light emitting devices can be made very narrow. Therefore, a high-definition or high-resolution display device can be obtained.
  • each end of the conductive layers 111a to 111c may be covered with an insulating layer 121.
  • FIG. 13A and 13B each end of the conductive layers 111a to 111c may be covered with an insulating layer 121.
  • the insulating layer 121 can have a single-layer structure or a laminated structure using one or both of an inorganic insulating film and an organic insulating film.
  • organic insulating materials that can be used for the insulating layer 121 include acrylic resins, epoxy resins, polyimide resins, polyamide resins, polyimideamide resins, polysiloxane resins, benzocyclobutene resins, and phenol resins.
  • an inorganic insulating film that can be used for the insulating layer 121 an inorganic insulating film that can be used for the protective layer 131 can be used.
  • an inorganic insulating film is used as the insulating layer 121 covering the edge of the pixel electrode, impurities are less likely to enter the light-emitting device than when an organic insulating film is used, and the reliability of the light-emitting device can be improved.
  • the step coverage is higher and the shape of the pixel electrode is less likely to affect the step coverage than when an inorganic insulating film is used. Therefore, short-circuiting of the light emitting device can be prevented.
  • the shape of the insulating layer 121 can be processed into a tapered shape or the like.
  • a tapered shape refers to a shape in which at least part of a side surface of a structure is inclined with respect to a substrate surface or a formation surface.
  • the insulating layer 121 may not be provided. By not providing the insulating layer 121, the aperture ratio of the sub-pixel can be increased in some cases. Alternatively, the distance between sub-pixels can be reduced, which may increase the definition or resolution of the display.
  • FIG. 13A shows an example in which the fourth layer 114 enters the regions of the first layer 113a and the second layer 113b, etc., but as shown in FIG. may be
  • the voids 134 contain, for example, one or more selected from air, nitrogen, oxygen, carbon dioxide, and group 18 elements (typically helium, neon, argon, xenon, krypton, etc.). Alternatively, the gap 134 may be filled with resin or the like.
  • FIG. 11B and the like show examples in which the end portions of the conductive layer 111a and the end portions of the first layer 113a are aligned or substantially aligned.
  • the top surface shapes of the conductive layer 111a and the first layer 113a match or substantially match.
  • FIG. 14A shows an example in which the end of the first layer 113a is located inside the end of the conductive layer 111a. In FIG. 14A, the edge of the first layer 113a is located on the conductive layer 111a. Also, FIG. 14B shows an example in which the end of the first layer 113a is located outside the end of the conductive layer 111a. In FIG. 14B, the first layer 113a is provided to cover the end of the conductive layer 111a.
  • the ends are aligned or substantially aligned, and when the top surface shapes are matched or substantially matched, at least part of the outline overlaps between the stacked layers when viewed from the top.
  • the upper layer and the lower layer may be processed with the same mask pattern or partially with the same mask pattern.
  • the outlines do not overlap, and the top layer may be located inside the bottom layer, or the top layer may be located outside the bottom layer, and in this case also the edges are roughly aligned, or the shape of the top surface are said to roughly match.
  • FIG. 14C A modification of the insulating layer 127 is shown in FIG. 14C.
  • the upper surface of the insulating layer 127 has a shape that gently swells toward the center, that is, a convex curved surface, and a shape that is depressed at and near the center, that is, a concave curved surface, in a cross-sectional view.
  • 15A to 15F show cross-sectional structures of a region 139 including the insulating layer 127 and its periphery.
  • FIG. 15A shows an example in which the first layer 113a and the second layer 113b have different thicknesses.
  • the height of the top surface of the insulating layer 125 matches or substantially matches the height of the top surface of the first layer 113a on the side of the first layer 113a, and the height of the top surface of the second layer 113b on the side of the second layer 113b. Matches or roughly matches height.
  • the upper surface of the insulating layer 127 has a gentle slope with a higher surface on the side of the first layer 113a and a lower surface on the side of the second layer 113b.
  • the insulating layers 125 and 127 may have flat portions that are level with the top surface of any of the adjacent EL layers.
  • the top surface of the insulating layer 127 has a region higher than the top surface of the first layer 113a and the top surface of the second layer 113b.
  • the upper surface of the insulating layer 127 can be configured to have a shape in which the center and the vicinity thereof bulge in a cross-sectional view, that is, have a convex curved surface.
  • the upper surface of the insulating layer 127 has a shape that gently swells toward the center, that is, a convex curved surface, and a shape that is depressed at and near the center, that is, a concave curved surface, in a cross-sectional view.
  • the insulating layer 127 has a region higher than the upper surface of the first layer 113a and the upper surface of the second layer 113b.
  • the display device includes at least one of the sacrificial layer 118a and the sacrificial layer 119a, the insulating layer 127 is higher than the top surface of the first layer 113a and the top surface of the second layer 113b, and the insulating layer 125 It has a first region located outside the sacrificial layer 118a and the first region located on at least one of the sacrificial layer 118a and the sacrificial layer 119a.
  • the display device has at least one of the sacrificial layer 118b and the sacrificial layer 119b, the insulating layer 127 is higher than the top surface of the first layer 113a and the top surface of the second layer 113b, and the insulating layer 125
  • the second region is located outside the sacrificial layer 118b and the second region is located on at least one of the sacrificial layer 118b and the sacrificial layer 119b.
  • the top surface of insulating layer 127 has a region that is lower than the top surface of first layer 113a and the top surface of second layer 113b.
  • the upper surface of the insulating layer 127 has a shape in which the center and its vicinity are depressed in a cross-sectional view, that is, has a concave curved surface.
  • the top surface of the insulating layer 125 has a higher area than the top surface of the first layer 113a and the top surface of the second layer 113b. That is, the insulating layer 125 protrudes from the formation surface of the fourth layer 114 to form a convex portion.
  • the insulating layer 125 may protrude as shown in FIG. 15E. be.
  • the top surface of the insulating layer 125 has a region that is lower than the top surface of the first layer 113a and the top surface of the second layer 113b. That is, the insulating layer 125 forms a concave portion on the formation surface of the fourth layer 114 .
  • various shapes can be applied to the insulating layers 125 and 127 .
  • an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be used.
  • the sacrificial layer includes metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials.
  • a metal oxide such as an In--Ga--Zn oxide can be used for the sacrificial layer.
  • the sacrificial layer for example, an In--Ga--Zn oxide film can be formed using a sputtering method.
  • indium oxide, In-Zn oxide, In-Sn oxide, indium titanium oxide (In-Ti oxide), indium tin zinc oxide (In-Sn-Zn oxide), indium titanium zinc oxide ( In--Ti--Zn oxide), indium gallium tin-zinc oxide (In--Ga--Sn--Zn oxide), or the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium
  • various inorganic insulating films that can be used for the protective layer 131 can be used as the sacrificial layer.
  • an oxide insulating film is preferable because it has higher adhesion to the EL layer than a nitride insulating film.
  • inorganic insulating materials such as aluminum oxide, hafnium oxide, and silicon oxide can be used for the sacrificial layer.
  • an aluminum oxide film can be formed using the ALD method. Use of the ALD method is preferable because damage to the base (especially the EL layer or the like) can be reduced.
  • a silicon nitride film can be formed using a sputtering method.
  • a lamination structure of an inorganic insulating film (eg, an aluminum oxide film) formed by an ALD method and an In—Ga—Zn oxide film formed by a sputtering method can be used as the sacrificial layer.
  • an inorganic insulating film (eg, aluminum oxide film) formed by an ALD method and an aluminum film, a tungsten film, or an inorganic insulating film (eg, a silicon nitride film) formed by a sputtering method are used as the sacrificial layer. , can be applied.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • SBS Side By Side
  • the material and structure can be optimized for each light-emitting device, so the degree of freedom in selecting the material and structure increases, and it becomes easy to improve luminance and reliability.
  • a light-emitting device capable of emitting white light is sometimes referred to as a white light-emitting device.
  • a white light emitting device can be combined with a colored layer (for example, a color filter) to realize a full-color display device.
  • light-emitting devices can be broadly classified into a single structure and a tandem structure.
  • a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • light-emitting layers may be selected such that the colors of light emitted from the two light-emitting layers are in a complementary color relationship. For example, by making the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
  • the light-emitting device as a whole may emit white light by combining the light-emitting colors of the three or more light-emitting layers.
  • a device with a tandem structure preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit includes one or more light-emitting layers.
  • each light-emitting unit includes one or more light-emitting layers.
  • a structure in which white light emission is obtained by combining light from the light emitting layers of a plurality of light emitting units may be employed. Note that the structure for obtaining white light emission is the same as the structure of the single structure. Note that in a tandem structure device, it is preferable to provide a charge generation layer between a plurality of light emitting units.
  • the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. If it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • the distance between the light-emitting devices can be reduced.
  • the distance between light-emitting devices, the distance between EL layers, or the distance between pixel electrodes is less than 10 ⁇ m, 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1 ⁇ m or less, 500 nm or less, 200 nm or less, 100 nm or less, or 90 nm or less. , 70 nm or less, 50 nm or less, 30 nm or less, 20 nm or less, 15 nm or less, or 10 nm or less.
  • the space between the side surface of the first layer 113a and the side surface of the second layer 113b or the space between the side surface of the second layer 113b and the side surface of the third layer 113c is 1 ⁇ m or less. , preferably has a region of 0.5 ⁇ m (500 nm) or less, and more preferably has a region of 100 nm or less.
  • the distance between the light-emitting device and the light-receiving device can also be within the above range. Also, in order to suppress leakage between the light emitting device and the light receiving device, it is preferable to make the distance between the light emitting device and the light receiving device wider than the distance between the light emitting devices. For example, the distance between the light emitting device and the light receiving device can be 8 ⁇ m or less, 5 ⁇ m or less, or 3 ⁇ m or less.
  • a light shielding layer may be provided on the surface of the substrate 120 on the resin layer 122 side.
  • various optical members can be arranged outside the substrate 120 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 120.
  • an antistatic film that suppresses adhesion of dust
  • a water-repellent film that prevents adhesion of dirt
  • a hard coat film that suppresses the occurrence of scratches due to use
  • a shock absorption layer, etc. are arranged.
  • Glass, quartz, ceramic, sapphire, resin, metal, alloy, semiconductor, or the like can be used for the substrate 120 .
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • a flexible material is used for the substrate 120, the flexibility of the display device can be increased and a flexible display can be realized.
  • a polarizing plate may be used as the substrate 120 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyethersulfone (PES) resins.
  • polyamide resin nylon, aramid, etc.
  • polysiloxane resin cycloolefin resin
  • polystyrene resin polyamideimide resin
  • polyurethane resin polyvinyl chloride resin
  • polyvinylidene chloride resin polypropylene resin
  • PTFE polytetrafluoroethylene
  • ABS resin cellulose nanofiber, etc.
  • glass having a thickness that is flexible may be used.
  • a substrate having high optical isotropy is preferably used as the substrate of the display device.
  • a substrate with high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetylcellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetylcellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • the film when a film is used as the substrate, the film may absorb water, which may cause a change in shape such as wrinkling of the display panel. Therefore, it is preferable to use a film having a low water absorption rate as the substrate. For example, it is preferable to use a film with a water absorption of 1% or less, more preferably 0.1% or less, and even more preferably 0.01% or less.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • a conductive oxide such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of a silver-magnesium alloy and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting devices.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • a conductive film that transmits visible light and infrared light is used for the electrode on the light extraction side of the pixel electrode and the common electrode.
  • a conductive film that reflects visible light and infrared light is preferably used for the electrode on the side from which light is not extracted.
  • metals, alloys, electrically conductive compounds, mixtures thereof, and the like can be used as appropriate.
  • indium tin oxide also referred to as In—Sn oxide, ITO
  • In—Si—Sn oxide also referred to as ITSO
  • indium zinc oxide In—Zn oxide
  • In—W— Zn oxide alloys containing aluminum (aluminum alloys) such as alloys of aluminum, nickel and lanthanum (Al-Ni-La), as well as alloys of silver and magnesium, alloys of silver, palladium and copper (Ag-Pd- Cu, also referred to as APC) and other silver-containing alloys.
  • elements belonging to Group 1 or Group 2 of the periodic table of elements not exemplified above e.g., lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium
  • Yb rare earth metal
  • an alloy containing an appropriate combination thereof, graphene, or the like can be used.
  • a micro optical resonator (microcavity) structure is preferably applied to the light emitting device and the light receiving device. Therefore, one of the pair of electrodes included in the light-emitting device and the light-receiving device preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is reflective to visible light. It is preferable to have an electrode (reflective electrode) having a Since the light-emitting device has a microcavity structure, the light emitted from the light-emitting layer can be resonated between both electrodes, and the light emitted from the light-emitting device can be enhanced. Since the light receiving device has a microcavity structure, the light received by the active layer can be resonated between the two electrodes, the light can be strengthened, and the detection accuracy of the light receiving device can be improved.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode (also referred to as a transparent electrode) having transparency to visible light.
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the light-emitting device preferably uses an electrode having a transmittance of 40% or more for visible light (light with a wavelength of 400 nm or more and less than 750 nm).
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the transmittance or reflectance of near-infrared light (light having a wavelength of 750 nm or more and 1300 nm or less) of these electrodes preferably satisfies the above numerical range, similarly to the transmittance or reflectance of visible light.
  • the first layer 113a, the second layer 113b, and the third layer 113c each have a light-emitting layer.
  • the first layer 113a, the second layer 113b, and the third layer 113c preferably have light-emitting layers that emit light of different colors.
  • a light-emitting layer is a layer containing a light-emitting substance.
  • the emissive layer can have one or more emissive materials.
  • a substance exhibiting emission colors such as blue, purple, violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, thermally activated delayed fluorescence (TADF) materials, and quantum dot materials.
  • fluorescent materials include fluorescent materials, phosphorescent materials, thermally activated delayed fluorescence (TADF) materials, and quantum dot materials.
  • TADF thermally activated delayed fluorescence
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting device can be realized at the same time.
  • the first layer 113a, the second layer 113b, and the third layer 113c are layers other than the light-emitting layer, which are a substance with a high hole-injection property and a substance with a high hole-transport property (also called a hole-transport material). ), hole-blocking material, highly electron-transporting substance (also referred to as electron-transporting material), highly electron-injecting substance, electron-blocking material, or bipolar substance (highly electron- and hole-transporting It may further have a layer containing a substance (also referred to as a bipolar material).
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used in the light-emitting device, and inorganic compounds may be included.
  • Each of the layers constituting the light-emitting device can be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • the first layer 113a, the second layer 113b, and the third layer 113c are respectively a hole-injecting layer, a hole-transporting layer, a hole-blocking layer, an electron-blocking layer, an electron-transporting layer, and an electron layer. It may have one or more of the injection layers. Further, each of the first layer 113a, the second layer 113b, and the third layer 113c may have a charge generation layer.
  • the fourth layer 114 can have one or more of a hole injection layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron transport layer, and an electron injection layer.
  • the fourth layer 114 preferably has an electron-injection layer.
  • the hole-injecting layer is a layer that injects holes from the anode to the hole-transporting layer, and contains a substance having a high hole-injecting property.
  • Substances with high hole-injection properties include aromatic amine compounds and composite materials containing a hole-transporting material and an acceptor material (electron-accepting material).
  • a hole-transporting layer is a layer that transports holes injected from the anode by the hole-injecting layer to the light-emitting layer.
  • the hole-transporting layer is a layer that transports holes generated by incident light in the active layer to the anode.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other substances with high hole-transporting properties. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other substances with high hole-transporting properties is preferred.
  • an electron-transporting layer is a layer that transports electrons injected from the cathode by the electron-injecting layer to the light-emitting layer.
  • the electron transport layer is a layer that transports electrons generated by incident light in the active layer to the cathode.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ -electrons including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a substance having a high electron-transport property such as a deficient heteroaromatic compound can be used.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a substance with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as the substance with a high electron-injecting property.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as the substance with high electron-injecting properties.
  • the electron injection layer examples include lithium, cesium, ytterbium, lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), 8-(quinolinolato)lithium (abbreviation: Liq), 2- (2-pyridyl)phenoratritium (abbreviation: LiPP), 2-(2-pyridyl)-3-pyridinolatritium (abbreviation: LiPPy), 4-phenyl-2-(2-pyridyl)phenoratritium (abbreviation: LiPPy) LiPPP), lithium oxide (LiO x ), alkali metals such as cesium carbonate, alkaline earth metals, or compounds thereof can be used.
  • the electron injection layer may have a laminated structure of two or more layers. As the laminated structure, for example, lithium fluoride can be used for the first layer and ytterbium can be used for the second layer.
  • an electron-transporting material may be used as the electron injection layer.
  • a compound having a lone pair of electrons and an electron-deficient heteroaromatic ring can be used as the electron-transporting material.
  • a compound having at least one of a pyridine ring, diazine ring (pyrimidine ring, pyrazine ring, pyridazine ring), and triazine ring can be used.
  • the lowest unoccupied molecular orbital (LUMO) of the organic compound having an unshared electron pair is preferably ⁇ 3.6 eV or more and ⁇ 2.3 eV or less.
  • CV cyclic voltammetry
  • photoelectron spectroscopy optical absorption spectroscopy
  • inverse photoelectron spectroscopy etc. are used to determine the highest occupied molecular orbital (HOMO: Highest Occupied Molecular Orbital) level and LUMO level of an organic compound. can be estimated.
  • BPhen 4,7-diphenyl-1,10-phenanthroline
  • NBPhen 2,9-bis(naphthalen-2-yl)-4,7-diphenyl-1,10-phenanthroline
  • HATNA diquinoxalino [2,3-a:2′,3′-c]phenazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • TmPPPyTz 2,4,6-tris[3′-(pyridin-3-yl)biphenyl-3-yl]-1,3 , 5-triazine
  • a material applicable to an electron injection layer such as lithium
  • a material applicable to the hole injection layer can be preferably used.
  • a layer containing a hole-transporting material and an acceptor material (electron-accepting material) can be used as the charge-generating layer.
  • a layer containing an electron-transporting material and a donor material can be used for the charge generation layer.
  • the fifth layer 113d and the sixth layer 113e each have an active layer.
  • the fifth layer 113d and the sixth layer 113e may have active layers with the same configuration or may have active layers with different configurations.
  • the light-receiving device has a microcavity structure
  • light of different wavelengths can be detected between the fifth layer 113d and the sixth layer 113e even if the configuration of the active layer is the same.
  • a microcavity structure can be produced by changing the thickness of the pixel electrode or the thickness of the optical adjustment layer in the light receiving devices 150d and 150e.
  • the fifth layer 113d and the sixth layer 113e may have the same configuration.
  • the active layer contains a semiconductor.
  • the semiconductor include inorganic semiconductors such as silicon and organic semiconductors including organic compounds.
  • an organic semiconductor is used as the semiconductor included in the active layer.
  • the light-emitting layer and the active layer can be formed by the same method (for example, a vacuum deposition method), and a manufacturing apparatus can be shared, which is preferable.
  • Electron-accepting organic semiconductor materials such as fullerenes ( eg, C60 fullerene, C70 fullerene, etc.) and fullerene derivatives can be used as n-type semiconductor materials for the active layer.
  • Fullerenes have a soccer ball-like shape, which is energetically stable.
  • Fullerene has both deep (low) HOMO and LUMO levels. Since fullerene has a deep LUMO level, it has an extremely high electron-accepting property (acceptor property).
  • acceptor property electron-acceptor property
  • C60 fullerene and C70 fullerene have a wide absorption band in the visible light region, and C70 is particularly preferable because it has a larger ⁇ -electron conjugated system than C60 and has a wide absorption band in the long wavelength region.
  • [6,6]-Phenyl-C71- butylic acid methyl ester (abbreviation: PC70 BM), [6,6]-Phenyl-C61- butylic acid methyl ester (abbreviation: PC60 BM), 1′,1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][ 5,6]fullerene-C60 ( abbreviation: ICBA) and the like.
  • PC70 BM [6,6]-Phenyl-C71- butylic acid methyl ester
  • PC60 BM [6,6]-Phenyl-C61- butylic acid methyl ester
  • ICBA 1,6]fullerene-C60
  • Materials for the n-type semiconductor include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, quinone derivatives, etc. is mentioned.
  • Materials for the p-type semiconductor of the active layer include copper (II) phthalocyanine (CuPc), tetraphenyldibenzoperiflanthene (DBP), zinc phthalocyanine (ZnPc), tin ( II) electron-donating organic semiconductor materials such as phthalocyanine (SnPc) and quinacridone;
  • Examples of p-type semiconductor materials include carbazole derivatives, thiophene derivatives, furan derivatives, and compounds having an aromatic amine skeleton.
  • materials for p-type semiconductors include naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives and the like.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • a spherical fullerene as the electron-accepting organic semiconductor material and an organic semiconductor material having a nearly planar shape as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close to each other, so the carrier transportability can be enhanced.
  • the active layer is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the active layer may be formed by laminating an n-type semiconductor and a p-type semiconductor.
  • the fifth layer 113d and the sixth layer 113e are layers other than the active layer, which are highly hole-transporting substances, electron-transporting substances, or bipolar substances (electron-transporting and hole-transporting substances). It may further have a layer containing, for example, a substance with a high degree of resistance.
  • the fifth layer 113d and the sixth layer 113e may have various functional layers that can be used for the first layer 113a, the second layer 113b, and the third layer 113c. good.
  • Either a low-molecular-weight compound or a high-molecular-weight compound can be used for the light-receiving device, and an inorganic compound may be included.
  • the layers constituting the light-receiving device can be formed by methods such as a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, and a coating method.
  • hole-transporting materials include polymer compounds such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), molybdenum oxide, and copper iodide (CuI).
  • Inorganic compounds such as can be used.
  • an inorganic compound such as zinc oxide (ZnO) can be used as the electron-transporting material.
  • 6-diyl]-2,5-thiophenediyl[5,7-bis(2-ethylhexyl)-4,8-dioxo-4H,8H-benzo[1,2-c:4,5-c′]dithiophene-1 ,3-diyl]]polymer (abbreviation: PBDB-T) or a polymer compound such as a PBDB-T derivative can be used.
  • a method of dispersing an acceptor material in PBDB-T or a PBDB-T derivative can be used.
  • three or more kinds of materials may be mixed in the active layer.
  • a third material may be mixed in addition to the n-type semiconductor material and the p-type semiconductor material.
  • the third material may be a low-molecular compound or a high-molecular compound.
  • a thin film (an insulating film, a semiconductor film, a conductive film, or the like) forming a display device can be formed using a sputtering method, a CVD method, a vacuum deposition method, a PLD method, an ALD method, or the like.
  • CVD methods include a plasma enhanced CVD (PECVD) method, a thermal CVD method, and the like. Also, one of the thermal CVD methods is the metal organic CVD (MOCVD) method.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) that make up the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife, slit coating, roll coating, It can be formed by methods such as curtain coating and knife coating.
  • a vacuum process such as a vapor deposition method and a solution process such as a spin coating method or an inkjet method can be used for manufacturing a light-emitting device.
  • vapor deposition methods include physical vapor deposition (PVD) such as sputtering, ion plating, ion beam vapor deposition, molecular beam vapor deposition, and vacuum vapor deposition, and chemical vapor deposition (CVD).
  • the functional layers (hole injection layer, hole transport layer, light emitting layer, electron transport layer, electron injection layer, etc.) included in the EL layer may be formed by a vapor deposition method (vacuum vapor deposition method, etc.), a coating method (dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.), printing method (inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.).
  • a vapor deposition method vacuum vapor deposition method, etc.
  • a coating method dip coating method, die coat method, bar coat method, spin coat method, spray coat method, etc.
  • printing method inkjet method, screen (stencil printing) method, offset (lithographic printing) method, flexographic (letterpress printing) method, gravure method, or micro contact method, etc.
  • a photolithography method or the like can be used when processing a thin film forming a display device.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • the photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture thereof.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV: Extreme Ultra-violet) light or X-rays may be used.
  • An electron beam can also be used instead of the light used for exposure. The use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used for etching the thin film.
  • the island-shaped EL layer is not formed using a fine metal mask, but is formed by forming an EL layer over one surface and then processing the EL layer. Therefore, island-shaped EL layers can be formed with a uniform thickness.
  • each EL layer can be manufactured with a configuration (material, film thickness, etc.) suitable for each color light-emitting device. Thereby, a light-emitting device with good characteristics can be produced.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can be used for display portions of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, personal digital assistants, and sound reproducing devices.
  • FIG. 16 shows a perspective view of the display device 100F
  • FIG. 17A shows a cross-sectional view of the display device 100F.
  • the display device 100F has a configuration in which a substrate 152 and a substrate 151 are bonded together.
  • the substrate 152 is clearly indicated by dashed lines.
  • the display device 100F includes a display portion 162, a connection portion 140, a circuit 164, wirings 165, and the like.
  • FIG. 16 shows an example in which an IC 173 and an FPC 172 are mounted on the display device 100F. Therefore, the configuration shown in FIG. 16 can also be said to be a display module including the display device 100F, an IC (integrated circuit), and an FPC.
  • the connecting portion 140 is provided outside the display portion 162 .
  • the connection portion 140 can be provided along one side or a plurality of sides of the display portion 162 .
  • the number of connection parts 140 may be singular or plural.
  • FIG. 16 shows an example in which connecting portions 140 are provided so as to surround the four sides of the display portion.
  • the connection part 140 the common electrode of the light emitting device and the conductive layer are electrically connected, and a potential can be supplied to the common electrode.
  • a scanning line driver circuit can be used.
  • the wiring 165 has a function of supplying signals and power to the display portion 162 and the circuit 164 .
  • the signal and power are input to the wiring 165 from the outside through the FPC 172 or input to the wiring 165 from the IC 173 .
  • FIG. 16 shows an example in which an IC 173 is provided on a substrate 151 by a COG (Chip On Glass) method, a COF (Chip On Film) method, or the like.
  • a COG Chip On Glass
  • COF Chip On Film
  • the IC 173 for example, an IC having a scanning line driver circuit or a signal line driver circuit can be applied.
  • the display device 100F and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • part of the area including the FPC 172, part of the circuit 164, part of the display part 162, part of the connection part 140, and part of the area including the end of the display device 100F are cut off.
  • An example of a cross section is shown.
  • a display device 100F illustrated in FIG. 17A includes a transistor 201 and a transistor 205, a light receiving device 150d, a light emitting device 130b that emits green light, a light emitting device 130c that emits blue light, and the like, between substrates 151 and 152. .
  • the display device 100F for example, the pixel layouts shown in FIGS. 2A to 2G, 3A, 3B, and 5A to 5D described in Embodiment 1 can be applied.
  • the light receiving device 150d can be provided in the sub-pixel PS or the sub-pixel IRS.
  • the light receiving device 150d has a conductive layer 111d, a conductive layer 112d on the conductive layer 111d, and a conductive layer 126d on the conductive layer 112d. All of the conductive layers 111d, 112d, and 126d can be called pixel electrodes, and some of them can also be called pixel electrodes.
  • the conductive layer 111 d is connected to the conductive layer 222 b included in the transistor 205 through an opening provided in the insulating layer 214 .
  • the end of the conductive layer 112d is positioned outside the end of the conductive layer 111d.
  • the end of the conductive layer 112d and the end of the conductive layer 126d are aligned or substantially aligned.
  • a conductive layer functioning as a reflective electrode can be used for the conductive layers 111d and 112d
  • a conductive layer functioning as a transparent electrode can be used for the conductive layer 126d.
  • the light emitting device 130b has a conductive layer 111b, a conductive layer 112b on the conductive layer 111b, and a conductive layer 126b on the conductive layer 112b.
  • the light emitting device 130c has a conductive layer 111c, a conductive layer 112c on the conductive layer 111c, and a conductive layer 126c on the conductive layer 112c.
  • the conductive layers 111b, 112b, and 126b in the light-emitting device 130b and the conductive layers 111c, 112c, and 126c in the light-emitting device 130c are the same as the conductive layers 111d, 112d, and 126d in the light-receiving device 150d, so detailed description thereof is omitted. .
  • Concave portions are formed in the conductive layers 111 b , 111 c , and 111 d so as to cover the openings provided in the insulating layer 214 .
  • a layer 128 is embedded in the recess.
  • the layer 128 has a function of planarizing recesses of the conductive layers 111b, 111c, and 111d.
  • Conductive layers 112b, 112c, and 112d electrically connected to the conductive layers 111b, 111c, and 111d are provided over the conductive layers 111b, 111c, and 111d and the layer 128.
  • FIG. Therefore, the regions overlapping the concave portions of the conductive layers 111b, 111c, and 111d can also be used as light emitting regions, and the aperture ratio of pixels can be increased.
  • Layer 128 may be an insulating layer or a conductive layer.
  • Various inorganic insulating materials, organic insulating materials, and conductive materials can be used as appropriate for layer 128 .
  • layer 128 is preferably formed using an insulating material.
  • an insulating layer containing an organic material can be preferably used.
  • an acrylic resin, a polyimide resin, an epoxy resin, a polyamide resin, a polyimideamide resin, a siloxane resin, a benzocyclobutene resin, a phenol resin, precursors of these resins, or the like can be applied.
  • a photosensitive resin can be used as the layer 128 .
  • a positive material or a negative material can be used for the photosensitive resin.
  • the layer 128 can be formed only through the steps of exposure and development, and the influence of dry etching, wet etching, or the like on the surfaces of the conductive layers 111b, 111c, and 111d can be reduced. can. Further, when the layer 128 is formed using a negative photosensitive resin, the layer 128 can be formed using the same photomask (exposure mask) used for forming the opening of the insulating layer 214 in some cases. be.
  • the top and side surfaces of the conductive layer 112d and the top and side surfaces of the conductive layer 126d are covered with a fifth layer 113d.
  • the fifth layer 113d has at least an active layer.
  • the top and side surfaces of the conductive layer 112b and the top and side surfaces of the conductive layer 126b are covered with the second layer 113b.
  • the top and side surfaces of the conductive layer 112c and the top and side surfaces of the conductive layer 126c are covered with the third layer 113c. Therefore, the entire regions where the conductive layers 112b and 112c are provided can be used as light-emitting regions of the light-emitting devices 130b and 130c, so that the aperture ratio of pixels can be increased.
  • a sacrificial layer 118b is located between the second layer 113b and the insulating layer 125 .
  • a sacrificial layer 118c is positioned between the third layer 113c and the insulating layer 125, and a sacrificial layer 118d is positioned between the fifth layer 113d and the insulating layer 125.
  • FIG. A fourth layer 114 is provided over the second layer 113b, the third layer 113c, the fifth layer 113d, and the insulating layers 125 and 127, and the common electrode 115 is provided over the fourth layer 114. ing.
  • the fourth layer 114 and the common electrode 115 are a series of films that are commonly provided for the light receiving device and the light emitting device, respectively.
  • a protective layer 131 is provided on the light emitting devices 130b and 130c and the light receiving device 150d.
  • the protective layer 131 and the substrate 152 are adhered via the adhesive layer 142 .
  • a solid sealing structure, a hollow sealing structure, or the like can be applied to sealing the light-emitting device.
  • the space between substrates 152 and 151 is filled with an adhesive layer 142 to apply a solid sealing structure.
  • the space may be filled with an inert gas (such as nitrogen or argon) to apply a hollow sealing structure.
  • the adhesive layer 142 may be provided so as not to overlap the light emitting device.
  • the space may be filled with a resin different from the adhesive layer 142 provided in a frame shape.
  • a conductive layer 123 is provided over the insulating layer 214 in the connection portion 140 .
  • the conductive layer 123 includes a conductive film obtained by processing the same conductive film as the conductive layers 111b, 111c, and 111d and a conductive film obtained by processing the same conductive film as the conductive layers 112b, 112c, and 112d. , and a conductive film obtained by processing the same conductive film as the conductive layers 126b, 126c, and 126d.
  • the ends of the conductive layer 123 are covered by a sacrificial layer, an insulating layer 125 and an insulating layer 127 .
  • a fourth layer 114 is provided over the conductive layer 123 and a common electrode 115 is provided over the fourth layer 114 .
  • the conductive layer 123 and common electrode 115 are electrically connected through the fourth layer 114 .
  • the fourth layer 114 may not be formed on the connecting portion 140 . In this case, the conductive layer 123 and the common electrode 115 are directly contacted and electrically connected.
  • the display device 100F is of a top emission type. Light emitted by the light emitting device is emitted to the substrate 152 side. A material having high visible light transmittance is preferably used for the substrate 152 .
  • the pixel electrode contains a material that reflects visible light, and the counter electrode (common electrode 115) contains a material that transmits visible light.
  • a stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • FIG. 1 A stacked structure from the substrate 151 to the insulating layer 214 corresponds to the layer 101 including the transistor in Embodiment 1.
  • Both the transistor 201 and the transistor 205 are formed over the substrate 151 . These transistors can be made with the same material and the same process.
  • An insulating layer 211 , an insulating layer 213 , an insulating layer 215 , and an insulating layer 214 are provided in this order over the substrate 151 .
  • Part of the insulating layer 211 functions as a gate insulating layer of each transistor.
  • Part of the insulating layer 213 functions as a gate insulating layer of each transistor.
  • An insulating layer 215 is provided over the transistor.
  • An insulating layer 214 is provided over the transistor and functions as a planarization layer. Note that the number of gate insulating layers and the number of insulating layers covering a transistor are not limited, and each may have a single layer or two or more layers.
  • a material into which impurities such as water and hydrogen are difficult to diffuse is preferably used for at least one insulating layer that covers the transistor. This allows the insulating layer to function as a barrier layer. With such a structure, diffusion of impurities from the outside into the transistor can be effectively suppressed, and the reliability of the display device can be improved.
  • An inorganic insulating film is preferably used for each of the insulating layers 211 , 213 , and 215 .
  • the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the insulating films described above may be laminated and used.
  • An organic insulating film is suitable for the insulating layer 214 that functions as a planarization layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • the insulating layer 214 may have a laminated structure of an organic insulating film and an inorganic insulating film. The outermost layer of the insulating layer 214 preferably functions as an etching protection film.
  • the insulating layer 214 may be provided with recesses when the conductive layer 111b, the conductive layer 112b, or the conductive layer 126b is processed.
  • the transistors 201 and 205 include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, conductive layers 222a and 222b functioning as sources and drains, a semiconductor layer 231, and an insulating layer functioning as a gate insulating layer. It has a layer 213 and a conductive layer 223 that functions as a gate. Here, the same hatching pattern is applied to a plurality of layers obtained by processing the same conductive film.
  • the insulating layer 211 is located between the conductive layer 221 and the semiconductor layer 231 .
  • the insulating layer 213 is located between the conductive layer 223 and the semiconductor layer 231 .
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 201 and 205 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • crystallinity of a semiconductor material used for a transistor there is no particular limitation on the crystallinity of a semiconductor material used for a transistor, and an amorphous semiconductor, a single crystal semiconductor, or a semiconductor having a crystallinity other than a single crystal (a microcrystalline semiconductor, a polycrystalline semiconductor, or a semiconductor having a crystal region in part) can be used. semiconductor) may be used. A single crystal semiconductor or a crystalline semiconductor is preferably used because deterioration of transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • the semiconductor layer of the transistor may comprise silicon. Examples of silicon include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • the semiconductor layer includes, for example, indium and M (M is gallium, aluminum, silicon, boron, yttrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, one or more selected from hafnium, tantalum, tungsten, and magnesium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) (also referred to as IGZO) is preferably used for the semiconductor layer.
  • an oxide containing indium, tin, and zinc is preferably used.
  • oxides containing indium, gallium, tin, and zinc are preferably used.
  • the In atomic ratio in the In-M-Zn oxide is preferably equal to or higher than the M atomic ratio.
  • the transistors included in the circuit 164 and the transistors included in the display portion 162 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 164 may all have the same structure, or may have two or more types.
  • the structures of the plurality of transistors included in the display portion 162 may all be the same, or may be of two or more types.
  • 17B and 17C show other configuration examples of the transistor.
  • the transistor 209 and the transistor 210 each include a conductive layer 221 functioning as a gate, an insulating layer 211 functioning as a gate insulating layer, a semiconductor layer 231 having a channel formation region 231i and a pair of low-resistance regions 231n, and one of the pair of low-resistance regions 231n.
  • a conductive layer 222a connected to a pair of low-resistance regions 231n, a conductive layer 222b connected to the other of a pair of low-resistance regions 231n, an insulating layer 225 functioning as a gate insulating layer, a conductive layer 223 functioning as a gate, and an insulating layer 215 covering the conductive layer 223 have
  • the insulating layer 211 is located between the conductive layer 221 and the channel formation region 231i.
  • the insulating layer 225 is located at least between the conductive layer 223 and the channel formation region 231i.
  • an insulating layer 218 may be provided to cover the transistor.
  • the transistor 209 illustrated in FIG. 17B illustrates an example in which the insulating layer 225 covers the top and side surfaces of the semiconductor layer 231 .
  • the conductive layers 222a and 222b are connected to the low-resistance region 231n through openings provided in the insulating layers 225 and 215, respectively.
  • One of the conductive layers 222a and 222b functions as a source and the other functions as a drain.
  • the insulating layer 225 overlaps with the channel formation region 231i of the semiconductor layer 231 and does not overlap with the low resistance region 231n.
  • the insulating layer 215 is provided to cover the insulating layer 225 and the conductive layer 223, and the conductive layers 222a and 222b are connected to the low resistance region 231n through openings in the insulating layer 215, respectively.
  • a connection portion 204 is provided in a region of the substrate 151 where the substrate 152 does not overlap.
  • the wiring 165 is electrically connected to the FPC 172 via the conductive layer 166 and the connecting layer 242 .
  • the conductive layer 166 includes a conductive film obtained by processing the same conductive film as the conductive layers 111b, 111c, and 111d and a conductive film obtained by processing the same conductive film as the conductive layers 112b, 112c, and 112d. , and a conductive film obtained by processing the same conductive film as the conductive layers 126b, 126c, and 126d.
  • the conductive layer 166 is exposed on the upper surface of the connecting portion 204 . Thereby, the connecting portion 204 and the FPC 172 can be electrically connected via the connecting layer 242 .
  • a light shielding layer 117 is preferably provided on the surface of the substrate 152 on the substrate 151 side.
  • the light shielding layer 117 can be provided between adjacent light emitting devices, the connection portion 140, the circuit 164, and the like.
  • various optical members can be arranged outside the substrate 152 . Examples of optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 152.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged. may
  • the protective layer 131 that covers the light-emitting device and the light-receiving device, it is possible to prevent impurities such as water from entering the light-emitting device and the light-receiving device and improve the reliability of the light-emitting device and the light-receiving device.
  • the substrate 151 and the substrate 152 can each be formed using the material that can be used for the substrate 120 described in Embodiment 2.
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting device is extracted.
  • a polarizing plate may be used as the substrate 151 or the substrate 152 .
  • any of the materials that can be used for the resin layer 122 described in Embodiment 2 can be used.
  • connection layer 242 an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • Display device 100G A display device 100G shown in FIG. 18A is mainly different from the display device 100F in that it is a bottom-emission type display device in which a white light emitting device and a color filter are combined. In the following description of the display device, the description of the same parts as those of the previously described display device may be omitted.
  • Light emitted by the light emitting device is emitted to the substrate 151 side.
  • Light enters the light receiving device from the substrate 151 side.
  • a material having high visible light transmittance is preferably used for the substrate 151 .
  • the material used for the substrate 152 may or may not be translucent.
  • a light-blocking layer 117 is preferably formed between the substrate 151 and the transistor 201 and between the substrate 151 and the transistor 205 .
  • FIG. 18A shows an example in which the light-blocking layer 117 is provided over the substrate 151 , the insulating layer 153 is provided over the light-blocking layer 117 , and the transistors 201 and 205 and the like are provided over the insulating layer 153 .
  • the light emitting device 130a and the colored layer 132R overlap each other, and light emitted from the light emitting device 130a is extracted as red light to the outside of the display device 100G through the red colored layer 132R.
  • the light emitting device 130a has a conductive layer 111a, a conductive layer 112a on the conductive layer 111a, and a conductive layer 126a on the conductive layer 112a.
  • the light receiving device 150d has a conductive layer 111d, a conductive layer 112d on the conductive layer 111d, and a conductive layer 126d on the conductive layer 112d.
  • a material having high visible light transmittance is used for each of the conductive layers 111a, 111d, 112a, 112d, 126a, and 126d.
  • a material that reflects visible light is preferably used for the common electrode 115 .
  • the top and side surfaces of the conductive layer 112a and the top and side surfaces of the conductive layer 126a are covered with the first layer 113a. Side surfaces of the first layer 113 a are covered with insulating layers 125 and 127 .
  • a sacrificial layer 118 a is located between the first layer 113 a and the insulating layer 125 .
  • a fourth layer 114 is provided over the first layer 113 a , the fifth layer 113 d , and the insulating layers 125 and 127 , and a common electrode 115 is provided over the fourth layer 114 .
  • the fourth layer 114 and the common electrode 115 are a series of films that are commonly provided for the light receiving device and the light emitting device, respectively.
  • a protective layer 131 is provided on the light emitting device 130a and the light receiving device 150d.
  • FIG. 18A illustrates the first layer 113a as three layers, and specifically, a stacked structure of a first light-emitting unit, a charge generation layer, and a second light-emitting unit can be applied. .
  • 17A and 18A show an example in which the upper surface of the layer 128 has a flat portion, but the shape of the layer 128 is not particularly limited.
  • a variation of layer 128 is shown in Figures 18B-18D.
  • the upper surface of the layer 128 can be configured to have a shape in which the center and the vicinity thereof are depressed in a cross-sectional view, that is, a shape having a concave curved surface.
  • the upper surface of the layer 128 can be configured to have a shape in which the center and the vicinity thereof bulge in a cross-sectional view, that is, have a convex curved surface.
  • the top surface of layer 128 may have one or both of convex and concave surfaces.
  • the number of convex curved surfaces and concave curved surfaces that the upper surface of the layer 128 has is not limited, and may be one or more.
  • the height of the top surface of the layer 128 and the height of the top surface of the conductive layer 111a may be the same or substantially the same, or may be different from each other.
  • the height of the top surface of layer 128 may be lower or higher than the height of the top surface of conductive layer 111a.
  • FIG. 18B can also be said to be an example in which the layer 128 is accommodated inside the recess formed in the conductive layer 111a.
  • the layer 128 may exist outside the recess formed in the conductive layer 111a, that is, the upper surface of the layer 128 may be wider than the recess.
  • the light emitting device has an EL layer 786 between a pair of electrodes (lower electrode 772, upper electrode 788).
  • EL layer 786 can be composed of multiple layers such as layer 4420 , light-emitting layer 4411 , and layer 4430 .
  • the layer 4420 can have, for example, a layer containing a substance with high electron-injection properties (electron-injection layer) and a layer containing a substance with high electron-transport properties (electron-transporting layer).
  • the light-emitting layer 4411 contains, for example, a light-emitting compound.
  • the layer 4430 can have, for example, a layer containing a substance with high hole-injection properties (hole-injection layer) and a layer containing a substance with high hole-transport properties (hole-transport layer).
  • a structure having layer 4420, light-emitting layer 4411, and layer 4430 provided between a pair of electrodes can function as a single light-emitting unit, and the structure of FIG. 19A is referred to herein as a single structure.
  • FIG. 19B is a modification of the EL layer 786 included in the light emitting device shown in FIG. 19A.
  • the light-emitting device shown in FIG. It has a top layer 4422 and a top electrode 788 on layer 4422 .
  • layer 4431 functions as a hole injection layer
  • layer 4432 functions as a hole transport layer
  • layer 4421 functions as an electron transport layer
  • Layer 4422 functions as an electron injection layer.
  • layer 4431 functions as an electron injection layer
  • layer 4432 functions as an electron transport layer
  • layer 4421 functions as a hole transport layer
  • layer 4421 functions as a hole transport layer
  • 4422 functions as a hole injection layer.
  • a configuration in which a plurality of light emitting layers (light emitting layers 4411, 4412, and 4413) are provided between layers 4420 and 4430 as shown in FIGS. 19C and 19D is also a variation of the single structure.
  • tandem structure a structure in which a plurality of light-emitting units (EL layers 786a and 786b) are connected in series via the charge generation layer 4440 is referred to as a tandem structure in this specification.
  • the tandem structure may also be called a stack structure. Note that the tandem structure enables a light-emitting device capable of emitting light with high luminance.
  • the light-emitting layers 4411, 4412, and 4413 may be made of a light-emitting material that emits light of the same color, or may be the same light-emitting material.
  • the light-emitting layers 4411, 4412, and 4413 may be formed using a light-emitting material that emits blue light.
  • a color conversion layer may be provided as the layer 785 shown in FIG. 19D.
  • light-emitting materials that emit light of different colors may be used for the light-emitting layers 4411, 4412, and 4413, respectively.
  • white light emission can be obtained.
  • a color filter also referred to as a colored layer
  • a desired color of light can be obtained by passing the white light through the color filter.
  • the light-emitting layer 4411 and the light-emitting layer 4412 may be made of a light-emitting material that emits light of the same color, or may be the same light-emitting material. Alternatively, light-emitting materials that emit light of different colors may be used for the light-emitting layers 4411 and 4412 .
  • the light emitted from the light-emitting layer 4411 and the light emitted from the light-emitting layer 4412 are complementary colors, white light emission can be obtained.
  • FIG. 19F shows an example in which an additional layer 785 is provided. As the layer 785, one or both of a color conversion layer and a color filter (colored layer) can be used.
  • the layer 4420 and the layer 4430 may have a laminated structure of two or more layers as shown in FIG. 19B.
  • a structure in which different emission colors (eg, blue (B), green (G), and red (R)) are produced for each light emitting device is sometimes called an SBS (Side By Side) structure.
  • the emission color of the light emitting device can be red, green, blue, cyan, magenta, yellow, white, or the like, depending on the material that composes the EL layer 786 . Further, the color purity can be further enhanced by providing the light-emitting device with a microcavity structure.
  • a light-emitting device that emits white light preferably has a structure in which a light-emitting layer contains two or more kinds of light-emitting substances.
  • two or more light-emitting substances may be selected so that the light emission of each light-emitting substance has a complementary color relationship.
  • the emission color of the first light-emitting layer and the emission color of the second light-emitting layer have a complementary color relationship, it is possible to obtain a light-emitting device that emits white light as a whole. The same applies to light-emitting devices having three or more light-emitting layers.
  • the light-emitting layer preferably contains two or more light-emitting substances that emit light such as R (red), G (green), B (blue), Y (yellow), and O (orange).
  • R red
  • G green
  • B blue
  • Y yellow
  • O orange
  • the metal oxide preferably contains at least indium or zinc. In particular, it preferably contains indium and zinc. In addition to these, aluminum, gallium, yttrium, tin and the like are preferably contained. In addition, one or more selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, cobalt, etc. may be contained. .
  • the metal oxide is formed by chemical vapor deposition (CVD) such as sputtering, metal organic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD). It can be formed by a layer deposition method or the like.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (polycrystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the peak shape of the XRD spectrum is almost symmetrical.
  • the peak shape of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nanobeam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nanobeam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. Therefore, it is presumed that the IGZO film deposited at room temperature is neither crystalline nor amorphous, but in an intermediate state and cannot be concluded to be in an amorphous state.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or a plurality of minute crystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • CAAC-OS contains indium (In) and oxygen.
  • a tendency to have a layered crystal structure also referred to as a layered structure in which a layer (hereinafter referred to as an In layer) and a layer containing the element M, zinc (Zn), and oxygen (hereinafter referred to as a (M, Zn) layer) are stacked.
  • the (M, Zn) layer may contain indium.
  • the In layer contains the element M.
  • the In layer may contain Zn.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit lattice is not always regular hexagon and may be non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon. Note that in CAAC-OS, no clear crystal grain boundary can be observed even near the strain. That is, it can be seen that the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction and the bond distance between atoms changes due to the substitution of metal atoms. it is conceivable that.
  • a crystal structure in which clear grain boundaries are confirmed is called a so-called polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • a CAAC-OS is an oxide semiconductor with high crystallinity and no clear grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In—Ga—Zn oxide are represented by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS.
  • the second region is a region in which [Ga] is larger than [Ga] in the CAC-OS composition.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region containing indium oxide, indium zinc oxide, or the like as a main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • a CAC-OS can be formed, for example, by a sputtering method under conditions in which the substrate is not heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. good.
  • an inert gas typically argon
  • oxygen gas typically argon
  • a nitrogen gas may be used as a deposition gas. good.
  • the lower the flow rate ratio of the oxygen gas to the total flow rate of the film formation gas during film formation, the better. is preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have various structures and each has different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear and may behave like a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • the electronic devices of this embodiment each include the display device of one embodiment of the present invention in a display portion.
  • the display device of one embodiment of the present invention can easily have high definition and high resolution. Therefore, it can be used for display portions of various electronic devices.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for electronic devices having a relatively small display portion.
  • electronic devices include, for example, wristwatch-type and bracelet-type information terminals (wearable devices), VR (Virtual Reality) devices such as head-mounted displays, glasses-type AR (Augmented Reality) devices, and wearable devices that can be worn on the head, such as devices for MR (Mixed Reality).
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K, 8K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 100 ppi or more, preferably 300 ppi or more, more preferably 500 ppi or more, more preferably 1000 ppi or more, more preferably 2000 ppi or more, and 3000 ppi or more.
  • the display device can support various screen ratios such as 1:1 (square), 4:3, 16:9, 16:10.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • An electronic device 6500 illustrated in FIG. 20A is a mobile information terminal that can be used as a smart phone.
  • An electronic device 6500 includes a housing 6501, a display portion 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 20B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • the flexible display of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 21A shows an example of a television device.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television apparatus 7100 shown in FIG. 21A can be performed by operation switches provided in the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication. is also possible.
  • FIG. 21B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIG. 21C An example of digital signage is shown in FIG. 21C and FIG. 21D.
  • a digital signage 7300 illustrated in FIG. 21C includes a housing 7301, a display portion 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 21D is a digital signage 7400 mounted on a cylindrical post 7401.
  • FIG. A digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 21C and 21D.
  • the display portion 7000 As the display portion 7000 is wider, the amount of information that can be provided at one time can be increased. In addition, the wider the display unit 7000, the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display portion 7000, not only an image or a moving image can be displayed on the display portion 7000 but also the user can intuitively operate the display portion 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or digital signage 7400 is preferably capable of cooperating with an information terminal 7311 or 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • the electronic device shown in FIGS. 22A to 22F includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays function), a microphone 9008, and the like.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 in FIGS. 22A to 22F.
  • the electronic devices shown in FIGS. 22A-22F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • FIG. 22A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 22A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone call, title of e-mail or SNS, sender name, date and time, remaining battery power, radio wave intensity, and the like.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 22B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 22C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • the mobile information terminal 9200 can also make hands-free calls by mutual communication with a headset capable of wireless communication, for example.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIG. 22D to 22F are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 22D is a perspective view of the portable information terminal 9201 in an unfolded state
  • FIG. 22F is a folded state
  • FIG. 22E is a perspective view of a state in the middle of changing from one of FIGS. 22D and 22F to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.
  • Example 1 results of inferring position information of a non-contact target using a display device of one embodiment of the present invention and a machine learning model using AI will be described.
  • an image of a non-contact object was acquired using a display device.
  • a machine learning model was trained using the data set of the images and position information. After that, images were input to the trained model, and the inference result of the position information of the object by the trained model was evaluated.
  • FIG. 23A is a schematic diagram of an evaluation system showing the positional relationship between the display device and the light source used for evaluation.
  • evaluation was performed using a display device 55 having sub-pixels R, G, B, and IRS as pixels.
  • Sub-pixel R has a light-emitting device that emits red light.
  • Sub-pixel G has a light-emitting device that emits green light.
  • Sub-pixel B has a light-emitting device that emits blue light.
  • An organic EL device was used as each light emitting device.
  • the sub-pixel IRS has a light receiving device that detects infrared light.
  • An organic photosensor was used as a light receiving device.
  • the light source IR-LED an LED emitting infrared light with a wavelength of 880 nm was used and driven at 0.3A.
  • the distance between the light source IR-LED and the display device 55 was about 3 cm.
  • the infrared light (infrared light) emitted by the light source IR-LED is reflected by the target object 50 (reflected light), which is detected by the light receiving device of the sub-pixel IRS.
  • the target object 50 three types of bare fingers, gray gloves, and glossy paper (total light reflectance of 80%) were used.
  • the material of the gray gloves is a conductive fiber mixed with copper sulfide, which can be detected by a capacitive touch sensor.
  • This evaluation was carried out by opening a 1 cm square opening (which can also be called a window) in the black plate 52 (total light reflectance of 5%) and exposing the object 50 through the opening.
  • a 1 cm square opening which can also be called a window
  • the black plate 52 total light reflectance of 5%
  • the imaging data corresponds to an image obtained by cutting out a part of the image captured by the display device, which is used when estimating the position of the object.
  • FIGS. 23B to 23D Examples of images of the object 50 actually captured by the display device 55 are shown in FIGS. 23B to 23D.
  • FIG. 23B and FIG. 23C it was confirmed that even if the position of the target object 50 is the same, the imaging result differs depending on the type. Moreover, by comparing FIG. 23C and FIG. 23D, it was confirmed that even if the type of the target object 50 is the same, the imaging result differs depending on the position.
  • 15000 images of the object 50 captured by the display device 55 were prepared as described above.
  • the machine learning model was trained by giving image data as input data (example) and position information data as output data (answer) to the machine learning model.
  • AlexNet Two types of machine learning models, AlexNet and MobileNet, which are models using a convolutional neural network (CNN), were used. Note that MobileNet is a lighter model with fewer parameters than AlexNet.
  • CNN convolutional neural network
  • each image data After resizing each image data to 100 pixels x 100 pixels, it was converted into a 100 x 100 array and input to the machine learning model.
  • a regression model for estimating the value of position information (x, y, z) is created by inputting image data.
  • image data was input to a trained model using MobileNet, and position information (x, y, z) was inferred.
  • Table 2 shows the number of parameters of the trained model using AlexNet and the trained model using MobileNet, and the average errors of the inference results of 750 images.
  • CL wiring, IR-LED: light source, IR: sub-pixel, IRS: sub-pixel, M11: transistor, M12: transistor, M13: transistor, M14: transistor, M15: transistor, NN: neural network, PS: sub-pixel, RS: Wiring, SE: Wiring, SW: Wiring, TX: Wiring, VCP: Wiring, VPI: Wiring, VRS: Wiring, WX: Wiring, 10: Electronic equipment, 11: Processing unit, 12: Display unit, 13: Storage Part, 15: Imaging data, 17: Image, 19: Position information, 31B: Light, 31G: Light, 31IR: Infrared light, 31R: Light, 32G: Reflected light, 32IR: Reflected light, 50: Object, 52 : black plate, 55: display device, 100A: display device, 100B: display device, 100C: display device, 100D: display device, 100E: display device, 100F: display device, 100G: display device, 100: display device, 101 : Layer including transistor 102: Sub

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

非接触で操作可能な電子機器を提供する。 表示部、処理部、及び、記憶部を有する電子機器である。表示部は、発光デバイスと受光デバイスとを有する表示装置を有する。表示部は、発光デバイスを用いて画像を表示する機能と、受光デバイスを用いて撮像する機能と、を有する。記憶部は、ニューラルネットワークを用いた機械学習モデルを有する。処理部は、機械学習モデルを用いて、表示部で撮像された撮像データから、電子機器と接触していない対象物の位置情報を推論する機能を有する。

Description

電子機器
本発明の一態様は、表示装置、表示モジュール、及び、電子機器に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、又はそれらの製造方法を一例として挙げることができる。
近年、スマートフォンなどの携帯電話、タブレット型情報端末、ノート型PC(パーソナルコンピュータ)などの情報端末機器が広く普及している。このような情報端末機器は、個人情報などが含まれることが多く、不正な利用を防止するための様々な認証技術が開発されている。画像表示機能、タッチセンサ機能、及び、認証のために指紋を撮像する機能など、様々な機能を有する情報端末機器が求められている。
例えば、特許文献1には、プッシュボタンスイッチ部に、指紋センサを備える電子機器が開示されている。
表示装置としては、例えば、発光デバイス(発光素子ともいう)を有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光デバイス(ELデバイス、EL素子ともいう)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流定電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。
米国特許出願公開第2014/0056493号明細書
感染症対策及び衛生面の観点などから、非接触での操作が可能な情報端末機器が求められている。
本発明の一態様は、非接触で操作可能な電子機器を提供することを課題の一つとする。
本発明の一態様は、光検出機能を有し、高精細な表示装置を提供することを課題の一つとする。本発明の一態様は、光検出機能を有し、高解像度の表示装置を提供することを課題の一つとする。本発明の一態様は、光検出機能を有し、信頼性の高い表示装置を提供することを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、表示部、処理部、及び、記憶部を有する電子機器であり、表示部は、発光デバイスと受光デバイスとを有する表示装置を有する。表示部は、発光デバイスを用いて画像を表示する機能と、受光デバイスを用いて撮像する機能と、を有する。記憶部は、ニューラルネットワークを用いた機械学習モデルを有する。処理部は、機械学習モデルを用いて、表示部で撮像された撮像データから、電子機器と接触していない対象物の位置情報を推論する機能を有する。
または、本発明の一態様は、表示部、処理部、及び、記憶部を有する電子機器であり、表示部は、第1の画素を有する表示装置を有する。第1の画素は、第1の発光デバイス、第1の受光デバイス、及び、第2の受光デバイスを有し、第1の受光デバイスが検出する光の波長域は、第1の発光デバイスの発光スペクトルの最大ピーク波長を含み、第2の受光デバイスは、赤外光を検出する機能を有する。表示部は、第1の発光デバイスを用いて画像を表示する機能と、第1の受光デバイス及び第2の受光デバイスの一方または双方を用いて撮像する機能と、を有する。記憶部は、ニューラルネットワークを用いた機械学習モデルを有する。処理部は、機械学習モデルを用いて、表示部で撮像された撮像データから、電子機器と接触していない対象物の位置情報を推論する機能を有する。
または、本発明の一態様は、表示部、処理部、及び、記憶部を有する電子機器であり、表示部は、第1の画素を有する表示装置を有する。第1の画素は、第1の副画素、第2の副画素、第3の副画素、第4の副画素、及び、第5の副画素を有する。第1の副画素は、第1の発光デバイスを有し、かつ、赤色の光を発する機能を有する。第2の副画素は、第2の発光デバイスを有し、かつ、緑色の光を発する機能を有する。第3の副画素は、第3の発光デバイスを有し、かつ、青色の光を発する機能を有する。第4の副画素は、第1の受光デバイスを有し、かつ、第1の受光デバイスが検出する光の波長域は、第1の発光デバイス、第2の発光デバイス、及び、第3の発光デバイスのうち少なくとも一つの発光スペクトルの最大ピーク波長を含む。第5の副画素は、第2の受光デバイスを有し、かつ、赤外光を検出する機能を有する。表示部は、第1の副画素乃至第3の副画素を用いて画像を表示する機能と、第1の受光デバイス及び第2の受光デバイスの一方または双方を用いて撮像する機能と、を有する。記憶部は、ニューラルネットワークを用いた機械学習モデルを有する。処理部は、機械学習モデルを用いて、表示部で撮像された撮像データから、電子機器と接触していない対象物の位置情報を推論する機能を有する。
第1の受光デバイスの受光領域の面積は、第2の受光デバイスの受光領域の面積よりも小さいことが好ましい。
表示装置は、第1の発光デバイス、第1の受光デバイス、及び、センサデバイスを有する第2の画素を有することが好ましい。電子機器は、センサデバイスを用いて、力、変位、位置、速度、加速度、角速度、回転数、距離、磁気、温度、化学物質、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、体調、脈拍、体温、及び、血中の酸素濃度の少なくとも一つを測定する機能を有することが好ましい。
または、表示装置は、第1の発光デバイス、第4の発光デバイス、及び、第1の受光デバイスを有する第2の画素を有することが好ましい。第4の発光デバイスは、赤外光を発する機能を有することが好ましい。
または、本発明の一態様の電子機器は、赤外光を発する機能を有する第4の発光デバイスを表示装置の外部に有していてもよい。第4の発光デバイスは、表示装置を介して、電子機器の外部に光を射出してもよい。
本発明の一態様により、非接触で操作可能な表示装置を提供できる。
本発明の一態様により、光検出機能を有し、高精細な表示装置を提供できる。本発明の一態様により、光検出機能を有し、高解像度の表示装置を提供できる。本発明の一態様により、光検出機能を有し、信頼性の高い表示装置を提供できる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1Aは、電子機器の一例を示す図である。図1Bは、電子機器が実行する処理の一例を示す図である。
図2A乃至図2Gは、表示装置の画素の一例を示す図である。
図3A及び図3Bは、表示装置の画素の一例を示す図である。図3C及び図3Dは、電子機器の一例を示す断面図である。
図4A及び図4Bは、電子機器の一例を示す断面図である。
図5A乃至図5Dは、表示装置の画素の一例を示す図である。図5Eは、電子機器の一例を示す断面図である。
図6は、表示装置のレイアウトの一例を示す図である。
図7は、表示装置のレイアウトの一例を示す図である。
図8は、表示装置のレイアウトの一例を示す図である。
図9は、表示装置のレイアウトの一例を示す図である。
図10は、画素回路の一例を示す図である。
図11Aは、表示装置の一例を示す上面図である。図11Bは、表示装置の一例を示す断面図である。
図12A乃至図12Cは、表示装置の一例を示す断面図である。
図13A及び図13Bは、表示装置の一例を示す断面図である。
図14A乃至図14Cは、表示装置の一例を示す断面図である。
図15A乃至図15Fは、表示装置の一例を示す断面図である。
図16は、表示装置の一例を示す斜視図である。
図17Aは、表示装置の一例を示す断面図である。図17B及び図17Cは、トランジスタの一例を示す断面図である。
図18A乃至図18Dは、表示装置の一例を示す断面図である。
図19A乃至図19Fは、発光デバイスの構成例を示す図である。
図20A及び図20Bは、電子機器の一例を示す図である。
図21A乃至図21Dは、電子機器の一例を示す図である。
図22A乃至図22Fは、電子機器の一例を示す図である。
図23Aは、実施例の評価方法の説明を示す図である。図23B乃至図23Dは、表示装置による撮像写真である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチングパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、又は、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の電子機器及び表示装置について図1乃至図10を用いて説明する。
本発明の一態様は、表示部、処理部、及び、記憶部を有する電子機器である。表示部は、発光デバイスと受光デバイスとを有する表示装置を有する。表示部は、発光デバイスを用いて画像を表示する機能と、受光デバイスを用いて撮像する機能と、を有する。記憶部は、ニューラルネットワークを用いた機械学習モデルを有する。処理部は、機械学習モデルを用いて、表示部で撮像された撮像データから、電子機器と接触していない対象物の位置情報を推論する機能を有する。
機械学習モデルを用いることで、推論の精度を高めることができる。また、表示装置が撮像機能を有することで、電子機器の部品点数を増やすことなく、電子機器の多機能化を実現することができる。
本発明の一態様の電子機器は、少なくとも一部の処理に人工知能(AI:Artificial Intelligence)を用いることが好ましい。
本発明の一態様の電子機器は、特に、人工ニューラルネットワーク(ANN:Artificial Neural Network、以下、単にニューラルネットワークとも記す)を用いることが好ましい。ニューラルネットワークは、回路(ハードウェア)またはプログラム(ソフトウェア)により実現される。
本明細書等において、ニューラルネットワークとは、生物の神経回路網を模し、学習によってニューロン同士の結合強度を決定し、問題解決能力を持たせるモデル全般を指す。ニューラルネットワークは、入力層、中間層(隠れ層)、及び出力層を有する。
本明細書等において、ニューラルネットワークについて述べる際に、既にある情報からニューロンとニューロンの結合強度(重み係数ともいう)を決定することを「学習」と呼ぶ場合がある。
本明細書等において、学習によって得られた結合強度を用いてニューラルネットワークを構成し、そこから新たな結論を導くことを「推論」と呼ぶ場合がある。
[電子機器10]
図1Aに、本発明の一態様の電子機器のブロック図を示す。
図1Aに示す電子機器10は、処理部11、表示部12、及び、記憶部13を有する。
表示部12は、発光デバイスと受光デバイスとを有する表示装置を有する。図1Aでは、表示部12に、副画素G、副画素B、副画素R、及び副画素Sを有する画素110を有する表示装置を用いる例を示す。
副画素G、副画素B、及び副画素Rは、それぞれ、発光デバイスを有する。副画素Rは、赤色の光を呈し、副画素Gは、緑色の光を呈し、副画素Bは、青色の光を呈する。
副画素Sは、受光デバイスを有する。当該受光デバイスが検出する光の波長は特に限定されない。例えば、副画素Sには、可視光及び赤外光の一方または双方を検出する受光デバイスを用いることができる。
表示部12は、副画素G、副画素B、及び副画素R(発光デバイス)を用いて画像を表示する機能と、副画素S(受光デバイス)を用いて撮像する機能と、を有する。
記憶部13は、ニューラルネットワークを用いた機械学習モデルを有する。なお、記憶部13は、処理部11の一部であってもよい。
処理部11は、機械学習モデルを用いて、表示部12で撮像された撮像データから、対象物の位置情報を推論する機能を有する。当該対象物は、電子機器10と接触していてもよく、接触していなくてもよい。
機械学習モデルには、畳み込みニューラルネットワーク(CNN)を用いることが好ましい。
機械学習モデルは、検出したい対象物の画像データを用いて学習されていることが好ましい。例えば、指、手、及びペンなどのうち一つまたは複数の対象物の画像データを用いることができる。また、素手だけでなく、手袋を着用している場合など、様々な材質及び色の対象物の画像データを用いて学習されていることが好ましい。これにより、電子機器10の使用者が手袋を使用している場合でも、対象物(手袋を着用した指または手)の位置を高い精度で推論することができる。さらに、表示部12の表面にゴミまたは水滴などが付着している場合の画像データを用いて学習されていることが好ましい。これにより、表示部12の表面にゴミまたは水滴が付着している場合においても、対象物の位置を高い精度で推論することができる。
機械学習モデルの学習には、教師有り機械学習と教師なし機械学習のいずれを用いてもよい。
機械学習モデルとしては、特に限定はなく、例えば、回帰モデル、分類モデル、または、クラスタリングモデルなどを用いることができる。
回帰モデルを用いる場合、例えば、学習には、入力データ(例題)として画像データを与え、出力データ(答え)として位置情報のデータを与える、教師あり機械学習を用いることが好ましい。
分類モデルを用いる場合、例えば、学習には、入力データ(例題)として画像データを与え、出力データ(答え)として分類データを与える、教師あり機械学習を用いることが好ましい。
クラスタリングモデルを用いる場合、入力データとして画像データを与える、教師なし機械学習を行った後、得られたクラスタにラベルをつけて用いることが好ましい。
電子機器10における処理部11を用いた処理の一例について、図1Bを用いて説明する。
電子機器10は、表示部12において対象物の撮像を行い、処理部11において当該対象物の位置情報を推論することができる。
図1Bに示すように、処理部11では、ニューラルネットワークNNを用いた処理を行う。処理部11には、表示部12で撮像された撮像データ15が入力される。撮像データ15には、対象物の像17が写っている。像17を含む撮像データ15は、光源からの光を対象物が反射した反射光を受光デバイスによって検出することで得られる。処理部11は、撮像データ15が入力されると、ニューラルネットワークNNを用いた機械学習モデルを利用して、像17の位置情報19を推論する。図1Bでは、位置情報19として、(x,y,z)=(X1,Y1,Z1)といった3次元の位置情報を推論した例を示す。
処理部11は、推論した位置情報に基づいて、処理を実行することができる。例えば、表示部12に供給される信号または電位を制御することができる。
以上のように、処理部11及び表示部12を用いて、非接触の対象物を検出し、位置情報を推論することで、電子機器10の非接触センサ機能を実現することができる。なお、非接触センサ機能は、ホバーセンサ機能、ホバータッチセンサ機能、ニアタッチセンサ機能、タッチレスセンサ機能などということもできる。また、処理部11及び表示部12を用いて、電子機器10に接触している対象物を検出し、位置情報を推論することで、電子機器10のタッチセンサ機能(ダイレクトタッチセンサ機能ともいう)を実現することもできる。
非接触センサ機能及びタッチセンサ機能の一方または双方を実現することで、電子機器10では、タップ、ロングタップ、フリック、ドラッグ、スクロール、マルチタッチ、スワイプ、ピンチイン、ピンチアウトなどの操作を検出し、各操作に応じた処理を実行することができる。
[処理部11]
処理部11は、表示部12及び記憶部13などから供給されたデータを用いて、演算、推論などを行う機能を有する。処理部11は、演算結果、推論結果などを、記憶部13などに供給することができる。また、処理部11は、演算結果、推論結果などに基づいて、表示部12に供給する信号または電位を制御することができる。
処理部11は、例えば、演算回路または中央演算装置(CPU:Central Processing Unit)等を有する。
処理部11は、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)等のマイクロプロセッサを有していてもよい。マイクロプロセッサは、FPGA(Field Programmable Gate Array)、FPAA(Field Programmable Analog Array)等のPLD(Programmable Logic Device)によって実現された構成であってもよい。処理部11は、プロセッサにより種々のプログラムからの命令を解釈し実行することで、各種のデータ処理及びプログラム制御を行うことができる。プロセッサにより実行しうるプログラムは、プロセッサが有するメモリ領域及び記憶部13のうち少なくとも一方に格納される。
処理部11はメインメモリを有していてもよい。メインメモリは、RAM(Random Access Memory)等の揮発性メモリ、及びROM(Read Only Memory)等の不揮発性メモリのうち少なくとも一方を有する。
RAMとしては、例えばDRAM(Dynamic Random Access Memory)、SRAM(Static Random Access Memory)等が用いられ、処理部11の作業空間として仮想的にメモリ空間が割り当てられ利用される。記憶部13に格納されたオペレーティングシステム、アプリケーションプログラム、プログラムモジュール、プログラムデータ、及びルックアップテーブル等は、実行のためにRAMにロードされる。RAMにロードされたこれらのデータ、プログラム、及びプログラムモジュールは、それぞれ、処理部11に直接アクセスされ、操作される。
ROMには、書き換えを必要としない、BIOS(Basic Input/Output System)及びファームウェア等を格納することができる。ROMとしては、マスクROM、OTPROM(One Time Programmable Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)等が挙げられる。EPROMとしては、紫外線照射により記憶データの消去を可能とするUV−EPROM(Ultra−Violet Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュメモリ等が挙げられる。
処理部11には、チャネル形成領域に金属酸化物(酸化物半導体ともいう)を有するトランジスタ(OSトランジスタともいう)を用いることが好ましい。OSトランジスタはオフ電流が極めて小さいため、OSトランジスタを記憶素子として機能する容量素子に流入した電荷(データ)を保持するためのスイッチとして用いることで、データの保持期間を長期にわたり確保することができる。この特性を、処理部11が有するレジスタ及びキャッシュメモリのうち少なくとも一方に用いることで、必要なときだけ処理部11を動作させ、他の場合には直前の処理の情報を当該記憶素子に待避させることにより処理部11をオフにすることができる。すなわち、ノーマリーオフコンピューティングが可能となり、電子機器の低消費電力化を図ることができる。
また、処理部11には、チャネル形成領域にシリコンを含むトランジスタ(Siトランジスタともいう)を用いてもよい。
また、処理部11には、OSトランジスタと、Siトランジスタと、を組み合わせて用いることが好ましい。
[記憶部13]
記憶部13は、処理部11が実行するプログラムを記憶する機能を有する。また、記憶部13は、処理部11が生成した演算結果及び推論結果、並びに、表示部12が撮像した画像データなどを記憶する機能を有していてもよい。
記憶部13は、揮発性メモリ及び不揮発性メモリのうち少なくとも一方を有する。記憶部13は、例えば、DRAM、SRAMなどの揮発性メモリを有していてもよい。記憶部13は、例えば、ReRAM(Resistive Random Access Memory、抵抗変化型メモリともいう)、PRAM(Phase change Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)、MRAM(Magnetoresistive Random Access Memory、磁気抵抗型メモリともいう)、またはフラッシュメモリなどの不揮発性メモリを有していてもよい。また、記憶部13は、ハードディスクドライブ(Hard Disk Drive:HDD)及びソリッドステートドライブ(Solid State Drive:SSD)等の記録メディアドライブを有していてもよい。
[表示部12]
上述の通り、表示部12には、発光デバイスと受光デバイスとを有する表示装置を用いることができる。ここで、表示装置の画素が、互いに異なる色を呈する副画素を3種類有する場合、当該3つの副画素としては、R、G、Bの3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
次に、本実施の形態の電子機器に用いることができる表示装置の画素のレイアウトについて説明する。画素が有する副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形、六角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここで、副画素の上面形状は、発光デバイスの発光領域または受光デバイスの受光領域の上面形状に相当する。
図2A乃至図2Cに示す画素110は、副画素G、副画素B、副画素R、及び、副画素Sを有する。なお、副画素の並び順に特に限定はない。なお、副画素Sで特定の色の光を検出する場合は、当該色の光を呈する副画素を副画素Sの隣に配置することで検出精度を高めることができ、好ましい。また、信頼性の高い発光デバイスを有する副画素ほど、サイズを小さくすることができる。
図2Aに示す画素110は、図1Aに示す画素110と同様であり、ストライプ配列が適用されている。図1A及び図2Aでは、副画素Rが副画素Bと副画素Sの間に位置する例を示すが、例えば、副画素Rと副画素Gが隣り合っていてもよい。
図2Bに示す画素110には、マトリクス配列が適用されている。図2Bでは、副画素Rと副画素Sが同じ行に位置し、副画素Bと副画素Gが同じ行に位置する例を示すが、例えば、副画素Rと副画素Gまたは副画素Bとが同じ行に位置していてもよい。同様に、副画素Rと副画素Bが同じ列に位置し、副画素Sと副画素Gが同じ列に位置する例を示すが、例えば、副画素Rと副画素Gまたは副画素Sとが同じ列に位置していてもよい。
図2Cに示す画素110には、Sストライプ配列に4つ目の副画素を追加した構成が適用されている。図2Cの画素110は、縦長の副画素Bと、横長の副画素R、G、Sを有する例を示すが、縦長の副画素は、副画素R、副画素G、副画素Sのいずれかであってもよく、横長の副画素の並び順にも限定はない。
図2Dでは、画素109aと画素109bとが交互に配置されている例を示す。画素109aは、副画素B、副画素G、及び、副画素Sを有し、画素109bは、副画素R、副画素G、及び、副画素Sを有する。図2Dでは、画素109aと画素109bの双方が有する副画素が、副画素G及び副画素Sである例を示すが、特に限定されない。副画素Sを、画素109aと画素109bの双方が有することで、撮像の精細度を高めることができ好ましい。このとき、画素109aと画素109bの双方が有する副画素(図2Dでは副画素G)が呈する光を、副画素Sで検出する構成とすることが好ましい。
図2Eは、図2Dに示す画素109a、109bが有する副画素が、それぞれ、角が丸い略四角形の上面形状を有する変形例である。
図2Fに示す画素のレイアウトには、二次元の六方最密充填型が適用されている。六方最密充填型のレイアウトとすることで、各副画素の開口率を高めることができ好ましい。図2Fでは、各副画素が、六角形の上面形状を有する例を示す。
図2Gは、図2Fに示す画素110が、角が丸い略六角形の上面形状を有する変形例である。
フォトリソグラフィ法では、加工するパターンが微細になるほど、光の回折の影響を無視できなくなるため、露光によりフォトマスクのパターンを転写する際に忠実性が損なわれ、レジストマスクを所望の形状に加工することが困難になる。そのため、フォトマスクのパターンが矩形であっても、角が丸まったパターンが形成されやすい。したがって、副画素の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。
さらに、本発明の一態様の表示装置の作製方法では、レジストマスクを用いてEL層を島状に加工する。EL層上に形成したレジスト膜は、EL層の耐熱温度よりも低い温度で硬化する必要がある。そのため、EL層の材料の耐熱温度及びレジスト材料の硬化温度によっては、レジスト膜の硬化が不十分になる場合がある。硬化が不十分なレジスト膜は、加工時に所望の形状から離れた形状をとることがある。その結果、EL層の上面形状が、多角形の角が丸い形状、楕円形、または円形などになることがある。例えば、上面形状が正方形のレジストマスクを形成しようとした場合に、円形の上面形状のレジストマスクが形成され、EL層の上面形状が円形になることがある。
なお、EL層の上面形状を所望の形状とするために、設計パターンと、転写パターンとが、一致するように、あらかじめマスクパターンを補正する技術(OPC(Optical Proximity Correction:光近接効果補正)技術)を用いてもよい。具体的には、OPC技術では、マスクパターン上の図形コーナー部などに補正用のパターンを追加する。
なお、1つの画素に、受光デバイスを2種類以上有していてもよい。
例えば、本発明の一態様の表示装置は、発光デバイスと、第1の受光デバイスと、第2の受光デバイスと、を含む第1の画素を有する。
第1の受光デバイスは、第2の受光デバイスよりも受光領域の面積(単に受光面積とも記す)が狭いことが好ましい。撮像範囲を狭くすることで、第1の受光デバイスでは、第2の受光デバイスに比べて、高精細な撮像を行うことができる。このとき、第1の受光デバイスは、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、または顔などを用いた個人認証のための撮像などに用いることができる。第1の受光デバイスは、用途に応じて、検出する光の波長を適宜決定することができる。例えば、第1の受光デバイスは、可視光を検出することが好ましい。
また、第2の受光デバイスは、タッチセンサまたは非接触センサなどに用いることができる。第2の受光デバイスは、用途に応じて、検出する光の波長を適宜決定することができる。例えば、第2の受光デバイスは、赤外光を検出することが好ましい。これにより、暗い場所でも、検出が可能となる。また、第2の受光デバイスが赤外光を検出する場合、静電容量式のタッチセンサと比較し、電子機器の表面にゴミまたは水滴などが付着していた場合にも、感度よく検出できる場合がある。
ここで、タッチセンサまたは非接触センサは、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。タッチセンサは、電子機器と、対象物とが、直接接することで、対象物を検出できる。また、非接触センサは、対象物が電子機器に接触しなくても、当該対象物を検出することができる。例えば、表示装置(または電子機器)と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、電子機器に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、電子機器に汚れ、または傷がつくリスクを低減することができる、または対象物が電子機器に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、電子機器を操作することが可能となる。
また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、1Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、当該リフレッシュレートに応じて、タッチセンサ、または非接触センサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、または非接触センサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、または非接触センサの応答速度を高めることが可能となる。
また、第1の受光デバイスと第2の受光デバイスとの検出精度の差から、機能に応じて、対象物の検出方法を選択してもよい。例えば、表示画面のスワイプ機能及びスクロール機能の一方または双方は、第2の受光デバイスを用いた非接触センサ機能によって実現し、画面に表示されたキーボードでの入力機能は、第1の受光デバイスを用いた高精細なタッチセンサ機能によって実現してもよい。
1つの画素に、2種類の受光デバイスを搭載することで、表示機能に加えて、2つの機能を追加することができ、表示装置の多機能化が可能となる。
なお、高精細な撮像を行うため、第1の受光デバイスは、表示装置が有する全ての画素に設けられていることが好ましい。一方で、タッチセンサまたは非接触センサなどに用いる第2の受光デバイスは、第1の受光デバイスを用いた検出に比べて高い精度が求められないため、表示装置が有する一部の画素に設けられていればよい。表示装置が有する第2の受光デバイスの数を、第1の受光デバイスの数よりも少なくすることで、検出速度を高めることができる。
そこで、本発明の一態様の表示装置は、上述の第1の画素と、第2の画素と、をそれぞれ複数有する構成とすることができる。第2の画素は、発光デバイスと、第1の受光デバイスと、を有する点で、第1の画素と同様であり、第2の受光デバイスを有さず、代わりに、他のデバイスを有する点で、第1の画素と異なる。
第2の画素は、各種センサデバイス、または、赤外光を発する発光デバイスなどを有することができる。このように、第2の画素に、第1の画素とは異なるデバイスを設けることで、表示装置の多機能化を実現することができる。
なお、フルカラーの表示を行うために、画素に、赤色、緑色、青色の3色の発光デバイスを設けた場合、さらに、2つの受光デバイスを設けることで、1つの画素は、5つの副画素から構成されることとなる。このように、多くの副画素を有する画素において、高い開口率を実現することは極めて難しい。または、多くの副画素を有する画素を用いて、精細度の高い表示装置を実現することは難しい。
そこで、本発明の一態様の表示装置において、島状のEL層は、ファインメタルマスクを用いて形成されるのではなく、EL層を一面に成膜した後に加工することで形成されることが好ましい。これにより、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、受光デバイスを内蔵した、光検出機能を有する、高精細な表示装置または高開口率の表示装置を実現することができる。
以上のように、本発明の一態様の表示装置は、高開口率または高精細であり、かつ、多機能である構成とすることができる。
図3Aに、本発明の一態様の表示装置が有する画素の一例を示す。
図3Aに示す画素180Aは、副画素G、副画素B、副画素R、副画素PS、及び副画素IRSを有する。
図3Aでは、1つの画素180Aが、2行3列で構成されている例を示す。画素180Aは、上の行(1行目)に、3つの副画素(副画素G、副画素B、副画素R)を有し、下の行(2行目)に、2つの副画素(副画素PS、副画素IRS)を有する。言い換えると、画素110は、左の列(1列目)に、2つの副画素(副画素G、副画素PS)を有し、中央の列(2列目)に副画素Bを有し、右の列(3列目)に副画素Rを有し、さらに、中央の列から右の列にわたって、副画素IRSを有する。
図3Bに示すように、下の行(2行目)にも、3つの副画素(副画素PSと2つの副画素IRS)を有していてもよい。図3Bに示すように、上の行と、下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。
図3Bにおいて、2つの副画素IRSは、それぞれ独立に受光デバイスを有していてもよく、1つの受光デバイスを共通して有していてもよい。つまり、図3Bに示す画素110は、副画素PS用の受光デバイスを1つ有し、副画素IRS用の受光デバイスを1つまたは2つ有する構成とすることができる。
副画素PSの受光面積は、副画素IRSの受光面積よりも小さい。受光面積が小さいほど、撮像範囲が狭くなり、撮像結果のボケの抑制、及び、解像度の向上が可能となる。そのため、副画素PSを用いることで、副画素IRSを用いる場合に比べて、高精細または高解像度の撮像を行うことができる。例えば、副画素PSを用いて、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、または顔などを用いた個人認証のための撮像を行うことができる。
副画素PSの精細度は、100ppi以上、好ましくは200ppi以上、より好ましくは300ppi以上、より好ましくは400ppi以上、さらに好ましくは500ppi以上であって、2000ppi以下、1000ppi以下、または600ppi以下などとすることができる。特に、200ppi以上600ppi以下、好ましくは300ppi以上600ppi以下の精細度で受光デバイスを配置することで、指紋の撮像に好適に用いることができる。また、精細度が、500ppi以上であると、米国国立標準技術研究所(NIST)などの規格に準拠できるため、好ましい。なお、受光デバイスの精細度を500ppiと仮定した場合、1画素あたり50.8μmのサイズとなり、指紋の幅(代表的には、300μm以上500μm以下)を撮像するには十分な精細度であることがわかる。
受光デバイスの配列間隔は、指紋の2つの凸部間の距離、好ましくは隣接する凹部と凸部間の距離よりも小さい間隔とすることで、鮮明な指紋の画像を取得することができる。人の指紋の凹部と凸部の間隔は概ね200μmであるといわれている。また、人の指紋の幅は、300μm以上500μm以下、または、460μm±150μmなどといわれている。例えば受光デバイスの配列間隔は、400μm以下、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、さらに好ましくは50μm以下であって、1μm以上、好ましくは10μm以上、より好ましくは20μm以上とする。
副画素PSが有する受光デバイスは、可視光を検出することが好ましく、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの光のうち一つまたは複数を検出することが好ましい。また、副画素PSが有する受光デバイスは、赤外光(近赤外光を含む)を検出してもよい。
また、副画素IRSは、タッチセンサまたは非接触センサなどに用いることができる。副画素IRSは、用途に応じて、検出する光の波長を適宜決定することができる。例えば、副画素IRSは、赤外光を検出することが好ましい。これにより、暗い場所でも、タッチ検出が可能となる。
図3C及び図3Dに、本発明の一態様の表示装置を有する電子機器の断面図の一例を示す。
図3C及び図3Dに示す電子機器は、それぞれ、筐体103と保護部材105との間に、表示装置100と、光源104とを有する。
光源104は、赤外光31IRを発する発光デバイスを有する。光源104には、例えば、発光ダイオード(LED:Light Emitting Diode)を用いることが好ましい。
図3Cでは、表示装置100と重ならない位置に光源104が配置されている例を示す。このとき、光源104の発光は、保護部材105を介して、電子機器の外部に射出される。
図3Dでは、表示装置と光源104とが重ねて設けられている例を示す。このとき、光源104の発光は、表示装置100と保護部材105とを介して、電子機器の外部に射出される。
図3C及び図3Dに示す表示装置100は、図3Aにおける一点鎖線A1−A2間の断面構造に相当する。表示装置100は、基板106と基板102との間に、複数の発光デバイス及び複数の受光デバイスを有する。
副画素Rは、赤色の光31Rを発する発光デバイス130Rを有する。副画素Gは、緑色の光31Gを発する発光デバイス130Gを有する。副画素Bは、青色の光31Bを発する発光デバイス130Bを有する。
副画素PSは、受光デバイス150PSを有し、副画素IRSは、受光デバイス150IRSを有する。副画素PSと副画素IRSが検出する光の波長は特に限定されない。
図3C及び図3Dに示すように、光源104が発した赤外光31IRは、対象物108(ここでは指)によって反射され、対象物108からの反射光32IRが受光デバイス150IRSに入射される。対象物108は、電子機器に接触していないが、受光デバイス150IRSを用いて、対象物108を検出することができる。
なお、本実施の形態では、赤外光31IRを用いて、対象物を検出する例を示すが、受光デバイス150IRSが検出する光の波長は特に限定されない。受光デバイス150IRSは、赤外光を検出することが好ましい。または、受光デバイス150IRSは、可視光を検出してもよく、赤外光と可視光の双方を検出してもよい。
ここで、タッチセンサまたは非接触センサでは、受光デバイスの受光面積を大きくすることで、対象物の検出をより容易にできる場合がある。そのため、図4Aに示すように、受光デバイス150PSと受光デバイス150IRSの双方を用いて、対象物108の検出を行ってもよい。
図4Aでは、図3C及び図3Dと同様に、光源104が発した赤外光31IRは、対象物108(ここでは指)によって反射され、対象物108からの反射光32IRが受光デバイス150IRSに入射される。さらに、図4Aでは、発光デバイス130Gが発した緑色の光31Gも、対象物108によって反射され、対象物108からの反射光32Gが受光デバイス150PSに入射される。対象物108は、電子機器に接触していないが、受光デバイス150IRS及び受光デバイス150PSを用いて、対象物108を検出することができる。
なお、受光デバイス150IRS(及び受光デバイス150PS)を用いて、電子機器に接触している対象物108を検出することもできる。
例えば、図4Bに示すように、発光デバイス130Gが発した緑色の光31Gが、対象物108によって反射され、対象物108からの反射光32Gが受光デバイス150PSに入射される。受光デバイス150PSを用いて、対象物108の指紋を撮像することができる。
なお、本実施の形態では、発光デバイス130Gが発する緑色の光31Gを用いて、受光デバイス150PSが対象物を検出する例を示すが、受光デバイス150PSが検出する光の波長は特に限定されない。受光デバイス150PSは、可視光を検出することが好ましく、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの光のうち一つまたは複数を検出することが好ましい。また、受光デバイス150PSは、赤外光を検出してもよい。
例えば、受光デバイス150PSは、発光デバイス130Rが発する赤色の光31Rを検出する機能を有していてもよい。また、受光デバイス150PSは、発光デバイス130Bが発する青色の光31Bを検出する機能を有していてもよい。
なお、受光デバイス150PSが検出する光を発する発光デバイスは、画素内で、副画素PSと位置が近い副画素に設けられていることが好ましい。例えば、画素180Aでは、副画素PSと隣り合う副画素Gが有する発光デバイス130Gの発光を、受光デバイス150PSが検出する構成である。このような構成とすることで、検出精度を高めることができる。
本発明の一態様の表示装置は、全ての画素に、上述の画素180Aの構成が適用されていてもよく、一部の画素に、画素180Aの構成が適用され、他の画素には、他の構成が適用されていてもよい。
例えば、本発明の一態様の表示装置は、図5Aに示す画素180Aと、図5Bに示す画素180Bと、の双方を有していてもよい。
図5Bに示す画素180Bは、副画素G、副画素B、副画素R、副画素PS、及び副画素Xを有する。
図5Cに示すように、画素は、下の行(2行目)に、3つの副画素(副画素PSと2つの副画素X)を有していてもよい。上述の通り、上の行と、下の行との副画素の配置を揃える構成とすることで、製造プロセスで生じうるゴミなどを効率よく除去することが可能となる。したがって、表示品位の高い表示装置を提供することができる。
副画素Xが有するデバイスを用いて、表示装置、または当該表示装置を搭載した電子機器では、様々な機能を実現することができる。
例えば、表示装置または電子機器は、副画素Xが有するデバイスを用いて、力、変位、位置、速度、加速度、角速度、回転数、距離、磁気、温度、化学物質、時間、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、体調、脈拍、体温、血中の酸素濃度、及び動脈血酸素飽和度の少なくとも一つを測定する機能を有することができる。
また、表示装置または電子機器が有する機能としては、例えば、ストロボライト機能、フラッシュライト機能、劣化補正機能、加速度センサ機能、においセンサ機能、体調検出機能、脈拍検出機能、体温検出機能、パルスオキシメーターとしての機能、または血中酸素濃度測定機能などが挙げられる。
ストロボライト機能は、例えば、短い周期で、発光と非発光とを繰り返す構成で実現することができる。
フラッシュライト機能は、例えば、電気二重層などの原理を利用して瞬間放電することで、閃光を発生させる構成で実現することができる。
なお、ストロボライト機能及びフラッシュライト機能は、例えば、防犯用途または護身用途などに利用することができる。また、ストロボライト及びフラッシュライトの発光色としては、白色が好ましい。ただし、ストロボライト及びフラッシュライトの発光色に、特に限定はなく、白色、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色など、実施者が適宜、最適な発光色を一つまたは複数選択することができる。
劣化補正機能としては、副画素G、副画素B、及び副画素Rの中から選ばれた少なくとも一つの副画素が有する発光デバイスの劣化を補正する機能が挙げられる。より具体的には、副画素Gが有する発光デバイスに用いる材料の信頼性が悪い場合、副画素Xを副画素Gと同様の構成とすることで、画素180Bの中に、2つの副画素Gを設ける構成とすることができる。当該構成とすることで、副画素Gの面積を2倍にすることができる。副画素Gの面積を2倍とすることで、副画素Gが1つの構成と比較して、信頼性を2倍程度高めることが可能となる。または、画素180Bの中に、2つの副画素Gを設ける構成とすることで、一方の副画素Gが劣化などにより、非発光となった場合に、他方の副画素Gにて、一方の副画素Gの発光を補う構成としてもよい。
なお、上記においては、副画素Gについて明示したが、副画素B、及び副画素Rについても、同様の構成とすることができる。
加速度センサ機能、においセンサ機能、体調検出機能、脈拍検出機能、体温検出機能、及び、血中酸素濃度測定機能は、それぞれ、検出に必要なセンサデバイスを副画素Xに設けることで実現することができる。また、副画素Xに設けるセンサデバイスに応じて、表示装置または電子機器は、様々な機能を実現できるということができる。
以上のように、図5Bに示す副画素Xに様々な機能を付与することで、画素180Bを有する表示装置を、多機能表示装置、または多機能パネルと呼称することができる。なお、副画素Xの機能については、1または2以上であってもよく、実施者が適宜最適な機能を選択することができる。
なお、本発明の一態様の表示装置は、副画素X及び副画素IRSの双方を有さない、4つの副画素から構成される画素を有していてもよい。つまり、副画素G、副画素B、副画素R、及び、副画素PSを有する、画素を有していてもよい。また、表示装置は、画素によって有する副画素の数が異なっていてもよい。一方で、各画素の品質を均一とするためには、全ての画素が、同一の数の副画素を有していることが好ましい。
また、例えば、本発明の一態様の表示装置は、図5Aに示す画素180Aと、図5Dに示す画素180Cと、の双方を有していてもよい。
図5Dに示す画素180Cは、副画素G、副画素B、副画素R、副画素PS、及び副画素IRを有する。
副画素IRは、赤外光を発する発光デバイスを有する。つまり、副画素IRは、センサの光源として利用することができる。表示装置が、赤外光を発する発光デバイスを有することで、表示装置と別に光源を設けなくてもよく、電子機器の部品点数を削減することができる。
図5Eに、本発明の一態様の表示装置を有する電子機器の断面図の一例を示す。
図5Eに示す電子機器は、筐体103と保護部材105との間に、表示装置100を有する。
図5Eに示す表示装置100は、図5Aにおける一点鎖線A1−A2間の断面構造と、図5Dにおける一点鎖線A3−A4間の断面構造とに相当する。つまり、図5Eに示す表示装置100は、画素180Aと画素180Cとを有する。
副画素Rは、赤色の光31Rを発する発光デバイス130Rを有する。副画素Gは、緑色の光31Gを発する発光デバイス130Gを有する。副画素Bは、青色の光31Bを発する発光デバイス130Bを有する。
副画素PSは、受光デバイス150PSを有し、副画素IRSは、受光デバイス150IRSを有する。副画素IRは、赤外光31IRを発する発光デバイス130IRを有する。
図5Eに示すように、発光デバイス130IRが発した赤外光31IRは、対象物108(ここでは指)によって反射され、対象物108からの反射光32IRが受光デバイス150IRSに入射される。対象物108は、電子機器に接触していないが、受光デバイス150IRSを用いて、対象物108を検出することができる。
図6乃至図9に、表示装置のレイアウトの一例を示す。
非接触センサ機能は、例えば、特定の箇所に固定した光源で対象物(指、手、またはペンなど)を照らし、対象物からの反射光を複数の副画素IRSで検出し、複数の副画素IRSにおける検出強度比によって対象物の位置を推定することで実現することができる。
副画素IRSを有する画素180Aは、表示部内に一定周期ごとに配置する構成、または、表示部の外周に配置する構成などを適用することができる。
一部の画素のみを用いて、非接触検出を行うことで、駆動周波数を高めることができる。また、他の画素に、副画素Xまたは副画素IRを搭載できるため、表示装置の多機能化を実現できる。
図6に示す表示装置100Aは、画素180Aと画素180Bの2種類の画素を有する。表示装置100Aでは、画素180Aは、3×3画素(9画素)に1つ設けられ、その他の画素には、画素180Bの構成が適用されている。
なお、画素180Aを配置する周期は、3×3画素に1つに限られない。例えば、タッチ検出に用いる画素を、4画素(2×2画素)につき1画素、16画素(4×4画素)につき1画素、100画素(10×10画素)につき1画素、または900画素(30×30画素)につき1画素などと適宜決定することができる。
図7に示す表示装置100Bは、画素180Aと画素180Cの2種類の画素を有する。表示装置100Bでは、画素180Aは、3×3画素(9画素)に1つ設けられ、その他の画素には、画素180Cの構成が適用されている。
図8に示す表示装置100Cは、画素180Aと画素180Bの2種類の画素を有する。表示装置100Cでは、画素180Aは、表示部の外周に設けられ、その他の画素には、画素180Bの構成が適用されている。
表示部の外周に画素180Aを設ける場合、画素180Aは、図8に示すように4辺全てを囲うように配置してもよく、4隅に配置してもよく、各辺に1つまたは複数配置してもよく、様々な配置を適用することができる。
図9に示す表示装置100Dは、画素180Aと画素180Cの2種類の画素を有する。表示装置100Dでは、画素180Aは、表示部の外周に設けられ、その他の画素には、画素180Cの構成が適用されている。
図6及び図8では、表示装置の表示部の外部に設けられた光源104が発する赤外光31IRが、対象物108によって反射され、対象物108からの反射光32IRが複数の画素180Aに入射される。当該画素180Aに設けられた副画素IRSで反射光32IRを検出し、複数の副画素IRSにおける検出強度比によって対象物108の位置を推定することができる。
なお、光源104は、少なくとも表示装置の表示部の外部に設けられており、表示装置に内蔵されていてもよく、表示装置とは別に電子機器に搭載されていてもよい。光源104には、例えば、赤外光を発する発光ダイオードなどを用いることができる。
図7及び図9では、画素180Cが有する副画素IRが発する赤外光31IRが、対象物108によって反射され、対象物108からの反射光32IRが複数の画素180Aに入射される。当該画素180Aに設けられた副画素IRSで反射光32IRを検出し、複数の副画素IRSにおける検出強度比によって対象物108の位置を推定することができる。
以上のように、表示装置のレイアウトは様々な態様をとることができる。
図10に、2つの受光デバイスを有する画素回路の例を示す。
図10に示す画素は、トランジスタM11、M12、M13、M14、M15、容量C1、及び受光デバイスPD1、PD2を有する。
トランジスタM11は、ゲートが配線TXと電気的に接続され、ソース及びドレインの一方が、受光デバイスPD1のアノード電極、及び、トランジスタM15のソース及びドレインの一方と電気的に接続され、ソース及びドレインの他方が、トランジスタM12のソース及びドレインの一方、容量C1の第1の電極、及びトランジスタM13のゲートと電気的に接続されている。トランジスタM12は、ゲートが配線RSと電気的に接続され、ソース及びドレインの他方が、配線VRSと電気的に接続されている。トランジスタM13は、ソース及びドレインの一方が、配線VPIと電気的に接続され、ソース及びドレインの他方が、トランジスタM14のソース及びドレインの一方と電気的に接続されている。トランジスタM14は、ゲートが配線SEと電気的に接続され、ソース及びドレインの他方が配線WXと電気的に接続されている。トランジスタM15は、ゲートが配線SWと電気的に接続され、ソース及びドレインの他方が受光デバイスPD2のアノード電極と電気的に接続されている。受光デバイスPD1及び受光デバイスPD2は、カソード電極が配線CLと電気的に接続されている。容量C1は、第2の電極が配線VCPと電気的に接続されている。
トランジスタM11、トランジスタM12、トランジスタM14、及びトランジスタM15は、スイッチとして機能する。トランジスタM13は、増幅素子(アンプ)として機能する。
本発明の一態様の表示装置では、画素回路に含まれるトランジスタの全てに、チャネルが形成される半導体層に金属酸化物(酸化物半導体ともいう)を有するトランジスタ(OSトランジスタともいう)を用いることが好ましい。OSトランジスタは、オフ電流が極めて小さく、当該トランジスタと直列に接続された容量に蓄積した電荷を長期間に亘って保持することが可能である。また、OSトランジスタを用いることで、表示装置の消費電力を低減することができる。
または、本発明の一態様の表示装置では、画素回路に含まれるトランジスタ全てに、チャネルが形成される半導体層にシリコンを有するトランジスタ(Siトランジスタともいう)を用いることが好ましい。シリコンとしては、単結晶シリコン、多結晶シリコン、非晶質シリコン等が挙げられる。特に、半導体層に低温ポリシリコン(LTPS(Low Temperature Poly−Silicon))を有するトランジスタ(以下、LTPSトランジスタともいう)を用いることが好ましい。LTPSトランジスタは、電界効果移動度が高く高速動作が可能である。
または、本発明の一態様の表示装置では、画素回路に、2種類のトランジスタを用いることが好ましい。具体的には、画素回路は、OSトランジスタと、LTPSトランジスタと、を有することが好ましい。トランジスタに求められる機能に応じて、半導体層の材料を変えることで、画素回路の品質を高め、センシングまたは撮像の精度を高めることができる。
例えば、トランジスタM11乃至トランジスタM15の全てに、半導体層に低温ポリシリコンを用いたLTPSトランジスタを適用することが好ましい。または、トランジスタM11、トランジスタM12、及びトランジスタM15に、半導体層に金属酸化物を用いたOSトランジスタを適用し、トランジスタM13に、LTPSトランジスタを適用することが好ましい。このとき、トランジスタM14は、OSトランジスタ及びLTPSトランジスタのどちらを適用してもよい。
トランジスタM11、トランジスタM12、及びトランジスタM15にOSトランジスタを適用することで、受光デバイスPD1及び受光デバイスPD2に発生する電荷に基づき、トランジスタM13のゲートに保持される電位が、トランジスタM11、トランジスタM12、またはトランジスタM15を介してリークされるのを防ぐことができる。
一方で、トランジスタM13には、LTPSトランジスタを適用することが好ましい。LTPSトランジスタは、OSトランジスタよりも、高い電界効果移動度を実現することができ、駆動能力及び電流能力に優れる。そのため、トランジスタM13では、トランジスタM11、トランジスタM12、及びトランジスタM15と比較して、より高速な動作が可能となる。トランジスタM13にLTPSトランジスタを用いることで、受光デバイスPD1または受光デバイスPD2の受光量に基づく微小の電位に応じた出力を、トランジスタM14に対して素早く行うことができる。
つまり、図10に示す画素回路において、トランジスタM11、トランジスタM12、及びトランジスタM15はリーク電流が少なく、かつ、トランジスタM13は駆動能力が高いことで、受光デバイスPD1及び受光デバイスPD2で受光し、トランジスタM11及びトランジスタM15を介して転送された電荷がリークすることなく保持でき、かつ、高速で読み出しを行うことができる。
トランジスタM14は、トランジスタM13からの出力を配線WXに流すスイッチとして機能するため、トランジスタM11乃至トランジスタM13及びトランジスタM15のように、小さいオフ電流及び高速動作等は必ずしも求められない。そのため、トランジスタM14の半導体層には、低温ポリシリコンを適用してもよいし、酸化物半導体を適用してもよい。
なお、図10において、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
上述の通り、個人認証のための撮像など、高精細で鮮明な撮像が求められる場合は、受光デバイスの開口率(受光面積)が小さいことが好ましい。一方で、非接触センサなど、おおよその位置が検出できればよい場合には、受光デバイスの開口率(受光面積)が大きいことが好ましい。そのため、受光デバイスPD1の開口率(受光面積)を、受光デバイスPD2の開口率(受光面積)よりも小さい構成とすることが好ましい。そして、高い精細度が求められる撮像においては、トランジスタM11をオンにし、トランジスタM15はオフとすることで、受光デバイスPD1のみを用いて撮像を行うことが好ましい。一方で、大面積での検出を行う場合には、トランジスタM11とトランジスタM15の双方をオンとすることで、受光デバイスPD1と受光デバイスPD2の双方を用いて撮像を行うことが好ましい。これにより、撮像できる光量を多くし、電子機器から離れた場所の対象物を検出しやすくすることができる。
以上のように、本発明の一態様の電子機器は、処理部及び表示部を用いて、非接触の対象物を検出し、位置情報を推論することができる。処理部において、機械学習モデルを用いることで、推論の精度を高めることができる。
また、本発明の一態様の表示装置は、1つの画素に、2種類の受光デバイスを搭載することで、表示機能に加えて、2つの機能を追加することができ、電子機器の多機能化が可能となる。例えば、高精細な撮像機能と、タッチセンサまたは非接触センサなどのセンシング機能と、を実現することができる。また、2種類の受光デバイスを搭載した画素と、別の構成の画素と、を組み合わせることで、電子機器の機能をさらに増やすことができる。例えば、赤外光を発する発光デバイス、または、各種センサデバイスなどを有する画素を用いることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の表示装置について図11乃至図15を用いて説明する。
本発明の一態様の表示装置は、画素に、発光デバイス及び受光デバイスを有する。本発明の一態様の表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出することができる。例えば、表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、他の一部の副画素は、光検出を行い、残りの副画素で画像を表示することもできる。
本発明の一態様の表示装置は、表示部に、発光デバイスがマトリクス状に配置されており、当該表示部で画像を表示することができる。また、当該表示部には、受光デバイスがマトリクス状に配置されており、表示部は、画像表示機能に加えて、撮像機能及びセンシング機能の一方または双方を有する。表示部は、イメージセンサまたはタッチセンサに用いることができる。つまり、表示部で光を検出することで、画像を撮像すること、または、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。さらに、本発明の一態様の表示装置は、発光デバイスをセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてもよく、電子機器の部品点数を削減することができる。
本発明の一態様の表示装置では、表示部が有する発光デバイスが発した光を対象物が反射(または散乱)した際、受光デバイスがその反射光(または散乱光)を検出できるため、暗い場所でも、撮像またはタッチ検出が可能である。
本発明の一態様の表示装置は、発光デバイスを用いて、画像を表示する機能を有する。つまり、発光デバイスは、表示デバイス(表示素子ともいう)として機能する。
発光デバイスとしては、例えば、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)を用いることが好ましい。発光デバイスが有する発光物質(発光材料ともいう)としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料)などが挙げられる。なお、TADF材料としては、一重項励起状態と三重項励起状態間が熱平衡状態にある材料を用いてもよい。このようなTADF材料は発光寿命(励起寿命)が短くなるため、発光デバイスにおける高輝度領域での効率低下を抑制することができる。また、発光デバイスとして、マイクロLED(Light Emitting Diode)などのLEDを用いることもできる。また、発光デバイスが有する発光物質として、無機化合物(量子ドット材料など)を用いることができる。
本発明の一態様の表示装置は、受光デバイスを用いて、光を検出する機能を有する。
受光デバイスをイメージセンサに用いる場合、表示装置は、受光デバイスを用いて、画像を撮像することができる。例えば、本実施の形態の表示装置は、スキャナとして用いることができる。
例えば、イメージセンサを用いて、指紋、掌紋などの生体情報に係るデータを取得することができる。つまり、表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
また、受光デバイスをタッチセンサに用いる場合、表示装置は、受光デバイスを用いて、対象物の近接または接触を検出することができる。
受光デバイスとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光デバイスは、受光デバイスに入射する光を検出し電荷を発生させる光電変換デバイス(光電変換素子ともいう)として機能する。受光デバイスに入射する光量に基づき、受光デバイスから発生する電荷量が決まる。
特に、受光デバイスとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な表示装置に適用できる。
本発明の一態様では、発光デバイスとして有機ELデバイスを用い、受光デバイスとして有機フォトダイオードを用いる。有機ELデバイス及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機ELデバイスを用いた表示装置に有機フォトダイオードを内蔵することができる。
有機フォトダイオードは、有機ELデバイスと共通の構成にできる層が多いため、共通の構成にできる層は一括で成膜することで、成膜工程の増加を抑制することができる。
例えば、一対の電極のうち一方(共通電極)を、受光デバイス及び発光デバイスで共通の構成の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受光デバイス及び発光デバイスで共通の構成の層とすることが好ましい。
なお、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが異なる場合がある。本明細書中では、発光デバイスにおける機能に基づいて構成要素を呼称する。例えば、正孔注入層は、発光デバイスにおいて正孔注入層として機能し、受光デバイスにおいて正孔輸送層として機能する。同様に、電子注入層は、発光デバイスにおいて電子注入層として機能し、受光デバイスにおいて電子輸送層として機能する。また、受光デバイスと発光デバイスが共通で有する層は、発光デバイスにおける機能と受光デバイスにおける機能とが同一である場合もある。正孔輸送層は、発光デバイス及び受光デバイスのいずれにおいても、正孔輸送層として機能し、電子輸送層は、発光デバイス及び受光デバイスのいずれにおいても、電子輸送層として機能する。
発光層の発光色がそれぞれ異なる複数の有機ELデバイスを有する表示装置を作製する場合、発光色が異なる発光層をそれぞれ島状に形成する必要がある。
例えば、メタルマスク(シャドーマスクともいう)を用いた真空蒸着法により、島状の発光層を成膜することができる。しかし、この方法では、メタルマスクの精度、メタルマスクと基板との位置ずれ、メタルマスクのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の発光層の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。
本発明の一態様の表示装置の作製方法では、島状の画素電極(下部電極ともいえる)を形成し、第1の色の光を発する発光層を含む第1の層(EL層、またはEL層の一部、ということができる)を一面に形成した後、第1の層上に第1の犠牲層を形成する。そして、第1の犠牲層上に第1のレジストマスクを形成し、第1のレジストマスクを用いて、第1の層と第1の犠牲層を加工することで、島状の第1の層を形成する。続いて、第1の層と同様に、第2の色の光を発する発光層を含む第2の層(EL層、またはEL層の一部、ということができる)を、第2の犠牲層及び第2のレジストマスクを用いて、島状に形成する。
このように、本発明の一態様の表示装置の作製方法では、島状のEL層は、ファインメタルマスクを用いて形成されるのではなく、EL層を一面に成膜した後に加工することで形成される。したがって、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、EL層を各色で作り分けることができるため、極めて鮮やかでコントラストが高く、表示品位の高い表示装置を実現できる。また、EL層上に犠牲層(マスク層と呼称してもよい)を設けることで、表示装置の作製工程中にEL層が受けるダメージを低減し、発光デバイスの信頼性を高めることができる。
隣り合う発光デバイスの間隔について、例えばメタルマスクを用いた形成方法では10μm未満にすることは困難であるが、上記方法によれば、3μm以下、2μm以下、または、1μm以下にまで狭めることができる。
また、EL層自体のパターン(加工サイズともいえる)についても、メタルマスクを用いた場合に比べて極めて小さくすることができる。また、例えばEL層の作り分けにメタルマスクを用いた場合では、EL層の中央と端で厚さのばらつきが生じるため、EL層の面積に対して、発光領域として使用できる有効な面積は小さくなる。一方、上記作製方法では、均一な厚さに成膜した膜を加工することでEL層を形成するため、EL層内で厚さを均一にでき、微細なパターンであっても、そのほぼ全域を発光領域として用いることができる。そのため、高い精細度と高い開口率を兼ね備えた表示装置を作製することができる。
ここで、第1の層及び第2の層は、それぞれ、少なくとも発光層を含み、好ましくは複数の層からなる。具体的には、発光層上に1層以上の層を有することが好ましい。発光層と犠牲層との間に他の層を有することで、表示装置の作製工程中に発光層が最表面に露出することを抑制し、発光層が受けるダメージを低減することができる。これにより、発光デバイスの信頼性を高めることができる。
なお、それぞれ異なる色の光を発する発光デバイスにおいて、EL層を構成する全ての層を作り分ける必要はなく、一部の層は同一工程で成膜することができる。本発明の一態様の表示装置の作製方法では、EL層を構成する一部の層を色ごとに島状に形成した後、犠牲層を除去し、EL層を構成する残りの層と、共通電極(上部電極ともいえる)と、を各色の発光デバイスに共通して形成する。
受光デバイスについても、発光デバイスと同様の作製方法を適用することができる。受光デバイスが有する島状の活性層(光電変換層ともいう)は、ファインメタルマスクを用いて形成されるのではなく、活性層となる膜を一面に成膜した後に加工することで形成されるため、島状の活性層を均一の厚さで形成することができる。また、活性層上に犠牲層を設けることで、表示装置の作製工程中に活性層が受けるダメージを低減し、受光デバイスの信頼性を高めることができる。
[表示装置の構成例]
図11A及び図11Bに、本発明の一態様の表示装置を示す。
図11Aに表示装置100Eの上面図を示す。表示装置100Eは、複数の画素110がマトリクス状に配置された表示部と、表示部の外側の接続部140と、を有する。1つの画素110は、副画素110a、110b、110c、110d、110eの、5つの副画素から構成される。なお、画素は図11Aの構成に限定されず、例えば、実施の形態1で例示した各構成を適用することもできる。
図11Aでは、1つの画素110が、2行3列で構成されている例を示す。画素110は、上の行(1行目)に、3つの副画素(副画素110a、110b、110c)を有し、下の行(2行目)に、2つの副画素(副画素110d、110e)を有する。言い換えると、画素110は、左の列(1列目)に、2つの副画素(副画素110a、110d)を有し、中央の列(2列目)に副画素110bを有し、右の列(3列目)に副画素110cを有し、さらに、中央の列から右の列にわたって、副画素110eを有する。
本実施の形態では、副画素110a、110b、110cが、それぞれ異なる色の光を発する発光デバイスを有し、副画素110d、110eが、互いに受光面積が異なる受光デバイスを有する例を示す。例えば、副画素110a、110b、110cは、図5A等に示す副画素G、B、Rに相当する。また、副画素110dは、図5A等に示す副画素PSに相当し、副画素110eは、図5A等に示す副画素IRSに相当する。
なお、副画素110eに設けるデバイスを画素ごとに変えてもよい。これにより、一部の副画素110eが副画素IRSに相当し、他の副画素110eが副画素X(図5B参照)または副画素IR(図5D参照)に相当する構成としてもよい。
図11Aでは、上面視で、接続部140が表示部の下側に位置する例を示すが、特に限定されない。接続部140は、上面視で、表示部の上側、右側、左側、下側の少なくとも一箇所に設けられていればよく、表示部の四辺を囲むように設けられていてもよい。また、接続部140は、単数であっても複数であってもよい。
図11Bに、図11Aにおける一点鎖線X1−X2間、X3−X4間、及びY1−Y2間の断面図を示す。また、変形例として、図12A乃至図12C、図13A及び図13B、図14A乃至図14Cには、図11Aにおける一点鎖線X1−X2間及びY1−Y2間の断面図を示す。
図11Bに示すように、表示装置100Eは、トランジスタを含む層101上に、発光デバイス130a、130b、130c、受光デバイス150d、150eが設けられ、これら発光デバイスと受光デバイスを覆うように保護層131が設けられている。保護層131上には、樹脂層122によって基板120が貼り合わされている。また、隣り合う2つのデバイス(発光デバイスと受光デバイス、2つの発光デバイス、または2つの受光デバイス)の間の領域には、絶縁層125と、絶縁層125上の絶縁層127と、が設けられている。
本発明の一態様の表示装置は、発光デバイスが形成されている基板とは反対方向に光を射出する上面射出型(トップエミッション型)、発光デバイスが形成されている基板側に光を射出する下面射出型(ボトムエミッション型)、両面に光を射出する両面射出型(デュアルエミッション型)のいずれであってもよい。
トランジスタを含む層101には、例えば、基板に複数のトランジスタが設けられ、これらのトランジスタを覆うように絶縁層が設けられた積層構造を適用することができる。トランジスタを含む層101は、隣り合う2つのデバイスの間に凹部を有していてもよい。例えば、トランジスタを含む層101の最表面に位置する絶縁層に凹部が設けられていてもよい。トランジスタを含む層101の構成例は、実施の形態3で後述する。
発光デバイス130a、130b、130cは、それぞれ、異なる色の光を発する。発光デバイス130a、130b、130cは、例えば、赤色(R)、緑色(G)、青色(B)の3色の光を発する組み合わせであることが好ましい。
発光デバイスは、一対の電極間にEL層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
発光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。
発光デバイス130aは、トランジスタを含む層101上の導電層111aと、導電層111a上の島状の第1の層113aと、島状の第1の層113a上の第4の層114と、第4の層114上の共通電極115と、を有する。導電層111aは、画素電極として機能する。発光デバイス130aにおいて、第1の層113aと第4の層114とをまとめてEL層と呼ぶことができる。発光デバイスの構成例については、実施の形態4の記載を参照することができる。
第1の層113aは、例えば、正孔注入層、正孔輸送層、発光層、及び、電子輸送層を有する。または、第1の層113aは、例えば、第1の発光ユニット、電荷発生層、及び第2の発光ユニットを有する。
第4の層114は、例えば、電子注入層を有する。または、第4の層114は、電子輸送層と電子注入層とを積層して有していてもよい。
発光デバイス130bは、トランジスタを含む層101上の導電層111bと、導電層111b上の島状の第2の層113bと、島状の第2の層113b上の第4の層114と、第4の層114上の共通電極115と、を有する。導電層111bは、画素電極として機能する。発光デバイス130bにおいて、第2の層113bと第4の層114とをまとめてEL層と呼ぶことができる。
発光デバイス130cは、トランジスタを含む層101上の導電層111cと、導電層111c上の島状の第3の層113cと、島状の第3の層113c上の第4の層114と、第4の層114上の共通電極115と、を有する。導電層111cは、画素電極として機能する。発光デバイス130cにおいて、第3の層113cと第4の層114とをまとめてEL層と呼ぶことができる。
発光デバイス130a、130b、130cは、それぞれ、異なる色の光を発する。発光デバイス130a、130b、130cは、例えば、赤色(R)、緑色(G)、青色(B)の3色の光を発する組み合わせであることが好ましい。
受光デバイスは、一対の電極間に活性層を有する。本明細書等では、一対の電極の一方を画素電極と記し、他方を共通電極と記すことがある。
受光デバイスが有する一対の電極のうち、一方の電極は陽極として機能し、他方の電極は陰極として機能する。以下では、画素電極が陽極として機能し、共通電極が陰極として機能する場合を例に挙げて説明する。つまり、受光デバイスは、画素電極と共通電極との間に逆バイアスをかけて駆動することで、受光デバイスに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。または、画素電極が陰極として機能し、共通電極が陽極として機能してもよい。
受光デバイス150dは、トランジスタを含む層101上の導電層111dと、導電層111d上の島状の第5の層113dと、島状の第5の層113d上の第4の層114と、第4の層114上の共通電極115と、を有する。導電層111dは、画素電極として機能する。
第5の層113dは、例えば、正孔輸送層、活性層、及び、電子輸送層を有する。
受光デバイス150eは、トランジスタを含む層101上の導電層111eと、導電層111e上の島状の第6の層113eと、島状の第6の層113e上の第4の層114と、第4の層114上の共通電極115と、を有する。導電層111eは、画素電極として機能する。
第6の層113eは、例えば、正孔輸送層、活性層、及び、電子輸送層を有する。
第4の層114は、発光デバイスと受光デバイスが共通で有する層である。第4の層114は、上述の通り、例えば、電子注入層を有する。または、第4の層114は、電子輸送層と電子注入層とを積層して有していてもよい。
共通電極115は、接続部140に設けられた導電層123と電気的に接続される。なお、図11Bでは、導電層123上に第4の層114が設けられ、第4の層114を介して、導電層123と共通電極115とが電気的に接続されている例を示す。接続部140には第4の層114を設けなくてもよい。例えば、図12Cでは、導電層123上に第4の層114が設けられていなく、導電層123と共通電極115とが直接、接続されている例を示す。
例えば、成膜エリアを規定するためのマスク(エリアマスク、ラフメタルマスクなどともいう)を用いることで、第4の層114と、共通電極115とで成膜される領域を変えることができる。
導電層111a乃至導電層111e、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのそれぞれの側面は、絶縁層125及び絶縁層127によって覆われている。これにより、第4の層114(または共通電極115)が、導電層111a乃至導電層111e、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのいずれかの側面と接することを抑制し、発光デバイス及び受光デバイスのショートを抑制することができる。これにより、発光デバイス及び受光デバイスの信頼性を高めることができる。
絶縁層125は、少なくとも導電層111a乃至導電層111eの側面を覆うことが好ましい。さらに、絶縁層125は、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面を覆うことが好ましい。絶縁層125は、導電層111a乃至導電層111e、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのそれぞれの側面と接する構成とすることができる。
絶縁層127は、絶縁層125に形成された凹部を充填するように、絶縁層125上に設けられる。絶縁層127は、絶縁層125を介して、導電層111a乃至導電層111e、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのそれぞれの側面と重なる構成(側面を覆う構成ともいえる)とすることができる。
絶縁層125及び絶縁層127を設けることで、隣り合う島状の層の間を埋めることができるため、島状の層上に設ける層(共通電極など)の被形成面の凹凸を低減し、より平坦にすることができる。したがって、共通電極の被覆性を高めることができ、共通電極の段切れを防止することができる。
また、絶縁層125または絶縁層127は、島状の層と接するように設けることができる。これにより、島状の層の膜剥がれを防止することができる。絶縁層と島状の層とが密着することで、隣り合う島状の層が、絶縁層によって固定される、または、接着される効果を奏する。
絶縁層127には有機樹脂膜が好適である。EL層の側面と、感光性の有機樹脂膜とが、直接接する場合、感光性の有機樹脂膜に含まれうる有機溶媒などがEL層にダメージを与える可能性がある。絶縁層125に、原子層堆積(ALD:Atomic Layer Deposition)法により形成した酸化アルミニウム膜を用いることで、絶縁層127に用いる感光性の有機樹脂膜と、EL層の側面とが直接接しない構成とすることができる。これにより、EL層が有機溶媒により溶解することなどを抑制することができる。
なお、絶縁層125及び絶縁層127のいずれか一方を設けなくてもよい。例えば、無機材料を用いた単層構造の絶縁層125を形成することで、絶縁層125をEL層の保護絶縁層として用いることができる。これにより、表示装置の信頼性を高めることができる。また、例えば、有機材料を用いた単層構造の絶縁層127を形成することで、隣り合うEL層の間を絶縁層127で充填し、平坦化することができる。これにより、EL層及び絶縁層127上に形成する共通電極(上部電極)の被覆性を高めることができる。
図12Aには、絶縁層125を設けない場合の例を示す。絶縁層125を設けない場合、絶縁層127は、導電層111a乃至導電層111e、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのそれぞれの側面と接する構成とすることができる。絶縁層127は、各発光デバイスが有するEL層の間を充填するように設けることができる。
このとき、絶縁層127には、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eに与えるダメージの少ない有機材料を用いることが好ましい。例えば、絶縁層127には、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いることが好ましい。
また、図12Bには、絶縁層127を設けない場合の例を示す。
第4の層114及び共通電極115は、第1の層113a、第2の層113b、第3の層113c、第5の層113d、第6の層113e、絶縁層125、及び絶縁層127上に設けられる。絶縁層125及び絶縁層127を設ける前の段階では、画素電極及びEL層が設けられる領域と、画素電極及びEL層が設けられない領域(発光デバイス間の領域)と、に起因する段差が生じている。本発明の一態様の表示装置は、絶縁層125及び絶縁層127を有することで当該段差を平坦化させることができ、第4の層114及び共通電極115の被覆性を向上させることができる。したがって、段切れによる接続不良を抑制することができる。または、段差によって共通電極115が局所的に薄膜化して電気抵抗が上昇することを抑制することができる。
第4の層114及び共通電極115の形成面の平坦性を向上させるために、絶縁層125の上面及び絶縁層127の上面の高さは、それぞれ、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの少なくとも一つの上面の高さと一致または概略一致することが好ましい。また、絶縁層127の上面は平坦な形状を有することが好ましく、凸部、凸曲面、凹曲面、または凹部を有していてもよい。
絶縁層125は、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面と接する領域を有し、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの保護絶縁層として機能する。絶縁層125を設けることで、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面から内部へ不純物(酸素、水分等)が侵入することを抑制でき、信頼性の高い表示装置とすることができる。
断面視において第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面と接する領域における絶縁層125の幅(厚さ)が大きいと、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの間隔が大きくなり、開口率が低くなってしまう場合がある。また、絶縁層125の幅(厚さ)が小さいと、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面から内部へ不純物が侵入することを抑制する効果が小さくなってしまう場合がある。第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eの側面と接する領域における絶縁層125の幅(厚さ)は、3nm以上200nm以下が好ましく、さらには3nm以上150nm以下が好ましく、さらには5nm以上150nm以下が好ましく、さらには5nm以上100nm以下が好ましく、さらには10nm以上100nm以下が好ましく、さらには10nm以上50nm以下が好ましい。絶縁層125の幅(厚さ)を前述の範囲とすることで、高い開口率を有し、かつ信頼性の高い表示装置とすることができる。
絶縁層125は、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特に、酸化アルミニウムは、エッチングにおいて、EL層との選択比が高く、後述する絶縁層127の形成において、EL層を保護する機能を有するため、好ましい。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。また、絶縁層125は、ALD法により形成した膜と、スパッタリング法により形成した膜と、の積層構造としてもよい。絶縁層125は、例えば、ALD法によって形成された酸化アルミニウム膜と、スパッタリング法によって形成された窒化シリコン膜と、の積層構造であってもよい。
なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
絶縁層125の形成は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
絶縁層125上に設けられる絶縁層127は、隣接する発光デバイス間に形成された絶縁層125の凹部を平坦化する機能を有する。換言すると、絶縁層127を有することで共通電極115の形成面の平坦性を向上させる効果を奏する。絶縁層127としては、有機材料を有する絶縁層を好適に用いることができる。例えば、絶縁層127として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、絶縁層127として、ポリビニルアルコール(PVA)、ポリビニルブチラル、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。また、絶縁層127として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
絶縁層127の上面の高さと、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのいずれかの上面の高さとの差が、例えば、絶縁層127の厚さの0.5倍以下が好ましく、0.3倍以下がより好ましい。また例えば、第1の層113a、第2の層113b、第3の層113c、第5の層113d、及び、第6の層113eのいずれかの上面が絶縁層127の上面よりも高くなるように、絶縁層127を設けてもよい。また、例えば、絶縁層127の上面が、第1の層113a、第2の層113b、または、第3の層113cが有する発光層の上面よりも高くなるように、絶縁層127を設けてもよい。
発光デバイス130a、130b、130c、受光デバイス150d、150e上に保護層131を有することが好ましい。保護層131を設けることで、発光デバイス及び受光デバイスの信頼性を高めることができる。
保護層131の導電性は問わない。保護層131としては、絶縁膜、半導体膜、及び、導電膜の少なくとも一種を用いることができる。
保護層131が無機膜を有することで、共通電極115の酸化を防止する、発光デバイス130a、130b、130c、受光デバイス150d、150eに不純物(水分、酸素など)が入り込むことを抑制する、など、発光デバイス及び受光デバイスの劣化を抑制し、表示装置の信頼性を高めることができる。
保護層131には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。
保護層131は、それぞれ、窒化絶縁膜または窒化酸化絶縁膜を有することが好ましく、窒化絶縁膜を有することがより好ましい。
また、保護層131には、In−Sn酸化物(ITOともいう)、In−Zn酸化物、Ga−Zn酸化物、Al−Zn酸化物、またはインジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOともいう)などを含む無機膜を用いることもできる。当該無機膜は、高抵抗であることが好ましく、具体的には、共通電極115よりも高抵抗であることが好ましい。当該無機膜は、さらに窒素を含んでいてもよい。
発光デバイスの発光を、保護層131を介して取り出す場合、保護層131は、可視光に対する透過性が高いことが好ましい。例えば、ITO、IGZO、及び、酸化アルミニウムは、それぞれ、可視光に対する透過性が高い無機材料であるため、好ましい。
保護層131としては、例えば、酸化アルミニウム膜と、酸化アルミニウム膜上の窒化シリコン膜と、の積層構造、または、酸化アルミニウム膜と、酸化アルミニウム膜上のIGZO膜と、の積層構造などを用いることができる。当該積層構造を用いることで、不純物(水、酸素など)がEL層側に入り込むことを抑制できる。
さらに、保護層131は、有機膜を有していてもよい。例えば、保護層131は、有機膜と無機膜の双方を有していてもよい。
導電層111a乃至導電層111cのそれぞれの上面端部は、絶縁層によって覆われていない。そのため、隣り合う発光デバイスの間隔を極めて狭くすることができる。したがって、高精細、または、高解像度の表示装置とすることができる。
なお、図13A及び図13Bに示すように、導電層111a乃至導電層111cのそれぞれの端部は、絶縁層121によって覆われていてもよい。
絶縁層121は、無機絶縁膜及び有機絶縁膜の一方または双方を用いた、単層構造または積層構造とすることができる。
絶縁層121に用いることができる有機絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、ポリシロキサン樹脂、ベンゾシクロブテン系樹脂、及びフェノール樹脂等が挙げられる。また、絶縁層121に用いることができる無機絶縁膜としては、保護層131に用いることができる無機絶縁膜を用いることができる。
画素電極の端部を覆う絶縁層121として、無機絶縁膜を用いると、有機絶縁膜を用いる場合に比べて、発光デバイスに不純物が入りにくく、発光デバイスの信頼性を高めることができる。画素電極の端部を覆う絶縁層121として、有機絶縁膜を用いると、無機絶縁膜を用いる場合に比べて、段差被覆性が高く、画素電極の形状の影響を受けにくい。そのため、発光デバイスのショートを防止できる。具体的には、絶縁層121として、有機絶縁膜を用いると、絶縁層121の形状をテーパー形状などに加工することができる。なお、本明細書等において、テーパー形状とは、構造の側面の少なくとも一部が、基板面または被形成面に対して傾斜して設けられている形状のことを指す。例えば、傾斜した側面と基板面または被形成面とがなす角(テーパー角ともいう)が90°未満である領域を有すると好ましい。
なお、絶縁層121は、設けなくてもよい。絶縁層121を設けないことで、副画素の開口率を高められることがある。または、副画素間の距離を狭くすることができ、表示装置の精細度または解像度を高められることがある。
なお、図13Aでは、第4の層114が第1の層113aと第2の層113bの領域などに入り込んでいる例を示すが、図13Bに示すように、当該領域に、空隙134が形成されてもよい。
空隙134は、例えば、空気、窒素、酸素、二酸化炭素、及び第18族元素(代表的には、ヘリウム、ネオン、アルゴン、キセノン、クリプトン等)の中から選ばれるいずれか一または複数を有する。または、空隙134に樹脂などが埋め込まれていてもよい。
また、図11B等では、導電層111aの端部と第1の層113aの端部が揃っている、または概略揃っている例を示す。言い換えると、導電層111aと第1の層113aの上面形状が一致または概略一致している。
導電層111aと第1の層113a、導電層111bと第2の層113b、導電層111cと第3の層113c等において、形状の大小関係は特に限定されない。図14Aでは、導電層111aの端部よりも第1の層113aの端部が内側に位置する例を示す。図14Aにおいて、導電層111a上に第1の層113aの端部が位置している。また、図14Bでは、導電層111aの端部よりも第1の層113aの端部が外側に位置する例を示す。図14Bにおいて、第1の層113aは、導電層111aの端部を覆うように設けられている。
なお、端部が揃っている、または概略揃っている場合、及び、上面形状が一致または概略一致している場合、上面視において、積層した層と層との間で少なくとも輪郭の一部が重なっているといえる。例えば、上層と下層とが、同一のマスクパターン、または一部が同一のマスクパターンにより加工された場合を含む。ただし、厳密には輪郭が重なり合わず、上層が下層の内側に位置すること、または、上層が下層の外側に位置することもあり、この場合も端部が概略揃っている、または、上面形状が概略一致している、という。
また、図14Cに、絶縁層127の変形例を示す。図14Cにおいて、絶縁層127の上面は、断面視において、中心に向かってなだらかに膨らんだ形状、つまり凸曲面を有し、かつ、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する。
図15A乃至図15Fに、絶縁層127とその周辺を含む領域139の断面構造を示す。
図15Aでは、第1の層113aと第2の層113bの厚さが互いに異なる例を示す。絶縁層125の上面の高さは、第1の層113a側では第1の層113aの上面の高さと一致または概略一致しており、第2の層113b側では第2の層113bの上面の高さと一致または概略一致している。そして、絶縁層127の上面は、第1の層113a側が高く、第2の層113b側が低い、なだらかな傾斜を有している。このように、絶縁層125及び絶縁層127の高さは、隣接するEL層の上面の高さと揃っていることが好ましい。または、絶縁層125及び絶縁層127の上面は、隣接するEL層のいずれかの上面の高さと揃っている平坦部を有していてもよい。
図15Bにおいて、絶縁層127の上面は、第1の層113aの上面及び第2の層113bの上面よりも高い領域を有する。図15Bに示すように、絶縁層127の上面は、断面視において、中央及びその近傍が膨らんだ形状、つまり、凸曲面を有する形状を有する構成とすることができる。
図15Cにおいて、絶縁層127の上面は、断面視において、中心に向かってなだらかに膨らんだ形状、つまり凸曲面を有し、かつ、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する。絶縁層127は、第1の層113aの上面及び第2の層113bの上面より高い領域を有する。また、領域139において、表示装置は、犠牲層118a及び犠牲層119aの少なくとも一方を有し、絶縁層127が第1の層113aの上面及び第2の層113bの上面より高く、且つ絶縁層125よりも外側に位置する第1の領域を有し、第1の領域は犠牲層118a及び犠牲層119aの少なくとも一方の上に位置する。また、領域139において、表示装置は、犠牲層118b及び犠牲層119bの少なくとも一方を有し、絶縁層127が第1の層113aの上面及び第2の層113bの上面より高く、且つ絶縁層125よりも外側に位置する第2の領域を有し、第2の領域は犠牲層118b及び犠牲層119bの少なくとも一方の上に位置する。
図15Dにおいて、絶縁層127の上面は、第1の層113aの上面及び第2の層113bの上面よりも低い領域を有する。また、絶縁層127の上面は、断面視において、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する形状を有する。
図15Eにおいて、絶縁層125の上面は、第1の層113aの上面及び第2の層113bの上面よりも高い領域を有する。すなわち、第4の層114の被形成面において、絶縁層125が突出し、凸部を形成している。
絶縁層125の形成において、例えば、犠牲層の高さと揃うまたは概略揃うように絶縁層125を形成する場合には、図15Eに示すように、絶縁層125が突出する形状が形成される場合がある。
図15Fにおいて、絶縁層125の上面は、第1の層113aの上面及び第2の層113bの上面よりも低い領域を有する。すなわち、第4の層114の被形成面において、絶縁層125が凹部を形成している。
このように、絶縁層125及び絶縁層127は様々な形状を適用することができる。
犠牲層としては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を用いることができる。
犠牲層には、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。
また、犠牲層には、In−Ga−Zn酸化物などの金属酸化物を用いることができる。犠牲層として、例えば、スパッタリング法を用いて、In−Ga−Zn酸化物膜を形成することができる。さらに、酸化インジウム、In−Zn酸化物、In−Sn酸化物、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いてもよい。
また、犠牲層としては、保護層131に用いることができる各種無機絶縁膜を用いることができる。特に、酸化絶縁膜は、窒化絶縁膜に比べてEL層との密着性が高く好ましい。例えば、犠牲層には、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることができる。犠牲層として、例えば、ALD法を用いて、酸化アルミニウム膜を形成することができる。ALD法を用いることで、下地(特にEL層など)へのダメージを低減できるため好ましい。犠牲層として、例えば、スパッタリング法を用いて、窒化シリコン膜を形成することができる。
例えば、犠牲層として、ALD法を用いて形成した無機絶縁膜(例えば、酸化アルミニウム膜)と、スパッタリング法を用いて形成したIn−Ga−Zn酸化物膜と、の積層構造を適用することができる。または、犠牲層として、ALD法を用いて形成した無機絶縁膜(例えば、酸化アルミニウム膜)と、スパッタリング法を用いて形成したアルミニウム膜、タングステン膜、または無機絶縁膜(例えば、窒化シリコン膜)と、の積層構造を適用することができる。
本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
なお、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。SBS構造は、発光デバイスごとに材料及び構成を最適化することができるため、材料及び構成の選択の自由度が高まり、輝度の向上、信頼性の向上を図ることが容易となる。
また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラー表示の表示装置を実現することができる。
また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1つ以上の発光層を含む構成とすることが好ましい。2つの発光層を用いて白色発光を得る場合、2つの発光層の発光色が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、3つ以上の発光層を用いて白色発光を得る場合、3つ以上の発光層の発光色が合わさることで、発光デバイス全体として白色発光する構成とすればよい。
タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる構成については、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層を設けると好適である。
また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合は、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
本実施の形態の表示装置は、発光デバイス間の距離を狭くすることができる。具体的には、発光デバイス間の距離、EL層間の距離、または画素電極間の距離を、10μm未満、5μm以下、3μm以下、2μm以下、1μm以下、500nm以下、200nm以下、100nm以下、90nm以下、70nm以下、50nm以下、30nm以下、20nm以下、15nm以下、または10nm以下とすることができる。別言すると、第1の層113aの側面と第2の層113bの側面との間隔、または第2の層113bの側面と第3の層113cの側面との間隔が1μm以下の領域を有し、好ましくは0.5μm(500nm)以下の領域を有し、さらに好ましくは100nm以下の領域を有する。
なお、発光デバイスと受光デバイスとの間の距離も上記の範囲とすることができる。また、発光デバイスと受光デバイスとの間のリークを抑制するため、発光デバイス間の距離よりも、発光デバイスと受光デバイスとの間の距離を広くすることが好ましい。例えば、発光デバイスと受光デバイスとの間の距離は、8μm以下、5μm以下、または3μm以下とすることができる。
基板120の樹脂層122側の面には、遮光層を設けてもよい。また、基板120の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板120の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
基板120には、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板120に可撓性を有する材料を用いると、表示装置の可撓性を高め、フレキシブルディスプレイを実現することができる。また、基板120として偏光板を用いてもよい。
基板120としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板120に、可撓性を有する程度の厚さのガラスを用いてもよい。
なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
樹脂層122としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光デバイスが有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
次に、発光デバイス及び受光デバイスに用いることができる材料について説明する。
画素電極と共通電極のうち、光を取り出す側の電極には、可視光及び赤外光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光及び赤外光を反射する導電膜を用いることが好ましい。
発光デバイス及び受光デバイスの一対の電極(画素電極と共通電極)を形成する材料としては、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、インジウムスズ酸化物(In−Sn酸化物、ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、インジウム亜鉛酸化物(In−Zn酸化物)、In−W−Zn酸化物、アルミニウム、ニッケル、及びランタンの合金(Al−Ni−La)等のアルミニウムを含む合金(アルミニウム合金)、並びに、銀とマグネシウムの合金、銀とパラジウムと銅の合金(Ag−Pd−Cu、APCとも記す)等の銀を含む合金が挙げられる。その他、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
発光デバイス及び受光デバイスには、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光デバイス及び受光デバイスが有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光デバイスがマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光デバイスから射出される光を強めることができる。受光デバイスがマイクロキャビティ構造を有することで、活性層が受けた光を両電極間で共振させ、当該光を強め、受光デバイスの検出精度を高めることができる。
なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。
透明電極の光の透過率は、40%以上とする。例えば、発光デバイスには、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。また、これらの電極の近赤外光(波長750nm以上1300nm以下の光)の透過率または反射率は、可視光の透過率または反射率と同様に、上記の数値範囲を満たすことが好ましい。
第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、発光層を有する。第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、異なる色の光を発する発光層を有することが好ましい。
発光層は、発光物質を含む層である。発光層は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
発光物質としては、蛍光材料、燐光材料、熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料、量子ドット材料などが挙げられる。
蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
発光層は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
発光層は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光デバイスの高効率、低電圧駆動、長寿命を同時に実現できる。
第1の層113a、第2の層113b、及び、第3の層113cは、発光層以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質(正孔輸送性材料とも記す)、正孔ブロック材料、電子輸送性の高い物質(電子輸送性材料とも記す)、電子注入性の高い物質、電子ブロック材料、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質、バイポーラ性材料とも記す)等を含む層をさらに有していてもよい。
発光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
例えば、第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有していてもよい。また、第1の層113a、第2の層113b、及び、第3の層113cは、それぞれ、電荷発生層を有していてもよい。
第4の層114は、正孔注入層、正孔輸送層、正孔ブロック層、電子ブロック層、電子輸送層、及び電子注入層のうち一つ以上を有することができる。例えば、導電層111a乃至導電層111cが陽極として機能し、共通電極115が陰極として機能する場合、第4の層114は、電子注入層を有することが好ましい。
正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い物質を含む層である。正孔注入性の高い物質としては、芳香族アミン化合物、及び、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料などが挙げられる。
発光デバイスにおいて、正孔輸送層は、正孔注入層によって陽極から注入された正孔を、発光層に輸送する層である。受光デバイスにおいて、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い物質が好ましい。
発光デバイスにおいて、電子輸送層は、電子注入層によって陰極から注入された電子を、発光層に輸送する層である。受光デバイスにおいて、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他、含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い物質を用いることができる。
電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い物質を含む層である。電子注入性の高い物質としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い物質としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
電子注入層としては、例えば、リチウム、セシウム、イッテルビウム、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8−(キノリノラト)リチウム(略称:Liq)、2−(2−ピリジル)フェノラトリチウム(略称:LiPP)、2−(2−ピリジル)−3−ピリジノラトリチウム(略称:LiPPy)、4−フェニル−2−(2−ピリジル)フェノラトリチウム(略称:LiPPP)、リチウム酸化物(LiO)、炭酸セシウム等のようなアルカリ金属、アルカリ土類金属、またはこれらの化合物を用いることができる。また、電子注入層としては、2層以上の積層構造としてもよい。当該積層構造としては、例えば、1層目にフッ化リチウムを用い、2層目にイッテルビウムを設ける構成とすることができる。
または、電子注入層としては、電子輸送性材料を用いてもよい。例えば、非共有電子対を備え、電子不足型複素芳香環を有する化合物を、電子輸送性材料に用いることができる。具体的には、ピリジン環、ジアジン環(ピリミジン環、ピラジン環、ピリダジン環)、トリアジン環の少なくとも一つを有する化合物を用いることができる。
なお、非共有電子対を備える有機化合物の最低空軌道(LUMO:Lowest Unoccupied Molecular Orbital)が、−3.6eV以上−2.3eV以下であると好ましい。また、一般にCV(サイクリックボルタンメトリ)、光電子分光法、光吸収分光法、逆光電子分光法等により、有機化合物の最高被占有軌道(HOMO:Highest Occupied Molecular Orbital)準位及びLUMO準位を見積もることができる。
例えば、4,7−ジフェニル−1,10−フェナントロリン(略称:BPhen)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBPhen)、ジキノキサリノ[2,3−a:2’,3’−c]フェナジン(略称:HATNA)、2,4,6−トリス[3’−(ピリジン−3−イル)ビフェニル−3−イル]−1,3,5−トリアジン(略称:TmPPPyTz)等を、非共有電子対を備える有機化合物に用いることができる。なお、NBPhenはBPhenと比較して、高いガラス転移温度(Tg)を備え、耐熱性に優れる。
電荷発生層としては、例えば、リチウムなどの電子注入層に適用可能な材料を好適に用いることができる。また、電荷発生層としては、例えば、正孔注入層に適用可能な材料を好適に用いることができる。また、電荷発生層には、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む層を用いることができる。また、電荷発生層には、電子輸送性材料とドナー性材料とを含む層を用いることができる。このような層を有する電荷発生層を形成することにより、発光ユニットが積層された場合における駆動電圧の上昇を抑制することができる。
第5の層113d、及び、第6の層113eは、それぞれ、活性層を有する。第5の層113dと第6の層113eは、同じ構成の活性層を有していてもよく、異なる構成の活性層を有していてもよい。例えば、受光デバイスがマイクロキャビティ構造を有することで、活性層の構成が同じであっても、第5の層113dと第6の層113eとで異なる波長の光を検出することができる。なお、受光デバイス150d、150eで、画素電極の厚さ、または光学調整層の厚さを変えることでマイクロキャビティ構造を作製することができる。この場合、第5の層113dと第6の層113eとは同一の構成にできることもある。
活性層は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層と、活性層と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
活性層が有するn型半導体の材料としては、フラーレン(例えばC60フラーレン、C70フラーレン等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位及びLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光デバイスとして有益である。C60フラーレン、C70フラーレンともに可視光領域に広い吸収帯を有しており、特にC70はC60に比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。そのほか、フラーレン誘導体としては、[6,6]−Phenyl−C71−butyric acid methyl ester(略称:PC70BM)、[6,6]−Phenyl−C61−butyric acid methyl ester(略称:PC60BM)、1’,1’’,4’,4’’−Tetrahydro−di[1,4]methanonaphthaleno[1,2:2’,3’,56,60:2’’,3’’][5,6]fullerene−C60(略称:ICBA)などが挙げられる。
また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
活性層が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II)phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズ(II)フタロシアニン(SnPc)、キナクリドン等の電子供与性の有機半導体材料が挙げられる。
また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
例えば、活性層は、n型半導体とp型半導体と共蒸着して形成することが好ましい。または、活性層は、n型半導体とp型半導体とを積層して形成してもよい。
第5の層113d、及び、第6の層113eは、活性層以外の層として、正孔輸送性の高い物質、電子輸送性の高い物質、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。また、第5の層113d、及び、第6の層113eは、第1の層113a、第2の層113b、及び、第3の層113cに用いることができる各種機能層を有していてもよい。
受光デバイスには低分子化合物及び高分子化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。受光デバイスを構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
例えば、正孔輸送性材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)などの高分子化合物、及び、モリブデン酸化物、ヨウ化銅(CuI)などの無機化合物を用いることができる。また、電子輸送性材料として、酸化亜鉛(ZnO)などの無機化合物を用いることができる。
また、活性層に、ドナーとして機能するPoly[[4,8−bis[5−(2−ethylhexyl)−2−thienyl]benzo[1,2−b:4,5−b’]dithiophene−2,6−diyl]−2,5−thiophenediyl[5,7−bis(2−ethylhexyl)−4,8−dioxo−4H,8H−benzo[1,2−c:4,5−c’]dithiophene−1,3−diyl]]polymer(略称:PBDB−T)、または、PBDB−T誘導体などの高分子化合物を用いることができる。例えば、PBDB−TまたはPBDB−T誘導体にアクセプター材料を分散させる方法などが使用できる。
また、活性層には3種類以上の材料を混合させてもよい。例えば、吸収波長域を拡大する目的で、n型半導体の材料と、p型半導体の材料と、に加えて、第3の材料を混合してもよい。このとき、第3の材料は、低分子化合物でも高分子化合物でもよい。
表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スパッタリング法、CVD法、真空蒸着法、PLD法、ALD法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、及び、熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
また、表示装置を構成する薄膜(絶縁膜、半導体膜、及び、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
特に、発光デバイスの作製には、蒸着法などの真空プロセス、及び、スピンコート法、インクジェット法などの溶液プロセスを用いることができる。蒸着法としては、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)、及び、化学蒸着法(CVD法)等が挙げられる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層など)については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、または、マイクロコンタクト法等)などの方法により形成することができる。
また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。または、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、またはX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
以上のように、本実施の形態の表示装置では、島状のEL層は、ファインメタルマスクを用いて形成されるのではなく、EL層を一面に成膜した後に加工することで形成されるため、島状のEL層を均一の厚さで形成することができる。また、これまで実現が困難であった高精細な表示装置または高開口率の表示装置を実現することができる。さらに、受光デバイスを内蔵した、光検出機能を有する、高精細な表示装置または高開口率の表示装置を実現することができる。
各色の発光デバイスを構成する第1の層、第2の層、第3の層はそれぞれ別の工程で形成する。したがって、各EL層を、各色の発光デバイスに適した構成(材料及び膜厚など)で作製することができる。これにより、特性の良好な発光デバイスを作製することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の表示装置について図16乃至図18を用いて説明する。
本実施の形態の表示装置は、高解像度な表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置の表示部に用いることができる。
[表示装置100F]
図16に、表示装置100Fの斜視図を示し、図17Aに、表示装置100Fの断面図を示す。
表示装置100Fは、基板152と基板151とが貼り合わされた構成を有する。図16では、基板152を破線で明示している。
表示装置100Fは、表示部162、接続部140、回路164、配線165等を有する。図16では表示装置100FにIC173及びFPC172が実装されている例を示している。そのため、図16に示す構成は、表示装置100Fと、IC(集積回路)と、FPCと、を有する表示モジュールということもできる。
接続部140は、表示部162の外側に設けられる。接続部140は、表示部162の一辺または複数の辺に沿って設けることができる。接続部140は、単数であっても複数であってもよい。図16では、表示部の四辺を囲むように接続部140が設けられている例を示す。接続部140では、発光デバイスの共通電極と、導電層とが電気的に接続されており、共通電極に電位を供給することができる。
回路164としては、例えば走査線駆動回路を用いることができる。
配線165は、表示部162及び回路164に信号及び電力を供給する機能を有する。当該信号及び電力は、外部からFPC172を介して配線165に入力されるか、またはIC173から配線165に入力される。
図16では、COG(Chip On Glass)方式またはCOF(Chip On Film)方式等により、基板151にIC173が設けられている例を示す。IC173は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置100F及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
図17Aに、表示装置100Fの、FPC172を含む領域の一部、回路164の一部、表示部162の一部、接続部140の一部、及び、端部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。
図17Aに示す表示装置100Fは、基板151と基板152の間に、トランジスタ201、トランジスタ205、受光デバイス150d、緑色の光を発する発光デバイス130b、及び、青色の光を発する発光デバイス130c等を有する。
表示装置100Fは、例えば、実施の形態1で説明した、図2A乃至図2G、図3A、図3B、図5A乃至図5Dに示す画素レイアウトを適用することができる。受光デバイス150dは、副画素PSまたは副画素IRSに設けることができる。
受光デバイス150dは、導電層111dと、導電層111d上の導電層112dと、導電層112d上の導電層126dと、を有する。導電層111d、112d、126dの全てを画素電極と呼ぶこともでき、一部を画素電極と呼ぶこともできる。
導電層111dは、絶縁層214に設けられた開口を介して、トランジスタ205が有する導電層222bと接続されている。導電層111dの端部よりも外側に導電層112dの端部が位置している。導電層112dの端部と導電層126dの端部は、揃っている、または概略揃っている。例えば、導電層111d及び導電層112dに反射電極として機能する導電層を用い、導電層126dに、透明電極として機能する導電層を用いることができる。
発光デバイス130bは、導電層111bと、導電層111b上の導電層112bと、導電層112b上の導電層126bと、を有する。
発光デバイス130cは、導電層111cと、導電層111c上の導電層112cと、導電層112c上の導電層126cと、を有する。
発光デバイス130bにおける導電層111b、112b、126b、及び、発光デバイス130cにおける導電層111c、112c、126cについては、受光デバイス150dにおける導電層111d、112d、126dと同様であるため詳細な説明は省略する。
導電層111b、111c、111dには、絶縁層214に設けられた開口を覆うように凹部が形成される。当該凹部には、層128が埋め込まれている。
層128は、導電層111b、111c、111dの凹部を平坦化する機能を有する。導電層111b、111c、111d及び層128上には、導電層111b、111c、111dと電気的に接続される導電層112b、112c、112dを設けられている。したがって、導電層111b、111c、111dの凹部と重なる領域も発光領域として使用でき、画素の開口率を高めることができる。
層128は、絶縁層であってもよく、導電層であってもよい。層128には、各種無機絶縁材料、有機絶縁材料、及び導電材料を適宜用いることができる。特に、層128は、絶縁材料を用いて形成されることが好ましい。
層128としては、有機材料を有する絶縁層を好適に用いることができる。例えば、層128として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、層128として、感光性の樹脂を用いることができる。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
感光性の樹脂を用いることにより、露光及び現像の工程のみで層128を作製することができ、ドライエッチング、あるいはウェットエッチング等による導電層111b、111c、111dの表面への影響を低減することができる。また、ネガ型の感光性樹脂を用いて層128を形成することにより、絶縁層214の開口の形成に用いるフォトマスク(露光マスク)と同一のフォトマスクを用いて、層128を形成できる場合がある。
導電層112dの上面及び側面と導電層126dの上面及び側面は、第5の層113dによって覆われている。第5の層113dは、少なくとも活性層を有する。
同様に、導電層112bの上面及び側面と導電層126bの上面及び側面は、第2の層113bによって覆われている。また、導電層112cの上面及び側面と導電層126cの上面及び側面は、第3の層113cによって覆われている。したがって、導電層112b、112cが設けられている領域全体を、発光デバイス130b、130cの発光領域として用いることができるため、画素の開口率を高めることができる。
第2の層113b、第3の層113c、及び、第5の層113dの側面は、それぞれ、絶縁層125、127によって覆われている。第2の層113bと絶縁層125との間には犠牲層118bが位置する。また、第3の層113cと絶縁層125との間には犠牲層118cが位置し、第5の層113dと絶縁層125との間には犠牲層118dが位置する。第2の層113b、第3の層113c、第5の層113d、及び、絶縁層125、127上に、第4の層114が設けられ、第4の層114上に共通電極115が設けられている。第4の層114及び共通電極115は、それぞれ、受光デバイスと発光デバイスに共通して設けられる一続きの膜である。また、発光デバイス130b、130c上及び受光デバイス150d上には、保護層131が設けられている。
保護層131と基板152は接着層142を介して接着されている。発光デバイスの封止には、固体封止構造または中空封止構造などが適用できる。図17Aでは、基板152と基板151との間の空間が、接着層142で充填されており、固体封止構造が適用されている。または、当該空間を不活性ガス(窒素またはアルゴンなど)で充填し、中空封止構造を適用してもよい。このとき、接着層142は、発光デバイスと重ならないように設けられていてもよい。また、当該空間を、枠状に設けられた接着層142とは異なる樹脂で充填してもよい。
接続部140においては、絶縁層214上に導電層123が設けられている。導電層123は、導電層111b、111c、111dと同一の導電膜を加工して得られた導電膜と、導電層112b、112c、112dと同一の導電膜を加工して得られた導電膜と、導電層126b、126c、126dと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。導電層123の端部は、犠牲層、絶縁層125、及び、絶縁層127によって覆われている。また、導電層123上には第4の層114が設けられ、第4の層114上には共通電極115が設けられている。導電層123と共通電極115は第4の層114を介して電気的に接続される。なお、接続部140には、第4の層114が形成されていなくてもよい。この場合、導電層123と共通電極115とが直接接して電気的に接続される。
表示装置100Fは、トップエミッション型である。発光デバイスが発する光は、基板152側に射出される。基板152には、可視光に対する透過性が高い材料を用いることが好ましい。画素電極は可視光を反射する材料を含み、対向電極(共通電極115)は可視光を透過する材料を含む。
基板151から絶縁層214までの積層構造が、実施の形態1におけるトランジスタを含む層101に相当する。
トランジスタ201及びトランジスタ205は、いずれも基板151上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
基板151上には、絶縁層211、絶縁層213、絶縁層215、及び絶縁層214がこの順で設けられている。絶縁層211は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層213は、その一部が各トランジスタのゲート絶縁層として機能する。絶縁層215は、トランジスタを覆って設けられる。絶縁層214は、トランジスタを覆って設けられ、平坦化層としての機能を有する。なお、ゲート絶縁層の数及びトランジスタを覆う絶縁層の数は限定されず、それぞれ単層であっても2層以上であってもよい。
トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
絶縁層211、絶縁層213、及び絶縁層215としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
平坦化層として機能する絶縁層214には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。また、絶縁層214を、有機絶縁膜と、無機絶縁膜との積層構造にしてもよい。絶縁層214の最表層は、エッチング保護膜としての機能を有することが好ましい。これにより、導電層111b、導電層112b、または導電層126bなどの加工時に、絶縁層214に凹部が形成されることを抑制することができる。または、絶縁層214には、導電層111b、導電層112b、または導電層126bなどの加工時に、凹部が設けられてもよい。
トランジスタ201及びトランジスタ205は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、ソース及びドレインとして機能する導電層222a及び導電層222b、半導体層231、ゲート絶縁層として機能する絶縁層213、並びに、ゲートとして機能する導電層223を有する。ここでは、同一の導電膜を加工して得られる複数の層に、同じハッチングパターンを付している。絶縁層211は、導電層221と半導体層231との間に位置する。絶縁層213は、導電層223と半導体層231との間に位置する。
本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタ201及びトランジスタ205には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体、または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。または、インジウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。または、インジウム、ガリウム、スズ、及び亜鉛を含む酸化物を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。
例えば、原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
回路164が有するトランジスタと、表示部162が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路164が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部162が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
図17B及び図17Cに、トランジスタの他の構成例を示す。
トランジスタ209及びトランジスタ210は、ゲートとして機能する導電層221、ゲート絶縁層として機能する絶縁層211、チャネル形成領域231i及び一対の低抵抗領域231nを有する半導体層231、一対の低抵抗領域231nの一方と接続する導電層222a、一対の低抵抗領域231nの他方と接続する導電層222b、ゲート絶縁層として機能する絶縁層225、ゲートとして機能する導電層223、並びに、導電層223を覆う絶縁層215を有する。絶縁層211は、導電層221とチャネル形成領域231iとの間に位置する。絶縁層225は、少なくとも導電層223とチャネル形成領域231iとの間に位置する。さらに、トランジスタを覆う絶縁層218を設けてもよい。
図17Bに示すトランジスタ209では、絶縁層225が半導体層231の上面及び側面を覆う例を示す。導電層222a及び導電層222bは、それぞれ、絶縁層225及び絶縁層215に設けられた開口を介して低抵抗領域231nと接続される。導電層222a及び導電層222bのうち、一方はソースとして機能し、他方はドレインとして機能する。
一方、図17Cに示すトランジスタ210では、絶縁層225は、半導体層231のチャネル形成領域231iと重なり、低抵抗領域231nとは重ならない。例えば、導電層223をマスクとして絶縁層225を加工することで、図17Cに示す構造を作製できる。図17Cでは、絶縁層225及び導電層223を覆って絶縁層215が設けられ、絶縁層215の開口を介して、導電層222a及び導電層222bがそれぞれ低抵抗領域231nと接続されている。
基板151の、基板152が重ならない領域には、接続部204が設けられている。接続部204では、配線165が導電層166及び接続層242を介してFPC172と電気的に接続されている。導電層166は、導電層111b、111c、111dと同一の導電膜を加工して得られた導電膜と、導電層112b、112c、112dと同一の導電膜を加工して得られた導電膜と、導電層126b、126c、126dと同一の導電膜を加工して得られた導電膜と、の積層構造である例を示す。接続部204の上面では、導電層166が露出している。これにより、接続部204とFPC172とを接続層242を介して電気的に接続することができる。
基板152の基板151側の面には、遮光層117を設けることが好ましい。遮光層117は、隣り合う発光デバイスの間、接続部140、及び、回路164などに設けることができる。また、基板152の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板152の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
発光デバイス及び受光デバイスを覆う保護層131を設けることで、発光デバイス及び受光デバイスに水などの不純物が入り込むことを抑制し、発光デバイス及び受光デバイスの信頼性を高めることができる。
基板151及び基板152には、それぞれ、実施の形態2にて例示した基板120に用いることができる材料を用いることができる。発光デバイスからの光を取り出す側の基板には、該光を透過する材料を用いる。基板151及び基板152に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板151または基板152として偏光板を用いてもよい。
接着層142としては、実施の形態2にて例示した樹脂層122に用いることができる材料を用いることができる。
接続層242としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
[表示装置100G]
図18Aに示す表示装置100Gは、白色発光の発光デバイスとカラーフィルタを組み合わせた、ボトムエミッション型の表示装置である点で、表示装置100Fと主に相違する。なお、以降の表示装置の説明においては、先に説明した表示装置と同様の部分については説明を省略することがある。
発光デバイスが発する光は、基板151側に射出される。受光デバイスには基板151側から光が入射する。基板151には、可視光に対する透過性が高い材料を用いることが好ましい。一方、基板152に用いる材料の透光性は問わない。
基板151とトランジスタ201との間、基板151とトランジスタ205との間には、遮光層117を形成することが好ましい。図18Aでは、基板151上に遮光層117が設けられ、遮光層117上に絶縁層153が設けられ、絶縁層153上にトランジスタ201、205などが設けられている例を示す。
発光デバイス130aと着色層132Rが重なっており、発光デバイス130aの発光は、赤色の着色層132Rを介して表示装置100Gの外部に赤色の光として取り出される。
発光デバイス130aは、導電層111aと、導電層111a上の導電層112aと、導電層112a上の導電層126aと、を有する。
受光デバイス150dは、導電層111dと、導電層111d上の導電層112dと、導電層112d上の導電層126dと、を有する。
導電層111a、111d、112a、112d、126a、126dには、それぞれ、可視光に対する透過性が高い材料を用いる。共通電極115には可視光を反射する材料を用いることが好ましい。
導電層112aの上面及び側面と導電層126aの上面及び側面は、第1の層113aによって覆われている。第1の層113aの側面は、絶縁層125、127によって覆われている。第1の層113aと絶縁層125との間には犠牲層118aが位置する。第1の層113a、第5の層113d、及び、絶縁層125、127上に、第4の層114が設けられ、第4の層114上に共通電極115が設けられている。第4の層114及び共通電極115は、それぞれ、受光デバイスと発光デバイスに共通して設けられる一続きの膜である。また、発光デバイス130a上及び受光デバイス150d上には、保護層131が設けられている。
各色の副画素が有する発光デバイスは、いずれも白色の光を発する構成とすることができる。図18Aでは、第1の層113aを3層で図示しており、具体的には、第1の発光ユニットと、電荷発生層と、第2の発光ユニットとの積層構造を適用することができる。
また、図17A及び図18Aなどでは、層128の上面が平坦部を有する例を示すが、層128の形状は、特に限定されない。図18B乃至図18Dに、層128の変形例を示す。
図18B及び図18Dに示すように、層128の上面は、断面視において、中央及びその近傍が窪んだ形状、つまり、凹曲面を有する形状を有する構成とすることができる。
また、図18Cに示すように、層128の上面は、断面視において、中央及びその近傍が膨らんだ形状、つまり、凸曲面を有する形状を有する構成とすることができる。
また、層128の上面は、凸曲面及び凹曲面の一方または双方を有していてもよい。また、層128の上面が有する凸曲面及び凹曲面の数はそれぞれ限定されず、一つまたは複数とすることができる。
また、層128の上面の高さと、導電層111aの上面の高さと、は、一致または概略一致していてもよく、互いに異なっていてもよい。例えば、層128の上面の高さは、導電層111aの上面の高さより低くてもよく、高くてもよい。
また、図18Bは、導電層111aに形成された凹部の内部に層128が収まっている例ともいえる。一方、図18Dのように、導電層111aに形成された凹部の外側に層128が存在する、つまり、当該凹部よりも層128の上面の幅が広がって形成されていてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態4)
本実施の形態では、本発明の一態様の表示装置に用いることができる発光デバイスについて説明する。
図19Aに示すように、発光デバイスは、一対の電極(下部電極772、上部電極788)の間に、EL層786を有する。EL層786は、層4420、発光層4411、層4430などの複数の層で構成することができる。層4420は、例えば電子注入性の高い物質を含む層(電子注入層)及び電子輸送性の高い物質を含む層(電子輸送層)などを有することができる。発光層4411は、例えば発光性の化合物を有する。層4430は、例えば正孔注入性の高い物質を含む層(正孔注入層)及び正孔輸送性の高い物質を含む層(正孔輸送層)を有することができる。
一対の電極間に設けられた層4420、発光層4411及び層4430を有する構成は単一の発光ユニットとして機能することができ、本明細書では図19Aの構成をシングル構造と呼ぶ。
また、図19Bは、図19Aに示す発光デバイスが有するEL層786の変形例である。具体的には、図19Bに示す発光デバイスは、下部電極772上の層4431と、層4431上の層4432と、層4432上の発光層4411と、発光層4411上の層4421と、層4421上の層4422と、層4422上の上部電極788と、を有する。例えば、下部電極772を陽極とし、上部電極788を陰極とした場合、層4431が正孔注入層として機能し、層4432が正孔輸送層として機能し、層4421が電子輸送層として機能し、層4422が電子注入層として機能する。または、下部電極772を陰極とし、上部電極788を陽極とした場合、層4431が電子注入層として機能し、層4432が電子輸送層として機能し、層4421が正孔輸送層として機能し、層4422が正孔注入層として機能する。このような層構造とすることで、発光層4411に効率よくキャリアを注入し、発光層4411内におけるキャリアの再結合の効率を高めることが可能となる。
なお、図19C、図19Dに示すように層4420と層4430との間に複数の発光層(発光層4411、4412、4413)が設けられる構成もシングル構造のバリエーションである。
また、図19E、図19Fに示すように、複数の発光ユニット(EL層786a、EL層786b)が電荷発生層4440を介して直列に接続された構成を本明細書ではタンデム構造と呼ぶ。なお、タンデム構造をスタック構造と呼んでもよい。なお、タンデム構造とすることで、高輝度発光が可能な発光デバイスとすることができる。
図19C、図19Dにおいて、発光層4411、発光層4412、及び発光層4413に、同じ色の光を発する発光材料、さらには、同じ発光材料を用いてもよい。例えば、発光層4411、発光層4412、及び発光層4413に、青色の光を発する発光材料を用いてもよい。図19Dに示す層785として、色変換層を設けてもよい。
また、発光層4411、発光層4412、及び発光層4413に、それぞれ異なる色の光を発する発光材料を用いてもよい。発光層4411、発光層4412、及び発光層4413がそれぞれ発する光が補色の関係である場合、白色発光が得られる。図19Dに示す層785として、カラーフィルタ(着色層ともいう)を設けてもよい。白色光がカラーフィルタを透過することで、所望の色の光を得ることができる。
また、図19E、図19Fにおいて、発光層4411と、発光層4412とに、同じ色の光を発する発光材料、さらには、同じ発光材料を用いてもよい。または、発光層4411と、発光層4412とに、異なる色の光を発する発光材料を用いてもよい。発光層4411が発する光と、発光層4412が発する光が補色の関係である場合、白色発光が得られる。図19Fには、さらに層785を設ける例を示している。層785としては、色変換層及びカラーフィルタ(着色層)の一方または双方を用いることができる。
なお、図19C、図19D、図19E、図19Fにおいても、図19Bに示すように、層4420と、層4430とは、2層以上の層からなる積層構造としてもよい。
発光デバイスごとに、発光色(例えば、青(B)、緑(G)、及び赤(R))を作り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。
発光デバイスの発光色は、EL層786を構成する材料によって、赤、緑、青、シアン、マゼンタ、黄または白などとすることができる。また、発光デバイスにマイクロキャビティ構造を付与することにより色純度をさらに高めることができる。
白色の光を発する発光デバイスは、発光層に2種類以上の発光物質を含む構成とすることが好ましい。白色発光を得るには、2以上の発光物質の各々の発光が補色の関係となるような発光物質を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する発光デバイスを得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
発光層には、R(赤)、G(緑)、B(青)、Y(黄)、O(橙)等の発光を示す発光物質を2以上含むことが好ましい。または、発光物質を2以上有し、それぞれの発光物質の発光は、R、G、Bのうち2以上の色のスペクトル成分を含むことが好ましい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態5)
本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
金属酸化物は、少なくともインジウムまたは亜鉛を含むことが好ましい。特にインジウム及び亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、スズなどが含まれていることが好ましい。また、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、コバルトなどから選ばれた一種、または複数種が含まれていてもよい。
また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、または、原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
<結晶構造の分類>
酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(polycrystal)等が挙げられる。
なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。
例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIGZO膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIGZO膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIGZO膜は、結晶状態でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
また、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、スズ、チタンなどから選ばれた一種、または複数種)において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、元素M、亜鉛(Zn)、及び酸素を有する層(以下、(M,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムと元素Mは、互いに置換可能である。よって、(M,Zn)層にはインジウムが含まれる場合がある。また、In層には元素Mが含まれる場合がある。なお、In層にはZnが含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化することなどによって、歪みを許容することができるためと考えられる。
なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OSまたは非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OSの組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OSの組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
CAC−OSは、例えば基板を加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。
また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。
<不純物>
ここで、酸化物半導体中における各不純物の影響について説明する。
酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、酸化物半導体において、SIMSにより得られる水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態6)
本実施の形態では、本発明の一態様の電子機器について、図20乃至図22を用いて説明する。
本実施の形態の電子機器は、表示部に本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化及び高解像度化が容易である。したがって、様々な電子機器の表示部に用いることができる。
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
また、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば、腕時計型及びブレスレット型の情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR(Virtual Reality)向け機器、メガネ型のAR(Augmented Reality)向け機器、及び、MR(Mixed Reality)向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。
本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K(画素数3840×2160)、8K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K、8K、またはそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、100ppi以上が好ましく、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度及び高い精細度の一方または双方を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。また、本発明の一態様の表示装置の画面比率(アスペクト比)については、特に限定はない。例えば、表示装置は、1:1(正方形)、4:3、16:9、16:10など様々な画面比率に対応することができる。
本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。
本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
図20Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
表示部6502に、本発明の一態様の表示装置を適用することができる。
図20Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
表示パネル6511には本発明の一態様のフレキシブルディスプレイを適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
図21Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図21Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者同士など)の情報通信を行うことも可能である。
図21Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
表示部7000に、本発明の一態様の表示装置を適用することができる。
図21C、図21Dに、デジタルサイネージの一例を示す。
図21Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
図21Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
図21C、図21Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
また、図21C、図21Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、使用者が所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数の使用者が同時にゲームに参加し、楽しむことができる。
図22A乃至図22Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)、マイクロフォン9008、等を有する。
図22A乃至図22Fにおいて、表示部9001に、本発明の一態様の表示装置を適用することができる。
図22A乃至図22Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
図22A乃至図22Fに示す電子機器の詳細について、以下説明を行う。
図22Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図22Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メールまたはSNSなどの題名、送信者名、日時、時刻、バッテリの残量、電波強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
図22Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
図22Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200は、例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
図22D乃至図22Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図22Dは携帯情報端末9201を展開した状態、図22Fは折り畳んだ状態、図22Eは図22Dと図22Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
本実施例では、本発明の一態様の表示装置と、AIを利用した機械学習モデルと、を用いて、非接触の対象物の位置情報を推論した結果について説明する。
本実施例では、まず、表示装置を用いて非接触の対象物を撮像した画像を取得した。次に、当該画像と位置情報とのデータセットを用いて、機械学習モデルの学習を行った。その後、学習済みモデルに画像を入力し、学習済みモデルによる対象物の位置情報の推論結果を評価した。
[画像の取得]
図23Aは、評価に使用した表示装置と光源との位置関係などを示す評価系の模式図である。
本実施例では、画素に、副画素R、副画素G、副画素B、及び副画素IRSを有する、表示装置55を用いて評価を行った。
副画素Rは、赤色の光を発する発光デバイスを有する。副画素Gは、緑色の光を発する発光デバイスを有する。副画素Bは、青色の光を発する発光デバイスを有する。各発光デバイスとしては、有機ELデバイスを用いた。
副画素IRSは、赤外光を検出する受光デバイスを有する。受光デバイスとしては、有機光センサを用いた。
光源IR−LEDとして、波長880nmの赤外光を発するLEDを用い、0.3Aで駆動させた。光源IR−LEDと表示装置55との距離は約3cmとした。
本実施例では、光源IR−LEDが発する赤外光(Infrared light)が対象物50で反射された反射光(Reflected light)を、副画素IRSが有する受光デバイスで検出した。
対象物50としては、素手の指と、灰色の手袋と、光沢紙(全光線反射率80%)の3種類を用いた。なお、灰色の手袋の素材は、化学繊維に硫化銅を混ぜた導電性繊維であり、静電容量式タッチセンサで検出が可能である。
今回の評価は、黒色板52(全光線反射率5%)に1cm□の開口(窓ともいえる)を開け、当該開口から対象物50を露出させる形式で実施した。これにより、対象物の位置情報と、対象物による光の反射の情報と、を含む撮像データを得ることができる。また、当該撮像データは、対象物の位置を推定する際に用いる、表示装置が撮像した画像の一部を切り出した画像に相当するということもできる。
対象物50の3次元空間での座標は50通りとした。水平方向の位置は、25条件(X方向:−2cm、−1cm、0cm(基準点)、1cm、2cmの5条件と、Y方向:−2cm、−1cm、0cm(基準点)、1cm、2cmの5条件の積)とした。なお、対象物50の水平方向の位置は、X方向とY方向に移動可能なステージを1cm間隔で動かすことで調整した。また、垂直方向の位置は、表示装置から1cmまたは5cm離れた位置の2条件とした。
実際に表示装置55で対象物50を撮像した画像の例を図23B乃至図23Dに示す。図23Bは、(x,y,z)=(0cm,0cm,1cm)の位置にある素手の指を撮像した結果であり、図23Cは、(x,y,z)=(0cm,0cm,1cm)の位置にある光沢紙を撮像した結果であり、図23Dは、(x,y,z)=(0cm,0cm,5cm)の位置にある光沢紙を撮像した結果である。
図23Bと図23Cを比較することで、対象物50の位置が同じであっても、種類によって、撮像結果に差が生じることが確認できた。また、図23Cと図23Dを比較することで、対象物50の種類が同じであっても、位置によって、撮像結果に差が生じることが確認できた。
本実施例では、上記のように、表示装置55で対象物50を撮像した画像を15000枚準備した。
[機械学習モデルの学習]
続いて、表示装置55で対象物50を撮像した画像と、位置情報(x,y,z)と、のデータセットを教師データに用いて、AIを利用した機械学習モデルの学習を行った。
具体的には、機械学習モデルに、入力データ(例題)として画像データを与え、出力データ(答え)として位置情報のデータを与えることで、機械学習モデルを学習させた。
機械学習モデルとしては、それぞれ畳み込みニューラルネットワーク(CNN)を用いたモデルである、AlexNetと、MobileNetと、の2種類を用いた。なお、MobileNetは、AlexNetよりもパラメータが少なく軽量なモデルである。
取得した画像15000枚のうち、14250枚を学習に用い、残りの750枚は学習済みモデルの評価に用いた。
各画像データを100ピクセル×100ピクセルにリサイズした後、100×100の配列に変換して、機械学習モデルに入力した。
本実施例では、画像データを入力することで、位置情報(x,y,z)の値を推定する回帰モデルを作成した。
[機械学習モデルの評価]
まず、AlexNetを用いた学習済みモデルに、画像データを入力し、位置情報(x,y,z)の推論を行った。推論結果の例を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1に示すように、対象物の違いによらず、画像から対象物の位置を高い精度で推論できていることがわかった。
次に、MobileNetを用いた学習済みモデルに、画像データを入力し、位置情報(x,y,z)の推論を行った。
AlexNetを用いた学習済みモデルと、MobileNetを用いた学習済みモデルのパラメータ数と、750枚の画像の推論結果の誤差の平均を表2に示す。
Figure JPOXMLDOC01-appb-T000002
パラメータ数の差によらず、AlexNetとMobileNetのいずれにおいても、画像から対象物の位置を高い精度で推論できていることがわかった。
本実施例の結果から、本発明の一態様の表示装置を用いて非接触の対象物を撮像し、撮像した画像データを機械学習モデルに入力することで、当該対象物の位置情報を推論できることがわかった。これにより、対象物が表示装置に接触していなくても、対象物を検出できる。したがって、スワイプ、スクロールなどの画面操作を、非接触で行えることが示唆された。
CL:配線、IR−LED:光源、IR:副画素、IRS:副画素、M11:トランジスタ、M12:トランジスタ、M13:トランジスタ、M14:トランジスタ、M15:トランジスタ、NN:ニューラルネットワーク、PS:副画素、RS:配線、SE:配線、SW:配線、TX:配線、VCP:配線、VPI:配線、VRS:配線、WX:配線、10:電子機器、11:処理部、12:表示部、13:記憶部、15:撮像データ、17:像、19:位置情報、31B:光、31G:光、31IR:赤外光、31R:光、32G:反射光、32IR:反射光、50:対象物、52:黒色板、55:表示装置、100A:表示装置、100B:表示装置、100C:表示装置、100D:表示装置、100E:表示装置、100F:表示装置、100G:表示装置、100:表示装置、101:トランジスタを含む層、102:基板、103:筐体、104:光源、105:保護部材、106:基板、108:対象物、109a:画素、109b:画素、110a:副画素、110b:副画素、110c:副画素、110d:副画素、110e:副画素、110:画素、111a:導電層、111b:導電層、111c:導電層、111d:導電層、111e:導電層、112a:導電層、112b:導電層、112c:導電層、112d:導電層、113a:第1の層、113b:第2の層、113c:第3の層、113d:第5の層、113e:第6の層、114:第4の層、115:共通電極、117:遮光層、118a:犠牲層、118b:犠牲層、118c:犠牲層、118d:犠牲層、119a:犠牲層、119b:犠牲層、120:基板、121:絶縁層、122:樹脂層、123:導電層、125:絶縁層、126a:導電層、126b:導電層、126c:導電層、126d:導電層、127:絶縁層、128:層、130a:発光デバイス、130B:発光デバイス、130b:発光デバイス、130c:発光デバイス、130G:発光デバイス、130IR:発光デバイス、130R:発光デバイス、131:保護層、132R:着色層、134:空隙、139:領域、140:接続部、142:接着層、150d:受光デバイス、150e:受光デバイス、150IRS:受光デバイス、150PS:受光デバイス、151:基板、152:基板、153:絶縁層、162:表示部、164:回路、165:配線、166:導電層、172:FPC、173:IC、180A:画素、180B:画素、180C:画素、201:トランジスタ、204:接続部、205:トランジスタ、209:トランジスタ、210:トランジスタ、211:絶縁層、213:絶縁層、214:絶縁層、215:絶縁層、218:絶縁層、221:導電層、222a:導電層、222b:導電層、223:導電層、225:絶縁層、231i:チャネル形成領域、231n:低抵抗領域、231:半導体層、242:接続層、772:下部電極、785:層、786a:EL層、786b:EL層、786:EL層、788:上部電極、4411:発光層、4412:発光層、4413:発光層、4420:層、4421:層、4422:層、4430:層、4431:層、4432:層、4440:電荷発生層、6500:電子機器、6501:筐体、6502:表示部、6503:電源ボタン、6504:ボタン、6505:スピーカ、6506:マイク、6507:カメラ、6508:光源、6510:保護部材、6511:表示パネル、6512:光学部材、6513:タッチセンサパネル、6515:FPC、6516:IC、6517:プリント基板、6518:バッテリ、7000:表示部、7100:テレビジョン装置、7101:筐体、7103:スタンド、7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、9000:筐体、9001:表示部、9003:スピーカ、9005:操作キー、9006:接続端子、9007:センサ、9008:マイクロフォン、9050:アイコン、9051:情報、9052:情報、9053:情報、9054:情報、9055:ヒンジ、9101:携帯情報端末、9102:携帯情報端末、9200:携帯情報端末、9201:携帯情報端末

Claims (9)

  1.  表示部、処理部、及び、記憶部を有する電子機器であり、
     前記表示部は、発光デバイスと受光デバイスとを有する表示装置を有し、
     前記表示部は、前記発光デバイスを用いて画像を表示する機能と、前記受光デバイスを用いて撮像する機能と、を有し、
     前記記憶部は、ニューラルネットワークを用いた機械学習モデルを有し、
     前記処理部は、前記機械学習モデルを用いて、前記表示部で撮像された撮像データから、前記電子機器と接触していない対象物の位置情報を推論する機能を有する、電子機器。
  2.  表示部、処理部、及び、記憶部を有する電子機器であり、
     前記表示部は、第1の画素を有する表示装置を有し、
     前記第1の画素は、第1の発光デバイス、第1の受光デバイス、及び、第2の受光デバイスを有し、
     前記第1の受光デバイスが検出する光の波長域は、前記第1の発光デバイスの発光スペクトルの最大ピーク波長を含み、
     前記第2の受光デバイスは、赤外光を検出する機能を有し、
     前記表示部は、前記第1の発光デバイスを用いて画像を表示する機能と、前記第1の受光デバイス及び前記第2の受光デバイスの一方または双方を用いて撮像する機能と、を有し、
     前記記憶部は、ニューラルネットワークを用いた機械学習モデルを有し、
     前記処理部は、前記機械学習モデルを用いて、前記表示部で撮像された撮像データから、前記電子機器と接触していない対象物の位置情報を推論する機能を有する、電子機器。
  3.  表示部、処理部、及び、記憶部を有する電子機器であり、
     前記表示部は、第1の画素を有する表示装置を有し、
     前記第1の画素は、第1の副画素、第2の副画素、第3の副画素、第4の副画素、及び、第5の副画素を有し、
     前記第1の副画素は、第1の発光デバイスを有し、かつ、赤色の光を発する機能を有し、
     前記第2の副画素は、第2の発光デバイスを有し、かつ、緑色の光を発する機能を有し、
     前記第3の副画素は、第3の発光デバイスを有し、かつ、青色の光を発する機能を有し、
     前記第4の副画素は、第1の受光デバイスを有し、かつ、前記第1の受光デバイスが検出する光の波長域は、前記第1の発光デバイス、前記第2の発光デバイス、及び、前記第3の発光デバイスのうち少なくとも一つの発光スペクトルの最大ピーク波長を含み、
     前記第5の副画素は、第2の受光デバイスを有し、かつ、赤外光を検出する機能を有し、
     前記表示部は、前記第1の副画素乃至前記第3の副画素を用いて画像を表示する機能と、前記第1の受光デバイス及び前記第2の受光デバイスの一方または双方を用いて撮像する機能と、を有し、
     前記記憶部は、ニューラルネットワークを用いた機械学習モデルを有し、
     前記処理部は、前記機械学習モデルを用いて、前記表示部で撮像された撮像データから、前記電子機器と接触していない対象物の位置情報を推論する機能を有する、電子機器。
  4.  請求項2または3において、
     前記第1の受光デバイスの受光領域の面積は、前記第2の受光デバイスの受光領域の面積よりも小さい、電子機器。
  5.  請求項2乃至4のいずれか一において、
     前記表示装置は、第2の画素を有し、
     前記第2の画素は、前記第1の発光デバイス、前記第1の受光デバイス、及び、センサデバイスを有する、電子機器。
  6.  請求項5において、
     前記電子機器は、前記センサデバイスを用いて、力、変位、位置、速度、加速度、角速度、回転数、距離、磁気、温度、化学物質、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、体調、脈拍、体温、及び、血中の酸素濃度の少なくとも一つを測定する機能を有する、電子機器。
  7.  請求項2乃至4のいずれか一において、
     前記表示装置は、第2の画素を有し、
     前記第2の画素は、前記第1の発光デバイス、第4の発光デバイス、及び、前記第1の受光デバイスを有し、
     前記第4の発光デバイスは、赤外光を発する機能を有する、電子機器。
  8.  請求項1乃至6のいずれか一において、
     第4の発光デバイスを有し、
     前記第4の発光デバイスは、赤外光を発する機能を有する、電子機器。
  9.  請求項8において、
     前記第4の発光デバイスは、前記表示装置を介して、前記電子機器の外部に光を射出する、電子機器。
PCT/IB2022/052305 2021-03-25 2022-03-15 電子機器 WO2022200915A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023508137A JPWO2022200915A1 (ja) 2021-03-25 2022-03-15
US18/281,593 US20240164167A1 (en) 2021-03-25 2022-03-15 Electronic device
KR1020237034710A KR20230158533A (ko) 2021-03-25 2022-03-15 전자 기기
CN202280022591.5A CN117063145A (zh) 2021-03-25 2022-03-15 电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021051461 2021-03-25
JP2021-051461 2021-03-25

Publications (1)

Publication Number Publication Date
WO2022200915A1 true WO2022200915A1 (ja) 2022-09-29

Family

ID=83396398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/052305 WO2022200915A1 (ja) 2021-03-25 2022-03-15 電子機器

Country Status (5)

Country Link
US (1) US20240164167A1 (ja)
JP (1) JPWO2022200915A1 (ja)
KR (1) KR20230158533A (ja)
CN (1) CN117063145A (ja)
WO (1) WO2022200915A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135027A (ja) * 2003-10-28 2005-05-26 Sanyo Electric Co Ltd タッチ入力機能付き表示装置
JP2006301864A (ja) * 2005-04-19 2006-11-02 Sony Corp 画像表示装置および物体の検出方法
JP2008052073A (ja) * 2006-08-25 2008-03-06 Hitachi Displays Ltd 画像表示装置
US20130027343A1 (en) * 2011-07-29 2013-01-31 Analog Devices, Inc. Position determination techniques in resistive touch screen applications
US20130241890A1 (en) * 2012-03-14 2013-09-19 Texas Instruments Incorporated Detecting and Tracking Touch on an Illuminated Surface Using a Machine Learning Classifier
JP2016530590A (ja) * 2013-06-03 2016-09-29 クアルコム,インコーポレイテッド インセル多機能ピクセルおよびディスプレイ
WO2020003970A1 (ja) * 2018-06-25 2020-01-02 株式会社ワコム タッチic及び外部プロセッサを含むシステムで実行される方法
WO2020152556A1 (ja) * 2019-01-25 2020-07-30 株式会社半導体エネルギー研究所 機能パネル、表示装置、入出力装置、情報処理装置、情報処理装置の駆動方法
WO2020185594A1 (en) * 2019-03-08 2020-09-17 Chargepoint, Inc. Electric field touchscreen
JP2021039342A (ja) * 2019-08-29 2021-03-11 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9436864B2 (en) 2012-08-23 2016-09-06 Apple Inc. Electronic device performing finger biometric pre-matching and related methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135027A (ja) * 2003-10-28 2005-05-26 Sanyo Electric Co Ltd タッチ入力機能付き表示装置
JP2006301864A (ja) * 2005-04-19 2006-11-02 Sony Corp 画像表示装置および物体の検出方法
JP2008052073A (ja) * 2006-08-25 2008-03-06 Hitachi Displays Ltd 画像表示装置
US20130027343A1 (en) * 2011-07-29 2013-01-31 Analog Devices, Inc. Position determination techniques in resistive touch screen applications
US20130241890A1 (en) * 2012-03-14 2013-09-19 Texas Instruments Incorporated Detecting and Tracking Touch on an Illuminated Surface Using a Machine Learning Classifier
JP2016530590A (ja) * 2013-06-03 2016-09-29 クアルコム,インコーポレイテッド インセル多機能ピクセルおよびディスプレイ
WO2020003970A1 (ja) * 2018-06-25 2020-01-02 株式会社ワコム タッチic及び外部プロセッサを含むシステムで実行される方法
WO2020152556A1 (ja) * 2019-01-25 2020-07-30 株式会社半導体エネルギー研究所 機能パネル、表示装置、入出力装置、情報処理装置、情報処理装置の駆動方法
WO2020185594A1 (en) * 2019-03-08 2020-09-17 Chargepoint, Inc. Electric field touchscreen
JP2021039342A (ja) * 2019-08-29 2021-03-11 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器

Also Published As

Publication number Publication date
CN117063145A (zh) 2023-11-14
US20240164167A1 (en) 2024-05-16
JPWO2022200915A1 (ja) 2022-09-29
KR20230158533A (ko) 2023-11-20

Similar Documents

Publication Publication Date Title
WO2023047239A1 (ja) 表示装置
WO2022180480A1 (ja) 半導体装置、及び電子機器
WO2022248984A1 (ja) 表示装置
CN116745835A (zh) 显示装置、显示模块、电子设备及显示装置的制造方法
WO2022200915A1 (ja) 電子機器
WO2022162493A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022189881A1 (ja) 表示装置、表示モジュール及び電子機器
WO2022189883A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022180468A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022180482A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022219455A1 (ja) 表示装置、表示モジュール及び電子機器
WO2022167892A1 (ja) 表示装置の作製方法
WO2022185150A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
US20240164168A1 (en) Display apparatus, display module, electronic device, and method for manufacturing display apparatus
US20240164169A1 (en) Display apparatus, display module, electronic device, and method for manufacturing display apparatus
WO2022189882A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022185149A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2022189916A1 (ja) 表示装置、及び表示装置の作製方法
WO2022167882A1 (ja) 表示装置、表示モジュール、及び電子機器
WO2022248973A1 (ja) 表示装置
WO2022238808A1 (ja) 表示装置、及び表示装置の作製方法
WO2023017349A1 (ja) 表示装置、表示モジュール及び電子機器
CN116918454A (zh) 显示装置、显示模块、电子设备及显示装置的制造方法
CN116964657A (zh) 显示装置、显示模块及电子设备
CN117178314A (zh) 显示装置及显示装置的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508137

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18281593

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280022591.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237034710

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034710

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774431

Country of ref document: EP

Kind code of ref document: A1